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ABSTRACT Recently, there are lots of visual tracking algorithms proposed to improve the performance

of object tracking in video sequences with various real conditions, such as severe occlusion, complicated

background, fast motion, and so on. In real visual tracking systems, there are various quality degradation

occurring during video acquisition, transmission, and processing. However, most existing studies focus

on improving the accuracy of visual tracking while ignoring the performance of tracking algorithms on

video sequences with certain quality degradation. In this paper, we investigate the performance evaluation

of existing visual tracking algorithms on video sequences with quality degradation. A quality-degraded

video database for visual tracking (QDVD-VT), including the reference video sequences and their corre-

sponding distorted versions, is constructed as the benchmarking for robustness analysis of visual tracking

algorithms. Based on the constructed QDVD-VT, we propose a method for robustness measurement of visual

tracking (RMVT) algorithms by accuracy rate and performance stability. The performance of ten existing

visual tracking algorithms is evaluated by the proposed RMVT based on the built QDVD-VT. We provide

the detailed analysis and discussion on the robustness analysis of different visual tracking algorithms on

video sequences with quality degradation from different distortion types. To visualize the robustness of

visual tracking algorithms well, we design a robustness pentagon to show the accuracy rate and performance

stability of visual tracking algorithms. Our initial investigation shows that it is still challenging for effective

object tracking for existing visual tracking algorithms on video sequences with quality degradation. There

is much room for the performance improvement of existing tracking algorithms on video sequences with

quality degradation in real applications.

INDEX TERMS Performance evaluation, quality degradation, robustness analysis, visual tracking,

benchmarking.

I. INTRODUCTION

Visual tracking is a hot topic in the research areas of computer

vision and multimedia processing. It can be widely used in

various multimedia applications such as visual surveillance,

robot navigation, medical image, human-computer interac-

tion, etc. With the initial state of an object in the first

frame of a video sequence, visual tracking algorithms aim

to accurately predict the object states in the following video

frames. Previously, there have been various visual tracking

algorithms proposed for object tracking in video sequences

with various conditions in tracking circumstances such

as severe occlusion, complicated background, fast motion,

etc. [27], [28].

In previous studies, there are also various video databases

built as the benchmarks for performance evaluation of visual

tracking algorithms [27], [28]. These databases are mainly

composed of video sequences with various tracking chal-

lenges such as occlusion, complicated background, fast

motion, etc. However, video quality degradation is rarely con-

sidered in these existing studies. In real multimedia systems,
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there might be different distortion types involved in video

sequences during video acquisition, compression, process-

ing, etc. When video sequences are acquired with differ-

ent light conditions, there might be contrast distortion and

noises generated. With the limited bandwidth resources,

video sequences have to be compressed during transmission

and this would cause compression distortion. Thus, video

sequences might be distorted due to different circumstances

in real multimedia systems. For video sequences with quality

degradation, the targets might be not tracked as accurately

as those in good-quality video sequences. Therefore, the

influence of video quality degradation on visual tracking

should be investigated for the design of robust visual tracking

algorithms.

In the past decades, the quality/performance evaluation

methods has been widely investigated for various multimedia

applications [1]–[4]. Early signal fidelity metrics such as

SNR (singal-to-noise rate), PSNR (peak SNR), MAE (mean

absolute error), and MSE (mean square error) are designed

to estimate the image/video quality by simply comparing

the distorted content with the reference one. These met-

rics can not obtain promising performance in visual quality

assessment, since they do not take the visual content into

account during quality prediction [1], [2]. To better predict the

quality of visual signals, there are many perceptual metrics

proposed recently, including SSIM (structure similarity) [5],

VIF (visual information fidelity) [6], VSNR (visual signal-

to-noise ratio) [7], IGM (internal generative mechanism)

inspired metrics [8], [9], gradient similarity metric [13], etc.

