

Delft University of Technology

Performance Evaluation of WebRTC-based video conferencing

Jansen, Bart; Goodwin, Timothy; Gupta, Varun; Kuipers, Fernando; Zussman, Gil

DOI
10.1145/3199524.3199534
Publication date
2017
Document Version
Accepted author manuscript
Published in
ACM SIGMETRICS Performance Evaluation Review

Citation (APA)
Jansen, B., Goodwin, T., Gupta, V., Kuipers, F., & Zussman, G. (2017). Performance Evaluation of
WebRTC-based video conferencing. ACM SIGMETRICS Performance Evaluation Review, 45(3), 56-68.
https://doi.org/10.1145/3199524.3199534

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.
Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1145/3199524.3199534
https://doi.org/10.1145/3199524.3199534

Performance Evaluation of WebRTC-based Video
Conferencing

Bart Jansen
Delft University of Technology

b@rtjansen.nl

Timothy Goodwin
Computer Science

Columbia University

t.goodwin@columbia.edu

Varun Gupta
Electrical Engineering
Columbia University

varun@ee.columbia.edu

Fernando Kuipers
Delft University of Technology

f.a.kuipers@tudelft.nl

Gil Zussman
Electrical Engineering
Columbia University

gil@ee.columbia.edu

ABSTRACT

WebRTC has quickly become popular as a video conferenc-
ing platform, partly due to the fact that many browsers
support it. WebRTC utilizes the Google Congestion Con-
trol (GCC) algorithm to provide congestion control for real-
time communications over UDP. The performance during a
WebRTC call may be influenced by several factors, includ-
ing the underlying WebRTC implementation, the device and
network characteristics, and the network topology. In this
paper, we perform a thorough performance evaluation of
WebRTC both in emulated synthetic network conditions as
well as in real wired and wireless networks. Our evaluation
shows that WebRTC streams have a slightly higher priority
than TCP flows when competing with cross traffic. In gen-
eral, while in several of the considered scenarios WebRTC
performed as expected, we observed important cases where
there is room for improvement. These include the wireless
domain and the newly added support for the video codecs
VP9 and H.264 that does not perform as expected.

Keywords

WebRTC, Congestion Control, Performance Evaluation

1. INTRODUCTION
WebRTC provides Real-Time Communication (RTC) ca-

pabilities via browser-to-browser communication for audio
(voice calling), video chat, and data (file sharing). It allows
browsers to communicate directly with each other in a peer-
to-peer fashion, which differs from conventional browser to
web-server communication. One of the main advantages
of WebRTC is that it is integrated in most modern web
browsers and runs without the need to install external plug-
ins or applications. TheWorldWideWeb Consortium (W3C)
[4] has set up an Application Programming Interface (API),
which allows developers to easily implement WebRTC us-
ing JavaScript, while the Internet Engineering Task Force
(IETF) [14] defines the WebRTC protocols and underlying
formats.

To realize the low latency and high throughput necessary

IFIP WG 7.3 Performance 2017. Nov. 1416, 2017, New York, NY USA
Copyright is held by author/owner(s).

for real-time communication, WebRTC prioritizes transmit-
ting data using UDP instead of TCP. WebRTC over TCP
is used as a last resort, when all UDP ports are blocked,
which can be the case in heavily-protected enterprise net-
works. Since UDP does not support any form of congestion
control, WebRTC uses a custom-designed congestion control
algorithm that adapts to changing network conditions.

With the high-level API, WebRTC makes it easy for ap-
plication developers to develop their own video streaming
applications. The disadvantage of this high-level approach
is that the performance details, especially the way conges-
tion is handled, are completely hidden from application de-
velopers. At the same time, recent research evaluating the
performance of WebRTC has only partially addressed this
gap (see Section 7 for more details).

In this paper, we take a closer look at the performance of
WebRTC, mainly focusing on the Google Congestion Control
(GCC) algorithm, which is the most widely used congestion
control algorithm for WebRTC. We evaluate its performance
using the latest web browsers across a wide range of use
cases. Our key contributions consist of studying the effects
of different synthetic network conditions on the latest imple-
mentations of WebRTC, comparing WebRTC’s performance
on mobile devices, analyzing the performance of the newly
added video codecs VP9 and H.264, and evaluating the im-
pact of wired and wireless networks on WebRTC. The source
code for reproducing the experimental conditions described
in this paper is available at:
https://github.com/Wimnet/webrtc_performance

In particular, our experimental study includes the follow-
ing:

(i) Baseline Experiments: We study the effects of vary-
ing latency, packet loss, and available bandwidth by
emulating different performance environments using
Dummynet. We establish benchmarks for the perfor-
mance of WebRTC in different scenarios.

(ii) Cross Traffic: We study the effects of TCP cross traf-
fic and multiple WebRTC streams sharing the same
bottleneck. Our evaluations indicate that with the re-
cent enhancements to the congestion control mecha-
nism, WebRTC streams receive slightly higher priority
when competing with TCP flows.

https://github.com/Wimnet/webrtc_performance

(iii) Multi-Party Topology: We compare the performance
of a mesh and Selective Forwarding Unit (SFU) based
topologies for group video calls using WebRTC. Our
evaluation highlights inherent trade-offs between per-
formance and deploying additional infrastructure for
multi-party video calls.

(iv) Video Codecs: We study the performance of three
widely used video codecs, VP8, VP9, and H.264, on
WebRTC. Our experiments demonstrate that the newly
added H.264 and VP9 codecs do not perform as ex-
pected in the presence of congestion or packet losses.

(v) Mobile Performance: We evaluate the performance
of WebRTC on mobile devices and demonstrate the
impact of limited computational capacity on call qual-
ity.

(vi) Real Wireless Networks: We experimentally eval-
uate video calls on WebRTC in real networks, specifi-
cally focusing on wireless networks. Our experiments
show that WebRTC can suffer from poor performance
over wireless due to bursty losses and packet retrans-
missions. We identify key areas for improvement and
briefly look at cross-layer approaches for improving
video quality.

Our performance evaluation focuses on a few key metrics
such as data rate, frame rate, Round Trip Time (RTT),
and call setup time, which have been shown to be the key
factors that affect the user video experience [20, 3]. Overall,
this paper presents a thorough performance evaluation of
WebRTC and discusses various performance-related trade-
offs.

The remainder of this paper is organized as follows. In
Section 2, we briefly describe the congestion control algo-
rithm used by WebRTC and in Section 3, we describe the
setup used to conduct the experiments. Section 4 presents
the performance analysis results in synthetic network con-
ditions. Section 5 focuses on the impact of video codecs
and mobile devices on call quality. Section 6 takes a closer
look at the performance of WebRTC in the wireless domain
over real networks. Section 7 presents related work and we
conclude in Section 9, where we also discuss future research
directions.

