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PERFORMANCE GUARANTEES FOR INDIVIDUALIZED
TREATMENT RULES1
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Because many illnesses show heterogeneous response to treatment, there
is increasing interest in individualizing treatment to patients [Arch. Gen. Psy-
chiatry 66 (2009) 128–133]. An individualized treatment rule is a decision
rule that recommends treatment according to patient characteristics. We con-
sider the use of clinical trial data in the construction of an individualized
treatment rule leading to highest mean response. This is a difficult computa-
tional problem because the objective function is the expectation of a weighted
indicator function that is nonconcave in the parameters. Furthermore, there
are frequently many pretreatment variables that may or may not be useful
in constructing an optimal individualized treatment rule, yet cost and inter-
pretability considerations imply that only a few variables should be used by
the individualized treatment rule. To address these challenges, we consider
estimation based on l1-penalized least squares. This approach is justified via
a finite sample upper bound on the difference between the mean response due
to the estimated individualized treatment rule and the mean response due to
the optimal individualized treatment rule.

1. Introduction. Many illnesses show heterogeneous response to treatment.
For example, a study on schizophrenia [12] found that patients who take the same
antipsychotic (olanzapine) may have very different responses. Some may have to
discontinue the treatment due to serious adverse events and/or acutely worsened
symptoms, while others may experience few if any adverse events and have im-
proved clinical outcomes. Results of this type have motivated researchers to ad-
vocate the individualization of treatment to each patient [11, 16, 23]. One step
in this direction is to estimate each patient’s risk level and then match treatment
to risk category [5, 6]. However, this approach is best used to decide whether to
treat; otherwise it assumes the knowledge of the best treatment for each risk cat-
egory. Alternately, there is an abundance of literature focusing on predicting each
patient’s prognosis under a particular treatment [10, 28]. Thus, an obvious way
to individualize treatment is to recommend the treatment achieving the best pre-
dicted prognosis for that patient. In general, the goal is to use data to construct in-
dividualized treatment rules that, if implemented in future, will optimize the mean
response.
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Consider data from a single stage randomized trial involving several active treat-
ments. A first natural procedure to construct the optimal individualized treatment
rule is to maximize an empirical version of the mean response over a class of treat-
ment rules (assuming larger responses are preferred). As will be seen, this max-
imization is computationally difficult because the mean response of a treatment
rule is the expectation of a weighted indicator that is noncontinuous and noncon-
cave in the parameters. To address this challenge, we make a substitution. That is,
instead of directly maximizing the empirical mean response to estimate the treat-
ment rule, we use a two-step procedure that first estimates a conditional mean and
then from this estimated conditional mean derives the estimated treatment rule. As
will be seen in Section 3, even if the optimal treatment rule is contained in the
space of treatment rules considered by the substitute two-step procedure, the esti-
mator derived from the two-step procedure may not be consistent. However, if the
conditional mean is modeled correctly, then the two-step procedure consistently
estimates the optimal individualized treatment rule. This motivates consideration
of rich conditional mean models with many unknown parameters. Furthermore,
there are frequently many pretreatment variables that may or may not be useful in
constructing an optimal individualized treatment rule, yet cost and interpretability
considerations imply that fewer rather than more variables should be used by the
treatment rule. This consideration motivates the use of l1-penalized least squares
(l1-PLS).

We propose to estimate an optimal individualized treatment rule using a two step
procedure that first estimates the conditional mean response using l1-PLS with a
rich linear model and second, derives the estimated treatment rule from estimated
conditional mean. For brevity, throughout, we call the two step procedure the l1-
PLS method. We derive several finite sample upper bounds on the difference be-
tween the mean response to the optimal treatment rule and the mean response to
the estimated treatment rule. All of the upper bounds hold even if our linear model
for the conditional mean response is incorrect and to our knowledge are, up to con-
stants, the best available. We use the upper bounds in Section 3 to illuminate the
potential mismatch between using least squares in the two-step procedure and the
goal of maximizing the mean response. The upper bounds in Section 4.1 involve a
minimized sum of the approximation error and estimation error; both errors result
from the estimation of the conditional mean response. We shall see that l1-PLS
estimates a linear model that minimizes this approximation plus estimation error
sum among a set of suitably sparse linear models.

If the part of the model for the conditional mean involving the treatment effect is
correct, then the upper bounds imply that, although a surrogate two-step procedure
is used, the estimated treatment rule is consistent. The upper bounds provide a
convergence rate as well. Furthermore, in this setting, the upper bounds can be
used to inform how to choose the tuning parameter involved in the l1 penalty to
achieve the best rate of convergence. As a by-product, this paper also contributes
to existing literature on l1-PLS by providing a finite sample prediction error bound
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for the l1-PLS estimator in the random design setting without assuming the model
class contains or is close to the true model.

The paper is organized as follows. In Section 2, we formulate the decision mak-
ing problem. In Section 3, for any given decision, that is, individualized treatment
rule, we relate the reduction in mean response to the excess prediction error. In
Section 4, we estimate an optimal individualized treatment rule via l1-PLS and
provide a finite sample upper bound on the reduction in mean response achieved
by the estimated rule. In Section 5, we consider a data dependent tuning parameter
selection criterion. This method is evaluated using simulation studies and illus-
trated with data from the Nefazodone-CBASP trial [13]. Discussions and future
work are presented in Section 6.

2. Individualized treatment rules. We use upper case letters to denote ran-
dom variables and lower case letters to denote values of the random variables.
Consider data from a randomized trial. On each subject, we have the pretreatment
variables X ∈ X , treatment A taking values in a finite, discrete treatment space A,
and a real-valued response R (assuming large values are desirable). An individ-
ualized treatment rule (ITR) d is a deterministic decision rule from X into the
treatment space A.

Denote the distribution of (X,A,R) by P . This is the distribution of the clinical
trial data; in particular, denote the known randomization distribution of A given X

by p(·|X). The likelihood of (X,A,R) under P is then f0(x)p(a|x)f1(r|x, a),
where f0 is the unknown density of X and f1 is the unknown density of R condi-
tional on (X,A). Denote the expectations with respect to the distribution P by
an E. For any ITR d : X → A, let P d denote the distribution of (X,A,R) in
which d is used to assign treatments. Then the likelihood of (X,A,R) under P d

is f0(x)1a=d(x)f1(r|x, a). Denote expectations with respect to the distribution P d

by an Ed . The Value of d is defined as V (d) � Ed(R). An optimal ITR, d0, is a
rule that has the maximal Value, that is,

d0 ∈ arg max
d

V (d),

where the arg max is over all possible decision rules. The Value of d0, V (d0), is
the optimal Value.

Assume P [p(a|X) > 0] = 1 for all a ∈ A (i.e., all treatments in A are possible
for all values of X a.s.). Then P d is absolutely continuous with respect to P and
a version of the Radon–Nikodym derivative is dP d/dP = 1a=d(x)/p(a|x). Thus,
the Value of d satisfies

V (d) = Ed(R) =
∫

R dP d =
∫

R
dP d

dP
dP = E

[
1A=d(X)

p(A|X)
R

]
.(2.1)

Our goal is to estimate d0, that is, the ITR that maximizes (2.1), using data from
distribution P . When X is low dimensional and the best rule within a simple class
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of ITRs is desired, empirical versions of the Value can be used to construct estima-
tors [22, 26]. However, if the best rule within a larger class of ITRs is of interest,
these approaches are no longer feasible.

Define Q0(X,A) � E(R|X,A) [Q0(x, a) is sometimes called the “Quality” of
treatment a at observation x]. It follows from (2.1) that for any ITR d ,

V (d) = E

[
1A=d(X)

p(A|X)
Q0(X,A)

]
= E

[∑
a∈A

1d(X)=aQ0(X,a)

]
= E[Q0(X,d(X))].

Thus, V (d0) = E[Q0(X,d0(X))] ≤ E[maxa∈A Q0(X,a)]. On the other hand, by
the definition of d0,

V (d0) ≥ V (d)|d(X)∈arg maxa∈A Q0(X,a) = E
[
max
a∈A

Q0(X,a)
]
.

Hence, an optimal ITR satisfies d0(X) ∈ arg maxa∈A Q0(X,a) a.s.

3. Relating the reduction in Value to excess prediction error. The above
argument indicates that the estimated ITR will be of high quality (i.e., have high
Value) if we can estimate Q0 accurately. In this section, we justify this by provid-
ing a quantitative relationship between the Value and the prediction error.

Because A is a finite, discrete treatment space, given any ITR, d , there exists
a square integrable function Q : X × A → R for which d(X) ∈ arg maxa Q(X,a)

a.s. Let L(Q) � E[R − Q(X,A)]2 denote the prediction error of Q (also called
the mean quadratic loss). Suppose that Q0 is square integrable and that the ran-
domization probability satisfies p(a|x) ≥ S−1 for an S > 0 and all (x, a) pairs.
Murphy [21] showed that

V (d0) − V (d) ≤ 2S1/2[L(Q) − L(Q0)]1/2.(3.1)

Intuitively, this upper bound means that if the excess prediction error of Q [i.e.,
L(Q) − L(Q0)] is small, then the reduction in Value of the associated ITR d [i.e.,
V (d0) − V (d)] is small. Furthermore, the upper bound provides a rate of conver-
gence for the Value of an estimated ITR. For example, suppose Q0 is linear, that
is, Q0 = �(X,A)θ0 for a given vector-valued basis function � on X × A and an
unknown parameter θ0. And suppose we use a correct linear model for Q0 (here
“linear” means linear in parameters), say the model Q = {�(X,A)θ : θ ∈ R

dim(�)}
or a linear model containing Q with dimension of parameters fixed in n. If we
estimate θ by least squares and denote the estimator by θ̂ , then the prediction error
of Q̂ = �θ̂ converges to L(Q0) at rate 1/n under mild regularity conditions. This
together with inequality (3.1) implies that the Value obtained by the estimated ITR,
d̂(X) ∈ arg maxa Q̂(X,a), will converge to the optimal Value at rate at least 1/

√
n.

