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This paper focuses on introducing and investigating the performance of a new passive control device for

stay cable in cable-stayed bridges made with shape-memory alloys (SMA). The superelasticity and

damping capability of SMA is sought in this study to develop a supplementary energy dissipation device

for stay cable. A linear model of a sag cable and a one-dimensional constitutive model for the SMA are

used. The problem of the optimal design of the device is studied. In the optimization problem, an energy

criterion associated with the concept of optimal performance of the hysteretic connection is used. The

maximumdissipation energy depends on the cross-sectional area, the length, and the location of the SMA

on the cable. The effectiveness of the SMA damper in controlling the cable displacement is assessed.

Furthermore, a study is conducted to determine the sensitivity of the cable response to the properties of

the SMA device. The comparison between the SMA damper and a more classical passive control energy

dissipation device, i.e., the tuned mass damper (TMD), is carried out. The numerical results show the

effectiveness of the SMA damper to damp the high free vibration and the harmonic vibration better than

an optimal TMD.

& 2010 Elsevier Ltd. All rights reserved.

1. Introduction

Over the last few decades, cable-stayed bridges have attracted

great interest because of their aesthetics, structural efficiency, and

economy. This type of construction has become popularworldwide

in recent years, largely due to the rapid progress in design

methodology and construction technologies [26]. However, stay

cables are critical structural components in these bridges. Owing to

their large flexibility, relatively small mass and extremely low

damping, stay cables have frequently exhibited large-amplitude

vibrations under wind, wind–rain and support motion. Aerody-

namic instability of stay cables with extremely large oscillation

amplitude under specific rain and wind conditions has been

observed in a number of cable-stayed bridges worldwide, and it

is a conundrum to civil engineers [29,39]. Therefore, themitigation

of dynamic response quantities induced by environmental loads is

of vital importance in terms of safety and serviceability [2,25].

In the past decade, cable vibration control techniques bymeans

of passive countermeasures, including aerodynamic, mecha-

nical and structural means, have been broadly investigated and

successfully implemented [17]. In the meantime, researchers have

also studied the active vibration control of cables by applying

transverse force control and axial stiffness or tension (support

motion) control [30,35].

A lot of researches have been conducted to investigate possible

damping systems and to determine the optimal size of viscous

dampers attached to cables for vibration control. Kovacs [15] was

among thefirst to investigate themaximumattainabledamping ratio

for a taut cable with a viscous damper. Pachero et al. [3] proposed a

‘‘universal estimation curve’’ of normalized modal damping ratios

versus normalized damper coefficient for a horizontal taut string

model. This ‘‘universal estimation curve’’ is generalized by Cremona

[5] for inclined cables by taking account of the sag-extensibility

parameter. A transfer matrix formulation is developed by Xu et al.

[40] to estimate themodal damping ratio of inclined cables attached

with oil dampers.Main et al. [18] proposed an analytical formulation

of a taut cablewithanattacheddamper. Theoretical studieswere also

carried out to evaluate the increased damping level of a stay cable

after installing passive viscous dampers [2]. It was found that there

exists an optimum viscous coefficient of the damper by which the

modal damping ratio of a stay cable can reach its maximum for a

given mode of vibration. However, this passive device suffers from

several drawbacks such as themodal damping ratio of the stay cable

decreases rapidly when the viscous coefficient deviates from its

optimal value. The use of a variable-orifice viscous damper and

electrorheological ormagnetorheological (ER/MR) fluid damperwith

semi-active control may be an alternative [38]. However, the semi-

active control device is more complicated to implement. Another
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candidate that has a great potential for vibration control of stay cable

subjected to wind and wind/rain loads is a superelastic shape-

memory alloy (SMA) damper with the advantages of large damping

capacity, self-centering ability, high fatigue-resistant performance

and good corrosion resistance [21].

As a natural consequence of the microscopic behavior, at the

macroscopic level shape-memory solids present the superelastic

effect (the recovery of large deformations in loading–unloading

cycles, occurring at sufficiently high temperatures) and the shape-

memory effect (the recovery of large deformations by a combina-

tion of mechanical and thermal processes).

These unique properties enable SMA to be used as actuators,

passive energy dissipators and dampers for civil structural control

[14,1,11,32,31].When integratedwith civil structures, SMAs can be

passive, semi-active, or active components to reduce damage

caused by environmental impacts.

