
Performance Evaluation of Public-Key Cryptosystem Operations in WTLS

Protocol

Albert Levi

Sabanci University
Istanbul, Turkey

levi@sabanciuniv.edu

Erkay Savas

Sabanci University
Istanbul, Turkey

erkays@sabanciuniv.edu

Abstract
WTLS (Wireless Transport Layer Security) is an important

standard protocol for secure wireless access to Internet
services. WTLS employs public-key cryptosystems during the
handshake between mobile client and WAP gateway (server).
Several cryptosystems at different key strengths can be used in
WTLS. The trade-off is security versus processing and
transmission time. In this paper, an analytical performance
model for public-key cryptosystem operations in WTLS protocol

is developed. Different handshake protocols, different
cryptosystems and key sizes are considered. Public-key
cryptosystems are implemented using state-of-the–art
performance improvement techniques, yielding actual
performance figures for individual cryptosystems. These figures
and the analytical model are used to calculate the cost of using
public-key cryptosystems in WTLS. Results for different
cryptosystems and handshake protocols are comparatively

depicted and interpreted. It has been observed that ECC
(Elliptic Curve Cryptography) performs better than its rival RSA
cryptosystem in WTLS. Performance of some stronger ECC
curves, which are not considered in WTLS standard, is also
analyzed. Results showed that some of those curves could be
used in WTLS for high security applications with an acceptable
degradation in performance.

1. Introduction

The extensive use of mobile communication has

created an important demand for value-added services.

WAP (Wireless Application Protocol) [1] is a framework

for developing applications to run over wireless networks.

WAP is developed by an international industry-wide

organization called the WAP Forum.

WTLS (Wireless Transport Layer Security) [2] is the

security protocol of the WAP protocol suite. WTLS

operates over the transport layer and provides end-to-end
security, where one end is the mobile client, and the other

end is the WAP gateway. WAP gateway acts as a proxy

of the mobile client to access an application server hosted

somewhere on the Internet. The communication beyond

the WAP gateway is conducted using the regular Internet

(TCP/IP) protocol suite.

A set of handshake messages is exchanged in order to

set up a secure environment between the mobile client

and the server (WAP gateway). Cryptographic algorithms,

keys and related parameters are negotiated during the

handshake. Once the handshake messages are exchanged

and session key is generated, all WTLS and upper layer

protocol messages can be exchanged in encrypted form.
In this way, confidentiality and integrity are provided.

Authentication is an optional service in WTLS.

Authentication is provided if the parties provide digital

certificates during the handshake. Certificates are digital

identities that contain public-keys to be used during the

key exchange. Certificates are issued by trusted

Certification Authorities (CA) with a digital signature on

the certificate content. Validation of a certificate means

the legitimacy of the enclosed public-key. A party, who

does not have a certificate, should use an unapproved

public-key. Therefore, that party cannot be authenticated.

Certificate validation, authentication and session key
exchange use asymmetric public-key cryptosystems that

require computation-intensive processes, and are therefore

slow. Speed is inversely proportional to the key size used

in public-key cryptosystems. Since the processing power

of mobile clients is limited, relatively smaller keys are

selected for WTLS. Moreover, data transfer rate is also

limited in mobile communication environment and using

smaller keys would help to save bandwidth.

1.1. WTLS performance evaluation in the literature

Apostolopoulos, et al. have given performance

evaluation studies for the TLS protocol, which is
considered as the ancestor of WTLS, in [8] and [9]. The

primary aim of those studies is to measure server-side

throughput and latency versus the number of secure

HTTP requests. The measurements are performed in a

testbed environment.

The important difference between TLS and WTLS

performance evaluations is that the client-side

performance criteria are more important in WTLS than in

TLS. Although the protocols are similar, WTLS exercises

some precautions because of low processing power of the

client-side wireless equipments and low data transfer rates

of the wireless medium. Examples to those precautions

are use of short key sizes for the cryptographic primitives

and removing optional fields in the public key certificates.
Herwono and Liebhardt have given two simulation-

based WTLS performance evaluation studies in [10, 11].