2. CONGESTION CONTROL

Table 1: GCC notation.
Parameter Description
Ar Estimated available rate at the receiver
As Sender rate
R(i) Measured receive rate for last 500ms

ti Arrival time of ith video frame
di Measured one-way delay gradient
mi Filtered one-way delay gradient
γi Dynamic over-use threshold
tk Arrival time of kth RTCP report
fl(tk) Fraction of lost packets

WebRTC uses the Google Congestion Control (GCC) al-
gorithm [15], which dynamically adjusts the data rate of the
video streams when congestion is detected. In this section,

we provide a brief overview of GCC. More details can be
found in [10]. WebRTC typically uses UDP (unless all UDP
ports are blocked), over which it uses the Real-time Trans-
port Protocol (RTP) to send media packets. It receives feed-
back packets from the receiver in the form of RTP Control
Protocol (RTCP) reports. GCC controls congestion in two
ways: delay-based control (section 2.1) at the receiving end
and loss-based control (section 2.2) at the sender side.

2.1 Receiverside controller
The receiver-side controller is delay-based and compares

the timestamps of the received frames with the time instants
of the frames’ generation. The receiver-side controller con-
sists of three different subsystems: (i) arrival time filter, (ii)
over-use detector, and (iii) rate controller. These different
subsystems of the receiver-side controller are shown on the
right side of Figure 1. The arrival-time filter (Section 2.1.1)
estimates the changes in queuing delay to detect congestion.
The over-use detector detects the congestion by comparing
the estimated queuing delay changes from the arrival-time
filter with an adaptive threshold (Section 2.1.2). The rate
controller makes the decisions to increase, decrease, or hold
the estimated available rate at the receiver, Ar, based on
the congestion estimated derived from the over-use detector
(Section 2.1.3). Ar(i) for the ith video frame is given as
follows:

Ar(i) =

ηAr(i− 1) Increase

αR(i) Decrease

Ar(i− 1) Hold

(1)

Where η = 1.05, α = 0.85, and R(i) is the measured
received rate for the last 500 ms. The received rate can
never exceed 1.5R(i):

Ar(i) = min(Ar(i), 1.5R(i)) (2)

Arrival-time
 filter

Over-use
detector

Rate
controller

Adaptive
threshold

signal

Ar

m i

m i

As

Receiver-sideSender-side

Sender side
controller

RTP

REMB
RTCP

Figure 1: Diagram illustrating how sender and re-
ceiver determine and exchange their available rate.

2.1.1 Arrivaltime filter

The arrival-time filter continuously measures the time in-
stants at which packets are received. It uses the time of
arrivals to calculate the inter-arrival time between two con-
secutive packets: ti − ti−1, and the inter-departure time
between the transmission of the same packets: Ti − Ti−1.
It then calculates the one-way delay variation di, defined as

the difference between inter-arrival time and inter-departure
time as follows:

di = (ti − ti−1)− (Ti − Ti−1) (3)

This delay shows the relative increase or decrease with
respect to the previous packet. The one-way delay variation
is larger than 0 if the inter-arrival time is larger than the
inter-departure time. The arrival-time filter estimates the
one-way queuing delay variation mi. The calculation of mi

is based on the measured di and previous state estimate
mi−1, whose weights are dynamically adjusted by a Kalman
filter to reduce noise in estimation. For instance, the weight
for the current measurement di is weighed more heavily than
the previous estimate mi−1 when the error variance is low.
For more details, see [15].

2.1.2 Overuse detector

The estimated one-way queuing delay variation (mi) is
compared to a threshold γ. Over-use is detected, if the
estimate is larger than this threshold. The over-use detector
does not signal this to the rate controller, unless over-use is
detected for a specified period of time. The over-use time is
currently set to 100ms [10]. Under-use is detected when the
estimate is smaller than the negative value of this threshold
and works in a similar manner. A normal signal is triggered
when −γ ≤ mi ≤ γ.

The value of the threshold has a large impact on the over-
all performance of the GCC congestion algorithm. A static
threshold γ can easily result in starvation in the presence
of concurrent TCP flows, as shown in [11]. Therefore, a
dynamic threshold was implemented as follows:

γi = γi−1 + (ti − ti−1) ∗Ki ∗ (|mi| − γi−1) (4)

The value of the gain, Ki, depends on whether |mi| is
larger or smaller than γi−1:

Ki =

{

Kd |mi| < γi−1

Ku otherwise
(5)

where Kd < Ku. This causes the threshold γ to increase
when the estimated mi is not in the range of [−γi−1, γi−1]
and decrease when it does fall in that range. This helps
increasing the threshold when, e.g., a concurrent TCP flow
enters the bottleneck and avoids starvation of the WebRTC
streams. According to [11], this adaptive threshold results
in 33% better data rates and 16% lower RTTs when there
is competing traffic sharing the same bottleneck.

2.1.3 Rate controller

The rate controller decides whether to increase, decrease,
or hold Ar at the receiver depending on the signal received
from the over-use detector. Initially, the rate controller
keeps increasing Ar until over-use is detected by the over-use
detector. Figure 2 further illustrates how the rate controller
adjusts based on the signals received by the over-use detec-
tor.

A congestion/over-use signal always results in decreasing
the rate, while under-use always results in keeping the rate
unchanged. The state of the rate controller translates into
available rate at the receiver, Ar, as shown in equation (1).
Ar is sent back to the sender as an REMB (Receiver Esti-

Decrease Hold Increase

under-use & normal

over-use

over-use

under-use

under-use

normal

normalover-use

Figure 2: Rate controller state changes based on the
signal output of the over-use detector.

mated Maximum Bandwidth)1 message in an RTCP report
(Figure 1).

2.2 Senderside controller
The sender-side controller is loss-based and computes the

sending rate at the sender, As in Kbps and is shown on the
left side of Figure 1. As is computed every time (tk) the
kth RTCP report or an REMB message is received from the
receiver. The estimation of As is based on the fraction of
lost packets fl(tk) as follows:

As(tk) =

As(tk−1)(1− 0.5fl(tk)) fl(i) > 0.1

1.05As(Tk−1) fl(tk) < 0.02

As(tk−1) otherwise

(6)

If the packet loss is between 2% and 10%, the sending
rate remains unchanged. If more than 10% of the packets
are reported lost, the rate is multiplicatively decreased. If
the packet loss is smaller than 2%, the sending rate is lin-
early increased. Furthermore, the sending rate can never
exceed the last available rate at the receiver Ar(tk), which
is obtained through REMB messages from the receiver as
seen in Figure 1.

3. EXPERIMENTAL SETUP

Media

Source

Media

Encoder
Packetization

Internet

Media

Renderer

Media

Decoder

De-

packetization

Figure 3: WebRTC’s media processing pipeline.

In this section, we describe the setup used for experimen-
tal evaluation throughout the paper. WebRTC handles all
media processing as illustrated in Figure 3. Raw media from
the audio and video source are first preprocessed and then
encoded at a given target rate. These frames are then packe-
tized and sent to the receiver over RTP/UDP. These frames
are subsequently depacketized and decoded, which provides
the raw video input that can be rendered at the receiver.

1https://tools.ietf.org/html/draft-alvestrand-rmcat-remb-
03

Network
limiter

WebRTC

bw delay pl

Video stream
1920 x 1080

Gather
statistics

every
second

RTCStatsReport

WebRTC

Video stream
1920 x 1080

Gather
statistics

every
second

RTCStatsReport

Node 1 Node 2

Figure 4: Experimental setup used for performance
evaluation where the network limiter is simulated
using Dummynet.