Using SMAs for passive structure control relies on the SMA’s

damping capacity, which represents its ability to dissipate vibra-

tion energy of structures subject to dynamic loading.

Several authors investigated the energy dissipation of widely

used Nitinol superelastic SMA wires. Dolce and Cardone [23]

studied superelastic Nitinol wires subjected to tension loading.

They observed the dependence of the damping capacity on

temperature, loading frequency and the number of loading cycles.

Grandhi and Wolons [10]Q2 proposed using a complex modulus

approach to characterize the damping capacity of superelastic SMA

wires for convenient integrationwith structure dynamics. A super-

elastic SMA wire demonstrates the damping capacity not only

under tension loading, but also under cyclic bending [20]. The

numerical results showed that the energy dissipated by the

superelastic SMA wire is highly sensitive to its diameter, i.e., the

thicker the SMA wire, more energy is dissipated.

SMA energy dissipation devices have been seen in the forms of

braces for framed structures [37], connection elements for columns

[16], retrofitting devices for historic building [24] and dampers for

simply supported bridges [28].

Recently, as large cross-sectional area SMA elements are becom-

ing available, and studies on the properties of SMA bars have

attracted more attentions [23,36]. As indicated in Ref. [36], the

damping capacity of a martensite Nitinol bar under tension–

compression cycles increases with increasing strain amplitude,

but decreases with loading cycles and then reaches a stable

minimum value. The optimization of the cross-sectional area and

the length of the SMA device is presented in [22]. The dynamic

performance of the device is evaluated by the steady-state response

at the resonance point in order to focus on the damping effect.

Analytical formulation utilizing the equivalent linearization

approach successfully leads to the basic correlation between the

hysteresis shape and the damping effect.

To explore the potentials of SMA based energy dissipation in

passive structure control, this paper presents an approach to study

the damping vibration of stay cables in a cable-stayed bridge by

using a SMA energy dissipation devices with superelastic hyster-

esis. The first part of the paper presents the general three-

dimensional equations of a stay cable subjected to external

dynamic loading and controlled by a distribution of dampers in

the transverse direction, detailing the hypothesis of the problem

linearization. The secondpart of the paper focuses on three aspects:

formulating a mathematical model of the cable with one SMA

damper using a Galerkin approximation, verifying the feasibility of

the SMA to control the stay cable, and optimizing the SMA device

using numerical method. For this simulation a one-dimensional

model for superelastic SMA [9] is considered. Finally, the third part

of the paper, focuses on the comparison between the TMD and the

SMA energy dissipation device to control the stay cable free and

harmonic transverse vibration.

2. Dynamic equations formulation of a sag stay cable

A cable is a spatially distributed system, whose transversal

dimensions are significantly smaller than longitudinal one. Stay

cables have very low levels of inherent mechanical damping and

the mechanisms associated with the observed large-amplitude

vibrations are still not fully understood. This section has two goals;

the first goal is to present the general three-dimensional equations

off a stay cable subjected to external dynamic loading and

controlled by a distribution of dampers in the transverse direction.

The second goal is to introduce the hypothesis leading to the

problem linearization; i.e., the assumption of a small sag and the

uncoupling of the in-plane and out-of-plane behaviors.

We start considering a cable connecting twopoints denoted as A

and B and placed to a distance L. The segment connecting A and B

defines an angle y versus horizontal axis. For the case of only body

load, the cable configuration is planar and we indicate with Axy an

orthogonal reference system defined within such a plane. The

planar oscillations can occur in the transverse direction (y-axis) as

shown in Fig. 1 and non-planar oscillations can occur in direction

Az, so that Axyz forms a direct orthogonal frame.

The equations governing the static equilibrium of an inclined

cable element subjected only to dead load (gravity) are

@

@s
T
dx

ds

� �

¼mgsiny

@

@s
T
dy

ds

� �

¼�mgcosy

8

>

>

>

<

>

>

>

:

ð1Þ

where s is the Lagrangian co-ordinate, T is the static cable tension,

m is the mass of the cable per unit length, and g is the acceleration

due to gravity.

