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Abstract— This paper describes the construction of the
largest gait database in the world and its application to a
statistically reliable performance evaluation of vision-based gait
recognition. Whereas existing gait databases include at most
an order of a hundred subjects, we construct an even larger
gait database which includes 1,035 subjects (569 males and
466 females) with ages ranging from 2 to 94 years. Because a
sufficient number of subjects for each gender and age group are
included in this very large-scale gait database, we can analyze
the dependence of gait recognition performance on gender or
age groups. The results of GEI-based gait recognition provide
several novel insights, such as the tradeoff of gait recognition
performance among age groups derived from the maturity of
walking ability and physical strength. Moreover, improvement
in the statistical reliability of performance evaluation is shown
by comparing the gait recognition results for the whole set and
subsets of a hundred subjects selected randomly from the whole
set.

I. INTRODUCTION

In modern society, there is a growing need to identify
individuals in many different situations, including for surveil-
lance and access control. For personal identification, many
biometric-based authentication methods have been proposed
using a wide variety of cues, such as fingerprints, irises,
faces, and gait. Of these, gait identification has attracted
considerable attention because it offers surveillance systems
the ability to ascertain identity at a distance. Actually,
automatic gait recognition on public CCTV images has been
admitted as evidence in UK courts [1], and gait evidence has
been used as a cue for criminal investigation in Japan.

Recently, various approaches to gait identification have
been proposed. These range from model-based approaches
[2] [3] [4] [5] [6] to appearance-based approaches [7] [8] [9]
[10] [11] [12] [13] [14] [15]. In addition, several common
gait databases have been published [16] [17] [18] [19] [20]
[21] [22] [23] [24] for fair comparison of gait recognition
approaches. These databases are usually constructed taking
into account the following: (1) the variation in walking
conditions, and (2) the number and variation of subjects.

The first consideration is important to ensure the ro-
bustness of the gait recognition algorithms, since walking
conditions often differ between enrollment and test stages.
For example, observation views are often inconsistent due
to the positions of the CCTV cameras on the street and/or
walking directions possibly being different. In addition,
walking speeds can change depending on whether the person
is merely taking a walk in the park or is walking to the station

in a hurry, and clothing almost certainly changes depending
on the season.

The second consideration is also important because the
number of subjects determines the upper bound of the sta-
tistical reliability of the performance evaluation. In addition,
if the database is used not only for person identification, but
also gender and age estimation from gait, the variation of
subjects in terms of genders and ages plays an important
role in the performance evaluations of such applications.

In this paper, we focus on the second consideration and
construct the largest gait database in the world, comprising
more than a thousand subjects of both genders and including
a wide range of ages. The largest existing gait database
comprises at most an order of a hundred subjects with biased
distribution of genders and ages. The proposed gait database
thus enables us to evaluate gait recognition algorithms in
a more statistically reliable way and to reveal how gait
recognition performances differ between genders and age
groups.

The outline of this paper is as follows. First, existing gait
databases are briefly considered in Section II. Next, the con-
struction of the very large-scale gait database is addressed in
Section III. Several existing gait recognition approaches are
examined in Section IV, with their performance evaluation
using the very large-scale gait database presented in Section
V. Section VI contains our conclusions and future work in
the area.

II. RELATED WORK ON EXISTING GAIT DATABASES

The existing gait databases are summarized in Table I.
First, we briefly review the walking condition variations in
the databases.

The USF dataset [16] is one of the most widely used
gait datasets and is composed of a gallery and 12 probe
sequences under different walking conditions that include
factors such as views, shoes, surfaces, baggage, and time.
As the number of factors is the largest of all the existing
databases, and despite the number of variations for each
factor being limited to 2, the USF database is suitable for
evaluating the inter-factor, instead of intra-factor, impact on
gait recognition performance.

The CMU MoBo Database [19] contains image sequences
of persons walking on a treadmill captured by six cameras.
As the treadmill can control the walking speed and slope, the
database includes gait images with speed and slope variations
as well as view variations. As a result, this database is often
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used for performance evaluation for speed-invariant or view-
invariant gait recognition [11].