Our evaluation of WebRTC is divided into two parts. In
the first part, we emulate synthetic network conditions to
study the performance of WebRTC in controlled settings.
In the second part, we focus on experimental evaluation on
real networks and particularly focus on wireless networks.
The experimental evaluation setup for two users is shown in
Figure 4.

For the first part, we emulate different network character-
istics using Dummynet [6], which allows us to add latency,
packet loss, and limit the bandwidth for both uplink and
downlink. To avoid additional latency and network limita-
tions, we connect both WebRTC endpoints to the same local
network via a wire.

In all of our experiments, we use devices with sufficient
processing and memory capacity to ensure that the encoding
and decoding of the video streams are not affected due to the
devices themselves. To ensure this, we leverage WebRTC’s
RTCStatsReport API functionality which indicates if the
video quality is limited due to memory or computation power
at the devices. Unless mentioned otherwise, we use the most
recent version of WebRTC (supported by Google Chrome
version 52 and onwards) at all clients, with the default au-
dio and video codecs OPUS and VP8, respectively. Instead
of using a webcam feed and microphone audio signal, we ex-
ploit Google Chrome’s fake-device functionality to feed the
browser a looping video and audio track to obtain compara-
ble results. For all our tests (unless mentioned otherwise),
we use the following video with a resolution of 1920x1080 at
50 frames per second with constant bitrate: in to tree2.

To obtain performance metrics, we use WebRTC’s built-in
RTCStatsReport3, which contains detailed statistics about
data being transferred between the peers.

4. SYNTHETIC NETWORK CONDITIONS
In this section we evaluate the performance of WebRTC’s

GCC algorithm in synthetic yet typical network scenarios
using Dummynet.

4.1 Static network conditions
Figure 5 shows the results for the cases when both the

uplink and downlink bandwidth are limited to 1500Kbps,
750Kbps, and 250Kbps. We notice that WebRTC is cur-

2https://media.xiph.org/video/derf/
3https://developer.mozilla.org/en-
US/docs/Web/API/RTCStatsReport

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

1500

2000

2500

3000

D
a
ta

 r
a
te

 (
k
b
p
s
) no constraints

1500kbps

750kbps

250kbps

Figure 5: Data rate with limited bandwidth and
without any constraints (100Mbps or more available
bandwidth).

rently limited to sending at 2500Kbps, as set in the browser4.
When the bandwidth is limited, it uses 80% of the available
bandwidth and is able to maintain a constant data rate.
By continuously lowering the available bandwidth in addi-
tional experiments, we observed that a minimum of 20Kbps
is necessary to establish a video call between two parties.
However, at least 250Kbps of available bandwidth is neces-
sary to obtain a somewhat acceptable frame rate (25 Frames
Per Second (FPS)) at the lowest possible video resolution
(480x270). It does take longer to reach the maximum data
rate, especially when we look at the 250Kbps, where it takes
approximately 10 seconds for any data to flow between both
nodes.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

1500

2000

2500

3000

D
a

ta
 r

a
te

 (
k
b

p
s
)

0ms

100ms

250ms

500ms

Figure 6: Data rate with additional latency.

Next, we add extra latency to the call, as shown in Figure
6. As expected, this does not affect the data rate, since the
GCC algorithm only responds to latency variation. How-
ever, it leads to delays in the conversation. ITU-T Rec-
ommendation G.114 [1] specifies that one-way transmission
delay should preferably be kept below 150ms, and delays
above 400ms are considered unacceptable. When adding
delay, we also observe that it takes longer to set up the call
and for data to flow between both end points, which neg-
atively affects user experience. Once data flows, it takes
approximately 10 seconds to reach its maximum data rate,
regardless of the added delay. This delay is less than what
is expected from the GCC equations where the rate would
increase with 5% as shown in equation (6). This is because
once a connection is established, WebRTC uses a ramp-up
function5 to get to the highest possible data rate as soon as

4https://chromium.googlesource.com/external/webrtc
5https://bugs.chromium.org/p/webrtc/issues/detail?id=1327

possible.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

1500

2000

2500

3000

D
a
ta

 r
a
te

 (
k
b
p
s
)

no loss

5% packet loss

10% packet loss

20% packet loss

Figure 7: Data rate with packet loss.

For the next experiment we drop a certain percentage
of all packets: 5%, 10%, and 20%. The results are shown
in Figure 7. The results match our expectations based on
Equation (6). GCC only decreases the sending rate when
more than 10% packet loss is detected. The sending rate
remains unchanged between 2% and 10% and the rate is
increased when less than 2% of the packets are lost. There-
fore, 5% packet loss slowly converges to the maximum data
rate and at 10% packet loss, the data rate converges to a
minimum of 50Kbps, which almost completely consists of
audio data (the audio stream is not subject to congestion
control by GCC due to its low data rate [12]).

4.2 Network adaptability
Besides experiencing a constant delay or being limited by

a constant bandwidth, a more common scenario is that these
network characteristics change during a call. In this section,
we look at how fast WebRTC adapts to new conditions. We
simulate this behavior by changing the network constraints
every minute according to a predefined schema.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

1500

2000

2500

3000

D
a
ta

 r
a
te

 (
k
b
p
s
)

set data rate

data rate #1

data rate #2

Figure 8: Data rate with changing bandwidth for
both nodes.

In Figure 8, we cap the available bandwidth for a minute
consecutively at 1000Kbps, 3000Kbps, 500Kbps, 1500Kbps
and 1000Kbps. In this scenario, the bandwidth utilization is
77% of the available bandwidth, which is slightly less than
the 80% bandwidth utilization when the available band-
width is not changed. This is mostly due to the delay it
takes to reach a steady bandwidth when more bandwidth
becomes available at minute 1:00 and 3:00 where, respec-
tively, 16 and 18 seconds are needed. As seen in Equation
(1), this delay confirms what we expect from GCC, since the
bandwidth increases linearly with a factor 1.05 when under-
use is detected. This is because REMB messages are sent

every second, which increase the bandwidth with 5% every
second. Theoretically, we would expect a rate of 1000Kbps
×1.0516 ≈ 2200Kbps after the first minute and 500Kbps
×1.0518 ≈ 1200Kbps after bandwidth is freed at the third
minute, both close to the respectively reached 2500Kbps and
1350Kbps.

Table 2: Changing latency sequence.
Minute Latency change (from - to) Steepness
0 - 1 0ms - 250ms exponential
1 - 2 250ms N.A.
2 - 3 250ms - 0ms linear
3 - 4 0ms - 500ms linear
4 - 5 500ms - 0ms exponential

As shown in Section 4.1, WebRTC’s congestion algorithm
does not respond directly to different latencies, but changes
its data rate based on latency variation. Therefore, we grad-
ually change the latency at 0.5 seconds intervals with both
linear and exponential functions as shown in Table 2 and
Figure 9 (bottom). The resulting data rate is shown in Fig-
ure 9 (top).

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

1000

2000

3000
D

a
ta

 r
a

te
 (

k
b

p
s
)

data rate #1

data rate #2

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

R
T

T
(m

s
)

set RTT

RTT #1

RTT #2

Figure 9: Data rate and resulting RTT when con-
tinuously changing the latency for both nodes.

