
72 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Performance Evaluation of RESTful Web Services

for Mobile Devices

Hatem Hamad, Motaz Saad, and Ramzi Abed

Computer Engineering Department, Islamic University of Gaza, Palestine

Abstract: Smart Mobile devices and web services are becoming very popular. Mobile devices are physically constrained

devices; low processor speed, limited memory, limited battery, and slow intermit wireless connection. This implies to take in

consideration these factors when implementing web services for mobile devices. In this paper, we evaluate the RESTful web

service for mobile devices against conventional SOAP web services. The experimental results show that RESTful web services

outperform conventional SOAP web services. A recommendation to use RESTful web services on mobile devices has been

concluded from experimental result.

Keywords: Mobile Computing, Mobile Web Services, Web Services Performance, RESTful.

Received April 23, 2009; Accepted June 7, 2009

1. Introduction

Like its predecessors, such as the Common Request

Broker Architecture (CORBA), Remote Method

Invocation (RMI) and Distributed Component Object

Model (DCOM), Web Services [24] is a set of

standards and a programming methods for sharing data

between different software applications, moreover

Web services is a standardized way to distribute

services on the Internet.

Web Services achieves its goal in a technology-

neutral manner; it provides well-defined interfaces for

distributed functionalities, which are independent of

the hardware platform, the operating system, and the

programming language. So distributed functionalities,

or services, which may be running on different

hardware platforms, may be running in different

operating systems, or may be written in different

programming languages, can communicate through

web Service interfaces.

Interoperability of Web Services mainly stems from

its Extensible Markup Language (XML) based open

standards. The Simple Object Access Protocol (SOAP)

[8] is defined in XML. Since it is text-based and self-

describing, SOAP messages can convey information

between services in heterogeneous computing

environments without worrying about conversion

problems, there are many other Web Service

specifications. Two of them, which are based on XML,

are Web Service Description Language (WSDL) [4]

and Universal Description, Discovery and Integration

(UDDI) [23]. WSDL defines a standard method of

describing a Web Service and its capability, and UDDI

defines XML-based-rules for publishing Web Service

information. Messages are exchanged through the

SOAP protocol. SOAP works by exchanging

information using GET/POST over HTTP. This allows

the data to be exchanged regardless of where the client

is in the network.

Just as Web Services technology has become an

industry standard for connecting remote and

heterogeneous resources, mobile devices have become

a vital part of people’s everyday life. People use

mobile devices anytime and anywhere, they may use

their mobiles to check Email, access the Internet, or

run other web applications.

Web Services technology recognizes mobile

computing as an area to which it should expand.

Through integration, Web Services enable pervasive

accessibility by allowing for user mobility as it

overcomes the physical location constraints of

conventional computing. However, mobile computing

also requires a technology that connects mobile

systems to a conventional distributed computing

environment. Web Services may be the perfect

candidate for such connection, since a strong

interoperable capability is the key requirement of the

technology. This will be important for its success when

we consider the fact that the mobile computing

environment is much heterogeneous in terms of

hardware platform, operating system, and

programming language. Thus, the integration of mobile

computing with Web Services technology will give

many advantages to both sides. Mobile devices getting

computationally capable, so mobile devices enabled

with web services can be equal participant of web

services architectures (can be web service client or web

service provider).

However, despite the fact that the condition of

mobile computing has so much improved in recent

years [14], applying current Web Service

Performance Evaluation of RESTful Web Services for Mobile Devices 73

communication models to mobile computing may

result in unacceptable performance overheads. This

potential problem comes from two factors. First, the

encoding and decoding of verbose XML-based SOAP

messages consumes resources. Therefore Web Service

participants, particularly mobile clients, may suffer

from poor performance. Second, the performance and

quality gap between wireless and wired

communication will not close quickly. It is caused by

the mobile environment’s constraints like limited

processor speed, limited battery lifetime, and slow

unreliable and intermit connection.

Mobile web services is an open research area [2, 3,

5, 13, 22, 27]. Several messaging optimization

approaches have been introduced to the literature [20,

26, 15, 16, 17, 18, 19, 25] to address web service

performance overhead for mobile devices. As

described previously, applying current Web Service

communication models to mobile computing may

result in unacceptable performance overheads. The

typical web application that requires the transmission

of four to five times more bytes if implemented as a

Web service compared to the same service

implemented as a traditional dynamic program (e.g.