A non-linear dynamic model of an inclined cable is built in the

coordinate system (Axyz) by three coupled partial differential

equations [13]:
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ð2Þ

where t is the dynamic cable tension; u, v and w are the cable

dynamic displacement components in the x-, y- and z-directions,

respectively, measured from the position of the static equilibrium
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Fig. 1. Schematic diagram of an inclined stay cable.
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of the cable; Fx, Fy and Fz are distributed external dynamic loading

per unit length in the x-, y- and z-directions, respectively; fc, i are

concentrated external force applied by the ith external damper on

the cable at the location sc, i in the transverse direction; sc, i is the

Lagrangian co-ordinate of the ith dampers measured from the left

support of the cable; t is the time; M is the total number of the

dampers; dð�Þ is the dirac’s delta function.

We consider the following boundary conditions for the cable:

uð0,tÞ ¼ vð0,tÞ ¼wð0,tÞ ¼ 0

uðL,tÞ ¼ vðL,tÞ ¼wðL,tÞ ¼ 0

(

ð3Þ

2.1. Equation of motion for a small sag cable

In a cable-stayed bridge, the stay cables are generally strongly

pre-constrained. Thus, the sag is assumed to be small, ds� dx, and

the static tension in the cable is assumed to be constant along the

span. Due to these two hypotheses, the static shape of an ‘‘inclined

cable’’ is then close to the chord. Accordingly, it is reasonable to

approximate this deformation by a parabola whose equation is

defined in the local coordinate system (Axyz) as follows [4]:

yðxÞ ¼ 4d
x

L
� x

L

� �2
� �

ð4Þ

where d¼mgL2cosy=8T is the sag at mid-span.

Using Eqs. (1) governing the static equilibrium and introducing

the hypothesis of a small sag cable, system (2) is simplified:

@
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ð5Þ

Finally, it is assumed that the dynamic tension of the cable is related

to the non-linear dynamic strain by the following relation [4]:

tðx,tÞ ¼ EAeðx,tÞ ð6Þ

where E is Young’smodulus,A is the constant cross-sectional area of

the cable, and eðx,tÞ is the non-linear axial strain in the cable defined

as follows [6]:

eðx,tÞ � eðtÞ ¼ @u

@x
þ dy

dx

@v

@x
þ 1

2

@u

@x

� �2

þ @v

@x

� �2

þ @w

@x

� �2
" #

ð7Þ

2.2. Non-coupled model of small sag stay cable

For a small sag, the cable behaves as a chord; its transversal

frequency is smaller than its longitudinal frequency. Therefore, the

longitudinal inertia forcem@2u=@t2 is assumed to be negligible, and

the longitudinal deformation to be small [6].When considering the

longitudinal external forces to be zero, the first equation of system

(5) shows that the dynamic tension in the cable can be assumed

constant along the cable span. Thus, introducing this result in the

two other Eqs. (5), we get
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¼ 0
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2
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>

>

:

ð8Þ

In order to linearize the previous equations of the small sag cable,

the following hypothesis are assumed: small deformations which

implies that second order terms can be neglected, and the dynamic

tension is negligible compared to be the static tension. Therefore,

the dynamic cable tension can be defined by

tðtÞ ¼ EA
@u

@x
þ dy

dx

@v

@x

� �

, ð9Þ

and the last two equations of system (8) are written as

T
@2v

@x2
þt
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2
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X

M
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T
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:

ð10Þ

The linear theory applied to a cable with a small sag shows that

in-plane and out-of-plane behaviors are essentially uncoupled

because this motion involves no additional cable tension (to the

first order); the out-of-plane modes and the in-plane antisym-

metric modes are the same as those of a taut string, while the

in-plane symmetric modes are controlled by the Irvine coefficient.

Using Eq. (9), the longitudinal displacement is deducted from

the first equation of system (8), i.e.:

@2u

@x2
¼� @

@x

dy

dx

@v

@x

� �

ð11Þ

By double-integrating equation (11) and introducing the boundary

conditions as indicated by system (3), the dynamic tension is given by

tðtÞ ¼� EA

L

d2y

dx
2

Z L

0
vðx,tÞ dx ð12Þ

By replacing Eq. (12) in the first equation of system (10), the

transversal displacement of the stay cable verifies this linear equa-

tion:

m
@2v

@t2
�T

@2v

@x2
þEA

L

d2y

dx
2

� �2 Z L

0
vðx,tÞ dx¼ Fyðx,tÞ�

X

M

i ¼ 1

fc,iðtÞdðx�xc,iÞ

ð13Þ

where d2y=dx
2 and dy=dx can be deducted from Eq. (4).

