
PERFORMANCE EVALUATION OF

PRE-CONGESTION NOTIFICATION

A Dissertation

Presented to the Faculty of the Graduate School

of Cornell University

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by

Xinyang Zhang

January 2009

c© 2009 Xinyang Zhang

ALL RIGHTS RESERVED

PERFORMANCE EVALUATION OF PRE-CONGESTION NOTIFICATION

Xinyang Zhang, Ph.D.

Cornell University 2009

Pre-Congestion Notification (PCN) has been recently proposed at IETF as a practical

framework for scalable measurement-based flow control system for support of inelastic

real-time traffic. PCN encompasses two complementary functions: admission control of

new flows and termination of some admitted flows when the available capacity is unex-

pectedly reduced after a network failure. Its simple structure and ad-hoc measurement-

based nature warrant careful exploration of its applicability.

In this work, we conducted a comprehensive performance evaluation of two propos-

als that implement PCN, CL-PHB and Single-Marking. We showed that CL-PHB works

reliably for both admission and termination control, which in turn demonstrates that the

PCN framework is a viable architecture to provide QoS to inelastic real-time traffic. We

also studied Single-Marking’s performance tradeoffs associated with its implementation

benefits, and analyzed its applicability range.

Our work also includes the development of several novel fluid models of different

complexities and the investigation of their accuracy and applicability to various aspects

of PCN admission and termination control. Aside from providing a tool to gain more

insight in PCN behavior, we believe that some of our analysis is of a more general na-

ture. Specifically, we believe that our results support a conjecture that while bottleneck

behaviors are possible to predict with high accuracy using these models, per-aggregate

behavior of admission control systems cannot be accurately predicted with any fluid

model resulting in a bounded estimation error.

BIOGRAPHICAL SKETCH

Xinyang (Joy) Zhang was born on Jun 20, 1979 in Harbin, China. She attended Univer-

sity at Albany (State University of New York) from 1998 to 2002 and graduated with

Master of Science in Computer Science. She came to Cornell University in the Fall of

2002 and began her doctoral studies in Computer Science. She pursued her research in

networking under the guidance of Prof. Paul Francis and Dr. Anna Charny. She also

pursued a minor in Statistics. Since 2006, she has been regularly working as an intern

for Cisco System, Inc. at the Boxborough, MA. Her research interests include in Quality

of Service and Internet Routing.

iii

To my parents

iv

ACKNOWLEDGEMENTS

First and foremost, I am extremely grateful to my thesis advisors Prof. Paul Francis and

Dr. Anna Charny, for all their guidance and stimulation throughout this research work.

The joy and enthusiasm they have for research was motivational for me, even during

tough times in the Ph.D. pursuit.

I would like to thank other members of my committee, Prof. Ken Birman and Prof.

Steven Schwager, for their insightful feedbacks and helpful comments. I also acknowl-

edge my other colleagues at PCN working group (Philip Eardley, Bob Briscoe, Joe

Babiarz, Michael Menth, and Vassilis Liatsos) with whom I have interacted a lot during

the course of this research.

I am very grateful to Prof. Ravi for inspiring me to pursue a research career when I

was an undergraduate, and for all his guidance and support throughout my student life. I

feel very fortunate to have great friends like Stefanie, Lyublena, Barry, Ganesh, Kamal,

Manpreet, Ruijie, Xiangyang, Vidya, Hitesh, Saikat and Vivek who made my stay at

Cornell an enjoyable period. I also would like to thank Becky, Bill and Stephanie for all

their help during my graduate study in Department of Computer Science.

Many thanks to Ting, who has always been there for me throughout every up and

down in my life, and provides great encouragement and friendship. I am of course very

grateful to my parents. They gave me the possibility to grow according to my talents

and supported me in all my pursuits. I am forever indebted to them for their love,

understanding, encouragement and endless patience when it was most required. And

last but not least, Ralph has been a constant in my life since I came to Unite States, and

he has certainly been a source of great inspiration. So, a very special “Thank you” to

you, Ralph.

v

TABLE OF CONTENTS

Biographical Sketch . iii

Dedication . iv

Acknowledgements . v

Table of Contents . vi

List of Tables . viii

List of Figures . ix

List of Abbreviations . x

1 Introduction 1

1.1 Contributions . 3

1.2 Organization . 5

2 Background 6

2.1 QoS Mechanisms . 7

2.2 QoS Architectures . 9

2.3 Measurement-Based Admission Algorithms 14

3 PCN Architecture and Algorithms 16

3.1 Overview of PCN Framework . 16

3.2 CL-PHB Algorithm . 17

3.3 Single-Marking Algorithm . 19

4 Performance Evaluation of CL-PHB and Single-Marking 21

4.1 Evaluation Setup . 21

4.1.1 Performance Metrics . 21

4.1.2 Network Topologies . 23

4.1.3 Traffic Types . 24

4.1.4 Traffic Generation . 26

4.2 Basic Experiments on Single Link . 27

4.2.1 Bottleneck Aggregation . 27

4.2.2 Parameter Sensitivity of Admission 28

4.2.3 Parameter Sensitivity of Termination 35

4.3 Ingress-Egress Aggregation Effect on Admission 36

4.4 Ingress-Egress Aggregation Effect on Termination 40

4.4.1 IE-Aggregation Effect with CL 42

4.4.2 IE-Aggregation Effect with SM 44

4.5 Multi-Bottleneck Effect on Termination 50

4.5.1 Understanding Multi-bottleneck Effect on Termination 50

4.5.2 Comparison Between CL and SM 52

4.5.3 Simulation Validation . 54

4.6 Multi-Bottleneck Effect on Admission 57

4.6.1 Understanding Multi-bottleneck Effect on Admission 58

vi

4.6.2 Comparison Between CL and SM 62

4.7 Queuing and Packet Loss Effect on Termination 67

4.7.1 Single Bottleneck Scenario . 68

4.7.2 Multiple Bottlenecks Scenario 70

4.7.3 Simulation Validation . 75

4.8 Performance Summary . 78

5 Fluid Model Simulation 81

5.1 Fluid Model for PCN Admission Control 82

5.1.1 Model Description . 82

5.1.2 Accuracy Analysis . 90

5.1.3 Model Applicability . 92

5.2 Fluid Model for PCN Termination Control 94

5.2.1 Model Description . 94

5.2.2 Accuracy Analysis . 97

6 Conclusions and Future Work 99

6.1 Contribution . 99

6.2 Future Work . 101

A Proof of Synchronization Condition 103

B Transient-State Solution for M/M/∞ Queue 106

Bibliography 109

vii

LIST OF TABLES

4.1 Simulated codecs . 25

4.2 Description of key admission control parameters 28

4.3 Parameter settings for admission experiments across all traffic types . . 34

4.4 Parameter settings for termination experiments across all traffic types . 36

4.5 Additional delay caused by smoothing 49

4.6 Multi-bottleneck effect on CL termination 51

4.7 A comparison of multi-bottleneck effect on CL and SM termination . . 52

4.8 Loss effect (tail drop) on termination and preferential dropping 69

4.9 Queueing effect on termination . 70

4.10 Loss effect vs. multi-bottleneck effect 72

4.11 Queueing effect vs. multi-bottleneck effect 75

viii

LIST OF FIGURES

2.1 Token bucket metering . 8

2.2 IntServ over DiffServ architecture . 12

3.1 Overview of PCN framework . 16

3.2 PCN control action . 17

4.1 An example of bottleneck behavior with PCN 21

4.2 Network topologies . 23

4.3 Sensitivity of the marking parameters in admission 30

4.4 Sensitivity of ewma-weight in admission 33

4.5 Sensitivity of cle-threshold in admission 33

4.6 Parameter sensitivity in admission across all traffic types 34

4.7 Parameter sensitivity in termination across all traffic types 36

4.8 Ingress-egress aggregation effect on admission 37

4.9 Synchronization effect vs. randomized traffic in SM admission 39

4.10 Ingress-egress aggregation effect on termination 41

4.11 Synchronization effect vs. randomized traffic in CL termination 42

4.12 Synchronization effect vs. randomized traffic in SM termination 44

4.13 Effect of smoothing in SM termination 47

4.14 Multi-bottleneck effect on termination under general settings 56

4.15 An illustration of multi-bottleneck effect on admission 58

4.16 Sensitivity of IE-aggregation admission behavior to traffic arrivals . . . 62

4.17 Comparison of multi-bottleneck effect on CL and SM admission 64

4.18 Expected length of oscillation period of CL and SM 64

4.19 Comparison of multi-bottleneck effect on CL and SM admission under

general settings . 66

4.20 Effect of loss and queueing on CL termination 76

4.21 Effect of loss and queueing on SM termination 77

5.1 Accuracy of admission fluid model on single link topology 91

5.2 Accuracy of admission fluid model in predicting bottleneck behaviors

under general settings . 92

5.3 Accuracy of termination fluid model under general settings 97

A.1 The timeline of the packet arrivals . 103

ix

LIST OF ABBREVIATIONS

CL CL-PHB Algorithm

DiffServ Differentiated Services

DSCP DiffServ Code-Point

ECMP Equal Cost Multi Path Routing

EF Expedited Forwarding

EWMA Exponential Moving Average

IE-Aggregation Ingress-Egress Aggregation

IntServ Integrated Services

MBAC Measurement-Based Admission Control

MPLS Multi-Protocol Label Switching

PCN Pre-Congestion Notification

PHB Per-Hop Behaviors

QoS Quality of Service

RED Random Early Detection

RSVP Resource ReSerVation Protocol

SM Single-Marking Algorithm

VoIP Voice over IP

x

CHAPTER 1

INTRODUCTION

Today, real-time applications are typically supported by a combination of queu-

ing/scheduling differentiation between traffic classes (DiffServ) and over-provisioning

(e.g. the amount of real-time traffic served in strict priority is smaller than the link

bandwidth). To ensure these conditions, provisioning typically assumes the knowledge

of the expected traffic matrix and network topology. However, unexpected events (e.g.

an earthquake in California) may result in fast changes to the traffic matrix, known as

“flash-crowds”. At such times, the change of expected traffic patterns may cause se-

vere congestion, resulting in uniformly poor service for all flows sharing the affected

link. Furthermore, provisioning to ensure resiliency under multiple failures becomes

prohibitively costly, especially as the amount of real-time traffic such as video increases.

These issues, which have long been recognized, provide the key motivation for ad-

mission control, which is intended to limit the admission of new calls to ensure that

all admitted calls can maintain an acceptable level of Quality of Service (QoS). Over

the years, a number of solutions of different complexity levels have been developed

(e.g.[17][18][13][32][9][21][24] [31][34][36][7][25][14][4]).

However, admission control by itself may not be sufficient. When unplanned net-

work failures occur, the traffic will be rerouted on a backup/new path. If bandwidth on

these new paths is insufficient to support rerouted flows, then all of the already admitted

real-time traffic on affected links may suffer from the resulting QoS degradation. For

example, phone users typically hang up after 1-2 seconds of severe service degradation,

so it is desirable to quickly terminate some calls while preserving quality of service for

the remaining ones, rather than potentially have all callers on an affected link hang up.

1

Recently, a new Pre-Congestion Notification (PCN) framework has been proposed

at IETF [27] primarily for support of inelastic real-time traffic. PCN encompasses two

complementary functions - admission control of new flows and termination of some

admitted flows when the available capacity changes unexpectedly. This framework as-

sumes that each link in the network is associated with two utilization thresholds - an

admission-threshold, which limits the amount of PCN traffic admitted under “normal”

circumstances, and a termination-threshold. When PCN traffic exceeds the termination-

threshold due to some unexpected circumstances, enough traffic is terminated to ensure

that PCN utilization does not exceed termination-threshold. The important assumption

is that the admission-threshold is less than the termination-threshold. It is assumed that

the interior routers meter aggregate incoming PCN traffic against the two thresholds, and

use two different markings to communicate the state of the system to the edge routers

of the PCN domain. The edge devices make their admission and termination decisions

based on this marking (more details in Chapter 3).

The two-threshold architecture of PCN is designed to provide architectural flexibility

for implicitly reserving backup bandwidth which can be used to accommodate a config-

ured amount of PCN traffic rerouted due to failures. However, this space separation of

the admission and termination thresholds has an additional benefit of dramatically sim-

plifying the job of admission algorithms. Indeed, over-admitting some limited amount

of traffic over the admission-threshold does not carry the penalty of loss, but rather can

be viewed as a bounded policy violation. As long as the error is small enough to not

trigger termination, limited over-admission errors do not result in catastrophic conse-

quences, and hence may be tolerable in practice. Likewise, as long as the error of the

termination algorithm does not bring the utilization below the admission-threshold, it

appears reasonable to think that a certain amount of over-termination may be tolerable,

if it has to compare to loss of quality or service for all traffic on the link. This inher-

2

ent tolerance of the PCN framework to such errors potentially allows simple ad-hoc

algorithms to be practically sufficient.

1.1 Contributions

The primary focus of this dissertation is the comparative evaluation of two admission

control algorithms proposed for implementing the PCN framework of [27]. One, pro-

posed in [5], referred to as CL-PHB (CL), has its roots in veritable MBAC research.

Even so, its practical performance limitations (e.g. appropriate parameter setting and

sensitivity, levels of aggregation sufficient for practically tolerable performance, etc.)

need to be understood. The second algorithm, proposed in [1], referred to as Single-

Marking (SM), is a simple ad-hoc algorithm which was motivated by the desire to use

just one marking and metering function at the internal routers for both admission and

termination functions, (which is important, as metering and marking are performed in

the data path of high-speed routers), and needs only a single marking encoding (which

saves valuable real-estate in the packet header). In addition, its metering function is

based on a token bucket implementation readily available in today’s routing equipment.

Yet, its ad-hoc nature warrants careful exploration of performance tradeoffs associated

with the implementation and deployment benefits - the task we address in a large part of

this work.

Our findings are twofold: First, we showed that CL-PHB works reliably for both

admission and termination control, even in the presence of packet loss. Second, we

showed that for Single-Marking, while giving adequate performance in most cases, the

simpler mechanism does come at a price, especially in termination. At the same time,

our results imply that as long as sufficient levels of aggregation are present, and if a

larger termination error is acceptable, SM may nevertheless be a practicable solution.

3

Overall, the performance of two algorithms demonstrates that the PCN framework is a

viable architecture to provide QoS to inelastic real-time traffic.

Our evaluation is a mix of theoretical analysis and extensive simulations. Many

of the performance issues are fundamentally due to packet-level level effects and can

therefore only be revealed when simulating with packet-based simulators. Yet, run-

ning packet-based simulation is very resource- and time-consuming, and greatly limits

the ability to conduct large scale experiments. At the same time, a range of perfor-

mance issues can be effectively represented by “fluid” approximation models. In this

work we developed two separate simulation methods - one is a conventional discrete-

event packet-based simulator, and the other is a novel fluid model that consists of both

theoretical formulation and approximations. We used the two types of simulators in

conjunction with each other and validated the accuracy of the fluid simulator against its

packet counterpart. Our fluid simulator not only enables us to run large scale PCN ex-

periments, but also provides some insight on the applicability of fluid models in general.

In particular, we found that for admission control, the fluid simulator works remarkably

well in modeling the various properties of bottleneck behavior, and yet it fails to pre-

dict per-aggregates’ outcomes with bounded accuracy. Our analysis showed that the

insufficiency may apply to fluid models in general, which leads us to hypothesize that

an admission fluid model is fundamentally incapable of predicting the complete per-

aggregate outcome of its packet counterpart in the long run.

To summarize, the key contributions of this dissertation are 1) a practical assessment

of several PCN algorithms through careful study of their performance evaluations and

understanding the associated practical tradeoffs between the algorithms, and 2) the de-

velopment of a theoretical approximation of the fluid model for the PCN algorithms and

the analysis of the applicability of the fluid model in a general context.

4

1.2 Organization

This work is structured as follows. Chapter 2 gives an introduction to the branch of qual-

ity of service (QoS) study that is most relevant to PCN, including related QoS mecha-

nisms, architectures and admission control algorithms. Chapter 3 gives an overview of

the PCN architecture and the algorithm descriptions of CL-PHB and Single-Marking.

Chapter 4 contains the details of our evaluation methodology and comparative perfor-

mance analysis of the two PCN algorithms. Chapter 5 describes our novel fluid simula-

tion models, including their construction, accuracy and applicability. Finally Chapter 6

summarizes this work and provides directions for future work.

5

CHAPTER 2

BACKGROUND

Traditional IP-networks operate on a best-effort model, in which the network tries to

deliver packets with no guarantee that the packets will arrive within certain time limits,

or arrive in the same order as they are sent, or even arrive at all. Given that the early

usage of the IP network was to support non-interactive data applications that are mostly

throughput focused (e.g. file transfer), the best-effort service model was adequate, as

long as the end systems had some mechanisms in place to ensure delivery reliability and

can react to network congestion (most notably, TCP).

Recently, there is an increasing trend of using the IP-network to carry applications

such as voice over IP (VoIP), video streaming, online gaming, etc. These applications,

which belong to the category of real-time application, all have certain strict require-

ment for packet delivery quality. For instance, a VoIP application needs the timeliness

of delivery, industry standards suggest that ∼150 ms of end-to-end one-way delay is

sufficient to ensure user satisfaction, while delay exceeding 400 ms is considered unac-

ceptable [11]. For video streaming, the loss of a single IP packet may result in a visible

impairment. Despite the fact that a sophisticated end system implementation might re-

lax some quality constraints, the essential characteristic of real-time applications is that

they demand certain delivery quality assurance from the network in order to guarantee

end-to-end service satisfaction.

Clearly, a network with a best-effort model is not sufficient to support real-time ap-

plications. In addition, different applications have different quality requirements. Given

the wide space of requirements, we need a service model that has several service classes,

each available to meet the needs of some set of applications. This requires the network

to be able to sort the traffic into appropriate classes, enforce that the traffic is treated ap-

6

propriately at each hop along the path, and when the network resources run low, reject

the request of some services to ensure the quality of the rest. A network that provides the

above described services is said to support Quality of Service (QoS), and it is achieved

by implementing a set of QoS mechanisms on all (or subset of) its routers in the context

of a QoS architecture.

In fact, QoS is a vast research area with many aspects. In the rest of the chapter

we only review the background and related work that are most relevant to PCN. More

specifically, the focus of this chapter is three-fold: 1) to review the basic QoS mecha-

nisms, most of which are used in PCN, 2) to describe the evolution in QoS architectures,

and in doing so provide the context and the motivation for PCN, and 3) to outline some

research that influences the design of the PCN algorithms, especially CL. The next sec-

tion starts with basic QoS mechanisms.

2.1 QoS Mechanisms

Basic QoS mechanisms are either implemented in the routers’ data plane or in the con-

trol plane. A data plane operation refers to the set of functions that a router performs on

every passing packet, such as packet forwarding lookup. Such operations are typically

implemented in hardware for maximum processing speed. A control plane operation,

for example a routing protocol, involves the set up and maintenance of the state required

by the data plane, and tends to be implemented as a software process.

Typical data plane QoS mechanisms include classification, metering, marking,

scheduling and dropping. We will discuss each of these mechanisms in detail below.

Classification Traffic classification is the process of identifying packets into classes so

that actions can be applied to these packets. A class might be as fine-grained as a flow,

7

or as coarse-grained as an aggregate of flows. Classification is usually based on certain

information in the packet’s header, such as the IP address, port number, DSCP code

point, etc. The actions to apply after classification could be another QoS mechanism.

Metering Traffic metering is the process of measuring the rate characteristics of a traffic

stream, whether it be a flow or an aggregate of flows. Simple metering could be per-

formed by taking the statistics of packets transmitted for a traffic stream over a certain

interval. Alternatively, the metering function might consist of comparing a traffic stream

against a QoS profile, to check if the stream conforms to a given profile, or identify the

portion of traffic that exceeds the profile. An example of this type of metering is called

token-bucket, and is illustrated in Figure 2.1. A token-bucket configured with a token-

fill-rate of R and token-bucket-depth of D corresponds to a traffic profile of the average

rate of R and burst size of D.1 Those packets that find no available token upon their

arrival will be identified as out of profile traffic.

Figure 2.1: Token bucket metering

Marking Packet marking is the process of setting the value of the fields in the packet

headers so that the traffic can easily be identified later.

Queuing/Scheduling/Dropping When recourse contention occurs, such as packets ar-

riving faster than they can be transmitted, then packets are queued before they can be

serviced. Queuing and scheduling are used in conjunction to prioritize some types of

traffic over others, and to control queuing delays and bandwidth assurances to differ-

ence traffic types. For instance, delay sensitive traffic such as voice and video might use

1More precisely, a traffic stream that conforms to the token-bucket is allowed to send at most R + D

bytes at any time.

8

a separate queue than data traffic, and can be served with a high priority. Queues usually

have finite space (not only because of physical router buffer memory, but also because

a large queue might imply large queuing delay); if packets arrive faster than the queue’s

serving rate, eventually the queue will overflow and some packets will be dropped. The

router may implement simple tail drop, or more complex preferential dropping in that it

prefers dropping certain classes of traffic to others. Random early detection (RED) [35]

is another dropping policy; it detects congestion before queue overflows and uses drops

to provide feedback about congestion to the end system.

Control plane QOS mechanisms consist of all functions and operations performed

by the network to set up and maintain the state required by the data path, as well as

admission control and resource reservation. Control plane QOS functions are typically

implemented by a signaling protocol. An example of a widely used control plane sig-

naling protocol is RSVP [29].

QoS mechanisms are the basic building blocks of a QoS solution. In the next sec-

tion, we will review several QoS architectures, which provide the context and define the

structure within which we deploy QoS mechanisms to deliver quality assurance.

2.2 QoS Architectures

IntServ Architecture

Integrated services [28], or IntServ is a QoS architecture that supports admission

control and resource reservation. IntServ is a fine-grained architecture in that it provides

service level assurances to applications by explicitly managing bandwidth resources and

schedulers on a per flow basis.

9

With IntServ, packet classification is performed on a per flow basis; at each IntServ-

router, each packet is identified as part of a particular flow using the 5-tuple, that is,

source and destination IP addresses, source and destination port numbers and the IP

protocol number. To carry out this classification requires storing per-flow state at each

IntServ-router. After classification, scheduling and queueing can also be managed on

a per-flow basis to ensure the flow receives the appropriate service. IntServ defines

three types of services: 1) Guaranteed service to support the traffic that requires low-

delay, low-jitter, low-loss, assured bandwidth requirement, 2) Controlled load service

to support the traffic that requires a QoS closely approximating the QoS that the same

flow would receive from an unloaded network, and 3) Best effort service for the default

traffic that requires neither of above two service types.