Both server and client routines are simulated in a single

computer. Those studies give encryption/decryption and

handshake timings, but only for standard cryptosystems

and key-exchange suites specified in WTLS specification.

No alternative cryptosystems are analyzed. Moreover,

server-side queuing delays are not considered.

1.2. Contribution of the paper

The desire to use public-key cryptosystems with

smaller key sizes for performance reasons is

understandable for WTLS. However, the effect of public-
key cryptosystem selection in the performance should be

analyzed in order to see the trade-off. We believe that

such an analysis can be done analytically since WTLS has

a smooth protocol run. Our contribution in this paper is an

analytical performance evaluation for public-key

cryptosystem operations in WTLS. Two practical and

secure handshake protocols of WTLS are analyzed. The

performance figures are latency, processing time and

amount of data transmitted due to public-key

cryptosystem operations. We also implement important

public-key cryptosystems. Some of those cryptosystems
are proposed in WTLS standard, some are our own

candidates with larger key sizes. We used timings

obtained from those implementations in our analyses.

Results are graphically shown and interpreted.

The rest of the paper is organized as follows. Section

2 briefly discusses the use public-key cryptosystems in

WTLS standard. The handshake protocols are detailed in

Section 3. Performance analyses are given in 4. Section 5

summarizes conclusions reached by this study.

2. Public-key cryptosystems in WTLS

Public-key cryptosystem operations use two different,

but related keys: public-key and private-key. Public-key

operations are for encryption and signature verification.

Private-key operations are for decryption and signature

issuance. Key exchange operations are also public-key

cryptosystem operations, but their nature depends on the

cryptosystem used.

Public-key cryptosystems are used in the WTLS
handshake for key exchange and certificate verification

purposes. Authentication is automatically provided when

key exchange is performed using certified keys. WTLS

supports two public-key cryptosystems: RSA (Rivest-

Shamir-Adleman) [3] and ECC (Elliptic Curve

Cryptography) [4].

2.1. Public-key cryptosystems for key exchange and

certificate verification

If RSA is to be used for key exchange, the

encryption/decryption feature of RSA is employed. If
ECC is to be used, ECDH (Elliptic Curve Diffie-Hellman)

[5] key exchange method is employed.

Regular DH (Diffie-Hellman) [6] method is proposed

as another key exchange mechanism in WTLS standard.

However, the standard proposes DH method only for

completely anonymous handshakes, in which neither

client nor server use certificates to authenticate

themselves. Anonymous handshakes are vulnerable to

man-in-the-middle-attacks, where an adversary

impersonates both parties. Therefore, we do not consider

anonymous handshakes as secure methods and do not

include them in our performance evaluation. Besides DH,
WTLS also proposes anonymous versions of RSA and

ECDH methods that we disregard as well.

Certificate verification is a public-key operation. Both

RSA and ECC can be used. If ECC is to be used, ECDSA

(Elliptic Curve Digital Signature Algorithm) [7] is

employed. If RSA is to be used, its verification feature is

employed. Certificate generation, which is signature

issuance, is not a part of WTLS protocol.

2.2. Key exchange suites of WTLS

WTLS uses the term key exchange suite to specify the

public-key cryptosystem pair to be used for certificate
validation and key exchange. WTLS supports several

alternative key exchange suites. However, only two of

them offer an acceptable level of security:

ECDH_ECDSA and RSA key exchange suites.

1. ECDH_ECDSA: ECDSA is used for certificate

verification. Certificates include ECDH parameters to

be used for key exchange.

2. RSA: RSA cryptosystem is used for both certificate

verification and key exchange.

