Performance Evaluation of Two Emerging Media Processors:
VIRAM and Imagine

Sourav Chatterji, Manikandan Narayanan
Computer Science Division
University of California
Berkeley CA 94720
{souravc,nmani } @cs.berkeley.edu

Abstract

This work presents two emerging media microproces-
sors, VIRAM and Imagine, and compares the implementa-
tion strategies and performance results of these unique ar-
chitectures. VIRAM is a complete system on a chip which
uses PIM technology to combine vector processing with emi-
bedded DRAM. Imagine is a programmable streaming ar-
chitecture with a specialized memory hierarchy designed
Sor computationally intensive data-parallel codes. First, we
present a simple and effective approach for understanding
and optimizing vector/stream applications. Performance
results are then presented from a number of multimedia
benchmarks and a computationally intensive scientific ker-
nel. We explore the complex interactions between program-
ming paradigms, the architectural support at the ISA level
and the underlying microarchitecture of these two systems.
Our long term goal is to evaluate leading media micropro-
cessors as possible building blocks for future high perfor-
mance systems.

1. Introduction

Multimedia applications are quickly becoming the dom-
inant consumer of computing cycles [12], and there is a
correspondingly large research effort to create commodity
components designed to efficiently process high-end me-
dia applications. Since many scientific computing and mul-
timedia algorithms share the same computational require-
ments, it is important for the scientific community to lever-
age the research efforts of media processor development.
Historically, embedded multimedia and signal processing
chips have been manufactured as custom-designed ASICs;
however, this is becoming impractical for many application
fields due to the high cost and the relatively slow design
cycle of custom fabrication. General purpose processors,

Jason Duell, Leonid Oliker
Computer Science Research Division
Lawrence Berkeley National Laboratory
Berkeley CA 94720
{jcduell,loliker} @1bl.gov

on the other hand, remain unsuitable despite ever increas-
ing clock speeds and multimedia specific enhancements due
to their relatively poor performance and high power con-
sumption. This paper investigates two emerging media pro-
cessors, VIRAM and Imagine, each representing signifi-
cantly different balances of architectural characteristics, in
the context of multimedia applications and scientific com-
puting kernels.

Media applications and certain classes of scientific com-
putations exhibit poor temporal locality and receive little
benefit from automatically managed caches of conventional
microarchitectures. In addition, a significant fraction of
these codes are characterized by predictable fine-grained
data-parallelism that can be exploited at compile time with
properly structured program semantics. However, most su-
perscalar general-purpose processors are poor at dynami-
cally exploiting this kind of parallelism, and are too expen-
sive in terms of power consumption. Finally, many media
and scientific programs require a bandwidth-oriented mem-
ory system, unlike conventional cache-based memory hier-
archies that are entirely organized around reducing average
latency time, and generally lack the raw bandwidth required
for these applications.

This work examines two general-purpose media proces-
sors designed to address the well-known gap between pro-
cessor and memory performance. The VIRAM architecture
uses novel PIM technology to combine embedded DRAM
with a vector co-processor for exploiting its large band-
width potential. The Imagine architecture, on the other
hand, provides a stream-aware memory hierarchy to support
the tremendous processing potential of the SIMD controlled
VLIW clusters. First, we present a simple and effective ap-
proach for understanding and optimizing vector/stream ap-
plications. Performance results are then presented from a
number of multimedia benchmarks and a computationally
intensive scientific kernel. We explore the complex inter-
actions between programming paradigms, the architectural

http://cs.berkeley.edu
mailto:lbl.gov

20.0 mm
|

1.5 MB DRAM Hestar 1.5 MB DRAM
Lane
Vector
1.5 MB DRAM 1.5 MB DRAM
Lane
=
1.5 MB DRAM b 1.5MBDRAM | g
Lane 3
Vector
1.5 MB DRAM 1.5 MB DRAM
Lane
Control
OMIO | ¢ IMIPS|FP
10

Figure 1. Overview of VIRAM architecture

support at the ISA level and the underlying microarchitec-
ture of these two systems. Our long term goal is to evaluate
leading media microprocessors as possible building blocks
for future high performance systems.