In the following theorem, we improve this upper bound in two aspects. First, we
show that an upper bound with exponent larger than 1/2 can be obtained under a
margin condition, which implicitly implies a faster rate of convergence. Second, it
turns out that the upper bound need only depend on one term in the function Q; we
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call this the treatment effect term T . For any square integrable Q, the associated
treatment effect term is defined as T (X,A) � Q(X,A)−E[Q(X,A)|X]. Note that
d(X) ∈ arg maxa T (X,a) = arg maxa Q(X,a) a.s. Similarly, the true treatment ef-
fect term is given by

T0(X,A) � Q0(X,A) − E[Q0(X,A)|X].(3.2)

T0(x, a) is the centered effect of treatment A = a at observation X = x; d0(X) ∈
arg maxa T0(X,a).

THEOREM 3.1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a)

pairs. Assume there exists some constants C > 0 and α ≥ 0 such that

P
(
max
a∈A

T0(X,a) − max
a∈A\arg maxa∈A T0(X,a)

T0(X,a) ≤ ε
)

≤ Cεα(3.3)

for all positive ε. Then for any ITR d : X → A and square integrable function
Q : X × A → R such that d(X) ∈ arg maxa∈A Q(X,a) a.s., we have

V (d0) − V (d) ≤ C′[L(Q) − L(Q0)](1+α)/(2+α)(3.4)

and

V (d0) − V (d) ≤ C′[E(
T (X,A) − T0(X,A)

)2](1+α)/(2+α)
,(3.5)

where C′ = (22+3αS1+αC)1/(2+α).

The proof of Theorem 3.1 is in Appendix A.1.

REMARKS.

(1) We set the second maximum in (3.3) to −∞ if for an x, T0(x, a) is constant
in a and thus the set A \ arg maxa∈A T0(x, a) = ∅.

(2) Condition (3.3) is similar to the margin condition in classification [18, 24,
32]; in classification this assumption is often used to obtain sharp upper bounds on
the excess 0–1 risk in terms of other surrogate risks [2]. Here maxa∈A T0(x, a) −
maxa∈A\arg maxa∈A T0(x,a) T0(x, a) can be viewed as the “margin” of T0 at obser-
vation X = x. It measures the difference in mean responses between the opti-
mal treatment(s) and the best suboptimal treatment(s) at x. For example, suppose
X ∼ U [−1,1], P(A = 1|X) = P(A = −1|X) = 1/2 and T0(X,A) = XA. Then
the margin condition holds with C = 1/2 and α = 1. Note the margin condition
does not exclude multiple optimal treatments for any observation x. However,
when α > 0, it does exclude suboptimal treatments that yield a conditional mean
response very close to the largest conditional mean response for a set of x with
nonzero probability.

(3) For C = 1, α = 0, condition (3.3) always holds for all ε > 0; in this case
(3.4) reduces to (3.1).
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(4) The larger the α, the larger the exponent (1 + α)/(2 + α) and thus the
stronger the upper bounds in (3.4) and (3.5). However, the margin condition is
unlikely to hold for all ε if α is very large. An alternate margin condition and
upper bound are as follows.

Suppose p(a|x) ≥ S−1 for all (x, a) pairs. Assume there is an ε > 0, such that

P
(
max
a∈A

T0(X,a) − max
a∈A\arg maxa∈A T0(X,a)

T0(X,a) < ε
)

= 0.(3.6)

Then V (d0) − V (d) ≤ 4S[L(Q) − L(Q0)]/ε and V (d0) − V (d) ≤ 4SE(T −
T0)

2/ε.
The proof is essentially the same as that of Theorem 3.1 and is omitted. Condi-

tion (3.6) means that T0 evaluated at the optimal treatment(s) minus T0 evaluated
at the best suboptimal treatment(s) is bounded below by a positive constant for
almost all X observations. If X assumes only a finite number of values, then this
condition always holds, because we can take ε to be the smallest difference in T0

when evaluated at the optimal treatment(s) and the suboptimal treatment(s) [note
that if T0(x, a) is constant for all a ∈ A for some observation X = x, then all
treatments are optimal for that observation].

(5) Inequality (3.5) cannot be improved in the sense that choosing T = T0

yields zero on both sides of the inequality. Moreover, an inequality in the opposite
direction is not possible, since each ITR is associated with many nontrivial T -
functions. For example, suppose X ∼ U [−1,1], P(A = 1|X) = P(A = −1|X) =
1/2 and T0(X,A) = (X − 1/3)2A. The optimal ITR is d0(X) = 1 a.s. Consider
T (X,A) = θA. Then maximizing T (X,A) yields the optimal ITR as long as
θ > 0. This means that the left-hand side (LHS) of (3.5) is zero, while the right-
hand side (RHS) is always positive no matter what value θ takes.

Theorem 3.1 supports the approach of minimizing the estimated prediction
error to estimate Q0 or T0 and then maximizing this estimator over a ∈ A to
obtain an ITR. It is natural to expect that even when the approximation space
used in estimating Q0 or T0 does not contain the truth, this approach will pro-
vide the best (highest Value) of the considered ITRs. Unfortunately, this does not
occur due to the mismatch between the loss functions (weighted 0–1 loss and
the quadratic loss). This mismatch is indicated by remark (5) above. More pre-
cisely, note that the approximation space, say Q for Q0, places implicit restric-
tions on the class of ITRs that will be considered. In effect, the class of ITRs is
D Q = {d(X) ∈ arg maxa Q(X,a) :Q ∈ Q}. It turns out that minimizing the predic-
tion error may not result in the ITR in D Q that maximizes the Value. This occurs
when the approximation space Q does not provide a treatment effect term close to
the treatment effect term in Q0. In the following toy example, the optimal ITR d0

belongs to D Q, yet the prediction error minimizer over Q does not yield d0.



1186 M. QIAN AND S. A. MURPHY

A TOY EXAMPLE. Suppose X is uniformly distributed in [−1,1], A is binary
{−1,1} with probability 1/2 each and is independent of X, and R is normally dis-
tributed with mean Q0(X,A) = (X − 1/3)2A and variance 1. It is easy to see that
the optimal ITR satisfies d0(X) = 1 a.s. and V (d0) = 4/9. Consider approxima-
tion space Q = {Q(X,A; θ) = (1,X,A,XA)θ : θ ∈ R

4} for Q0. Thus the space
of ITRs under consideration is D Q = {d(X) = sign(θ3 + θ4X) : θ3, θ4 ∈ R}. Note
that d0 ∈ D Q since d0(X) can be written as sign(θ3 + θ4X) for any θ3 > 0 and
θ4 = 0. d0 is the best treatment rule in D Q. However, minimizing the prediction
error L(Q) over Q yields Q∗(X,A) = (4/9 − 2/3X)A. The ITR associated with
Q∗ is d∗(X) = arg maxa∈{−1,1} Q∗(X,a) = sign(2/3−X), which has lower Value

than d0 (V (d∗) = E[1A(2/3−X)>0R

1/2 ] = 29/81 < V (d0)).

4. Estimation via l1-penalized least squares. To deal with the mismatch be-
tween minimizing the prediction error and maximizing the Value discussed in the
prior section, we consider a large linear approximation space Q for Q0. Since
overfitting is likely (due to the potentially large number of pretreatment variables
and/or large approximation space for Q0), we use penalized least squares (see
Section S.1 of the supplemental article [25] for further discussion of the overfit-
ting problem). Furthermore, we use l1-penalized least squares (l1-PLS, [31]) as the
l1 penalty does some variable selection and as a result will lead to ITRs that are
cheaper to implement (fewer variables to collect per patient) and easier to interpret.
See Section 6 for the discussion of other potential penalization methods.

Let {(Xi,Ai,Ri)}ni=1 represent i.i.d. observations on n subjects in a randomized
trial. For convenience, we use En to denote the associated empirical expectation
[i.e., Enf = ∑n

i=1 f (Xi,Ai,Ri)/n for any real-valued function f on X × A ×R].
Let Q � {Q(X,A; θ) = �(X,A)θ , θ ∈ R

J } be the approximation space for Q0,
where �(X,A) = (φ1(X,A), . . . , φJ (X,A)) is a 1 by J vector composed of basis
functions on X × A, θ is a J by 1 parameter vector, and J is the number of basis
functions (for clarity here J will be fixed in n, see Appendix A.2 for results with
J increasing as n increases). The l1-PLS estimator of θ is

θ̂n = arg min
θ∈RJ

{
En[R − �(X,A)θ]2 + λn

J∑
j=1

σ̂j |θj |
}
,(4.1)

where σ̂j = [Enφj (X,A)2]1/2, θj is the j th component of θ and λn is a tuning
parameter that controls the amount of penalization. The weights σ̂j ’s are used to
balance the scale of different basis functions; these weights were used in Bunea,
Tsybakov and Wegkamp [4] and van de Geer [33]. In some situations, it is natural
to penalize only a subset of coefficients and/or use different weights in the penalty;
see Section S.2 of the supplemental article [25] for required modifications. The
resulting estimated ITR satisfies

d̂n(X) ∈ arg max
a∈A

�(X,a)θ̂n.(4.2)
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4.1. Performance guarantee for the l1-PLS. In this section, we provide finite
sample upper bounds on the difference between the optimal Value and the Value
obtained by the l1-PLS estimator in terms of the prediction errors resulting from
the estimation of Q0 and T0. These upper bounds guarantee that if Q0 (or T0) is
consistently estimated, the Value of the estimated ITR will converge to the op-
timal Value. Perhaps more importantly, the finite sample upper bounds provided
below do not require the assumption that either Q0 or T0 is consistently estimated.
Thus, each upper bound includes approximation error as well as estimation er-
ror. The estimation error decreases with decreasing model sparsity and increasing
sample size. An “oracle” model for Q0 (or T0) minimizes the sum of these two
errors among suitably sparse linear models [see remark (2) after Theorem 4.3 for
a precise definition of the oracle model]. In finite samples, the upper bounds imply
that d̂n, the ITR produced by the l1-PLS method, will have Value roughly as if the
l1-PLS method detects the sparsity of the oracle model and then estimates from
the oracle model using ordinary least squares [see remark (3) below].