IntServ ensures there are sufficient resources provided to a flow by performing ad-

mission control at each IntServ-router. The flow provides its traffic specification (e.g.

average rate and peak rate) and its requirement specification (e.g. Guaranteed service or

Controlled load service). If there are sufficient resources at each hop along the way, the

flow is admitted, else the flow is rejected. The most common practice is to implement

the admission control and the subsequent resource reservation through the signaling

protocol RSVP. This requires per-flow signaling and per-flow control plane state at each

IntServ hop.

The main problem with IntServ is scalability, since it requires performing per-flow

processing and storing per-flow control plane state (e.g. path and reservation state) and

data plane state (e.g. classification and queueing state) at each IntServ router. The

amount of state in each router is in the order of the number of flows passing through it,

which can be rather high for core routers that connect to high-speed links. This prevents

IntServ from being widely deployed.

10

DiffServ Architecture

Scalability concerns with IntServ lead to the design of Differentiated Services [33] or

DiffServ. In contrast to IntServ, DiffServ is a more coarse-grained, class-based architec-

ture, which achieves scalability by performing and maintaining per-flow QoS functions

and states only at the edge of the DiffServ network.

Packets coming into the DiffServ domain may already be DiffServ-marked. If not,

upon entering the network, the traffic is classified using simple or complex (per flow)

classifications into a limit number of traffic classes, and then is marked with an appro-

priate DiffServ Code-point (DSCP). The subsequent DiffServ routers, or the internal

(non-edge) router in the domain only need to perform a simple classification based on

DSCP, hence there is no need to store per-flow state and perform per-flow classification.

Once the packets are appropriately marked and easily identified within the network,

the goal of the internal routers is to ensure the quality of service is met for a given class

by applying queuing and scheduling mechanisms on per-class basis. The DiffServ ar-

chitecture uses the concept of Per-Hop Behaviors (PHB) that abstractly defines how the

traffic should be treated at each hop. One example, Expedited Forwarding (EF), is used

to support the traffic class that requires low-delay, low-loss and assured bandwidth (like

the guaranteed service in IntServ), and is typically implemented using a strict priority

queueing/scheduling mechanism.

Unlike Intserv, DiffServ configurations are provisioned, rather than being set up by

a signaling protocol. In addition, in the absence of admission control, DiffServ needs

to ensure that per-class resources, such as bandwidth, are provisioned at each hop by

per-class capacity planning.

11

IntServ over DiffServ

DiffServ does not support an explicit mechanism for admission control. If the actual

traffic load for a DiffServ class exceeds the available bandwidth allocated to that class,

then all the flows in that class will suffer service quality degradation. Without admission

control to ensure QoS, the bandwidth for any DiffServ class must be over-provisioned

with respect to the peak load, which can be costly especially in failure situations.

Figure 2.2: IntServ over DiffServ architecture

IntServ over DiffServ in [38], defines the architecture of using a DiffServ network

in the end-to-end path of an IntServ reservation. Figure 2.2 shows three networks under

in an end-to-end IntServ region. The left-most network follows IntServ architecture

and uses RSVP to signal per-flow resource requirements and per-flow classification and

scheduling at its routers along the path. The right-most network represents a network

that relies on over-provisioning, hence the end-to-end RSVP just hop over the network

and assume sufficient bandwidth is provided. The middle network is a DiffServ network.

On the data path, the integration between the IntServ and DiffServ networks can be

achieved by mapping a flow of an IntServ service into an appropriate DiffServ Per-

12

Hop Behaviors (PHB), e.g. Intserv Guaranteed Service maps to Expedited Forwarding

PHB. At the edge of a DiffServ domain, per-flow states are kept so that packets can be

identified into flows, then in turn mapped in to the appropriate class and marked with

the corresponding DSCP.

On the control path, the admission control over the DiffServ domain can be handled

in several ways. One is to have all the routers in the DiffServ domain to be RSVP-

aware, and participate in RSVP signaling and admission control at each hop. With this

scheme, the data path operation such as classification and scheduling are still done on

a per-class basis. This approach takes advantage of the IntServ admission control, and

avoids IntServs unscalable per-flow data path operations. Yet, it does not address the

control plane scalability problem, since every router is involved in RSVP at per-flow

level. The second approach is trying to reducing the control plane scaling concern by

aggregating individual RSVP flow reservations over aggregate RSVP reservations [12].

Both these approaches can be considered as parameter-based admission algorithms.

Such approaches use parameterized traffic descriptors to describe the flow’s require-

ment, and comparable descriptors representing the network’s available resources. The

performance of such algorithm depends very much on the accuracy of the descrip-

tor, and often has the problem of balancing between providing QoS guarantees and

efficient bandwidth utilization. The counterpart of parameter-based algorithms, are

measurement-based admission algorithms (MBAC), which are known for their ability

to achieve higher network utilization. This leads to the question of using measurement-

based admission control over a DiffServ domain, which is essentially what PCN is about.

PCN is a measurement-based control (admission + termination) over a DiffServ domain,

typically deployed in the IntServ over DiffServ context. In the next section, we will re-

view some of existing work on measurement-based admission algorithms.

13

2.3 Measurement-Based Admission Algorithms

Before referencing relevant literature in the area of the MBAC, we should first discuss

the general applicability of the measurement-based admission control algorithms. The

fundamental assumption of MBAC is that past traffic measurement accurately predicts

future behavior. In practice, this assumption does not always hold, especially when the

aggregation (number of flows) on the links is low. Therefore, MBAC cannot provide a

worst-case bound for any quality metric such as delay or loss. Consequently, it should

only be used to provide services that do not require hard guarantees, such as controlled-

load service. (Recall, we describe the controlled-load service in Section 2.2 as the ser-

vice type that is suitable to support adaptive real-time applications which require QoS

without a worst-case guarantee.)

MBAC research is a vast and well-developed field. Here we do not attempt to give a

comprehensive overview of existing MBAC work. Instead we briefly mention some of

the results most relevant for PCN, and point the reader to appropriate surveys. An excel-

lent overview and comparison of “traditional” hop-by-hop MBAC research can be found

in [18], where it is argued that there is little difference between different MBAC algo-

rithms (formula-based or ad-hoc) with respect to the utilization levels they can achieve.

At the same time, none of these algorithms reliably meet loss targets. As a result, the

authors of [18] conclude that little can be gained by refining the details of the MBAC

algorithms, effectively closing the field. Why then, one may ask, is yet another study on

the properties of yet another MBAC algorithm necessary?

One answer to that question lies in the desire to improve the scalability of per-hop

signaling used in the algorithms studied in [18], providing motivation for a large body of

work on the so-called end-point admission control. In this immediate ancestor of PCN,

14

probe packets are marked by the routers, and this marking is used to make admission

decisions at the end nodes (or in some studies by the edge-nodes of a network region).

A comprehensive survey and simulation analysis of different marking algorithms can be

found in [21], where it is concluded that such probe-based end-point admission control

is a reasonable low-cost alternative to hop-by-hop MBAC. Most relevant for PCN are

the ideas in [31], which in turn motivated the work in [7][25]. The results of this work

directly motivated the choice of the marking algorithms first proposed for PCN in CL.

15

CHAPTER 3

PCN ARCHITECTURE AND ALGORITHMS

3.1 Overview of PCN Framework

In a typical deployment scenario [27] (as illustrated in Figure 3.1), a signaling protocol

(e.g. RSVP or SIP) controls admission of flows end-to-end outside the PCN domain,

treating the entire PCN domain as a single signaling “hop”. PCN controls admission

and termination decisions over this hop. Per-flow signaling state is maintained only at

the PCN edge (where the flow may in itself be an aggregate), interior routers have no

per-flow, or even per-ingress-egress aggregate state. Although not strictly required by

the architecture, it is typically assumed that PCN traffic is served at the highest priority.

The remaining bandwidth is assumed to be used by non-PCN traffic and hence is not

wasted.

Figure 3.1: Overview of PCN framework

Each link in the PCN domain is configured with two rate thresholds, the admission-

16

threshold and the termination-threshold. Admission of new flows stops when the

admission-threshold is reached. Flows are terminated if the termination-threshold is

exceeded. The relationship between the load condition and PCN control action is sum-

marized in Figure 3.2. Interior routers in the PCN domain meter the aggregate amount

of PCN traffic on a per-output link basis against the two thresholds. If the admission-

threshold is exceeded, some packets are admission-marked. When the termination-

threshold is exceeded, some packets are termination-marked. PCN edge nodes make

their admission and termination decisions based on the marked packets. The remainder

of this chapter describes two algorithms for implementing this high-level framework.

Figure 3.2: PCN control action

3.2 CL-PHB Algorithm

Admission

In CL, a PCN-enabled interior router maintains a virtual-queue for each of its links,

along with a real queue used for PCN traffic. An arriving PCN packet simultane-

ously enters the virtual-queue and the real queue. The virtual-queue is drained at the

rate equal to admission-threshold. The router admission-marks incoming PCN pack-

17

ets with the probability given by a piecewise-linear function of the virtual-queue depth:

no packets are marked until the virtual-queue has reached a lower threshold (vq-min-

threshold), all packets are marked when the virtual-queue exceeds the upper threshold

(vq-max-threshold), and between the two thresholds the marking probability linearly in-

creases from 0 to 1. A third threshold (vq-upper-limit) is used to limit the size of the

virtual-queue to some maximum number. When the virtual-queue reaches vq-upper-

limit, newly arriving packets are not added to the virtual-queue. Note that if a steady

overload occurs, all PCN packets will be admission-marked. The egress of the PCN

domain measures the so-called Congestion-Level Estimate (cle) which is the fraction

of admission-marked PCN traffic over the total PCN traffic. The cle is measured and

computed on an interval basis, then smoothed as a weighted moving average. We refer

to the interval sample as interval-cle, the smoothed value as ewma-cle and the weight

parameter as ewma-weight. The ewma-cle is periodically signaled to the correspond-

ing ingress. For example, if RSVP is used outside the PCN domain, ewma-cle may be

piggy-backed on an RSVP message traveling between this particular ingress-egress pair.

The ingress node admits a new flow to a given egress if the latest ewma-cle it received

from that egress is less than a chosen cle-threshold, and blocks admission otherwise.

Termination

The termination algorithm in CL is as follows. Interior routers in the PCN domain main-

tain a token-bucket for each of their links. The token-bucket is filled at a rate equal to

the termination-threshold. The router termination-marks incoming PCN packets if it

finds no tokens in the bucket. Note, at subsequent hops only unmarked PCN traffic is

metered against the termination threshold. When the egress node detects a termination-

marked packet, it measures the rate of PCN traffic from a given ingress excluding any

termination-marked packets, again on an interval basis. This amount of unmarked traffic

is termed sustainable-rate. Sustainable-rate reflects the amount of traffic of an ingress-

18

egress PCN aggregate that “safely got through” without exceeding the bottleneck termi-

nation threshold along the path from ingress to egress. The sustainable-rate measure-

ment is then reported for that ingress. When the ingress receives this sustainable-rate, it

measures the current PCN traffic rate it sends to the appropriate egress (sending-rate),

and terminates sufficient PCN flows to bring its sending-rate to that egress down to the

sustainable-rate if necessary.

3.3 Single-Marking Algorithm

SM is motivated by the desire to use just one marking and metering function at the

interior routers for both admission and termination functions, instead of two, which is

very attractive as it substantially reduces the work expected to be performed in the data

path of the high-speed routing equipment. In addition, as its name indicates, Single

Marking needs only a single marking encoding instead of two required by the other

PCN proposals, thus saving valuable real estate in the packet header (which is especially

valuable in the MPLS environments [6]). Furthermore, its metering function can be

implemented by a simple token-bucket readily available in today’s routing equipment.

Admission

In SM, a PCN interior router implements excess rate admission marking instead of

virtual-queue-based marking for its admission function. It meters traffic exceeding the

admission-threshold and marks excess traffic (e.g. using token-bucket-based marking

in exactly the same manner as the termination function of CL). Note that in the case

of a steady overload, the amount of admission-marked traffic corresponds to the excess

rate of PCN traffic over its admission-threshold (which differs from the virtual-queue

marking for which steady overload results in 100% of PCN traffic being marked). Just

19

as in CL, the egress measures and computes the ewma-cle every measurement interval

and reports it to the ingress, which stops admission of new flows when it exceeds the

cle-threshold.

Termination

In SM, PCN internal routers do not implement termination marking at all, and no explicit

termination-threshold is set. Instead, the termination-threshold is implicitly assumed to

be a PCN domain-wide factor (K) times the admission-threshold on all links. The egress

node measures (per ingress) the amount of PCN traffic that remains unmarked just as in

the termination function of CL (except here it is measured against admission-marked

packets). The egress then reports to the ingress the amount of unmarked traffic along

with ewma-cle. To decide whether termination is needed, the ingress first multiplies the

unmarked traffic by the system-wide constant K described above to obtain the effective

sustainable-rate for this egress, and if necessary, terminates enough flows to keep its

sending-rate below the sustainable-rate.

20

CHAPTER 4

PERFORMANCE EVALUATION OF CL-PHB AND SINGLE-MARKING

4.1 Evaluation Setup

4.1.1 Performance Metrics

0 20 40 60 80 100 120
Simulation Time (s)

0

2e+07

4e+07

6e+07

8e+07

1e+08

1.2e+08

B
o

tt
le

n
ec

k
 L

o
a

d
 (

b
p

s)

admission-threshold

termination-threshold

over-termination

over-admission

Reroute
 Event

Figure 4.1: An example of bottleneck behavior with PCN

We start with describing our performance metrics and the intuition behind the choice

of these metrics through an example. Figure 4.1 illustrates the load on a bottleneck

when both PCN admission and termination controls are enabled. An effective admission

algorithm should maintain the load (represented by the black line) around the admission

threshold under the “normal” conditions (up until 40s of simulation time). At about 40s,

a failure event elsewhere in the network causes a sharp surge of traffic on the link in

question, at which point the termination mechanism should bring the load just below

the termination threshold. After that, natural flow departures over time reduce the load

down to the admission threshold. One way to evaluate a PCN algorithm is to measure

the percent deviation of the actual load achieved in the experiment from the admission

21

and termination thresholds respectively. We term these “over-admission” and “over-

termination” percentages respectively. More precisely, our experiments measure the

actual achieved load at the granularity of 50 ms, and then compute the average of these

50ms rate samples over the duration of the experiment. We also compute the deviation

of the load from the average. In all our experiments the deviation was consistently small

(as we will show in Section 4.2.2), which allowed us to report experimental averages.

A note is due on the relevance of these metrics. As mentioned in the Chapter 1, the

space separation of the admission and termination thresholds, both of which are assumed

to be below the link speed, makes traditional loss-based performance evaluation metrics

less relevant for admission control, as small over-admission is not likely to bear the

cost of packet loss and can be viewed as a bounded policy violation. However if over-

admission errors were large enough to trigger termination, and over-termination errors

were to cause the amount of traffic to fall below the admission threshold, then the system

will oscillate between admission and termination states, and newly admitted flows may

be immediately terminated under normal conditions. Hence, our goal is to investigate,

for a given PCN algorithm, the range of these errors, and in doing so provide practical

guidelines on how far apart the admission and termination thresholds must be configured

to avoid system oscillation.

Clearly, the magnitude of over-admission and over-termination errors may depend

on many factors, such as configuration parameters, traffic models, differences in round

trips, the levels of aggregation, etc. To understand the sensitivity of the studied algo-

rithms to these factors, we used a range of network topologies, traffic types and simula-

tion models, which are described in detail in the remainder of this section.

Another metric of interest with respect to termination is the algorithm’s reaction

time, which is defined as the time it takes for the termination mechanism to bring the

22

load below the termination-threshold after a failure/reroute event. The importance of

this metric is intuitive, and like reason we need the termination function in the first

place, it is to quickly remove some flows in case of such events, and ensure the QoS of

the remaining ones; a termination control with a long reaction time loses its purpose. In

practice, a reaction time within 2 seconds is considered to be acceptable.

We also note here that the time and space separation of the areas of admission and

termination algorithms implied by Figure 4.1 enables us to effectively discuss the prop-

erties of these algorithms independently of each other in most cases. We emphasize,

however, that although we report our results separately for admission and termination

algorithms, in our experiments we ran both algorithms simultaneously, and our results

actually reflect the two algorithms working in tandem.

4.1.2 Network Topologies

A

A

A

B D E

C

D

B

G

C

FE

B

H

C

I

D

J

E

K

F

L

(c)

(a)

(b)

may occur)

Non-
Bottleneck
(Traffic below

Bottleneck

AR and TR)

(PCN marking

Figure 4.2: Network topologies

Most of our simulations used two types of topologies, shown in Figure 4.2. The

MultiLink (MLK) topology in Figure 4.2(a) models the case when flows from several in-

23

gresses (A,B,C) going to the same egress (E) share a single bottleneck link DE. By vary-

ing the number of ingresses and the propagation delays from different ingresses to node

D, we were able to explore sensitivities to the differences in propagation delay, levels of

ingress-egress aggregation, etc. Figures 4.2(b) and (c) show a class of multi-bottleneck

topologies termed PLT-N, with N representing the number of potential bottleneck links.

A simple traffic matrix on these topologies, has a single “long-haul” ingress-egress ag-

gregate traversing all the N bottlenecks, while the other N ingress-egress aggregates

traverse a single bottleneck link each, exiting at the next “hop”, emulating local cross-

traffic. We also experimented a class of more generalized traffic matrices, which we

term G-PLT-N, that allows the aggregates to traverse any number of bottlenecks up to

N. For instance, a G-PLT-5 topology consists of 5 (potential) bottlenecks, and 15 (po-

tential) aggregates traversing bottlenecks ranging from one to all five. These classes of

topology model the cross-traffic and multiple congestion points that can occur in the

hierarchically structured networks deployed by many network providers.

Despite the seeming simplicity of these topologies, we believe they are sufficiently

versatile not only to represent a wide range of situations expected in real networks, but

also to allow stressing the PCN algorithms in many dimensions, as we show below. We

believe that through comprehensive evaluations of this limited class of topologies, we

can gain insights into performance issues relevant to the more general settings expected

in practice.

4.1.3 Traffic Types

Table 4.1 summarized the parameters of all traffic types we used. The first two rows

correspond to an older version of G.711 voice codec (with and without silence com-

24

pression), and are referred to as just “CBR” and “VBR” throughout the paper. We

also simulated traffic mixes drawn from other voice codecs shown in rows 3-8 of the

table. Specifically, the “MIX” used in this paper consists of equal proportions of all

voice codecs from Table 4.1. Other mixes yield very similar results and are not reported

here.1 Where applicable, the on and off periods were exponentially distributed with the

specified means.

Table 4.1: Simulated codecs

Codecs Packet Size (B) Inter-Arrival Time (ms) On/Off Ratio Rate (Kbps)

“CBR” 160 20 1 64

“VBR” 160 20 0.34 21.75

G.711 CBR 200 20 1 80

G.711 VBR 200 20 0.4 32

G.711 CBR 120 10 1 96

G.711 VBR 120 10 0.4 38.4

G.729 CBR 60 20 1 24

G.729 VBR 60 20 0.4 9.6

“SVD” 1500 1 0.34 4096

“VTR” 1500 1 —- 769

The last two rows of the table summarize our “video” traffic models. The first one,

referred to as Synthetic Video (SVD) is in fact just an on-off traffic model with video-

like mean-to-peak ratio and mean rate approximating that of an MPEG-2 video stream.

We expect this model to be more challenging for a measurement-based algorithm than

the actual, much “smoother” MPEG video, and make no attempt to simulate any other

aspects of a video stream in this model. We expect that “good” or “reasonable” perfor-

mance on SVD will likely indicate that MPEG traffic should perform at least as well.

Our second “video” model (referred to as Video Traces, or VTR) is more realistic: we

used a publicly available library of frame size traces of long MPEG-4 and H.263 en-

coded video obtained from.2 Each trace is roughly 60 minutes long, consisting of a list

1Note, our MIX traffic model consists of voice traffic only, not a mix of voice and video traffic because

we assume in practice voice and video traffic will be run from separating queues.
2http://www.tkn.tu-berlin.de/research/trace/trace.html

25

of records in the format of <FrameArrivalTime, FrameSize>. Among the 160 available

traces, we randomly picked two. We then randomly chose segments with a mean dura-

tion of 1 minute from this trace, and have verified by direct simulation that the expected

rate of these 1-minute segments is roughly the same as the trace’s average. Finally we

packetize each frame using a packet size equal to the one in SVD. Traffic characteristics

of VTR are summarized in the last row of Table 4.1.

4.1.4 Traffic Generation

Apart from network topology and traffic types, another important simulation parameter

is bottleneck call-arrival-rate. However, instead of specifying a value for call-arrival-

rate for each experiment, we prefer to use another, more illustrative parameter, that we

term demand-load. Demand-load, which is used in admission experiments and often

written as a ratio to the admission threshold, represents the amount of traffic that “would

be” on the bottleneck if admission control was not activated and any arrived flow were

admitted (assuming the bottleneck has infinite capacity). Clearly, the bottleneck flow-

arrival-rate can be computed from demand-overload for a given flow type, flow duration

and the flow arrival model. In almost all our experiments we used Poisson flow arrivals,

with the flows duration exponentially distributed with a mean of 1 minute. A subset

of experiments uses what we call a BATCH flow arrival model, where batches of flows

arrive according to a Poisson distribution. The number of flows in a batch was chosen

from a geometrical distribution with the mean of 5.

A similar parameter called event-load is used for termination experiments. It repre-

sents the bottleneck load after the failure (and the corresponding reroute) event occurs,

but before the termination occurs, and is often written as a ratio to termination thresh-

26

old. Note that the event-load actually consists of the load originally on the bottleneck

and the rerouted traffic. We generated rerouted traffic by simulating the actual reroute of

the packets of already active flows, and so the arrivals of rerouted traffic on a link appear

as a “large surge” which we believe is more realistic than modeling them as Poisson

arrivals.