3. WTLS handshake protocols

WTLS standard [2] proposes different handshake

alternatives. A relatively faster handshake protocol,

known as “abbreviated handshake”, is possible when

client and server are willing to resume a previous secure

connection without any public-key cryptosystem

operation. This is a performance improvement aspect of

WTLS. However, this approach does not work when the

client and server meet for the first time or the when their
old session expires. Eventually, client and server should

run a full handshake. We deal with two practical full

handshake protocols of WTLS in this paper: (1) with

server-only authentication, (2) with mutual authentication.

3.1. Protocol 1: Full handshake with server-only

authentication

The client is not authenticated in this protocol. Only

the server is authenticated using certificate. The protocol
is depicted in Figure 1.

Client Server

ClientHello

• Decide on the parameters
ServerHello

Certificate

ServerHelloDone

• Verify server certificate

• Run the key exchange

algorithm to calculate

the pre-master secret

• Calculate master secret

• Calculate verification

(finished) message

ClientKeyExchange

ChangeCipherSpec

Finished

• Run the key exchange
algorithm to calculate

the pre-master secret

• Calculate master secret

• Calculate verification

(finished) message

ChangeCipherSpec

Finished

• Verify “finished” message

received from server

• Calculate session key to

be used for data

encryption

• Verify “finished” message

received from client

• Calculate session key to

be used for data

encryptionEncrypted Application Data

Figure 1. Full Handshake with server-only authentication

Server’s certificate includes either server’s RSA
public-key (if RSA is used for key exchange) or ECDH

parameters (if ECDH is used for key exchange). The

certificate is digitally signed by a trusted CA. Upon

receipt of the server’s certificate, the client verifies the

signature over the certificate to learn the server’s ECDH

parameters or RSA public-key to be used in key

exchange. “ClientKeyExchange” message is used for the

client to send its key exchange data to server. This data is

either the client’s ECDH parameters or an RSA encrypted

message, depending on the key exchange mechanisms

agreed by the hello messages. If RSA encrypted message
is sent, the server should decrypt it. Rest of the protocol

does not use any public key cryptosystem operations.

In this protocol, the client does not send its public key

exchange data in a certificate; therefore the client cannot

be authenticated by the server.

3.2. Protocol 2: Full handshake with mutual

authentication

This protocol incorporates client certificates as well.

In this way, mutual authentication is established between

client and server. The protocol is depicted in Figure 2.

Client Server

ClientHello

• Decide on the parametersServerHello

Certificate

CertificateRequest

ServerHelloDone

• Verify server certificate

• Run the key exchange

algorithm to calculate

the pre-master secret

• Perform RSA operations

(if any)

• Calculate master secret

• Calculate verification

(finished) message

Certificate

ClientKeyExchange (if RSA)

CertificateVerify (if RSA)

ChangeCipherSpec

Finished

• Verify client certificate

• Perform RSA operations

(if any)

• Run the key exchange

algorithm to calculate

the pre-master secret

• Calculate master secret

• Calculate verification

(finished) messageChangeCipherSpec

Finished

• Verify “finished” message

received from server

• Calculate session key to

be used for data

encryption

• Verify “finished” message

received from client

• Calculate session key to

be used for data

encryptionEncrypted Application Data

Figure 2. Full Handshake with mutual authentication

This protocol is similar to the previous one except for

the extra processing for the client’s certificate. The server

requests the client’s certificate after sending its certificate.

In response, the client sends its certificate. The server

validates this certificate. If they are using RSA

cryptosystem, “ClientKeyExchange” and
“CertificateVerify” messages should follow the client

certificate. The ClientKeyExchange message costs an

extra RSA encryption to the client, and an RSA

decryption to the server. The CertificateVerify message

costs an RSA signature to the client, and an RSA

signature verification to the server. ClientKeyExchange

message contains the pre-master secret. CertificateVerify

message is for authentication purposes.

If ECDH is being used, “ClientKeyExchange” and

“CertificateVerify” messages are not sent. The client’s

public ECDH parameters are sent in the client’s
certificate. Each party runs the ECDH algorithm using its

own private-key and other’s public ECDH parameter to

calculate the pre-master secret.