The CASIA dataset [23] contains the largest azimuth view
variations and hence, it is used for analysis and modeling of
view impact on gait recognition [25].

The OU-ISIR Gait Database [24] contains gait images with
the largest speed variations (7 speeds: 1 km/h interval from 2
km/h to 7 km/h) and clothing variations (32 combinations at
most), and therefore, it is used for evaluating speed-invariant
[26] and clothing-invariant [27] gait recognition.

Next, we review the number and variation of subjects. As
shown in Table I, relatively large-scale gait databases with
more than a hundred subjects are limited to the following
three: USF dataset [16], Soton database [20], and CASIA
dataset [23]. Although these three databases provide a sta-
tistically reliable performance to some extent, the number
of subjects are still not sufficient compared with other
biometrics such as fingerprints and faces.

In addition, populations of genders and ages are biased in
these databases; e.g., there are no children in the USF dataset,
while in the CASIA dataset most of the subjects are in their
twenties and thirties and the ratio of males to females is 3
to 1. Such biases are undesirable in performance evaluation
of gait-based gender and age estimation and performance
comparison of gait recognition between genders and age
groups.

III. THE LARGEST GAIT DATABASE

A. Gait measurement system

An overview of our gait measurement system is illus-
trated in Fig. 1. A subject walks through the first straight
course (blue arrows) and thereafter, walks through the second
straight course (red arrows). The length of each course is 10.0
m, with 3.0 m sections at the beginning and end regarded
as acceleration and deceleration intervals, respectively. Two
cameras are set along each course, approximately 4.0 m
apart, with their observation views ranging (1) from side to
rear oblique, and (2) from front oblique to side, respectively,
and therefore, four sequences in total are captured for each
subject. The image size and frame rate are set to 640 by 480
pixels and 30 fps, respectively.

Moreover, the background has been designed to make sil-
houette extraction easier. The floor and back wall are covered
with green carpets and light green panels, respectively, and
these are illuminated by LED lights as shown in Fig. 1.
Examples of the captured images from the four cameras are
shown in Fig 2.

B. Data collection and statistics

We collected the gait images, together with a demonstra-
tion of online gait personality measurement [28] for the Dive
Into the Movie (DIM) project [29]. The event was held over
3 days in March 2009 and more than a thousand visitors
participated in the demonstration. Each subject was requested
to sign an informed consent to permit the use of the collected
data for research purposes. As a result, we constructed the
largest gait database in the world that includes 1,035 subjects

(a) Top view (b) Side view
Fig. 1. Gait measurement system

(a) Camera 1 (b) Camera 2

(c) Camera 3 (d) Camera 4
Fig. 2. Examples of the captured images

(569 males and 466 females) with ages ranging from 2 to 94
years. Detailed statistics of the subjects are shown in Fig. 3.
Compared with the existing gait databases, the advantages
of this very large-scale gait database are given below.

1) The number of subjects is approximately 10 times
more than in the existing large gait databases. This
significantly improves the reliability of the gait recog-
nition performance evaluation.

2) The male-to-female ratio is close to 1. This is a desir-
able property for more reliable performance evaluation
of gait-based gender classification and for comparison
of gait recognition performance between genders.

3) The subjects’ ages are widely distributed from 2 to 94
years. In particular, the number of children is compara-
ble to the number of adults, and each 10-year interval
up to 50 years contains more than a hundred subjects.
This provides more statistically reliable results on
gait-based age group classification and difficulty level
comparison of gait recognition among age groups.

IV. GAIT FEATURE EXTRACTION

In this section, we introduce several gait recognition
algorithms used for performance evaluation.

A. Extraction of Gait Silhouette Volume (GSV)

Gait silhouette extraction is an essential preprocessing step
in most of the appearance-based gait recognition approaches.