4.2 Basic Experiments on Single Link

In this section, we take the first step of our PCN evaluation. One of the assumptions

in PCN architecture (as just about in any measurement-based algorithm) is that there is

a “sufficient” level of aggregation at the bottleneck link. Hence our foremost task is to

quantify exactly how much is “sufficient”. Our next task is to understand the effect of

each of the configurable parameters in the algorithms, in particular, whether the perfor-

mance of the algorithms is sensitive to the settings of these parameters. In essence, we

will perform a sanity check to see, given sufficient bottleneck aggregation and under the

most simple topology (a single link), whether the PCN algorithms can perform as ex-

pected. The results we obtain here (e.g. bottleneck aggregation, key parameter settings),

provide a foundation for all experimental setups in the later sections.

4.2.1 Bottleneck Aggregation

In our experiments, the bottleneck aggregation needed to ensure that the over-admission

percentage remained within 10%3 of the admission-threshold is in the range of ∼75 (for

CBR traffic) to ∼125 flows (for SVD traffic), with the rest of the traffic types falling

3In fact, for all traffic types other than SVD, the over-admission percentage is well within 5% for the

above-mentioned bottleneck aggregation level

27

in-between. These numbers translate roughly to a 5 Mbps link for CBR voice and a 0.5

Gbps link for SVD. We showed by direct evaluation that the actual setting of the admis-

sion threshold and the actual link speed has no bearing on the observed performance as

long as the aggregation level is sufficiently high. Our voice experiments therefore used

an OC3 link (155Mbps), while video experiments run on link of 1Gbps or higher, and

we maintained the admission threshold at 50% of the link bandwidth for all experiments

reported here, without losing any generality.

4.2.2 Parameter Sensitivity of Admission

Table 4.2: Description of key admission control parameters

vq-upper-limit CL Marking The maximum size a virtual-queue can grow

vq-min-threshold

vq-max-threshold

CL Marking No packets are marked until virtual-queue size has

reached vq-min-threshold, all packets are marked when

it exceeds the vq-max-threshold, and between the two

thresholds the marking probability linearly increases

from 0 to 1

vq-threshold CL Marking Combined vq-min-threshold and vq-max-threshold into

one. Marks with probability 1 above it and 0 below it

tb-depth SM Marking The depth of the token-bucket

ewma-weight Both Edge Weight put on the history when computing ewma-cle

cle-threshold Both Edge Stop admission if ewma-cle is smaller than the cle-

threshold, allow admission otherwise

Now we focus on the parameter sensitivity of the PCN admission control. Before

we present the results of our study, let us first review the PCN admission algorithms

we study here and highlight some of the key difference between CL and SM. Recall,

28

the admission control functions as follows: the packets are admission metered (and

perhaps marked) at the interior PCN node. The edge node collects the measurements

called interval-cle on an interval basis (interval-cle is the percentage of marked traffic

over total traffic). The interval-cle is smoothed as an exponential weighted moving aver-

age, the ewma-cle is then compared to a cle-threshold to make the admission decision.

All the key parameters involved in admission control for both algorithms are listed in

Table 4.2. Note, the parameters in row 2 and 3 correspond to the two virtual-queue

marking schemes which we termed “ramp” and “step”. In our experiments, the use of

only one threshold in the step-marking does not result in visible difference in the ad-

mission performance compared to the ramp version. Hence for the rest of this section,

we focus our results on step-marking only. Since the edge functions are the same for

both CL and SM, any difference in their performance must be rooted in the differences

between their marking algorithms. SM with token-bucket marks the excess traffic over

the admission threshold. For SM, the interval-cle is an indication of where the actual

load is with respect to the admission threshold. In fact, a cle-threshold of x implies that

the expected behavior of SM is to keep the mean load at x over the admission-threshold.

In contrast CL with a virtual-queue has a different marking mechanism; for CL when

the load is higher than the admission threshold, and the virtual-queue size is building up

to exceed the vq-threshold, all traffic is marked. Therefore during the congestion, the

semantics of interval-cle is different for the two algorithms, and the absolute value of

interval-cle for CL tends to be much larger than for SM.

We now can turn our attention to the design of the experiments. First, we discovered

that the behavior of the algorithms on single link topology can be predicted with our fluid

model with remarkable accuracy. This encouraged us to utilize the efficiency of the fluid

model to conduct large scale experiments that cover a wide range of parameter settings.

As for the performance metric, recall that in Section 4.1, we presented a snapshot of

29

the bottleneck load vs. time in the network running PCN algorithms in Figure 4.1. In

particular, the snapshot shows actual load on the bottleneck oscillates around a (stable)

average. As we mentioned then, our primary performance metric is the over-admission,

which is the percent deviation of the average load achieved in the experiment from

the admission threshold. In this section we will also quantify the magnitude of the

oscillation around the average (expressed as deviation from the admission threshold as

well). We organize our investigation as follow: for each of the parameters listed in

Table 4.2, we study its effect by varying it through a range of values while keeping all

other parameters’ settings fixed. In addition, each experiment is run with three demand-

load levels: 1.25x, 2x and 5x. We believe that the low-end of these load levels (i.e.

1.25x) represents the normal congestion, and the high-end level (i.e. 5x) bounds the

extreme overload that is unlikely to happen in reality.

-5

0

5

CL : vq-upper-limit

-5

0

5

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 f

ro
m

 A
d

m
is

si
o

n
 T

h
re

sh
o

ld
 (

%
)

100 1000 10000 1e+05

vq-upper-limit - vq-threshold (packet)

-5

0

5

CL : vq-threshold

1 10 100 1000 10000 1e+05

vq-threshold (packet)

SM : tb-depth

1 10 100 1000 10000 1e+05

tb-depth (packet)

<== Demand 5x

<== Demand 2x

<== Demand 1.25x

Figure 4.3: Sensitivity of the marking parameters in admission

Figure 4.3 summarizes our fluid simulation results on vq-upper-limit, vq-threshold

and tb-depth (organized from left to right). We plot them in the same graph next to each

30

other because these are all parameters in the marking function (in contrast to the edge

parameters presented later). Each row in the graph represents a different demand-load

level, with 5x demand on the top, 1.25x on the bottom. In each individual graph, the x

axis gives the range of the value we varied for the parameter of interest. The results con-

sist of the average load (represented with filled symbols), and the expected oscillation

(represented by error bars above and below the average load). All results are expressed

in terms of percentage deviation from the admission threshold (hence the value of the

filled symbol is in fact the over-admission percentage). All these sets of experiments

have ewma-weight set to 0.5, and cle-threshold to 0.05. For vq-upper-limit experiments,

we fix the vq-threshold to be 256 packets, and then increase the difference between

vq-threshold and vq-upper-limit (starting from 64 packets). For the vq-threshold exper-

iments, we fix the difference between vq-threshold and vq-upper-limit to be 64 packets,

and then increase the value vq-threshold. For tb-depth, we simply increase the value of

tb-depth.

The results show that the two algorithms function as predicted in this simple topol-

ogy. CL has almost no over-admission, while SM maintains the load at 5% of the

admission threshold (since we set the cle-threshold to 0.05). Note that CL has a larger

oscillation range. Intuitively, the oscillation range is a measure of how fast the system

switches between the admission state and the congestion state (hence block admission).

Recall that in the previous paragraph we mentioned that the difference in marking algo-

rithms leads to much larger interval-cles in CL than SM during congestion (e.g. it could

be 1.0 for CL, 0.05 for SM). Hence, CL takes longer to age the ewma-cle below the cle-

threshold and to resume admission again. Furthermore, increasing the vq-upper-limit

and vq-threshold both have the effect of prolonging the transition between the states.

The larger the vq-threshold, the longer it takes to “fill up” the queue to signal conges-

tion, and once filled up, the larger the vq-upper-limit, the longer it takes to “drain” the

31

queue to clear the congestion signal. For SM, once the token-bucket is emptied and ex-

cess traffic marking starts (which initially could take a while with a large tb-depth), the

system switches between congestion and admission state rather quickly and the ewma-

cle value tightly oscillates around cle-threshold. Other than at the very beginning of

the simulation, the token-bucket is never completely emptied or filled. Hence we see the

resulting load oscillating around its average with larger deviation for CL than SM. In ad-

dition, CL shows slight sensitivity to its parameters – vq-upper-limit and vq-threshold,

while SM shows none. The overall takeaway from Figure 4.3 is that both algorithms’

performance is insensitive to their marking parameters’ settings, especially under light

demand-load. The average load and the oscillation range are bounded within 5% of the

admission threshold.

Next we turn our attention to the two edge parameters, ewma-weight and cle-

threshold. For the ewma-weight experiment in Figure 4.4, the settings for the rest of

the parameters are as follows: cle-threshold = 0.05; vq-upper-limit = 320 packets; vq-

threshold = 256 packets; tb-depth = 256 packets. The same settings are used for cle-

threshold experiments in Figure 4.5 with ewma-weight set to 0.5.4 Again, the results

are as expected. CL shows more sensitivity to ewma-weight; due to its large interval-

cle values, a heavy weight can significantly prolong the aging. The same effect is also

observed on SM, though with a much smaller impact. As for the cle-threshold, CL is

completely insensitive to its change. While for SM, the cle-threshold is a significant

parameter, as we explained before, the over-admission is not caused by poor perfor-

mance of the algorithm, but rather by design, as there is the positive correlation between

cle-threshold and over-admission of SM. The effect is accurately reflected in Figure 4.5.

So far we investigated the effects of all the key admission parameters and showed

4Note, the settings for the marking parameters are chosen within the range of values we tested in the

previously described experiments.

32

-5

0

5

CL

-5

0

5
P

er
ce

n
ta

g
e

D
ev

ia
ti

o
n

 f
ro

m
 A

d
m

is
si

o
n

 T
h

re
sh

o
ld

 (
%

)

0 0.2 0.4 0.6 0.8 1

ewma-weight

-5

0

5

SM

0 0.2 0.4 0.6 0.8 1

<== Demand 5x

<== Demand 2x

<== Demand 1.25x

Figure 4.4: Sensitivity of ewma-weight in admission

-10

-5

0

5

10

CL

-10

-5

0

5

10

P
er

ce
n

ta
g

e
D

ev
ia

ti
o

n
 f

ro
m

 A
d

m
is

si
o

n
 T

h
re

sh
o

ld
 (

%
)

1e-05 0.0001 0.001 0.01 0.1

cle-threshold

-10

-5

0

5

10

SM

1e-05 0.0001 0.001 0.01 0.1

<== Demand 5x

<== Demand 2x

<== Demand 1.25x

Figure 4.5: Sensitivity of cle-threshold in admission

through fluid simulation that the performance of both algorithms remains stable across

a wide range of parameter settings. One point worth noting is that, while we claim that

our fluid model predicts the system outcome with great accuracy, the results of the fluid

33

model only resemble a network running with CBR traffic. Therefore, we complete our

investigation by running a set of experiments with a packet simulator on all traffic types.

The settings for the experiments are listed in Table 4.3.5 We run the experiments with

all traffic types and three demand-load levels for each combination of the settings.

Table 4.3: Parameter settings for admission experiments across all traffic types

vq-upper-limit vq-threshold + 64 packets

vq-threshold 256, 2048 packets

tb-depth 256, 2048 packets

ewma-weight 0.1, 0.5, 0.9

cle-threshold CL: 0.05, 0.15, 0.25 SM: 0.001, 0.01, 0.05

CBR VBR MIX VTR SVD-20

-10

0

10

20

O
v
er

-A
d
m

is
si

o
n
-P

er
ce

n
ta

g
e

(%
)

Demand 5x
Demand 2x
Demand 1.25x

CBR VBR MIX VTR SVD

SMCL

Figure 4.6: Parameter sensitivity in admission across all traffic types

The results are plotted in Figure 4.6. Each bar in the graph represents, for a given

traffic type and demand-load, the range of the over-admission-percentage across all pa-

rameter setting combinations. The results show that our previous conclusion from the

fluid model, that both algorithms are insensitive to these parameters, holds true for all

traffic types except SVD. Over-admission is bounded within ±5% of the admission

threshold for all traffic except SVD. We believe the large sensitivity for SVD should

be traced to the burstiness of our crude traffic model. Recall, this traffic is designed to

stretch the limit of the measurement base algorithm. We expect better performance on a

real-world video model, as is in the case for our video trace VTR.

5Again, these settings are chosen within the tested range of the previously described experiments

34

4.2.3 Parameter Sensitivity of Termination

Compared to admission, there are fewer parameters involved in the termination control.

Both algorithms use the same marking algorithms – token-bucket, and hence share a pa-

rameter – tb-depth. The difference between the algorithms lies in the relationship of the

token-bucket rate to termination-threshold. While CL meters against the termination-

threshold, SM meters against the admission-threshold, hence it has an additional pa-

rameter that is the ratio between the two thresholds, K. Intuitively, the change of either

parameter should not effect the quantitative outcome of the termination, which is mea-

sured by the over-termination metric. However, a large tb-depth means it takes longer

to empty the token-bucket and start marking, which in turn implies a longer termination

reaction time. We set out to verify our intuition with a set of packet simulations similar

to the ones in the last section for admission. The range of settings for the two parame-

ters are listed in Table 4.4. Again we run the experiments with all traffic types and three

event-load levels (1.25x, 2x, 5x) for each combination of the settings. The results are

plotted in Figure 4.7. Like in the admission graph, each bar in the graph represents, for

a given traffic type and event-load, the range of the over-termination-percentage across

all parameter setting combinations. As the graph shows, we observe very little varia-

tion in the over-termination when changing the two parameters across a wide range.6

Finally, our results indicate a correlation between the tb-depth and the termination reac-

tion time, though, for all tests we conducted, the reaction time is within the acceptable

range (which is 2 seconds as discussed in Section 4.1.1).

Summary In this section, we established the level of bottleneck aggregation required

for the PCN algorithms, which is in the range of ∼75 to ∼150 flows, depending on

the traffic types. In addition, we found that neither CL nor SM are sensitive to its key

6Note, SVD again shows a larger spread which again is linked to the burstiness of the model. We do

not observe any consistent correlation between value of the parameter setting and the over-termination

35

parameter settings. We can then move beyond a single link topology and investigate the

performance of PCN under more general settings.

Table 4.4: Parameter settings for termination experiments across all traffic types

tb-depth Both 64, 256, 1024, 4096, 16384, 32768 packets

K SM 1.5, 2.0, 2.5, 3.0

CBR VBR MIX VTR SVD-20

-10

0

10

20

O
v
er

-T
er

m
in

at
io

n
-P

er
ce

n
ta

g
e

(%
)

Event 5x
Event 2x
Event 1.25x

CBR VBR MIX VTR SVD

SMCL

Figure 4.7: Parameter sensitivity in termination across all traffic types

4.3 Ingress-Egress Aggregation Effect on Admission

While the assumption of reasonable aggregation of PCN traffic at an internal bottleneck

seems a relatively safe one (at least in the aggregated networks such as ISP cores), it is

much less clear whether it is safe to assume that high ingress-egress aggregation level is

a safe assumption in reality. In particular, with a SVD setup, only ∼100 SVD flows can

take up about 50% of a 1Gbps bottleneck link bandwidth and a scenario where all 100

flows come from different ingresses seems entirely plausible. It is therefore important to

investigate if the algorithms can perform sufficiently robustly under these circumstances.

For the rest of this section, we shorten the ingress-egress aggregation as IE-aggregation,

or simple aggregation.

We run a range of experiments on MultiLink (MLK-N) topology (see Figure 4.2(b)).

Recall this is the class of topology precisely designed for IE-aggregation experiments.

36

We fix the bottleneck capacity and vary the number of ingresses to obtain the desired

level of IE-aggregation for that bottleneck load. The bottleneck aggregation is assumed

to be sufficient with values suggested in Section 4.2.1. We also fix a particular ewma-

weight, cle-threshold and demand-load level (ewma-weight=0.3, for CL, cle-threshold

= 0.05, and 0.001 for SM, demand-load = 5x) for all experiments.

We plot the comparative results in Figure 4.8. The graph shows the change of over-

admission with respect to the level of IE-aggregation. In each line, the leftmost datapoint

represents the case with the lowest level of aggregation (expected flow-per-aggregation

is 1 or 2), while the rightmost datapoint represents the largest IE-aggregation. The CL

results show no sensitivity. On the other hand, SM performs significantly worse at lower

levels of aggregation. For example for CBR, with expected 1 flow-per-aggregation, the

over-admission-percentage can be as bad as 45%.

XXXXX
X

1 2 4 8 16 32 70 150 600 1800

Flow per Aggregation

0

10

20

30

40

50

O
v

er
-A

d
m

is
si

o
n

 P
er

ce
n

ta
g

e

CBR
VBR
MIX
VTR
SVDX X

XXX
X

XX

1 2 4 8 16 32 70 150 600 1800

CL SM

Figure 4.8: Ingress-egress aggregation effect on admission

Our investigation reveals the cause of this poor performance is that, contrary to our

expectation that the admission marking will be more or less uniformly distributed among

active flows, what actually happens is that some flows get all their packets marked, while

other flows get no packets marked at all. It turns out that if the number of tokens arriving

in the token-bucket in an packet-inter-interval-time of a single CBR flow is an integer

multiple of a packet size, then if a packet of a flow is marked once, all the subsequent

packets will find the same number of tokens in the token-bucket and will also be marked.

37

We refer to this effect as Marking Synchronization, synchronization for short in the rest

of this section (the proof of this is in Appendix A). It is this phenomenon that, in the

case of a single flow per aggregate, made only a few aggregates whose flows are marked

react to the admission control, while the rest which receive no marked packets end up

over-admitted. Since most of the other traffic patterns contain large CBR segments, this

effect is seen with other traffic types as well, although to a different extent.

A natural initial reaction can be to write off this effect as purely a simulation artifact.

In fact, one can expect that some randomization is introduced into the strict CBR traffic

pattern when the initially strict CBR traffic traverses multiple links. Such randomization

can be reasonably expected to break the CBR pattern. We set out to verify just how

much randomization is actually necessary to break the synchronization. To do so we

implement limited randomization of the base models for all of our traffic stream, by

randomly moving the packet by a small amount of time around its transmission time

in the corresponding base traffic model. We choose the randomization-interval to be

a fraction from 0.0001 to 0.1 of packet-inter-arrival-time of the CBR portion of the

corresponding base model. While we do not claim this is an accurate model for network-

introduced jitter, we chose it for the simplicity of implementation as a means to gain

insight on any simulation artifacts of strictly CBR traffic generation. We then re-ran

all the experiments with the same topologies and parameter settings. The results are

summarized in Figure 4.9. The lines labeled with f correspond to randomized traffic

with randomization-interval = f × inter-packet-arrival. It also means on average, the

packets are delayed by f × inter-packet-arrival / 2. The lines labeled as “No-Rand”

correspond to the SM results in Figure 4.8.

All graphs in Figure 4.9 except for VTR exhibit a clear pattern, namely, as the

randomization-interval increases, the effect of aggregation (high over-admission) dimin-

38

ishes. It means that indeed introducing enough randomization does break the marking

synchronization and the performance of the algorithm much improves. However, it re-

quires a sufficient amount of randomization. For instance, in the CBR graph, the only

line that shows no aggregation effect is the line labeled with “0.05”, which translates

to expected packet jitter of 0.5ms. While 0.5ms per-hop jitter is not unreasonable to

expect for voice traffic, in well provisioned networks with a relatively small amount of

voice traffic in the priority queue one might in fact find lower delay levels. In any case,

these results indicate that the synchronization effect cannot be completely written off as

a simulation artifact. The good news, however, is that this effect is visible only at very

low IE-aggregation levels. For example, in the CBR graph, the portion of the lines with

more than 15 flows all collapse together, indicating that as the aggregation increases, the

effect quickly disappears.

BBBBBB
XXXXXX

1 2 4 12 120 600

0

10

20

30

40

50

No-Rand
0.0001
0.0005
0.001
0.003
0.005
0.01B B

0.05X X

BBBBB

B

XXXXX
X

2 6 12 40 300 1800

0

5

10

15

20

BBBB
B

B
B

XXXXXX
X

1 2 4 12 120 600

0

10

20

30

40

O
v
er

-A
d
m

is
si

o
n
-P

er
ce

n
ta

g
e

(%
)

BBBB
B

B

XXXX
X

X

1 2 5 10 70 320

Flow per Aggregation

0

5

10

15

20

B
B

B
B

B
B

X
XX

XX

X

1 3 10 30 140
-5

0

5

10

15

20

CBR VBR

MIX

VTR SVD

Figure 4.9: Synchronization effect vs. randomized traffic in SM admission

VTR is an exception among the graphs in Figure 4.9. It also exhibits some ag-

gregation effect, however randomization of its CBR portion has almost no effect on

performance. We believe this is because the randomization we perform is at the packet

39

level, while the synchronization that seems to be causing the performance degradation

for VTR traffic occurs at the frame-level. Our results show that if we calculate ran-

dom deviation for our artificially induced jitter using frame-inter-arrival time instead of

packet-inter-arrival time, we can reduce the over-admission for VTR to roughly 3%.7

Summary We studied the effect of ingress-egress aggregation on admission. While CL

is completely insensitive to IE-aggregation level, SM shows substantially more over-

admission at very low IE-aggregation. We found the cause to be the non-uniform dis-

tribution of markings, which we termed synchronization effect. Although the synchro-

nization effect can be lifted by introducing jitter, the level of jitter required indicates it

might not simply be a simulation issue. Nonetheless, the effect of low aggregation is

only observable with fewer than 15 flows per IE-aggregate.

4.4 Ingress-Egress Aggregation Effect on Termination

Just as in the case for admission, the effect of ingress-egress aggregation on termination

needs to be investigated. Though we do not anticipate the performance to be affected

by the IE-aggregation level in general, there is a theoretical concern that the granular-

ity of termination (which can operate on integer number of flows only) will result in

large inaccuracies of the amount of terminated traffic when ingress-egress aggregation

is very low. For instance, if 1
3

of the bottleneck rate needs to be terminated to bring the

bottleneck load down to the termination threshold, and if the bottleneck load consists

of many ingress-egress aggregates with exactly 1 flow-per-aggregate, then ideally every

flow will have 1
3

of its packets marked, which will cause every ingress to terminate its

only flow. It is therefore important to understand how bad this effect can get in practice,

7The details of the results are omitted for conciseness. It is unclear however, whether such random-

ization at the frame level meaningfully reflects network-introduced jitter.

40

for both CL and SM. Note, unlike the admission, the termination part of CL and SM are

essentially based on the same marking algorithm, and we have demonstrated their com-

parable performance on the single link topology, hence it’s natural to expect a similar

behavior in this case.