Recently, with the requirement of many emerging mul-

timedia applications, there are some studies focusing on

proposing application-specific evaluation methods for spe-

cific visual content and visual processing algorithms. With

the emerging interests in 3D visual content several years

ago, there have been many studies investigating quality eval-

uation of 3D visual content [14]–[16]. Some studies also

investigate the visual quality assessment for screen content

images [12], [17], tone-mapped images [19], contrast-

distorted images [11], [20], image blurring [10], image sharp-

ness [26], etc. [4]. Besides the quality evaluation for specific

types of images, there are also some studies investigating

the performance evaluation of specific visual processing

algorithms, including image retargeting [18], [25], image

fusion [22], pedestrian detection [21], etc.

As introduced previously, there are currently some stud-

ies building video databases for performance evaluation of

visual tracking algorithms [27], [28]. However, these stud-

ies mainly focus on investigating the robustness of visual

tracking on different challenges from occlusion, complicated

background, fast motion, etc. They do not take the video

quality into account during the performance evaluation of

visual tracking. Recently, there are several studies conducting

experiments to evaluate the performance of face detection and

event detection algorithms in video sequences with quality

degradation [23], [24]. These studies show that the detection

algorithms can obtain high detection accuracy in good-quality

video. It has also demonstrated that the detection accuracy

would decrease with video quality degradation [23]. For

visual tracking algorithms, there is still no study systemically

analyzing the influence of video quality on the performance

of visual tracking algorithms. Thus, it is much desired to

investigate the performance evaluation of visual tracking

algorithms on video sequences with quality degradation.

In this study, we aim to carry out the first in-depth study

on performance evaluation of visual tracking algorithms

with quality degradation video. A Quality-Degraded Video

Database for Visual Tracking (QDVD-VT), including 4 orig-

inal video sequences and 40 distorted versions, is constructed

as the benchmark for performance evaluation of visual track-

ing algorithms. Ten existing visual tracking algorithms pub-

lished recently are chosen to conduct the experiments for

robustness analysis. We define the metric called robustness

measurement for visual tracking (RMVT) with video quality

degradation to predict the robustness of different visual track-

ing algorithms for video sequences. In the proposed RMVT,

both the visual tracking accuracy and stability on video

sequences with quality degradation are considered. With the

proposed RMVT, the performance of certain visual tracking

algorithm with regarding tracking accuracy and stability can

be obtained for different types of distortions. We also provide

the in-depth analysis and discussion on how different distor-

tions and their distortion levels influence the performance

of visual tracking algorithms. To visualize the robustness

of visual tracking algorithms well, we design a robustness

pentagon to show the accuracy rate and performance stability

of visual tracking algorithms. With the investigation in this

study, we try to provide some possible research directions on

visual tracking in the future. To the best knowledge of our

knowledge, this is the first study to systematically investigate

the performance evaluation of visual tracking algorithms on

video sequences with quality degradation and QDVD-VT is

the first related video database for visual tracking. Partial

preliminary results of the study have been published in [35].

The reminder of this paper is organized as follows.

In Section II, we introduce the process for the construction

of the proposed QDVD-VT. Section III describes the details

of the proposed method for robustness analysis of visual

tracking algorithms. In Section IV, we conduct the experi-

ments to evaluate the performance of different visual tracking

algorithms. The final section concludes the work and provide

our possible research in the future.

II. THE BENCHMARK

In this study, the QDVD-VT is built based on four refer-

ence video sequences from PROST [29], including the video

sequences of board, box, lemming, and liquor. This database

has been widely used in performance evaluation of existing

visual tracking algorithms [27], [29]–[32]. In this database,

the ground truth is labeled manually by the bound box of

the target for visual tracking. The resolution of the video

frames is 480 × 640. The video sequences are obtained by

the fixed camera, which guarantees relatively stable quality
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FIGURE 1. The video frame samples. The images in the first column are the reference video frames; the images in the second to the last column are
the distorted versions. The distortion types from the first row to the last row are distortions from compression, contrast change, resolution, and
white noise.

of video frames. In addition, the target size in each video

sequences is constant. Thus, we can adjust the resolution of

video sequences to investigate the influence of the varied

target sizes on visual tracking performance. We provide some

samples of the reference video frames in the first column

of Fig. 1.