Define the prediction error minimizer θ∗ ∈ R
J by

θ∗ ∈ arg min
θ∈RJ

L(�θ) = arg min
θ∈RJ

E(R − �θ)2.(4.3)

For expositional simplicity assume that θ∗ is unique, and define the sparsity of
θ ∈ R

J by its l0 norm, ‖θ‖0 (see Appendix A.2 for a more general setting, where
θ∗ is not unique and a laxer definition of sparsity is used). As discussed above,
for finite n, instead of estimating θ∗, the l1-PLS estimator θ̂n estimates a para-
meter θ∗∗

n , possessing small prediction error and with controlled sparsity. For any
bounded function f on X × A, let ‖f ‖∞ � supx∈X ,a∈A |f (x, a)|. θ∗∗

n lies in the
set of parameters 	n defined by

	n �
{
θ ∈ R

J :‖�(θ − θ∗)‖∞ ≤ η,

max
j=1,...,J

∣∣∣∣E[φj�(θ − θ∗)]
σj

∣∣∣∣ ≤ 11η

√
log(Jn)

n
(4.4)

and ‖θ‖0 ≤ β

489U

√
n

log(Jn)

}
,

where σj = (Eφ2
j )

1/2, and η, β and U are positive constants that will be defined
in Theorem 4.1.

The first two conditions in (4.4) restrict 	n to θ ’s with controlled distance in
sup norm and with controlled distance in prediction error via first order derivatives
(note that |E[φj�(θ −θ∗)]/σj | = |∂L(�θ)/∂θj −∂L(�θ∗)/∂θ∗

j |/2σj ). The third
condition restricts 	n to sparse θ ’s. Note that as n increases this sparsity require-
ment becomes laxer, ensuring that θ∗ ∈ 	n for sufficiently large n.
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When 	n is nonempty, θ∗∗
n is given by

θ∗∗
n = arg min

θ∈	n

[L(�θ) + 3‖θ‖0λ
2
n/β].(4.5)

Note that θ∗∗
n is at least as sparse as θ∗ since by (4.3), L(�θ) + 3‖θ‖0λ

2
n/β >

L(�θ∗) + 3‖θ∗‖0λ
2
n/β for any θ such that ‖θ‖0 > ‖θ∗‖0.

The following theorem provides a finite sample performance guarantee for the
ITR produced by the l1-PLS method. Intuitively, this result implies that if Q0
can be well approximated by the sparse linear representation θ∗∗

n [so that both
L(�θ∗∗

n ) − L(Q0) and ‖θ∗∗
n ‖0 are small], then d̂n will have Value close to the

optimal Value in finite samples.

THEOREM 4.1. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a)

pairs and the margin condition (3.3) holds for some C > 0, α ≥ 0 and all posi-
tive ε. Assume:

(1) the error terms εi = Ri − Q0(Xi,Ai), i = 1, . . . , n, are independent of
(Xi,Ai), i = 1, . . . , n and are i.i.d. with E(εi) = 0 and E[|εi |l] ≤ l!cl−2σ 2/2 for
some c, σ 2 > 0 for all l ≥ 2;

(2) there exist finite, positive constants U and η such that maxj=1,...,J

‖φj‖∞/σj ≤ U and ‖Q0 − �θ∗‖∞ ≤ η; and
(3) E[(φ1/σ1, . . . , φJ /σJ )T (φ1/σ1, . . . , φJ /σJ )] is positive definite, and the

smallest eigenvalue is denoted by β .

Consider the estimated ITR d̂n defined by (4.2) with tuning parameter

λn ≥ k

√
log(Jn)

n
,(4.6)

where k = 82 max{c, σ, η}. Let 	n be the set defined in (4.4). Then for any n ≥
24U2 log(Jn) and for which 	n is nonempty, we have, with probability at least
1 − 1/n, that

V (d0) − V (d̂n) ≤ C ′[ min
θ∈	n

(
L(�θ) − L(Q0) + 3‖θ‖0λ

2
n/β

)](1+α)/(2+α)
,(4.7)

where C′ = (22+3αS1+αC)1/(2+α).

The result follows from inequality (3.4) in Theorem 3.1 and inequality (4.10) in
Theorem 4.3. Similar results in a more general setting can be obtained by combin-
ing (3.4) with inequality (A.7) in Appendix A.2.

REMARKS.

(1) Note that θ∗∗
n is the minimizer of the upper bound on the RHS of (4.7)

and that θ∗∗
n is contained in the set {θ∗,(m)

n :m ⊂ {1, . . . , J }}. Each θ∗,(m)
n satisfies
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θ∗,(m)
n = arg min{θ∈	n : θj=0 for all j /∈m} L(�θ); that is, θ∗,(m)

n minimizes the predic-
tion error of the model indexed by the set m (i.e., model {∑j∈m φjθj : θj ∈ R})
(within 	n). For each θ∗,(m)

n , the first term in the upper bound in (4.7) [i.e.,
L(�θ∗,(m)

n ) − L(Q0)] is the approximation error of the model indexed by m

within 	n. As in van de Geer [33], we call the second term 3‖θ∗,(m)
n ‖0λ

2
n/β the es-

timation error of the model indexed by m. To see why, first put λn = k
√

log(Jn)/n.
Then, ignoring the log(n) factor, the second term is a function of the sparsity of
model m relative to the sample size, n. Up to constants, the second term is a “tight”
upper bound for the estimation error of the OLS estimator from model m, where
“tight” means that the convergence rate in the bound is the best known rate. Note
that θ∗∗

n is the parameter that minimizes the sum of the two errors over all mod-
els. Such a model (the model corresponding to θ∗∗

n ) is called an oracle model. The
log(n) factor in the estimation error can be viewed as the price paid for not know-
ing the sparsity of the oracle model and thus having to conduct model selection.
See remark (2) after Theorem 4.3 for the precise definition of the oracle model and
its relationship to θ∗∗

n .
(2) Suppose λn = o(1). Then in large samples the estimation error term

3‖θ‖0λ
2
n/β is negligible. In this case, θ∗∗

n is close to θ∗. When the model �θ∗
approximates Q0 sufficiently well, we see that setting λn equal to its lower bound
in (4.6) provides the fastest rate of convergence of the upper bound to zero. More
precisely, suppose Q0 = �θ∗ [i.e., L(�θ∗) − L(Q0) = 0]. Then inequality (4.7)
implies that V (d0) − V (d̂n) ≤ Op((logn/n)(1+α)/(2+α)). A convergence in mean
result is presented in Corollary 4.1.

(3) In finite samples, the estimation error 3‖θ‖0λ
2
n/β is nonnegligible. The ar-

gument of the minimum in the upper bound (4.7), θ∗∗
n , minimizes prediction error

among parameters with controlled sparsity. In remark (2) after Theorem 4.3, we
discuss how this upper bound can be viewed as a tight upper bound for the pre-
diction error of the OLS estimator from an oracle model in the step-wise model
selection setting. In this sense, inequality (4.7) implies that the treatment rule pro-
duced by the l1-PLS method will have a reduction in Value roughly as if it knew
the sparsity of the oracle model and were estimated from the oracle model using
OLS.

(4) Assumptions (1)–(3) in Theorem 4.1 are employed to derive the finite sam-
ple prediction error bound for the l1-PLS estimator θ̂n defined in (4.1). Below we
briefly discuss these assumptions.

Assumption (1) implicitly implies that the error terms do not have heavy tails.
This condition is often assumed to show that the sample mean of a variable is con-
centrated around its true mean with a high probability. It is easy to verify that this
assumption holds if each εi is bounded. Moreover, it also holds for some com-
monly used error distributions that have unbounded support, such as the normal or
double exponential.
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Assumption (2) is also used to show the concentration of the sample mean
around the true mean. It is possible to replace the boundedness condition by a
moment condition similar to assumption (1). This assumption requires that all ba-
sis functions and the difference between Q0 and its best linear approximation are
bounded. Note that we do not assume Q to be a good approximation space for Q0.
However, if �θ∗ approximates Q0 well, η will be small, which will result in a
smaller upper bound in (4.7). In fact, in the generalized result (Theorem A.1) we
allow U and η to increase in n.

Assumption (3) is employed to avoid collinearity. In fact, we only need

E[�(θ ′ − θ)]2‖θ‖0 ≥ β

( ∑
j∈M0(θ)

σj |θ ′
j − θj |

)2

(4.8)

for θ , θ ′ belonging to a subset of R
J (see Assumption A.3), where M0(θ) � {j =

1, . . . , J : θj = 0}. Condition (4.8) has been used in van de Geer [33]. This con-
dition is also similar to the restricted eigenvalue assumption in Bickel, Ritov and
Tsybakov [3] in which E is replaced by En, and a fixed design matrix is consid-
ered. Clearly, assumption (3) is a sufficient condition for (4.8). In addition, condi-
tion (4.8) is satisfied if the correlation |Eφjφk|/(σjσk) is small for all k ∈ M0(θ),
j = k and a subset of θ ’s (similar results in a fixed design setting have been proved
in Bickel, Ritov and Tsybakov [3]. The condition on correlation is also known as
“mutual coherence” condition in Bunea, Tsybakov and Wegkamp [4]). See Bickel,
Ritov and Tsybakov [3] for other sufficient conditions for (4.8).