TABLE I

EXISTING GAIT DATABASES

Database #Subjects Walking conditions

USF dataset [16] 122 2 views, 2 shoes, 2 surfaces, baggage (w/ and w/o), time
UCSD database [17] 6 -
Georgia Tech database [18] 20 Multiple views, time, distance
CMU Mobo database [19] 25 6 views, 2 speeds, 2 slopes, baggage (ball)
Soton (Southampton) database [20] 115 Multiple views
UMD (Univ. of Maryland) database [21] 25 4 views

55 2 views
MIT database [22] 24 Multiple views
CASIA dataset [23] 124 11 views, clothing (w/ and w/o coat), baggage (w/ and w/o)
OU-ISIR gait database (treadmill dataset) [24] 34 7 speeds

68 32 clothes combination (at most)

Fig. 3. Statistics of subjects’ gender and age

Fig. 4. An example of GSV

The current mainstream algorithm for foreground segmenta-
tion from a static background is a graph cut-based algorithm
[30] in conjunction with background subtraction, which is
also exploited in this work.

The next step is registration and size normalization. The
height and center values of the silhouette region are obtained
for each frame and the silhouette is scaled so that the height
is a pre-determined size, whilst maintaining the aspect ratio.
In this paper, the size is set to a height of H = 32 pixels and
a width of W = 22 pixels. Then, each silhouette is registered
such that its center corresponds to the image center. Finally, a
spatio-temporal GSV is produced by stacking the silhouettes
on the temporal axis. An example of a constructed GSV is
shown in Fig. 4.

B. Gait period detection

Because gait is a periodic motion, the gait period Ngait

is usually regarded as a feature vector unit that needs to
be detected before feature extraction. This is determined by
maximizing the following normalized autocorrelation of the
GSV for the temporal axis.

C(N) =
∑x,y ∑T (N)

n=0 g(x,y,n)g(x,y,n+N)√
∑x,y ∑T (N)

n=0 g(x,y,n)2
√

∑x,y ∑T (N)
n=0 g(x,y,n+N)2

(1)
T (N) = Ntotal −N −1, (2)

where g(x,y,n) is a silhouette value of the GSV at position
(x,y) of the nth frame, C(N) is the autocorrelation for the
N frame shift, and Ntotal is the total number of frames in

the sequence. Images are captured at 30 fps in this paper,
and hence the domain of N is empirically set to [20, 40]
frames ([0.66, 1.33] sec) for natural gait periods. Other gait
types such as running, brisk walking, and ’ox walking’ are
not within the scope of this paper.

C. Gait trajectory matching in eigen space

A method for gait silhouette matching with phase shift
has been proposed as a baseline algorithm [16]. More so-
phisticated versions of this method, that is, gait trajectory
matching in eigen space with linear phase warping [14] [31]
are also available. In [31], PCA is first applied to reduce
the dimensions of GSV. The number of reduced dimensions
is determined so that the cumulative contribution ratio of
eigenvalues is more than 99 % in this paper. As a result, the
gait silhouette and gait silhouette sequence are expressed as
a point and trajectory in the PCA space, respectively.

In the matching stage, the gait trajectories of a gallery
and/or probe are divided into period-unit ones and matching
results on the multiple periods are statistically integrated.
Finally, two types of matching units are adopted: (1) PP-
PCA (period-period matching in PCA space), and (2) SP-
PCA (sequence-period matching in PCA space).

D. Frequency-domain feature

In this section, a frequency-domain feature [15] is in-
troduced as another gait feature. First, a Discrete Fourier
Transform (DFT) of the temporal axis is applied to the GSV
feature vector as

Gi(x,y,k) =
(i+1)Ngait−1

∑
n=iNgait

g(x,y,n)e− jω0kn, (3)

where ω0 = 2π/Ngait is the base angular frequency for the
gait period Ngait , and Gi(x,y,k) is the DFT of the GSV for
k-times the base frequency. Subsequently, amplitude spectra
of the DFT are calculated as

Ai(x,y,k) =
1

Ngait
∣Gi(x,y,k)∣, (4)

where Ai(x,y,k) is an amplitude spectrum for Gi(x,y,k) nor-
malized with the gait period Ngait . In this paper, direct current
elements (k = 0) (averaged silhouette) and low frequency
elements (k = 1,2) are used as frequency-domain features.
Consequently, the total number of frequency elements (NA)
is 2,112 (3 frequencies × 32 pixels high × 22 pixels wide).



