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Abstract

Symmetry is one of the important cues for human and

machine perception of the world. For over three decades,

automatic symmetry detection from images/patterns has

been a standing topic in computer vision. We present a

timely, systematic, and quantitative performance evaluation

of three state of the art discrete symmetry detection algo-

rithms. This evaluation scheme includes a set of carefully

chosen synthetic and real images presenting justified, un-

ambiguous single or multiple dominant symmetries, and a

pair of well-defined success rates for validation. We make

our 176 test images with associated hand-labeled ground

truth publicly available with this paper. In addition, we ex-

plore the potential contribution of symmetry detection for

object recognition by testing the symmetry detection algo-

rithm on three publicly available object recognition image

sets (PASCAL VOC’07, MSRC and Caltech-256). Our re-

sults indicate that even after several decades of effort, sym-

metry detection in real-world images remains a challeng-

ing, unsolved problem in computer vision. Meanwhile, we

illustrate its future potential in object recognition.

1. Motivation

Symmetry is an essential concept in perception and a

ubiquitous phenomenon presenting itself in all forms and

scales in the real world (Figures 1 and 2), from galaxies

to atomic structures [9]. Symmetry is considered a pre-

attentive feature [5] that enhances object recognition. Much

of our understanding of the world is based on the perception

and recognition of repeated patterns that are generalized by

the mathematical concept of symmetries [29].

The development of symmetry detection algorithms has

a long history in computer vision. The earliest attempt at

detection of a single bilateral reflection symmetry even pre-

dates computer vision itself [1]. Even though symmetries

(1) reflection symmetry group detection [17]: multiple

symmetry axes of local regions are detected one-by-one.

(2) reflection (left) and rotation (right) symmetry detection [19]

Top row: input images.

(3) rotation symmetry detection [25].

Left image: input image.

Figure 1. Sample results for multiple-symmetry detection without

segmentation/pre-processing from each of the three algorithms to

be evaluated in this paper.

take several basic forms (rotation, translation, reflection

and glide-reflection), the detection of bilateral reflection

symmetry (mirror-symmetry) and its skewed version from

images has been dominant in computer vision for several

decades [7, 22, 14, 2, 24, 10, 12, 26, 21, 31, 28, 3, 16]. In



spite of years of effort, we are still short of a robust, widely

applicable “symmetry detector” that can parallel other types

of computer vision tools, such as an “edge” or ”corner”

detector. Furthermore, we have yet to see a systematic,

quantitative evaluation and a publically available test-image

database to gauge the progress in this important, widely ap-

plicable, albeit seemingly illusive research direction.

Within the past couple of years, we observe a surge

of new symmetry detection papers in several related fields

[13, 17, 19, 20, 23, 25, 27]. While each paper demon-

strates certain experimental results of the proposed algo-

rithm, without a systematic evaluation of different symme-

try detection algorithms against a common image set un-

der a uniform standard, our understanding of the power and

limitations/pitfalls in state of the art symmetry detection al-

gorithms remains partial. This situation seriously hinders

a wide applicability of existing symmetry detection algo-

rithms and any concrete, measurable improvements there-

after. In this paper, we make a specific effort on propos-

ing and implementing a performance evaluation system for

three state of the art discrete symmetry detection algo-

rithms:

1. Digital Papercutting[17] (SIGGRAPH 2005) for reflec-

tion symmetry detection (Figure 1 (1));

2. Detecting Symmetry and Symmetric Constellations

of Features [19] (ECCV06) for both rotation and reflection

symmetry detection (Figure 1 (2));

3. Detecting Rotational Symmetries [25] (ICCV05) for

rotation symmetry detection (Figure 1 (3)).

The main reason we choose these algorithms is that they

all go beyond single bilateral reflection symmetry detection,

they are all published recently (2005-2006), their source

code is publically available and their functionalities differ

yet are comparable. One attractive feature of all three algo-

rithms is their claim of multiple-symmetry-detection from

an unsegmented real image1.