2. VIRAM Architecture

The VIRAM [1] chip, a research architecture being de-
veloped at UC Berkeley, is presented in Figure 1. This
novel processor is a complete system on a chip combining
processing elements and 13 MB of standard DRAM into a
single design. The processor-in-memory (PIM) technology
allows the main RAM to be in close proximity to the pro-
cessing elements, providing lower memory latency and a
significantly wider memory interface than conventional mi-
croprocessors. The resulting memory bandwidth is an im-
pressive 6.4 GB/s. VIRAM contains a conventional general
purpose MIPS scalar processor on-chip, but to exploit its
large bandwidth potential, it also has a vector co-processor
consisting of 4 64-bit vector lanes. VIRAM has a peak per-
formance of 1.6 GFlop/s for 32 bit data and is a low power
chip, designed to consume only 2 Watts of energy.

The hardware resources devoted to functional units and
registers may be subdivided to operate on 8, 16, 32, or 64-
bit data. When the data width (known as the virtual proces-
sor width) is cut in half, the number of elements per register
doubles, as does the peak arithmetic rate. The variable data
widths in VIRAM are common to other SIMD media exten-
sions, but otherwise the architecture more closely matches
vector supercomputers. In particular, the parallelism ex-
pressed in SIMD extensions are tied to the degree of paral-
lelism in the hardware, whereas a floating-point instruction
in VIRAM specifies 64-way parallelism while the hardware
only executes 8-way. The advantages of specifying longer
vectors include lower instruction bandwidth requirement, a

rmagine PDCessor
Ao Sweam
Prwesor Cotroller
Aicroconironer
I_” SIDNVLIY
Arithimetic
& Clister 0 7
3 [=
SoRAME 267 m& Steam = (54
cas| K¢ | | mager - & = faas
) e [GBS =
L =
5= Asitfmetic
LT y
Cister 7 ¥
Netvoric Netork Ardfnetic (st
adeuEes fteriae
aee

Figure 2. Overview of Imagine architecture

higher degree of parallelism for memory latency masking,
and the ability to change hardware resources across chip
generations without requiring software changes.

3. Imagine Architecture

The Imagine [3] architecture, shown in Figure 2, is a pro-
grammable streaming microprocessor currently being de-
veloped at Stanford University. Stream processors are de-
signed for computationally intensive applications character-
ized by high data parallelism and producer-consumer lo-
cality with little global data reuse. Imagine contains 48
arithmetic units, and a unique three level memory hierar-
chy designed to keep the functional units saturated during
stream processing. The architecture is centered around a
128 KB stream register file (SRF), which reads data from
off-chip DRAM through a memory system interface and
sequentially feeds the 8 arithmetic clusters. The local stor-
age of the SRF can effectively reuse intermediate results
(producer-consumer locality), allowing for the amortization
of off-chip memory accesses. In addition, the SRF can be
used to overlap computations with memory traffic, by si-
multaneously reading from main-memory while writing to
the arithmetic clusters. The Imagine architecture empha-
sizes raw processing power much more heavily then VI-
RAM with a peak performance of 20 GFlop/s for 32 bit
data.

Each of Imagine’s 8 arithmetic clusters consists of 6
functional units containing 3 adders, 2 multipliers, and a
divide/square root. Imagine is a native 32-bit architecture
with support for performing operations on 16- and 8-bit
data, resulting in two and four times the peak performance
respectively. This is analogous to VIRAM’s virtual proces-

YIRAM Tmagine
Clock Speed 200 MH. 500 MH:
Memory Bandwidth GB/s | 6.4 on-chip | 2.7 off-chip
Peak GILOP/s (32 bit) 1.6 20
Peak Top/Word] 30
Chip Area 15x20mm 12%x12mm
Data Width Support (hits) 0432116 32/16/8
Tramsistors 130 Million | 21 Million
Power Consumption 2 Watty 4 Watts

Table 1. Highlights of VIRAM and Imagine

sor widths. A key difference between the two architectures
is in the way instructions are issued. Tn Tmagine, a sin-
gle microcontroller broadceasts VLIW instructions in STMD
fashion (o all of the arithmelic clusters. In contrast, VI-
RAM usecs a more traditional single instruction per cycele is-
sue, counting on parallelism within each vector instruction
to achieve high performance.