Active Server Page application) [30] (more details in

state-of-art section).

To the best of our knowledge, the performance of

Representational state transfer (RESTful) web services

[6] has not been evaluated on mobile devices. In this

paper, we evaluate the performance of RESTful web

services compared to the performance of conventional

SOAP web services for mobile devices.

Representational state transfer (REST) is a style of

software architecture for distributed hypermedia

systems such as the World Wide Web. It is a style of

web services use. It attempts to emulate HTTP and

similar protocols by constraining the interface to a set

of well-known, standard (generic) operations (e.g.,

GET, POST, PUT, DELETE). Here, the focus is on

interacting with stateful resources, rather than

messages or operations. RESTful offers a perfectly

good solution for the majority of implementations,

with greater flexibility and lower overhead.

The rest of the paper is organized as follows: in

section 2, we review state-of-arts. Section 3 illustrates

RESTful web services. In section 4, we present the

implementation environment. Performance

benchmarks are presented in section 5. Finally, section

6 concludes the paper status.

2. State-Of-Art

Web Services in a mobile computing environment face

performance-degradation problems similar to those of

the conventional distributed computing environment.

So, a primary research issue in the area of mobile Web

Services is the attempt to provide an efficient message

processing scheme while preserving XML’s

interoperability.

XML overhead investigation has been performed

[22]. The investigation evaluated the overhead of a

regular web application compared to a web service that

serves the same business function. The typical web

application that requires the transmission of four to

five times more bytes if implemented as a Web service

compared to the same service implemented as a

traditional dynamic program (e.g. Active Server Page

application). Figure 1 shows the overhead of ASP and

web service.

Works on solving this problem can be categorized

as either individual message optimization or as

message stream optimization [14]. An individual

message optimization approach produces a simplified,

efficient, and self-contained message, which is a

different format (or representation) to XML. The

messages in the different representation can be

converted to and from the XML format, which is called

roundtripping. For example, Fast Infoset (FI) from Sun

Microsystems [17, 19] and XBIS [20, 25] fall into this

category. On the other hand, the message stream

approach optimizes a whole sequence of related

messages, which we define as a stream. This approach

includes a certain form of negotiation to define stream

characteristics, and optimized message representation

in the stream. Examples of this category include Fast

schema from Sun Microsystems [26, 18] and Handheld

Flexible Representation (HHFR) architecture [15, 16].

Table 1 summarize the categorize XML optimization

efforts.

Figure 1. Overhead of server page and Web service [23]

Table 1. Categorized XML optimization efforts.

Individual Message Approach

(Self-contained message)

Steam of Message Approach

(Non Self-Contained Message)

Fast Infoset of Sun

Microsystems

ExtremeFastWS

XML Schema-Based

Compression

Fast Web Service of Sun Microsystems

XML Infoset Encoding (XBIS) Handheld Flexible Representation
(HHRF)

Another message optimization method is to

compress XML – especially when the CPU overhead

required for compression is less than the network

74 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

latency [11, 22]. The object model for Axis2 [1], called

the Axis Object Model (AXIOM) has an interesting

approach for processing headers. Another message

optimization approach is to attaching binary data to

SOAP message. Examples of this include Message

Transmission Optimization Mechanism (MTOM) [9],

XML-binary Optimized Packaging (XOP) [10] and

Direct Internet Message Encapsulation (DIME) [12].

3. RESTful Web Service

REST [6] is a software application architecture

modeled after the way data is represented, accessed,

and modified on the web. In the REST architecture,

data and functionality are considered resources, and

these resources are accessed using Uniform Resource

Identifiers (URIs), typically links on the web. The

resources are acted upon by using a set of simple, well-

defined operations. The REST architecture is

fundamentally client-server architecture, and is

designed to use a stateless communication protocol,

typically HTTP. In the REST architecture, clients and

servers exchange representations of resources using a

standardized interface and protocol. These principles

encourage REST applications to be simple,

lightweight, and have high performance.

RESTful web services [6] are web applications built

upon the REST architecture. They expose resources

(data and functionality) through web URIs, and use the

four main HTTP methods to create, retrieve, update,

and delete resources. RESTful web services typically

map the four main HTTP methods to the so-called

CRUD actions: create, retrieve, update, and delete.

Table 2 shows a mapping of HTTP methods to these

CRUD actions.

Table 2: HTTP Methods and their Corresponding CRUD Action

HTTP Method CRUD Action

GET Retrieve a resource.