4. Performance evaluation

In this section, performance evaluation of the public-

key cryptosystem operations in WTLS handshake

protocols is given. We have considered the additional
cost associated with public-key cryptography in WTLS.

Three cost factors are examined: (i) the processing time,

(ii) the amount of data produced and transmitted, (iii)

response time (latency) as seen by the client.

Both handshake protocols described in Sections 3.1

and 3.2 are formulated separately. Formulations vary

depending on the key exchange suit. ECDH_ECDSA and

RSA key exchange suites, described in Section 2, are

considered for each protocol. Formulations could not be

given in this paper due to space limitations.

Moreover, we have implemented ECC and RSA

cryptosystem operations in software using state-of-the-art

computational techniques. Client implementations are

performed on ARM7TDMI 25MHz microprocessor,
which is a popular one for mobile phones and PDAs.

Server platform is a Pentium II 450 MHz. Table 1

demonstrates approximate comparable key sizes for ECC

and RSA cryptosystems. We implemented ECDSA [7]

and ECDH [5] algorithms for six different predefined

elliptic curves shown in Table 1, as levels 1 and 2. Those

curves are recommended in the WTLS standard [2]. We

also included implementations for three additional curves

(namely 256P, 283K and 283R in Table 1) recommended

in [7], which provide much higher security to give an idea

about the cost of using more secure curves than those

recommended in WTLS standard.

Table 1. Cryptographic strength of RSA and ECC

Strength Level ECC RSA

1 160P, 163K, 163R 1024

2 224P, 233K, 233R 2048

3 256P, 283K, 283R 3072

Finally, we have taken timings of the cryptosystems of

Table 1 and used them to sketch the performance of

public-key cryptography in WTLS handshake protocols.

These analyses are given in Sections 4.1 and 4.2.

Assuming that a typical server handles requests from

many clients in a given unit time, we run the

cryptographic algorithms repeatedly many times on server

machine and take the arithmetic mean of the measured

times. On the other hand, since a client device run
cryptographic algorithms occasionally, the measurement

is performed on a cold cache (i.e. the code is not in the

cache) for client device. Every measurement is done

several times separately and the final timing is obtained

using the arithmetic mean. While the variations on the

measurement on client device are small as we anticipated,

the variations for the first several runs are considerably

high on the server machine because of the cache effect.

4.1. Client and server performance analyses

Public-key cryptosystem related data transfer amount

and processing time are analyzed for two WTLS
handshake protocols given in Section 3.

WTLS standard [2] proposes WTLS certificates,

which is optimized in size. Although some alternatives

exist, WTLS certificates are the most suitable ones

because of their size advantage. Therefore, WTLS

certificates are assumed in our calculations. Although the

WTLS standard allows using certificate chains with

several certificates on it, we assumed single certificate per

certificate chain in our calculations. This is a practical

necessity, especially for the server certificate chain, to

reduce the overhead on mobile client.

Performance figures versus cryptosystems are

depicted in Figure 3, Figure 4 and Figure 5. Client and
server timings are shown in different figures for each

protocol. In each figure, cryptosystems are grouped

according to their security levels given in Table 1.

Data size of server-only authentication protocol

0

200

400

600

800

1000

1200

1400

1600

16
0P

16
3K

16
3R

R
SA
_1
02
4

22
4P

23
3K

23
3R

R
SA
_2
04
8

25
6P

28
3K

28
3R

R
SA
_3
07
2

Cryptosystem

D
a
ta
 s
iz
e
 (
o
c
te
ts
)

Data size of mutual authentication protocol

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

2600

2800

3000

16
0P

16
3K

16
3R

RS
A_
10
24

22
4P

23
3K

23
3R

RS
A_
20
48

25
6P

28
3K

28
3R

RS
A_
30
72

Cryptosystem

D
a
ta
 s
iz
e
 (
o
c
te
ts
)

