
Performance Evaluation of Two Emerging Media Processors:

VIRAM and Imagine

Sourav Chatterji, Manikandan Narayanan

Computer Science Division

University of California

Berkeley CA 94720

{ souravc,nmani} @ cs.berkeley.edu

Abstract

This work presents two emerging media niicroproces-

sors, VIRAM and Imagine, and conipares tlie iniplenienta-

tion strategies and perforniance results of these unique ar-

chitectures. VIRAM is a coniplete systeni on a chip which

uses PIM technology to conibine vector processing with eni-

bedded DRAM. Imagine is a prograniniable streaming ar-

chitecture with a specialized nieniory hierarchy designed

for coniputationally intensive data-parallel codes. First, we

present a siniple and effective approach f o r understanding

and optiniizing vector/streani applications. Perforniance

results are then presented front a number of niultiniedia

benchniarks and a coniputationally intensive scient@ ker-

nel. We explore tlie coniplex interactions between prograni-

niing paradigms, tlie architectural support at tlie ISA level

and tlie underlying niicroarchitecture of these two systenis.

Our long term goal is to evaluate leading media niicropro-

cessors as possible building blocks for future high perfor-

niance systenis.

1. Introduction

Multimedia applications are quickly becoining the dom-

inant consumer of computing cycles [12], and there is a

correspondingly large research effort to create commodity

components designed to efficiently process high-end me-

dia applications. Since inany scientific computing and mul-

timedia algorithms share the same computational require-

ments, it is important for the scientific coimnunity to lever-

age the research efforts of media processor development.

Historically, embedded multimedia and signal processing

chips have been inanufactured as custom-designed ASICs;

however, this is becoining impractical for inany application

fields due to the high cost and the relatively slow design

cycle of custom fabrication. General purpose processors,

Jason Duell, Leonid Oliker

Computer Science Research Division

Lawrence Berkeley National Laboratory

Berkeley CA 94720

{jcduell,loliker} @lbl.gov

on the other hand, remain unsuitable despite ever increas-

ing clock speeds and multimedia specific enhancements due

to their relatively poor performance and high power con-

sumption. This paper investigates two emerging media pro-

cessors, VIRAM and Imagine, each representing signifi-

cantly different balances of architectural characteristics, in

the context of multimedia applications and scientific coin-

puting kernels.

Media applications and certain classes of scientific coin-

putations exhibit poor temporal locality and receive little

benefit from automatically managed caches of conventional

mnicroarchitectures. In addition, a significant fraction of

these codes are characterized by predictable fine-grained

data-parallelism that can be exploited at compile time with

properly structured program semantics. However, most su-

perscalar general-purpose processors are poor at dynami-

cally exploiting this kind of parallelism, and are too expen-

sive in terms of power consumption. Finally, inany media

and scientific programs require a bandwidth-oriented mem-

ory system, unlike conventional cache-based memory hier-

archies that are entirely organized around reducing average

latency time, and generally lack the raw bandwidth required

for these applications.

This work examines two general-purpose media proces-

sors designed to address the well-known gap between pro-

cessor and memory performance. The VIRAM architecture

uses novel PIM technology to combine embedded DRAM

with a vector co-processor for exploiting its large band-

width potential. The Imagine architecture, on the other

hand, provides a streamaware memory hierarchy to support

the tremendous processing potential of the SIMD controlled

VLIW clusters. First, we present a simple and effective ap-

proach for understanding and optimizing vector/strem ap-

plications. Performance results are then presented from a

number of multimedia benchmarks and a coinputationally

intensive scientific kernel. We explore the complex inter-

actions between programming paradigms, the architectural

http://cs.berkeley.edu
mailto:lbl.gov

20.0 mm

I t

I 1 I 1

$ MIPSFP
Control

IO 1 .
Figure 1. Overview of VIRAM architecture

support at the ISA level and the underlying nlicroarchitec-

ture of these two systems. Our long tenii goal is to evaluate

leading media niicroprocessors as possible building blocks

for future high perforniance systems.