We start our investigation again with a set of experiments using MLK-N topologies,

as in the case for admission in Section 4.3. Recall, for MLK-N topology, we fix the load

on the bottleneck (with sufficient aggregation), and then vary the number of ingress-

egress-pairs that share the bottleneck to achieve the desired IE-aggregation level. In

Figure 4.10 below we plot over-termination-percentage against the flow-per-aggregation

for each traffic types. Again the left-most data-point on each line represents the lowest

aggregation level.

X
XX

X

X

1 4 10 20 70 150 300 900

Flows per Aggregation

0

10

20

30

40

50

O
v

er
-T

er
m

in
at

io
n

-P
er

ce
n

ta
g

e

CBR
VBR
MIX
VTR
SVDX X

X

X

X

XX

1 4 10 20 70 150 300 900

CL SM

Figure 4.10: Ingress-egress aggregation effect on termination

There are two things in this graph that are peculiar. First, in the CL graph, none of

the traffic types except VTR exhibits any sign of our theoretical worst case predication

(e.g. the line for CBR is perfectly horizontal). Second, SM on the other hand does show

signs of IE-aggregation effect, but gives an over-all worse performance compared to CL

(over-termination is in the range of 20%). It’s counter-intuitive for this very different

behavior given that the two share the same marking algorithm. For the remainder of this

section, we target our investigation to answer these two questions.

41

4.4.1 IE-Aggregation Effect with CL

It turns out that the cause of the unexpectedly good performance of CL termination

is exactly the same as the cause of unexpectedly bad SM admission results - namely

marking synchronization (see Section 4.3), when some flows are consistently marked,

and some flows are not marked at all. In the case of termination, this effect is actually

helpful. Take the worst case scenario we described at the beginning of the section, now

instead of every aggregate getting 1
3

of its traffic marked, the synchronization effect con-

centrates the markings on a subset of them, and hence spares the rest from terminating

their only flow. To verify this argument, we re-ran the same set of termination experi-

ment on the randomized version8 of all traffic types, with random-deviation set to 10%.

The results are plotted left graph in Figure 4.11 (the right one is the original CL with

non-randomized traffic).

X
X

X

X

X

1 4 10 20 70 150 300 900

Flows per Aggregation

0

10

20

30

40

50

O
v

er
-T

er
m

in
at

io
n

-P
er

ce
n

ta
g

e

CBR
VBR
MIX
VTR
SVDX X

X
XX

X

X

1 4 10 20 70 150 300 900

CL-Randomized CL-Original

Figure 4.11: Synchronization effect vs. randomized traffic in CL termination

For CBR, as we expected, the randomization indeed breaks the synchronization,

resulting in substantially more over-termination (14%) at low aggregation. This shows

just as in the case of admission, one could not write off the good performance at low

aggregation level due to synchronization merely as a simulation artifact. In any case, as

the aggregation level increases, the worst-case behavior due to granularity of termination

is no longer an issue anyway (the over-termination is down to %5 with only 4 flow-per-

8See Section 4.3 for the description of the randomized traffic

42

ie-aggregate). Note, we point out that even with the lowest aggregation (1 flow), our

theoretical worst case analysis did not occur. This is because our aggregation level is

expressed in expected values and the actual number of flows for any given aggregate at

any time is a random variable. So at the instance of the event, some aggregates actually

have 1, 2 or 3 flows, while others might have none at all and this prevents the worst case

scenario from happening.

VBR shows some minor influence by the aggregation level, but at the left-most dat-

apoint it did not give the worst over-termination as expected. We believe the reason

for this outcome is the following: at the low aggregation level (with 1 or 2 flows per

ingress), each VBR flow spends a large portion of its time in off-period. Once the ag-

gregate is in its off period, it sends no packets, gets no markings, and hence will not

react to the termination algorithm. Since a substantial portion of the aggregates can be

in the off-period, only the ones that are in the on-period terminate their traffic.

The MIX essentially shows the combined effect of both CBR and VBR, in the

sense that it shows a clear increase in the over-termination-percentage as the level of

aggregation decreases, yet at the lowest aggregation, instead of having the highest over-

termination (like CBR), the on-off effect of VBR dominates, hence we again do not see

a significant over-termination.

The trace analysis of the SVD experiments indicates that there are a large number

of partially marked flows, which indicates that synchronization could not have been

responsible for the relatively bounded over-termination of about 10% in Figure 4.11.

We believe this performance should be traced to the burstiness of our crude SVD traffic

model at the time scales commensurate with the measurement period. In addition, just

as for VBR, the on-off nature of the model dominates at low aggregation, which can also

be used to explain why no aggregation effect is observed.

43

In summary, the over-termination can be expected at low aggregation for a variety of

traffic, but in practice the degree of this over-termination is not as bad as the worst-case

analysis might indicate. The over-termination vanishes as the level of ingress-egress

aggregation becomes sufficiently large.

4.4.2 IE-Aggregation Effect with SM

We now investigate the performance differences between SM and CL. As shown in

Figure 4.10, SM seems to produce worse over-termination at all aggregation levels for

various traffic types. This problem is unlikely to be caused by marking synchronization;

as we have shown in the case for CL, de-synchronizing the markings only has effects

at very low aggregations. But we re-run the experiments with randomized traffic (the

same configuration as in CL), and plot the results in Figure 4.12. The results confirm our

intuition, by randomizing the traffic, the only visible difference is making CBR perform

even worst at lower aggregation (the same thing happens to CL).

X

X

X
X

X

1 4 10 20 70 150 300 900

Flows per Aggregation

0

10

20

30

40

50

O
v

er
-T

er
m

in
at

io
n

-P
er

ce
n

ta
g

e

CBR
VBR
MIX
VTR
SVDX X

X

X

X

XX

1 4 10 20 70 150 300 900

SM-Randomized SM-Original

Figure 4.12: Synchronization effect vs. randomized traffic in SM termination

A careful look into output traces shows a phenomenon common to all SM experi-

ments, that is, even after the bottleneck load is already below the termination thresh-

old, some aggregates still initiate new rounds of termination, which in turn causes the

over-termination we observed. It turns out that part of the reason for these extra (un-

44

necessary) terminations lies in the non-uniformity in the marking distribution across

different aggregates. We will illustrate this point through a simple example. Imagine

two aggregates sharing a bottleneck. Both have a rate of 10Mbps and the termination

threshold is at 20Mbps (exactly enough for both aggregates). Now suppose admission

threshold is at 10Mbps and K is therefore 2 (recall K is the radio of termination- and

admission-threshold). Recall under SM, marking is done against the admission thresh-

old. Ideally, the bottleneck marks 10Mbps of traffic with each aggregate getting 5Mbps.

The aggregates then compute its sustainable rate which is 5Mpbs ∗ K = 10Mbps. Since

the sustainable rate is equal to the sending rate, the aggregates will not terminate any

flow. Now imagine what if the markings are not uniformly distributed among two aggre-

gates, instead of each getting 5Mbps, the split is 4 and 6Mbps. Then the aggregate that

gets 6Mbps traffic marked will conclude it has a sending rate (10Mbps) larger than the

sustainable rate ((10 − 6) ∗ 2Mpbs = 8Mbps), and hence start unnecessary termination.

It seems that we have pinpointed the problem to be the non-uniform marking dis-

tribution. However, this is a property of the token-bucket marking algorithm, which

implements the termination control of both SM and CL. Why then, do we only see the

performance penalty in SM? Let’s go back to our simple example to see what is CL’s

behavior under the same setup. The answer is trivial, CL will not mark any traffic! No

marking, hence no termination.9 This reveals an important property of SM termination

in contrast to CL. With CL, the bottleneck conditions with respect to the termination

threshold, are conveyed directly through the termination markings. On the contrary, SM

lacks such a signal, and needs to rely on the markings against the admission threshold

to infer the conditions on the bottleneck. This inference process is vulnerable to various

sources of inaccuracies, in this case, the non-uniformity in the marking distribution, and

9If the bottleneck load is above the termination threshold and CL marks the excess traffic, it is true

that these markings might not be evenly distributed among the aggregates. However, this will only cause

a slight unfairness among the aggregates, but not result in bottleneck over-termination

45

the net result is over-termination at the bottleneck. (We will see the occurrence of this

property again in the multiple bottleneck environment later in this chapter.)

Having established the root cause of the problem, we can now consider the pos-

sible fixes. Since we cannot change the property inherent in the SM architecture,

the only fix is in the direction of reducing the adverse effect coming from the non-

uniformity of the marking distribution. Smoothing with exponential weight average

(EWMA) is an obvious step to take. There are various interval egress measure-

ment that can be smoothed, such as unmarked-rate, marked-rate, sending-rate etc.

We have experimented with various combinations which give no significant perfor-

mance difference. The one we presented here is based on the smoothing of interval-

cle value. Recall, interval-cle is the ratio of marked-rate and the total-rate (it’s a

value also used by the admission algorithm). The intuition is to use the condition

marked-rate
total-rate

> termination-threshold − admission-threshold
termination-threshold

as an indication to trigger

termination. More specifically, each aggregate computes a EWMA smoothed interval-

cle, and then compares it to the value
K − 1

K
. If the former is smaller, there will be

no termination, even if the computed sustainable-rate is smaller than the sending-rate.

Otherwise, the aggregate compares the sustainable-rate to the sending-rate to see if (and

how much) to terminate. In a nutshell, we implement an additional control, based on

smoothing, to counter the inaccuracy in the interval measurements and to safeguard the

triggering of termination.

We implement the above algorithm and re-run the same experiments. One additional

parameter is the ewma-weight(w) used in the smoothing of interval-cle10. A larger w

corresponds to a longer history. We find that for this additional control to be effective,

a very large w is needed. Below in Figure 4.13, we plot the outcomes of the smoothing

10Note this should not be confused with the ewma-weight in admission control. Interval-cle is also

smoothed for admission, which should be done independently from what we introduced in this section

46

with w = 0.9. The improvement over the original SM is significant, the smoothed

version of SM has a performance comparable to that of CL.

X
X

XX

5 10 20 70 150 300 900

Flows per Aggregation

0

10

20

30

40

50

O
v

er
-T

er
m

in
at

io
n

-P
er

ce
n

ta
g

e
CBR
VBR
MIX
VTR
SVDX X

X

X

X

5 10 20 70 150 300 900

SM-Smoothed SM-Original

Figure 4.13: Effect of smoothing in SM termination

However, the improvement in the performance comes at a cost. It increases the re-

action time of SM termination. The reason is as follows: before an event occurs that

puts the bottleneck load over the termination threshold, the network, assuming admis-

sion control is functioning correctly, should have a load around the admission threshold,

which means a interval-cle of 0 (or something very small, recall from Section 4.2.2).

After the event has occured, the aggregate needs to wait for interval-cle to age from 0 to

a value larger than
K − 1

K
before it can initiate the very first round of termination. Given

that we need a large weight on the history for effective smoothing, this waiting time

could be long, which leads to a long termination reaction time (recall in Section 4.1.1

we discussed that the reaction time should be within 2 seconds). It is therefore important

to quantify this extra delay.

In fact, we can mathematically derive the expected delay. Its value depends on

K, the smoothing weight (w) and the excess load over the termination threshold (R)

which is defined as
event-load − termination-threshold

termination-threshold
. In the derivation below, Cn

is the smoothed interval-cle in the nth measurement interval. Cint is the interval-cle

value. Note that after the event occurs, and before the termination starts, Cint remains

the same for each interval with a value equals to
event-load − admission-threshold

event-load
=

47

K ∗ A ∗ (1 + R) − A

K ∗ A ∗ (1 + R)
=

K ∗ (1 + R) − 1

K ∗ (1 + R)
. To compute the Cn, we have:

C1 = 0 ∗ w +Cint ∗ (1 − w)

C2 = C1 ∗ w +Cint ∗ (1 − w)

...

Cn = Cn−1 ∗ w +Cint ∗ (1 − w)

Cn = Cint ∗ (1 − w) ∗

n−1
∑

i=0

wi

= Cint ∗ (1 − w) ∗ (1 − wn)/(1 − w)

= Cint ∗ (1 − wn)

We can then compute the condition to trigger the termination by plugging in the value

of Cint:

K ∗ (1 + R) − 1

K ∗ (1 + R)
∗ (1 − wn) >

K − 1

K

1 −
(K − 1) ∗ (1 + R)

K ∗ (1 + R) − 1
< wn

R

K ∗ R + K − 1
< wn (4.1)

Equation (4.1) shows the number of intervals (n) needed to trigger termination for

given value of K, R and w. The relationship is rather intuitive: the larger the R, the larger

the Cint, hence the faster the aging. The smaller the K, the smaller the gap between

the admission and termination thresholds and the faster the aging. In Table 4.5 below,

we list the expected delay in seconds for some combination of K and R given w =

0.9 (we believe these values resemble the practical setup). These results assume each

measurement interval is 100ms and the round-trip time is negligible.

We conclude the investigation by noting that this smoothing is only necessary at

the lower range of the IE-aggregation levels we considered, and is not necessary as

48

soon as the aggregation level reaches 50-150 flows (for different traffic types) in our

experiments. For the lower aggregation levels, the smoothing may be useful, at the

expense of the additional delay.

Table 4.5: Additional delay caused by smoothing

K / R 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

1.2 0.9 0.8 0.7 0.6 0.6 0.6 0.5 0.5

1.4 1.4 1.2 1.1 1.0 0.9 0.9 0.8 0.8

1.6 1.7 1.5 1.4 1.3 1.2 1.1 1.1 1.0

1.8 1.9 1.7 1.6 1.5 1.4 1.3 1.3 1.2

2.0 2.1 1.9 1.8 1.6 1.6 1.5 1.4 1.4

Summary We studied the effect of IE-aggregation level on the termination for CL and

SM. For CL, we observed some over-termination at very low aggregation, though the

scenario predicated by the theoretical worst case did not occur, partially due to the mark-

ing synchronization we introduced in Section 4.3. Overall, CL’s performance is not very

much affected by the IE-aggregation level, as the over-termination is bounded by %10

across all traffic types and aggregation levels. For SM, a consequence of using just a

single metering and marking, in conjunction with non-uniformity in the marking dis-

tribution among the contending aggregates, results in false terminations when traffic is

closely below the termination threshold at the bottleneck. This effect is especially pro-

nounced for low and medium levels of aggregation. We found the results could be im-

proved to be comparable with CL with respect to over-termination if the aggregates used

EWMA smoothed interval-cle when triggering the termination event. Such smoothing,

however, would add latency to the termination decision. In the range of parameters we

investigated that seem practically reasonable, the additional latency is bounded by 1-2

sec. Such smoothing is not necessary at larger levels of ingress-egress aggregation. In

conclusion, to avoid over-termination, SM needs substantially more IE-aggregation than

CL, if no additional mechanisms are used to smooth the termination trigger.

49

4.5 Multi-Bottleneck Effect on Termination

Unfairness to long-haul aggregates traversing many bottlenecks (which we referred as

multi-bottleneck effect or beatdown effect), is a relatively well known phenomenon [17],

but the exact cause of it (and possibly the extent) depends on the details of the algorithm.

Another practical concern that arises from the beatdown effect is whether it will cause

the under utilization of the bottlenecks, or if the loss of long-haul aggregates can be in

some way compensated by the gain of the short-haul ones.

Our goal in this section is three-fold. First, we will study the cause and the property

of the multi-bottleneck effect on termination, and demonstrate it using the CL algorithm.

We will then investigate if the extent of the effect differs for CL and SM. Finally, we will

quantify how much of the effect can be expected in practice on more generalized settings

with fluid models.

4.5.1 Understanding Multi-bottleneck Effect on Termination

The primary cause of the beatdown effect for termination is excessive marking of the

long-haul aggregate at the subsequent bottlenecks. We first recall that termination-

metering at the internal node applies only to previously un-marked traffic, which is in-

tended to partially mitigate the excess marking at subsequent bottlenecks. Nevertheless,

as we show below it is not sufficient to prevent the beatdown effect completely.

Consider the following scenario on PLT-2 (see Figure 4.2(b)). At the time of the

failure event, the bottleneck load is 75% of the link bandwidth, where long-haul aggre-

gate (A–C) constitutes 50%, and 2 short-haul aggregates (D–E) and (E–F) each takes

25%. Assuming for the sake of example the termination threshold is at 50% of the link

50

bandwidth, then an trivial “good” solution is to have three aggregates each terminate

(3
4
− 1

2
)/3

4
= 1

3
of their traffic. With CL, when the long-haul aggregate traverses through

the bottleneck1 (A–B), assuming marking is uniformly distributed, 1
3

of its traffic will

get termination-marked. (The short aggregate D–E will also get 1
3

of its traffic marked).

Next, 2
3

of long-haul’s traffic (the unmarked ones) together with short-haul (E–F)’s traf-

fic will create a load of 2
3
∗ 1

2
+ 1

4
= 7

12
on the bottleneck2 (B–C). This implies that

for the long-haul aggregate, an additional (7
12
− 1

2
)/(7

12
) = 1

7
percentage of the remain-

ing unmarked traffic will be marked. As for short-haul E–F only 1
7

of its traffic will be

marked. Now back to bottleneck1, the short-haul aggregate terminates correctly, while

the long-haul one over-terminates, with the net effect of over-termination at bottleneck1.

We use the packet simulator to simulate the above simple scenario on PLT-2 and PLT-5.

Recall in PLT-5 (Figure 4.2(c)), there are 5 one-hop short-haul aggregates and 1 long-

haul aggregate that travels 5 hops. The load distribution among the aggregates is the

same as in PLT-2 described above. Table 4.6 below summarizes the actual termina-

tion percentage (not over-termination-percentage) of the long-haul aggregate and first

bottleneck for various traffic types.

Table 4.6: Multi-bottleneck effect on CL termination

Long-haul Aggregate CBR VBR MIX VTR SVD

PLT-2 42.60 43.34 41.66 44.19 50.14

PLT-5 47.71 49.56 49.96 49.06 53.24

Bottleneck 1 CBR VBR MIX VTR SVD

PLT-2 39.96 40.77 39.36 41.86 44.78

PLT-5 43.27 44.53 45.58 45.39 48.46

Recall that, in the above setup, a trivial “good” solution is to have each aggregate ter-

minate 33% of its traffic (which translate to a 33% bottleneck termination as well). The

results show the beatdown effect for the long-haul aggregate, and also the subsequent

over-termination at the upstream bottleneck are present for all tested traffic types. In

51

addition, the difference between PLT-2 and PLT-5 shows that effect is more pronounced

as the long-haul aggregate travels through more bottlenecks.

4.5.2 Comparison Between CL and SM

To understand if the extent of multi-bottleneck effect differs for CL and SM, we start

by running the same simple scenarios described in Section 4.5.1. We keep all param-

eters the same, with one additional setting for K (the ratio between termination- and

admission-threshold), which is set to 2. The comparative results are summarized in the

Table 4.7 below.

Table 4.7: A comparison of multi-bottleneck effect on CL and SM termination

Long-haul Aggr CBR VBR MIX TRC SVD

CL SM CL SM CL SM CL SM CL SM

PLT-2 42.6 62.9 43.3 66.1 41.6 63.3 44.1 66.0 50.1 68.1

PLT-5 47.1 85.9 49.5 86.6 49.6 83.3 49.0 86.6 53.2 97.9

Bottleneck 1 CBR VBR MIX TRC SVD

CL SM CL SM CL SM CL SM CL SM

PLT-2 39.9 53.2 40.7 55.4 39.3 53.8 41.8 55.2 44.7 57.5

PLT-5 43.2 68.7 44.5 68.7 45.5 66.8 45.3 69.1 48.4 75.1

First, the results for SM show the same trend as in CL, that is, the multi-bottleneck

effect causes the over-termination of long-haul aggregate and at the upstream bottle-

necks. However, magnitude-wise, SM suffers a much worse impact. Across both topolo-

gies and all traffic types, SM over-terminates more compared to CL.

In fact, the above observation can be verified mathematically. For the ease of illustra-

tion, we present our derivation for the behavior of long-haul aggregate on a PLT-2 topol-

ogy. Let L.T be the total traffic of long-haul aggregate (A–C), and S1.T , S2.T represent

the total traffic of short-haul aggregates (D–E) and (E–F), respectively. After traversing

52

the first bottleneck and having part of the long-haul aggregate marked (termination or

admission marking, depending on the algorithm), the rate of the remaining unmarked

traffic is denoted as L.U. In addition, let P be the termination threshold on both links,

A be the admission threshold, and K be the ratio of the two (the thresholds need not to

be the same, we only set it this way to simplify the illustration). Finally recall that the

aggregates compute their termination percentage with
sending-rate − sustainable-rate

sending-rate
,

so given the same sending rate, it’s sufficient to compare the sustainable rate under the

two algorithms. The formulas below give the calculation of the sustainable rate L.S of

the long-haul aggregate under CL and SM:

L.S cl = L.Ucl −
L.Ucl + S2.T − P

L.Ucl + S2.T
∗ L.Ucl =

P

1 + S2.T/L.Ucl

(4.2)

L.S sm =

(

L.Usm −
L.Usm + S2.T − A

L.Usm + S2.T
∗ L.Usm

)

∗ K =
A ∗ K

1 + S2.T/L.Usm

=
P

1 + S2.T ∗ K/L.Ucl

(P = K∗A L.Ucl = K∗L.Usm)

(4.3)

The comparison between Equations (4.2) and (4.3) shows that, given the same setup,

the long-haul aggregate’s sustainable rate under SM is smaller than CL (hence the larger

over-termination) and the difference grows larger as the K increases. This provides the

first intuition of why SM performs worse. Second, recall from Section 4.4.2, we dis-

covered that the lack of direct indication of the load condition on the bottleneck with

respect to the termination threshold makes SM vulnerable to inaccuracies. The same

problem arises here again. It’s possible that an underestimation of sustainable rate will

cause unnecessary termination even when all bottlenecks’ loads are below the termi-

nation threshold. To illustrate this mathematically, consider the condition that triggers

53

termination, that is, the total sending rate is larger than the sustainable rate:

L.S sm =
A ∗ K

1 + S2.T/L.Usm

< L.T

L.T +
L.T

L.Usm

∗ S2.T > A ∗ K

L.T +
L.T + S1.T

A
∗ S2.T > A ∗ K

L.T +
L.T + S1.T

P
∗ S2.T ∗ K > P (4.4)

Note, L.T + S1.T and L.T + S2.T are the event-loads on two bottlenecks, even with

both values less than P, there still exist K to make the left-hand of Equation (4.4) larger

than P. It follows that, the larger the K, the more likely to have Equation (4.4) satisfied

and trigger unnecessary termination.