 (a) (b)

Figure 3. Amount of public-key cryptosystem related data
transmitted (a) in the handshake protocol that supports

server authentication only (protocol 1), (b) in the handshake

protocol that supports mutual authentication (protocol 2)

Client timing for server-only authentication protocol

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

16
0P

16
3K

16
3R

R
SA
_1
02
4

22
4P

23
3K

23
3R

R
SA
_2
04
8

25
6P

28
3K

28
3R

R
SA
_3
07
2

Cryptosystem

e
x
e
c
u
ti
o
n
 t
im

e
 (
m
il
li
s
e
c
o
n
d
s
)

Client tim ing for mutual authentication protocol

5266 16629

0

200

400

600

800

1000

1200

1400

1600

1800

2000

16
0P

16
3K

16
3R

R
S
A_
10
24

22
4P

23
3K

23
3R

R
S
A_
20
48

25
6P

28
3K

28
3R

R
S
A_
30
72

Cryptosystem
E
x
e
c
u
ti
o
n
 t
im
e
 (
m
il
li
s
e
c
o
n
d
s
)

 (a) (b)

Figure 4. Client’s processing time of public-key cryptosystem
operations (a) in the handshake protocol that supports

server authentication only (protocol 1), (b) in the handshake
protocol that supports mutual authentication (protocol 2)

Server timing for server-only authentication protocol

335105

0

2

4

6

8

10

12

14

16

18

20

22

24

26

16
0P

16
3K

16
3R

R
SA
_1
02
4

22
4P

23
3K

23
3R

R
SA
_2
04
8

25
6P

28
3K

28
3R

R
SA
_3
07
2

Cryptosystem

E
x
e
c
u
ti
o
n
 t
im

e
 (
m
il
li
s
e
c
o
n
d
s
)

Server timing for mutual authentication protocol

119 373

0

5

10

15

20

25

30

35

40

45

50

16
0P

16
3K

16
3R

R
SA
_1
02
4
22
4P

23
3K

23
3R

R
SA
_2
04
8
25
6P

28
3K

28
3R

R
SA
_3
07
2

Cryptosystem

E
x
e
c
u
ti
o
n
 t
im

e
 (
m
il
li
s
e
c
o
n
d
s
)

 (a) (b)

Figure 5. Server’s processing time of public-key

cryptosystem operations (a) in the handshake protocol with
server-only authentication (protocol 1), (b) in the handshake

protocol with mutual authentication (protocol 2)

We analyzed those figures to evaluate the effect of

cryptosystem choice on the performance of WTLS, and

obtained the following results.

1. ECC has a best curve option for each security level and

handshake protocol. In other words, ECC is better than
RSA in WTLS. The “R” family of curves (163R, 233R

and 283R) performs worse than other curves. Thus, the

best curve option is either “P” (160P, 224P, 256P)

curves or “K” (163K, 233K, 283K) curves.

2. The performance of RSA is generally poor. For some

cases, it is unacceptably slow (e.g. RSA_2048 and

RSA_3072 in Figure 4b, Figure 5a and b). RSA_1024

and 2048 have reasonable client timing figures for

server-only authentication protocol (Figure 4a), but the

peer timing figures for the server (Figure 5a) are slow.

Consistency between the client and the server timing

figures for the same protocol and cryptosystem is very
important, because the client and the server should use

the same protocol and the same cryptosystem. If one

cryptosystem works well for the client, but bad for the

server, then a performance conflict occurs. RSA_1024

and RSA_2048 cause such a conflict for the handshake

protocol with server-only authentication.

3. A similar performance conflict between the client and

server is valid for ECC too. For example, the best level

2 curve for client in server-only authentication protocol

is 224P (Figure 4a), but it is 233K for the server

(Figure 5a). However, the level of conflict in ECC is
not so severe since the performances of the conflicting

curves are close to each other.