As indicated previously, video sequences have to be com-

pressed due to the limited resource of storage. Additionally,

we have to compress video sequences for efficient transmis-

sion. With video compression, the compression distortion

would be brought into the video sequences. Thus, we use

the compression distortion to generate the distorted video

sequences in the proposed QDVD-VT. We give some dis-

torted samples from compression distortion in the first row

of Fig. 1.

During video acquisition, the environment variety would

cause the luminance differences of video frames, which

would bring in the distortion of contrast change. In the case

where the video sequences are captured in bad conditions,

such as rainy environment or night, the video sequencesmight

suffer severe distortion of contrast change. In this study, we

take the contrast change as one distortion type in the proposed

QDVD-VT.We provide some distorted samples from contrast

change in the second row of Fig. 1.

For various emerging devices, the video sequences have to

be displayed in various display screens with different sizes.

Furthermore, the camera sensors might also cause the video

sequences with different sizes. The performance of visual

tracking algorithms might be influenced on video sequences

with different resolutions. Thus, we adjust the resolutions of

video sequences as one factor in the proposed QDVD-VT.

Some samples of video frames with different resolutions are

shown in the third row of Fig. 1.

Noise is a common distortion type in video sequences.

It might be brought in video sequences during video acquisi-

tion, processing, and other procedures. Here, we also consider

the noise as one type of distortion in the proposed QDVD-VT.

Some samples of noise-distorted video frames are provided in

the fourth row of Fig. 1.

The other factor we take into account in the proposed

QDVD-VT is the frame rate. Generally, visual tracking algo-

rithms try to track the target in the current frame depending

on the target features of the previous frames. With different

frame rates, the dependency of previous frames might be

different for the tracking accuracy of the current frame.

Totally, we take five different distortion types for video

sequences in the proposed QDVD-VT: compression distor-

tion, contrast change, resolution variety, white noise, and
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FIGURE 2. The properties of video sequences with different distortion types. In the fourth subfigure for the contrast change, the contrast parameter
represented by x-axis values are [1.2−5, 1.2−4

, . . . , 1.25]. In the last subfigure for the white noise, the parameter σ represented by the x-axis values
are [0.61, 0.62

, . . . , 0.610].

frame rate of video sequences. With each type of distortions,

we obtain different video quality levels to evaluate the robust-

ness of visual tracking algorithms.

By using five distortion types, we create 48 distortion

versions for each reference video sequence. Thus, there are

48 × 4 + 4 = 196 video sequences including four refer-

ence video sequences and 192 distorted versions totally in

QDVD-VT. In the following, we analyze the statistics of the

distorted video sequences in detail.

A. COMPRESSION DISTORTION

The compressed versions of video sequences are generated

by using different values of constant rate factor (CRF) in

H.264 codec. CRF is an important parameter in H.264 codec

to encode video sequences with different bit rates. With

increasing CRF values, the quality of video sequences would

be degraded. In QDVD-VT, we generated the compression

version of each video sequence by encoding it with 10 quality

levels with the CRF in change of [5, 50]. In this study, we

use ffmpeg [33] to encode the video sequences. We provide

the compression ratio of each distorted video sequence in

the first subfigure of Fig. 2. From this subfigure, we can see

that the compression ratio changes from around 1 to around

103 between the reference video sequences and their distorted

versions. Besides, the peak signal noise ratio (PSNR) of each

distorted sequence is computed and shown in the second

subfigure of Fig. 2. The PSNR values change from about 50

to 25 with different compression ratios.

B. CONTRAST CHANGE

Similarly, we generate the distorted versions for each video

sequence with 10 levels of contrast change. For these

10 levels, there are five low and five high brightness levels for

contrast change. The video sequences with contrast change

are created by multiplying the video frames with a scaling

factor s. For low contrast video sequences, the values of the

scaling factor are smaller than 1, while for high contrast video

sequences, the values of the scaling factor are larger than 1.