Table 1 summarizes the high level differences between
the VIRAM and Imagine architectures. Notice that Imagine
has an order of magnilude higher peak performance, while
VIRAM has lwice the memory bandwidlh and consumes
half the power. Also, observe that VIRAM has enough
bandwidlh (o suslain one operalion per Memory access,
while Tmagine requires 30 operalions Lo amorlize one word
of off-chip memory (the ratio is 2.5 lor SRT references).

4. Programming Environment

The vector programming paradigm [4] of VIRAM is well
understood and can leverage ofl years ol algorithmic re-
scarch as well as sophisticated compiler lechnologics. Log-
ically, & vectlor inslructlion specifies the parallel operalions
to be performed on all elements of the veclor register. How-
ever, at the hardware level each vector instruction splits into
multiple element groups that then perform the operations.
For example, when operaling on 32-bit dala in VIRAM, the
logical vector lenglh relers 1o 64 elements while the physi-
cal configuration contains anly 8 lancs. "Therefore cach vee-
tor instruction results in the execution ol 64/8=8 element
groups, where each group uses the actual vector hardware
to process 8 elements at a time.

The Tmagine streaming programming paradigm is de-
signed to express the high degree of fine-grained parallelism
necessary to effectively utilize the large number of func-
tional units. The relatively new stream programming model,
organizes data as streams and expresses all computations as
kernels [11]. A stream is an ordered sel ol records ol wrbi-
trary (but homogeneous) data-objects. Vectors, on the other
hand, are restricled o operaling on basic data Lypes, and
must decompose complex records inlo veetors of separale
elements. Kernels perform computation on entire streams,
by applying potentially complex [unctions to each stream

Lo

record in order. However, kernels cannol make arbitrary
memory reference and are limiled 1o only accessing dala
[rom the SRF in a sequential lashion. The kemel mem-
ory reference restrictions allow the memory subsystem Lo
ellectively provide data to the large number of [unctional
units. However, these memory access limitations increase
programming complexity, especially lor irregularly struc-
wred applications.

For both programming models application performance
is highly correlated to the fraction of the application
amenable 1o dala parallelism. However, a key distinction
between the two plattorms is that the Imagine architecture
supporls streams of mulli-word records direclly in the ISA;
as opposed (0 VIRAM whose ISA support is limited 1o vec-
tors of basic data-tvpes. Organizing streams as multi-word
records increases kernel localily and allows efficienlt VLIW
processing by each ol the [unctional unils. Other advan-
tages ol multi-word parallelism include the polential of re-
duccd programming complexity and low instruction band-
width.

In VIRAM, applications are coded in C using the vee
veclorizing compiler. However, il is occasionally neces-
sary 10 hand wne assembly instructions (o overcome the
deficiencies of the compiler environment. In Imagine, two
languages are used to express a program: the StreamC lan-
guage is used to coordinate the streaming of data while Ker-
nelC is used to define the computational kernels to be per-
formed on each stream record. Separile stream and kernel
compilers then map Lthese lwo languages 1o the TSA of the
underlying architecture (stream controller, micro-controller,
etc). The Tmagine soltware environment allows lor auto-
matic code optimixations such as loop-unrolling and solt-
ware pipelining, as well as visual tools [or isolating perfor-
mance bottlenecks. The results reported in this work were
gathered rom the VIR AM and Tmagine cycle-accurate sim-
ulators.