In this work, we have tested these symmetry detection al-

gorithms on a total of more than 800 images, including 176

images with hand-labeled ground truth and images from

three publicly available databases: PASCAL VOC’07[8],

MSRC Object class recognition database [30] and Caltech-

256 [11] data sets.

To the best of our knowledge, our work is the first in

computer vision to evaluate multiple symmetry detection

algorithms systematically and quantitatively against a com-

mon image set and a set of evaluation standards. All test

images used in this paper, with hand-labeled ground truth,

are made publicly available for future algorithm valida-

tion (http://vision.cse.psu.edu/evaluation.htm). Our work estab-

lishes the first benchmark in symmetry detection. Our quan-

titative algorithm performance evaluation results (Sections

5) clearly indicate that symmetry detection research has yet

1Though [17] was designed for images of papercut patterns only.

Figure 2. Examples of images with rotation (left column), re-

flection and rotation (middle column), and translation plus rota-

tion/reflection symmetries (right column). Their symmetry groups

are cyclic, dihedral and 2D crystallographic groups respectively.

Top-row displays synthetic images while the bottom-row contains

real-world photos.

to reach its desired goal of multiple-symmetry detection

from un-segmented real images (best sensitivity is around

30-40% and best net classification rate when taking false

positives into consideration is less than 20%). Meanwhile,

our exploration on object recognition and object class cate-

gorization databases (Section 6) suggests a potential role a

successful symmetry detector could play for object recog-

nition in computer vision.

2. Symmetry and Symmetry Groups

Mathematically speaking, a symmetry g of a set S is an

isometry such that g(S) = S [6], i.e. the transformation

g keeps S invariant as a whole while permuting its parts.

S could be a purely geometrical entity or something geo-

metric with additional attributes, like color or texture. All

symmetries of S form a mathematical group [6] called the

symmetry group of S. There are four atomic symmetries

in 2D Euclidean space R2: translation, rotation, reflection

and glide-reflection [29]. The discrete symmetry groups in

2D Euclidean space can be further divided into (1) point

groups where all transformations in the group keep at least

one point of S invariant. These are the cyclic groups (Cn)

containing rotation symmetries only (Figure 2 left); and di-

hedral groups (Dn, where n is the order of its cyclic sub-

group, and 2n is the cardinality of the dihedral group) con-

taining both reflection and rotation symmetries (Figure 2

middle). (2) space groups [6] where no point in R2 is kept

invariant by all members of the group. These are the sym-

metry groups containing translation symmetries: the seven

frieze (1D translation, reflection, rotation, glide-reflection)



and the 17 wallpaper symmetry groups (2D translation, ro-

tation, reflection, glide-reflection) (Figure 2 right) [29, 6].

Euclidean symmetries and symmetry groups so defined

may seem to be restrictive in computer vision applications,

choosing these types of symmetry detection algorithms to

evaluate in this initial validation work is justified by the

fact that (1) this type of Euclidean symmetries and sym-

metry groups form the basis of the mathematical theory

on symmetry [6, 29] thus can be immediately and for-

mally verified for completeness sytematically; (2) a large

amount of such symmetries does appear in real world im-

ages (Figure 5) as shown in various image databases (PAS-

CAL VOC’07[8], MSRC Object class recognition database

[30] and CALtech-256 [11] data sets). (3) this type of rigid

symmetries form a subset of more complicatedly deformed

symmetries (e.g. affine or perspectively skewed, or locally

deformed via diffeomorphisms), thus we are testing the nec-

essary condition of a good symmetry detection software;

our results will provide practical guidance for the future de-

velopment of more robust, distorted-symmetry detection al-

gorithms.

In this paper, we focus on the evaluation of algorithms

that detect discrete point-group symmetries, i.e. the cyclic

and dihedral symmetry groups composed of reflection and

rotation symmetries. We consider the simplest bilateral

symmetry as a special case of the dihedral group Dn where

n = 1 indicating an identity group as its cyclic subgroup.

No particular distinction is made between cyclic and dihe-

dral symmetries (Figure 2 left column vs middle) since ex-

iting algorithms do not discriminate these two cases.