The above upper bound for V (d0) − V (d̂n) involves L(�θ) − L(Q0), which
measures how well the conditional mean function Q0 is approximated by Q. As
we have seen in Section 3, the quality of the estimated ITR only depends on the
estimator of the treatment effect term T0. Below we provide a strengthened result
in the sense that the upper bound depends only on how well we approximate the
treatment effect term.

First, we identify terms in the linear model Q that approximate T0 (recall that
T0(X,A) � Q0(X,A) − E[Q0(X,A)|X]). Without loss of generality, we rewrite
the vector of basis functions as �(X,A) = (�(1)(X),�(2)(X,A)), where �(1) =
(φ1(X), . . . , φJ (1) (X)) is composed of all components in � that do not contain
A and �(2) = (φJ (1)+1(X,A), . . . , φJ (X,A)) is composed of all components in �

that contain A. Note that A takes only finite values. When the randomization distri-
bution p(a|x) does not depend on x, we can code A so that E[�(2)(X,A)T |X] = 0
a.s. (see Section 5.2 and Appendix A.3, for examples). For any θ = (θ1, . . . , θJ )T ∈
R

J , denote θ (1) = (θ1, . . . , θJ (1))T and θ (2) = (θJ (1)+1, . . . , θJ )T . Then �(1)θ (1)

approximates E[Q0(X,A)|X] and �(2)θ (2) approximates T0.
The following theorem implies that if the treatment effect term T0 can be well

approximated by a sparse representation, then d̂n will have Value close to the op-
timal Value.
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THEOREM 4.2. Suppose p(a|x) ≥ S−1 for a positive constant S for all (x, a)

pairs and the margin condition (3.3) holds for some C > 0, α ≥ 0 and all posi-
tive ε. Assume E[�(2)(X,A)T |X] = 0 a.s. Suppose assumptions (1)–(3) in Theo-
rem 4.1 hold. Let d̂n be the estimated ITR with λn satisfying condition (4.6). Let
	n be the set defined in (4.4). Then for any n ≥ 24U2 log(Jn) and for which 	n

is nonempty, we have, with probability at least 1 − 1/n, that

V (d0) − V (d̂n)
(4.9)

≤ C′[ min
θ∈	n

(
E

(
�(2)θ (2) − T0

)2 + 5
∥∥θ (2)

∥∥
0λ

2
n/β

)](1+α)/(2+α)
,

where C′ = (22+3αS1+αC)1/(2+α).

The result follows from inequality (3.5) in Theorem 3.1 and inequality (4.11) in
Theorem 4.3.

REMARKS.

(1) Inequality (4.9) improves inequality (4.7) in the sense that it guarantees
a small reduction in Value of d̂n [i.e., V (d0) − V (d̂n)] as long as the treatment
effect term T0 is well approximated by a sparse linear representation; it does not
require a good approximation of the entire conditional mean function Q0. In many
situations Q0 may be very complex, but T0 could be very simple. This means that
T0 is much more likely to be well approximated as compared to Q0 (indeed, if
there is no difference between treatments, then T0 ≡ 0).

(2) Inequality (4.9) cannot be improved in the sense that if there is no treatment
effect (i.e., T0 ≡ 0), then both sides of the inequality are zero. This result implies
that minimizing the penalized empirical prediction error indeed yields high Value
(at least asymptotically) if T0 can be well approximated.

The following asymptotic result follows from Theorem 4.2. Note that when
E[�(2)(X,A)T |X] = 0 a.s., L(�θ) − L(Q0) = E[�(1)θ (1) − E(Q0|X)]2 +
E[�(2)θ (2) − T0]2. Thus, the estimation of the treatment effect term T0 is asymp-
totically separated from the estimation of the main effect term E(Q0|X). In this
case, �(2)θ (2),∗ is the best linear approximation of the treatment effect term T0,
where θ (2),∗ is the vector of components in θ∗ corresponding to �(2).

COROLLARY 4.1. Suppose p(a|x) ≥ S−1 for a positive constant S for all
(x, a) pairs and the margin condition (3.3) holds for some C > 0, α ≥ 0 and all
positive ε. Assume E[�(2)(X,A)T |X] = 0 a.s. In addition, suppose assumptions
(1)–(3) in Theorem 4.1 hold. Let d̂n be the estimated ITR with tuning parameter
λn = k1

√
log(Jn)/n for a constant k1 ≥ 82 max{c, σ, η}. If T0(X,A) = �(2)θ (2),∗,

then

V (d0) − E[V (d̂n)] = O
(
(logn/n)(1+α)/(2+α)).
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This result provides a guarantee on the convergence rate of V (d̂n) to the optimal
Value. More specifically, it means that if T0 is correctly approximated, then the
Value of d̂n will converge to the optimal Value in mean at rate at least as fast as
(logn/n)(1+α)/(2+α) with an appropriate choice of λn.

4.2. Prediction error bound for the l1-PLS estimator. In this section, we pro-
vide a finite sample upper bound for the prediction error of the l1-PLS estimator θ̂n.
This result is needed to prove Theorem 4.1. Furthermore, this result strengthens
existing literature on l1-PLS method in prediction. Finite sample prediction error
bounds for the l1-PLS estimator in the random design setting have been provided
in Bunea, Tsybakov and Wegkamp [4] for quadratic loss, van de Geer [33] mainly
for Lipschitz loss, and Koltchinskii [15] for a variety of loss functions. With re-
gards quadratic loss, Koltchinskii [15] requires the response Y is bounded, while
both Bunea, Tsybakov and Wegkamp [4] and van de Geer [33] assumed the exis-
tence of a sparse θ ∈ R

J such that E(�θ − Q0)
2 is upper bounded by a quantity

that decreases to 0 at a certain rate as n → ∞ (by permitting J to increase with
n so � depends on n as well). We improve the results in the sense that we do not
make such assumptions (see Appendix A.2 for results when �, J are indexed by
n and J increases with n).

As in the prior sections, the sparsity of θ is measured by its l0 norm, ‖θ‖0 (see
the Appendix A.2 for proofs with a laxer definition of sparsity). Recall that the
parameter θ∗∗

n defined in (4.5) has small prediction error and controlled sparsity.

THEOREM 4.3. Suppose assumptions (1)–(3) in Theorem 4.1 hold. For any
η1 ≥ 0, let θ̂n be the l1-PLS estimator defined by (4.1) with tuning parameter λn

satisfying condition (4.6). Let 	n be the set defined in (4.4). Then for any n ≥
24U2 log(Jn) and for which 	n is nonempty, we have, with probability at least
1 − 1/n, that

L(�θ̂n) ≤ min
θ∈	n

(
L(�θ) + 3‖θ‖0λ

2
n/β

) = L(�θ∗∗
n ) + 3‖θ∗∗

n ‖0λ
2
n/β.(4.10)

Furthermore, suppose E[�(2)(X,A)T |X] = 0 a.s. Then with probability at least
1 − 1/n,

E
(
�(2)θ̂ (2)

n − T0
)2 ≤ min

θ∈	n

(
E

(
�(2)θ (2) − T0

)2 + 5
∥∥θ (2)

∥∥
0λ

2
n/β

)
.(4.11)

The results follow from Theorem A.1 in Appendix A.2 with ρ = 0, γ = 1/8,
η1 = η2 = η, t = log 2n and some simple algebra [notice that assumption (3) in
Theorem 4.1 is a sufficient condition for Assumptions A.3 and A.4].

REMARKS. Inequality (4.11) provides a finite sample upper bound on the
mean square difference between T0 and its estimator. This result is used to prove
Theorem 4.2. The remarks below discuss how inequality (4.10) contributes to the
l1-penalization literature in prediction.
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(1) The conclusion of Theorem 4.3 holds for all choices of λn that satisfy (4.6).
Suppose λn = o(1). Then L(�θ∗∗

n ) − L(�θ∗) → 0 as n → ∞ (since ‖θ‖0 is
bounded). Inequality (4.10) implies that L(�θ̂n) − L(�θ∗) → 0 in probability.
To achieve the best rate of convergence, equal sign should be taken in (4.6).

(2) Note that θ∗∗
n minimizes L(�θ)−L(Q0)+ 3‖θ‖0λ

2
n/β . Below we demon-

strate that the minimum of L(�θ) − L(Q0) + 3‖θ‖0λ
2
n/β can be viewed as the

approximation error plus a “tight” upper bound of the estimation error of an “or-
acle” in the stepwise model selection framework [when “=” is taken in (4.6)].
Here “tight” means the convergence rate in the bound is the best known rate, and
“oracle” is defined as follows.

Let m denote a nonempty subset of the index set {1, . . . , J }. Then each m rep-
resents a model which uses a nonempty subset of {φ1, . . . , φJ } as basis functions
(there are 2J − 1 such subsets). Define

θ̂ (m)
n = arg min

{θ∈RJ : θj=0 for all j /∈m}
En(R − �θ)2

and

θ∗,(m) = arg min
{θ∈RJ : θj=0 for all j /∈m}

L(�θ).