The mean intensity value of each brightness level is given

in the third subfigure in Fig. 2. Correspondingly, we also

show the PSNR values for each video sequence in the fourth

subfigure of Fig. 2. From this subfigure, we can see that the

PSNRvalues decreasewith the contrast changes to both lower

and higher brightness levels.

C. RESOLUTION

The resolution variation can be generated to meet the low

bandwidth limitation in H.264 codec. Here, we create 9 dis-

torted versions for each video sequence with low resolutions

by using the codec of ffmpeg setting different resolution

parameters [33]. When coding video streams with ffmpeg,

the resolution of video sequences can be adjusted by set-

ting different resolution parameters. The resolution of video

sequences is reduced from the original size (the reference

video sequences) to the one ninth of the original size (the

distorted versions with the lowest resolution). With lower

resolutions of video sequences, the object sizes in video

sequences would become smaller and this would influence

the performance of visual tracking algorithms.

D. WHITE NOISE

In this study, the additive white noise is generated by a

zero-mean Gaussian noise. There are 10 levels of Gaussian

noise used to create the distorted versions of each
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video sequence, where the Gaussian kernel σ varies in the

range of [0.61, 0.62, . . . , 0.610]. Correspondingly, the PSNR

value changes from around 12 dB to around 48 dB, as shown

in the fifth subfigure of Fig. 2. The PSNR values are highly

dependent on σ and they are similar for different reference

video sequences.

E. FRAME RATE

We also create the distorted versions of each video sequence

with different frame rates. Totally, there are 9 levels for the

varying frame rates of distorted video sequences. The frame

rates vary from 30 FPS (frames per second) for the reference

video sequences to 3 FPS for the distorted video sequences.

III. PROPOSED METHOD FOR ROBUSTNESS ANALYSIS

The accuracy rate of target tracking on video sequences

can be used for performance evaluation of visual tracking

algorithms. Besides, we also consider the stability of target

tracking with video quality degradation for the robustness

analysis for visual tracking algorithms. In this study, we

propose the method called RMVT to evaluate the robustness

of visual tracking algorithms from two aspects of accuracy

rate and performance stability.

A. ACCURACY RATE EVALUATION

For accuracy rate evaluation, we use the bounding box over-

lap to measure the accuracy rates of visual tracking algo-

rithms, which is widely used in performance evaluation of

visual tracking algorithms [27], [31], [34]. Given the tracking

bounding box Bt and the ground truth bounding box Bg, we

calculate the overlap rate as follows.

R =
Area(Bt

⋂

Bg)

Area(Bt
⋃

Bg)
(1)

where
⋂

and
⋃

denote the intersection and union of these

two bound boxes; the function Area denotes the region area,

which is represented by the number of pixels in the region.

B. PERFORMANCE STABILITY EVALUATION

The accuracy rate is undoubtedly an important measurement

for performance evaluation of visual tracking algorithms. It is

widely used for performance evaluation in existing visual

tracking studies. However, in practical applications, the per-

formance stability with video quality degradation is also an

important factor for performance evaluation of visual track-

ing algorithms, since video quality might be degraded during

acquisition, transmission, processing, etc. Besides, with sim-

ilar accuracy rate for two different visual tracking algorithms,

the performance stability provides another significant dimen-

sion for performance comparison. In this study, we propose

a performance stability evaluation method through analyzing

the performance of visual tracking algorithms.

With the five distortion types used in this study, the per-

formance stability S is defined as a five-dimension vector as

follows.

S = (Scd , Scc, Srd , Swn, Sfr ), (2)

where Scd , Scc, Srd , Swn, and Sfr represent the performance

stability of visual tracking to compression distortion, contrast

change, resolution distortion, white noise, and frame rate,

respectively.

Generally, the tracking accuracy rate of visual tracking

algorithms would change with the video quality degradation.