3. Reflection and Rotation Symmetry Detec-

tion Algorithms

We briefly describe each symmetry detection algorithm

evaluated in this paper (Figure 1).

3.1. Digital Papercutting [17]

This algorithm is originally designed for the analysis of

images of artistic papercutting patterns. Thus, it uses edge-

based features. The algorithm first exhaustively searches

through the parameter space of potential reflection axes (in

polar coordinates ρ, d) to identify all single reflection sym-

metries by voting for pairwise matches. In addition, the

algorithm identifies the structures of the reflection axes to

discover dihedral symmetry group Dn (if several reflection

axes intersect in one point) and, frieze symmetry group (re-

flection axes are parallel and placed with equal distance).

3.2. Detecting Symmetry and Symmetric Constel
lations of Features [19]

This is a feature-based reflection and rotation symme-

try detection algorithm, which takes advantage of local ori-

ented features expressed as SIFT keys [18]. The basic sym-

metry detection technique uses pairwise matching and vot-

ing for symmetry foci (single reflections and Cn-type sym-

metries) in a Hough transform fashion. It also estimates the

n in cyclic group Cn but it does not make the distinction

between Cn and Dn type symmetry groups.

3.3. Detecting Rotational Symmetries [25]

This algorithm filters an input color image into a gradi-

ent vector flow (GVF) field and conducts the extraction and

matching of local features in the GVF field. The symmetry

detection is formulated, once again, as a voting scheme for

the centroids of Cn symmetries, though it does not distin-

guish between cyclic Cn or dihedral Dn type symmetries

nor does it discovers the order of the cyclic group n auto-

matically.

4. Evaluation Methodology

Our evaluation of symmetry detection algorithms in-

volves three major steps: (1) collect a set of test images;

(2) hand label their ground truth symmetry (reflection axes,

rotation centers and folds); (3) define a quantitative evalua-

tion criteria for measuring the success of the symmetry de-

tection results. We run each symmetry detection algorithm

on all test images and compute the success rates based on a

set of labeled-ground-truth (Section 4.2) and a well-defined

scoring function (Section 4.3).

4.1. Test Image Sets Selection

To test the applicability of each symmetry detection al-

gorithm, we provide a carefully selected image set that

demonstrates unambiguous object symmetries, with diverse

visual properties: synthesized versus real images, clean ver-

sus textured regions, frontal versus skewed views, similar

versus contrasting color intensities.

The whole 176-test-image set is divided according to two

standards: (1) synthetic versus real images; and (2) im-

ages containing a single dominant symmetry versus mul-

tiple symmetries. Given two types of symmetries (rotation

and reflection), we have a total of eight different subcate-

gories of test images (Figure 3).

Furthermore, we explored the potential role a symme-

try detection algorithm might play in object and object

class recognition/categorization by testing and evaluating

the algorithm with best performance on selected images

from PASCAL VOC’07[8], MSRC Object class recognition

database [30] and CALtech-256 [11] (Section 6).

4.2. Ground Truth

Labeling ground truth in complex real world images for

symmetry detection evaluation is a non-trivial task both



Reflection Symmetry Detection Test Set

Rotation Symmetry Detection Test Set

Figure 3. Sample images and results from our test image set. We also provide labeled ground truth, descriptions of computational chal-

lenges, and the numbers of ground truth (GT), and detected true positive (TP) and false positives (FP). The complete test image set can be

found in http://vision.cse.psu.edu/evaluation.htm.

conceptually and effort-wise. At a starting point, we follow

some simple rules in this process: (1) only the visually obvi-

ous dominant symmetries (to human raters) are labeled; (2)

only the top-level/foreground symmetries are labeled; and



(3) only the semantically meaningful, rather than accidental

symmetries, are labeled.

The final labeled GTs on the test images are from the

consensus of all raters, involving 10 students from two sepa-

rate classes of one year apart, who have an intro-level under-

standing of symmetry and symmetry detection algorithms.

None of the raters is an author of the symmetry detection

algorithms tested.

