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Many N-myristoylated proteins play key roles in regulating cellular structure and func-
tion. In the previous study, we have applied the machine learning system BONSAI to
predict patterns based on which positive and negative examples could be classified. Al-
though BONSAI has helped establish 2 interesting rules regarding the requirements for
N-myristoylation, the accuracy rates of these rules are not satisfactory. This paper sug-
gests an enhancement of BONSAI by introducing an “insignificant indexing symbol”
and demonstrates the efficiency of this enhancement by showing an improvement in the
accuracy rates. We further examine the performance of this enhanced BONSAI by com-
paring the results of classification obtained the proposed method and an existing public
method for the same sets of positive and negative examples.
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1. Introduction

Protein N-myristoylation is a lipid modification of proteins, and many N-
myristoylated proteins play key roles in regulating cellular structure and function
such as the BH3-interacting domain death agonist (BID) which is involved in apop-
tosis that occurs via the alpha subunit of a G-protein localized on the cell membrane.
N-myristoylated proteins have a specific sequence at the N-terminus called the N-
myristoylation signal sequence, and this sequence is probably composed of 6 to 9
amino acids (up to 17) [1].

In order to determine the N-terminal sequence requirements for protein N-
myristoylation, the amino acid sequences of N-myristoylated proteins have been
examined [2, 3]. Most of the methods used by researchers predict the patterns
for N-myristoylation based on the data obtained through biological experimen-
tations. However, the information on the amino acid sequences is very vast, and



July 29, 2007 12:15 WSPC - Proceedings Trim Size: 9.75in x 6.5in IBSB2007˙rev2

2 M. Sugii, R. Okada, H. Matsuno, & S. Miyano

N-myristoylation is not based on one simple rule but many specific rules. Hence,
computational techniques are essential for predicting the rules from a huge amount
of data on the sequence required for N-myristoylation.

The machine learning system BONSAI is a system for knowledge acquisition
based on the theory of Probably Approximately Correct Learning (PAC learnabil-
ity) and uses the method of local search [4] [5]. By using BONSAI, we carried out
the computational experiment to establish new rules characterizing the difference
between positive examples and negative examples of N-myristoylation sequences,
and established the following 2 types of new rules: one, a rule that supports the
existing N-myristoylation rule; the other, a rule that has not been discovered thus
far [6]. Thus, the usefulness of BONSAI has been proved for the characterization of
N-myristoylation sequences. However, the accuracy rates obtained using BONSAI
are not sufficiently satisfactory for application in searching for new N-myristoylation
sequences from real data. In addition, the difficulties of using our BONSAI-based
method remained, specifically in terms of the complex decision trees and long pro-
cessing time involved in obtaining rules.

In order to resolve with these, this paper introduces a modified BONSAI system
called “BONSAI with insignificant indexing symbol.” Insignificant indexing symbol
is a special indexing symbol to which the sysytem assigns letters that do not concern
with the rules of classification as either positive or negative. The results of the
computational experiments show that this introduction improves the accuracy of
decision trees particularly for positive examples, i.e., for sequences known to be N-
myristoylated. In addition, this introduction allows BONSAI to generate decision
trees that have smaller depth and fewer numbers of nodes than the decision trees
produced by the original BONSAI [6]. We further report the results of a comparison
between the proposed method and an existing public method, demonstrating that
our method performs better than the existing method with respect to the accuracy
of extraction of both positive and negative examples despite shorter extraction time.

2. Protein N-Myristoylation

Protein N-myristoylation is the lipid modification of proteins in which the 14-carbon
saturated fatty acid binds covalently to the N-terminus of viral and eukaryotic pro-
teins. Approximately 0.5% of human proteins are estimated to be N-myristoylated
[1]. Protein N-myristoylation is a cotranslational protein modification catalyzed by
2 enzymes, namely, methionine aminopeptidase and N-myristoyltransferase (NMT).
It is estimated that for undergoing N-myristoylation, a protein must at least have
a Met-Gly sequence on its N-terminus. The initial Met is removed cotranslationally
by the Met aminopeptidase, and then the myristic acid is linked to the next Gly via
an amide bond through catalysis by NMT. NMT catalyzes the transfer of myristic
acid from myristoyl-CoA to the N-terminus Gly residue of the substrate protein
(Figure 1).