The actual round trip time is close to the set data rate.
Unlike other experiments, we notice that the data rate is sig-
nificantly different for both parties even though additional
latency is added in both directions. As expected, the data
rate climbs up to the maximum data rate when latency is
decreased (at minute 2 and 4) or kept constant (minute 1).
More unexpectedly, the GCC does not seem to kick in until
after 40 seconds even though the RTT is increasing exponen-
tially. This is presumably due to ramp-up function described
earlier, which allows WebRTC to reach the maximum data
rate faster. We observe that GCC responds actively to the
RTT transition at minute 3, where a decreasing and subse-
quently increasing RTT results in a large drop in data rate.

In addition to studying the effect of different packet loss
values, we also consider how packet loss that changes during
the lifespan of a call affects the call characteristics. Here we
change the packet loss every minute from 10%, 0%, 5%, 7.5%
and 15% as shown in the bottom graph of Figure 10. The
resulting data rate is shown in Figure 10. The results are

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

1000

2000

3000

D
a
ta

 r
a
te

 (
k
b
p
s
) data rate #1

data rate #2

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

20

40

60

P
a
c
k
e
t
lo

s
s
 (

%
)

set packet loss

packet loss #1

packet loss #2

Figure 10: Data rate and packet loss while changing
packet loss for both nodes.

comparable to what we observed in Section 4.1. A packet
loss of 5% and 7.5% only slightly drop the data rate (minute
2 and 3), whereas a packet loss >= 10% reduces the data
rate significantly. It takes approximately 30 seconds to reach
the maximum data rate when packet loss is removed after
the first minute. This is consistent with our expectations
according to the 5% increase in data rate when packet loss
is less than 2% (equation (6)), as set by GCC. The data
rate increases with 5% every second for 30 seconds, coming
down to 550Kbps ×1.0530 ≈ 2400Kbps, which is close to the
reached 2500 Kbps shown at minute 1.

Lastly, we study the effects of changing both the latency
and the available bandwidth. We simulate the effect of hand-
off, which for instance occurs when a cellular receiver moves
from one Base Station to another. For this experiment, we
also limit the available uplink and downlink bandwidth dif-
ferently, since it is common for the uplink rate to be lower
than the downlink counterpart. The experimental procedure
is shown in Table 3.

Table 3: Experiment procedure for changing both
latency, uplink and downlink bandwidth.
Minute Round trip time Downlink Uplink
0 - 1 60ms 3000Kbps 3000Kbps
1 - 2 200ms 750Kbps 250Kbps
2 - 3 500ms 250Kbps 100Kbps
3 - 4 150ms 1250Kbps 500Kbps
4 - 5 200ms 750Kbps 250Kbps

The resulting data rates and latencies are shown in Fig-
ure 11. We notice that the bandwidth utilization is 69% of
the available bandwidth, which is significantly lower than
the 77% bandwidth utilization (Figure 8) when there is no
additional latency. The limited bandwidth also results in ad-
ditional latency, especially when the bandwidth is extremely
limited (250Kbps downlink / 100Kbps uplink) at minute 2
when the RTT increases to more than 2 times the value it
was set.

4.3 Cross traffic
WebRTC traffic competes with cross traffic when there

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

1000

2000

3000

D
a
ta

 r
a
te

 (
k
b
p
s
) set data rate #1

set data rate #2

data rate #1

data rate #2

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

1000

2000

3000

R
T

T
(m

s
) set RTT

RTT #1

RTT #2

Figure 11: Resulting data rates and Round-Trip-
Time for the experiment in Table 3 for both nodes.

are other TCP/UDP flows active that share the same bot-
tleneck. It has been shown in previous measurement studies
that in the presence of concurrent TCP flows, WebRTC’s
UDP streams could starve due to less aggressive congestion
control [10].

Recently, Google Congestion Control has been updated to
include an adaptive threshold (γ), with the aim of guaran-
teeing fairness when competing with concurrent flows [10].
In this section, our goal is to evaluate the impact of the
adaptive threshold on fairness. We first evaluate the perfor-
mance of a single WebRTC stream which is competing with
other WebRTC streams while sharing the same bottleneck
link. Next, we conduct the same test with competing TCP
flows.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

500

1000

1500

2000

D
a

ta
 r

a
te

 (
k
b

p
s
)

call #1

call #2

call #3

aggregated bw

Figure 12: Distribution of bandwidth across three
WebRTC calls.

We first limit the available bandwidth to 2000Kbps and
test how the available bandwidth is distributed when three
WebRTC calls share this bottleneck. To test how fast the
congestion control algorithm adapts, we stagger the start
time of calls. We start with one call, add a second call af-
ter one minute, and add a third call after 2 minutes. To
see how fast WebRTC adapts once bandwidth is freed, we
drop the third call in minute 4. The results of this exper-
iment are shown in Figure 12. The cumulative data rate
is 78%, which is comparable to our earlier measured band-
width utilizations (Figures 5 and 8). We see that the data
rate momentarily drops when a new stream enters or leaves
the bottleneck (minute 01:00, 02:00 and 04:00). The data
rates converge subsequently to their fair share value, but the

time duration for convergence is almost a minute when two
streams compete and even longer with 3 streams. The Jain
Fairness Index values in the case of two streams and three
streams are 0.98 and 0.94, respectively. Since both scores
are close to 1, fairness is maintained.

00:00 02:00 04:00 06:00 08:00 10:00 12:00

Time (mm:ss)

0

500

1000

1500

2000

D
a

ta
 r

a
te

 (
k
b

p
s
)

WebRTC flow

TCP flow

Figure 13: Distribution of bandwidth when a single
RTP flow competes with a TCP flow when band-
width is limited to 2000Kbps.

To study the effects of TCP cross traffic, we generate TCP
flows using iperf 6. We limit the bandwidth to 2000Kbps,
initiate a 12 minute call between two nodes, and introduce
a ten-minute competing TCP flow at minute 01:00. The re-
sults are shown in Figure 13. Surprisingly, WebRTC’s RTP
flow has a significantly higher average data rate from 01:00
- 11:00 compared to the TCP flow (on average 1408Kbps
vs. 451Kbps) with a resulting Jain Fairness Index of 0.79.
The newly introduced adaptive threshold provides better
fairness and WebRTC’s RTP flows no longer starve when
competing with TCP flows. However, optimal fairness is not
achieved and the adaptive threshold prioritizes WebRTC’s
RTP flows more aggressively than desired.

4.4 Multiparty topology comparison
In this section, we compare the performance of several

topologies that can be used for multi-party video conferenc-
ing. We evaluate 2-person, 3-person, and 4-person video
conferencing for these topologies.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

2000

4000

6000

8000

10000

D
a

ta
 r

a
te

 (
k
b

p
s
)

2 persons

3 persons

4 persons

Figure 14: Average data rates for 2-, 3-, and 4-
person meshed calls.