For rotation and reflection symmetries in our selected

176-image set, we have labeled the reflection axes, rotation

center and the fold of the corresponding rotation symme-

try group (Figure 3) though this last value is not explicitly

evaluated in this paper.

For a qualitative evaluation of how a symmetry detection

algorithm performs on a public object recognition data set

(Section 6), we focus on the intended object only and count

the number of perceived symmetries (by human) versus the

number of detected symmetries by the algorithm. For ex-

ample, in the case of ‘face class’ from MSRC data set [30],

only one reflection symmetry centered on the face is con-

sidered as the ground truth in each image; and in the case

of cars (side views) only the two visible wheels are consid-

ered having rotation symmetries. Since we only compute

sensitivity in this case (disregard false positives), the results

are optimistic given the minimum number of ground truths

counted while reflecting the detection success for the most

important symmetries of concern.

4.3. Evalution Measurement

We propose the following formula to compute a score of

symmetry detection success rate on each image:

SK =
(TP − K ∗ FP )

GT
(1)

where TP is the number of true positives: symmetries in

the image that are identified correctly, FP is the number of

false positives: non-symmetries detected by the algorithm

as symmetries, and GT is the number of ground truth sym-

metries. K is a weight that determines how strongly the

false positives need to be punished for different perception

tasks. For simplicity, we measure two values in this work:

S0 = TP

GT
is the commonly known sensitivity [15]; and the

false positive rate RFP = FP

GT
.

5. Quantitative Evaluation

We quantitatively evaluate reflection and rotation sym-

metry detection algorithms on their respective test image

sets (176 images) using the code provided by each original

author. In our experiments, we use the default parameter

settings without modification from image to image. Since

different algorithms respond differently to image sizes, we

have tested each algorithm on four image scales (from 1 to

1/4 of the original size) and choose the best result to report.

We compare algorithms from [19] and [17] on reflection

symmetry detection on a set of 91 images, and compare [19]

and [25] for rotation symmetry detection on a total of 85 im-

ages. These images are divided into four categories (1) syn-

thetic images with single symmetry, (2) synthetic images

with multiple symmetry, (3) real images with single sym-

metry, and (4) real images with multiple-symmetry. Some

sample images for reflection and rotation symmetries can be

found in Figure 3. Among these images, there are 7 reflec-

tion symmetry images and 14 rotation symmetry images for

which at least one of the detection algorithms fails. Thus

the statistical results provided in Figure 4 are based on 84

images for reflection symmetry detection and 71 images for

rotation symmetry detection.

We choose to report two quantitative measurements the

sensitivity [15] S0 (formula 1 when K=0), and the false pos-

itive rate RFP . Since it is nearly impossible to list all the

non-symmetries in an image, we use RFP as an indirect

measure for specificity [15]. More numerical details on the

performance statistics in tabular form can be found in [4].

We have also measured the time used by each symme-

try detection algorithm regardless of the output correctness.

According to our log file: for two images of 530 by 531

and 800 by 600, it takes 31088 and 95114 seconds respec-

tively for [25] to generate its output (on the same images,

the other two symmetry detection algorithms take about 20-

40 seconds, i.e. about three orders of magnitude faster).

Based on the speed and the detection rates (Figure 4) [19]

has the overall best performance out of the three algorithms

tested.

6. Qualitative Evaluation on Object Recogni-

tion Image Databases

Given the universal existence of symmetry in all sizes

and forms in real world objects, it is our ultimate goal to

unveil the role of symmetry detection in object recognition.

As an initial step, we test the reflection and rotation sym-

metry detection algorithm [19], the most superior algorithm

from our quantitative evaluation, on three object recogni-

tion and object class categorization data sets: (1) PAS-

CAL Visual Object Classes Recognition Challenge 2007

(VOC2007) [8]; (2) Caltech-256 Object Category Dataset

[11]; and (3) MSRC Object class recognition database A

and B1[30].