Fig. 5. Examples of frequency-domain features among three subjects. In
each subject, left image indicates direct current element (GEI), middle and
right images indicate 1- and 2-times frequency elements.

Note that the only direct current element (k = 0) is equivalent
to the averaged silhouette [32] or Gait Energy Image [33].
In the following sections, we refer to the frequency-domain
feature and the Gait Energy Image as FREQ and GEI,
respectively. Examples of FREQ are shown in Fig. 5.

V. PERFORMANCE EVALUATION

A. Evaluation measures

In this experiment, two side view sequences from cameras
21 and 4 are used as the gallery and probe for each subject,
respectively. Recognition performance is evaluated by two
measures: (1) Cumulative Match Characteristic (CMC) curve
and (2) Receiver Operating Characteristic (ROC) curve [34].
The CMC curve shows the relation between identification
rates and a tolerant rank in a one-to-N matching scenario.
For example, a rank k identification rate means the ratio of a
probe to all other probes, where a correct gallery correspond-
ing to the given probe occurs within a rank k score. The ROC
curve denotes a tradeoff curve between a False Rejection
Rate (FRR) and False Acceptance Rate (FAR) when the
acceptance threshold is changed by a receiver in a one-to-
one matching scenario. In a one-to-one matching scenario,
a z-normalized distance among galleries [34] is adopted to
improve the performance in this paper. Note that the CMC
curve is dependent on the gallery size, whereas the ROC
curve is essentially independent of the gallery size.

B. Comparison of gait recognition approaches

In this section, the recognition performance of each of
the four approaches, PP-PCA, SP-PCA, GEI, and FREQ, is
compared using the whole set in the largest gait database
as a preliminary experiment. The CMC and ROC curves are
depicted in Figs. 6 and 7, respectively. According to the re-
sults, GEI achieves the best performance of all. PP-PCA, SP-
PCA, and FREQ are more sensitive to motion components
than GEI and therefore, their performance is possibly more
severely affected by gait fluctuations between the gallery
and probe. Further analysis of the decline in performance
of FREQ, SP-PCA, and PP-PCA, as well as a performance
comparison with other state-of-the-art approaches, is left for
a future work.

C. Impact of number of subjects

In this section, the impact of the number of subjects is
investigated. Based on a statistical analysis of ROC curves
[35], the standard deviation of the FRR with a single probe
for each subject is estimated as

σ̂( p̂) =

√
p̂(1− p̂)

n−1
, (5)

Fig. 6. CMC curve of gait recognition approaches

Fig. 7. ROC curve of gait recognition approaches

where p̂ is the observed FRR and n is the number of subjects.
This indicates that the obtained FRR becomes more reliable
as the number of subjects increases. To validate the esti-
mation, we repeated the experiments with randomly chosen
subsets with fewer subjects and compared the actual standard
deviation of the performance and the estimated one from Eq.
(5). First, we prepared seven subsets comprising a hundred
subjects randomly chosen from the whole set and obtained
seven ROC curves for GEI-based gait recognition from
the experimental results. Then, we calculated the average
and standard deviation of the FRR for each FAR, depicted
as an averaged ROC curve (bold pink line) and standard
deviation range bar (gray bar) in Fig. 8. In addition, the
estimated standard deviation range from Eq. (5) is depicted
as two thin pink lines. From this graph, we can see that
the standard deviation ranges derived from the experimental
results correspond well with those estimated from Eq. (5).

Moreover, the results for the whole set are superimposed
as a bold blue line, while the standard deviation range
estimated from Eq. (5) is depicted as two thin blue lines
in Fig. 8. We can see that the standard deviation range is
significantly narrower than that of the smaller subject subsets.
For example at 4% FAR, the standard deviation is reduced
from 1.9% to 0.6%. This indicates that the accuracy of the
performance evaluation increases three fold.

D. Impact of gender

In this section, we investigate how gait recognition per-
formance differs between genders or among age groups. Our
very large-scale gait database is ideally suited to this since
the gender ratio is close to one as mentioned in Section III.