In this study, we use the following two criteria to predict

the accuracy change with video quality degradation to mea-

sure the performance stability of visual tracking algorithms:

(1) Rate of Accuracy Change. For a robust visual tracking

algorithm, the accuracy change should be slow with the

decrease of video quality. (2) Monotonicity. For a robust

visual tracking algorithm, the accuracy should show the

monotonic change (degradation) with the decrease of video

quality.

Given a reference video sequence and a list of its dis-

torted versions from certain specific distortion type (such

as compression distortion, white noise, etc.), we can calcu-

late the accurate rates of any visual tracking algorithm on

the reference video sequence Ar and its distorted versions

{Ai : i = 1, 2, . . . ,Nk}, where Nk denotes the number of

distorted video sequences from distortion type k . For the

ith distorted video sequence, we can calculate the rate of

accuracy change Di as follows.

Di = min{1,
|Ai − Ar |

Ar
} (3)

where Ai and Ar represent the accuracy rates on the ith

distorted and the reference video sequences. From Eq. (3),

we can see that Di is positive and it is correlated to the

difference between Ai and Ar . If Ai is closer to Ar , Di would

be less, which demonstrates that the performance of the

visual tracking algorithm would not change largely with the

decrease with video quality. And thus, this algorithm can

be regarded to be somewhat robust from rate of accuracy

change.

In addition, themonotonicity of accuracy change for visual

tracking algorithms can be computed as follows.

Mi =

{

0 Ai ≤ Ai−1

min{1,
|Ai−Ai−1|

Ai−1
} Ai > Ai−,

(4)

where Ai and Ai−1 denote the tracking accuracy in the ith and

(i− 1)th distorted video sequences, respectively. Please note

that we rank the distorted video with quality degrading for the

ith and (i− 1)th distorted video sequences, which means that

the quality of the Aith video sequence is worse than that of

the Ai−1 video sequence. For the distortion type of Contrast

Change, we rank the distorted video sequences by two groups

(high and low brightness) separately. From Eq. (4), we can

see that the visual tracking algorithm with lowerMi would be

more robust from the aspect of monotonicity.

According to the two criteria computed in Eqs. (3) and (4),

we calculate the robustness of visual tracking algorithms for

the distorted video sequence with distortion type k by fusing
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FIGURE 3. The experimental results of the different visual tracking algorithms on the reference video sequences. The first subfigure to the fifth subfigure:
the performance of different visual tracking algorithms on Board, box, lemming, liquor video sequences and all the four reference video sequences.

these two criteria as follows.

Sk =
1

Nk

Nk
∑

i=1

(αDi + (1 − α)Mi) (5)

where α is a parameter to weight the two components Di and

Mi; k ∈ {cd, cc, fr, rd,wn} represents specific distortion type

in Eq. (2). By considering both Di and Mi in Eq. (5), we can

see that the visual tracking algorithmwill be more robust with

lower value of Sk .

IV. EXPERIMENTAL RESULTS

In this section, we conduct the comparison experiment

by using some existing visual tracking algorithms on

QDVD-VT. The comparison results from these existing

visual tracking algorithms are given. Besides, we also pro-

vide the in-depth analysis and discussion for the comparison

experiment.

A. THE USED VISUAL TRACKING ALGORITHMS

FOR ROBUSTNESS ANALYSIS

For the robustness evaluation of visual tracking algorithms on

the constructed database, ten visual tracking algorithms are

adopted to conduct the comparison experiment: ASAL [31],

SCM [32], Struck [34], CXT [36], CSK [37], LSK [38],

DFT [39], L1APG [40], MTT [41], TLD [42].We select these

visual tracking algorithms in this comparison experiment,

since these algorithms can obtain better performance than

other existing ones on a large-scale database, as shown in

the study [27]. These visual tracking algorithms were pub-

lished in recent years. We obtained the source code of these

algorithms from the study [27].

Generally, there are the following key components in

most visual tracking algorithms: target representation, search

mechanism, and model update [27]. Here, we introduce the

used visual tracking algorithms in these three aspects briefly.