5. Program Characterization

Tn this section we describe a methodology lor program
characterization and performance optimization on the VI-
RAM and lmagine architectures. A key insight into pro-
gram classification is to determine if application perfor-
mance is limiled by computational resources or memory
bandwidih overhead. Once the botlleneck source iy iso-
lated, various optimixation schemes can be applied to im-
provc pCFr()l‘lTIElTICC.

Tn a typical dala-parallel execulion of & veclor or siream
application data elements are (irst loaded [rom the memory
in groups {called chunlks), processed by the arithmetic units,
and written back out to memory. The optimal chunk granu-
larity is generally determined by the underlying hardware
system and soltware inlrasoucture. This kernel-memory

VYIRAM Imagine
Tk T Tk: T
Unoptimized {eyveles) | 114 | 95 | 2153 | 1167
Optimived (cycles) 108 | 17 [1147 | 1165
Chunk Size (elements) o4 1024

Table 2. RGB—-YIQ kernel (7.} and memory
(T,) cycles before and after optimization

pattern repeats itsell, one chunk at a time, until all data el-
ements have been appropriately processed. We define T},
as the time taken by the [unctional units to operate on one
chunk, and T, as the load/slore memory lime associaled
wilth each chunk. Nole thal the olal lime required o fully
execute one chunk may be more than ez (T, Ty), due to
idle ¢ycles resulling [rom an incomplele overlap belween
compulation and memory operalions.

Using T3 and T,,, we can now classily applications into
two catcgorics. Programs with Ty, > T, arc character-
ived as computation-bostleneck applications. Tlere the com-
putational kernel overhead dominates causing the memory
subsystem t© wait, and thus not lully utilizing the memory
bandwidth potential. Conversely, memory-botileneck appli-
calions, characlerized by Ty, > T}, cause the arithmelic
units Lo stall wailing lor memory ranslers,

Once the bottleneck source has been determined, vari-
ous optimization strategices can be used to inercase the per-
[ormance ol the slower execution component. For exam-
ple. the kernel computation may be performing at low elTi-
ciency due to poor scheduling ol the ALUs. In this case, re-
structuring the computations using technigues such as loop
vnrolling or soflware pipelining can significantly improve
performance. Similarly, the memory syslem may nol be
achieving peak bandwidlh due (o non-unil data access pal-
terns. For cerlain applications, il may be possible o reorder
the data structures and/or compulational pallemns Lo increase
unit-stride access, thereby improving memory performance.

5.1. RGB-YIQ Optimization

To demonstrate our characterization approach and ensu-
ing optimixation strategies, we investigate the RGB—YTQ
color-conversion application [rom the EEMBC [2] bench-
mark suite. Table 2 presents the kernel and memory cy-
cle counts (T, Tp) ol RGB—YIQ using the csmall ppm
data set. For the VIRAM implementation Table 2 indicates
that computation is the bottleneck, however a more detailed
analysis reveals that the low compulational performance is
caused by the ALUs inefficient inleractions with the mem-
oy sysleni.

The poor VIRAM memory performance [or the unopti-
mixed RGB—YTQ (approximately 1/8 of peak bandwidth)
is due to two main reasons. The f(irst inelliciency is at-

VAN RG5> VG
250000
240007
=
§ 230000
3
R 2amar
&
ﬁ% 210000 —
£
2800 00
7300
smay I el e
0 Crpia/B gpfinied

Figure 3. VIRAM RGB—YIQ conversion

uibuted o loading bytes into words. The VIRAM mem-
oIy syslem can deliver a peak of 32 byles per cycle; how-
ever there are only 8 veclor lanes for word-mode operalions
(vpw=32 bils). This discrepancy (32 vs. 8) is responsible
tor reducing memory performance by a tactor of 4. The sec-
ond source of memory degradation is due Lo the strided dala
access pattern. VIRAM can only generate 4 addresses per
cycle, independent ol the data width, so [or 64-bit values
Lthere is sulMicient address generation Lo load or store a value
each cycle. However when operating in word-mode using
8 (32-bit) lanes, a factor of two is lost in performance since
only 4 of the 8 outstanding lane addresses can be generated
each cveles.

