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PERFORMANCE EVALUATION OF REAL-TIME SCHEDULING APPROACHES IN 

VEHICLE-BASED INTERNAL TRANSPORT SYSTEMS 

Abstract 

This paper studies the performance of static and real-time scheduling approaches in vehicle-

based internal transport (VBIT) systems, which can be found in manufacturing and warehouse 

facilities. We propose three heuristic approaches for static VBIT problems (insertion, combined 

and column generation), extend them to a dynamic, real-time setting and compare their 

performance over a rolling time horizon. This time horizon can be seen either as a fixed-time 

interval in which advance information about loads’ arrivals is available, or as a fixed number of 

loads which are known to become available in the near future. We also propose two dynamic 

assignment approaches: with and without look-ahead, respectively. Performance (primarily 

average load waiting time) of the above five dynamic scheduling approaches is compared with 

two nearest-vehicle-first rules (with and without look-ahead), which are the best vehicle 

dispatching rules known from literature and which are commonly used in practice. Experimental 

results show that, if sufficient prior information is available, our dynamic scheduling approaches 

consistently outperform vehicle dispatching rules. Results also reveal that guide-path layout, load 

arrival rate and variance, and amount of load pre-arrival information have strong impacts on the 

performance of vehicle control approaches. Column generation or the combined heuristics are 

recommended in small or medium-scale VBIT systems, whereas for large scale VBIT systems, 

both the combined heuristic and the dynamic assignment approach with look ahead perform best. 

Keywords: vehicle-based internal transport, dynamic scheduling, dispatching, material handling. 
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1 Introduction 

In many industrial facilities such as manufacturing plants, warehouses and transshipment 

terminals, vehicle-based internal transport (VBIT) systems (or VBITSs) are responsible for 

internal transport. In VBITSs, a control system dispatches vehicles (or automated guided 

vehicles - AGVs) using simple and intuitive online dispatching rules such as the nearest-vehicle-

first (NVF) rule (Egbelu and Tanchoco 1984; Nakano and Ohno 1999; De Koster et al. 2004). 

An important practical reason for selecting simple vehicle dispatching rules is that they are easy 

to adapt for shop-floor control (SFC) systems or warehouse management systems (WMSs). 

Moreover, the dynamic and stochastic environments in which vehicles have to work and the 

relatively short travel times make such a vehicle dispatching approach dominant in VBITSs. 

Still, a vehicle scheduling approach with a rolling horizon and frequent rescheduling might lead 

to a better overall system performance than a dispatching approach, possibly at the expense of a 

substantial computation effort. If it works, such an approach may become more popular with the 

increasing application of computer-aided technologies in VBITSs. Scheduling approaches in 

static and real-time VBIT systems have hardly been investigated in literature.  

A VBIT scheduling problem involves assigning a set of vehicles to transport a given set of loads 

within certain time-windows. In this paper, we make the following assumptions for studying 

VBIT systems: (a) vehicles operate continuously without breakdown; (b) there are no traffic 

problems (congestion, deadlock, etcetera.; this is not a real shortcoming as serious congestions 

will have been considered in the layout design of such  systems); (c) all vehicles have uni-load 

capacity; (d) vehicles choose the shortest path to pickup and deliver loads; (e) loads are 

generated in batches of one; (f) there is sufficient space for waiting loads; (g) vehicles can always 

park at their drop-off locations; (h) and vehicle loading and unloading times are negligible. The 
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main objective of the scheduling problem in most real-life VBITSs is minimizing the average 

load waiting time (De Koster et al. 2004). 

Although many researchers have studied the vehicle scheduling problem, have developed 

solution procedures and have compared scheduling methods with dispatching (see the literature 

section 3) in external transport, none of the research we found focused on developing 

scheduling-based approaches in a systematic comparison with dispatching rules for VBITSs. The 

scheduling problem in internal transport differs from the corresponding problem in external 

transport in several respects. For example, (1) the objectives of the two problems are different: 

minimizing the average load waiting time is the most important objective of a VBIT scheduling 

problem (see De Koster et al. 2004) while minimizing the vehicles’ travel distances and the 

number of vehicles are usually objectives chosen for external transport systems (see Savelsbergh 

and Sol (1998), Laporte et al. (2000)); (2) travel times in VBIT environments are much shorter 

(this leaves little time for scheduling vehicles); (3) advance information about load arrivals in 

VBITSs is normally limited and less certain than in external transport systems (this leads to a 

shorter planning horizon and a higher rescheduling frequency); (4) vehicle parking policies are 

usually different (see assumption (g)). Because of these differences, there are no guarantees that 

dynamic scheduling approaches, successful in external transport, also perform well for VBITSs. 

In this paper, we therefore evaluate the performance of different dynamic vehicle scheduling 

approaches for VBITSs, depending on the amount and certainty of prior information. 

In general, the VBIT scheduling problem can be formulated as a pick-up and delivery problem 

with time windows (PDPTW), in which a vehicle picks-up loads at some locations and delivers 

them to their destinations satisfying certain time-window restrictions. Since vehicles in most 
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VBITSs can transport only one (pallet) load at once, we reformulate the VBIT scheduling 

problem as a multiple traveling salesman problem with time windows (m-TSPTW) (section 2). 

The m-TSPTW is an NP-hard problem (Desrochers et al. 1988). Depending on the load arrival 

rate, even a small instance of m-TSPTW can be very difficult to solve to optimality by 

commercial optimization software. Thus, it is impractical to apply optimal schedules in real-life 

vehicle scheduling problems. Therefore, in this paper, for solving static (offline) instances of the 

scheduling problems, we propose three heuristics which are later applied with rolling horizons 

(Psaraftis 1988). We also propose a look-ahead dynamic assignment algorithm for the real-time 

VBIT scheduling problem which is based on Fleischmann et al. (2004). The heuristics and the 

dynamic solution approaches are described in greater detail in sections 4 and 6.  

In the static case, we numerically compare the performance (measured by average waiting time) 

of the three heuristic. In the real-time case, using simulation, we systematically compare the 

performance of the above scheduling methods with the performance of the NVF rule (two 

variants: with and without look-ahead - De Koster et al. (2004)), by varying several parameters 

such as guide-path layout, load arrival rate and load arrival variance. Our main contribution is 

therefore that we are able to indicate under which conditions, with which amount of pre-arrival 

information which method performs best in VBIT environments. It appears that, although 

dispatching is the dominant approach in practice, scheduling can bring substantial improvements, 

even with little pre-arrival information. 

The rest of paper is organized as follows: the next section describes the mathematical 

formulation of the static and real-time VBIT scheduling problems; section 3 provides a literature 

review on vehicle scheduling; section 4 describes three heuristics for static scheduling problems; 

section 5 provides a performance evaluation of the proposed static scheduling approaches with 
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experiments; section 6 describes the dynamic scheduling approaches; section 7 provides a 

performance evaluation of the proposed dynamic scheduling approaches with experiments; 

section 8 summarizes the paper’s results. 

2 Mathematical formulation 

For offline VBITS scheduling, we define a set of available vehicles (K) and a set of jobs (N) 

which need to be picked-up within time-windows [e , lp p] (p ∈ N) and dropped-off at their 

delivery locations. The scheduling problem for VBIT systems can be formulated as a PDPTW. 