This linear model is obtained according to two main hypoth-

eses; the sag cable is small and the in-plane and out-of-plane

behaviors are essentially uncoupled. This last model is tackled to

study the control of the stay cable considering one SMA damper

attached near the cable’s lower end.

3. Control of stay cable transverse vibration with one SMA

damper

In this section, we consider a stay cable suspended between two

supports and equipped by a SMA damper installed at a distance xc
from support A as shown in Fig. 2. Generally, the damper location

on the stay cable has to be near a support because it is the most

practical position. We assume that the SMA damper produces a

force fc in the y-direction. Considering the end-supports of the cable
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Fig. 2. In-plane stay cable with sag attached with one transverse SMA.
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to be fixed, the combined stay cable/SMA system has the following

partial differential equation of motion derived from Eq. (13):

m €v�Tv00þ EA

L
ðy00Þ2

Z L

0
v dx¼ Fy�fcðtÞdðx�xcÞ ð14Þ

where we now use notation, ðuÞ and ð_Þ to denote partial derivatives

with respect to x and t, respectively, and where we recall that

v¼ vðx,tÞ, Fy ¼ Fyðx,tÞ, and y¼ yðxÞ ð15Þ

3.1. Approximate series solutions to equations of motion

The transverse deflexion can be approximated using a finite series

v¼
X

N

i ¼ 1

aiðtÞjiðxÞ ð16Þ

whereaiðtÞ are non-dimensionalmodal participation factors andjiðxÞ
are a set of mode shape functions, assumed to be continuous and to

satisfy the geometric boundary conditions, i.e., jið0Þ ¼ jiðLÞ ¼ 0.

To compute the damping and responses of the cable with the

SMA damper, we assume sinusoidal shape functions, jiðxÞ ¼
sinðipx=LÞ, identical to the mode shapes of the cable without the

damper. AdoptingGalerkin approximationbased on the freemodes

of the stay cable, the factors aiðtÞ satisfy

mii €ai ðtÞþðkiiþl2miiÞaiðtÞ ¼ Fyi�fcðtÞjiðxcÞ for i¼ 1 . . .N ð17Þ

where

l2 ¼ EA
L

mgcosy
T

� �2

mii ¼m
R L
0 jiðxÞjiðxÞ dx¼mL

2

kii ¼ T
R L
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:

ð18Þ

Weobserve that thesystemofdynamicalequations (17)aredecoupled

in all terms except than the term fc(t) induced by the presence of the

SMA damper. So the SMA damper introduces non-linearity into

combined linear cable-damper system and Newmark numerical

method is used to compute the dynamic response of the cable.

In the following we detail the expression of the damping force

fc(t), which will have a form clearly depending on the SMA

constitutive behavior.

3.2. Constitutive model for the SMA system

To reproduce the superelastic behavior of the SMA element

introduced in the previous section, we consider the one-dimen-

sional model proposed in Ref. [9]. This model considers one scalar

internal variable, xs, representing the martensite fraction, and two

processes which may produce martensite fraction variations: the

conversionof austenite intomartensite (A�!S), and the conversion

of martensite into austenite (S�!A).

Following experimental evidence, both the processes are gov-

erned by linear kinetic rules in terms of the uniaxial stress s. In
particular, the activation conditions for the conversion of austenite

into martensite are

sAS
s o jsjosAS

f and _jsj40 ð19Þ

wheresAS
s andsAS

f arematerial parameters, j � j is the absolute value
and a superpose dot indicates a time-derivative. The corresponding

evolution equation is set equal to

_xs ¼�ð1�xsÞ _jsj
jsj�sAS

f

ð20Þ

On the other hand, the activation conditions for the conversion of

martensite into austenite are

sSA
f o jsjosSA

s and _jsjo0 ð21Þ

where sSA
f and sSA

s are material parameters. The corresponding

evolution equation is set equal to

_xs ¼ xs

_jsj
jsj�sSA

f

ð22Þ

Limiting the discussion to a small deformation regime, the model

proposed in Ref. [9] assumes an additive decomposition of the total

strain e:

e¼ eeþeLxs sgnðsÞ ð23Þ

where ee is the elastic strain, eL is themaximum residual strain and

sgnð�Þ is the sign function. The maximum residual strain eL,
regarded as a material constant, is a measure of the maximum

deformation obtainable only by multiple-variant martensite det-

winning, hence, a measure of the maximum deformation obtain-

able aligning all the single-variant martensites in one direction.