2. VIRAM Architecture

The VIRAM [I] chip, a research architecture being de-

veloped at UC Berkeley, is presented in Figure l . This

novel processor is a complete system on a chip combining

processing elements and 13 MB of standard DRAM into a

single design. The processor-in-iiieiiioiy (PIM) technology

allows the main RAM to be in close proximity to the pro-

cessing elements, providing lower memory htency and a

significantly wider iiieiiioiy interface than conventional nii-

croprocessors. The resulting memory bandwidth is an im-

pressive 6.4 GB/s. VIRAM contains a conventional general

purpose MIPS scalar processor on-chip, but to exploit its

large bandwidth potential, it also has a vector co-processor

consisting of 4 64-bit vector lanes. VIRAM has a peak per-

foniiance of I .6 GFlop/s for 32 bit data and is a low power

chip, designed to consume only 2 Watts of energy.

The hardware resources devoted to functional units and

registers may be subdivided to operate on 8, 16, 32, or 64-

bit data. When the data width (known as the virtual proces-

sor width) is cut in half, the number of elements per register

doubles, as does the peak arithmetic rate. The variable data

widths in VIRAM are coiiniion to other SIMD media exten-

sions, but otheiwise the architecture more closely matches

vector superconiputers. In particular, the parallelism ex-

pressed in SIMD extensions are tied to the degree of paral-

lelism in the hardware, whereas a floating-point instruction

in VIRAM specifies 64-way parallelism while the hardware

only executes 8-way. The advantages of specifying longer

vectors include lower instruction bandwidth requirement, a

Figure 2. Overview of Imagine architecture

higher degree of parallelism for iiieiiioiy latency masking,

and the ability to change hardware resources across chip

generations without requiring software changes.

3. Imagine Architecture

The Imagine [3] architecture, shown in Figure 2, is apro-

granniiable streemiiing microprocessor currently being de-

veloped at Stanford University. Stream processors are de-

signed for computationally intensive applications character-

ized by high data parallelism and producer-consumer lo-

cality with little global data reuse. liiiagine contains 48

arithmetic units, and a unique three level memory hierar-

chy designed to keep the functional units saturated during

stream processing. The architecture is centered around a

128 KB stream register file (SRF), which reads data from

off-chip DRAM through a memory system interface and

sequentially feeds the 8 arithmetic clusters. The local stor-

age of the SRF can effectively reuse intermediate results

(producer-consumer locality), allowing for the amortization

of off-chip iiieiiioiy accesses. In addition, the SRF can be

used to overlap computations with memory traffic, by si-

niultaneously reading from main-iiiemoiy while writing to

the arithmetic clusters. The Imagine architecture eiiipha-

sizes raw processing power much more heavily then VT-

RAM with a peak perfoniiance of 20 GFlop/s for 32 bit

data.

Each of Imagine's 8 arithmetic clusters consists of 6

functional units containing 3 adders, 2 multipliers, and a

divide/square root. Imagine is a native 32-bit architecture

with support for perfoniiing operations on 16- and 8-bit

data, resulting in two and four times the peak perforniance

respectively. This is analogous to VTRAM's virtual proces-

2

Clock Speed
Memory Bandwidth GB/s

Peak GFLOPIs (32 bit)
Peak FlopIWord

Chip Area
Data Width Support (bits)

Transistors
Power Consumvtion

Table 1. Highlights of VIRAM and Imagine

VIRAM Imagine

200 MHz SO0 MHz

6.4 on-chip 2.7 off-chip
I .6 20

I 30

I Sx20mm I2x I2mm
64/32/16 321 1618

130 Million 21 Million
2 Watts 4 Watts

sor widths. A key difference between the two architectures

is in the way instructions are issued. In Imagine, a sin-

gle inicrocontroller broadcasts VLIW instructions in SIMD

fashion to all of the arithmetic clusters. In contrast, VT-

RAM uses a more traditional single instruction per cycle is-

sue, counting on parallelisin within each vector instruction

to achieve high performance.