However, we reformulate this problem as an m-TSPTW by projecting time-windows at delivery 

locations to the corresponding pick-up locations (assuming a deterministic transport time) and 

logically considering a pick-up and a corresponding delivery job as a single job-node. If the 

time-window at the pick-up location is [ep, lp], and at the delivery location is [ed, ld], and the 

travel time between the two locations is tpd, the time-window of the job-node will be [en, ln] with 

en = e , l  = min(l , l  - tp n p d pd). We assume that the time-window projection for job-nodes is always 

feasible ([e , ln n] ≠ ∅). In many VBIT systems, only one-sided time-windows are present at pick-

up locations (load release times, or rp) and no time-windows are present at delivery locations, so 

[en, ln] is always ≠ ∅. The travel time from job-node i to job-node j ( ) equals the travel time 

from the origin of job i (i

ijt

+
) to the destination of i (i-

i i
t + −) ( ) plus the travel time from the 

destination of i to the origin of j ( ). 
i j

t − +

The m-TSPTW can be seen as a graph G = (V, A), in which V is a set of vertices and A is a set of 

arcs. V = {0}∪N∪{n+1}, where {0}({n+1}) denotes the depot (end depot) and N = {1,...,n} is 

the set of (job-)nodes. A = {0}×N ∪I ∪N ×{n+1}, where I⊂N×N is the set of arcs connecting 

job-nodes. {0}×N contains the arcs from the depot to job-nodes and N ×{n+1} contains the arcs 
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from job-nodes to end depot (which is the same physical location as the depot in our 

computations). For each arc (i,j)∈A, there is an associated travel time (distance) tij and for each 

job-node i there is an associated time-window [e , li i]. In the following, K is the set of vehicles 

and B is a big number. ,  are the starting time of vehicle k at the depot and the arrival 

time of vehicle k at the end depot respectively. Decision variables are: 

0

kD 1

k
nD +

k
ijx ((i,j)∈A, k∈K ), which 

equals 1 if arc (i,j) is covered by vehicle k and 0 otherwise; Di (i∈N) indicates the service start 

time of (job-)node i, with . i ie D l≤ ≤ i

As mentioned before, minimizing the average load waiting time is the most important objective 

of VBIT scheduling problems. The model formulation becomes then: 

(1
i i

i N

D e
N ∈

−∑ )Minimize  (1) 

subject to: 

( )1      , ,k
i ij j ijD t D B x i j N k K+ − ≤ − ∀ ∈ ∀ ∈1k

ij
k K j N

x i N
∈ ∈

= ∀∑ ∑ ∈   (2)     (6) 

( )0 0 01   ,k k
j j jD t D B x j N k K+ − ≤ − ∀ ∈ ∀ ∈0  ,k k

ij ji
j V j V

x x i N k
∈ ∈

− = ∀ ∈ ∀ ∈∑ ∑ K  (3)     (7) 

( ), 1 1 , 11 ,k k
i i n n i nD t D B x i N k K+ + ++ − ≤ − ∀ ∈ ∀ ∈

0 1       k
j

j N

x k K
∈

= ∀∑ ∈   (4)     (8) 

, 1 1      k
i n

i N

x k K+
∈

= ∀∑ ∈   (5)    i i ie D l i N≤ ≤ ∀ ∈     (9) 

    , ,k
ijx binary i j V k K∀ ∈ ∀ ∈           (10) 

Constraints (2)-(5) form a multi-commodity flow formulation. The constraint (6) indicates that if 

a vehicle k serves node j after node i, the constraint i ijD t D j+ ≤  must be satisfied. Constraints 

(6)-(8) ensure feasibility of the schedule. Equations (9) and (10) are time-window and binary 

constraints.  

During the execution of the algorithm in real-time scheduling problems, a vehicle may start at 

any load’s drop-off location, not at the depot. Therefore, we must modify the formulations (1)-
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(10) to reflect this change. By setting the current load’s drop-off location as a virtual depot when 

a new rolling horizon begins, we can obtain a new formulation by replacing (4) and (7) with the 

following constraints: ( )0 0 01   ,
k k k

k k
j j jD t D B x j N k K+ − ≤ − ∀ ∈ ∀ ∈

0 1
k

k
j

j N

x k K
∈

= ∀ ∈∑  and , 

respectively, where 0  is the virtual starting depot of vehicle , k k K∀ ∈ .  k

In the formulations for the static and real-time scheduling problems, the number of binary and 

linear variables equals |K|×(|N|+2)×(|N|+2) and (|N|+2)×|K| respectively. In principle, we can use 

general-purpose optimization packages such as CPLEX to solve the proposed model. However, 

such software can solve only small instances of the model, which makes them unusable for 

practical problems. We used CPLEX 7.1 to solve some instances of our problems (2 vehicles, 12 

loads). On these instances, CPLEX 7.1 sometimes took more than 30 minutes (sometimes a few 

hours), and required much computer memory (>128 MB) to solve them. For real-time scheduling 

or medium-sized static situations, this is not acceptable. In this paper, we therefore propose some 

heuristics to cope with realistic cases. 

3 Literature overview on the scheduling problem solutions 

In the previous section, we have formulated the vehicle scheduling problem as an m-TSPTW (a 

special case of the PDPTW). In the literature, the PDPTW and the m-TSPTW have been studied 

extensively (Desrochers et al. 1988; Savelsbergh and Sol 1995). Desrochers et al. (1988) mention 

two main types of optimization algorithms for PDPTW: dynamic programming and branch-and-

bound. Both methods are very time consuming and cannot solve practical problems within an 

acceptable time limit. Dumas et al. (1991) introduce an exact algorithm to solve PDPTW using a 

column-generation scheme. The sub-problem (or pricing problem) is a constrained shortest-path 

problem. Their algorithm can handle multiple depots and different vehicle types. Desaulniers et 
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al. (1998) propose a similar approach to solve multi-depot vehicle scheduling problems with time 

windows and waiting costs. In order to solve practical-size problems, they also propose a 

heuristic to speed up the branch-and-bound process. Savelsbergh and Sol (1998) propose some 

adaptations for speeding up the column-generation algorithm. They use several heuristics to 

generate columns with negative reduced costs and eliminate unattractive columns by 

sophisticated column management schemes. Besides set-partitioning and column- generation 

approaches, several heuristics have been proposed, such as saving heuristics (Kindervater and 

Savelsbergh 1992; Laporte et al. 2000).  

Psaraftis (1988) provides a survey on solution approaches for dynamic vehicle routing problems. 

Two main approaches include an adaptation of the static solution and an implementation of static 

algorithms under a rolling horizon. Savelsbergh and Sol (1998) use the rolling horizon approach 

to solve a dynamic PDPTW. Gendreau et al. (1999) adapt the Tabu search approach which is 

used for the static problem to dispatch vehicles (trucks) dynamically. Powell (1996) considers 

the assignment problem of dynamically assigning drivers for a truckload motor carrier to handle 

loads that arise randomly over time. Powell and Carvalho (1998) use a logistics queuing network 

to solve a dynamic fleet management problem.  

Yang et al. (2004) study a dynamic truckload PDP. They propose several benchmark local 

policies. They also propose two re-optimization policies (MYOPT and OPTUN) to solve the 

problem dynamically. The MYOPT policy solves a static instance each time when information 

about a new job arrival is received. OPTUN uses some opportunity costs based on probabilistic 

knowledge of future requests to improve the solution quality. Yang et al. (2004) prove that two 

re-optimization policies outperform local policies. Fleischmann et al. (2004) use a dynamic 

assignment algorithm to assign jobs to vehicles by minimizing the total cost due to empty moves, 
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loaded moves, waiting, and delay. They show that their approach is superior to assignment rules 

and some insertion algorithms. Kim and Bae (2004) propose a look-ahead dispatching method to 

dispatch AGVs at a container terminal, in which tasks must be carried out according to a fixed 

order. The main objective is to minimize the delay times of container cranes. They formulate the 

dispatching problem as a mixed-integer programming problem and propose a heuristic to solve 

it. They apply this heuristic dynamically to schedule AGVs. The dispatching heuristic is invoked 

each time an AGV becomes free. The dispatching procedure takes only limited tasks into 

consideration. Using simulation, they show that their look-ahead dispatching methods 

outperform the shortest-travel-distance first, earliest-due-date and revised shortest imminent 

operation dispatching rules. 