Moreover, the presence of sgnðsÞ is the later equation indicates that

the direction of the effect relative to the martensite fraction xs is

governed by the stress. Finally, the elastic strain is assumed to be

linearly related to the stress:

s¼ Eee ð24Þ

with E the elastic modulus.

The adopted SMA model presents many advantages, such as

robustness and simplicity of algorithmic implementation as

detailed in Ref. [9].

3.3. Optimization of the cross-sectional area and the length of the SMA

wires

In the design of SMA-based damping devices to control a stay

cable dynamic, one of the most practical problems to be faced is

choosing the appropriate dimensions of SMA elements.

It has been observed that a cable rain/wind-induced response

tends to be dominated by the first mode or by the first few modes

[34]. For simplicity, in the following analysis, we consider just one

vibration mode of the cable. Then the equation of motion of the

system is

m11 €a1 ðtÞþðk11þl2m11Þa1ðtÞ ¼ Fy1�fcðtÞj1ðxcÞ ð25Þ

In order to give an optimal parameters for the SMA, such as for the

cross-sectional area and the length of wires, different criteria may

be followed. The most useful criterion design refers to energy-

basedmethods [12]. The idea is that the SMA performs at its best if

it is capable of dissipating asmuch as possible of the total energy of

the structure.

The energy balance of the equilibrium equation (25) is defined

as follows:

EkðtÞþEeðtÞ ¼ EiðtÞþEcðtÞ ð26Þ

where Ek(t) is the stay cable kinetic energy defined as

EkðtÞ ¼ 1
2m11 _a1

2ðtÞ

EeðtÞ is the stay cable elastic energy defined as

EeðtÞ ¼ 1
2ðk11þl2m11Þa2

1ðtÞ

Ei(t) is the input energy defined as

EiðtÞ ¼
Z t

0
Fy1ðtÞ _a1 ðtÞ dt
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Ec(t) is the energy associated with the SMA device defined as

EcðtÞ ¼ EecðtÞþEdcðtÞ

This energy term can be considered as the sum of an elastic term,

Eec(t), and of a dissipative term, Edc(t). The dissipative term is the

area of hysteresis loop.

The optimal device in free-vibration is chosen when the

maximum value of the energy dissipated in the SMA device, Edc(t),

is considered. For a fixed position of the SMA, we decided to

maximize the force exerted by SMA fc(t) with the hope that this

should load also to augmentation of dissipated energy. The force

exerted by SMA has this expression

fcðtÞ ¼ EASMA
vðxc ,tÞ
LSMA

�xseL signðeÞ
� �

ð27Þ

where ASMA and LSMA are respectively the cross-sectional area and

the length of the SMA device, and v(xc,t) is the cable transverse

displacement at location xc. For one mode, vðxc ,tÞ ¼ a1ðtÞj1ðxcÞ.
From Eq. (27), it is clear that to maximize the value of force

damper the cross-sectional area of the SMA device should be

chosen as big as possible and the lengthof the SMAdevice shouldbe

chosen as short as passible. Therefore, the appropriate SMA device

length should be determined by the following condition:

emax
SMA ¼ eASf ð28Þ

where eASf is the strain corresponds to the stress finish of the

martensite transformation sAS
f as indicate in Fig. 3. Thus, the

optimal length of the SMA device is

LoptSMA ¼
jvmaxðxc ,tÞj

eAS
f

ð29Þ

3.4. Dynamic properties and response of the combined cable-SMA

damper system

To investigate the effects of the SMA damper parameters and

its location on the damping capability and control efficacy of

SMA damper, the stay cablemodel, whichwas built andwhichwill

be studied in Civil Engineering Laboratory at the University of

Tunis, was used to carry out the investigation in this study. The

geometric and material properties of the stay cable are listed in

Table 1.