POST Create a resource.

PUT Update a resource.

DELETE Delete a resource.

3.1. RESTful Web Services and Other Styles of

Web Services

REST web services [6] share many characteristics with

other styles of web services like remote procedure call

(RPC) and document-based web services that use

SOAP as the underlying protocol, but also differ in

several important ways. RPC and document-based web

services, like REST web services, are designed to be

lightweight, accessible via URIs, and typically use

HTTP as the underlying protocol. REST and SOAP-

based web services are also platform and programming

language independent, and in both architectures clients

and servers are loosely coupled. That is, clients and

servers interact with a limited set of assumptions about

each other.

REST web services were developed largely as an

alternative to some of the perceived drawbacks of

SOAP-based web services. The SOAP protocol was

designed as a way to make remote procedure calls via

HTTP, using XML as the underlying data format, and

using standard XML types. Eventually the RPC aspects

of SOAP web services were augmented with a

document-based architecture, where clients and servers

exchange XML documents to enact some change in the

client or server applications. As the use of SOAP web

services evolved, the architecture was expanded to deal

with more complicated application functionality, like

security and message reliability. As a result,

developing SOAP web services and clients has become

more complicated.

REST web services aim to be simple, and this is

accomplished by limiting the types of operations one

can perform on a resource. REST founders claimed

that it [6]:

• Provides improved response times and server

loading characteristics due to support for caching.

• Improves server scalability by reducing the need to

maintain communication state.

• Requires less client-side software to be written than

other approaches, because a single browser can

access any application and any resource.

• Depends less on vendor software than mechanisms

which layer additional messaging frameworks on

top of HTTP.

• Provides equivalent functionality when compared to

alternative approaches to communication.

• Does not require a separate resource discovery

mechanism, due to the use of hyperlinks in content.

• Provides better long-term compatibility and

evolvability characteristics than RPC. This is due to:

• The capability of document types such as HTML to

evolve without breaking backwards- or forwards-

compatibility.

• The ability of resources to add support for new

content types as they are defined without dropping

or reducing support for older content types (MIME

types).

4. Implementation Details and

Benchmarking Environment

To evaluate the performance of RESTful web services

against conventional SOAP web services, we

implement a RESTful web service and a conventional

web service and develop a web service client on a

mobile device for each class of web services. Next, we

shall illustrate the service implementation, the client

implementation and emulator configuration, and the

benchmarking environment.

Performance Evaluation of RESTful Web Services for Mobile Devices 75

4.1. Service Implementation

We implement RESTful and conventional SOAP web

service and host them on the Glassfish application

server. Glassfish [7] is a web service framework

developed at Sun Microsystems. The service provider,

Glassfish Web Service container runs on IBM

compatible PC with 3.2 GHz processor and 1 GB

RAM, where Windows XP professional with Service

Pack 2 operates. And mobile applications (service

client) implemented using J2ME and runs on Sun

Mobile Emulator (Sun Java™ Wireless toolkit 2.5.2

for CLDC [21]) which was configured to emulate a

VM speed of 512 bytecodes/millisecond, and a

network throughput of 9600 bits/second. Emulators

profile is MIDP 2.1 and its configuration is CDLC 1.1.

The time stamps are measured on mobile side (a

session initiator) using System.currentTimeMillis() of

MIDP 2.1 - CLDC 1.1 that returns 10 milliseconds

precision time stamps. Figure 2 depicts the Emulated

experiment environment. Sun Mobile Emulator is

depicted in the appendix A.

Figure 2. Emulated Experiment Environment for Performance

Evaluation

4.2 Benchmark Configurations

We implement two benchmarks using two different

data types as parameters to the web service: float data

type, and string data type. We measure a total session

time and a message size of service call. Benchmarking

web services are listed below:

4.2.1. String Array Concatenation:

The first benchmark web service is a string array

concatenation service that produces a single

concatenated string of all string in a message (a pure-

text data domain). We measure the response time of

the service call. It includes the communication set-up

latency, the transmission overhead, and the

concatenation operation time. The benchmark focuses

on the performance effect on runtime system by

changing a number of array elements (size of array) in

a message.