The ROC curve for GEI-based gait recognition perfor-
mance among the 569 males is depicted as a bold blue line



Fig. 8. ROC curves of GEI-based gait recognition with different numbers
of subjects. Pink and blue stand for smaller subsets and the whole set. Bold
line and two bounding thin lines mean an average μ and standard deviation
range μ ±σ derived from Eq. (5). Gray bars are standard deviation ranges
μ ±σ obtained by experiments.

Fig. 9. ROC curves of GEI-based gait recognition between genders. Blue
and pink stand for males and females respectively. Bold lines and two
bounding thin lines mean an average μ and standard deviation range μ ±σ
derived from Eq. (5).

in Fig. 9 and that for the 466 females as a bold pink line.
In addition, the standard deviation range derived from Eq.
(5) is depicted as two thin lines. According to the results,
the recognition performance among females is slightly better
than that among males. Moreover, the distance distributions
of the same subjects (true attempts) and different subjects
(imposters) for males and females are depicted in Fig. 10.
This result implies that the inter-subject variation of the
males’ gait is less than that of the females’ gait and/or
that the intra-subject variation, that is, the fluctuation in the
males’ gait is larger than that for females. In future work,
we intend to thoroughly analyze the gait pattern distributions
between genders.

E. Impact of age groups

Next, we show the difference in gait recognition per-
formance among the age groups. Our very large-scale gait

Fig. 10. Distance distribution between genders.

Fig. 11. ROC curves of GEI-based gait recognition for each age-group
interval.

Fig. 12. Distance distribution for each age-group interval.

database is ideally suited to this purpose because the age
distribution is much wider than that in existing gait databases
as mentioned in Section III.

In the very large-scale gait database, each 10-year interval
up to 50 years contains more than a hundred subjects, and
we randomly selected 5 subsets of a hundred subjects for
each age-group interval. The interval over 50 years is treated
separately as one age group because of the shortage of sub-
jects. The averaged ROC curves for each age-group interval
are depicted in Fig. 11. Moreover, the distance distributions
of the same subjects (true attempts) and different subjects
(imposters) for three typical age groups, under 9’s, 30’s, and
over 50’s are depicted in Fig. 12.

From the results, we can see that the gait recognition
performance for the child age groups is worse than that for
the other age groups, and this gradually improves with older
groups up to 30 years. This result is intuitively understand-
able because the intra-subject gait fluctuation for children
is relatively larger due to the immaturity of their walking
skills. On the other hand, fluctuation in gait for adults is
quite small since adults have established their own walking
style; in other words, they have a fixed gait pattern.

On the other hand, the gait recognition performance for
groups over 40 years old declines as the subjects become
older. This degradation in performance is inferred from the
fact that physical strength generally declines as the subject
grows older and hence, the gait tends to fluctuate more.

Consequently, gait recognition performance of subjects in
their thirties is regarded as a tradeoff between the maturity
of walking ability and physical strength. Moreover, the
dependence of gait fluctuation on the age group implies that
gait fluctuation can be a useful cue for age classification by
gait. In addition, the age group can be regarded as a so-



called quality measure for gait recognition, which is one of
the interesting future directions in this study.

VI. CONCLUSION

This paper describes the construction of the world’s largest
gait database and a statistically reliable performance eval-
uation of vision-based gait recognition. The database has
the following three advantages compared with existing gait
databases: (1) the number of subjects is 1,035, which is
approximately 10 times more than existing large-scale gait
databases, (2) the male-to-female ratio is close to one, (3)
the age distribution is wide, ranging from 2 to 94 years.
Because sufficient numbers of subjects for each gender and
age group are included in the large-scale gait database, it is
possible to evaluate how gait recognition performances differ
between genders and among age groups. The results of GEI-
based gait recognition provide several novel insights, such
as the tradeoff of gait recognition performance among age
groups based on the maturity of walking ability and physical
strength. Moreover, improvement in the statistical reliability
of performance evaluation is shown by comparing the gait
recognition results for the whole set and subsets of a hundred
subjects randomly selected from the whole set.

Future work includes performance evaluation of other
state-of-the-art gait recognition approaches, and gender
and/or age group classification by gait using the very large-
scale gait database.
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