Table 1 summarizes the high level differences between

the VIRAM and Imagine architectures. Notice that Imagine

has an order of magnitude higher peak performance, while

VIRAM has twice the memory bandwidth and consumes

half the power. Also, observe that VIRAM has enough

bandwidth to sustain one operation per memory access,

while Imagine requires 30 operations to amortize one word

of off-chip memory (the ratio is 2.5 for SRF references).

4. Programming Environment

The vector progranmningparadigm [4] of VIRAM is well

understood and can leverage off years of algorithmic re-

search as well as sophisticated compiler technologies. Log-

ically, a vector instruction specifies the parallel operations

to be performed on all elements of the vector register. How-

ever, at the hardware level each vector instruction splits into

multiple element groups that then perform the operations.

For example, when operating on 32-bit data in VIRAM, the

logical vector length refers to 64 elements while the physi-

cal configuration contains only 8 lanes. Therefore each vec-

tor instruction results in the execution of 64/8=8 element

groups, where each group uses the actual vector hardware

to process 8 elements at a time.

The Imagine streaming programming paradigm is de-

signed to express the high degree of fine-grained parallelism

necessary to effectively utilize the large number of func-

tional units. The relatively new stream programming model,

organizes data as streams and expresses all computations as

kernels [I I]. A stream is an ordered set of records of arbi-

trary (but homogeneous) data-objects. Vectors, on the other

hand, are restricted to operating on basic data types, and

must decompose complex records into vectors of separate

elements. Kernels perform computation on entire streams,

by applying potentially complex functions to each stream

record in order. However, kernels cannot make arbitrary

memory reference and are limited to only accessing data

from the SRF in a sequential fashion. The kernel mem-

ory reference restrictions allow the memory subsystem to

effectively provide data to the large number of functional

units. However, these memory access limitations increase

programming complexity, especially for irregularly struc-

tured applications.

For both programming models application performance

is highly correlated to the fraction of the application

amenable to data parallelism. However, a key distinction

between the two platforms is that the Imagine architecture

supports streams of multi-word records directly in the ISA;

as opposed to VIRAM whose ISA support is limited to vec-

tors of basic data-types. Organizing streams as multi-word

records increases kernel locality and allows efficient VLIW

processing by each of the functional units. Other advan-

tages of multi-word parallelisin include the potential of re-

duced programming complexity and low instruction band-

width.

In VIRAM, applications are coded in C using the vcc

vectorizing compiler. However, it is occasionally neces-

sary to hand tune assembly instructions to overcome the

deficiencies of the compiler environment. In Imagine, two

languages are used to express a program: the StreamC lan-

guage is used to coordinate the streaming of data while Ker-

nelC is used to define the computational kernels to be per-

formed on each stream record. Separate stream and kernel

compilers then map these two languages to the ISA of the

underlying architecture (stream controller, micro-controller,

etc). The Imagine software environment allows for auto-

matic code optimizations such as loop-unrolling and soft-

ware pipelining, as well as visual tools for isolating perfor-

mance bottlenecks. The results reported in this work were

gathered from the VIRAM and Imagine cycle-accurate sim-

ulators.

5. Program Characterization

In this section we describe a methodology for program

characterization and performance optimization on the VI-

RAM and Imagine architectures. A key insight into pro-

gram classification is to determine if application perfor-

mance is limited by computational resources or memory

bandwidth overhead. Once the bottleneck source is iso-

lated, various optimization schemes can be applied to im-

prove performance.