Most of myristoylated proteins are involved in physiological activities such as cell
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Fig. 1. Protein N-myristoylation is the lipid modification of proteins in which the 14-carbon
saturated fatty acid binds covalently to the N-terminus. The initial Met is removed by methionine
aminopeptidase. Gly is required at position 2 from the N-terminus for the formation of a bond
with myristic acid through catalysis by N-myristoyltransferase.

signaling and exerting specific functions through binding with organelle membranes.
It is known that the membrane binding mediated by myristoylation is controlled in
various manners and plays a crucial role in the functional regulation mechanisms
of proteins in cell signaling pathways and virus growth [7]. For example, the HIV-1
Gag protein is transferred to the plasma membrane via an N-myristoyl group and
is involved in the formation and release of virus particles. Additionally, it is known
that the apoptosis-inducing factor BID is digested by protease and that the new
N-terminus of the digested peptide is also myristoylated [8].

N-myristoylated proteins have a specific sequence at the N-terminus called an
N-myristoylation signal sequence. This sequence is probably composed typically of
6 to 9 amino acids, but this number can be as high as 17 [1]. The effect of the amino
acid sequence on N-myristoylation depends on the distance and position from N-
terminus; with the increase in the distance, this effect decreases. Table 1 shows
examples of the N-terminus sequences in myristoylated proteins. Amino acids are
usually denoted by 1-letter or 3-letter codes.

Biologists have revealed that the combination of amino acid residues at po-
sitions 3 and 6 constitutes a major determinant for the susceptibility to protein
N-myristoylation. As shown in Figure 1, when Ser is located at position 6, 11 amino
acid residues (Gly, Ala, Ser, Cys, Thr, Val, Asn, Leu, Ile, Gln, His) may be located at
position 3 to direct efficient protein N-myristoylation [2] [3]. Most of these 11 amino
acids satisfy a rule that the radius of gyration of the residue is smaller than 1.80Å.
In fact, other amino acids that have a radius of gyration larger than 1.80Åcannot
be present at position 3. In addition to the restriction of the radius of gyration of
the amino acid residues, it has been also revealed that the presence of negatively
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Table 1. The sequences at the N-terminus
of N-myristoyl proteins.

Protein Amino acid sequence

GAG SIVM1 MGARNSVLSGKKADE
GAG MPMV MGQELSQHERYVEQL

KCRF STRPU MGCAASSQQTTATGG
Q26368 MGCNTSQELKTKDGA

GBAZ HUMAN MGCRQSSEEKEAARR

charged residues (Asp and Glu) and a Pro residue at this position completely in-
hibited N-myristoylation. On the other hand, when Ala is located at position 6, 5
kinds of amino acid residues can occupy position 3 for N-myristoylation. When Thr

or Phe is located at position 6, only 2 or 3 kinds of amino acid residues can occupy
position 3 for N-myristoylation. In addition, some amino acid residues at position 7
dictate the amino acid requirement at position 3 for N-myristoylation. For example,
although the presence of Ser at position 6 does not basically allow Lys to occupy
position 3, the presence of Lys at position 7 alters to the requirement for amino acid
residue at position 3; Lys can be present at position 3 [3].