In this setting, an ideal model selection criterion will pick model m∗ such that
L(�θ̂

(m∗)
n ) = infm L(�θ̂

(m)
n ). θ̂

(m∗)
n is referred as an “oracle” in Massart [19]. Note

that the excess prediction error of each θ̂
(m)
n can be written as

L
(
�θ̂ (m)

n

) − L(Q0) = [
L

(
�θ∗,(m)) − L(Q0)

] + [
L

(
�θ̂ (m)

n

) − L
(
�θ∗,(m))],

where the first term is called the approximation error of model m and the second
term is the estimation error. It can be shown that [1] for each model m and xm > 0,
with probability at least 1 − exp(−xm),

L
(
�θ̂ (m)

n

) − L
(
�θ∗,(m)) ≤ constant ×

(
xm + |m| log(n/|m|)

n

)

under appropriate technical conditions, where |m| is the cardinality of the index
set m. To our knowledge, this is the best rate known so far. Taking xm = logn +
|m| logJ and using the union bound argument, we have with probability at least
1 − O(1/n),

L
(
�nθ̂

(m∗)
n

) − L(Q0)

= min
m

([
L

(
�θ∗,(m)) − L(Q0)

] + L
(
�θ̂ (m)

n

) − L
(
�θ∗,(m)))

≤ min
m

([
L

(
�θ∗,(m)) − L(Q0)

] + constant × |m| log(Jn)

n

)

= min
θ

(
[L(�θ) − L(Q0)] + constant × ‖θ‖0 log(Jn)

n

)
.(4.12)
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On the other hand, take λn so that condition (4.6) holds with “=”. Equation
(4.10) implies that, with probability at least 1 − 1/n,

L(�θ̂n) − L(Q0) ≤ min
θ∈	n

(
[L(�θ) − L(Q0)] + constant × ‖θ‖0 log(Jn)

n

)
,

which is essentially (4.12) with the constraint of θ ∈ 	n. (The “constant” in the
above inequalities may take different values.) Since θ = θ∗∗

n minimizes the ap-
proximation error plus a tight upper bound for the estimation error in the oracle
model, within θ ∈ 	n, we refer to θ∗∗

n as an oracle.
(3) The result can be used to emphasize that l1 penalty behaves similarly as the

l0 penalty. Note that θ̂n minimizes the empirical prediction error En(R−�θ)2 plus
an l1 penalty, whereas θ∗∗

n minimizes the prediction error L(�θ) plus an l0 penalty.
We provide an intuitive connection between these two quantities. First, note that
En(R − �θ)2 estimates L(�θ) and σ̂j estimates σj . We use “≈” to denote this
relationship. Thus,

En(R − �θ)2 + λn

J∑
j=1

σ̂j |θj |(4.13)

≈ L(�θ) + λn

J∑
j=1

σj |θj |

≤ L(�θ) + λn

J∑
j=1

σj |θ̂n,j − θj | + λn

J∑
j=1

σj |θ̂n,j |,

where θ̂n,j is the j th component of θ̂n. In Appendix A.2, we show that for any
θ ∈ 	n, λn

∑J
j=1 σj |θ̂n,j − θj | is upper bounded by ‖θ‖0λ

2
n/β up to a constant

with a high probability. Thus, θ̂n minimizes (4.13) and θ∗∗
n roughly minimizes an

upper bound of (4.13).
(4) The constants involved in the theorem can be improved; we focused on

readability as opposed to providing the best constants.

5. A practical implementation and an evaluation. In this section, we de-
velop a practical implementation of the l1-PLS method, compare this method to
two commonly used alternatives and lastly illustrate the method using the motivat-
ing data from the Nefazodone-CBASP trial [13].

A realistic implementation of l1-PLS method should use a data-dependent
method to select the tuning parameter, λn. Since the primary goal is to maximize
the Value, we select λn to maximize a cross validated Value estimator. For any
ITR d , it is easy to verify that E[(R − V (d))1A=d(X)/p(A|X)] = 0. Thus, an un-
biased estimator of V (d) is

En

[
1A=d(X)R/p(A|X)

]
/En

[
1A=d(X)/p(A|X)

]
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[22] [recall that the randomization distribution p(a|X) is known]. We split the
data into 10 roughly equal-sized parts; then for each λn we apply the l1-PLS based
method on each 9 parts of the data to obtain an ITR, and estimate the Value of
this ITR using the remaining part; the λn that maximizes the average of the 10
estimated Values is selected. Since the Value of an ITR is noncontinuous in the
parameters, this usually results in a set of candidate λn’s achieving maximal Value.
In the simulations below, the resulting λn is nonunique in around 97% of the data
sets. If necessary, as a second step we reduce the set of λn’s by including only
λn’s leading to the ITR’s using the least number of variables. In the simulations
below, this second criterion effectively reduced the number of candidate λn’s in
around 25% of the data sets, however multiple λn’s still remained in around 90%
of the data sets. This is not surprising since the Value of an ITR only depends on
the relative magnitudes of parameters in the ITR. In the third step we select the
λn that minimizes the 10-fold cross validated prediction error estimator from the
remaining candidate λn’s; that is, minimization of the empirical prediction error is
used as a final tie breaker.

5.1. Simulations. A first alternative to l1-PLS is to use ordinary least squares
(OLS). The estimated ITR is d̂OLS ∈ arg maxa �(X,a)θ̂OLS where θ̂OLS is the
OLS estimator of θ . A second alternative is called “prognosis prediction” [14].
Usually this method employs multiple data sets, each of which involves one ac-
tive treatment. Then the treatment associated with the best predicted prognosis
is selected. We implement this method by estimating E(R|X,A = a) via least
squares with l1 penalization for each treatment group (each a ∈ A) separately.
The tuning parameter involved in each treatment group is selected by minimizing
the 10-fold cross-validated prediction error estimator. The resulting ITR satisfies
d̂PP(X) ∈ arg maxa∈A Ê(R|X,A = a) where the subscript “PP” denotes prognosis
prediction.

For simplicity, we consider binary A. All three methods use the same number of
data points and the same number of basis functions but use these data points/basis
functions differently. l1-PLS and OLS use all J basis functions to conduct estima-
tion with all n data points whereas the prognosis prediction method splits the data
into the two treatment groups and uses J/2 basis functions to conduct estimation
with the n/2 data points in each of the two treatment groups. To ensure the compar-
ison is fair across the three methods, the approximation model for each treatment
group is consistent with the approximation model used in both l1-PLS and OLS
[e.g., if Q0 is approximated by (1,X,A,XA)θ in l1-PLS and OLS, then in prog-
nosis prediction we approximate E(R|X,A = a) by (1,X)θPP for each treatment
group]. We do not penalize the intercept coefficient in either prognosis prediction
or l1-PLS.

The three methods are compared using two criteria: (1) Value maximization; and
(2) simplicity of the estimated ITRs (measured by the number of variables/basis
functions used in the rule).
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We illustrate the comparison of the three methods using 4 examples selected
to reflect three scenarios (see Section S.3 of the supplemental article [25] for 4
further examples):

(1) There is no treatment effect [i.e., Q0 is constructed so that T0 = 0; exam-
ple (1)]. In this case, all ITRs yield the same Value. Thus, the simplest rule is
preferred.

(2) There is a treatment effect and the treatment effect term T0 is correctly
modeled [example (4) for large n and example (2)]. In this case, minimizing the
prediction error will yield the ITR that maximizes the Value.

(3) There is a treatment effect and the treatment effect term T0 is misspecified
[example (4) for small n and example (3)]. In this case, there might be a mismatch
between prediction error minimization and Value maximization.

The examples are generated as follows. The treatment A is generated uniformly
from {−1,1} independent of X and the response R. The response R is normally
distributed with mean Q0(X,A). In examples (1)–(3), X ∼ U [−1,1]5 and we con-
sider three simple examples for Q0. In example (4), X ∼ U [0,1] and we use a
complex Q0, where Q0(X,1) and Q(X,−1) are similar to the blocks function
used in Donoho and Johnstone [8]. Further details of the simulation design are
provided in Appendix A.3.

We consider two types of approximation models for Q0. In examples (1)–(3),
we approximate Q0 by (1,X,A,XA)θ . In example (4), we approximate Q0 by
Haar wavelets. The number of basis functions may increase as n increases (we
index J , � and θ∗ by n in this case). Plots for Q0(X,A) and the associated best
wavelet fits �n(X,A)θ∗

n are provided in Figure 1.
For each example, we simulate data sets of sizes n = 2k for k = 5, . . . ,10. 1,000

data sets are generated for each sample size. The Value of each estimated ITR is

FIG. 1. Plots for: the conditional mean function Q0(X,A) (left), Q0(X,A) and the associated best
wavelet fit when Jn = 8 (middle), and Q0(X,A) and the associated best wavelet fit when Jn = 128
(right) [example (4)].



INDIVIDUALIZED TREATMENT RULES 1197

FIG. 2. Comparison of the l1-PLS based method with the OLS method and the PP method [exam-
ples (1)–(4)]: plots for medians and median absolute deviations (MAD) of the Value of the estimated
decision rules (top panels) and the number of variables (terms) needed for treatment assignment
(including the main treatment effect term, bottom panels) over 1,000 samples versus sample size on
the log scale. The black dash-dotted line in each plot on the first row denotes the Value of the optimal
treatment rule, for each example. [n = 32,64,128,256,512,1024. The corresponding numbers of
basis functions in example (4) are Jn = 8,16,32,64,64,128.]

evaluated via Monte Carlo using a test set of size 10,000. The Value of the optimal
ITR is also evaluated using the test set.