We can summarize the multi-bottleneck effect for CL and SM comparatively as fol-

lows: in the first round of termination, both CL and SM have over-termination at the

long-haul aggregate with SM worse than CL. After which, CL stops terminating if the

resulting loads are below the threshold, SM on the other hand, might continue to termi-

nate as long as Equation (4.4) is satisfied, hence results in further over-termination.

4.5.3 Simulation Validation

Our simple analysis has shown that both CL and SM suffer from the multi-bottleneck

effect, with SM showing a more severe impact. In this section, we set out to test if our

analysis holds under more general settings, and if so, how much over-termination can be

expected from practical configurations. Our results from the packet simulator indicate

that the exact amount of termination is quite dependent on the specific traffic matrix

and the amount of event-load at the bottleneck. At the same time, the magnitude of the

54

beatdown effect (and the subsequent under-utilization) is very insensitive to the specific

flow arrival pattern - an observation which encouraged us to use the fluid model which

computes the amount of traffic to be terminated based on the expected number of flows

on the bottleneck. This fluid simulator enabled us to run a very large set of experiments

with different traffic matrices and different bottleneck overload levels, thus providing a

view on the extent of over-termination that can be expected in a wide range of scenarios.

(The details of the fluid model can be found in Chapter 5.)

We randomly generated ∼45,000 traffic matrices on the G-PLT-5 topology. Recall

from Section 4.1.2, a G-PLT-5 topology consists of 5 (potential) bottlenecks, and 15

(potential) aggregates traversing bottlenecks ranging from one to five. In these experi-

ments, the event-load on the “tightest” bottleneck ranged from 1-10X of the termination

threshold, and in different experiments the actual number of bottlenecks (where traffic

exceeded threshold) ranged from 0 to 5. Each experiment is simulated in both CL and

SM. For SM, the value of K is randomly generated for each experiment, selected from

the range of [1.2, 3.0]. The rationale is, given that the admission accuracy results from

our results in previous section call for a separation of the admission and termination

thresholds by at least a factor of 1.2, implying the choice of K ≥ 1.2. We also believe

that in practical setups with large K ≥ 3.0 should be rare.

Before we present the results, a note is due on the evaluation metric. All previously

reported termination results used the metric over-termination, the usage of which is fine

in a single bottleneck topology. However in a more generalized environment with mul-

tiple bottlenecks, the following scenario can often arise. Imagine a case when many of

the aggregates sharing a given link are “bottlenecked” elsewhere, then after each aggre-

gates resolves itself independently, the resulting load on the given link may be below

the termination-threshold. This type of over-termination is the natural outcome of the

55

setup and is not a sign of multi-bottleneck effect. Hence, we need a refined metric that

can prune away the noise (i.e. the above described scenario) and only capture those

over-termination caused by the multi-bottleneck effect. To that end, for each experiment

we first compute a “reference solution” that represents the system behavior without the

beatdown effect, then the difference between the “reference solution” and the actual ex-

periment result will represent the over-termination caused by the beatdown effect. The

“reference solution” is computed as follows. We take each link in the topology sepa-

rately and compute the “rate-proportionally fair” rates that each aggregate sharing this

bottleneck will need to be reduced to (in proportion to their demands), so that the load

on that bottleneck independently becomes equal to the termination threshold. After this

is done independently for each bottleneck, we assign each aggregate the smallest of its

scaled down rates across all bottlenecks. We then compute the “reference” utilization on

each link by summing up the scaled down rates of each aggregate sharing this link. For

the remaining of this section, all the over-termination results are reported in reference to

the “reference” utilization.

CL

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
4
0
0
0

8
0
0
0

1
2
0
0
0

SM K=[1.2, 2]

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0
0
0

3
0
0
0

5
0
0
0

SM K=[2, 3]

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0
0
0

3
0
0
0

5
0
0
0

Figure 4.14: Multi-bottleneck effect on termination under general settings

Figure 4.14 shows three over-termination percentage distribution graphs, (a) for CL

(b) for SM with 1.2 ≤ K ≤ 2.0 (c) for SM with 2 ≤ K ≤ 3. The encouraging re-

sults for CL shows that for the large range of multi-bottleneck scenarios we ran, the

over-termination error is mostly within 10%, indicating the beatdown effect we report

here is probably of limited practical significance. On the other hand, the error for SM

56

shows a wider spread. In Figure 4.14 (b), which in our opinion is the case of practical

importance, the over-termination for SM is below 10% in 65% of the experiments, is

within 20% for about 30% of the experiments, and between 30% and 40% for the re-

maining 5%. The difference between Figure 4.14 (b) and (c), namely the even wider

error range in (c), confirms the positive correlation between K and the magnitude of the

over-termination error.

Summary In this section we studied the multi-bottleneck effect on the performance of

termination control for CL and SM. We demonstrated that both algorithms’ performance

is adversely effected by the presence of multi-bottleneck. Yet, for CL, in all experiments

we conducted, the magnitude of the over-termination was relatively small, indicating a

reasonable performance in most cases. We show through both theoretical derivation and

simulations that SM gives worse performance compared to CL, especially if K is large.

This is in part because the over-termination error is amplified by the factor K, and also

because the lack of a direct indication of the bottleneck condition with respect to the

termination threshold again results in unnecessary termination. While we believe that

the extent of this over-termination is tolerable for practical purposes, it needs to be taken

into account when considering performance tradeoffs of the two mechanisms.

4.6 Multi-Bottleneck Effect on Admission

In the Section 4.5, we investigated the multi-bottleneck effect on termination, in this sec-

tion we focus on its effect on admission. Recall that in termination, the multi-bottleneck

effect is interpreted as the over-termination of the long-haul aggregates. In admission,

it’s natural to define the multi-bottleneck effect (or the beatdown) as the under-admission

of the long-haul aggregates, that is, the long-haul aggregates are prevented from admit-

57

ting their share of new flows. Note that if the short-haul aggregates do not have enough

demand to compensate for the under-admission of the long-haul aggregates, then the

bottlenecks could be under-utilized. We are interested in answering the same questions

as in the case of termination, in particular 1) What is the exact cause of the beatdown of

long-haul aggregates, 2) Is there any performance difference between CL and SM, and

3) What is the extent of unfairness and would it cause bottleneck under-utilization.

4.6.1 Understanding Multi-bottleneck Effect on Admission

Recall from Section 4.5, the primary cause of the beat-down effect for termination is

excessive marking of the long-haul aggregates at the subsequent bottlenecks. In the

case of admission, though the excessive marking is still present, as we will show, it is

not the primary cause of the beat-down effect.

0 10 20 30 40 50 60 70 80
Simulation Time (s)

0

2e+07

4e+07

6e+07

8e+07

S
im

u
la

ti
o

n
 L

o
ad

 (
b

p
s)

Beat-down Period

 De-Synchronized
Oscillation Period

Long-haul

Short-hauls

Bottlenecks

Threshold

Figure 4.15: An illustration of multi-bottleneck effect on admission

Figure 4.15 depicts an 80-second snapshot of a network with PLT-2 topology running

under the CL admission algorithm. The simulation is a setup with the intent of letting

58

the long-haul (A-C) and two short-haul (D-E and E-F) aggregates have equal shares of

the bottleneck links, that is, each takes half the bandwidth allowed by the admission

threshold. In particular, each aggregate is given roughly the same starting load (with a

little randomness), and each has exactly the same demand-load which is 5x its starting

load. The point of the setup is to best capture the multi-bottleneck effect. If there was

no unfairness to the long-haul aggregate, then in Figure 4.15 the lines for the three

aggregates should be close to each other and stay roughly horizontal. On the other

hand, with the presence of unfairness, the short-haul aggregates with their large enough

demand (5x) will gradually “eat away” the bandwidth that belongs to the long-haul

aggregates, hence we should see lines diverge from their starting position, with the long-

haul aggregate going downwards. Figure 4.15 shows that during the 80 seconds, there

are two periods of time showing beatdown of the long-haul aggregate, in particular,

0-15s and 40-58s during which period it did not admit new flows. The rest of time

the long-haul aggregate does get the chance to admit, and hence maintained (and even

regained) some of its share of bandwidth.

The immediate question is what is the exact cause of the multi-bottleneck effect, and

why is the beatdown effect present but not persistent. To explain this, we first introduce

the concept of oscillation period. Observe in Figure 4.15 that the lines representing the

bottleneck loads exhibit a chain-saw pattern oscillating around the admission threshold.

We refer to each interval where the bottleneck load first increases and then decreases

as an oscillation period, since it roughly corresponds to the alternation between the two

states 1) admission-state where the bottleneck load is below the admission threshold

and traversing aggregates are allowed to admit new flows, 2) congestion-state where

the bottleneck load is above the threshold and it marks enough packets to trigger no-

admission at the relevant aggregates. It turn out the level of beatdown depends on the

synchronicity between the bottlenecks’ oscillation periods. To see this, imagine the fol-

59

lowing scenario: the long-haul aggregate (A–C) stops admitting because bottleneck1

(A–B) is in congestion-state; in the meantime, the second short-haul aggregate (E–F)

has admitted enough flows to drive bottleneck2 (B–C) into congestion-state. Therefore,

even when bottleneck1 now changes into the admission-state, the long-haul aggregate

still cannot admit because of bottleneck2, leaving the first short-haul aggregate (D-E)

alone admitting new flows. If the pattern repeats, the long-haul aggregate has far less

time to admit new flows compared to its short-haul competitor, hence its share of the

bandwidth will be gradually beaten down. Put another way, if both bottlenecks have

synchronized oscillation periods, then there is no beatdown and long-haul aggregate

will successfully admit new flows. With de-synchronized periods, the long-haul aggre-

gate has to stop admitting as long as at least one of them is in the congestion state.

This reflects the simple intuition that the aggregates traversing multiple bottlenecks see

congestion more often, and therefore spend more time not admitting new flows than

short-haul aggregates. Note in Figure 4.15, we highlight two beatdown periods of long-

haul aggregates and the de-synchronized oscillation periods of the bottlenecks, which

are clearly correlated in time.

Now that we know de-synchronization of the oscillation periods is the main

cause of the beatdown, it remains to be determined the deciding factors for the de-

synchronization of the oscillation period. Naturally, if the oscillation periods on the

different bottlenecks have different sizes and shapes, (e.g. the aggregated flow arrival

rate differs on each bottleneck), it would be impossible to synchronize them. The char-

acteristics of the oscillation periods depend on many factors, such as expected flow

arrival rate and flow length, as well as the admission algorithms’ settings. Considering

PLT-2, if we could set the fore-mentioned factors exactly the same for both bottlenecks,

and start the simulation with two perfectly synchronized periods, the question is would

it maintain in that way and hence eliminate the beatdown of the long-haul aggregate?

60

We discover that the answer is no. The problem lies in statistical variation of the flow ar-

rivals. The way we usually characterize traffic (in theory or practice) is by its statistical

expected properties, for instance, as mentioned in Section 4.1.4 our simulations assume

that flow arrivals follow a Poisson distribution and have exponentially distributed length

with expected means. However, the actual flow arrivals randomly deviate around the

mean. It is this random variation that causes the originally synchronized periods be-

come de-synchronized, and vice versa. This phenomenon is illustrated in Figure 4.15,

in which we see the oscillation periods start out de-synchronized, then gradually be-

come synchronized, and changed again later on. In fact, the sensitivity to the timing

of flow arrivals makes it impossible to correctly estimate the extent of unfairness based

on expected traffic arrival behavior. As an example, Figure 4.16 plots the load-vs-time

graph from 4 experiments running SM on PLT-2. They are configured with the exact

same parameter settings and expected traffic load, only different flow arrival patterns

(The lines with the same color belong to the same experiments). We see that while

the 4 experiments give virtually indistinguishable bottleneck utilization behaviors, the

bandwidth distribution between the short-haul and long-haul aggregate looks drastically

different. The graph conveys two points 1) our fluid model that had worked well in Sec-

tion 4.2.2 would not predict its corresponding packet simulation with bounded accuracy

in this situation, since it would generate the exactly same output for all 4 experiments.

This prevents us from using the fluid model to conduct a large range of experiments.

2) Even with packet simulation, the already simulated period cannot be used to predict

future behaviors (since 3 out of 4 experiments show no persistent trend). The two points

together imply, unlike in termination, it would be impossible to accurately quantify the

magnitude of unfairness under general settings (or even simple settings) with simula-

tions.

Having said the above, there are still some simple qualitative arguments that can be

61

made based on expected traffic load. For instance, we would expect a more severe beat-

down if the competing short-haul aggregates have high traffic demands. Furthermore,

despite the beatdown of the long-haul aggregates, as long as the short-haul ones sharing

the bottleneck have enough demand to fill to bandwidth, there should not be any under-

utilization at the bottleneck level. There are some additional qualitative properties that

are related to admission algorithms settings, which we will discuss in detail in the next

section.

0 20 40 60 80 100 120 140 160 180 200
Simulation Time (s)

0

2e+07

4e+07

6e+07

8e+07

S
im

u
la

ti
o

n
 L

o
ad

 (
b

p
s)

Bottlenecks

Short-hauls

Long-hauls

Figure 4.16: Sensitivity of IE-aggregation admission behavior to traffic arrivals

4.6.2 Comparison Between CL and SM

We have introduced the causes of the multi-bottleneck effect in admission, and argued

why it is not possible to accurately predict the extent of the effect based on expected

traffic input. Now we turn our attention to some of the admission algorithms details that

might have an impact on unfairness. Though we still won’t be able to exactly quantify

the magnitude in a general case, we might be able to gain some intuitive understanding,

62

in particular the difference (if any) between CL ad SM.

We start by running the same simple scenarios described in Section 4.6.1 (PLT-2, 5x

demand-load, start with equal bandwidth distribution between the long-haul and short-

haul aggregates). We keep all the settings the same for CL and SM, even the sequence

of flow arrivals. (Recall, however, from Section 4.2.2, there is a difference in marking

semantics between CL and SM, hence SM always has a smaller cle-threshold.) We find

in these experiments, the behaviors of CL and SM are clearly different. Figure 4.17

shows such an example. While both CL and SM both show signs of beatdown (as the

lines represent the load of the long-haul and short-haul aggregates diverge from each

other), SM seems much more drastic with faster diverging lines. It is worth pointing out

that we cannot make a general, long trend statement, such as “SM suffers from a more

severe beatdown effect than CL” based on the interpretation of this graph. Because as

we found out in Section 4.6.1, due to the sensitivity to the traffic arrival, the period

we simulated (no matter how long) cannot be used to predict the future behavior of

the network (imagine it is possible for CL to continue to diverge, and SM suddenly

becomes converged). However we can say, for this short interval, the graph suggests

more pronounced unfairness in SM than in CL. Now we set out to understand if the

observation is true and why it is the case.

The explanation again lies in the “oscillation period” (defined in Section 4.6.1). We

see from Figure 4.17 that CL had a much larger (and visible) oscillation period than

SM (a magnifying window on the right shows the relative sizes of the two). Recall in

Section 4.6.1, the beatdown effect is caused by the de-synchronization of the bottleneck

oscillation period, and de-synchronization is in turn caused by the random variation in

traffic arrivals. It’s easy to see, given the same magnitude of random change, a small

oscillation period can get de-synchronized much more easily. Then, why does SM have

63

0 20 40 60 80 100 120 140 160 180 200
Simulation Time (s)

0

2e+07

4e+07

6e+07

8e+07

S
im

u
la

ti
o
n
 L

o
ad

 (
b
p
s)

Long-haul (SM)

Short-hauls (CL)

Long-haul (CL)

Short-hauls (SM)
Bottlenecks (CL)

Bottlenecks (SM)

Figure 4.17: Comparison of multi-bottleneck effect on CL and SM admission

0

5

10

15

20

25

0

5

10

15

20

25

E
x

p
ec

te
d

 O
sc

il
la

ti
o

n
 P

er
io

d
 (

s)

0 0.2 0.4 0.6 0.8 1

EWMA Weight

0

5

10

15

20

25

CL (CLE=0.05)

CL (CLE=0.15)

CL (CLE=0.25)

SM (CLE=0.001)

SM (CLE=0.01)

SM (CLE=0.05)

Demand=5x

Demand=2x

Demand=1.25x

Figure 4.18: Expected length of oscillation period of CL and SM

a smaller oscillation period? It’s due to the difference in the two algorithms’ marking

behavior. Recall, when the bottleneck load is above the admission threshold, CL, af-

ter filling up the virtual-queue, would mark all traffic, while SM only marks the rate

exceeding the admission threshold. As a result, CL marks much more traffic, and it

would take it longer to age out the interval-cle and to restart the admission. In fact,

64

we have presented this very property in Section 4.2.2, only there we demonstrate it in

the context of “oscillation range” (which is the deviation of the actual load around the

average load). As in Section 4.2.2, we can use our fluid model to calculate the expected

oscillation period given the algorithm, the parameter settings, and the expected traffic

load.11 In Figure 4.18, we plot the expected oscillation period under various combina-

tions of demand-load, ewma-weight and cle-threshold. We can see that CL (displayed

in black) indeed has a larger oscillation period comparing to SM, especially with large

demand-load and ewma-weight.

To further verify our argument, we conduct a larger scale packet simulation of ∼700

experiments on the G-PLT-5 topology. In these experiments, the all 5 bottlenecks have

the same settings (capacity, admission threshold and arrival rate). The initial bandwidth

distributions among the aggregates are randomly generated. The demand-load for each

aggregate is x times their initial bandwidth, where x is 1.2, 2, 3.5 and 5. (Note, the x

is same for all aggregates of the same experiment. This also means the demand-load

on each bottleneck will be 1.2x, 2x, 3.5x or 5x). The rationale of this setup is again

to capture the presence of multi-bottleneck effect, just as the example in Section 4.6.1.

If there is no beatdown, then each aggregate should maintain its initial share of the

bandwidth. This in turn provides us with a metric to quantify the effect, that is, for each

aggregate, we calculate an average load over the simulation duration, then compare it to

the aggregate’s starting load. The more they differ, the more significant the beatdown

effect. We should point out however, the absolute magnitude of the metric bears no

practical meaning, it is used solely for comparison between two experiments. In fact,

even as a comparison metric it should be used with caution, since it would be meaningful

only when the aggregate’s load during the entire simulation period exhibits roughly

11Even though in the previous paragraph we established that the fluid model is not suitable to predict

the individual aggregate’s behavior, the fluid model is quite accurate when it comes to predict various

bottleneck behaviors, as we will show in Chapter 5. This is the reason why we can use it for calculating

the expected oscillation period.

65

monotonic behavior (increase, decrease or stay the same). For our short simulation

period (60s), this is indeed the case (confirmed by visual inspection). Finally, the cle-

threshold and ewma-weight are randomly generated as well.

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

CL (Demand=1.2x)

S
M

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

CL (Demand=2x)

S
M

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

CL (Demand=3.5x)

S
M

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

CL (Demand=5x)

S
M

Figure 4.19: Comparison of multi-bottleneck effect on CL and SM admission un-

der general settings

We produce the scatter plots of percentage deviations of the average load from its

starting load. Note there are potential 15 aggregates on the G-PLT-5 topology; we use

the one with the worst deviation. In Figure 4.19 CL and SM are plotted against each

other for each demand-load level. The results show that when demand-load is small,

such as 1.2x, there is virtually no difference between the two algorithms. As the demand

increases, the deviation in SM is significantly larger. What can be concluded from this

experiment is, while there is no way of stating the long trend behavior, if we zoom into

short intervals, then with the presence of high demands, the long-haul aggregates tend

to be beatdown more quickly in SM than in CL.

66

Summary In this section, we study the multi-bottleneck effect in admission. We iden-

tify the cause for the beatdown of the long-haul aggregates, its influencing factors, and

the causes for the performance difference between CL and SM. Furthermore, we con-

clude that due to sensitivity to statistical deviations in flow arrival, the long trend prop-

erty of beatdown or its exact magnitude at any point of time cannot be predicted ac-

curately with simulation. We end this section on a somewhat brighter note with the

observation that for the beatdown effect to be significant for admission, not only the

demand-load should be substantial, but also the duration of the load should be long

enough. Under “normal” conditions, one should not expect large prolonged substan-

tial demand-loads, since networks are typically provisioned. In the exceptional cases

(e.g. flash crowds) where high overloads can occur, they are not likely to be of very

long duration. In any case, under those circumstances, unfairness and even starvation

of some aggregates is still preferential to indiscriminately dropping packets of all flows

that would occur in the absence of admission control. Hence, in practice, the effect of

the multi-bottleneck effect we report here is probably of limited significance.

4.7 Queuing and Packet Loss Effect on Termination

All previously reported results assume no packet loss, now we will study CL and SM’s

performance in the presence of packet loss and queuing. Recall PCN has a two-threshold

architecture, and the space separation between the admission and termination thresholds

can shield the admission function from being affected by queuing and loss. Hence, in

this work we focus our attention on the performance of the termination of the two algo-

rithms. The problem with loss on termination is intuitively easy to understand. Recall

both CL and SM rely on egress measurement of the unmarked traffic to calculate the ag-

gregate’s sustainable rate. If along the path, unmarked packets were dropped, the egress

67

will have an under-estimated sustainable rate which in turn causes over-termination.

One natural way to solve the problem is to implement preferential dropping and to have

the bottlenecks preferably drop marked packets in the case of congestion. While this

fix not only increases the complexity of the equipment, it also raises incompatibility

with other proposed PCN algorithms (Some proposals require preferential dropping on

unmarked packets). Therefore, it’s important to go beyond simple intuition and actu-

ally evaluate the algorithms’ performance under a variety of practical scenarios, so that

we can quantify the impact of loss and queuing on termination and determine whether

preferential dropping of the marked packets is indeed needed.

4.7.1 Single Bottleneck Scenario

For the remainder for this section, when referring to loss, we mean that tail dropping

is performed (unless otherwise specified). We refer to the over-termination caused by

tail dropping and queuing as the loss effect and the queuing effect, respectively. In

this section we analyze the properties of these two effects on the simplest topology, a

single link. We start by providing an example to illustrate the loss effect and to test if

preferential dropping can indeed avoid the over-termination. We then present another

trivial example to capture the essence of the queuing effect. On a single link, CL and

SM give comparable performance. We will therefore present the analysis and the results

in the context of CL only.