In a meshed network, every participant uploads its stream
n− 1 times and downloads the other n− 1 streams directly
6https://github.com/esnet/iperf

from the other peers, where n equals the number of partici-
pants. The results for 2-, 3-, and 4-person meshed calls are
shown in Figure 14. The data rates in this graph show both
the average uplink and download data rates. The rates for
3-person calls are close to two times the rates of 2-person
calls (factor 2.03). Surprisingly, 4-person calls have less than
3 times the rate compared to 2-person calls (factor 2.77),
mostly due the long startup delay. The rate is also very
volatile compared to the other calls, which maintain a con-
stant data rate even though we averaged out several 4-person
calls. This volatile behavior is due to CPU limitations, be-
cause every person needs to simultaneously both encode its
own video stream three times and decode the three incoming
streams.

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

2000

4000

D
a
ta

 r
a
te

 (
k
b
p
s
) Average data rates - 2p SFU

uplink rate

downlink rate

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

5000

10000

D
a
ta

 r
a
te

 (
k
b
p
s
) Average data rates - 3p SFU uplink rate

downlink rate

00:00 00:30 01:00 01:30 02:00 02:30 03:00 03:30 04:00 04:30 05:00

Time (mm:ss)

0

5000

10000

D
a
ta

 r
a
te

 (
k
b
p
s
) Average data rates - 4p SFU uplink rate

downlink rate

Figure 15: Average data rates for 2-, 3-, and 4-
person calls using a SFU.

By introducing an extra server to forward the streams,
we can reduce the necessary uplink bandwidth. By utiliz-
ing a server as a Selective Forwarding Unit (SFU), all the
participants only have to upload their stream once and the
SFU forwards these to the other participating clients. This
approach introduces extra latency, because streams are re-
layed, but significantly reduces both CPU usage (for en-
coding all streams) and necessary uplink bandwidth. The
results are shown in Figure 15. Compared to meshed calls,
it takes significantly longer to reach a stable data rate (30
seconds vs. 15 seconds). For a 3-person call, the average
downlink rate is 2.00 times higher than the uplink rate. For
a 4-person call, the downlink rate is 2.95 times higher.

5. IMPACT OF VIDEO CODECS AND MO

BILE DEVICES
In this section, we experimentally study the impact of dif-

ferent video codecs and mobile devices on video call quality
over WebRTC. We use synthetic network conditions similar
to the previous section to generate common network condi-
tions for our evaluations.

5.1 Video codec comparison
By default, Google Chrome utilizes the VP8 video codec

for WebRTC video calls. Recent versions of Google Chrome

(starting with v48) provide support for the more advanced
VP9 codec. VP9 is expected to provide the same objective
video quality as VP8, but at a lower bitrate, due to its more
efficient compression efficiency [18]. This, however, comes
at the expense of extra CPU power. VP9 is therefore use-
ful when bandwidth is limited (e.g., cellular and congested
networks). Support for the H.264 video codec has also been
added in Chrome v50, which allows hardware-accelerated
decoding for many devices.

Even though these newly supported codecs are not used by
default, WebRTC can be instructed to use them by altering
the generated Session Description Protocol (SDP). In this
section, we compare the VP8, VP9, and H.264 codecs. Since
these newly added codecs are still under development, we
use the 720p variant of the video to prevent CPU limitations
while encoding/decoding. We conducted experiments with
varying network conditions as described in Table 4. We limit
the tests to changing only one parameter each minute. The
results are shown in Figure 16 and Table 5.

Table 4: Mobile performance evaluation procedure.
Minute Round trip time Data rate Packet loss
0 - 1 0ms ∞ 0%
1 - 2 0ms 1250Kbps 0%
2 - 3 0ms - 500ms - 0ms 1250Kbps 0%
3 - 4 0ms ∞ 0%
4 - 5 0ms ∞ 15%
5 - 6 0ms ∞ 0%
6 - 7 0ms - 500ms 1250Kbps 0%

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

1000

2000

3000

D
a

ta
 r

a
te

 (
k
b

p
s
)

H.264

VP8

VP9

limit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

200

400

600

R
T

T
 (

m
s
) H.264

VP8

VP9

limit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

5

10

R
e

s
o

lu
ti
o

n
 (

p
ix

e
ls

)

×10
5

H.264

VP8

VP9

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

20

40

60

F
ra

m
e

ra
te

 (
F

P
S

)

H.264

VP8

VP9

Figure 16: Average data rates, RTT, resolution, and
framerate for different video codecs when the net-
work varies according to Table 4.

Table 5: Average call characteristics for different
video codecs.

VP8 VP9 H.264
Data rate (Kbps) 1439.7 1422.5 1154.2
RTT (ms) 83.6 84.2 77.6
Framerate (FPS) 47.4 45.5 36.1
Packet loss (%) 2.51 2.44 2.43
Resolution (pixels) 858x483 892x502 1279x719

As shown in Table 5, the data rate of H.264 is more heav-
ily affected by the limited bandwidth and the added latency
when compared to VP8 and VP9. H.264 also differs in the
way it uses its data rate. While VP8 and VP9 balance be-
tween frame rate and resolution, H.264 only lowers the video
frame rate, while maintaining a constant maximum reso-
lution which could be because it is hardware accelerated
and thus depends more on its browser implementation. As
shown in Figure 16, this causes the frame rate to drop to an
unusable value 1FPS around the 2:30 minute mark. As ex-
pected, VP9 outperforms VP8 when congestion occurs, due
to its more efficient compression capabilities. This can be
seen from the higher resolutions from minute 1 to 3. When
the congestion is removed at minute 3 or minute 5, VP9,
however, does not scale back up to the original resolution
(1280x720), while VP8 does which might be because VP9 is
fairly new and not yet optimized.

5.2 Mobile devices
For the mobile performance evaluation, we perform seven-

minute experiments covering all different network variations.
Since we cannot inject a custom video stream for mobile
devices, we fall back on using the camera of the mobile de-
vices and force the use of the rear-camera to generate a
higher quality stream. Unfortunately, Safari does not sup-
port WebRTC on iOS. Therefore, we use the Cordova plu-
gin7 to handle the WebRTC natively, while using the same
performance measurement framework. The experimental
parameters change according to Table 4.

The different call characteristics of the test described in
Table 4 are shown in Figure 17 and Table 6. The video on
iOS and Android mobile platforms is limited to a resolution
of 640x480 at 30FPS, even though their cameras are able to
handle higher resolutions. Furthermore, iOS and Android
behave similarly across all characteristics. Their data rates
are both significantly less than Chrome when there is no con-
gestion (1750Kbps vs. 2500Kbps) and their average RTT is
much higher. It also takes longer for both mobile platforms
to reach the maximum data rate when compared to Chrome
(20 seconds vs. 10 seconds).

Table 6: Average call characteristics for different
platforms.

Chrome iOS Android
Data rate (Kbps) 1237.8 1022.5 1047.3
RTT (ms) 80.0 95.4 100.0
Framerate (FPS) 42.96 27.9 27.8
Packet loss (%) 2.30 2.18 2.2
Resolution (pixels) 1006x566 602x339 675x380

7https://github.com/eface2face/cordova-plugin-iosrtc

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

2000

4000

D
a
ta

 r
a
te

 (
k
b
p
s
) Chrome

iOS

Android

limit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

500

1000

R
T

T
 (

m
s
)

Chrome

iOS

Android

limit

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

2

4

R
e
s
o
lu

ti
o
n
 (

p
ix

e
ls

)

×10
6

Chrome

iOS

Android

00:00 01:00 02:00 03:00 04:00 05:00 06:00 07:00

Time (mm:ss)

0

50

100

F
ra

m
e
ra

te
 (

F
P

S
) Chrome

iOS

Android

Figure 17: Average data rates, RTT, resolution, and
frame rate for iOS, Android and Chrome network
when the network varies as shown in Table 4.