4. RSA produces more data to be exchanged than ECC as

can be seen in Figure 3a and b. In other words, a

WTLS handshake using RSA requires more

transmission time than using ECC. This is another

advantage of ECC over RSA. This fact is valid for all

security levels and protocols.

5. Mutual authentication has an extra processing burden

on top of server-only authentication. Fortunately, this

is not an additional overhead for client as long as ECC

curves are selected. This fact can be visualized by
comparing Figure 4a and Figure 4b. This is good news

since mobile clients have limited processing power.

The burden of mutual authentication is on the server

(compare Figure 5a and Figure 5b). Moreover, mutual

authentication almost doubles the data exchanged

(compare Figure 3a and Figure 3b).

6. We analyzed the performance of level 3 curves (256P,

283K and 283R) that are not proposed in the WTLS

standard. Figure 4 and Figure 5 show that 283R curve

is not so useful since it is very slow. The same figures

also show that 256P and 283K curves perform worse
than smaller curves, but their timings are in within

acceptable limits. For example, the client’s processing

time for 256P curve is 570 milliseconds; this value is

376 milliseconds for 224P curve. Such overhead may

be preferred by security and privacy sensitive people

and applications.

4.2. Response time analysis

Above discussions and Figure 3, Figure 4 and Figure 5

provide necessary input to calculate the cryptographic
burden on the additional WTLS response time due to

public-key cryptosystem operations. This response time is

the sum of client and server processing times, data

transmission time and server-side waiting time. Waiting

time is important for only the server-side since the same

server is expected to provide service to several WTLS

connections in parallel, but this is not the case for the

client. We model the server as an M/M/1 queue, so the

average waiting time, Tw, is given as Tw = Ts.ρ / (1-ρ),

where ρ represents the utilization of the server and Ts
represents the server-side processing time per request.

The data transmission time, Tdata, is simply computed

as Tdata = 8L / R, where R is the channel transmission rate

in bps and L is the data length in octets. WTLS response

time due to public-key cryptosystem operations, Tresp, is
calculated as Tresp = Tc + Ts + Tw + Tdata , where Tc

represents the client side processing time.

Response time values for different cryptosystems are

shown in Figure 6. Both server-only and mutual

authentication protocols are considered. For each

protocol, worst and best server utilization and

communication speed scenarios are analyzed. Worst case

corresponds long server waiting time (i.e. high server

utilization) and low communication rate. In our analysis,

ρ is taken as 0.8 and R is taken as 6 Kbps for the worst
case. For the best case, we assumed negligible server

waiting time and 56 Kbps wireless communication rate.

As can be see from Figure 6a, RSA suffers from large
variance in server-only authentication protocol. That

means network and server conditions may significantly

alter RSA’s performance. Variation in response time is

not a problem for RSA in mutual authentication protocol

(Figure 6b), but RSA is the worst option in all three

security levels.

5. Conclusions

WTLS (Wireless Transport Layer Security) [2] is a

security protocol between a server and a mobile client

with limited processing power. Different public key

cryptosystems with different key sizes have different

performance characteristics in WTLS. In this paper, we

employed analytical techniques to analyze the

performance of public-key cryptosystem operations in

WTLS. The performance figures are latency (response

time), processing time and the amount of data transmitted

between the client and the server. Two WTLS handshake

protocols are considered: server-only authentication and

mutual authentication.

response time for server-only authentication scenarios

7113

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

16
0P

16
3K

16
3R

R
S
A
_1
02
4

22
4P

23
3K

23
3R

R
S
A
_2
04
8

25
6P

28
3K

28
3R

R
S
A
_3
07
2

Cryptosystem

E
x
e
c
u
ti
o
n
 t
im
e
 (
m
il
li
s
e
c
o
n
d
s
)

worst case best case

(a)

response time for mutual authentication scenarios

219308527

5565 17037

0

400

800

1200

1600

2000

2400

2800

3200

3600

4000

16
0P

16
3K

16
3R

R
S
A
_1
02
4

22
4P

23
3K

23
3R

R
S
A
_2
04
8

25
6P

28
3K

28
3R

R
S
A
_3
07
2

Cryptosystem

E
x
e
c
u
ti
o
n
 t
im

e
 (
m
il
li
s
e
c
o
n
d
s

worst case best case

(b)