The above survey shows that most real-time scheduling studies concern external transport. Kim 

and Bae’s (2004) study is an exception. In this paper, we systematically compare the 

performance of different real-time scheduling approaches and dispatching rules for two 

experimental environments under various working conditions. 

4 The static scheduling problem 

In order to solve the static (or offline) scheduling problem in a VBIT system it in an acceptable 

computation time, we introduce three heuristic methods. The first one, insertion, is mainly used 

as a benchmark. We introduce a column-generation and a combined heuristic (a combination of 

existing heuristics designed to suit our problems). The cost of a vehicle tour is defined as the 

average load waiting time of the loads served in this tour.  

 

 Insertion heuristic 
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The insertion heuristic (Van der Meer 2000; Laporte et al. 2000) is frequently used for real-time 

dynamic scheduling problems (Psaraftis 1988). Its main advantages are simplicity and 

calculation speed. We implement a least-cost insertion strategy where the cost corresponds to 

waiting time. In the static scheduling problem, all vehicles start at the depot and the insertion 

heuristic works as follow: (1) Initialize all vehicle routes at the depot node {0}, let the set S 

contain all (job-) nodes arranged in increasing order of the load (job) release times ( S ≠ ∅), set 

all tours’ costs to zero. (2) Remove the first node from the set S and insert it into a specific tour 

with least cost, respecting the time-window constraints (6)-(9). By doing this, we expand vehicle 

routes gradually. (3) Repeat the above process until ∅, compute total cost, stop. S =

 Combined heuristic 

<Insert Figure 1 here> 
This heuristic starts with an initial solution created by the insertion heuristic and applies several 

improvement algorithms sequentially to improve the solution. We introduce well known 

improvement algorithms: Re-insertion, Exchange and Relocation (Kindervater and Savelsbergh 

1992; Laporte et al. 2000) to the internal transport system. The three improvement heuristics are 

illustrated in Figure 1: 

Re-insertion: The Re-insertion (or forward Or-exchange) algorithm works as follows: Step 0: set 

it (iteration index) to 1 (0 is the depot node). Step 1: remove the node (job) at position it and 

search for the best insert position while respecting the constraints of the proposed model from 

node it+1 to the end of the route. Step 2: if a cost reduction is found, then insert this node into the 

best insertion position, otherwise increase it by 1. Step 3: if node it is the last node in the route, 

stop. Otherwise go to Step 1. 
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Relocation: Step 0: set it1 to 1 (node index for route 1), set previous total cost to total cost of 

routes 1 and 2. Step 1: find the best insert position of node it1 in route 2. Step 2: if a cost 

reduction is found (total cost of two new routes < previous total cost), insert node it1 of route 1 

at the best insertion position in route 2. Step 3: increase it1 by 1, re-compute total route cost, and 

set previous total cost to the new total route cost. Step 4: if all nodes in route 1 have been 

investigated, stop. Otherwise go to Step 1. 

Exchange: Step 0: set it1 to 1 (node index for route 1), set previous total cost to total cost of route 

1 and route 2. Step 1: find the best exchange position of node it1 and a node in route 2. Step 2: if a 

cost reduction is found (total cost of two new routes < previous total cost), exchange node it1 of 

route 1 with the best exchange node in route 2. Step 3: increase it1 by 1, re-compute the total 

route cost, and set previous total cost to the new total route cost. Step 4: if all nodes in route 1 

have been investigated, stop. Otherwise go to Step 1. 

The combined heuristics works as follows: (1) create initial (vehicle) routes using the Insertion 

algorithm; (2) apply the Re-insertion algorithm for initial routes; (3) apply the Exchange 

algorithm for every pair of routes of the previous step; (4) apply the Relocation algorithm for 

every pair of routes of the previous step, (5) apply the Re-insertion algorithm again for all routes 

of the previous step. STOP. It is clear that we should improve individual vehicle route at steps 2 

and 5. We select the sequence Exchange (3) -> Relocation (4), since this sequence gives us a 

better solution (on average) than the reversed sequence. 

2
According to Van der Meer (2000), the complexity of the Insertion algorithm is O(n ) (n is the 

total number of loads). Kindervater and Savelsbergh (1992) show that the complexity of the 

three improvement algorithms is O(m2) (m ≤ n and n is the maximum number of loads served by 

any vehicle route). In the above framework, we apply Re-insertion for all routes, so the worst 
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case complexity is O(km2) (k is the number of vehicles). Two other improvement algorithms are 

applied for all route pairs. The number of route pairs equals k(k-1)/2, so the worst case 

complexity of each assignment improvement algorithm applying for all pairs of routes is 

O(k2m2 2). In conclusion, the overall complexity of the combined algorithm is O(k m2) which is 

O(k2n2) in the worst case. For our scheduling problems, the number of loads served by a vehicle 

is about the same, so m ≅ n/k. Hence, the average complexity is O(k2m2 2) ≅ O(n ). Therefore, the 

complexity of the combined heuristic does not increase much in comparison with the insertion 

heuristic. 

 Column generation (heuristic) 

The number of columns (or feasible vehicle tours) for the m-TSPTW can be huge (O(k×n!)), it is 

impossible to enumerate all columns in a reasonable time. Thus, we use the column generation 

approach to obtain only ‘good’ columns. The column-generation approach has been used by 

many authors for solving the PDPTW (Dumas et al. 1991; Savelsbergh and Sol 1998) and proved 

to be a very promising approach. In this study, we apply this approach to solve the m-TSPTW. In 

order to apply the column generation heuristic we re-formulate the m-TSPTW as a set-

partitioning problem. This heuristic includes two steps: (1) generating columns for the master 

problem and (2) obtaining an integer solution. 

Generating columns for the restricted master problem 

The master problem (set-partitioning problem) 

Minimize  (11) 
k

k k
r r

k K r S

c z
∈ ∈
∑ ∑

subject to:      

1
k

k k
ir r

k K r S

zδ
∈ ∈

=∑ ∑   ∀i ∈ N  (12) 1
k

k
r

r S

z
∈

=∑             ∀k ∈ K  (13) 
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k
rz  = 0 or 1          ∀k ∈ K, ∀r ∈ Sk (14) 

where:  =  1 if route r ∈ Sk
rz k is selected, 0 otherwise; k

irδ  = 1 if job i is served on route r ∈ Sk, 0 

otherwise; : cost of route r served by vehicle k; Sk
rc k : set of routes for vehicle k; K: vehicle set. 

A route starts at the depot (or at the vehicle’s drop-off location in the dynamic case) visiting 

some nodes (each node exactly once) within their time-windows and finishes at the end depot. 

The set-partitioning model selects routes covering all nodes, each node exactly once, with 

minimal cost. The linear relaxation of this problem (binary constraint set (14) is replaced by 

) is called the restricted master problem (RMP). The optimal solution of the RMP is a 

lower bound on the objective value of the integer master problem (IMP). 

0k
rz ≥

The pricing problem (shortest-path problem with time-windows) 

Let u  (i ∈ N) be dual variables corresponding to the constraint set (12), and vi k (k ∈ K) be dual 

variables corresponding to the constraint set (13). According to the linear programming duality 

(Ahuja et al. 1993), z (a feasible solution of RMP) is optimal for the RMP if and only if for all k 

∈ K and r ∈ S k k k
r r ir i

i N

d c u vδ
∈

= − − k∑  is nonnegative for all k ∈ K and  r∈ Sk the reduced cost k.  