The RGB— YI(Q kernel was oplimized in VIRAM by re-
placing strided memory access with unil sirides, causing
Ty 10 improve by more than a factor of 5 (Table 2). This
was done by loading the input vector (in unit stride} into
a lemporary regisier and performing an in-register shulfle
lo generale the required formal. Asg a resull, even though
the volume ol computation increased, improving the mem-
ory access pallern caused the compultation (o be scheduled
in a more elficient manner, thus improving ALU utilization
and overall kernel perlformance as seen in Figure 3 (using
sl ppm, emeditan. pp and clarge.ppim date sets).

The T; and T, characteristics of the Tmagine
RGB— Y} implementation are presented in Table 2, in-
dicating that computation is cause of the performance bot-
tleneck. A more detailed analysis shows that the compu-
tational limitation is due o poor ALU wtilization; and not
[unctional unit saturation. This can be seen by examin-
ing the VLTW schedule, which reveals many unused cy-
cles between useful instructions in the unoptimized code.
Applying soltware pipelining to the loop causes the VLTW
instructions to be packed more densely, thus reducing the
total number ol computational cycles (I},) by almost a [ac-

Inagine RGE-» VI

&,000.00

5,000.00

Z000.00

iiager ops (Wsec)

700000 17—

aa0 .

smay AT e

|8 Orginar0 sortware ppetied)

Figure 4. Imagine RGB—YIQ conversion

lor of two as seen in Table 2. However, Figure 4 shows
that only a limiled improvement is achieved in the overall
performance. This is due (o the saluration of the off-chip
memory syslem caused by the dense VLIW schedule ol the
oplimized RGB—=YIQ implemeniation. These examples
demonsirate that although performance is dependent on the
complex interaction between the memory system and ALEC
utilization, understanding and optimixing stream/vector ap-
plications can be approached through our simple methodol-

ogy.
6. Benchmarks

Table 3 presents the benchmarks used in our study.
Veetor-add is a commonly used microbenchmark character-
ized by low compulalional rate relalive (o memory require-
ments. The next four kernels are taken from EEMBC |2]
suite, which represents a collection of benchmarks from
different application areas for embedded processors. Fi-
nally we presenl QRD, a scienlific kernel which performs
the Householder QR faclorizalion of complex malrices. All
of the chosen benchmiarks are amenable (o some degree of
veclorizalion or streaming, fora reasonable comparison be-
iween the (wo archileclures.

6.1. Media Benchmark Results

Figure 5 presents performance resulls for both the com-
putation rate (GOPS) and bandwidth (GBps) ol our media
benchmark set. These codes were developed [rom scratch
on Tmagine, whereas on VIR AM we optimived previous im-
plementations | 12]. Notice that as expected relative bench-
mark performance in GOPS is correlated to the attainable

Benchmark Datawidth Remarks
(VIRAM/lmagine}
Vector-Add 32/32 bits cli] = ald] + bf7]
ROGE-SYIQ 32/32 bits Color-conversion
RGB—CMYK 16/8 ity Color-conversion
GreyFilter 16/32 hits 3x3 Convolution
Autocorrelation 16/32 hits 13ot-products
QRID 32/32 hits Complex QR

Table 3. Benchmark Overview

memory bandwidth, Our first microbenchmirk, veclor-add
(using 64K elemenis), has only one compulalion per ele-
menl: thus performance is limiled by memory speed. This
explaing why memory bandwidth is close (o peak, while the
compulation rale is rather low, The nexl (wo color con-
version benchmarks, RGB— YT and RGB—CMYK (both
using credivm.ppm), show Tmagine with a significant per-
[ormance advantage and demonstrate the dilTerence in the
attainable main memory bandwidth of the two systems.
Imagine elTectively uses wice the memory bandwidth ol
VIRAM due its relatively large processing power, Addi-
lionally, the VIRAM performance of RGB—CMYK is also
limiled since il cannol perform the 8-bil operalions required
[or this benchmark, and is therelore resiricled (o using 16-
bil dala. Note that the VIRAM TISA does support 8-bil dala
types, however this [eature is not included in the first hard-
ware implementation. Tmagine, on the other hand, can pro-
cess 8-bit data streams with explicit programmed data sub-
division.