In a typical data-parallel execution of a vector or stream

application data elements are first loaded from the memory

in groups (called chunks), processed by the arithmetic units,

and written back out to memory. The optimal chunk granu-

larity is generally determined by the underlying hardware

system and software infrastructure. This kernel-memory

3

Unoptimized (cycles)

Chunk Size (elements) 64 I024

Table 2. RGB+YIQ kernel (TI,) and memory
(T,) cycles before and after optimization

pattern repeats itself, one chunk at a time, until all data el-

ements have been appropriately processed. We define TI,

as the time taken by the functional units to operate on one

chunk, and T, as the loadstore memory time associated

with each chunk. Note that the total time required to fully

execute one chunk may be more than maz(T,, TI,), due to

idle cycles resulting from an incomplete overlap between

computation and memory operations.

Using TI, and T, we can now classify applications into

two categories. Programs with TI, > T, are character-

ized as contputation-bottleneck applications. Here the com-

putational kernel overhead dominates causing the memory

subsystem to wait, and thus not fully utilizing the memory

bandwidth potential. Conversely, memory-bottleneck appli-

cations, characterized by T, > TI,, cause the arithmetic

units to stall waiting for memory transfers.

Once the bottleneck source has been determined, vari-

ous optimization strategies can be used to increase the per-

formance of the slower execution component. For exam-

ple, the kernel computation may be performing at low effi-

ciency due to poor scheduling of the ALUs. In this case, re-

structuring the computations using techniques such as loop

unrolling or software pipelining can significantly improve

performance. Similarly, the memory system may not be

achieving peak bandwidth due to non-unit data access pat-

terns. For certain applications, it may be possible to reorder

the data structures and/or coinputationalpatterns to increase

unit-stride access, thereby improving memory performance.

5.1. RGB+YIQ Optimization

To demonstrate our characterization approach and ensu-

ing Optimization strategies, we investigate the RGB+YIQ

color-conversion application from the EEMBC [2] bench-

inark suite. Table 2 presents the kernel and memory cy-

cle counts (TI,, T,) of RGB+YIQ using the csnzall.ppnz

data set. For the VIRAM implementation Table 2 indicates

that computation is the bottleneck, however a more detailed

analysis reveals that the low computational performance is

caused by the ALUs inefficient interactions with the mem-

ory system.

The poor VIRAM memory performance for the unopti-

inized RGB+YIQ (approximately 1/8 of peak bandwidth)

is due to two main reasons. The first inefficiency is at-

smal maium hrge

I OngfnalI opffkn2ed

Figure 3. VIRAM RGB+YIQ conversion

tnbuted to loading bytes into words. The VTRAM mem-

ory system can deliver a peak of 32 bytes per cycle; how-

ever there are only 8 vector lanes for word-mode operations

(vpw=32 bits). This discrepancy (32 vs. 8) is responsible

for reducing memory performance by a factor of 4. The sec-

ond source of memory degradation is due to the strided data

access pattern. VIRAM can only generate 4 addresses per

cycle, independent of the data width, so for 64-bit values

there is sufficient address generation to load or store a value

each cycle. However when operating in word-mode using

8 (32-bit) lanes, a factor of two is lost in performance since

only 4 of the 8 outstanding lane addresses can be generated

each cycles.

The RGB+YIQ kernel was optimized in VIRAM by re-

placing strided memory access with unit strides, causing

T, to improve by more than a factor of 5 (Table 2). This

was done by loading the input vector (in unit stride) into

a temporary register and performing an in-register shuffle

to generate the required format. As a result, even though

the volume of computation increased, improving the mem-

ory access pattern caused the computation to be scheduled

in a more efficient manner, thus improving ALU utilization

and overall kernel performance as seen in Figure 3 (using

csntall.ppnt, cntediunt.ppnt and clarge.ppnt date sets).

The TI, and T, characteristics of the Imagine

RGB+YIQ implementation are presented in Table 2, in-

dicating that computation is cause of the performance bot-

tleneck. A more detailed analysis shows that the comnpu-

tational limitation is due to poor ALU utilization; and not

functional unit saturation. This can be seen by examin-

ing the VLIW schedule, which reveals inany unused cy-

cles between useful instructions in the unoptiinized code.