4.2.2. Floating Number Array Addition

The second service we benchmark is floating numbers

addition service that returns a summation of all float

numbers of an array in a message. The float numbers

are representing a float data domain. It is remarkable

that conventional Web Services message processing

includes a float-to-text conversion that consumes many

processing cycles. In addition to service response time,

the SOAP application contains an OS level float to-

text conversion overhead. Like string concatenation

service benchmarking, we change the size of the array

to observe the performance state change in the system.

5. Experimental Results

Table 3 shows the benchmarking results of the string

concatenation and float numbers addition web services

which are depicted in Figures 3, and 4. Figure 3 shows

the messages size in bytes for string concatenation and

float addition services. The message size of RESTful

web service is smaller than messages of Conventional

SOAP web service. The figures show higher advantage

of using RESTful web service. Figure 4 shows the

messages response time in milliseconds for string

concatenation and float addition services. The response

time of RESTful web service is smaller than messages

of Conventional SOAP web service. The Figures show

higher advantage of using RESTful web service. The

gap is very large between the response time of

RESTful and the conventional SOAP web service.

Less Message size and response time means less

processing and transmission time which leads to lower

power consumption, and faster web service. This

satisfies the physical constraints of mobile devices and

achieves the quality of service goal. These results

support that RESTful web service is recommended for

mobile devices. Therefore, REST offers a perfectly

good solution for the majority of implementations with

greater flexibility and lower overhead

Table 3. Service Response Time (Milliseconds) and Message Size (Bytes) of String Concatenation and float addition service.

Message Size (byte) Time (Milliseconds)

SOAP/HTTP REST (HTTP) SOAP/HTTP REST (HTTP)

Number

of array

elements
String

Concatenation
Float

Numbers

Addition

String
Concatenation

Float
Numbers

Addition

String
Concatenation

Float
Numbers

Addition

String
Concatenation

Float
Numbers

Addition

2 351 357 39 32 781 781 359 359

3 371 383 48 36 828 781 344 407

4 395 409 63 35 828 922 359 375

5 418 435 76 39 969 1016 360 359

6 443 461 93 43 875 953 359 359

7 465 487 104 47 875 875 469 360

8 493 513 127 51 984 875 437 344

76 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Figure 3. RESTful vs. SOAP message sizes of string concatenation and float addition service.

Figure 4. RESTful vs. SOAP Response time of string concatenation and float addition service.

6. Conclusion

We have evaluated a RESTful web service for mobile

devices, where we developed RESTful and

conventional SOAP benchmarking web service.

Benchmarking includes string concatenation and float

number addition web services. The performance

evaluation results show the advantages of using

RESTful web services over conventional web services

for mobile devices. Advantages include less message

sizes and response time. Results of performance

comparison between conventional SOAP and RESTful

show the obvious high performance RESTful over

SOAP. Therefore, RESTful offers a perfectly good

solution for the majority of implementations, with

higher flexibility and lower overhead.

Acknowledgments

We would like to thank Dr. Rebhi S. Baraka for his

comments.

References

[1] Apache AXIS2, http://ws.apache.org/axis2.

[2] Berger, S., McFaddin, S., Narayanaswami C.,

Raghunath M., “Web services on mobile devices-

implementation and experience," Proc. Of 5th

IEEE Workshop on Mobile Computing Systems

and Applications, 2003.

[3] Cheng S., Liu J., Kao J., Chen C., “A New

Framework for Mobile Web Services," Proc. of

the 2002 Symposium on Applications and the

Internet (SAINT.02w).

[4] Chinnici R., Moreau J., Weerawarana S., “Web

Services Description Language (WSDL) Version

2.0 Part 1: Core Language," W3C

Recommendation, June 2007

[5] Chu H, You C, Teng C, “Challenges: wireless

Web services,” Proc. Of 10th International

Conference On Parallel and Distributed Systems,

2004 (ICPADS’04).

[6] Fielding R., “Architectural Styles and the Design

of Network-based Software Architectures," PhD

Dissertation, University of California, Irvine,

California, USA, 2000.

[7] GlassFish - Open Source Application Server

https://glassfish.dev.java.net

[8] Gudgin M., Hadley M., Mendelsohn N., Moreau

J., and Nielsen H., “SOAP Version 1.2 Part 1:

Messaging Framework," W3C Recommendation,

June 2003.

[9] Gudgin M., Mendelsohn N., Nottingham M, and

Ruellan H, “SOAP Message Transmission

Optimization Mechanism (MTOM),” W3C

Recommendation, 2005.