3. BONSAI with Insignificant Indexing Symbol

BONSAI is a machine learning system for knowledge acquisition from positive and
negative examples of strings (Figure 2) [5]. A hypothesis generated by this system is
presented using 2 kinds of classification of symbols called an alphabet indexing and
a decision tree that classifies the given examples as either positives or negatives.
Alphabet indexing (indexing, in short) is the transformation of symbols to reduce
the number of letters assigned to positive and negative examples, without omitting
important information in the original data. In the case of amino acid residues,

pos neg NEGPOS
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Fig. 2. For the Positive Examples and Negative Examples inputted, BONSAI computes indexings,
decision trees, and accuracy. From the positive and negative examples randomly selected and
transformed by indexing function I, Decision Tree Generator constructs decision trees. Accuracy
Evaluation is used to search for a better indexing. With Combinatorial Optimization Algorithm,
these are repeated until a locally optimal indexing and a decision tree are found.



July 29, 2007 12:15 WSPC - Proceedings Trim Size: 9.75in x 6.5in IBSB2007˙rev2

For Genome Informatics Contributors 5

alphabet indexing can be regarded as a classification of 20 kinds of amino acid
residues to a few categories. Indexing contributes not only quicken the computations
involved in finding rules but also to simplify expression patterns assigned at the
nodes of decision trees.

3.1. Decision Tree for N-Myristoyl Sequences Generated using

Original BONSAI

Figure 3 shows the result of BONSAI for some positive and negative examples of N-
myristoylation. By analyzing binary patterns shown in the table in the Figure 3, we
found a rule that classifies the given positive and negative examples [6]. However,
the accuracy of this rule is not high-61.1% for positive examples and 92.0% for
negative examples.

A discriminative indexing pattern found by the original BONSAI is assigned
at each node of the decision tree in Figure 3. This decision tree classifies the given
sequences by sequentially performing “OR operation” over the discriminative index-
ing patterns. This decision tree similar to a decision list has a large depth and small
width, because the original BONSAI can only find such a decision tree if only poor
rules exist naturally in positive and negative examples. According to the widely be-
lieved principle that “a smaller decision tree indicates essential knowledge,” a tree
with such a structure is not desirable.

3.2. Introducing Insignificant Indexing Symbol

This paper introduces a new concept of “insignificant indexing symbol” in BONSAI.
Insignificant indexing symbol is a special indexing symbol to which the sysytem
assigns letters that do not concern with the rules of classification as either positive
or negative.

Insignificant indexing symbol can be realized by a simple modification to BON-
SAI as shown below.

(1) Choose 1 symbol from all indexing symbols as an insignificant indexing symbol,
and

Decision Tree
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No

Yes No

No
Yes

No
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position

Pattern of N-myristoylation

Indexing

Negative
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Fig. 3. Generation of decision tree and indexing for given positive and negative examples for
N-myristoylation sequences using BONSAI [6].
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(2) When evaluating a decision tree during the computation using BONSAI, the
chosen insignificant indexing symbol is dealt with as “wildcard,” that is, any
single character can be matched at the locations of the insignificant indexing
symbol.

In the following, we use sequential numbers i.e., 0, 1, 2,... for indexing symbols
and assign a symbol 0 to function as the insignificant indexing symbol. Further,
BONSAIiis (BONSAI with the insignificant indexing symbol) is also used Figure 4
shows an example of the BONSAIiis process. The letters S, C, N, Q, H, M, Y, W and
R are assigned as insignificant indexing symbols This implies that a more accurate
decision tree can be obtained unless these letters are used in decision trees. In other
words, if some of these letters are important for classifying positive and negative
examples, these should be assigned to either of indexing symbol 1 or 2 in the case
of Figure 4.

4. Verification of the Effect of a Modified Algorithm for BONSAI

We have examined the performance of BONSAIiis with the same positive and neg-
ative examples as the experiment in section 3. The positive examples include 78
myristoylated amino acid sequences, and the negative examples include 800 amino
acid sequences randomly selected from the human protein database. The indexing
size was set to 3, and the length of the input sequences is 10, which excludes the
first amino acid Met from the N-terminus.

Figure 5 shows accuracy rates of classifications using 10 decision trees obtained
from the original BONSAI and BONSAIiis. We used 10 decision trees because BON-
SAI generally creates different trees with the same input data. The vertical axis
indicates the accuracy rate of classification, where the white bar represents positive
examples and the black bar, negative examples.