An Example of the Loss Effect Consider the following scenario where two aggregates

go through a bottleneck which has its termination threshold set to its link speed. Two

aggregates have the same rate, and together they create 2x excess over the bottleneck

link speed (and 2x over the termination threshold as well). Both aggregates have half of

68

their traffic termination-marked already from previous bottlenecks. In a no loss scenario

(suppose the bottlenecks’ link speed were huge), the resulting system has the two aggre-

gates each terminate half of their traffic. If preferential dropping is used, the bottleneck

first drops termination-marked traffic, which, in this case, just happens to compensate

all its overload, then the resulting system is the same. If tail dropping is used, assuming

dropping is uniformly distributed, half of unmarked traffic will be dropped, resulting in

the two aggregates terminating 75% of their traffic. We run a simulation on this sim-

ple example, and the actual termination percentages are summarized in the table below.

The results confirm our intuition, that without preferential dropping, the dropping of

unmarked packet can cause over-termination. Note that the expected worst case 75%

termination is not achieved, because dropping is not uniformly distributed. In partic-

ular, marked packets are more likely to get dropped (since the packets arrivals are not

uniform. Packets that come in burst are more likely to be marked and dropped.)

Table 4.8: Loss effect (tail drop) on termination and preferential dropping

No Loss Preferential Drop Tail Drop

Aggregate 1 51.32 51.44 70.74

Aggregate 2 51.19 51.03 68.60

An Example of the Queuing Effect Consider the simple case where one aggregate

travels through a bottleneck which has the termination threshold equal to its link speed.

The aggregate creates 2x excess overload on the bottleneck. If the queue on the bot-

tleneck is small enough to be neglectable, then half of traffic will be dropped and the

remaining half is equal to termination threshold, hence unmarked. The aggregate will

terminate half of its traffic. At the other extreme, if the queue is big enough to hold

packets for at least the duration of one measurement period, then during the first round

of termination there will be no dropped packets. Instead, the traffic will arrive at the

egress at a rate which equals to the bottleneck link rate (half of its ingress sending rate)

69

and half of the arriving traffic is termination marked. The aggregate will get a sustain-

able rate of only 1/4 of its sending rate and has to terminate 75% of traffic. Simply

put, the increase in queue size will cause an under-estimation of the sustainable rate

and in turn cause over-termination. We simulate this scenario with different queue sizes

(measured in maximum possible queuing delay). The actual termination percentage is

summarized in the table below. The results confirm our queuing effect analysis. Note, in

this simple scenario, the deciding factor of the termination percentage is the sustainable

rate estimation in the first measurement period. In our simulation the period is set to

100ms. Therefore, a queue that holds more than 100ms of traffic will not cause further

over-termination.

Table 4.9: Queueing effect on termination

Queue Size 2.5ms 10ms 25ms 50ms 100ms 200ms

Termination Perc. 49.42 52.06 59.42 71.69 73.66 74.12

4.7.2 Multiple Bottlenecks Scenario

Recall from Section 4.5, the multi-bottleneck effect is the “beatdown” (over-

termination) of long-haul aggregates in the presence of multiple bottlenecks (and the

potential subsequent under-utilization of some bottleneck links). In this section we

first refresh the reader on several key properties of the multi-bottleneck effect in the

no loss scenario. Then we investigate how the multi-bottleneck effect interacts with

the over-termination caused by queuing and loss (which we studied previously in Sec-

tion 4.7.1). For the ease of illustration, we focus on the behavior of the long-haul aggre-

gates and present our examples and theory on a simple two bottleneck topology PLT-2

(Figure 4.2 (c)). A comprehensive study of the bottleneck behavior with more general

settings can be found in Section 4.7.3.

70

Multi-Bottleneck Effect on Termination, A Refresher Recall our main conclusion

on the multi-bottleneck effect on termination is that both algorithms suffer from it,

though SM to a larger extent. Here we briefly recite some equations from Section 4.5,

that serve as a refresher as well as laying some theoretical background for our future

analysis on multi-bottleneck effect involving queuing and loss. On the PLT-2 topology,

let L.T be the total traffic of the long-haul aggregate (A–C), and S1.T , S2.T represents

to total traffic of the short-haul aggregates (D–E) and (E–F), respectively. After travers-

ing the first bottleneck, part of the long-haul aggregate will be marked (termination or

admission marking, depending on the algorithm), we denoted the rate of the remaining

unmarked traffic as L.U. In addition, let P be the termination threshold on both links,

A the admission threshold, and K the ratio of the two. Equation (4.5) and (4.6)12 the

calculation of the sustainable rate L.S of the long-haul flow under CL and SM, which

shows that the long-haul aggregate’s sustainable rate under SM is smaller than CL (this

means SM over-terminates more)

L.S cl =
P

1 + S2.T/L.Ucl

(4.5)

L.S sm =
P

1 + S2.T ∗ K/L.Ucl

(4.6)

Equation (4.7) describes the condition for SM to trigger termination, which implies,

even if event-loads on the bottleneck are smaller than the threshold, there still could be

false trigger terminations, given a large enough K. This is the second reason why SM

performs worse than CL.

L.T +
L.T + S1.T

P
∗ S2.T ∗ K > P (4.7)

Loss vs. Multi-Bottleneck Effect To study the multi-bottleneck effect in the presence

of loss, again consider an example with the PLT-2 topology but with a concrete traffic

12These two equations and Equation (4.7) below are the same as the ones in Section 4.5, we just list

them here for viewing convenience

71

matrix. Suppose, at the time of the failure event, both bottlenecks’ loads are twice the

termination threshold, with long- and short-haul aggregates each constituting 50% of the

load. The trivially “good” solution is to have the three aggregates each terminate half of

their traffic. With CL in a no-loss scenario, the unmarked traffic from long-haul aggre-

gate (A–C) plus the load from short-haul (E–F) creates 1/3 excess 13 over the termination

threshold on the second link. These additional markings that long-haul aggregates ex-

perience reflect the multi-bottleneck penalty (which makes the total termination roughly

66%). Now assuming the link speed on the second bottleneck B–C is set so that the

event-load creates x percent excess, in other words, B will drop x percent of its passing

traffic. In the first case where x > 1/3, assuming dropping is uniformly distributed,

more than 1/3 of the unmarked traffic will be dropped and the resulting unmarked traffic

will be smaller than the termination threshold. Hence no additional multi-bottleneck

penalty for the long-haul aggregates; the termination percentage will be decided by the

loss effect alone. If x < 1/3, after dropping, the remaining unmarked traffic will still

be larger than termination threshold, the multi-bottleneck effect will kick in and mark

enough packets so that the combined effect (loss + new marking) is 1/3. In the table

below we list the termination percentages of the long-haul aggregate from the packet

simulation of the above scenario. It proves that with an overload larger than 1/3 (e.g.

x = 1/2), the over-termination is dominated by the loss effect; while if x is less than

1/3, the presence of loss makes no difference as the over-termination is decided by the

multi-bottleneck effect.

Table 4.10: Loss effect vs. multi-bottleneck effect

No Loss Loss (x = 1/5) Loss (x = 1/3) Loss (x = 1/2)

62.80 63.00 63.66 79.18

131/3 excess is computed as follows: assuming the termination-threshold is unit 1, then all three ag-

gregates have a load of unit 1 (since the sum of the load of long-haul aggregate and any short-haul

aggregate creates a load 2x the termination threshold). Next the excess on the second bottleneck is equal

to (1 × 1/2 + 1 − 1)/(1 × 1/2 + 1) = 1/3

72

To summarize, the intuition obtained from this example is that the penalty for loss

and multi-bottleneck effect is not additive; instead it’s the larger of the two. Since the

magnitude of the multi-bottleneck effect has previously been quantified via simulation

in Section 4.5.3, a natural question would be: are there any circumstances where the

loss effect is significantly larger than the multi-bottleneck effect. The example above

seems to suggest that the answer is when there is a large overload x. In fact, this is not

always true. While a large x indeed causes a large loss effect, it might imply a large

multi-bottleneck effect as well (by definition, lots of excess traffic over the link speed

means even more traffic over the termination threshold.) A situation where it is true is

when the overload consists of a lot of marked traffic, which means even though the traf-

fic is exceeding link speed by a lot, the amount of unmarked traffic remains small. Then

proportionally the long-haul aggregate will not get many additional markings, hence a

small multi-bottleneck effect. We observe that if a scenario satisfies the following con-

ditions: cross traffic is mostly unmarked short-haul traffic and the termination-threshold

is close to the link threshold, then the multi-bottleneck effect is likely to dominate. Note,

we only present the illustration in the context of CL, the same conclusion holds for SM,

we omit the details for conciseness.

Queuing vs. Multi-Bottleneck Effect Recall from Section 4.7.1, with all other con-

ditions being the same, changing the queue length will result in a change in the rate of

the unmarked traffic exiting the queuing link over a relevant (short) timescale. Using the

same PLT-2 example and terminology, now suppose link speed of the first bottleneck is

small enough to cause queuing/dropping on Link A–B, then the long-haul aggregate L.U

value will change accordingly, in particular, the larger the queue length, the smaller the

L.U. Recall that Equation (4.5) states the relationship between L.U and the aggregate’s

sustainable rate L.S cl under CL. It’s easy to see that a smaller L.U means the reduction

of the overall sustainable rate. Hence, for CL, the increase in queue length amplifies the

73

multi-bottleneck effect.

For SM, Equation (4.6) indicates a similar behavior; however, it suffers less than

CL. There are two potential reasons. First we will show that under certain common

conditions, given the same change in L.U, the overall sustainable rate change for SM is

smaller than for CL, especially if K is large.

∆L.S cl =
P

1 + S2.T/L.U1

−
P

1 + S2.T/L.U2

=
P ∗ S2.T ∗ (L.U1 − L.U2)

(L.U1 + S2.T)(L.U2 + S2.T)

∆L.S sm =
P

1 + S2.T ∗ K/L.U1

−
P

1 + S2.T ∗ K/L.U2

=
P ∗ S2.T ∗ (L.U1 − L.U2)

(L.U1 + S2.T ∗ K)(L.U2 + S2.T ∗ K)/K

∆L.S cl > ∆L.S sm ⇒ (L.U1+S2.T)(L.U2+S2.T) <
(L.U1+S2.T ∗K)(L.U2+S2.T ∗ K)

K

⇒ K ∗ L.U1 ∗ L.U2 + (S2.T)2
∗ K < L.U1 ∗ L.U2 + (S2.T ∗ K)2

⇒ (K − 1) ∗ L.U1 ∗ L.U2 < K ∗ (K − 1) ∗ (S2.T)2

⇒ L.U1 ∗ L.U2 < K ∗ (S2.T)2

The intuition of our derivation is the following: for SM, if K is large, or on the second

bottleneck the short-haul cross traffic is larger than the unmarked traffic from the long-

haul aggregates; then SM’s reduction in sustainable rate is smaller compared to CLs.

(The condition is likely to arise if the link speed and threshold settings are comparable

in value for both bottlenecks.)

The second reason is related to the property of SM implied by Equation (4.7). When

K is large, the over-termination caused by this effect becomes dominant. Even though

the presence of queuing causes the long-haul aggregates to terminate more in its first

round, as long as Equation (4.7) is satisfied, the aggregates will keep on terminating

until the bottleneck load falls below the “danger zone”. In these cases, the dominating

74

over-termination from the multi-bottleneck effect will render the influence of queuing

invisible. The table below contains the terminating percentage for the long-haul aggre-

gate in each setup. The third row (the difference between LargeQueue and SmallQueue)

shows that for the same queue size change, CL has the larger increase in its termination

percentage, while for SM the differences are smaller; with a larger K (K = 2), it shows

virtually no effect.

Table 4.11: Queueing effect vs. multi-bottleneck effect

CL SM (K=1.2) SM (K=1.5) SM (K=2.0)

SmallQueue (2.5ms) 63.46 69.02 76.25 88.05

LargeQueue (100ms) 78.81 81.73 84.51 87.74

Difference 15.35 12.71 8.26 -0.31

To summarize, for both CL and SM, an increase in queue length has the effect of

amplifying the multi-bottleneck effect, and in turn causes larger over-termination. The

effect is less pronounced for SM, especially when K is large.

4.7.3 Simulation Validation

To validate our findings in the previous sections under more general settings, we ran-

domly generated 1200 traffic matrices on the G-PLT-5 topology (Section 4.1.2). In fact,

these experiments are generated in a similar manner as those large scale multi-bottleneck

simulations in Section 4.5.3. Yet there are some additions to the setup, that is, for each

traffic matrix, we run three experiments with different link speeds and queue size set-

tings: 1) set the link speed very large (hence no loss occurs), 2) randomly select the

link speed from the range 1-2X the termination threshold, and set the queue size equals

to 2.5ms of link capacity, and 3) use the same link speed as in 2), but with a larger

queue randomly chosen between 256 to 5120 packets. We term the three types of ex-

periments NoLoss, SMQueue and LGQueue, respectively. The results focus on the

75

over-termination on the tightest bottleneck where the over-termination is compared to

the “reference” over-termination defined in Section 4.5.3. (Note, given the aforemen-

tioned similarity in the setup, one would expect that the results for the NoLoss set to be

comparable to the multi-bottleneck effect result we obtained in Section 4.5.3, which is

indeed the case.)

CL.NoLoss

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

CL.SMQueue

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

CL.LGQueue

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0
0

2
0
0

3
0
0

4
0
0

5
0
0

6
0
0

0 5 10 15

0
5

1
0

1
5

CL.SMQueue

C
L
.N
o
L
o
s
s

0 5 10 15 20 25

0
5

1
0

1
5

2
0

2
5

CL.LGQueue

C
L
.N
o
L
o
s
s

0 5 10 15 20 25

0
5

1
0

1
5

2
0

2
5

CL.LGQueue

C
L
.S
M
Q
u
e
u
e

Figure 4.20: Effect of loss and queueing on CL termination

Figure 4.20 summarizes the results for CL. The three graphs in the top row give the

distribution of the over-termination for each type of experiment (NoLoss, SMQueue and

LGQueue). The second row consists of pair-wise scatter plots of the experiments. (The

distribution graphs provide the overall statistics, the scatter plots give a performance

comparison among NoLoss, SMQueue and LGQueue for each of 1200 experiments).

The same information is plotted for SM in Figure 4.21 with the only difference being that

for SM, we break the result into two categories based on the value of K. Experiments

with a smaller K (1.2 ≤ K ≤ 2.0) are plotted in red, while the ones for larger K (2.0 <

K ≤ 3.0) are displayed in blue.

76

F
re
q
u
e
n
c
y

0 10 20 30 40 50
0

2
0

4
0

6
0

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
2
0

4
0

6
0

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
2
0

4
0

6
0

SM.NoLoss

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0

2
0

3
0

SM.SMQueue

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0

2
0

3
0

SM.LGQueue

F
re
q
u
e
n
c
y

0 10 20 30 40 50

0
1
0

2
0

3
0

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

SM.SMQueue

S
M
.N
o
L
o
s
s

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

SM.LGQueue

S
M
.N
o
L
o
s
s

0 10 20 30 40 50

0
1
0

2
0

3
0

4
0

5
0

SM.LGQueue

S
M
.S
M
Q
u
e
u
e

Figure 4.21: Effect of loss and queueing on SM termination

The simulation results confirm all our findings. For both CL and SM, the distribution

graph for NoLoss and SMQueue show virtually no difference, indicating overall perfor-

mance is dominated by the multi-bottleneck effect, despite the loss and the tail dropping

(the scatter plot of NoLoss and SMQueue further confirms this). The increase in queue

length shows a significant impact on CL (see the distribution graph for LGQueue and

the scatter plot of SMQueue and LGQueue). While for SM, the effect is much less, and

is not even visible if K is large. An interesting observation is that while in the no-loss

situation CL does better than SM, the effect of queuing brings the performance of the

two on the same level.

Summary In this work we studied the effect of loss and queuing on the performance of

termination control for CL and SM. We demonstrated using simple examples that both

loss (with tail drop) and queuing may adversely affect the termination performance. We

then analyze the two effects in more generalized settings in conjunction with the multi-

77

bottleneck effect. We found that in many practical scenarios, the multi-bottleneck effect

tends to dominate the over-termination and the presence of loss does not further impact

the performance much. The result seems to suggest that it may not be absolutely nec-

essary to implement preferential dropping of marked packets with PCN. A difference

between the two algorithms is that queuing affects the performance of CL much worse

than that of SM. In fact, with large queues, the performance of CL and SM becomes

comparable. This is an interesting fact to consider if PCN were to be used in an environ-

ment where traffic is mix of voice and video which requires the configuration of large

queues.

4.8 Performance Summary

In this section, we conclude our performance evaluation work for CL and SM. The

overall takeaway is that CL works stably across a wide range of scenarios; for SM,

while giving adequate performance in most cases, the simpler mechanism does come

at a cost, especially in termination. We organize our summary in two parts. The first

part is dedicated to the performance of CL only. The second parts focuses on SM by

highlighting the performance tradeoff and the its applicability range.

Performance of CL

In a nutshell, CL performs well in a large number of experiments. Our evaluation

indicates that its admission control function works well at sufficient levels of bottlenecks

for all real-time traffic types and flow arrival models we studied, and is rather insensi-

tive to the settings of the key parameters and the level of ingress-egress aggregation.

The algorithm suffers from the well-known phenomenon of unfairness towards flows

traversing multiple bottlenecks, and long periods of relatively modest demand overload

78

may result in a severe “beatdown” of the long-haul connections. However, this rather de-

pressing property is not algorithm-specific and can be traced to the de-synchronization

of congestion periods of different bottlenecks. We argue, however, that prolonged pe-

riods of steady demand overloads may not be common place in the PCN environment,

and hence the practical significance of the beatdown effect may be limited.

Our investigation of the CL termination algorithm revealed that it worked well for

the range of tests we conducted. We identified several factors that may result in over-

termination: (1) inaccuracies of rate estimation and rounding errors due to the granu-

larity of termination at very low ingress-egress-aggregation levels; (2) flows traversing

multiple bottleneck in the presence of short-haul cross traffic. However, in all exper-

iments we conducted, the magnitude of the over-termination was relatively small, in-

dicating that the termination algorithm is likely to provide reasonable performance in

most cases. In addition, the presence of packet loss does not impact the termination per-

formance by much in most practical cases, suggesting that preferential dropping may

not be a necessity for adequate termination performance.

Tradeoff and Applicability of SM

An obvious restriction necessary for the SM approach is that the ratio of admission-

to termination-threshold remains the same on all links in the PCN region. While clearly

a limitation [5][26], this does not appear to be particularly crippling, and does not appear

to outweigh the benefits of reducing the overhead in the router implementation and

savings in codepoints.

Performance-wise, within the constraints of this study, the performance tradeoffs

observed between the queue-based technique for admission control suggested in CL

and a simpler token-bucket-based excess rate measurement for admission control in SM

79

do not appear to be a cause of substantial concern for cases when traffic aggregation is

reasonably high at the bottleneck links as well as on a per ingress-egress pair basis. At

very low ingress-egress aggregation (< 10 flows), SM is substantially more sensitive,

and displays performance degradation caused by the synchronization effect. SM also

exhibits the “beatdown” effect of the long-haul connections in the presence of multiple

bottlenecks, and displays somewhat larger unfairness than CL. Having said that, one

mitigating consideration in favor of the simpler mechanism is that in a typical DiffServ

environment, the real-time traffic is expected to be served at a higher priority and/or

the target admission rate is expected to be substantially below the speed at which the

real-time queue is actually served. If these assumptions hold, then there is some margin

of safety for an admission control algorithm, making the requirements for admission

control more forgiving to bounded errors.

The termination mechanisms of SM and CL are both based on excess-rate metering

and marking, so it may be inferred that their performance is similar. However, there

is a subtle difference between the two mechanisms stemming from the fact that in SM,

the bottleneck condition with respect to the termination-threshold is not directly con-

veyed through the markings. SM meters against the admission-threshold and infers the

bottleneck condition with admission markings. The inference process is vulnerable to

inaccuracies, such as non-uniformity in the marking distribution, and may result in over-

termination compared to CL, especially when ingress-egress aggregation is low (< 50

flows) and in multi-bottleneck environments. While we believe that the extent of this

over-termination is tolerable for practical purposes, it needs to be taken into account

when considering the performance tradeoffs of the two mechanisms. As in the case of

CL, the presence of loss does not affect the performance much; in addition, SM is more

resilient to the negative impact of queuing, which makes it perform comparably to CL

in settings with large queues.

80

CHAPTER 5

FLUID MODEL SIMULATION

Packet-base simulation has been widely used for performance evaluation. However

running a packet-level simulator is very resource and time consuming, and does not

scale well as the complexity of the subject network and the duration of the simulation

increase. This limitation in the simulation effort will greatly constrain the depth and the

breadth of the evaluation work. Consequently, the need for efficient simulation tech-

niques is widely recognized. One method of speeding up the simulation is by using

a model with higher level of abstraction. For instance, the abstracted model treats a

flow as a continuous stream of fluid, instead of discrete packets. A simulation with

such abstractions is called a fluid model. Fluid models generally feature theoretical for-

mulations and approximations, and offer superior efficiency compared to their packet

counterparts.

Over the years, a large number of fluid models have been developed. From a struc-

tural point of view, some fluid models ([30][16][15][23][8]) treat each flow as a fluid

stream, and the flow’s rate adjustments due to network conditions (such as congestion)

are tracked as events in the simulator; others ([3][39][37][22][20]) model flow traffic as

a continuous amount of data which is shifted through the network at a fixed time step.

Functionality-wise, some ([30][16][15][23][8]) are simply designed to model certain

queuing disciplines; while others ([39][37][22][20][24][2]) with more complex capa-

bilities such as throughput and delay approximation, are used to model systems with

dynamic rate adjustment, such as TCP or admission control algorithms. While all ex-

isting works have demonstrated that their fluid models work accurately, most of the

accuracy analysis are either performed on a simple topology (e.g. a single bottleneck)

or focused on bottleneck behaviors only.

81

One of the contributions of our work is the development of several novel fluid mod-

els of different complexities and the investigation of their accuracy and applicability

to various aspects of PCN termination and admission control. Aside from providing a

tool to gain more insight in PCN behavior, we believe that some of our analysis is of a

more general nature. Specifically, we believe that our results support a conjecture that

while bottleneck behaviors are possible to predict with high accuracy using these mod-

els, per-aggregate behavior of admission control systems cannot be accurately predicted

with any fluid model resulting in a bounded estimation error. The rest of this chapter

is dedicated to the detailed description of the fluid models use to obtain the results of

Chapter 4. We present the complete account of the model construction and assess its

accuracy.