The pricing problem is , in which the cost of route r ∈ Smin | ,k k
r ir i k

i N

c u v k K rδ
∈

⎧
− − ∈ ∈⎨

⎩ ⎭
∑ kS

⎫
⎬

) k
ir

k is 

(k
r ir i

i N

c D e δ
∈

= −∑  (D : the service start time of node i in the route r ∈ Sir k). This problem is a 

type of shortest-path problem with time-windows (SPPTW - Desaulniers et al. (1998)). If the 

solution of the pricing problem (z) results in min , z is an optimal solution to the RMP and 

we are done. If z results in , we add the current solution z into the master problem. In this 

0k
rd ≥

0k
rd <
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research, we solve the SPPTW using the generalized permanent labeling (GPL) algorithm 

(Desrochers and Soumis 1988).  

In many VBITSs, there are only one-sided time-windows at pick-up locations and no time-

windows are required at delivery locations. In that case, we add artificial time-windows for 

nodes, since the GPL algorithm needs two-sided time-windows to perform.  

The column-generation algorithm works as follows: (1) solve the RMP by the simplex algorithm 

(CPLEX); (2) get dual variables (u  and vi k); (3) solve the pricing problem using the GPL 

algorithm. If the pricing problem’s objective value ≥ 0, STOP. Otherwise, add the newly 

generated column into the RMP and go to Step 1. When the column-generation algorithm stops, 

we also get a good lower bound for the IMP (the optimal solution of the RMP). 

Obtaining an integer solution 

The algorithm in the previous column-generation step provides a set of columns for the RMP, 

which is now used to calculate an integer solution. We can obtain a good solution by solving the 

IMP with this set of columns. We may then improve the integer solution using improvement 

algorithms. In our implementation, we replaced (13) by 1
k

k
r

r S

z
∈

≤∑ , (14) by  and (12) by a 

set of set-covering constraints ( ), since we found in the experiments that using a 

set-covering formulation leads to better overall solutions. We denote the new formation the 

RMP’. 

0k
rz ≥

1
k

k k
ir r

k K r S

zδ
∈ ∈

≥∑ ∑

Framework for column-generation heuristic 

- Step 1: solve the RMP’ by the column-generation approach. The optimal value of this 

problem is a lower bound for the IMP. 
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- Step 2: solve the IMP with the columns obtained in the previous step using CPLEX. 

- Step 3: if the objective value equals the lower bound (obtained in Step 1), Stop. Otherwise 

improve the resulting solution using the improvement steps of the combined heuristic, STOP. 

5 Performance evaluation for the static case 

5.1 Experiment setups 

 System input parameters 

We selected two warehouse layouts for experimenting. Depending on function, several basic 

warehouse layout types exist. We select U- and I-layout type warehouses, which are very 

common in practice (Tompkins et al. 2003; Van der Meer 2000). 

<Insert Figure 2 here> 
<Insert Table 1 here> 

In the U-layout, locations with transportation requests are more concentrated than in the I-layout 

(see Figure 2). In the latter layout, the receiving area is located further from the other areas. The 

distances between different areas are given in Figure 2. Table 1 shows the load flow matrices of 

the two layouts in percentage. In both layouts, loads needing transportation are generated at 

receiving, labeling and storage areas. Three load flows (from receiving to the storage areas, from 

the storage areas to labeling and from labeling to shipping) are kept identical in the numerical 

experiments in order to balance the load flows in the warehouses. The load flows (job nodes) are 

then generated randomly from the same load inter-arrival distribution (mean value τ). The 

resulting transport jobs are then executed using the three different methods. All experimental 

factors and their values are described below: 

− Number of vehicles (K): 2 levels (6 and 2 vehicles). 
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− Load inter-arrival distribution (Dist): 2 levels (uniform and exponential), 

− Load inter-arrival time (mean value τ): 2 levels (τ = 3, 8). This implies a variance of τ2
 for 

exponential and τ2
/3 for uniform distributions. We combine τ = 3 with |K|=6 and τ = 8 with 

|K|=2. This leads to rather high vehicle utilization, which is typical in practice (fork lifts need 

to be manned). Low vehicle utilization leads to better performances of scheduling methods 

(see Table 3 and Table 5 in section 7). 

−  Time windows: 50 seconds.  

 Computation environments 

− All approaches have been coded in C++. 

− For solving set-covering problems in the subproblems of column generation, we use CPLEX 

7.1 from ILOG. 

−  All experiments were run on a Toshiba Satellite Pro 2100 notebook (CPU: Mobile Intel 

Pentium 2GHz, 256MB RAM).  

− For each combination of experimental factors, we use 10 replications. The result is the 

average value of these 10 replications. 

5.2 Computational results for the static case 

Experimental environments are described in section 5.1 and the results are shown in Table 2. 

<Insert Table 2 here> 
From Table 2, we can draw the following conclusions:  

- The column-generation heuristic obtains the best results overall at the expense of 

computation time. Its application in static settings is promising with the average gaps less 

than 10% in any case. But in online settings where the computation time is critical, its 

application may be limited in a small to medium scale warehouses. When the number of 
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vehicles increases to 15 or more, this heuristic may run half an hour or more depending on 

the problem according to our test.  

- The combined heuristic performs not as good as the column-generation heuristic, but 

significantly outperforms the insertion heuristic without increasing running-times much. 

Potentially, the heuristic can be used for large scale VBIT problems when computation time 

is critical. 

- In result, the column-generation heuristic is preferred in static cases. The combined heuristic 

is recommended for large-scale internal transport systems if the computation time is critical.  

6 The real-time scheduling problem 

 Dynamic scheduling using three static heuristics 

In VBITSs, we may know information about load arrivals during a time period T in advance (this 

information may be not one hundred percent certain). Based on this information we propose two 

rolling-horizon strategies including rolling by time and rolling by the number of loads when the 

above three heuristics used in the dynamic scheduling case. When a vehicle starts to serve a load, 

it has to finish its current job. Cancellation of a job is not allowed. 

Rolling by time horizon (see Figure 3) 

For this rolling horizon policy (Psaraftis 1988), we schedule all (known) loads  during a time 

period H (0 < H ≤ T) using the three proposed heuristics (section 4). Depending on load arrival 

rates and load inter-arrival distributions during the operating period, the number of scheduled 

loads can differ significantly for a given time horizon H. The larger the load arrival rates are, the 

busier the considered VBIT systems are, the more number of loads a vehicle needs to serve for a 

given H. The busier a VBIT system is, the shorter we set the time horizon H. in order to prevent 

unnecessary job scheduling, which need updating before they have been executed. 
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Vehicles only follow the resulting schedule during a time period h = aH (a < 1, normally 0.4 – 

0.6). After every time period h the system invokes the scheduling algorithm again to schedule all 

known loads (excluding those in transport and for which vehicles are on their way for picking-

up) in the period [h, h + H]. The process stops when all loads have been transported.  

<Insert Figure 3 here> 
 

Updating the problem formulation 

The set N now contains loads which have not been served during the period [t  + h , tl l + H] and 

loads that have release times satisfying: 1l j lt H e t H++ < ≤ + . A vehicle k becomes available at 

its last drop-off location at time , which is the maximum of 
0k

kD lt h+  and the drop-off time of 

the last load served by vehicle k in the previous schedule.  

Rolling by the number of loads (see Figure 3) 

We propose a second rolling horizon policy - rolling by the number of loads. Suppose that during 

time period T, we know at least L loads in advance. This policy works as follows: 

− Schedule M loads which are known in advance (0 < M ≤ L) using all three proposed 

heuristics (insertion, combined, and column generation heuristics), 

− Re-schedule vehicles after the mth
 load (m = ⎡a*M⎤, a < 1) has been picked-up by solving the 

scheduling problem again for the next following M loads, 

− Repeat this process until all loads have been transported. Stop. 