Some classical works use the template (raw intensity values)

for target representation in visual tracking algorithms, such as

DFT and CSK. Besides the template feature, visual tracking

algorithms also use Haar-like feature (Struck), binary pat-

tern (TLD), etc. Sparse representation is also widely used for

object representation in existing visual tracking algorithms,

including ASLA, SCM, L1APG, MTT, LSK, etc. Generally,

there are two methods to predict the state of the target

objects: the deterministic and stochastic methods. Within the

optimization framework of visual tracking, the target can be

located by local optimum search (LSK and DFT). To address

the local minima problem, dense sampling methods are used

in target searching (TLD, Struck, CSK, and CXT). Stochastic

search methods such as particle filters are also widely used

in visual tracking algorithms such as ASLA, SCM, L1APG,

and MTT. It is important for visual tracking algorithms to

update the target representation for appearance variations.

Most of recent visual tracking algorithms used the model

update process during visual tracking.

B. ACCURACY RATE ON REFERENCE VIDEO SEQUENCES

In this subsection, we provide the accuracy rates of the used

visual tracking algorithms on the reference video sequences.

The experimental results of different visual tracking algo-

rithms are shown in Fig. 3. From this figure, we can see that

the performance of different visual tracking algorithms varies

VOLUME 5, 2017 2435
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FIGURE 4. The robustness results of the different visual tracking algorithms on the video sequences. The first subfigure to the fourth subfigure: the
robustness performance of different visual tracking algorithms on Board, box, lemming, and liquor video sequences.

on different video sequences. For board video sequence,

Struck can obtain the best performance among the used

visual tracking algorithms, while SCM, LSK, and TLD can

obtain the best performance on the video sequences of box,

lemming and liquor, respectively. From the first to the fourth

subfigures, we can observe that the performance of these

four trackers (Struck, SCM, LSK, and TLD) always rank

ahead on different video sequences. The overall performance

shown in the fifth subfigure in Fig. 3 demonstrates that Struck

can obtain the best tracking performance among the used

visual tracking algorithms. Also, SCM, LSK and TLD rank

ahead for the tracking performance on all four reference video

sequences. This demonstrates that the overall performance

of visual tracking algorithms is stable on different video

sequences.

C. OVERALL ROBUSTNESS ANALYSIS

As indicated in the previous section, the robustness of visual

tracking algorithms can be evaluated by considering the

Accuracy Rate (Aref ) on the reference video and Stability (S)

with five distortion types. When comparing two visual track-

ing algorithms, the value of Aref is firstly considered. If the

accuracy rates of these two visual tracking algorithms are

different largely, the visual tracking with higher accuracy

rate is more preferable and the Stability is taken less consid-

eration. In the case where the accuracy rates of two visual

tracking algorithms are similar, the Stability S is important

for robustness evaluation.

With the above analysis, we propose the robustness pen-

tagon for robustness performance evaluation of visual track-

ing algorithms on video sequences, as shown in Fig. 4.

In these figures, the robustness performance of each visual

tracking algorithm is represented by a pentagon, whose cen-

ter point denotes the accuracy rate of the visual tracking

algorithm for the reference video. The stability from each

distortion type is denoted by the distance from each vertex

to center point of the pentagon, as demonstrated in Fig. 4.

For the center of each pentagon, we use the value of x-axis to

represent the accuracy rate of the corresponding visual track-

ing algorithm. Thus, the accuracy rate difference between two

visual tracking algorithms can be represented by the distance

between two robustness pentagon. With similar accuracy rate

values from two visual tracking algorithms, the center points

of these two pentagons are close and we can compare the

S values denoted by the vertexes of these two overlapped

pentagons.