5.1 Fluid Model for PCN Admission Control

5.1.1 Model Description

Like our packet simulator, the admission fluid model is also an event-based simulator

with the difference being it handles the events at an aggregate level rather than a packet

level. Recall that in the PCN architecture, the aggregate 1) performs certain functions on

an interval-basis, in particular, it collects various measurements of the previous interval

and computes a ratio of the marked traffic over the total traffic, which we refer to as

interval-cle. 2) It then smoothes the interval-cle as an exponential weighted average

(ewma-cle). 3) It then uses ewma-cle to decide whether the aggregate will admit or

not during the next interval by comparing it to cle-threshold. We refer to the time at

which each aggregate perform the above functions as a decision-point, and model it as

an event. In between the events, various aspects of the system are recorded as states.

82

In a nut shell, the fluid simulation iterates through all the aggregates’ decision-points as

events, it processes the events by going through the above-described steps 1 to 3 based

on the information stored in the states. This process continues until the desired length

of the simulation is reached.

While above algorithm outline seems quite simple, the substantive core of the ad-

mission fluid model lies in step one, that is, given an aggregate, how the fluid model

calculates its interval-cle. In fact the rest of this section is devoted to cover the imple-

mentation of this part, but first we need to introduce our concept of the state in more

detail. The state is used to capture the dynamics of the system for a period of the time

between two events, and it has a number of attributes to store information about the

aggregates and the links. Some of these attributes are invariant throughout the state,

such as the arrival-rate at the links (which is derived from the aggregates’ admission

decisions). Other attributes are subject to constant change, such as the load (number of

flows) of the aggregates or on the links, the virtual-queue/token-bucket occupancy, the

amount of marked/total traffic, etc. How to model these changing attributes and how

to use them to compute an aggregate’s interval-cle are the main focus of the admission

fluid model, which we will present below in a step-by-step fashion.

Compute Arrival-Rate from Aggregates’ Admission Decision

Given a state, an aggregate either decide to admit with a configured arrival-rate 1, or

decide to block admission, which translate to an arrival-rate of zero. Since each aggre-

gate’s flow arrival is modeled as an independent Poisson process, the flow arrival on any

bottleneck link is therefore also a Poisson process with an arrival-rate equal to the sum

of the rates of the aggregates that traverse that bottleneck.

1The aggregate’s configured arrival-rate is part of the input traffic matrix.

83

Compute Load from Arrival Rate

Next we will address the problem that given an arrival-rate and a time duration, how to

capture the dynamics of the load (number of flows) on the bottleneck or aggregate. This

is the crucial component for computing an aggregate’s interval-cle. In what follows, we

will introduce the theoretical background for translation between arrival-rate and load.

First, let’s phrase the problem formally. We have flows arrive according to a Poisson

process with rate λ. The flow duration is exponentially distributed with mean of 1/µ.2

Given there are initially No flows in the system, we want to find the expected number of

flows N(t) in the system after time t. It turns out that this problem mirrors certain types

of birth-death processes and can be solved using tools from queuing theory. First we

break N(t) into two independent components N(t) = Nb(t) + Nd(t). The first component

assumes a system starts with 0 flows and has an arrival rate of λ and Nb(t) represents the

expected number of flows in such a system after time t. This part can be modeled by

a M/M/∞ process. The second component is a pure death process; that is, it assumes

the system starts with N0 flows with no arrivals, and Nd(t) is the expected number of

flows left in the system after time t. Unlike most of the queuing theory applications that

focus on the steady-state solution, we are interested in the transient-state analysis that

is time dependent. Luckily both processes have an analytical (non-numerical) solution.

For each process, we first compute its probability density function (pdf), in other words,

the probability that the process has k flows at time t, denoted by P k(t), from which we

can compute the expected number of flows at time t (The full derivation of M/M/∞

process’s pdf can be found in Appendix B, and pdf for the pure-death process is in [10])

P k
b (t) =

1

k!
exp

(

−(1 − e−µt)
λ

µ

) (

(1 − e−µt)
λ

µ

)k

P k
d (t) =

(

No

k

)

e−µtk(1 − e−µt)No−k

(5.1)

2The mean of the flow duration is generally set to a fixed value such 1 or 2 minutes.

84

It’s easy to see from Equation (5.1) that P k
b
(t) has the shape of a Poisson distribution and

P k
d
(t) has the shape of a binomial distribution. We can then derive their expected values.

Nb(t) = (1 − e−µt)
λ

µ

Nd(t) = No e−µt

N(t) = (1 − e−µt)
λ

µ
+ No e−µt (5.2)

Given a state and the initial load (whether it be for aggregates or links), we can use

Equation (5.2) to compute the load at any point of time within the state. We also use it

to compute the end load of the state which is used to initialize the next state if necessary.

Another situation that frequently arises requires finding out how long it takes for the

load to change from N1 to N2, which requires a simple transformation of Equation (5.2),

solving for t.

t = −
1

µ
∗ ln

(

N2 − λ/µ

N1 − λ/µ

)

(5.3)

Compute the Aggregate’s Interval CLE from Load and Arrival Rate

An aggregate’s interval-cle is simply the ratio of the aggregate’s marked traffic over the

total traffic given a measurement interval. To compute either value, we first backtrace

through the list of states to identify the states that correspond to the interval of interest

in time. Note this interval could span over several states in which case we will perform

the calculation on each one and sum the results. Once the state and the (sub)interval of

interest are located, all that is needed to compute the aggregate’s total traffic is to utilize

Equation (5.2), taking integral N(t) with respect to t. The resulting formula is Equation

(5.4). Here No represents the aggregate’s load at the beginning of (sub)interval and Rt

denote the total traffic.

Rt =

∫

N(t) dt =
λ

µ
∗ t − (

No

µ
−
λ

µ2
) ∗ e−µt +

No

µ
−
λ

µ2
(5.4)

85

The computation of marked traffic is much more involved. The question is how to

model the dynamics of virtue-queue/token-bucket in the presence of a changing load,

and in addition to that, how to deal with it if the aggregate traverses multiple bottle-

necks. Given that we already know the aggregate’s total traffic, our goal is to find the

percentage of that total traffic that’s marked which we refer to as marking-percentage or

marking-probability, the product of the two will give us the marked traffic. Note that we

cannot use the marking-percentage as interval-cle directly, because as we stated before

the measurement interval might span several states with each one having different loads

and marking-percentages. Hence the correct way is to compute the marked and total

traffic for each state, sum them up, then divide the two to obtain the interval-cle. In what

follows, we will illustrate our solution step by step. We start out by presenting how to

compute the marking-percentage on the bottleneck if the load on the bottleneck is fixed.

We then show how to carry out the computation with a changing load. Finally, we will

show if an aggregate transverses multiple bottlenecks, how to obtain the aggregate’s

marking-percentage from the marking-percentages of all the bottlenecks it crosses.

If we have a fixed bottleneck load, then it’s rather intuitive how to approximate the

marking behavior with the fluid model. A virtual-queue will be filled at a rate equal

to the load, and at the same time drained with the rate of the admission-threshold.

If load is greater than admission-threshold, the queue will build up with a rate of

(load − admission-threshold), once the queue grows over the vq-threshold, all traffic will

be marked. If the load is smaller than admission-threshold, the queue will get drained

with a rate of (admission-threshold− load), if the queue drops below vq-threshold,

marking will stop. Queue cannot grow beyond vq-upper-limit. The function named

vq-marking- f ixload for this computation is presented in Algorithm (1). A token-bucket

can be handled similarly, with the difference being that the bucket is filled with the rate

of the admission-threshold and drained with the rate of load. Furthermore, when the

86

bucket is empty, the traffic is marked with a rate of (load − admission-threshold). The

function for the computation for the token-bucket named tb-marking- f ixload is pre-

sented in Algorithm (2) (described below).

Algorithm 1: Function: vq-marking- f ixload

input < load, duration, queue>

total = load ∗ duration

if load == admission-threshold then

if queue > vq-threshold then

marked = load ∗ duration

end if

else if load > admission-threshold then

f illtime =
max(vq-threshold − queue, 0)

load − admission-threshold
marked = max(duration − f illtime, 0) ∗ load

queue = min((load − admission-threshold) ∗ duration + queue, vq-upper-limit)

else

draintime =
max(queue − vq-threshold, 0)

admission-threshold − load
marked = min(draintime, duration) ∗ load

queue = max(queue − (admission-threshold − load) ∗ duration, vq-upper-limit)

end if

return <marked, total, queue>

The next step is to perform the above described computation in the presence of load

change. If we know the starting and ending load3 on the bottleneck for the duration

of interest, then a reasonable approximation is to iterate from the starting load to the

ending load with some step size (say ±1 flow per step). In each step, we first compute

the time it takes to get to the next load step using Equation (5.3). This will be the step

duration (s-duration) we pass in function vq-marking- f ixload or tb-marking- f ixload

to compute the marked and total traffic, while keeping track of the changes of the

virtual-queue/token-bucket. While we iterate through the changing loads, we sum up

3If the starting load is given, the ending load can be computed with Equation (5.2).

87

Algorithm 2: Function: tb-marking- f ixload

input < load, duration, queue>

total = load ∗ duration

if load == admission-threshold then

marked = 0;

else if load > admission-threshold then

draintime = bucket
load − admission-threshold

marked = max(duration − draintime, 0) ∗ (load − admission-threshold)

bucket = max(bucket − (load − admission-threshold) ∗ duration, 0)

else

marked = 0

bucket = min(bucket + (admission-threshold − load) ∗ duration, tb-depth)

end if

return <marked, total, bucket>

the marked and total traffic from each round of computation. At the end of this pro-

cess, the ratio of the two gives us the marking-percentage on this bottleneck. The pseu-

docode of this approach for CL is presented in the algorithm below. (The code for SM

is straightforward, we omit it for conciseness.)

Algorithm 3: Function: cl-singlelink-marking-percentage

input < start-load, end-load, step, arrival-rate, queue>

marked = 0, total = 0

for load = start-load to end-load do

s-duration← compute with Equation (5.3): N1 = load and N2 = load + step

(s-marked, s-total, n-queue) = vq-marking- f ixload (load, s-duration, queue)

marked += s-marked

total += s-total

queue = n-queue

end for

return marking-percentage = marked/total

Now we know how to compute a marking-percentage on a single bottleneck, the

88

next step is to turn the bottleneck’s marking-percentage into an aggregate’s marking-

percentage. If the aggregate only goes through one bottleneck, then trivially the bottle-

neck’s marking-percentage is same as the aggregate’s. For the multi-bottleneck cases,

we make an assumption that each bottleneck’s marking behavior is independent, which

allows us to compute each marking-percentage individually using the algorithms de-

scribed above. Under this assumption, the value of our interest – the aggregate’s

marking-percentage which translates to the percentage of traffic that’s being marked

at at least one bottleneck – can then be viewed as the union of marking-probabilities of

all the bottlenecks which the aggregate traverses. The computation of the probability

of union is within the basic probability theory which we will not present here. We do

however want to assess the validity of our assumption of independence. For CL, this as-

sumption is perfectly valid since the virtual-queue algorithm meters and marks a packet

regardless of whether or not the packet traverses (or has been marked at) previous bot-

tlenecks. This resembles the independence of marking behavior at each bottleneck. SM

however, excludes previous marked packets from its token-bucket metering, which in

essence invalidates our assumption. While it’s possible to implement a fluid simulator

to model this particular aspect of token-bucket metering (like what we will do in the ter-

mination fluid model), we believe in SM admission, given that the marking-percentage

is very small in magnitude, any inaccuracy in our assumption will not result in a large

inaccuracy in the results.

Having described how to compute an aggregate’s marking-percentage for a given

state and duration within the state, we are finally ready to compute the aggregate’s

interval-cle which we already briefly outlined at the beginning for this subsection. Since

the measurement interval, which is usually set to 100ms in our packet simulation, may

span over several states, the fluid model will first identify the states (and each sub-

interval within the state), then use the algorithms we described in this subsection to

89

compute the total traffic, marking percentage, and hence the marked traffic for each

state and duration. Finally, the marked and total traffic are summed up across the states

and the ratio of the two gives the aggregate’s interval-cle.

Summary To summarize, our admission fluid model is an event-based simulator that

operates at the ingress-egress aggregate level. The simulator models each aggregate’s

admission decisions on an interval-basis. It uses a combination of analytical models and

approximations to capture the load dynamics as well as the marking/metering behavior

at the bottlenecks, which enables it to estimate a given aggregate’s interval-cle, hence

the admission decisions. We will verify the accuracy of this model in the next section.

5.1.2 Accuracy Analysis

In this section, we will assess the accuracy of our admission fluid model by running both

a packet and a fluid simulator in conjunction with each other across a range of parameter

settings and topologies. Note our evaluation goal in this section is not the performance

of PCN algorithms, but rather the accuracy of the fluid model, hence when analyzing the

result from difference metrics, our focus will not be the magnitude of the results itself,

rather the magnitude of the difference between the two simulators.

Recall in Chapter 4 we used results from the fluid model in (Section 4.2.2 and in

Section 4.6.2). These experiments were on a Single Link topology with wide range of

parameter settings under both CL and SM algorithms. Here, we run ∼250 from these

experiments with both fluid and packet models. We present the same set of results as in

Chapter 4 – average, expected max, expected min and length of oscillation period (see

Section 4.6 for definition) which are metrics to describe the dynamics of the load. For

each of the four metrics, we draw a scatter plot of the results of the fluid vs. the packet

90

model (see Figure 5.1). For the first three graphs (average, max and min), the results

are measured as percentage deviations from the admission-threshold. The results in the

fourth graph (oscillation period) is measured in seconds.

-2 0 2 4 6 8 10 12

-2
0

2
4

6
8

1
0

Avg Load (Packet)

A
v
g
 L

o
a
d
 (

F
lu

id
)

0 2 4 6 8 10 12

0
2

4
6

8
1
0
1
2

Max Load (Packet)

M
a
x
 L

o
a
d
 (

F
lu

id
)

-10 -5 0 5 10

-1
0

-5
0

5
1
0

Min Load (Packet)

M
in

 L
o
a
d
 (

F
lu

id
)

0 5 10 15 20

0
5

1
0

1
5

2
0

Oscillation Period (Packet)

O
s
c
ill

a
ti
o
n
 P

e
ri
o
d
 (

F
lu

id
)

Figure 5.1: Accuracy of admission fluid model on single link topology

Most of data-points in the plots of Figure 5.1 lie on a 45 degree straight line, which

indicates the results of fluid model are nearly identical to its packet-model counterpart.

The few outliers in each plot correspond to the same set of experiments that have rather

extreme parameter settings, such as an ewma-weight of 0.95. Overall, Figure 5.1 shows

that on a Single Link topology, the fluid model accurately predicts the bottleneck behav-

ior across a wide range of parameter settings.

Our next set of experiments is on multi-bottleneck topologies. Recall in Sec-

tion 4.6.2, we ran large scale packet simulations on generalized PLT-5 (G-PLT-5) topolo-

gies for the purpose of comparing the admission performance of CL and SM in the

multi-bottleneck scenario. Here we rerun exactly the same set of experiments with the

91

fluid model. Figure 5.2 displays the distribution of the difference in bottleneck over-

admission obtained by the fluid and packet models. It shows that for these ∼8000 data-

point from (including both CL and SM), the over-admission computed in the fluid model

is mostly within 2% of that of the packet model, indicating again that the fluid model

predicts the bottleneck behavior with great accuracy.

difference in over-admission

F
re
q
u
e
n
c
y

-10 -5 0 5 10

0
2
0

4
0

6
0

8
0

1
0
0

1
2
0

Figure 5.2: Accuracy of admission fluid model in predicting bottleneck behaviors

under general settings

5.1.3 Model Applicability

We have shown that the fluid simulator works remarkably well when modeling the load

behavior on the bottleneck; unfortunately, when it comes to predicting the load for indi-

vidual aggregates, its accuracy greatly deceases. The main reason, as we have analyzed

in Section 4.6.1, is that the individual aggregate’s behavior is very sensitive to statisti-

cal variation in the traffic arrival, especially in the multi-bottleneck environment. The

input to the simulation, both fluid and packet, is a traffic matrix which defines, among

other things, the flow arrival rate of each aggregate. As described in our model, once

92

the arrival-rates are fixed, the fluid simulator generates a deterministic outcome which

can be viewed as an expected behavior of the system with the given traffic matrix. The

packet simulator, on the other hand, models the aggregates’ Poisson flow arrivals by

actually generating a random inter-flow-arrival-time from an exponential distribution

with a mean equal to the inverse of the arrival-rate. As we saw in Figure 4.16, experi-

ments with different random seeds, which give different sequences of flow arrivals, can

have drastically different IE-aggregate behaviors. This shows that our admission fluid

simulator which is based on expected traffic arrival behavior will not be able to predict

its corresponding packet simulation with bounded accuracy when it comes to the be-

havior of an individual aggregate, even though it works remarkably when modeling the

bottleneck behavior.

The process of identifying the cause of the insufficiency of our fluid model sheds

some light into a possible direction for improvement. The question is, whether there is

a middle-ground between our aggregate-level expected-behavior-based fluid model and

a packet simulator. The answer is yes, we could build a simulator that still models each

flow as fluid (hence not getting into the packet-level details), but instead of computing

the expected behavior with an analytical formula, we actually generate the random flow

arrivals to capture the statistical variation in the flow arrivals. This version of the fluid

model will no doubt run slower than the original, but it will still be orders of magni-

tude faster than any packet-based simulation. The question then becomes if we generate

exactly the same flow arrival sequences and flow durations, will the new fluid model

predict its packet counterpart accurately? We implemented our idea and tested it out.

The results indicate that while the new fluid model shows great improvement in certain

experiments, it still cannot accurately predict the aggregates’ load behavior under all

cases. The reason is as follows. Recall the core of the admission fluid model is the cal-

culation of aggregate’s interval-cle. If we just focus on any individual interval, we will

93

discover that the revised fluid model gives a very accurate estimation of the interval-cle.

However, the inaccuracy, no matter how small, has the potential to lead to a difference

in admission decisions. For example, after smoothing, the ewma-cle from packet model

is 0.3000001 and 0.2999999 for the fluid model. With a cle-threshold of 0.3, the seem-

ingly neglectable error will cause a difference in admission decisions, and subsequently

causes the difference in the load, the metering and the marking in the next interval, and

these differences will likely cause a larger error when estimating the interval-cle for the

next interval. The crucial point is to recognize that the admission control is a sequence

of decisions, and as each decision is dependent on previous decisions, the inevitable

inaccuracy in the each step of the approximation will accumulate. While the model

still predicts the bottleneck behavior very accurately, the effect caused by these accumu-

lated errors will be more pronounced when predicting the aggregates’ load, especially

in a multi-bottleneck environment with some short-haul aggregates beating down the

long-haul ones. This property leads us to conjecture the possibility that an admission

fluid model is fundamentally incapable of predicting the complete per-aggregate out-

come of its packet counterpart with bounded accuracy. This hypothesis remains to be

investigated in depth in our future work.

5.2 Fluid Model for PCN Termination Control

5.2.1 Model Description

The termination fluid model shares many structural similarities with the admission one.

It is also an event-based simulator that operates at the aggregate level. Just as in the case

of admission, the simulation iterates through all aggregates’ decision-points as event,

94

recording various aspects of the system in states, and instead of making admission de-

cisions, it decides the amount (if any) of flows to terminate by measuring the unmarked

and total traffic.

Despite the similarities, there are certain differences in assumptions and modeling

between the two fluid simulators. To understand the first difference, recall that in the

case of admission, each state has a fixed arrival-rate, but a varying load. To the con-

trary, the termination model simplifies the computation by assuming that the load stays

constant within a state; the only load change occurs if an event results in the termina-

tion of the flows. There are two observations justifying this simplification. First, in an

environment where the network is overloaded to the point that termination is activated,

it’s natural to assume that any new flow arrived will not be admitted, which leads to an

arrival-rate of zero. There are, however, still load changes caused by the natural depar-

ture of the current flows which brings to our second observation. The experiences from

the packet simulations indicate that both CL and SM’s termination algorithms have very

fast reaction times, and usually bring the load below the termination-threshold within

200ms. This leads us to believe we can ignore the limited amount of flow departures

and assume a constant load during the state without introducing too much inaccuracy.

With a fixed load, the computation of marked (hence unmarked) traffic can be done

exactly as described in Algorithm (2).

The second difference lies in the handling of metering/marking in the presence of

multiple bottlenecks. Both CL and SM’s termination algorithms use token-bucket me-

tering as in the case of SM admission. Recall in the admission fluid model, we treated

the metering and marking at each bottleneck independently, which is not entirely accu-

rate for SM, because it does not meter (hence mark) any previously marked packets. We

argued that due to the fact that the percentage of marked traffic in SM admission on any

95

individual bottleneck is usually very small,4 hence not removing this limited amount of

marked traffic when metering at the downstream bottleneck will only be a minor inaccu-

racy. This is no longer true in the case of termination. Depending on the event-load, the

percentage of marked traffic on any bottleneck can theoretically be anywhere between

0 to 100 percent and the inaccuracy will be too big to ignore. Therefore, we build the

termination model ensuring that previously marked traffic is removed before metering

and marking.5

There is no significant implementation difference between CL and SM for the termi-

nation fluid model. The only difference is as the algorithm suggests, CL measures un-

marked traffic as a sustainable rate, while SM takes the additional step of multiplying the

unmarked traffic with K (the ratio between the termination- and admission-thresholds).

Naturally, CL and SM meter against different thresholds, one being the termination-

threshold, the other being the admission-threshold. But this is not an implementation

difference, just an input difference. Due to the time limitation, our termination fluid

simulator does not model queuing or loss.

To summarize, our termination fluid model is an event-based simulator that operates

at the ingress-egress aggregate level. The simulator models each aggregate’s activity on

an interval-base, computes the amount of unmarked traffic (hence the sustainable-rate)

and total traffic (which is the sending-rate in the absence of loss), and finally computes

the amount of flow to terminate (if any). The process continues until all bottlenecks’

loads are below the termination-threshold. Compared to its admission counterpart, the

4The expected percentage of marked traffic is controlled by cle-threshold. In Section 4.2.2 we estab-

lished for SM, there is a positive correlation between cle-threshold and the average load. Hence to avoid

large over-admission, the cle-threshold for SM is usually set to a small value (< 0.05), which in turn

implies a small percentage of marked traffic.
5The key is the order of the computation, starting from the most upstream bottleneck if possible, so that

by the time we get to a more downstream bottleneck, we know the rate of already marked and unmarked

traffic for each aggregate that traverses it. The computation is mostly implementation details rather than

algorithmic insight, hence we omit the details for conciseness.