Applying software pipelining to the loop causes the VLIW

instructions to be packed more densely, thus reducing the

total number of computational cycles (TI,) by almost a fac-

4

/mag/#e RG5-> VQ Benchmark

Vector- Add

RGB+YIQ
RGB+CMYK

Grey Filter
Autocorrelation

QRD

large

Datawidth Remarks

(VIRAMIImagine)
32/32 bits
32/32 bits Color-conversion
1618 bits Color-conversion
16/32 bits 3x3 Convolution
16/32 bits Dot-products
32/32 bits Complex QR

c[i] = a[i] + b[i]

Ong/#a/a/o so&arep/@ehed

Figure 4. Imagine RGB+YIQ conversion

tor of two as seen in Table 2. However, Figure 4 shows

that only a limited improvement is achieved in the overall

performance. This is due to the saturation of the off-chip

memory system caused by the dense VLIW schedule of the

optimized RGB+YIQ implementation. These examples

demonstrate that although performance is dependent on the

complex interaction between the memory system and ALU

utilization, understanding and optimizing streaidvector ap-

plications can be approached through our simple methodol-

om.

6. Benchmarks

Table 3 presents the benchmarks used in our study.

Vector-add is a commonly used microbenchmark character-

ized by low computational rate relative to memory require-

ments. The next four kernels are taken from EEMBC [2]

suite, which represents a collection of benchmarks from

different application areas for embedded processors. Fi-

nally we present QRD, a scientific kernel which performs

the Householder QR factorization of complex matrices. All

of the chosen benchmarks are amenable to some degree of

vectorization or streaming, for a reasonable comparison be-

tween the two architectures.

6.1. Media Benchmark Results

Figure 5 presents performance results for both the com-

putation rate (GOPS) and bandwidth (GBps) of our media

benchmark set. These codes were developed from scratch

on Imagine, whereas on VIRAM we optimized previous im-

plementations [121. Notice that as expected relative bench-

inark performance in GOPS is correlated to the attainable

memory bandwidth. Our first microbenchmark, vector-add

(using 64K elements), has only one computation per ele-

ment: thus performance is limited by memory speed. This

explains why memory bandwidth is close to peak, while the

computation rate is rather low. The next two color con-

version benchmarks, RGB+YIQ and RGB+CMYK (both

using cnzediunz.ppnz), show Imagine with a significant per-

formance advantage and demonstrate the difference in the

attainable main memory bandwidth of the two systems.

Imagine effectively uses twice the memory bandwidth of

VRAM due its relatively large processing power. Addi-

tionally, the VIRAM performance of RGB+CMYK is also

limited since it cannot perform the &bit operations required

for this benchmark, and is therefore restricted to using 16-

bit data. Note that the VIRAM ISA does support 8-bit data

types, however this feature is not included in the first hard-

ware implementation. Imagine, on the other hand, can pro-

cess 8-bit data streams with explicit programed data sub-

division.

The Grey-filter benchmark was the most challenging

to implement using Imagine’s streaming programming

paradigm. The Grey-filter algorithm involves sliding a 3x3

window across the entire image and is difficult to express

in a one-dimensional streaming representation. However,

we were able to achieve high performance on the VIRAM

version using an optimized unit-stride vector imnplementa-

tion. We expect to improve Imagine’s performance through

sophisticated stream programing.

Finally, Figure 5 shows the performance of an autocor-

relation benchmarks using three different data sets. This

code, unlike our previous benchmarks, is characterized by

short vector/strem lengths. Notice that performance is par-

ticularly poor for the “pulse” dataset whose vector/stream

lengths are the shortest of the three sets. In this example,

Imagine’s performance is limited by relatively expensive

host transfer latency of stream instructions, which cannot

be amortized during short stream computations. Therefore

VRAM has an advantage in this case due to its ability to

efficiently process short vector operations.

It is important to note that the media benchmarks pre-

sented are not fully representative of streaming applications.