6. WIRELESS PERFORMANCE
In this section, we evaluate the performance of WebRTC

over real networks. We specifically focus on studying the
impact of a WiFi hop on WebRTC.

6.1 Benchmarking
In Section 4, we observed that GCC is sensitive to changes

in latency and packet losses. Transmitting over wireless net-
works may result in bursty packet losses and dynamic la-
tencies due to subsequent retransmissions, especially if the
end-to-end Round Trip Time (RTT) of the WebRTC con-
nection is large. In this section, we characterize the effects of
wireless links on the performance of WebRTC by comparing
against the performance on wired links.

We consider 3 types of WebRTC nodes: (i) a local wireless
node, (ii) a local wired node, and (iii) remote wired nodes.
We used a 2013 ASUS Nexus 7 tablet as a local wireless
node connected to an IEEE 802.11 DD-WRT enabled Access
Point (AP). The wired node is either a local machine located
in our lab in New York City or a remote server running in
Amazon EC2 cloud. We consider two cases for the remote
server: one in the AWS Oregon availability zone and one in
the AWS Sydney availability zone which provide different
magnitudes of RTT. This allows us to study the impact of
higher RTT as compared to the local machine.

Both the local and remote machines run Ubuntu 14.04
with Google Chrome 57.0 as the browser. We use the same
injected video files for a fair comparison. Moreover, all the
machines have sufficient computational power to eliminate
the impact of devices on video performance. A virtual dis-
play buffer was used on the EC2 servers to run WebRTC
on Chrome in headless mode. For the wireless node, we

used 5GHz channels to minimize the interference from other
IEEE 802.11 networks. To emulate the conditions of high
loss environments, the AP transmission power was set to
1mW. We experiment with different channel conditions with
the wireless node being in the same room as the AP (ap-
proximately 5 feet away), as well as outside of the room
(approximately 25 feet away).

Table 7 shows average call statistics for two fully-wired
calls with one wired node located in the NYC area in the lab
and the other node in Oregon or Sydney. The NYC node
was injecting a video encoded at 50FPS, and the remote
nodes were using a video encoded at 60FPS. The average
RTTs for the Oregon and Sydney calls were 77.74ms and
214.86ms, respectively. Accordingly, we term these scenar-
ios as “medium” and “high” call latencies as compared to
“short” latency scenario with both nodes in the NYC area.
These results establish a baseline performance of WebRTC
in realistic network conditions.

Table 7: Baseline statistics of wired calls with dif-
fering RTTs.

Call Path Data Rate
Frame
Rate

Frame
Width

NYC to Sydney 2971.11 49.58 1278.39
Sydney to NYC 2352.66 58.51 1280.00
NYC to Oregon 3001.45 49.68 1280.00
Oregon to NYC 2305.43 58.47 1242.83

Next, we perform video calls with one wireless node and
the other node either being a local wired node or one of
the two remote nodes. A 720p video encoded in 50FPS
was used across all 3 cases. On the wireless node, the cam-
era on the Nexus tablet was used as video source, because
video could not be injected into the Android distribution of
Chrome without rooting the device.

Figure 18 depicts the data rate, frame rate, frame width,
and the RTT for a single call with high latency between a
server located in Oregon area and a wireless node in the
lab. For comparison, we also show the performance of a
fully wired call in a similar scenario. Adding a wireless hop
in typical indoor conditions creates a significant change in
RTT characteristics. We observe that the peaks in RTT at
20, 30, and 50 seconds correspond to drops in frame rates,
which lead to poor video quality for the user. Furthermore,
we observe these RTT peaks to persist even after frame rates
and data rates drop.

A comparison of packet inter-arrival times between a wired
and wireless call is shown in Figure 19. Further, Figure 19
effectively illustrates how the wireless hop changes the delay
variation di (according to (3)) used by GCC’s arrival-time
filter8. In all our experiments, the number of packet losses
was relatively low (packet losses are handled by retransmis-
sions). Thus, the large variation in packet inter-arrival times
generally results in variations in video quality since GCC re-
lies on packet inter-arrival times for congestion control.

Figure 20 shows performance results of experiments for
the near and far scenarios. Although the calls are two-way,
the figures depict call performance statistics for the data
received at the wireless node. Each result is an average of
four identical experiments of 200 seconds each. Increasing

8The impact of packet inter-departure time is minimal and
we exclude that from our calculations.

Figure 18: Experimental results for a call between
NYC and a remote server located in the AWS Ore-
gon region. A fully wired call is compared with a
wireless hop call.

the distance from the access point generally increased RTTs
as well as packet loss. The received frame rate and frame
resolution reduced as well. With higher RTTs, the impact
of wireless link is more apparent. For instance when the
remote server is in Oregon, the average frame rate and frame
widths for the case of wireless node far from the AP are
more than 25% lower than when wireless node is near the
AP. This difference is approximately 10% when the wired
node is located in the lab and the RTT is small.

In summary, our experiments characterize the performance
of WebRTC video calls on both wired and wireless networks.
We observed that bursty losses and retransmissions can de-
grade the call quality, especially when the end-to-end RTT
is long. In the next section, we briefly explore cross-layer
techniques to enhance the performance of WebRTC over
wireless. More specifically, we study the tradeoff between
higher packet losses and lower packet inter-arrival times by
adjusting the wireless MAC layer retry limit.

6.2 Impact of MAC retry limits
In lossy wireless environments, when the wireless node

is far from the AP, we observed that the video stream fre-
quently freezes. The typical duration of such freezes is a few
seconds and subsequently, the stream resumed at a much
lower frame rate and resolution. In the traces of these calls,
as shown in Figure 18, we observed multiple spikes in RTT
values, where the RTT would quickly rise to 2x or 3x the pre-
vious value before dropping back down again. These spikes
occurred throughout the duration of the call despite changes
in other call parameters.

Figure 19: Comparison of time delta characteristics
for a wired call (left) and a call with a wireless hop
(right).

To better understand this variation in RTT, we inspected
the Wireshark traces of the call experiments obtained on
a separate device, placed near the AP, and operating in
monitor mode. We used Wireshark to decode the traces as
RTP streams and observed a high number of packet retrans-
missions, typically in immediate succession. These packet
retransmissions lead to spikes in RTT which subsequently
results in poor video quality. Our objective is to iden-
tify if reducing the number of retransmissions at the ex-
pense of higher packet losses may improve video quality.
We note that recent papers have explored cross-layer retry
limit adaptation mechanisms for latency-sensitive applica-
tions, such as OpenSDWN [21] as well as approaches pro-
posed in [26] and [9].

The DD-WRT enabled AP provides parameters to control
the Long Retry Limit for data packets between values of 1
and 15. We set the Long Retry Limit to two extreme values
of 1 and 15 and compared the impact of the AP automati-
cally configuring the retry limit when the wireless node was
located far from the AP. Furthermore, we evaluated retry
limit and access point proximity combinations across the lo-
cal wired node as well as the two remote nodes to achieve
low, medium, and high baseline RTT magnitudes. All nodes
used the same injected 720p video at 50FPS.