Updating the problem formulation 

For this type of the rolling horizon, we update the original formulation similar to the rolling by 

time approach. However, the set N now contains loads which have not been served in the current 

schedule execution (M – m loads) and the next m loads. 
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 Dynamic scheduling using an assignment algorithm 

Dynamic assignment scheduling (DAS) 

An intuitive scheduling approach is to assign loads to all vehicles at each scheduling step, using 

an assignment algorithm. Fleischmann et al. (2004) use this approach to dynamically solve the 

full-truckload dispatching problem of a courier service. The main objectives in Fleischmann et 

al. (2004) include minimizing the order delay and the vehicle empty travel time. As we focus on 

minimizing the average load waiting time, we adopt new cost functions in our implementation. 

By introducing dummy loads or dummy vehicles (as in Fleischmann et al. (2004)) to balance the 

number of loads and vehicles for the assignment algorithm, we distinguish the following three 

types of costs: 

- The cost of assigning a real vehicle to a real load (f ) equals Cmain empt×Travtime plus 

Cwait×(Lwaittime)
α
, in which Travtime is the vehicle travel time from its available location 

(current location for an idle vehicle or the vehicle’s current load drop-off location for a busy 

vehicle) to a load release location and Lwaittime is the estimated waiting time of 

corresponding load. 

- The cost of assigning a real vehicle to a dummy load is the unattractiveness cost of a location 

(vehicle waits at it current location) which is Cloc×1. 

- The cost of assigning a dummy vehicle to a real load (load waits and remains unassigned at 

its release location) (furgency) equals Curg/(load release time + time window size – current 

time)
β
 if  (load release time + time window size) > (current time) and equals ∞ otherwise. 

3
The values of the cost coefficients in our implementation are Cempt = 10, C = 2, Cwait loc = 5×10 , 

C  = 2×10
7

urg , α = 2, β = 1 or 2 (for I- and U-layout respectively). α>1 and β≥1 are used to 

increase the impact of large load waiting times and to urge timely pick up of long waiting loads 
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by real vehicles. Several of the cost coefficients are taken from Fleischmann et al. (2004) (Cloc, 

Curg, α). Other cost coefficients are obtained from experiments. In our problem, we have only 

one-sided time-windows for loads and the cost function fmain is in favor of loads with smaller 

waiting times. This may lead to a very high value of the maximum load waiting time, so we 

introduce an artificial time-window for loads to guarantee an acceptable value of the maximum 

load waiting time. The general operating framework for the scheduling approach using the DAS 

algorithm is illustrated in Figure 4.  

<Insert Figure 4 here> 

 

Look-ahead dynamic assignment algorithm (LAS) 

Obviously, the assignment algorithm works best for the case where we may assign about one 

load to each vehicle, but normally, with the implementation of Figure 4, we do not have enough 

loads to assign to all vehicles. In VBITSs, we may know some information about future load 

arrivals, which we could use to improve DAS. Ichoua et al. (2000) and De Koster et al. (2004) 

also use this idea in their studies. Therefore, we introduce a look-ahead dynamic assignment 

algorithm (LAS), which is a variant of DAS. LAS schedules vehicles using the same approach as 

DAS, however besides free loads the assignment algorithm also takes into account loads which 

are known to arrive during a look-ahead period T . A good length for TL L is the period during 

which about K (the set of vehicles) loads are known to arrive or in waiting (TL =|K|×τ, τ is the 

load inter-arrival time). We may consider LAS a special case of the rolling by time policy in 

which H equals |K|×τ and h equals min{time that a new load arrives, time until the first vehicle 

drops-off its load} from current time. 

 Vehicle dispatching rules 
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We selected two dispatching rules, nearest-vehicle-first (NVF) and NVF with look-ahead, for 

comparison. These two rules are among the best rules for VBITSs (De Koster et al. (2004)). 

Nearest-Vehicle-First (NVF) 

According to the NVF rule, when a load enters the system, it places a move request; the shortest 

distance along the traveling paths to every available vehicle, is then calculated. The idle vehicle, 

whose travel distance is the shortest, is dispatched to the point of request. When a vehicle 

becomes idle, it searches for the closest load.  

Nearest-Vehicle-First with look-ahead (NVF_LA) 

NVF_LA operates similarly to NVF. The difference is that the load gives a signal Δ time units 

prior to its actual release time. The time between the actual release, and the virtual release Δ time 

units before, can be interpreted as a look-ahead time. This gives the vehicle the opportunity to 

travel to the load before the load is physically ready for transport. The vehicle can therefore 

arrive just before or after the load is ready for transport, thereby reducing load-waiting times. 

7 Performance evaluation for real-time cases 

7.1 Experiment setups  

The experiment setups related to system input parameters, and computation environments are 

similar to those of the static case in subsection 5.1. There are two differences: we only consider a 

setting with |K|=6 (such a number of vehicles –like fork lifts- can typically be found in a 

warehouse). Varying the load inter-arrival time has similar effects as varying the number of 

vehicles. We have two levels for the load inter-arrival time (τ = 3, 3.6). These levels lead to 

rather high vehicle utilizations (80% or more). In environments with low vehicle utilizations 

scheduling will outperform dispatching.  
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 Performance criteria 

In VBIT systems, the crucial performance criterion is minimizing the average load waiting time 

(Avg_wait). Following De Koster et al. (2004), we consider minimizing the average load waiting 

time as the main performance criterion. We also use other performance indicators: the maximum 

load waiting time (Max_wait), vehicle utilization (Util%), and the maximum number of loads in 

queues (Max_inQ) as side criteria. To rank the performance of the dispatching rules and the 

scheduling approaches we use Tukey’s test (Hsu 1996) with 95% confidence level (CL).  

 Experimental approach parameters 

− Scheduling algorithms and dispatching rules:  

+ Two variants of the NVF rule (Disp. Rules): NVF and NVF_LA. The best length of the look-

ahead period (T ) is taken. This value is estimated using simulation experiments. L

+ Two variants of the dynamic assignment algorithm (Assign. Algs): DAS and LAS (TL = 

|K|×τ), 

+ Three heuristics, namely the insertion (Insertion), combined (Com-Heur) and column-

generation (Column-Heur) heuristics under two rolling horizon policies: by time (T) and by 

the number of loads (M), 

− Rolling horizon parameters (general values): 

+ Rolling by the number of loads: M = |K|×4, m = |K|×2 (M = 24, m = 12). Scheduling 4 loads 

per vehicle on average leads to good scheduling results from column generation within a 

short computation time (less than 10 seconds). 

+ Rolling by time: H = |K|×4×τ, h = |K|×2×τ (H = 72 and 86.4, h = 36 and 43.2 corresponding 

to τ = 3 and 3.6, respectively). 
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− The lengths of the planning horizons (simulation periods) are 900 (τ = 3) and 1080 (τ = 3.6) 

time units (seconds). 

To limit the maximum load waiting time resulting of DAS and LAS, we introduce an artificial 

time fence (TW). A TW equaling about the value of the maximum load waiting time when NVF is 

used, appears to perform quite well. 

7.2 Performance evaluation 

The calculation results for U and I-layout are given in Tables 3 and 5 respectively for different 

combined parameters. In order to rank the scheduling methods, we apply a Tukey test with 95% 

confidence level using SPSS version 11 on the average load waiting time. The ranking results 

can be found in Table 4 and 6 for the U- and I-layout, respectively. Since the two rolling horizon 

policies (by T and M) perform quite similarly (see Table 3 and also the Tukey test), we use only 

one entry to represent both of them in Table 4 and 6. For example, the entry “column generation” 

represents both rolling horizon policies (by T and M) using the column-generation heuristic. 