Additionally, they only represents a sinall kernel of larger

real-world applications currently being run on media de-

5

6 0 0

Matrix Perforinance

MITRE %,ofPe&

192x96 Cycles

complex MFlopIs

I RGBto
CMYU

VIRAM Imagine

34.1%. 65.5%.

5.188.817 712.770

546 13.100

' AUtOwn AUtOwn AUtOwn
Pulse Sine Speech

+
V I G G O P S Iw?eGOPS vI&*GWc IrnwineGs/sac

Figure 5. Media Benchmark Performance on
VIRAM and Imagine

vices. Furthermore, this benchmark set does not stress the

memory systems in complex strided or indexed patterns.

However, EEMEK is a well-known benchmark set for ern-

bedded processors and a good slarling point for our archi-

tecture evalualion.

6.2. Complex QR Decomposition

QRD is an imporlant scienlific kernel with a significantly

higher compulational intensity lhan our set of media bench-

marks. In the QR decomposition, a matrix A is decorn-

posed as A = QR, where Q is a orhogonal and R is a
upper triangular matrix. A skmdard way of performing this

decomposition is to use Householder transformalions: or-

thogonal transformalions that annihilate h e lower part of

each column (Le., lhe part of Lhe column below its diagonal

element) of the matrix A, lhus producing R. If performed

in a column-by-column manner, (compuling a Householder

transformation for each column and updaling the subse-

quent columns of A using that transformation) this process

is rich in level-2 BLAS [I41 operalions of matrix-vector

mulliplicalion and outer product updates.

6.2.1 VIRAM and Imaginc Implcmcntation

In order to increase the compulalion to memory ratio of the

Householder QR, we use block variants of h e algorilhm

that are rich in level-3 BLAS operalions. These block meth-

ods consider a block of columns and faclorize lhem (using

6.2.2 QRD Pcrformancc Rcsnlts

The performance of QR on a 192-by-96 (In-by-n) corn-

plex matrix A, laken from Lhe Mitre RT-STAP benchmark

6

suite [7], is shown in Table 4. Note that this algorithm re-

quires 8mn2 operations. VIRAM sustains only 34.1 % of its

theoretical hardware peak on this coinputationally intensive

kernel, chiefly due to memory accesses with large stride,

and achieves 546 MFlop/s. Imagine, on the other hand,

performs at over 65% efficiency and shows an impressive

speed of over 13 GFlop/s [15], an improvement of almost

24x in raw processing power over VIRAM . These results

demonstrate the considerable performance can be obtained

on Imagine on streaming computations with high operations

per memory access.

7. Conclusions

In this work we examined two emerging media proces-

sors designed to address the well-known gap between pro-

cessor and memory performance. First, we presented a sim-

ple and effective approach for understanding and optimizing

the performance of vector/strem applications. A number

of multimedia benchmarks were then presented and per-

formance was compared across the two architectures. We

found that VIRAM needs more processing power in or-

der to fully exploit its large on-chip bandwidth. Imagine,

on the other hand, has extremely powerful functional units

but is constrained by the 2.7 GB/s off-chip memory band-

width. VIRAM is therefore better suited for applications

with a relatively low ratio of operations per memory access,

while Imagine excels for computationally inten\ive prob-

lems. This was demonstrated by the QRD scientific kernel,

where Imagine achieved an impressive 13GFlop/s, due to

the high volume of operations per memory access.

A key difference between the two technologies is Imag-

ine’s ISA support for multi-word records; while VIRAM is

restricted to native vector instructions which only operate

on basic-data types. However, program development was

more challenging in Imagine than in the well-known vec-

torization paradigm, because the programmer is exposed to

the memory hierarchy and cluster organization of the Imag-

ine architecture. Improvement in the quality of the com-

piler and software development tools, and abstracting lower

level details of the hardware will be essential in bringing the

stream programming model to the wider computing coin-

munity. Brook [8] and SteamTt [161 are two examples of

recently proposed high-level streaming languages that at-

tempt to increase programmer productivity while achieving

high performance.