From the first subfigure in Fig. 4, we can observe that the

pentagon of Struck is in the right-most, which demonstrates

that the accuracy rate of Struck for the reference Board video

sequence is highest among the compared visual tracking algo-

rithms. The small pentagon also shows that Struck is one of

themost stable algorithms among the compared visual tracing

algorithms. LSK can also obtain good performance on Board

video sequence and it is more stable compared with CSK

and ALSA. From the second subfigure of Fig. 4, we can see

that the pentagons of SCM and TLD are right-most, which
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shows that the accuracy rates of these two algorithms on Box

video sequence are highest among the compared algorithms.

However, the small pentagons of DFT and Struck demon-

strate that these two algorithms are more stable than other

tracking algorithms, while the large pentagon of LSK which

is left-most demonstrates that LSK is the worst in robustness

of tracking performance among the compared visual tracking

algorithms. From the third subfigure of Fig. 4, we can observe

that the pentagon of LSK is right-most, and thus, the accu-

racy rate of LSK is highest among the compared algorithms.

Struck can also obtain a relative high accuracy rate with stable

tracking performance (the pentagon of Struck is small). From

the fourth subfigure of Fig. 4, we can observe that TLD is

most robust among the compared visual tracking algorithms,

since the pentagon of TLD is in the right-most and smallest

among the compared visual tracking algorithms. In contrast,

the left-most and small pentagon of LSK demonstrate the

worst robustness in visual tracking among the compared

visual tracking algorithms.

D. STABILITY WITH VARIOUS DISTORTIONS

1) STABILITY WITH COMPRESSION DISTORTION

We provide the accuracy rate vs. CRF curves of the visual

tracking algorithms on the four video sequences in the first

column of Fig. 5. From these experimental results, we can see

that the Accuracy-CRF curves of most used visual tracking

algorithms are not monotonic strictly. The accuracy rates of

most tracking algorithms varies with different CRF values.

For different visual tracking algorithms, the accuracy rates

vary differently for various video sequences. From the first

column of Fig. 5, we can observer that, for most visual track-

ing algorithms, the accuracy rates reduces with larger CRF

values, which demonstrates that the accuracy rates of these

tracking algorithms decrease with larger compression ratios.

For Board video sequence, the accuracy rates of ASLA and

SCM vary greatly with different CRF values, which means

that ASLA and SCM are not stable with compression distor-

tion on this video sequence. In contrast, the accuracy rates

of other visual tracking algorithms on Board video sequence

vary more slowly than ASLA and SCM, which means that

these algorithms are more stable than ASLA and SCM on

Board video sequence. The stability of all visual tracking

algorithms on other video sequences can be also analyzed

by the first column of Fig. 5. From the overall performance

on all video sequences in the final subfigure of the first

column in Fig. 5, we can see that the average accuracy rates

of most visual tracking algorithms reduce with larger CRF

values. This demonstrates that the accuracy rates of visual

tracking algorithms reduce with increasing compression

distortion.

2) STABILITY WITH CONTRAST CHANGE

The accuracy rate vs. contrast change curves of the used

visual tracking algorithms on all four video sequences are

shown in the second column of Fig. 5. From these curves,

we can see that the Accuracy-Contrast Change curves of

most existing visual tracking algorithms are not monotonic

strictly. The accuracy rates of most visual tracking algorithms

vary greatly with different contrast change. Specifically, the

performance of ASLA and SCM changes greatly on video

sequences Board, Box, and Liquor. The accurate rates of

ASLA and SCM are low on the video sequence Lemming.

The accurate rates of TLD and CXT vary greatly on video

sequences Box and Lemming. From the last figure of the

second column in Fig. 5, the overall performance of most

visual tracking algorithms have no much change on video

sequences with the distortion from different contrast change.

This demonstrates that there is no much influence on perfor-

mance of most visual tracking algorithms for video sequences

with quality degradation from the contrast change within

certain scope. This fruther demonstrates that most visual

tracking algorithms are somewhat stable on video sequences

with quality degradation from contrast change.

3) STABILITY WITH FRAME RATE

The accuracy rate vs. frame rate curves of the used visual

tracking algorithms on all four video sequences can be found

in the third column of Fig. 5. From the figures of this column,

the performance of most visual tracking algorithms decreases

with the smaller frame rates of the video sequences. There are

some visual tracking algorithms whose performance varies

largely with different frame rates for the video sequences.