[10] Gudgin M., Mendelsohn N., Nottingham M, and

Ruellan H, “XML-binary Optimized Packaging

(XOP),” W3C Recommendation, 2005.

Performance Evaluation of RESTful Web Services for Mobile Devices 77

[11] Mani A. and Nagarajan A. “Understanding

quality of service for Web services," http://www-

106.ibm.com/developerworks/library/ws-

quality.html, 2002.

[12] Nielsen H., Sanders H., Butek R., and Nash S.,

“Direct Internet Message Encapsulation,”

Internet-Draft, June 2002 expires December

2002, http://www.ietf.org/internet-drafts/draft-

nielsen-dime-02.txt.

[13] Oh S. “HHFR: A new architecture for Mobile

Web Services Principles and Implementations,”

Technical paper, 2005

[14] Oh S. “Web Service Architecture For Mobile

Computing,” PhD Dissertation, University of

Indiana, Irvine, USA, 2006.

[15] Oh S., Bulut H., Uyar A., Wu W., and Fox G.C.,

“Optimized Communication using the SOAP

Infoset for Mobile Multimedia Collaboration,” In

Proceedings of The Fifth International

Symposium on Collaborative Technologies and

Systems (CTS2005), St. Louis, Missouri, USA,

2005.

[16] Oh S., Fox G., “Optimizing Web Service

Messaging Performance in Mobile Computing,”

Community Grids Laboratory Technical Paper,

2006.

[17] Sandoz P., Pericas-Geertsen S., “Fast Infoset @

Java.net,” In Proc. of XTech 2005, Amsterdam,

Netherands, 2005.

[18] Sandoz P., Pericas-Geertsen S., Kawaguchi K.,

Hadley M, and Pelegri-Llopart E., “Fast Web

Services,” Java developer’s Journal Technical

Article, 2003.

[19] Sandoz P., triglia A., and Pericas-Geertsen S.,

“Fast Infoset,” Java developer’s Journal

Technical Article, 2004.

[20] Sosnoski D., “Improve XML Transport

performance Part 1 and 2,” IBM developersWork

Article, June 2004. http://www-

128.ibm.com/developerworks/xml/library/x-

trans1.html.

[21] Sun Java Wireless Toolkit for CLDC:

http://java.sun.com/products/sjwtoolkit.

[22] Tian M, Voigt T, Naumowicz , Ritter H,

Schiller J., “Performance Considerations for

Mobile Web Services," Elsevier Computer

Communications Journal, Volume 27, Issue 11 ,

Pages 1097-1105, 2004.

[23] UDDI OASIS Standard: http://uddi.xml.org.

[24] W3C Web Services Activity

http://www.w3.org/2002/ws/.

[25] XBIS XML Information Set Encoding,

http://xbis.sourceforge.net/.

[26] XMLBeans, Apache XML Project,

http://xmlbeans.apache.org/.

[27] Zahreddine W, Mahmoud Q, “An agent-based

approach to composite mobile Web services,”

Proc. of the 19th International Conference on

Advanced Information Networking and

Applications (AINA’05), 2005.

Appendix A: Sun Emulator Configurations

Figure A.1: Sum Mobile Emulator (Sun Java Wireless toolkit)

78 International Arab Journal of e-Technology, Vol. 1, No. 3, January 2010

Figure A.2: Sun Java Wireless toolkit preferences

Hatem Hammad was born in

Rafah, Palestine on August 31,

1961; he received the PhD in

informatics from Technical

University Darmstadt, Germany in

1995.from 1995 till now he is

being a lecturer in computer

engineering Dept. Islamic University of Gaza. His

research interests include Web technologies and

mobile computing.

Motaz Saad has received his BSc

in Information Technolology in

2006 from the Islamic university of

Gaza, Palestine, currently working

as teaching assistant at the same

university since 2006. He is MSc

student in computer engineering at

the same university. His area of

research is Data Mining , Web Services, Natural

Language Processing, and Open Source Software.

Ramzi Abed was born in Jeddah,

Saudi Arabia, on July, 1976, he

received the B. Sc. Degree in Math

and Computer Science from the

Islamic University of Gaza,

Palestine in 1999. He is an M. Sc.

Student in Computer Engineering at

the Islamic University of Gaza. From 1999 till now

he is being a teaching assistant in Information

Technology Faculty, the Islamic University of Gaza.

His research interests include Information Security,

Network Security, and Web Services Technologies

and Security. Abed gets an MCP certificate.