 Performance evaluation for the U-layout 

<Insert Table 3 and Table 4 here> 
 

Table 3 and 4, some observations can be obtained as follows:  From 

- When we schedule vehicles using two dynamic scheduling strategies: Com_Heur 

Column_Heur, the average load waiting time reduces dramatically compared to disptaching. 

Best results are obtained when we apply the column-generation heuristic to solve the 

instances of real-time scheduling problems. The largest improvement of the average waiting 

time of Column_Heur over NVF is 86.22% (uniform distribution, τ = 3.6).  
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- Considering other side performance criteria (max load waiting time, max number of loads in 

queues, vehicle utilization), we also find that scheduling algorithms perform better than 

vehicle dispatching rules. 

- LAS performs very well and is nearly as good as Com_Heur, particularly for the large load 

inter-arrival time cases (τ = 3.6) with respect to average load waiting time. It is even better 

for the maximum load waiting time. 

- Comparing LAS with the other two scheduling approaches (Com_Heur and Column_Heur) in 

side performance criteria, LAS performs worse in terms of the maximum number of loads in 

queues. LAS also results in a very high value of vehicle utilization. This is because LAS is a 

more local policy, implying that vehicles may travel longer distances for LAS than for the 

other scheduling approaches, which is similar to the observation of  Kim and Bae (2004).  

- The combined scheduling heuristic performs much better than insertion, for which the largest 

improvement is 42.2%.  

- The NVF_LA and LAS perform significantly better than NVF and DAS, respectively since 

they have more information about future load arrivals.  

- DAS performs a little better than NVF in general, but not significantly. DAS can make an 

assignment between multiple vehicles to multiple released loads at one time. The best 

assignment result of NVF (fixing one given load to its nearest vehicle) is only a feasible 

solution of DAS . 

- By comparing all scheduling strategies with NVF, it can be seen that the lower the load 

arrival rates (or τ: larger load inter-arrival time), the bigger the improvements of the two 

scheduling approaches (Com_Heur, and Comlum_Huer), (see also Yang et al., 2004) This is 
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fairly obvious, since in highly utilized systems there is little gain in prematurely sending 

vehicles to pick-up locations as there are often loads in the neighborhood to be picked up. 

- Scheduling and dispatching approaches perform relatively better for the uniform load inter-

arrival distribution than for the exponential distribution. This can be explained by the fact 

that with the same mean interarrival time used in our experiments, the variance of the 

uniform distribution (τ2
/3) is only one third of that of the exponential distribution (τ2

). 

In conclusion, the column-generation heuristic performs better than the combined heuristic. 

However as we indicated in the static case, the running-time of the column-generation heuristic 

grows rapidly for large-scale real problems. So it is only suitable for small- and medium- scale 

instances (less than 15 vehicles), but for the large scale instances (especially more than 15 

vehicles) and the computation time is critical, LAS and Com_heur are preferred.  

 

 Performance evaluation for the I-layout 

<Insert Table 5 and Table 6 here> 

From Tables 5 and 6, and comparing them with Tables 3-4 for the U-layout, we observe similar 

phenomena for the I-layout of using different dynamic scheduling and dispatching strategies. 

The following differences can be observed: (1) LAS performs more impressively (in the top 

group in half of the cases from Tables 6). Especially when τ=3.6. (2) The largest improvement of 

the average waiting time of Column_Heur over NVF is 83.3% (uniform distribution, τ = 3.6). (3) 

In this layout, the performance of the NVF_LA rule is less impressive than in the U-layout. The 

improvement of the average waiting time of NVF_LA compared with that of NVF is only 27.7%. 

(4) The average load waiting time in the U-layout is smaller than the corresponding value in the 

I-layout. 
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 Value of information and further discussion 

In order to identify which factors influence performance ranking of different approaches in two 

layouts, Table 7 and Table 8 give some selected results corresponding to some selected load 

look-ahead times, scheduling approaches, and system layouts. Since the dynamic scheduling 

heuristics behave similarly, only the combined heuristic is selected for experiments. The results 

of NVF and DAS are excluded due to their bad performance. The results are therefore only 

provided for NVF_LA, LAS and Com_heur. From Table 7 and Table 8, we obtain several 

important observations and their initial causes. 

Value of look-ahead information. For each scheduling approach, we make the following four 

observations: 

- The best look-ahead period values for NVF_LA are different in the two different layouts. 

They are between 2τ  and 3τ for the U-layout and smaller (between 0.5τ and 2τ) for the I-

layout. It seems difficult to recommend a specific value for the best length of the look-ahead 

period for different τ  and layouts, however it is fairly small (less than 3τ), and can be 

determined by experiments. 

- The best values of look-ahead periods for LAS are about the same for the two layouts, and 

equal to |K|×τ. Beyond |K|×τ (=6×τ) time units little average waiting time reduction can be 

obtained. This value is reasonable since, for the assignment algorithm, it is logic to assign 

only one load for each vehicle. Look-ahead too far in advance cannot reduce the average load 

waiting time resulting from using LAS. 

- The best values of look-ahead periods for the Com_heur are 4×|K|×τ for both layouts. No 

further reduction of the average waiting time can be realized beyond 4×|K|×τ (24×τ) time 

units, which is due to the fact that the algorithm plans about 4 loads ahead for each vehicle 
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with the given parameters. Similar to LAS, look-ahead too far in advance helps little in 

reducing the average load waiting time for this method.  

In conclusion, for every approach, selecting an appropriate look-ahead period, decreases the 

average load waiting time significantly. The usable look-ahead time lengths (i.e. the best values 

of the look-ahead periods) are different for different approaches; Com_heur and LAS can better 

use larger look-ahead values than NVF_LA.  

Which approach to select? For a given amount of prior load arrival information, or a given 

length of the look-ahead period (e.g. τ  or 2τ), we have the following two observations: 

- LAS always leads to better results than NVF_LA for both layouts, since NVF_LA can only 

assign one load to a (nearest) vehicle at a time, while LAS can assign multiple loads and 

vehicles at a time.  

- Com_heur is usually better than LAS for both layouts, since Com_heur schedules more loads 

than LAS at a time. Still, LAS runs faster (less than a second computation time) and is easier 

to implement. 

<Insert Table 7 and Table 8 here> 

Influence of warehouse layouts. In warehouses, the receiving area is the main load generation 

source and the shipping area is the main sink. At the shipping area, vehicles become available 

after dropping off their loads. It can be considered as a main vehicle source. Since vehicles at the 

receiving area only pick-up loads, this area needs vehicle dispatches from other areas. In the I-

layout, the receiving area is the area farthest from the shipping area. Therefore, this area may 

sometimes have difficulty qualifying for a vehicle dispatch from the shipping area (particularly 

when using NVF or NVF_LA). This may lead to a vehicle shortage at the receiving area and 
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explains the poor performance of the vehicle dispatching rules in the I-layout. De Koster et al. 

(2004) call this the ‘remote-area’ phenomenon, in which NVF-based rules perform poorly.  

In conclusion to this section, the influences of main factors found are summarized in Table 9. 

 

8 Concluding remarks 

In this paper, we study real-time vehicle scheduling in internal transport systems. These systems 

can be characterized by a high degree of uncertainty, short travel times, stopping or parking 

positions spread over the building, and often high vehicle utilization rates. In practice, 

dispatching vehicles is the common method. Literature on external transport has shown that 

scheduling vehicles may lead to better performance than dispatching them. Applying this to 

internal transport does not automatically lead to similar results, as the objectives of external 

transport and the circumstances are often quite different. The available look-ahead information 

may be just too short to be of any value. Furthermore, optimal vehicle scheduling is time-

consuming, if not infeasible. This paper is one of the first to investigate the potential contribution 

of scheduling methods for internal transport. 