The Grey-liller benchmark was the mosl challenging
Lo implement using Tmagine’s streaming programming
paradigm. The Grey-lilter algorithm involves sliding a 3x3
window across the entire image and is dilTicult to express
in a one-dimensional streaming representation. TTowever,
we were able Lo achieve high performance on the VIRAM
version using an optimized unit-stride vector implementa-
tion. We expect to improve Imagine’s performance through
sophisticated stream programming.

Finally, Figure 5 shows the performance of an aulocor-
relation benchmarks using three different data sets. This
code, unlike our previous benchmarks, is characterized by
short vector/stream lengths. Notice that performance is par-
ticularly poor lor the “pulse™ dataset whose vector/stream
lengihs are the shorlest of the three sels. In this example,
Imagine’s performance is limited by relatively expensive
host transler latency ol stream inswuctions, which cannot
be amortixed during short stream computations. Therelore
VIRAM has an advantage in this case due to its ability to
elliciently process short vector operations.

Tt is important © note that the media benchmarks pre-
sented are not (ully representative ol streaming applications.
Additonally, they only represents a small kernel of larger
real-world applications currently being run on media de-

500 + T 5.00

400 1 4 Lano

) @
$ (=%

[*]
0 | w8
o} 2
= o
= I 5
H o
'E 200 4 1200 @
© 7] =
3 £

100 1 L1100
—

0.00 000

Vector RGBioc RGB1o Grey Autocor Autocor Autocor
Add YIQ CMYK fiter Pulse Sine Speech

= — —a— -0
VIRAM GOPS Imagine GOPS VIRAM GB/sec Imagine GB/sec

Figure 5. Media Benchmark Performance on
VIRAM and Imagine

vices. Furthermore, (his benchmark sel does nol stress the
memory systems in complex strided or indexed patlerns.
However, EEMBC is a well-known benchmark set for em-
bedded processors and a good slarting point for our archi-
teclure evalualion.

6.2, Complex QR Decomposition

QRD is an important scienlific kernel wilh a significantly
higher compultational iniensily than our selof media bench-
marks. In the QR decomposition, a matrix A is decom-
posed as A = QR, where @ is a orthogonal and R is a
upper triangular matrix. A standard way of performing this
decomposition is o use Householder transformations: or-
thogonal (ransformations hat annihilale the lower parl of
each column (i.e., the part of the column below ils diagonal
element) of the matrix A, thus producing R. If performed
in a column-by-column manner, (computing a Houscholder
transformation for each column and updaling the subse-
quent columns of A using that transformation) this process
is rich in level-2 BLAS [14] operalions of matrix-veclor
mulliplication and ouler product updales.

6.2.1 VIRAM and Imaginc Implcmcentation

In order o increase the computation Lo memory ratio of the
Householder QR, we use block variants of the algorithm
thatare rich in level-3 BLLAS operations. These block meth-
ods consider a block of columns and faciorize them (using

VIRAM | 1 i
Matrix | Performance magine
MITRE “% of Peak 34.1% 65.5%
192x90 Cycles 5,188.817 | 712,770
complex MFlop/s 546 13,100

Table 4. QRD on VIRAM and Imagine

the Householder QR) o obtain an upper triangular (a diag-
onal block of R) matrix, as well as the (ransformation used
o decompose this block. The (ransformations are stored in
a suilable maltrix representation and then applied (o the sub-
sequent columns of the matrix, and the compulation begins
anew wilh a new column block. One representation of the
blocked Housecholder is the so-called compacl-WY repre-
seniation [6], which involves matrices ¥, and 7', (hat obey
the identity A = (I = YTY™)R, where I - YTYH =
(YH is (he conjugale transpose of ¥). The reader is referred
lo [9] for a complele descriplion of the blocked Householder
QR. Both VIRAM and Imagine implementations use this
blocked algorithm, o decompose a malrix A of complex
elements. The use of complex elements enhances he com-
pulational inlensity (ops/word) and the locality of the al-
gorithm, since each complex multiplication expands (o six
arithmelic operations.