Some sample results can be seen in Figure 5 where the

reflection symmetry axes or the centers of rotation symme-

try are identified. Table 1 provides a set of S0 values for

subsets of images from the three databases. These rates are

obtained by counting the potential existing symmetry of the

object (sometimes none) in each image (total ground truth)



Figure 4. The pairwise reflection and rotation symmetry detection algorithms evaluation on our 176 test-images with labeled ground truth.

and how many of those are detected by the algorithm (true

positives). This is done by two raters with over 90% agree-

ment. As observed in Table 1, for certain object classes (e.g.

face) the symmetry detector is doing rather well (sensitivity

> 80%) in locating the midline of the face in the image

regardless of background clutters, lighting variations (in-

door/outdoor) and occlusions (top rows of Figure 5). This

S0 value is also consistent with the single symmetry detec-

tion S0 rate from real image results evaluated in Figure 4.

Even for the non-typically-thought-of perfect symmetrical

objects, e.g. trees, the trunk of the tree is identified as the

axis of reflection symmetries with sensitivity = 55-67%. In

addition, the reflection or rotation symmetry of umbrella,

towers car wheels, tennis rackets (local) and flowers are de-

tected under adverse conditions (Figure 5). These symme-

try cues provide great potential as unique, discriminative

features for object localization, segmentation, recognition

and object class categorization.

Table 1. Reflection and Rotation Symmetry Detection Evaluation

(estimated sensitivity S0 only for specific symmetry types)

Data Set Object Class Reflection Rotation

CALtech256 Various 59% 65%

60 selected images

PASCAL VOC’07 Various 42% 45%

58 selected images

MSRC (A) Door/Window 59% –

330 images Tree 55% –

18 classes Car – 57%

Bike – 50%

MSRC (B1) Face (30) 83% –

240 Images Tree (30) 67% –

9 classes Car (30) – 40%

Bike (30) – 30%

7. Summary and Discussion

Overall, without counting false positives, the reflec-

tion/rotation symmetry detection algorithms on images with

single symmetry can reach a mean sensitivity value S0 of

92-100% on synthetic and 84-88% on real images [19]. For

images with multiple symmetries, the best mean sensitiv-

ity S0 of [19] drops drastically to no better than 43% (Fig-

ure 4), meaning that more than half of the symmetries in the

image are missed.

A more serious problem is perhaps the low net symmetry

detection rate S0 − RFP in real world images (Figure 4):

no more than 26% for single symmetry detection and no

more than 19% for multiple-symmetry detections. Given

the high false positive rates exhibited in these state of the

art symmetry detection algorithms, the field is in desperate

need of more discriminative symmetry detectors or higher-

level reasoning tools to discard false detections.

Our exploration in Section 6 by applying [19] on images

from three publicly available object recognition and object

class categorization databases [8, 30, 11] demonstrates the

unique potential of symmetry detection in object recogni-

tion. We have observed distinct patterns and spatial lay-

outs of symmetry detection from images of different ob-

ject classes, and high success rates on certain object classes

(Figure 5, Table 1). All these suggest that, just as symmetry

detection plays an important role in human perception, suc-

cessful automated symmetry detection may lead to percep-

tually and practically enhanced object recognition, segmen-

tation and object class categorization in high-level computer

vision.

Our effort on a quantitative and qualitative symmetry

detection algorithm evaluation reported in this paper is

only the first step towards establishing a benchmark for re-

searchers working in this area to make solid, measurable



(A.1) MSRC object category dataset B1 [30]. Category: Face

(A.2) MSRC object category dataset B1 [30]. Category: Tree

(B) PASCAL VOC’07 [8]

(C) Caltech-256 [11]

Figure 5. Sample (reflection and rotation) symmetry detection results from publicly available real image data sets. See also the quantitative

results shown in Table 1. It is interesting to note the high success rate on faces, and the axes of symmetry for trees are mostly vertical.



progress in the future. As modest and limited as it is, we

can already conclude that (1) symmetry detection research

in computer vision still has a long way to go to become

a reliable, widely usable and effective feature detector; (2)

symmetry detection has a great potential to make an impact

on object recognition; and (3) a much larger test image set

and a finer categorization of different types of images are

needed to validate the stability, the strength and the weak-

ness of past and future symmetry detection algorithms.
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