Figure 23 depicts the differences in call performance for
the highest baseline latency with the retry limit set to the
maximum of 15, as well as the minimum of 1. We observe
that disabling MAC layer retries (by setting the limit to
1) reduces the variation in RTTs at the expense of higher
packet losses. Figures 23(a) and 23(b) show the average
frame rate and average frame width for different retry limits.
Disabling retransmissions leads to reduced values for both
which leads to very poor video quality. With retries dis-
abled, RTT variations are significantly reduced and closely
resemble the RTT characteristics of the fully wired calls as
depicted in Figure 18. Packet losses are much higher in the
wireless call with retries disabled than they are in the vir-
tually lossless wired baseline in Figure 18. Qualitatively, we
observed the video freezes less frequently.

We observed a trade-off between RTT variation and packet
losses when controlling MAC retransmissions in lossy wire-
less environments. This trade-off is visually depicted in Fig-
ure 21. On both extremes of this trade-off, however, we
found that call quality still suffers, as GCC responds heav-
ily to packet losses.

Since GCC uses packet inter-arrival times as well as packet
loss information, there may be room for further modifi-
cations that would allow GCC to exploit cross-layer tech-

(a) (b) (c) (d)

Figure 20: Experimental results for calls with the wireless node at a static position near (same room) and
far (outside of room) from the AP: (a) the average frame rate, (b) average frame width, (c) average RTT,
and (d) packet loss.

niques such as MAC layer retransmits or PHY layer rate
adaptation. In WebRTC’s current implementation, how-
ever, we observe that GCC is too sensitive to packet loss
to benefit from MAC-layer retransmission adaptation. A
future direction is to study the impact of lowering PHY
layer transmission rates to guarantee successful packet de-
livery at the expense of reduced bandwidth. Figure 22 shows
the PHY transmission rate when the wireless node is near
or far from the AP. The PHY transmission rate is usually
higher than the minimum transmission rate (6 Mbps). Re-
ducing the PHY transmission rate may reduce the number
of packet losses while still ensuring sufficient bandwidth for
the WebRTC call.

7. RELATED WORK
Performance evaluation and design of congestion control

algorithms for live video streaming have received consider-
able attention. Below, we highlight the most relevant work.
Congestion control for multimedia: TCP variants such
as Tahoe and Reno [16] have shown to lead to poor perfor-
mance for multimedia applications since they rely only on
losses for congestion indication. The approaches to address
the shortcomings of these techniques can be divided in two
categories.

The first variety of congestion control algorithms use vari-
ants of delay to infer congestion. Delay based variants of
TCP such as Vegas [5], and FAST [24] rely on measuring
round trip delays but they are more reactive than proactive
in congestion control. LEDBAT [22] relies on measuring one
way packet delays to ensure high throughput while minimiz-
ing delays. Sprout [25] utilizes stochastic forecasts of cellular
network performance to achieve the same goals. The sec-
ond category of congestion control relies on Active Queue
Management (AQM) techniques. NADA [27] uses Explicit
Congestion Notifications (ECN) and loss rate to obtain an
accurate estimate of losses for congestion control.
WebRTC congestion control: SCReAM [17] is a hybrid
loss and delay based congestion control algorithm for conver-
sational video over LTE. FBRA [19] proposes a FEC-based
congestion control algorithm that probes for the available
bandwidth through FEC packets. In the case of losses due
to congestion, the redundant packets help in recovering the
lost packets.
WebRTC performance evaluation: Several papers have
studied the performance of WebRTC. Most related work fo-
cuses on a single aspect of the protocol or use outdated

versions of WebRTC in their performance analyses. [2] an-
alyzes the Janus WebRTC gateway focusing on its perfor-
mance and scalability only for audio conferencing in multi-
party calls. [8] focuses on comparison of end-to-end and
AQM-based congestion control algorithms. [7] evaluates the
performance of WebRTC over IEEE 802.11 and proposes
techniques for grouping packets together to avoid GCC’s
action on bursty losses.

[10] presents the design of the most recent version of the
GCC algorithm used in the WebRTC stack. While [10] pro-
vides preliminary analysis of GCC in some synthetic network
conditions, it does not focus on WebRTC’s performance on
mobile devices or real wired and wireless networks. Its main
focus is on inter-protocol fairness between different RTP
streams and RTP streams competing with TCP flows.

[23] provides an emulation based performance evaluation
of WebRTC. However, all flaws identified in [23] have been
subsequently addressed in WebRTC. For instance, the data
rate no longer drops at high latencies (but instead responds
to latency variation), the bandwidth sharing between TCP
and RTP is fairer due to the newly introduced dynamic
threshold, and the available bandwidth is shared more equally
when competing RTP flows are added.

A more realistic performance study using real network
effects is done in [13], where the performance of WebRTC is
measured with mobile users in different areas. Even though
the WebRTC implementation used is outdated, the paper
suggests that WebRTC’s over-reliance on packet loss signals
leads to under-utilization of the channel due to mobility.

8. LESSONS LEARNED
We believe that our evaluation and insights derived from

it can serve as a useful guide for developers of applications
leveraging WebRTC. While we have done an extensive eval-
uation of the performance of GCC and WebRTC in a wide
variety of environments, there are several open issues and
directions for future research.

The new changes in the GCC algorithm include an adap-
tive threshold for congestion control. Our evaluations show
that this ensures better fairness between competingWebRTC’s
RTP and TCP flows than reported in earlier studies. How-
ever, optimal fairness is still not achieved and the adap-
tive threshold prioritizes WebRTC’s RTP flows more aggres-
sively than desired.

We compared the performance of a mesh and Selective
Forwarding Unit (SFU) based topologies for group video

Figure 21: Experimental results for a wireless call
between NYC and Sydney with high (above) and
low (below) MAC layer retry limits.

calls using WebRTC. Our evaluation shows that adding an
SFU can significantly improve the performance of multi-
party video call. The positioning and dimensioning of SFU
in the network are some interesting future research direc-
tions.

Our experiments demonstrated that the newly added H.264
and VP9 codecs do not perform as expected in the presence
of congestion or packet losses. It is not immediately clear if
this performance issue is due to codec design or an imple-
mentation flaw and requires further investigation.

We experimentally evaluated video calls on WebRTC in
real networks, specifically focusing on wireless networks. Our
experiments show that WebRTC can suffer from poor per-
formance over wireless due to bursty losses and packet re-
transmissions.

In future work, we will consider modifications to the GCC
algorithm to improve its performance with bursty packet
losses and large variations in RTT. Further, we will study
more complex cross-layer approaches to address the perfor-
mance issues of WebRTC over wireless, including PHY-layer
rate adaptation and dynamic adaptation of retransmission
limits along with congestion control.

9. CONCLUSION
In this paper, we evaluated the performance of WebRTC-

based video conferencing, with the main focus being on the
Google Congestion Control (GCC) algorithm. Our evalua-
tions in synthetic, yet typical, network scenarios show that

Figure 22: Comparison of PHY data rate for tablet
positioned “Near” (left) and “Far” (right) from the
AP.