96

termination simulator made some adjustments in assumption and modeling that are more

suited in a termination environment.

5.2.2 Accuracy Analysis

Like in the case of admission, we will assess the accuracy of our fluid model by run-

ning both a packet and a fluid simulator in conjunction with each other. Recall in Sec-

tion 4.5.3, we used the termination fluid model to quantify the multi-bottleneck effect,

in particular with respect to bottleneck utilization. Therefore, our goal in this section is

to validate the termination fluid model in the multi-bottleneck environment.

difference in over-termintion (CL)

F
re
q
u
e
n
c
y

-40 -20 0 20 40

0
2
0
0

4
0
0

6
0
0

8
0
0

difference in over-termintion (SM)

F
re
q
u
e
n
c
y

-40 -20 0 20 40

0
2
0
0

4
0
0

6
0
0

8
0
0

Figure 5.3: Accuracy of termination fluid model under general settings

We randomly select ∼2000 from the ∼45,000 traffic matrices used in the experiments

in Section 4.5.3. These matrices are generated for Generalized PLT (G-PLT-5) topology.

For each of matrix, we run a packet simulation for both CL and SM with all the same

parameter settings as their fluid counterpart. The results metric, over-termination, is

computed against a “reference” over-termination which was defined in Section 4.5.3.

Again we emphasize, that the focus in this section is the difference in over-termination

between the packet and the fluid model. Figure 5.3 displays the distribution of the

97

differences in bottleneck over-termination obtained by the fluid and packet models. It

shows that for these ∼2000 experiments, the over-termination computed in fluid model

is mostly within 5% of the packet model for CL, and 10% for SM.6 The relatively small

error in most experiments allows us to conjecture that the statistics of the fluid experi-

ments adequately approximate the expected packet-level results in these experiments.

We conclude with an observation that despite the relative simplicity of the termina-

tion fluid model in comparison to the admission one, it does an adequate job of pre-

dicting the system outcome. This is in part due to the fact that termination control is

largely a one step decision and is completely insensitive to the specific flow arrival pat-

tern, contrary to the properties in the case of admission. The nature of the termination

control make it resilient to errors in approximation and make it possible to use a simple

aggregate-level, expected-traffic-based fluid model and still achieve bound accuracy.

6In fact, we computed the difference statistics with an increment of 500 experiments at a time, and

found that the statistics converge to the results we presented here.

98

CHAPTER 6

CONCLUSIONS AND FUTURE WORK

In this chapter, we conclude the dissertation by 1) summarizing our contributions

and 2) outlining several directions for future work.

6.1 Contribution

Pre-Congestion Notification (PCN) is an framework for flow admission and termina-

tion based on (pre-)congestion information in order to protect the quality of service of

flows within a DiffServ domain. PCN encompasses two functions - an admission con-

trol that limits the amount of PCN traffic under “normal” operating condition, and a

complementary termination control that terminates some admitted flows to allow the

network to recover from sudden unexpected surges of PCN-traffic, and hence ensuring

the QoS of the remaining flows. Given the PCN’s overall framework and its objec-

tive, several questions need to be addressed. First, given its simple structure and ad-hoc

measurement-based nature, is there a way of implementing the PCN framework that can

adequately achieve its objective? Second, under the PCN framework, can differences in

implementation significantly change the performance?

In an attempt to answer these two questions, we conducted a comprehensive perfor-

mance evaluation of two proposals that implement PCN, CL-PHB and Single-Marking

in this dissertation. Our main contributions are twofold: First, we showed that CL-

PHB works reliably for both admission and termination control, even in the presence

of packet loss, which in turn demonstrates that the PCN framework is a viable archi-

tecture to provide QoS to inelastic real-time traffic. Second, we show that there is a

performance difference between different implementations. In particular, the benefits

99

of Single-Marking such as saving one marking codepoint and simplifying the complex-

ity of the interior router implementations come at a price. With respect to admission

control, the performance of the admission algorithms of CL and SM appears to be com-

parable at a sufficient level of aggregation; at a low aggregation SM performs worse

than CL. The termination algorithm of CL shows substantial performance degradation

compared to CL. At the same time, our results imply that as long as sufficient levels of

aggregation are present, and if a larger termination error is acceptable (thus implying

the necessity of larger separation between admission and termination thresholds), SM

may nevertheless be a viable practical solution.

The thorough PCN performance evaluation requires a large scale simulation effort.

To that end, we developed two separate simulation methods - one is a discrete-event

packet-based simulator, and the other is a novel fluid model that is based on both the-

oretical formulations and approximations. We used the two types of simulators in con-

junction with each other and validated the accuracy of the fluid simulator against its

packet counterpart. Our fluid simulator not only enabled us to run large scale PCN ex-

periments, but also provided some insight on the applicability of fluid models in general.

In particular, we found that for admission control, the fluid simulator works remarkably

well in modeling the various properties of bottleneck behavior, and yet it fails to predict

ingress-egress aggregates’ outcomes with bounded accuracy. The insufficiency stems

from the fact that admission control is a sequence of making decisions and the inac-

curacy in each step of the approximation (no matter how small) is accumulated. This

property leads us to hypothesize that an admission fluid model is fundamentally inca-

pable of predicting the complete per-ie-aggregate outcome of its packet counterpart in

the long run. In contrast, termination control, being largely a one-step decision process,

was adequately predicted by our fluid model.

100

6.2 Future Work

There are several issues that we did not address in the dissertation. First, in the work

we reported, we looked only at a single rerouting event, resulting in a sudden spike of

traffic on a link. This scenario roughly corresponds to traffic behavior on a fast reroute.

We have not seriously investigated the performance of the system when rerouted traffic

arrives on the link over a longer period of time, or in several batches separated in time.

For both of CL-PHB and Single-Marking, the termination control reaction time is on

the order of RTT between ingress and ingress (plus the length of the measurement in-

terval). Hence, we believe that if the inter-reroute-arrival time is larger than the reaction

time, then each event can be treated independently. If multiple rerouting events occur

within a single reaction time interval, we believe multiple events will just prolong the

reaction time, and bear no consequence on the magnitude of the termination error. We

did perform a small set of experiments validating this argument, but a more thorough

validation remains to be done.

Second, we ignore the effect of Equal-Cost-Multi-Path routing (ECMP). ECMP is

a common practice in today’s network, mainly for the benefit of loading balancing. If

there are multiple paths for a given ingress-egress pair, then when a certain action is

carried out (e.g. stop admitting or terminating flows), the ingress/egress may not know

exactly which path the action will impact. It is easy to construct cases where CL and SM

will over- or under-terminate in presence of ECMP. It is therefore important to evaluate

its impact across a wide range of networks.

We are also interested in investigating the effect of signaling delays and probing on

both admission and termination algorithms. Finally, we would like to investigate in more

depth the applicability of the admission fluid model. This will range from implementing

101

a more detailed fluid model similar to the one described in [19], to designing a packet-

level simulation to test if there exists any kind of packet-level variation that can cause

substantial differences in system outcomes (which will directly prove our conjecture of

the inapplicability of any fluid model).

102

APPENDIX A

PROOF OF SYNCHRONIZATION CONDITION

Notations:

P : packet (token) size

R : token-bucket-rate

TX,Y : the time interval between the arrival of packet X and Y

S Z : the size of the token-bucket at the time packet Z arrives and before Z is processed.

We sometime write S Z = NZ ∗P+EZ, where NZ is the number of available tokens,

EZ is the residual bucket size with EZ < P

M1 : the first marked packet

M2 : the packet after M1 in the same flow. Note, TM2,M1
= inter-packet-arrival = 20ms

M3 : the packet after M2 in the same flow. Note, TM3,M2
= inter-packet-arrival = 20ms

L1 : the last packet which upon arrival counters a full token-bucket. In other words none

of the packets arriving after L1 will see a full token-bucket.

L2 : the packet after L1 in the same flow. Note, TL2,L1
= inter-packet-arrival = 20ms

Figure A.1: The timeline of the packet arrivals

For simplicity, we assume:

1. The token-bucket never gets full again after packet L1
1

2. No flow joins or leaves during the time of study

1The intuition is that we segment the time into periods where the token-bucket gets full and it gets full

again, and show our proof for just one of the periods. It’s easy to see that the same argument applies to

all periods.

103

Proof:

Given that we have an aggregation of CBR flows, and no flow joins or leaves during the

time of study, it’s easy to see that the packet arrival pattern in the interval [M1, M2] is

the same as in interval [M2, M3] (and in the subsequent intervals). With this in mind,

if we can show the token-bucket sizes at M1 and M2 are the same, S M1
= S M2

, then it

follows trivially, that in all the subsequent intervals, the packets from the same flow will

be marked exactly as the corresponding ones in interval [M1, M2].

We can write S M1
= NM1

∗ P + EM1
and S M2

= NM2
∗ P + EM2

. Recall, M1 is the first

marked packet, hence NM1
= 0. To show S M1

= S M2
is the same as showing: NM2

= 0

and EM1
= EM2

. We claim if the bucket size at L2 is an exact multiple of packet size,

then it follows S M1
= S M2

.

Claim:

if S L2
= NL2

∗ P + 0 and S M1
= NM1

∗ P + EM1
where NM1

= 0

then S M2
= NM2

∗ P + EM2
where NM2

= 0 and EM2
= EM1

Proof of the Claim: Recall, L1 is the last packet that sees a full token-bucket, S L1
=

NL1
∗ P where NL1

is the largest number of tokens the bucket can hold. If NL2
= NL1

,

then the claim holds trivially. Otherwise it must be the case that NL2
< NL1

. Note, the

bucket size at M1 can be written as S M1
= S L1

+ TM1,L1
∗ R − A1 ∗ P, where A1 is the

number of packets between L1 and M1 (This is because in our assumption the token-

bucket never gets full after L1). Similarly, S M2
= S L2

+ TM2,L2
∗ R − A2 ∗ P where A2 is

the number of unmarked packets between L2 and M2. It’s easy to see that S M1
and S M2

always differ by an exact multiple of the packet size. It follows then that EM1
= EM2

. In

addition, since the bucket size at L1 is larger than L2, given the same sequence of packet

arrivals, it must follow that M2 can never end up with more tokens in the bucket than

M1, that is, NM2
<= NM1

. And since NM1
= 0, then NM2

= 0. (End of Proof)

104

We have shown that if S L2
is a multiple of the packet size, then we have synchronization.

To satisfy this condition, note, S L2
= S L1

+TL2,L21
∗R−A3∗P, which means inter-packet-

arrival (20ms) * R must be a multiple of a packet size.

105

APPENDIX B

TRANSIENT-STATE SOLUTION FOR M/M/∞ QUEUE

Consider a birth-death process, M/M/∞ in particular, starts from state 0 at time 0. We

are interested in the probability that the process is in state k at time t, denoted by Pk(t).

For general formula for birth-death process, we have:

dPk(t)

dt
= − (λk + µk)Pk(t) + λk−1Pk−1(t) + µk+1Pk+1(t) k > 1

dP0(t)

dt
= − λ0P0(t) + µ1P1(t) k = 0

For M/M/∞ queue, we have λk = λ and µk = kµ, so the above equations become:

dPk(t)

dt
= − (λ + kµ)Pk(t) + λPk−1(t) + (k + 1)µPk+1(t) k > 1 (B.1)

dP0(t)

dt
= − λP0(t) + µP1(t) k = 0 (B.2)

To solve for Pk(t), we first apply a z-transform, let

P(z, t) ,

∞
∑

k=0

Pk(t) · z
k

Multiply Equation (B.1) by zk and sum over the range of k, we have:

∞
∑

k=1

dPk(t)

dt
zk =

∞
∑

k=1

−(λ + kµ)Pk(t)z
k +

∞
∑

k=1

λPk−1(t)zk +

∞
∑

k=1

(k + 1)µPk+1(t)zk (B.3)

Taking the partial derivative of Equation (B.3) with respect to t gives:

∂

∞
∑

k=1

Pk(t)z
k

∂t
= −λ

∞
∑

k=1

Pk(t)z
k
− µ

∞
∑

k=1

kPk(t)z
k + λ

∞
∑

k=1

Pk−1(t)zk + µ

∞
∑

k=1

(k + 1)Pk+1(t)zk

(B.4)

106

Note, each component in Equation (B.4) with a summation can be written as follows:

∞
∑

k=1

Pk(t)z
k =

∞
∑

k=0

Pk(t)z
k − P0(t) = P(z, t) − P0(t)

∞
∑

k=1

kPk(t)z
k = z

∞
∑

k=1

kPk(t)z
k−1 = z

∂P(z, t)

∂z

∞
∑

k=1

Pk−1(t)zk = z

∞
∑

k=1

Pk−1(t)zk−1 = z P(z, t)

∞
∑

k=1

(k + 1)Pk+1(t)zk =
∂P(z, t)

∂z
− P1(t)

So Equation (B.4) becomes:

∂[P(z, t) − P0(t)]

∂t
= − λ[P(z, t) − P0(t)] − µz

∂P(z, t)

∂z
+ λzP(z, t) + µ[

∂P(z, t)

∂z
− P1(t)]

∂P(z, t)

∂t
= − λ(1 − z)P(z, t) + µ(1 − z)

∂P(z, t)

∂z
+ λP0(t) − µP1(t) +

dP0(t)

dt

Using Equation (B.2), the last three terms of the above equation add to 0, the equation

reduces to:

∂P(z, t)

∂t
= − λ(1 − z)P(z, t) + µ(1 − z)

∂P(z, t)

∂z
(B.5)

The P(z, t) that satisfies above partial differential equation in (B.5) should be in an expo-

nential family. Suppose P(z, t) = eU , where U is a function of z, t, then Equation (B.5)

becomes:

∂U

∂t
= − λ(1 − z) + µ(1 − z)

∂U

∂z
(B.6)

Apply the separation of variable method to Equation (B.6), let U = f (z) · g(t), we have:

f (z)g′(t) = − λ(1 − z) + µ(1 − z) f ′(z)g(t)

f (z)g′′(t) = µ(1 − z) f ′(z)g′(t)

g′′(t)

g′(t)
=

f ′(z)

f (z)
µ(1 − z) = K

107

where K is some constant. It’s easy to see that g(t) must be an exponential function and

f (z) is a polynomial function. Let

g(t) = c1 + c2ec3t and f (z) = c4(1 − z)c5

Plug g(t) and f (z) into Equation (B.6), to solve for the constants:

c4(1 − z)c5c2c3ec3t = − λ(1 − z) + µ(1 − z)(c1 + c2ec3t)c4c5(1 − z)c5−1(−1)

= − λ(1 − z) − µc1c4c5(1 − z)c5 − µc2ec3tc4c5(1 − z)c5

Equating the terms, we get:

c5 = 1 and c3 = −µ and c1c4 = −
λ

µ

U = f (z) · g(t) = (c1c4 + c2c4ec3t)(1 − z)c5 = (−
λ

µ
+ c2c4e−µt)(1 − z)

Z-transform property gives P(0, t) = P0(t) and the initial condition says the process is at

state 0 when t = 0, which translates to P0(0) = 1. Combine the two:

P(0, 0) = 1 ⇒ eU(0,0) = 1

⇒ (−
λ

µ
+ c2c4e−µt)(1 − z)

∣

∣

∣

∣

t=0,z=0
= 0

⇒ c2c4 =
λ

µ

Thus, we have completely solved P(z, t), plug in the solved constants, we get:

P(z, t) = exp

(

(1 − e−µt)(z − 1)
λ

µ

)

Now inverse the z-transform using series expansion to obtain Pk(t)

Pk(t) =
1

k!

∂ kP(z, t)

∂zk

∣

∣

∣

∣

z=0

=
1

k!
exp

(

−(1 − e−µt)
λ

µ

) (

(1 − e−µt)
λ

µ

)k

108

BIBLIOGRAPHY

[1] A. Charny, et al. Pre-congestion notification using single marking for admission

and pre-emption. Internet-Draft, work in progress.

[2] Adrian S-W. Tam, Dah-Ming Chiu, John C. S. Lui, and Y. C. Tay . A case for

tcp-friendly admission control. IWQoS, 2006.

[3] Anlu Yan and Wei-Bo Gong. Time-driven fluid simulation for high-speed net-

works. IEEE Transactions on Information Theory, 1999.

[4] Ayalvadi J. Ganesh, Peter B. Key, Damien Polis, and R. Srikant. Congestion no-

tification and probing mechanisms for endpoint admission control. IEEE/ACM

Transactions on Networking (TON), 2006.

[5] B. Briscoe, et al. Pre-congestion notification marking. Internet-Draft, work in

progress.

[6] B. Davie, B. Briscoe and J. Tay . Explicit congestion marking in mpls. RFC 5129.

[7] D. J. Songhurst, P. L. Eardley, B. Briscoe, C Di Cairano Gilfedder, and J. Tay.

Guaranteed qos synthesis for admission control with shared capacity. BT Technical

Report TR-CXR9-2006-001.

[8] David Nicol, Michael Goldsby, and Michael Johnson. Fluid-based simulation of

communication networks using ssf. European Simulation Symposium, 1999.

[9] Edward W. Knightly and Jingyu Qiu. Measurement-based admission control with

aggregate traffic envelopes. IEEE/ACM Transactions on Networking (TON), 2001.

[10] Benjamin Epstein and Ishay Weissman. Mathematical Models for Systems Relia-

bility. Chapman and Hall/CRC, 2008.

[11] John Evans and Clarence Filsfils. Deploying IP and MPLS QoS for Multi-service

Networks. Morgan Kaufmann, 2007.

[12] F. Baker, C. Iturralde, F. Le Faucheur and B. Davie. Aggregation of rsvp for ipv4

and ipv6 reservations. RFC 3175.

[13] F. Kelly, P. Key, and S. Zachary. Distributed admission control. IEEE Journal on

Selected Areas in Communications, 2000.

109

[14] G. Bianchi, F. Borgonovo, A. Capone, L. Fratta, and C. Petrioli. Endpoint ad-

mission control with delay variation measurements for qos in ip networks. ACM

SIGCOMM Computer Communication Review, 2002.

[15] G. Kesidis , A. Singh, D. Cheung, and W. Kwok. Feasibility of fluid event-driven

simulation for atm networks. IEEE Globecom, 1996.

[16] J . M. Pitts. Cell-rate modelling for accelerated simulation of atm at the burst level.

Communications, IEE Proceedings, 1995.

[17] L. Breslau, S. Jamin, and S. Shenker. Measurement-based admission control: what

is the research agenda? Proc. IEEE IWQoS, 1999.

[18] L. Breslau, S. Jamin, and S. Shenker. Comments on the performance of

measurement-based admission control algorithms. Proc. IEEE INFOCOM, 2000.

[19] Lasse Jansen and Ivan Gojmerac and Michael Menth and Peter Reichl and Phuoc

Tran-Gia. Discrete-time algorithms for ow-level simulation of data networks. In-

ternational Teletrafc Congress (ITC), 2007.

[20] Lasse Jansen, et al. An algorithmic framework for discrete-time flow-level simu-

lation of data networks. International TeletrafcCongress (ITC), 2007.

[21] Lee Breslau, Edward W. Knightly, Scott Shenker, Ion Stoica, and Hui Zhang. End-

point. admission control; architectural issues and performance. Proc. ACM SIG-

COMM, 2000.

[22] M. Ajmone Marsan, M. Garetto, P. Giaccone, E. Leonardi, E. Schiattarella, and

A. Tarello. Using partial differential equations to model tcp mice and elephants in

large ip networks. IEEE Infocom, 2004.

[23] M. Bahrands, et al. On rate-based simulation of communication networks. Design,

Analysis, and Simulation of Distributed Systems (DASD), 2003.

[24] M. Grossglauser and D.N.C. Tse . A framework for robust measurement-based

admission control. IEEE/ACM Transactions on Networking (TON), 1999.

[25] M. Karsten and J. Schmitt. Admission control based on packet marking and feed-

back signalling - mechanisms, implementation and experiments. KOM Technical

Report 03/2002.

110

[26] M. Menth. Pcn-based resilient network admission control: The impact of a single

bit. Technical Report.

[27] P. Eardley, J. Babiarz, K. Chan, A. Charny, R. Geib, G. Karagiannis, M. Menth, and

T. Tsou. Pre-congestion notification architecture. Internet-Draft, work in progress.

[28] R. Braden, D. Clark, and S. Shenker. Integrated services in the internet architec-

ture. RFC 1633.

[29] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin. Resource reservation

protocol (rsvp). RFC 2005.

[30] R. C. F. Tucker. Accurate method for analysis of a packet-speech multiplexer with

limited delay. IEEE Transactions on Communications, vol. 36, 1988.

[31] R. J. Gibbens and F. P. Kelly . Resource pricing and the evolution of congestion

control. Automatica, vol. 35,, 1999.

[32] R. Mortier, I. Pratt, C. Clark, and S. Crosby. Implicit admission control. IEEE

Journal on Selected Areas in Communications, 2000.

[33] S. Blake, D. Black, M. Carlson, E. Davies, Z. Wang, and W. Weiss. An architecture

for differentiated services. RFC 2475.

[34] S. Georgoulas, P. Trimintzios, and G. Pavlou. Joint measurement- and traffic

descriptor-based admission control at real-time traffic aggregation points. IEEE

International Conference on Communications, 2004.

[35] Sally Floyd and Van Jacobson. Random early detection gateways for congestion

avoidance. IEEE/ACM Transactions on Networking (TON), 1993.

[36] Tom Kelly. An ecn probe-based connection acceptance control. ACM SIGCOMM

Computer Communication Review, 2001.

[37] Vishal Misra, Wei-bo Gong, and Don Towsley. Fluid-based analysis of a network

of aqm routers supporting tcp flows with an application to red. ACM SIGCOMM,

2000.

[38] Y. Bernet, P. Ford, R. Yavatkar, F. Baker, L. Zhang, M. Speer, R. Braden, B. Davie,

J. Wroclawski, and E. Felstaine. A framework for integrated services operation

over diffserv networks. RFC 2998.

111

[39] Yong Liu, Francesco Lo Presti, Vishal Misra, Don Towsley, and Yu Gu. Fluid

models and solutions for large-scale ip networks. ACM SIGMETRICS, 2003.

112