The internal damping of the cable is not considered in this

work. The stay cable is very flexible structure. However, in this

study, the cable is chosen such as its first modal natural frequency,

f1, is equal to 1 Hz. The static tension of this stay cable can be

obtained based on the identified first modal natural frequency by

using the following expression [13]:

T ¼ 4mL2f 21 ¼ 38:4 N ð30Þ

The free-vibration of the stay cable is examined under three

different scenarios to determine the effect of the SMA damper

cross-sectional area, the effect of the SMA damper length, and

finally, the effect of the location of the attached point of the SMA

device on the cable. The numerical simulation of the algorithmic

model of the SMA is illustratedby Fig. 3 considering this data for the

SMA element.

E¼ 50 000 MPa, eL ¼ 8%

sAS
s ¼ 500 MPa, sAS

f ¼ 600 MPa

sSA
s ¼ 250 MPa, sSA

f ¼ 200 MPa

8

>

>

<

>

>

:

ð31Þ

3.4.1. Effect of the SMA damper cross-sectional area

To analyse the effect of the SMA cross-sectional area, the non-

dimensional modal participation factor for the first mode of the

stay cable is plotted by solving Eq. (25) and considering that the

SMA damper is located at xc/L¼0.1 and the SMA length is

LSMA¼230 mm chosen from Eq. (29). Fig. 4 presents the variation

of the cable response according to the variation of the SMA cross-

sectional area, on the left, and the variation of the SMA force, on the

right. Three values of the wire diameter of the SMA damper are

chosen. It is clear from this figure that the damping of the stay cable

transverse vibration increases while increasing the SMA damper

cross-sectional area. This numerical study confirms the analytical

conclusion from Eq. (27) concerning the optimization of the SMA

wire section.

From this simulationwe can observe that the SMAdamper is not

able to control the small vibration because the SMA deformation is

smaller than 1%.

3.4.2. Effect of the length of the SMA damper

In this example, the wire diameter of the SMA damper and the

location of the SMAdamper are fixed atDSMA¼ 0.2 mmand xc/L¼0.1,

respectively, while the length of the SMA is varied as 230, 550, and

750 mm. The steady-state response of the cable versus dimensional

time is plotted on the left of Fig. 5, and, on the right, the force SMA

damper is plotted versus the displacement of the wire SMA for each

LSMA. The damping of the stay cable transverse vibration increases

while decreasing the length of the SMAdamper. Thewire SMA length

has more important effect on the small vibrations.
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Fig. 3. Uniaxial test: numerical simulation of the complete tension–compression transformation cycle (left) and numerical simulation of the multiple tension–compression

transformation cycles (right).

Table 1

Geometric and properties of the stay cable model.

Cable length L (m) 4.00

Mass per unit length m (kg m�1) 0.6

Inclination angle y (deg) 30

Elastic modulus E (1011Nm2) 0.9
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4. Comparison between SMA damper and TMD damper to

control the stay cable

The real uses of the control systems of the stay cable are the TMD,

the cross-ties system, and the MR damper. However, the cross-ties

systemperturbs theaestheticsof thebridgeandthemainapplicationof

MR is the semi-active control. For this, we choose to compare the SMA

with regard to another passive system widely used in practice.

The well known passive control energy dissipation devices in

structure control is the tuned mass damper (TMD), which system

has been widely used in civil engineering. A large number of

buildings, such as Citicorp center, and several bridges, such as

Normandie cable-stayed bridge, particularly footbridges such as

Millenium bridge, are now equipped with TMDs [2]. The TMDs are

also used to control stay cable in cable-stayed bridges. Tunedmass

damper-magnetorheological (TMD-MR) damper for control stay

cable is proposed by [8,33]. Analytical, numerical, and experi-

mental studies showed the efficiency of this damper and its

practical interest to control stay cable. Ref. [7] used a TMD damper

to control the in-plane vibration of two stay cables. The TMD is

placed between the twin cables at their midpoints where a

significant reduction in vibration levels is notified.

In this section, the idea of the comparison between the optimal

TMD and the SMA damper to control the same stay cable that was

introduced in the previous section is investigated. The TMD device

is considered attached at the midpoint of the cable, optimal
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Fig. 4. Cross-sectional area effect of the SMA damper.
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Fig. 6. Combined stay cable with TMD (left) and with SMA damper (right).
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location, as indicated in Fig. 6. In this section, for simplicity, the sag

cable is not considered. The equations of the model cable-TMD

system are written as follows:

ðm11þm�Þ €a1 ðtÞþm� €y�þk11a1ðtÞ ¼ Fy1

m� €y�þm� €a1 ðtÞþc� _y�þk�y� ¼ 0:

�

ð32Þ

where m�, k�, and c� are the mass, the stiffness and the damping

coefficient of the TMD, respectively. y� is relative displacement of

the TMD with respect to cable.