Simulation results are presented in Figure 2. When the approximation model is
of high quality, all methods produce ITRs with similar Value [see examples (1), (2)
and example (4) for large n]. However, when the approximation model is poor, the
l1-PLS method may produce highest Value [see example (3)]. Note that in example
(3) settings in which the sample size is small, the Value of the ITR produced by
l1-PLS method has larger median absolute deviation (MAD) than the other two
methods. One possible reason is that due to the mismatch between maximizing
the Value and minimizing the prediction error, the Value estimator plays a strong
role in selecting λn. The nonsmoothness of the Value estimator combined with the
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mismatch results in very different λn’s and thus the estimated decision rules vary
greatly from data set to data set in this example. Nonetheless, the l1-PLS method
is still preferred after taking the variation into account; indeed l1-PLS produces
ITRs with higher Value than both OLS and PP in around 46%, 55% and 67% in
data sets of sizes n = 32,64 and 128, respectively. Furthermore, in general the
l1-PLS method uses much fewer variables for treatment assignment than the other
two methods. This is expected because the OLS method does not have variable
selection functionality and the PP method will use all variables that are predictive
of the response R whereas the use of the Value in selecting the tuning parameter
in l1-PLS discounts variables that are only useful in predicting the response (and
less useful in selecting the best treatment).

5.2. Nefazodone-CBASP trial example. The Nefazodone-CBASP trial was
conducted to compare the efficacy of several alternate treatments for patients with
chronic depression. The study randomized 681 patients with nonpsychotic chronic
major depressive disorder (MDD) to either Nefazodone, cognitive behavioral-
analysis system of psychotherapy (CBASP) or the combination of the two treat-
ments. Various assessments were taken throughout the study, among which the
score on the 24-item Hamilton Rating Scale for Depression (HRSD) was the pri-
mary outcome. Low HRSD scores are desirable. See Keller et al. [13] for more
detail of the study design and the primary analysis.

In the data analysis, we use a subset of the Nefazodone-CBASP data consist-
ing of 656 patients for whom the response HRSD score was observed. In this trial,
pairwise comparisons show that the combination treatment resulted in significantly
lower HRSD scores than either of the single treatments. There was no overall dif-
ference between the single treatments.

We use l1-PLS to develop an ITR. In the analysis, the HRSD score is re-
verse coded so that higher is better. We consider 50 pretreatment variables X =
(X1, . . . ,X50). Treatments are coded using contrast coding of dummy variables
A = (A1,A2), where A1 = 2 if the combination treatment is assigned and −1 oth-
erwise and A2 = 1 if CBASP is assigned, −1 if nefazodone and 0 otherwise. The
vector of basis functions, �(X,A), is of the form (1,X,A1,XA1,A2,XA2). So
the number of basis functions is J = 153. As a contrast, we also consider the OLS
method and the PP method (separate prognosis prediction for each treatment). The
vector of basis functions used in PP is (1,X) for each of the three treatment groups.
Neither the intercept term nor the main treatment effect terms in l1-PLS or PP is
penalized (see Section S.2 of the supplemental article [25] for the modification of
the weights σ̂j used in (4.1)).

The ITR given by the l1-PLS method recommends the combination treatment to
all (so none of the pretreatment variables enter the rule). On the other hand, the PP
method produces an ITR that uses 29 variables. If the rule produced by PP were
used to assign treatment for the 656 patients in the trial, it would recommend the
combination treatment for 614 patients and nefazodone for the other 42 patients.
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In addition, the OLS method will use all the 50 variables. If the ITR produced by
OLS were used to assign treatment for the 656 patients in the trial, it would rec-
ommend the combination treatment for 429 patients, nefazodone for 145 patients
and CBASP for the other 82 patients.

6. Discussion. Our goal is to construct a high quality ITR that will benefit fu-
ture patients. We considered an l1-PLS based method and provided a finite sample
upper bound for V (d0) − V (d̂n), the reduction in Value of the estimated ITR.

The use of an l1 penalty allows us to consider a large model for the conditional
mean function Q0 yet permits a sparse estimated ITR. In fact, many other penal-
ization methods such as SCAD [9] and l1 penalty with adaptive weights (adaptive
Lasso; [37]) also have this property. We choose the nonadaptive l1 penalty to repre-
sent these methods. Interested readers may justify other PLS methods using similar
proof techniques.

The high probability finite sample upper bounds [i.e., (4.7) and (4.9)] cannot
be used to construct a prediction/confidence interval for V (d0) − V (d̂n) due to the
unknown quantities in the bound. How to develop a tight computable upper bound
to assess the quality of d̂n is an open question.

We used cross validation with Value maximization to select the tuning parame-
ter involved in the l1-PLS method. As compared to the OLS method and the PP
method, this method may yield higher Value when T0 is misspecified. However,
since only the Value is used to select the tuning parameter, this method may pro-
duce a complex ITR for which the Value is only slightly higher than that of a much
simpler ITR. In this case, a simpler rule may be preferred due to the interpretability
and cost of collecting the variables. Investigation of a tuning parameter selection
criterion that trades off the Value with the number of variables in an ITR is needed.

This paper studied a one stage decision problem. However, it is evident that
some diseases require time-varying treatment. For example, individuals with a
chronic disease often experience a waxing and waning course of illness. In these
settings, the goal is to construct a sequence of ITRs that tailor the type and dosage
of treatment through time according to an individual’s changing status. There is an
abundance of statistical literature in this area [17, 20, 21, 27, 29, 30, 34, 35]. Ex-
tension of the least squares based method to the multi-stage decision problem has
been presented in Murphy [21]. The performance of l1 penalization in this setting
is unclear and worth investigation.

APPENDIX

A.1. Proof of Theorem 3.1. For any ITR d : X → A, denote �Td(X) �
maxa∈A T0(X,a) − T0(X,d(X)). Using similar arguments to that in Section 2,
we have V (d0) − V (d) = E(�Td). If V (d0) − V (d) = 0, then (3.4) and (3.5) au-
tomatically hold. Otherwise, E(�Td)2 ≥ (E�Td)2 > 0. In this case, for any ε > 0,
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define the event

�ε =
{
max
a∈A

T0(X,a) − max
a∈A\arg maxa∈A T0(X,a)

T0(X,a) ≤ ε
}
.

Then �Td ≤ (�Td)2/ε on the event �C
ε . This together with the fact that �Td ≤

(�Td)2/ε + ε/4 implies

V (d0) − V (d) = E(1�C
ε
�Td) + E(1�ε�Td)

≤ 1

ε
E[1�C

ε
(�Td)2] + E

[
1�ε

(
(�Td)2

ε
+ ε

4

)]

= 1

ε
E[(�Td)2] + ε

4
P(�ε) ≤ 1

ε
E[(�Td)2] + C

4
ε1+α,

where the last inequality follows from the margin condition (3.3). Choosing ε =
(4E(�Td)2/C)1/(2+α) to minimize the above upper bound yields

V (d0) − V (d) ≤ 2α/(2+α)C1/(2+α)[E(�Td)2](1+α)/(2+α).(A.1)

Next, for any d and Q such that d(X) ∈ maxa∈A Q(X,a), let T (X,A) be the
associated treatment effect term. Then

E(�Td)2 = E
[(

max
a∈A

T0(X,a) − max
a∈A

T (X,a) + T (X,d(X)) − T0(X,d(X))
)2]

≤ 2E
[(

max
a∈A

T0(X,a) − max
a∈A

T (X,a)
)2

+ (
T (X,d(X)) − T0(X,d(X))

)2
]

≤ 4E
[
max
a∈A

(
T (X,a) − T0(X,a)

)2
]
,

where the last inequality follows from the fact that neither |maxa T0(X,a) −
maxa T (X,a)| nor |T (X,d(X)) − T0(X,d(X))| is larger than maxa|T (X,a) −
T0(X,a)|. Since p(a|x) ≥ S−1 for all (x, a) pairs, we have

E(�Td)2 ≤ 4SE
[∑
a∈A

(
T (X,a) − T0(X,a)

)2
p(a|X)

]

= 4SE
(
T (X,A) − T0(X,A)

)2
.(A.2)

Inequality (3.5) follows by substituting (A.2) into (A.1). Inequality (3.4) can be
proved similarly by noticing that �Td(X) = maxa∈A Q0(X,a) − Q0(X,d(X)).

A.2. Generalization of Theorem 4.3. In this section, we present a general-
ization of Theorem 4.3 where J may depend on n and the sparsity of any θ ∈ R

J

is measured by the number of “large” components in θ as described in Zhang and
Huang [36]. In this case, J , � and the prediction error minimizer θ∗ are denoted
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as Jn,�n and θ∗
n, respectively. All relevant quantities and assumptions are restated

below.
Let |M| denote the cardinality of any index set M ⊆ {1, . . . , Jn}. For any θ ∈

R
Jn and constant ρ ≥ 0, define

Mρλn(θ) ∈ arg min
{M⊆{1,...,Jn} :

∑
j∈{1,...,Jn}\M σj |θj |≤ρ|M|λn}

|M|.

Then Mρλn(θ) is the smallest index set that contains only “large” components in θ .
|Mρλn(θ)| measures the sparsity of θ . It is easy to see that when ρ = 0, M0(θ) is
the index set of nonzero components in θ and |M0(θ)| = ‖θ‖0. Moreover, Mρλn(θ)

is an empty set if and only if θ = 0.
Let [θ∗

n] be the set of most sparse prediction error minimizers in the linear
model, that is,

[θ∗
n] = arg min

θ∈arg minθ L(�nθ)

|Mρλn(θ)|.(A.3)

Note that [θ∗
n] depends on ρλn.

To derive the finite sample upper bound for L(�nθ̂n), we need the following
assumptions.

ASSUMPTION A.1. The error terms εi, i = 1, . . . , n are independent of
(Xi,Ai), i = 1, . . . , n and are i.i.d. with E(εi) = 0 and E[|εi |l] ≤ l!

2 cl−2σ 2 for
some c, σ 2 > 0 for all l ≥ 2.