The VIRAM implementation is a porl of the CLA-
PACK [5] routine CGEQRF and its associaled BLAS [14]
routines. In the VIRAM implementation, columns are con-
sidered in blocks of 32 and (he whole implementation is
composed of calls to BLAS routines. The oplimization pro-
cess was siraightforward and involved insertion of vecior-
izalion direclives [4] in the source code of BLAS routines.
For certain BLLAS routines, loops were inlerchanged, con-
verting large stride accesses o smaller ones 0 avoid the
overheads described in Section 5.1. For instance, SAXPY
version of matrix-vector multiply would do considerably
beller than the dot-product version [13], for matrices stored
in column-major order. This is because (he later implemen-
lation requires strided accesses, in addilion (o the expensive
reduclions necessary for compuling the sum.

The Imagine implementation described in [15] also uses
a blocked algorithm. Blocks of 8 columnns are fed into ker-
nels that compule the R malrix for thal block. The House-
holder (ransformaltion is also compuled at this poinl. This
transformation is then applied to the subsequent column
blocks of the maltrix and the process ilerates. Some compli-
caled indexing of the matrix stream needs (o be performed
as each ileration of the process requires smaller and smaller
malrices.

6.2.2 QRD Performance Results

The performance of QR on a 192-by-96 (m-by-n) com-
plex matrix A, taken from the Mitre RT_STAP benchmark

suile [7], is shown in Table 4. Nole that this algorithm re-
guires 8mn? operalions. VIRAM sustains only 34.1% of its
theoretical hardware peak on this computationally intensive
kemel, chielly due o memory accesses with large stride,
and achieves 546 MFlop/s. Tmagine, on the other hand,
performs at over 63% efficiency and shows an impressive
speed ol over 13 GFlop/s [15], an improvement o almost
24x in raw processing power over VIRAM . These results
demonstrale the considersble performance can be oblained
on lmagine on slreaming compulations with high operalions
pel MEMOIY access.

7. Conclusions

In this work we examined lwo emerging media proces-
sors designed Lo address the well-known gap belween pro-
cessor and memory performance. First, we presented a sim-
ple and ellectlive approach [or understanding and oplimizing
lhe performance ol veclor/siream applicalions. A number
of multimedia benchmarks were then presented and per-
formance was compared across the two architectures. We
[ound that VIRAM needs more processing power in or-
der to [ully exploit its large on-chip bandwidth. Tmagine,
on the other hand, has extremely powerful functional units
but is constrained by the 2.7 GB/s oll-chip memory band-
widlth. VIRAM is therefore beller suiled for applicalions
with a relatively low rulio of operalions per memory access,
while lmagine excels for computationally intensive prob-
lems, This was demonsiraled by the QRD scientific kernel,
where Tmagine achieved an impressive 13GFlop/s, due 1o
the high volume ol operations per memaory access.

A key difference between the two technologies is [mag-
ine’s TSA support [or mulli-word records; while VIRAM iy
regiricled 1o nalive veclor instructions which only operile
on basic-data types. However, program development was
more challenging in Trmagine than in the well-known vee-
torization paradigm, because the programmer is exposed to
the memory hierarchy and cluster organization ol the Tmag-
inc architecture. ITmprovement in the quality of the com-
piler and software development tools, and abstracting lower
level details of the hardware will be essential in bringing the
stream programming maedel to the wider computing com-
munity. Brook |8] and Steamlt | 16] are two examples of
recenily proposed high-level streaming languages thal al-
lemptl lo increase programmer produclivity while achieving
high performance.