Future plans include examining a broader \cope of ap-

plication codes, as well as validating our results on real

hardware as it becomes available. We also plan to evalu-

ate more complex data-parallel systems such as the Stream-

ing Supercomputer [SI and the DIVA architecture [lo]. Our

long-term goal is to evaluate these technologies as building

blocks for future high-performance multiprocessor systems.

Acknowledgments

The authors would like to thank Parry Husbands for his in-

sight into the QRD algorithm, and Arin Fishkin for her artis-

tic contribution. This work was supported in part by the

Laboratory Directed Research and Development Program

of the Lawrence Berkeley National Laboratory (supported

by the U.S. Department of Energy under contract number

DEAC03-76SF00098).

References

[I] The Berkeley Intelligent RAM (IRAM) Project. Univ. of Cal-
ifornia, Berkeley, http://iram.cs.berkeley.edu.

[2] EEMBC (EDN Embedded Micwpwcessor Benchmark Con-

sortium) Benchmark Suite. http://w ww.eembc.org.
[3] The Imagine Project. Stanford University, http:/l-

cva.stanford.edu/imagine/.
[4] Maximizing CRAY T90/J90 Application Pegonnance. Sci-

entific Computing at NPACI (SCAN), Volume 3 Issue 15:

July 21, 1999.
[SI E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel,

J. Dongarra, D. J. Croz, A. Greenbaum, S. Hammarling,

A. McKenney, and D. Sorenson. LAPACK Users Guide.

Third Edition. Society for Industrial and Applied Mathe-

matics, 2000.
[6] C. Bischof and C. Van Loan. Basic linear algebra subpro-

grams for FORTRAN usage. SIAM J. Scientific and Statisti-

cal Computing., 8(1):2-13, 1987.
[7] K. Cain, J. Torres, and R. Williams. Real-time space-

time adaptive processing benchmark. MITRE Tech. Rep.,

(MTR96B021), Feb 1997.
[SI W. Dally, P. Hanrahan, and R. Fedluw. A streaming super-

computer. Whitepaper, Sep 200 I .
[9] G. Golub and C. Van Loan. Matrix Computations. Johns

Hopkins Univ Press., 1996.
[IO] M. Hall, P. Kogge, J. Koller, P. Diniz, J. Chame, J. Draper,

J. LaCoss, J. Granacki, A. Srivastava, W. Athas, J. Brock-

man, V. Freeh, J. Park, and J. Shin. Mapping irregular ap-

plications to DIVA, a PIM-based data-intensive architecture.

Proc. of SC99, 1999.
[1 I] B. Khailany, W. J. Dally, S. Rixner, U. J. Kapasi, P. Mattson,

J. Namkoong, J. D. Owens, B. Towles, and A. Chang. Imag-

ine: Media processing with streams. IEEE Micro, MarlApril

2001.
[121 C. Kozyrakis. Scalable Vector Media-Processors for Em-

bedded Systems. PhD Thesis, Univ. of California, Berkeley,

2002.
[I31 C. Kozyrakis, D. Judd, J. Gebis, S. Williams, D. Patterson,

and K. Yelick. Hardwarelcompiler co-development for an

embedded media processor. Pwceedings of the IEEE, 200 I .
[141 C. Lawson, R. J. Hanson, D. Kincaid, and F. T. Krogh. Ba-

sic linea algebra subprograms for FORTRAN usage. ACM

Trans. Math. So@, 5, 1979.
[I51 P. Mattson. Pwgramning System for the Imagine Media

Processor. Ph.D. Thesis, Stanford University, 2002.
[161 W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A

language for streaming applications. Computational Com-

plexity Journal, pages 179-1 96, 2002.

7

http://iram.cs.berkeley.edu
http://w
http://ww.eembc.org
http:/l