ASSUMPTION A.2. For all n ≥ 1:

(a) there exists an 1 ≤ Un < ∞ such that maxj=1,...,Jn ‖φj‖∞/σj ≤ Un, where
σj � (Eφ2

j )
1/2.

(b) there exists an 0 < η1,n < ∞, such that supθ∈[θ∗
n] ‖Q0 − �nθ‖∞ ≤ η1,n.

For any 0 ≤ γ < 1/2, η2,n ≥ 0 (which may depend on n) and tuning parame-
ter λn, define

	o
n =

{
θ ∈ R

Jn :∃θo ∈ [θ∗
n] s.t. ‖�n(θ − θo)‖∞ ≤ η2,n

and max
j=1,...,Jn

∣∣∣∣E
[
�n(θ − θo)

φj

σj

]∣∣∣∣ ≤ γ λn

}
.

ASSUMPTION A.3. For any n ≥ 1, there exists a βn > 0 such that

E[�n(θ̃ − θ)]2|Mρλn(θ)| ≥ βn

[( ∑
j∈Mρλn(θ)

σj |θ̃j − θj |
)2

− ρ2|Mρλn(θ)|2λ2
n

]

for all θ ∈ 	o
n \ {0}, θ̃ ∈ R

Jn satisfying
∑

j∈{1,...,Jn}\Mρλn(θ) σj |θ̃j | ≤ 2γ+5
1−2γ

×
(
∑

j∈Mρλn(θ) σj |θ̃j − θj | + ρ|Mρλn(θ)|λn).
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When E(�
(2)
n (X,A)T |X) = 0 a.s. (�(2)

n is defined in Section 4.1), we need an
extra assumption to derive the finite sample upper bound for the mean square error
of the treatment effect estimator E[�(2)

n θ̂
(2)
n − T0(X,A)]2 (recall that T0(X,A) �

Q0(X,A) − E[Q0(X,A)|X]).

ASSUMPTION A.4. For any n ≥ 1, there exists a βn > 0 such that

E
[
�(2)

n

(
θ̃ (2) − θ (2))]2∣∣M(2)

ρλn
(θ)

∣∣
≥ βn

[( ∑
j∈M

(2)
ρλn

(θ)

σj |θ̃j − θj |
)2

− ρ2∣∣M(2)
ρλn

(θ)
∣∣2λ2

n

]

for all θ ∈ 	o
n \ {0}, θ̃ ∈ R

Jn satisfying
∑

j∈{1,...,Jn}\Mρλn(θ) σj |θ̃j | ≤ 2γ+5
1−2γ

×
(
∑

j∈Mρλn(θ) |θ̃j − θj | + ρ|Mρλn(θ)|λn), where

M
(2)
ρλn

(θ) ∈ arg min
{M⊆{J (1)

n +1,...,Jn} :
∑

j∈{J (1)
n +1,...,Jn}\M σj |θj |≤ρ|M|λn}

|M|

is the smallest index set that contains only large components in θ (2).

Without loss of generality, we assume that Assumptions A.3 and A.4 hold with
the same value of βn. And we can always choose a small enough βn so that ρβn ≤ 1
for a given ρ.

For any given t > 0, define

	n =
{
θ ∈ 	o

n : |Mρλn(θ)|
(A.4)

≤ (1 − 2γ )2βn

120

[√
1

9
+ n

2U2
n [log(3Jn(Jn + 1)) + t] − 1

3

]}
.

Note that we allow Un,η1,n, η2,n and β−1
n to increase as n increases. However,

if those quantities are small, the upper bound in (A.7) will be tighter.

THEOREM A.1. Suppose Assumptions A.1 and A.2 hold. For any given 0 ≤
γ < 1/2, η2,n > 0, ρ ≥ 0 and t > 0, let θ̂n be the l1-PLS estimator defined in (4.1)
with tuning parameter

λn ≥ 8 max{3c,2(η1,n + η2,n)}Un(log 6Jn + t)

(1 − 2γ )n
(A.5)

+ 12 max{σ, (η1,n + η2,n)}
(1 − 2γ )

√
2(log 6Jn + t)

n
.
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Suppose Assumption A.3 holds with ρβn ≤ 1. Let 	n be the set defined in (A.4)
and assume 	n is nonempty. If

log 2Jn

n
≤ 2(1 − 2γ )2

27U2
n − 10γ − 22

,(A.6)

then with probability at least 1 − exp(−k′
nn) − exp(−t), we have

L(�nθ̂n) ≤ min
θ∈	n

[
L(�nθ) + Kn

|Mρλn(θ)|
βn

λ2
n

]
,(A.7)

where k′
n = 13(1 − 2γ )2/[6(27U2

n − 10γ − 22)] and Kn = [40γ (12βnρ + 2γ +
5)]/[(1 − 2γ )(2γ + 19)] + 130(12βnρ + 2γ + 5)2/[9(2γ + 19)2].

Furthermore, suppose E(�
(2)
n (X,A)T |X) = 0 a.s. If Assumption A.4 holds

with the same βn as that in Assumption A.3, then with probability at least
1 − exp(−k′

nn) − exp(−t), we have

E
(
�(2)

n θ̂ (2)
n − T0

)2 ≤ min
θ∈	n

[
E

(
�(2)

n θ (2) − T0
)2 + K ′

n

|M(2)
ρλn

(θ)|
βn

λ2
n

]
,

where K ′
n = 20(12βnρ + 2γ + 5){γ /[(1 − 2γ )(7 − 6βnρ)] + [3(1 − 2γ )βnρ +

10(2γ + 5)]/[9(2γ + 19)2]}.
REMARKS.

(1) Note that Kn is upper bounded by a constant under the assumption
βnρ ≤ 1. In the asymptotic setting when n → ∞ and Jn → ∞, (A.7) im-
plies that L(�nθ̂n) − minθ∈RJn L(�nθ) →p 0 if (i) |Mρλn(θ

o)|λ2
n/βn = o(1),

(ii) U2
n logJn/n ≤ k1 and |Mρλn(θ

o)| ≤ k2βn

√
n/(U2

n logJn) for some sufficiently

small positive constants k1 and k2 and (iii) λn ≥ k3 max{1, η1,n + η2,n}√logJn/n

for a sufficiently large constant k3, where θo ∈ [θ∗
n] (take t = logJn).

(2) Below we briefly discuss Assumptions A.2–A.4.
Assumption A.2 is very similar to assumption (2) in Theorem 4.1 (which is used

to prove the concentration of the sample mean around the true mean), except that
Un and η1,n may increase as n increases. This relaxation allows the use of basis
functions for which the sup norm maxj ‖φj‖∞ is increasing in n [e.g., the wavelet
basis used in example (4) of the simulation studies].

Assumption A.3 is a generalization of condition (4.8) [which has been discussed
in remark (4) following Theorem 4.1] to the case where Jn may increase in n

and the sparsity of a parameter is measured by the number of “large” components
as described at the beginning of this section. This condition is used to avoid the
collinearity problem. It is easy to see that when ρ = 0 and βn is fixed in n, this
assumption simplifies to condition (4.8).

Assumption A.4 puts a strengthened constraint on the linear model of the treat-
ment effect part, as compared to Assumption A.3. This assumption, together with
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Assumption A.3, is needed in deriving the upper bound for the mean square error
of the treatment effect estimator. It is easy to verify that if E[�T

n �n] is positive
definite, then both Assumptions A.3 and A.4 hold. Although the result is about
the treatment effect part, which is asymptotically independent of the main effect
of X (when E[�(2)

n (X,A)|X] = 0 a.s.), we still need Assumption A.3 to show
that the cross product term En[(�(1)

n θ̂
(1)
n − �

(1)
n θ (1))(�

(2)
n θ̂

(2)
n − �

(2)
n θ (2))] is up-

per bounded by a quantity converging to 0 at the desired rate. We may use a really
poor model for the main effect part E(Q0(X,A)|X) (e.g., �

(1)
n ≡ 1), and Assump-

tion A.4 implies Assumption A.3 when ρ = 0. This poor model only effects the
constants involved in the result. When the sample size is large (so that λn is small),
the estimated ITR will be of high quality as long as T0 is well approximated.

PROOF OF THEOREM A.1. For any θ ∈ 	n, define the events

�1 =
Jn⋂

j=1

{
2(1 + γ )

3
σj ≤ σ̂j ≤ 2(2 − γ )

3
σj

}
[where σ̂j � (Enφ

2
j )

1/2],

�2(θ) =
{

max
j,k=1,...,Jn

∣∣∣∣(E − En)

(
φjφk

σjσk

)∣∣∣∣ ≤ (1 − 2γ )2βn

120|Mρλn(θ)|
}
,

�3(θ) =
{

max
j=1,...,Jn

∣∣∣∣En

[
(R − �nθ)

φj

σj

]∣∣∣∣ ≤ 4γ + 1

6
λn

}
.

Then there exists a θo ∈ [θ∗
n] such that

L(�nθ̂n) = L(�nθ) + 2E[(�nθ
o − �nθ)�n(θ − θ̂n)] + E[�n(θ̂n − θ)]2

≤ L(�nθ) + 2 max
j=1,...,Jn

∣∣∣∣E
[
�n(θ

o − θ)
φj

σj

]∣∣∣∣
(

Jn∑
j=1

σj |θ̂n,j − θj |
)

+ E[�n(θ̂n − θ)]2

≤ L(�nθ) + 2γ λn

(
Jn∑

j=1

σj |θ̂n,j − θj |
)

+ E[�n(θ̂n − θ)]2,

where the first equality follows from the fact that E[(R − �nθ
o)φj ] = 0 for any

θo ∈ [θ∗
n] for j = 1, . . . , Jn and the last inequality follows from the definition

of 	o
n.