Future plans include examining a broader scope of ap-
plication codes, as well as validating our resulls on real
hardware as it becomes available. We also plan to evalu-
ale more complex data-parallel systems such as the Stream-
ing Supercomputer [8] und the DIVA architecture [10]. Our
long-term goal is o evaluate these technologies as building
blocks [or [uture high-performance multiprocessor sysiems.

Acknowledgments

The authors would like to thank Parry Husbands for his in-
sight into the QRD algorithm, and Arin Fishkin lor her artis-
tic contribution. This work was supported in part by the
Laboralory Directed Research and Development Program
ol the Lawrence Berkeley Nalional Laboratory (supported
by the U.S. Department of Energy under contract number
DEACO03-76SF00098).

References

[1] The Berkelev Intefligent RAM (IRAM) Project. Univ. of Cal-
ifornia, Berkeley, hittp:/firam.cs.berkeley.edu.

|2] EEMBC (EDN Embedded Microprocessor Benclimark Con-
sortium) Beachmark Suite. http/fwww.eembce.org.

3] The Mmagine Project. Stanford Universily, huip:/-
cviLstanford.cdu/imagine/.

[4] Maximizing CRAY T90/J90 Application Performance. Sci-
entific Computing at NPACI (SCAN), Volume 3 [ssue 15:
July 21, 1999.

13] E. Anderson, £. Bai, C. Bischol, S. Blacklord, J. Demmel,

J. Dongarra, 1. 1. Crov, A. Greenbaum, S. Hammarling,

A McKenney, und D, Sorenson. LAPACK Users Guide.

Third Fdition. Socicty for Tndustrial and Applied Mathe-

maticy, 2000,

C. Bischol and C. Van Loan. Basic linear algebra subpro-

orams for FORTRAN usage. SIAM . Scientific and Starvissi-

cal Computing., 8(1):2-13, 1987.

[7]1 K. Cain, J. Torres, and R. Williams. Real-time space-
timc adaptive processing benchmark, MITRE Tech, Rep.,
(MTR96B021Y, Feb (997

[8] W. Dally, P. Hanrahan, and R. HFedkiw. A streaming supet-
compuler. Whitepaper, Sep 2001,

9] G. Golub and C. Van Loan. Marvix Compuraiions. Jlohns
Hopking Univ Press,, 1996,

[10] M. Hall, P. Kogge, J. Koller, P. I3iniv, J. Chame, J. Draper,
I. LaCoss, I. Granacki, A. Srivastava, W. Athas, J. Brock-
man, V. Hreeh,). Park, and 1. Shin. Mapping irregular ap-
plications to DIVA, u PIM-bused data-intensive architecture,
Proc. of SC99, 1999,

[111 B. Khailany, W, I, Dally, S, Rixner, UL J. Kapasi, P. Mattson,
J. Namkoong, I. D. Owens, B. lowles, and A. Chang. Imag-
ine: Media processing with streams. IEEE Micro, Mar/April
2001.

[12] C. Kozyrakis. Scalable Vector Media-Processors for Em-
bedded Systems. PhD Thesis, Univ, of California, Berkeley,
2002,

[13] C. Kosyrakis, 12, Judd, 1. Gebis, 5. Williams, 1. Patterson,
and K. Yelick. Hardware/compiler co-development for an
cmbedded media processor. Proceedings of ithe IEEE, 2001,

[14] C. Lawson, R, J, Hanson, 1D, Kincaid, and F, 1. Krogh, Bu-
sic lincar algebra subprograms for FORTRAN vsage, ACM
Trans. Math, Soft, 5, 1979,

[15] P Mattson. Programming Svstem for the Imagine Media
Processor. Ph.D. Thesis, Stanford University, 2002.

[16] W.Thics, M. Karczmarck, and S. Amarasinghe, Streamit: A
language for streuming applications. Computational Com-
plexity fouwrnal, pages 179-196, 2002,

|6

http://iram.cs.berkeley.edu
http://w
http://ww.eembc.org
http:/l