The non-dimensional model of the system can be written as

ð1þmÞ €a1þ
ffiffiffiffi

m
p €Y� þa1 ¼

Fy1

m11o2
1

€Y �þ ffiffiffiffi

m
p

€a1þ2zp _Y �þp2Y� ¼ 0:

8

>

<

>

:

ð33Þ

with

m¼ m�

m11
, o� ¼

ffiffiffiffiffiffiffi

k�

m�

r

, o1 ¼

ffiffiffiffiffiffiffiffiffi

k11
m11

s

t¼o1t, _Y� ¼ dY
�

dt
, Y� ¼

ffiffiffiffi

1

m

s

y�

p¼o�

o1
, z¼ c�

2m�o�

8

>

>

>

>

>

>

>

>

>

>

<

>

>

>

>

>

>

>

>

>

>

:

ð34Þ

The non-dimensional TMD’s parameters m, p, and z are, respec-

tively, related to the dimensional TMD’s ones m�, k�, and c�. The

optimal parameters of TMD depend on the type of excitation.

However, the optimal design of the TMD for a fixed ratio of the TMD

mass for free vibration [27] are

poptm ¼ 1

1þm

zoptm ¼
ffiffiffiffiffiffiffiffiffiffiffi

m

1þm

r

8

>

>

>

<

>

>

>

:

ð35Þ

while for an harmonic excitation [19] they are

poptm ¼ 1

1þm

z
opt
m ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3m

8ð1þmÞ

s

8

>

>

>

>

<

>

>

>

>

:

ð36Þ

In Fig. 7 the free-response of the stay cable is plotted when it is

controlled by TMD and SMA damper, solving, respectively, system

(32) and system (25)without external force. The TMD is attached in

the midpoint of the cable and these optimal parameters are

obtained from system (35) considering m¼ 5%. On the other hand,

SMA damper is placed near the end with xc/L¼0.1. This position is

not optimal but it is the most practical position in reality. The

length and the cross-sectional area of SMA damper are fixed from

the parametric study made in the previous section. These para-

meters took the optimal values: LSMA¼230 mmandDSMA¼0.2 mm.

Fig. 7 shows that the SMA, in its non-optimal position, is able to

damp only the high free vibration of the stay cable better than the

optimal TMD in its optimal position. However, it is able to damp the

harmonic excitationmore better than the optimal TMDas shown in

Fig. 8. The parameters of the SMA are always the samewhereas the

optimal parameters of the TMD are obtained in this case according

to formula (36).

FromFig. 7,we canobserve that the largest vibration response of

the SMA dampers controlled cable is around 50% of the one

obtained using the TMDs, and the vibration decay speed of the

SMAcontrolled cable ismuch faster than that of the TMDcontrolled

cable, suggesting that the proposed SMAdamper is very effective to

reduce structural response. An equivalent viscous damping value of

the TMD is 7.3% however the equivalent viscous damping value of

the shape-memory alloys is 17.45% when we consider only the

vibration response before the stabilization of the oscillation (2 s).

The only one favors of TMD, in free vibration, is able to better

damp out the small vibrations.

From the right of Fig. 8 it is observed that without any damping

device the cable vibration amplitude is much larger than when the

SMA damper is installed.
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5. Conclusions

A numerical study on the oscillation mitigation of a combined

cable-SMAdamper systemhas been conducted. The purpose of this

investigation is to devise a SMA damper with superelastic proper-

ties to eliminate most types of oscillations and to understand the

optimal parameters such as section and length of the SMA.

The simulation on a cable model with SMA damper showed the

excellent property of energydissipation of the SMAand their ability

to suppress the cable vibration. The performance of the SMA

damper is notably dependent on the cross-sectional area, the

length and the position of the SMA. The cross-sectional area and

the length of the SMA device should be chosen, respectively, as big

as possible and as short as possible. Finally, the comparison from

the SMA damper and the well known passive control energy

dissipation devices in structure control, the TMD, showed that

the SMA, in its non-optimal position, is able to damp the high free

vibration of the stay cable better than the optimal TMD, in its

optimal position, and to damp the harmonic excitationmore better

than the optimal TMD.
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