Based on Lemma A.1 below, we have that on the event �1 ∩ �2(θ) ∩ �3(θ),

L(�nθ̂n) ≤ L(�nθ) + Kn

|Mρλn(θ)|
βn

λ2
n.
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Similarly, when E[�(2)
2 (X,A)T |X] = 0, by Lemma A.2, we have that on the

event �1 ∩ �2(θ) ∩ �3(θ),

E
(
�(2)

n θ̂ (2)
n − T0

)2 ≤ E
(
�(2)

n θ (2) − T0
)2 + 2γ λn

(
Jn∑

j=J
(1)
n +1

σj |θ̂n,j − θj |
)

+ E
[
�(2)

n

(
θ̂ (2)

n − θ (2))]2

≤ E
(
�(2)

n θ (2) − T0
)2 + K ′

n

|M(2)
ρλn

(θ)|
βn

λ2
n.

The conclusion of the theorem follows from the union probability bounds of the
events �1, �2(θ) and �3(θ) provided in Lemmas A.3, A.4 and A.5. �

Below we state the lemmas used in the proof of Theorem A.1. The proofs of the
lemmas are given in Section S.4 of the supplemental article [25].

LEMMA A.1. Suppose Assumption A.3 holds with ρβn ≤ 1. Then for any θ ∈
	n, on the event �1 ∩ �2(θ) ∩ �3(θ), we have

Jn∑
j=1

σj |θ̂n,j − θj | ≤ 20(12ρβn + 2γ + 5)

(1 − 2γ )(19 + 2γ )βn

|Mρλn(θ)|λn(A.8)

and

E[�n(θ̂n − θ)]2 ≤ 130(12ρβn + 2γ + 5)2

9(19 + 2γ )2βn

|Mρλn(θ)|λ2
n(A.9)

REMARK. This lemma implies that θ̂n is close to each θ ∈ 	n on the event
�1 ∩�2(θ)∩�3(θ). The intuition is as follows. Since θ̂n minimizes (4.1), the first
order conditions imply that maxj |En(R − �nθ̂n)φj/σ̂j | ≤ λn/2. Similar property
holds for θ on the event �1 ∩ �3(θ). Assumption A.3 together with event �2(θ)

ensures that there is no collinearity in the n × Jn design matrix (�n(Xi,Ai))
n
i=1.

These two aspects guarantee the closeness of θ̂n to θ .

LEMMA A.2. Suppose E[�(2)
n (X,A)T |X] = 0 a.s. and Assumptions A.3 and

A.4 hold with ρβn ≤ 1. Then for any θ ∈ 	n, on the event �1 ∩�2(θ)∩�3(θ), we
have

Jn∑
j=J

(1)
n +1

σj |θ̂n,j − θj | ≤ 10(12βnρ + 2γ + 5)

(1 − 2γ )(7 − 6βnρ)βn

∣∣M(2)
ρλn

(θ)
∣∣λn(A.10)
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and

E
[
�(2)

n

(
θ̂ (2)

n − θ (2))]2

(A.11)

≤ 20(12ρβn + 2γ + 5)[3(1 − 2γ )βnρ + 10(2γ + 5)]
9(2γ + 19)2βn

∣∣M(2)
ρλn

(θ)
∣∣λ2

n.

LEMMA A.3. Suppose Assumption A.2(a) and inequality (A.6) hold. Then
P(�C

1 ) ≤ exp(−k′
nn), where k′

n = 13(1 − 2γ )2/[6(27U2
n − 10γ − 22)].

LEMMA A.4. Suppose Assumption A.2(a) holds. Then for any t > 0 and θ ∈
	n, P({�2(θ)}C) ≤ exp(−t)/3.

LEMMA A.5. Suppose Assumptions A.1 and A.2 hold. For any t > 0, if
λn satisfies condition (A.5), then for any θ ∈ 	n, we have P({�3(θ)}C) ≤
2 exp(−t)/3.

A.3. Design of simulations in Section 5.1. In this section, we present the
detailed simulation design of the examples used in Section 5.1. These examples
satisfy all assumptions listed in the theorems [it is easy to verify that for examples
(1)–(3). Validity of the assumptions for example (4) is addressed in the remark
after example (4)]. In addition, 	n defined in (4.4) is nonempty as long as n is
sufficiently large (note that the constants involved in 	n can be improved and are
not that meaningful. We focused on a presentable result instead of finding the best
constants).

In examples (1)–(3), X = (X1, . . . ,X5) is uniformly distributed on [−1,1]5.
The treatment A is then generated independently of X uniformly from {−1,1}.
Given X and A, the response R is generated from a normal distribution with mean
Q0(X,A) = 1 + 2X1 + X2 + 0.5X3 + T0(X,A) and variance 1. We consider the
following three examples for T0:

(1) T0(X,A) = 0 (i.e., there is no treatment effect).
(2) T0(X,A) = 0.424(1 − X1 − X2)A.
(3) T0(X,A) = 0.446 sign(X1)(1 − X1)

2A.

Note that in each example T0(X,A) is equal to the treatment effect term,
Q0(X,A) − E[Q0(X,A)|X]. We approximate Q0 by Q = {(1,X,A,XA)θ : θ ∈
R

12}. Thus, in examples (1) and (2) the treatment effect term T0 is correctly mod-
eled, while in example (3) the treatment effect term T0 is misspecified.

The parameters in examples (2) and (3) are chosen to reflect a medium effect
size according to Cohen’s d index. When there are two treatments, the Cohen’s
d effect size index is defined as the standardized difference in mean responses
between two treatment groups, that is,

es = E(R|A = 1) − E(R|A = −1)

([Var(R|A = 1) + Var(R|A = −1)]/2)1/2 .
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Cohen [7] tentatively defined the effect size as “small” if the Cohen’s d index is
0.2, “medium” if the index is 0.5 and “large” if the index is 0.8.

In example (4), X is uniformly distributed on [0,1]. Treatment A is generated
independently of X uniformly from {−1,1}. The response R is generated from
a normal distribution with mean Q0(X,A) and variance 1, where Q0(X,1) =∑8

j=1 ϑ(1),j 1X<u(1),j
, Q0(X,−1) = ∑8

j=1 ϑ(−1),j 1X<u(−1),j
, and ϑ’s and u’s are

parameters specified in (A.12). The effect size is small:(
ϑ(1),1, . . . , ϑ(1),8

)
= (−0.781,0.730,0.635,0.512,−2.278,1.347,1.155,−0.030);(

ϑ(−1),1, . . . , ϑ(−1),8
)

= (−2.068,1.520,−0.072,

−0.637,1.003,−0.611,−0.305,1.016);(A.12) (
u(1),1, . . . , u(1),8

)
= (0.028,0.144,0.171,0.298,0.421,0.443,0.463,0.758);(

u(−1),1, . . . , u(−1),8
)

= (0.061,0.215,0.492,0.544,0.6302,0.650,0.785,0.909).

We approximate Q0 by Haar wavelets,

θ(0),0h0(X) + ∑
lk

θ(0),lkhlk(X) +
(
θ(0),1h0(X) + ∑

lk

θ(1),lkhlk(X)

)
A,

where h0(x) = 1x∈[0,1] and hlk(x) = 2l/2(12lx∈[k+1/2,k+1) − 12lx∈[k,k+1/2)) for l =
0, . . . , l̄n, and θ(·),· ∈ R are parameters. We choose l̄n = �3 log2 n/4� − 2. For a
given l and sample (Xi,Ai,Ri)

n
i=1, k takes integer values from �2l mini Xi� to

�2l maxi Xi� − 1. Then Jn = 2�3 log2 n/4� ≤ n3/4.

REMARK. In example (4), we allow the number of basis functions Jn to in-
crease with n. The corresponding theoretical result can be obtained by combining
Theorems 3.1 and A.1. Below we demonstrate the validation of the assumptions
used in the theorems.

Theorem 3.1 requires that the randomization probability p(a|x) ≥ S−1 for a
positive constant for all (x, a) pairs and the margin condition (3.3) or (3.6) holds.
According the generative model, we have that p(a|x) = 1/2 and condition (3.6)
holds.

Theorem A.1 requires Assumptions A.1–A.4 hold and 	n defined in (A.4) is
nonempty. Since we consider normal error terms, Assumption A.1 holds. Note
that the basis functions used in Haar wavelet are orthogonal. It is also easy to
verify that Assumptions A.3 and A.4 hold with βn = 1 and Assumption A.2 holds
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with Un = n3/8/2 and η1,n ≤ constant + constant × ‖θ∗
n‖0 [since each |φjθ

∗
n,j | =

|φjE(φjR)| ≤ constant × |φj |E|φj | ≤ O(1)]. Since Q0 is piece-wise constant,
we can also verify that ‖θ∗

n‖0 ≤ O(logn). Thus, for sufficiently large n, 	n is
nonempty and (A.6) holds. The RHS of (A.5) converges to zero as n → ∞.
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SUPPLEMENTARY MATERIAL

Supplement to “Performance guarantees for individualized treatment
rules” (DOI: 10.1214/10-AOS864SUPP; .pdf). This supplement contains four sec-
tions. Section S.1 discusses the problem with over-fitting due to the potentially
large number of pretreatment variables (and/or complex approximation space for
Q0) mentioned in Section 4. Section S.2 provides modifications of the l1-PLS es-
timator θ̂n when some coefficients are not penalized and discusses how to obtain
results similar to inequality (A.7) in this case. Section S.3 provides extra four simu-
lation examples based on data from the Nefazodone-CBASP trial [13]. Section S.4
provides proofs of Lemmas A.1–A.5.
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