WebRTC is sensitive to variations in RTT and packet losses.
We also evaluated the impact of different video codecs, mo-
bile devices, and topologies on WebRTC video calls. Fur-
ther, our evaluations on real wired and wireless networks
show that bursty packet losses and retransmissions over long
RTTs can especially lead to poor video performance. The
source code for setting up and evaluating the experimen-
tal environments described in this paper is available at:
https://github.com/Wimnet/webrtc_performance.

10. ACKNOWLEDGEMENTS
We would like to thank Rodda John, Columbia Univer-

sity, for his help in implementing scripts to analyze wireless
performance data. This work was supported in part by NSF
grants CNS-1423105 and CNS-1650685.

11. REFERENCES

[1] One-way transmission time. ITU-T, G.114 (May
2003).

[2] Amirante, A., Castaldi, T., Miniero, L., and

Romano, S. P. Performance analysis of the janus
webrtc gateway. In Proc. ACM AWeS’15 (2015).

[3] Ammar, D., De Moor, K., Xie, M., Fiedler, M.,

and Heegaard, P. Video QoE killer and
performance statistics in WebRTC-based video
communication. In Proc. IEEE ICCE’16 (2016).

[4] Bergkvist, A., Burnett, D. C., Jennings, C.,

Narayanan, A., and Aboba, B. Webrtc 1.0:
Real-time communication between browsers. online,
2016. http://www.w3.org/TR/webrtc/.

[5] Brakmo, L. S., and Peterson, L. L. TCP Vegas:
End to end congestion avoidance on a global internet.
IEEE J. Sel. Areas Commun. 13, 8 (1995), 1465–1480.

[6] Carbone, M., and Rizzo, L. Dummynet revisited.
SIGCOMM Comput. Commun. Rev. 40, 2 (2010),
12–20.

[7] Carlucci, G., De Cicco, L., Holmer, S., and

Mascolo, S. Making Google congestion control
robust over Wi-Fi networks using packet grouping. In
Proc. ACM ANRW’16 (2016).

[8] Carlucci, G., De Cicco, L., and Mascolo, S.

Controlling queuing delays for real-time
communication: the interplay of E2E and AQM
algorithms. ACM SIGCOMM Computer Commun.
Rev. 46, 3 (2016).

[9] Chen, W., Ma, L., and Shen, C.-C.

Congestion-aware MAC layer adaptation to improve

https://github.com/Wimnet/webrtc_performance
http://www.w3.org/TR/webrtc/

(a) (b) (c) (d)

Figure 23: Experimental results for calls with MAC layer retry limits varied between the maximum and
minimum values on the AP: the average (a) frame rate, (b) frame width, (c) RTT, and (d) packet loss.

video telephony over Wi-Fi. ACM Trans. Multimedia
Comput. Commun. Appl. 12, 5s (2016), 83:1–83:24.

[10] Cicco, L. D., Carlucci, G., Holmer, S., and

Mascolo, S. Analysis and design of the google
congestion control for web real-time communication
(WebRTC). In Proc. ACM MMsys’16 (2016).

[11] Cicco, L. D., Carlucci, G., and Mascolo, S.

Understanding the dynamic behaviour of the google
congestion control for RTCWeb. In Proc. IEEE PV’13
(2013).

[12] De Cicco, L., Carlucci, G., and Mascolo, S.

Experimental investigation of the google congestion
control for real-time flows. In Proc. ACM SIGCOMM
FhMN’13 (2013).

[13] Fund, F., Wang, C., Liu, Y., Korakis, T., Zink,

M., and Panwar, S. S. Performance of DASH and
WebRTC video services for mobile users. In Proc.
PV’13 (2013).

[14] Hardie, T., Jennings, C., and Turner, S.

Real-time communication in web-browsers. online,
2012. https://tools.ietf.org/wg/rtcweb/.

[15] Homer, S., Lundin, H., Carlucci, G., Cicco,

L. D., and Mascolo, S. A Google congestion control
algorithm for real-time communication. IETF draft,
2015. https:
//tools.ietf.org/html/draft-ietf-rmcat-gcc-01.

[16] Jacobson, V. Congestion avoidance and control. In
Proc. ACM SIGCOMM’88 (1988).

[17] Johansson, I. Self-clocked rate adaptation for
conversational video in LTE. In Proc. ACM
SIGCOMM CSWS’14 (2014).

[18] Mukherjee, D., Bankoski, J., Grange, A., Han,

J., Koleszar, J., Wilkins, P., Xu, Y., and

Bultje, R. The latest open-source video codec VP9 -
an overview and preliminary results. In IEEE PCS’13
(2013).

[19] Nagy, M., Singh, V., Ott, J., and Eggert, L.

Congestion control using FEC for conversational
multimedia communication. In Proc. ACM MMSys’14
(2014).

[20] Nam, H., Kim, K.-H., and Schulzrinne, H. QoE
matters more than QoS: Why people stop watching
cat videos. In Proc. IEEE INFOCOM’16 (2016).

[21] Schulz-Zander, J., Mayer, C., Ciobotaru, B.,

Schmid, S., Feldmann, A., and Riggio, R.

Programming the home and enterprise WiFi with
OpenSDWN. In Proc. ACM SIGCOMM’15 (2015).

[22] Shalunov, S., Hazel, G., Iyengar, J., and

Kuehlewind, M. Low extra delay background
transport (LEDBAT). IETF RFC 6817, 2012.

[23] Singh, V., Lozano, A. A., and Ott, J. Performance
analysis of receive-side real-time congestion control for
WebRTC. In Proc. IEEE PV’13 (2013).

[24] Wei, D. X., Jin, C., Low, S. H., and Hegde, S.

FAST TCP: motivation, architecture, algorithms,
performance. IEEE/ACM Trans. Netw. 14, 6 (2006),
1246–1259.

[25] Winstein, K., Sivaraman, A., Balakrishnan, H.,

et al. Stochastic forecasts achieve high throughput
and low delay over cellular networks. In Proc.
USENIX NSDI’13 (2013).

[26] Yiakoumis, Y., Katti, S., Huang, T.-Y.,

McKeown, N., Yap, K.-K., and Johari, R.

Putting home users in charge of their network. In
Proc. ACM UbiComp’12 (2012).

[27] Zhu, X., and Pan, R. NADA: A unified congestion
control scheme for low-latency interactive video. In
Proc. IEEE PV’13 (2013).

https://tools.ietf.org/wg/rtcweb/
https://tools.ietf.org/html/draft-ietf-rmcat-gcc-01
https://tools.ietf.org/html/draft-ietf-rmcat-gcc-01

	Introduction
	Congestion control
	Receiver-side controller
	Arrival-time filter
	Over-use detector
	Rate controller

	Sender-side controller

	Experimental Setup
	Synthetic Network Conditions
	Static network conditions
	Network adaptability
	Cross traffic
	Multi-party topology comparison

	Impact of Video Codecs and Mobile Devices
	Video codec comparison
	Mobile devices

	Wireless Performance
	Benchmarking
	Impact of MAC retry limits

	Related Work
	Lessons Learned
	Conclusion
	Acknowledgements
	References