Figure 6. Worst and best response times due public-key
cryptosystem operations (a) in the handshake protocol with

server-only authentication (protocol 1), (b) in the handshake
protocol with mutual authentication (protocol 2)

Different cryptosystems are employed. These are RSA

with 1024, 2048 and 3072 bit key (modulus) sizes, and

several ECC curves. Some of those curves are standard

WTLS curves; some are our candidate curves that are

cryptographically stronger. We implemented these

cryptosystems using state-of-the-art performance

improvement techniques. Timings obtained from our

implementations are used in the analytical model to get

the actual WTLS performance figures for public-key
cryptosystem operations. Those figures are graphically

analyzed. Results showed that, comparing processing time

and the amount of data exchanged between the client and

the server, ECC curves perform better than the RSA

cryptosystems in WTLS. Especially, 2048 and 3072 bit

RSA should not be used in WTLS for performance

reasons. 1024 bit RSA has a decent performance at client,

but not at server as compared to the performance of ECC

curves. Moreover, RSA experiences an important

variation in response time for server-only authentication

protocol: for high-speed connections and negligible

server-side waiting time, RSA performs relatively well,
but under low speed connections and high server

utilization, RSA response time is high.

We also analyzed the performance of stronger ECC

curves that are not proposed in the WTLS standard. Two

of those curves, namely 256P and 283K curves,

performed within acceptable limits and can be used for

high-security applications in WTLS.

6. References

1. WAP Forum, Wireless Application Protocol Architecture
Specification, WAP-210-WAPArch-200100712-a, 12-July-

2001 version, latest version is available at
http://www.wapforum.com.

2. WAP Forum, Wireless Transport Layer Security
Specification, WAP-261-WTLS-20010406-a, 06-April-2001
version, latest version is available at www.wapforum.com.

3. R. Rivest, A. Shamir, and L. Adleman, A Method for
Obtaining Digital Signatures and Public Key Cryptosystems,
Communications of the ACM, vol. 21, no. 2, pp. 120-126,

February 1978.
4. N. Koblitz, Elliptic curve cryptosystems, Mathematics of

Computation, 48(177):203 -209, January 1987.
5. IEEE Standard specifications for public-key cryptography,

IEEE Std. 1363-2000, 30 January 2000.
6. W. Diffie, and M. E. Hellman, New directions in

cryptography. IEEE Transactions on Information Theory,
22:644-654, November 1976.

7. National Institute for Standards and Technology, Digital
Signature Standard (DSS), FIPS PUB 186-2, January 2000.

8. G. Apostolopoulos, V. Peris, and D. Saha, “Transport Layer
Security: How much does it really cost?,” Proc. IEEE
Infocom, March 1999.

9. G. Apostolopoulos, V. Peris, P. Pradhan, and D. Saha,
Securing Electronic Commerce: Reducing the SSL
Overhead, IEEE Network, (14)4: 8-16, July/Aug 2000.

10.I. Herwono, and I. Liebhardt, “Performance Evaluation of the
WAP Security Protocols,” Proceedings of the 10th Aachen
Symposium on Signal Theory, Sept. 2001, pp. 95 –100,

Aachen, Germany. Available from

http://www.comnets.rwth-aachen.de
11.I. Herwono, and I. Liebhardt, “Performance of WTLS and Its

Impact on an M-Commerce Transaction,” ICICS 2001 -
Proceedings of the Third International Conference on
Information and Communications Security, Nov. 2001, pp.
167 – 171, Xi’an, China. Available from
http://www.comnets.rwth-aachen.de