From the second figure of the third column in Fig. 5, the

performance of L1APG and MTT changes greatly on video

sequence Box with different frame rates. The performance

of Struck and CXT are not stable on the video sequence

Liquor with different frame rates. From the last figure of

the third column in Fig. 5, we can observe that overall per-

formance of most visual tracking algorithms decreases with

quality degradation from smaller frame rates on all four video

sequences.

4) STABILITY WITH RESOLUTION

We provide the accuracy rate vs. resolution curves of the

used visual tracking algorithms in the first fives figures of

Fig. 6. From the first, second and fourth figures in Fig. 6,

we can observe that the accuracy rates of ALSA and SCM

vary greatly on video sequences Board, Box, and Liquor

with quality degradation from different resolutions, which

demonstrate that the performance of ALSA and SCM is not

stable on these video sequences with different resolutions.

From the third figure of Fig. 6, the performance of LSK,

TLD, and MTT is not stable on video sequence Lemming

with quality degradation from different resolutions. From the

fifth figure in Fig. 6, we can see that there is not much

change for the overall performance of most visual tracking

algorithms on all video sequences with quality degradation

from different resolutions. This demonstrates that most visual

tracking algorithms are somewhat stable on video sequences

with quality degradation from different resolutions.
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FIGURE 5. The experimental results of the different visual tracking algorithms on video sequences with quality degradation. The first column to the
third column: experimental results on video sequences from distortions of cd, cc and fr.

5) STABILITY WITH WHITE NOISE

The accuracy rate vs. white noise curves of the used visual

tracking algorithms are shown from the sixth to tenth figures

in Fig. 6. From the sixth and seventh figures, we can see

that the accuracy rates of ASLA change greatly for video

sequences Board and Box with quality degradation from

white noise, which demonstrates that the performance of

ASLA is not stable for this video sequencewith quality degra-

dation from white noise. From the eighth figure of Fig. 6, we

can see that the accuracy rates of TLD and LSK vary greatly

on video sequence Lemming with quality degradation from

white noise. This demonstrates that the performance of TLD

and LSK is not stable on this video sequence with quality

degradation from white noise. From the ninth figure in Fig. 6,

we can observe that the performance of most visual tracking

decreases on video sequence Liquor with larger distortion

from white noise. From the last figure in Fig. 6, we can see

that the overall accuracy rates of most visual tracking algo-

rithms decreases on all video sequence with larger distortion

fromwhite noise, which demonstrates that the performance of

most visual tracking algorithms are not much stable on video

sequences with quality degradation from white noise.
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FIGURE 6. The experimental results of the different visual tracking algorithms on video sequences with quality degradation. The first four subfigures:
experimental results on video sequences with the distortion of res; the last four subfigures: experimental results on video sequences with the
distortion of wn.

V. DISCUSSION AND CONCLUSION

In this paper, we have investigated the robustness of visual

tracking algorithms on video sequences with quality degra-

dation. A new database of video sequences is constructed for

the robustness analysis of visual tracking algorithms. In this

database, five common distortion types from compression

distortion, contrast change, resolution change, white noise

and frame rate change are used to generate the distorted

video sequences. A method called RMVT is proposed for

robustness analysis of visual tracking algorithms based on

the accuracy rate and performance stability. Besides, a pen-

tagon representation is designed to visualize the robustness of

visual tracking algorithms. In the experiments, we analyze the

robustness of existing visual tracking algorithms on the video

sequences with quality degradation from different distortion

types in detail. From the experimental results in Fig. 4 5 6,

we can observe that the accuracy rates of many existing

visual tracking algorithms vary greatly on specific video

sequences with quality degradation. Strictly speaking, there

is no any visual tracking algorithmwhich is robust to all video

sequences with quality degradation from different distortion

types. Thus, the robust visual tracking algorithm is still much

desired in the research community.
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