We propose a mathematical model for the VBIT problem, and introducing three heuristics for the 

static vehicle scheduling problem. We apply these static-situation heuristics dynamically under a 

rolling horizon (for which we use two variants). We also propose two easy-to-implement 

assignment methods for VBIT problems, with (LAS) and without look-ahead information (DAS), 

adapted from Fleischmann et al. (2004). For comparison, we introduce one of the best-

performing dispatching rules, applied with and without look-ahead information (NVF and NVF-

LA, respectively). Using simulation, we systematically compare and rank the performances 
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(measured by the average waiting time) of these seven methods (two dispatching and five 

scheduling, of which three are used with two different rolling horizon methods), by varying the 

following parameters: load inter-arrival distributions, load arrival variances (determined by the 

distributions and mean inter-arrival rates), and layouts (U and I-layout). Results show that the 

scheduling approaches (Com-Heur, Column-Heur, and LAS) perform significantly better than the 

dispatching rules. Depending on layouts and working conditions the improvements can be about 

85%. Com-Heur, Column-Heur, and LAS are recommended for dynamic VBIT, but Column-

Heur is not recommended for large scale dynamic VBIT due to its computation complexity.  

We find that the two rolling horizon methods (rolling by time and by the number of scheduled 

loads) perform similarly. When sufficient load pre-arrival information is available (see Table 7 

and 8), the scheduling with rolling horizon approaches perform significantly better than 

dispatching wit NVF_LA. Although Com-Heur and Column-Heur perform (slightly) better than 

LAS for a given level of pre-arrival information, the latter has the advantage of easy 

implementation and shorter calculation times.  

The results obtained in this paper suggest some future research topics: (1) developing better 

(particularly faster) static-situation heuristics; (2) take the vehicle parking problem into account 

when generating vehicle schedules. 
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Figure 1. Improvement heuristic illustrations (Kindervater and Savelsbergh (1992) 

 

 

Figure 2. U-layout (left) and I-layout (right) used in experiments 
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Figure 3. Rolling horizon illustration (by time - left and by the number of loads - right) 
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Free load: a load already arrived but not assigned to any vehicle or the assigned vehicle is still busy serving another load. A busy 
vehicle will be available at its current load drop-off location at drop-off time. 

 

Figure 4. The general framework for the dynamic assignment algorithm 

Table 1. Load flow matrices of the two layouts (in percentage %) 

U layout I layout   

Location  0 1 2 3 4 5   0 1 2 3 4 5   

Depot 0 0 0 0 0 0 0 0   0 0 0 0 0 0 

Receiving 1 1 0 0 50% 50% 0 0   0 0 50 50 0 0 

Storage 1 2 2 0 0 0 0 50 0   0 0 0 0 50 0 

Storage 2 3 3 0 0 0 0 50 0   0 0 0 0 50 0 

Labeling 4 4 0 0 0 0 0 100   0 0 0 0 0 100 

Shipping 5 5 0 0 0 0 0 0   0 0 0 0 0 0 

Note: The real load flows are the percentages in the table multiplied by the load arrival rate (1/τ) at the receiving 

area.  
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Table 2. Computational results (total waiting times) for the static case  

    U-layout I-layout 

    2 vehicles, 12 loads 6 vehicles, 36 loads 2 vehicles, 12 loads 6 vehicles, 36 loads 

IA  8   3   8   3  

Dist Alg avg gap% RT(s) avg gap% RT(s) avg gap% RT(s) avg gap% RT(s) 

ins 98.9 13.7 < 0.1 193.0 37.3 < 0.1 119.1 23.8 < 0.1 228.2 44.2 < 0.1 

uni com 92.5 7.7 0.1 152.4 20.6 0.2 97.7 7.2 0.1 167.2 23.8 0.2 

col 85.7 0.4 1.5 130.6 7.3 45.2 90.9 0.2 1.3 140.2 9.1 55.9 

  LB 85.4     121.1     90.7     127.4     

ins 132.4 20.6 < 0.1 240.6 33.9 < 0.1 134.5 17.2 < 0.1 239.9 32.4 < 0.1 

exp com 111.3 5.5 0.1 188.4 15.6 0.2 122.1 8.8 0.1 183.6 11.6 0.2 

col 106.1 0.9 1.2 166.7 4.6 35 112.7 1.2 1.6 171.6 5.5 48.7 

  LB 105.2     159.0     111.4     162.2     

IA, Dist: load inter-arrival time mean value (time units) and distribution; Uni, Exp: uniform, exponential distributions; Alg: 

algorithm; ins, com, col: insertion, combined and column generation heuristics; LB: lower bound originated from the column-

generation algorithm; avg: average of total waiting time (time units) of ten problems corresponding to ten input data ; gap%: gap 

calculated by (current objective solution-lower bound)/ current objective solution ×100%; RT: running time (CPU time - 

seconds). 

Table 3. Experimental results for the U-layout 

Disp. Rules Scheduling algorithms 

perfor. Assign. Algs Insertion Com_Heur Column_Heur 

Dist t measure NVF NVF_LA DAS LAS T M T M T M 

Avg_wait 15.7 12.25 15.36 8.09 11.96 10.66 6.33 6.16 4.74 4.91

3 Max_wait 49.3 52.7 38.5 30.6 45.9 45.8 39.7 39.4 41 41.8

Max_inQ 7 8 6 8 6 6 5 5 4 4

Util% 95.99 92.19 92.65 98.68 94.74 94.86 93.08 93.09 91.23 92.04

Uni   Imp% - 21.97 2.17 48.47 23.82 32.10 59.68 60.76 69.81 68.73

Avg_wait 10.74 4.42 9.42 2.14 2.96 2.79 1.99 1.89 1.49 1.48

3.6 Max_wait 32.6 31.5 25.7 17.3 21.2 20.9 27.8 20 24.5 23.3

Max_inQ 5 5 5 7 4 3 3 3 3 3

Util% 86.65 86.21 79.22 96.83 84.25 84.25 82.63 82.83 81.91 81.93

    Imp% - 58.85 12.29 80.07 72.44 74.02 81.47 82.40 86.13 86.22

Avg_wait 19.51 16.48 22.52 14.58 14.98 14.55 10.7 10.37 8.17 9.14

3 Max_wait 68.2 68.7 53 43.7 47.4 48.7 46.9 46.3 47.4 46.9

Max_inQ 9 10 8 9 7 8 7 6 6 6

Util% 93.81 91.24 91.69 97.33 93.27 93.28 91.57 91.52 86.83 90.84

Exp   Imp% - 15.53 -15.43 25.27 23.22 25.42 45.16 46.85 58.12 53.15

Avg_wait 12.72 7.34 12.39 5.2 6.18 5.97 4.17 4.12 3.46 3.57

3.6 Max_wait 43.5 46.8 35.9 27.4 37.5 36.4 37.6 34.8 35.9 37.8

Max_inQ 6 7 6 8 5 5 4 4 4 4

Util% 83.18 82.55 78.75 94.44 82.84 83.03 81.26 80.92 78.7 80.32

    Imp% - 42.30 2.59 59.12 51.42 53.07 67.22 67.61 72.80 71.93

Dist: the load generation distribution; τ: the load inter-arrival time; Avg_wait, Max_wait: the average and max load waiting time 

(time units); Max_inQ: the maximum number of loads in queues; Util%: the vehicle utilization; Imp%: (current Avg_wait- 

Avg_wait of  NVF)/ Avg_wait of NVF×100%; NVF, NVF_LA: the nearest-vehicle-first rules without and with look-ahead; DAS, 

LAS: the dynamic assignment algorithms without and with look-ahead; Insertion: the (dynamic) insertion algorithm; Com_Heur, 

Column_Heur: the (dynamic) combined and column-generation heuristics; T, M: the two rolling schemes (by time and by the 

number of loads). 
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Table 4. Ranking of different scheduling policies for the U-layout (Tukey test 95 % CL) 
Dist Uniform Exponential 

τ 3 3.6 3 3.6 

Column generation 1     1           1     1     

Combined heuristic 1      2      1      2   

LAS   3     2        3     2   

Insertion   3      4       3     2   

NVF_ LA   3       5      3     2   

DAS    6      6      6    6 

NVF     6           7     6     6 

Table 5. Experimental results for the I-layout 

Disp. Rules Scheduling algorithms 

perfor. Assign. Algs Insertion Com_Heur Column_Heur 

Dist t measure NVF NVF_LA DAS LAS T M T M T M 

Avg_wait 40.1 36.11 27.71 17.73 19.2 18.47 12.8 12.45 10.57 10.4

3 Max_wait 204.2 189.4 59.3 49.1 49.3 49.3 49.2 49.5 49.2 49.5

Max_inQ 19 18 9 10 8 8 7 7 6 7

Util% 96.74 96.43 94.89 97.94 95.98 96.05 95.69 95.65 93.73 95.02

Uni   Imp% - 9.95 30.90 55.79 52.12 53.94 68.08 68.95 73.64 74.06

Avg_wait 14.73 10.64 13.27 3.29 4.87 4.91 3.04 3.04 2.46 2.46

3.6 Max_wait 66.5 70.1 34 22 32.5 28.8 35 33 34.4 33.4

Max_inQ 7 8 6 7 4 4 4 4 4 4

Util% 89.05 87.98 82.61 95.24 86.4 86.23 84.95 85.25 84.45 84.56

    Imp% - 27.77 9.91 77.66 66.94 66.67 79.36 79.36 83.30 83.30

Avg_wait 44.19 42.25 34.76 25.42 19.45 18.73 14.14 14.4 13.81 12.66

3 Max_wait 214 213.5 74.4 66.1 50 49.8 49.5 49.7 51.7 48.6

Max_inQ 21 20 10 11 8 8 7 8 7 7

Util% 95.89 95.68 93.48 96.89 94.31 93.93 94.04 94.06 93.57 93.51

Exp   Imp% - 4.39 21.34 42.48 55.99 57.61 68.00 67.41 68.75 71.35

Avg_wait 18.73 16.05 17.02 7.33 8.74 8.57 6.07 6.08 5.5 5.55

3.6 Max_wait 93.9 91.1 48.7 38.4 43.5 43.5 44.5 44.5 43.3 43.4

Max_inQ 10 10 7 8 6 6 5 5 5 5

Util% 87.03 86.73 81.74 93.4 85.32 84.73 83.5 83.81 83.1 83.29

    Imp% - 14.31 9.13 60.86 53.34 54.24 67.59 67.54 70.64 70.37

Table 6. Ranking of different scheduling policies for the I-layout (Tukey test 95 % CL) 

Dist Uniform Exponential 

τ 3 3.6 3 3.6 

Column generation 1       1     1     1   

Combined heuristic 1     1      2   1   

LAS   3    1      2   1   

Insertion   3    1      2   1   

NVF_ LA    5     5      5   5 

DAS     6    6    5   5 

NVF       6     6     5   5 

Scheduling approaches are 
ranked from high to low 
according to the average load
waiting time. The average load 
waiting times of scheduling 
approaches in the same number 
block are not significantly 
different. 
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Table 7. The average load waiting times resulting of the three heuristics that use a look-ahead 

period (U-layout) 

  LA_per Util% 0τ 0.5τ τ 2τ 3τ 4τ 6τ 8τ 10τ 24τ 36τ 
Uni3 96.0 15.7 14.6 13.3 12.5 12.3 14.3  17.9

Exp3 93.8 19.5 18.4 17.1 16.5 16.5 17.2  20.3

Uni3.6 86.7 10.7 9.4 7.9 5.5 4.4 5.1  7.3

N
V

F
_

L
A

 

Exp3.6 83.2 12.7 11.5 10.0 8.0 7.3 8.2  10.1

** 

Uni3 92.7 15.4 14.0 12.9 10.5 9.5 8.2 8.1 9.1 9.3   

Exp3 91.7 22.5 22.8 19.7 17.3 15.6 14.4 14.6 14.1 14.8

Uni3.6 79.2 9.4 7.7 6.3 3.7 2.5 2.3 2.1 2.2 2.2
** 

L
A

S
 

Exp3.6 78.8 12.4 10.9 9.3 6.5 5.4 5.1 5.2 5.0 5.2   

Uni3 93.1 * * 10.4  10.0 9.3  9.4 8.0  7.7 7.4 6.2 6.5 

Exp3 91.6 * * 15.2 14.1 13.9 13.9 12.7 12.5 11.4 10.4 10.4 

Uni3.6 82.6 * * 2.2 2.1 2.0 2.1 2.0 2.1 2.0 1.9 1.9 

C
o

m
_

H
eu

r.
 

Exp3.6 81.3 * * 5.3  4.9 4.7  4.8 4.7  4.6 4.4 4.1 4.1 

Com-Heur: the combined heuristic; LA_per: length of the look-ahead time; τ: load inter-arrival time; Uni3: uniform load inter-

arrival time (τ = 3); (*) the combined heuristic does not work if loads’ pre-arrival information is not available; (**): no further 

improvements found. 

Table 8. The average load waiting times resulting of the three scheduling approaches with a 

look-ahead period (I-layout) 
  LA_per Util% 0τ 0.5τ τ 2τ 3τ 4τ 6τ 8τ 10τ 24τ 36τ 

Uni3 96.7 40.1 36.1 39.6 44.7 55.6 72.1  78.2         

Exp3 95.9 44.2 42.3 45.9 49.0 57.4 70.8  74.2    

Uni3.6 89.1 14.7 12.9 11.7 10.6 14.2 29.3  40.9  
** 

  

N
V

F
_

L
A

 

Exp3.6 87.0 18.7 16.7 16.1 17.0 19.7 33.8  38.9         

Uni3 94.9 27.7 25.4 24.3 22.7 20.0 18.6 17.7 17.2 17.2     

Exp3 93.5 34.8 33.1 31.5 29.9 28.3 27.0 25.4 25.6 25.2

Uni3.6 82.6 13.3 11.6 9.9 7.3 5.7 4.3 3.3 3.2 3.2
** 

L
A

S
 

Exp3.6 81.7 17.0 15.3 13.8 11.4 9.7 8.2 7.3 7.2 7.4     

Uni3 95.7 * * 17.7  17.6 16.3  16.2 16.0  15.1 14.4 12.4 12.4 

Exp3 94.0 * * 18.3 18.1 17.1 17.1 17.0 16.4 15.6 14.4 14.0 

Uni3.6 85.0 * * 4.1 4.1 3.5 3.5 3.5 3.3 3.3 3.0 3.0 

C
o

m
_

H
eu

r.
 

Exp3.6 83.5 * * 7.4  7.3 7.1  7.1 7.0  6.5 6.5 6.1 6.2 

Table 9. The impacts of main factors on vehicle control (dispatching and scheduling) policy 

performance 
Factors Impacts 

Load arrival rate ↑  

(Vehicle utilization ↑) 

- The performance gaps between the dispatching rules and the 

scheduling approaches ↓  

Load arrival rate’s variance ↑  - All vehicle control  policies’ performances ↓  

Layouts with remote  areas   - The performance of NVF-based rules ↓ 

Horizon of pre-arrival information ↑ - all rules’ performances ↑ initially. Too long look-ahead 

horizons do not help or even deteriorate performance. 
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