Figure 5(a) clearly indicates that decision trees obtained using BONSAI can clas-
sify the example data more accurately than those obtained using the original BON-
SAI. The accuracy rate of BONSAIiis is 96.3%, which is superior to 83.1% of original

Sequence : 

Yes No

Yes No

Sequence : Positive

Decision Tree

Negative

Positive Negative

Alphabet Indexing

Fig. 4. Example of the BONSAIiis process. A given sequence MGARNSVL is converted to the
sequence 01210012 according to the alphabet indexing table. The decision tree classifies this con-
verted sequence to Positive. In order to clearly express that this symbol 0 works as a wildcard, the
symbol ♦ is used instead of the previous symbol in the decision tree.
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Fig. 5. Accuracy rates of classifications using 10 decision trees obtained from the original BONSAI
(left) and BONSAIiis (right) with 9 amino acids sequences eliminating the first Met (a) and with 8
amino acids sequences eliminating the first Met and second Gly (b). The vertical axis indicates the
accuracy rate of classification, the white bar indicates positive examples; the black bar, negative
examples.

BONSAI. Hence, the decision trees obtained using BONSAIiis can more accurately
provide a signal sequence required for N-myristoylation. A comparison of the re-
sults obtained from the original BONSAI and BONSAIiis, shows that BONSAIiis
shows more stable performance than the original BONSAI. Fluctuation in the ac-
curacy rates of the original BONSAI depends on the structure of a decision tree,
as shown in Figure 3. This structure of the decision tree obtained using BONSAIiis
also contributes to finding decision trees with higher accuracy rates.

BONSAIiis found a more accurate decision tree than the original BONSAI.
However, BONSAIiis attempts to search for an N-myristoylation signal irrespective
of whether the second position of the pattern in the decision tree is occupied by
Gly. This is not desirable for our research to find a new rule for N-myristoylation.
Thus, we further examined the performance of the 2 BONSAI systems with the 8
amino acid sequences eliminating the first Met and second Gly to find new rules
while excluding those already established for known myristoylation signals.

The result is shown in Figure 5(b). Both the BONSAI systems show low accuracy
rates compared to above experiments; this is because of the lack of the second Gly

that is indispensable for N-myristoylation. But BONSAIiis has an advantage in that
it provides accurate classification, with an accuracy rate of 86.1%, while the accuracy
rate of the original BONSAI is 76.6%. Moreover, BONSAIiis maintains stable and
high performance and the smaller difference in the accuracy rates between positives
and negatives.

Figure 6 shows 2 typical decision trees-one is chosen from the decision trees of
the original BONSAI and the other, from those of BONSAIiis. The average depth
indicated in this figure for each of 10 decision trees obtained by the original BONSAI
or BONSAIiis. We can see that the tree depth is large for a decision tree obtained by
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Fig. 6. Typical decision trees from the original BONSAI and BONSAIiis. The left tree has been
selected from decision trees obtained by the original BONSAI and the right one obtained by
BONSAIiis.

the original BONSAI, while it is small for a decision tree obtained by BONSAIiis.
At the same time, the widths of these trees are different. The decision tree obtained
by BONSAIiis is more desirable since this decision tree is more compact than the
tree from the original BONSAI. In addition, this decision tree provides a more clear
representation of rules classifying positive and negative examples.

5. Comparison with Results on an Existing Website for Predicting
N-Myristoylation

Currently, a website predicts whether a given sequence will be N-myristoylated or
not [9]. The prediction function on this website comprises terms evaluating amino
acid type preferences at sequences that are close to the N-terminus as well as terms
indicate deviations from the pattern of the physical properties of amino acid side-
chains encoded in a multi-residue correlation within the motif sequence [10]. The
underlying biological facts for determining the scores of the prediction function are
described in the paper [1]. We have compared the method used in that paper [10]
with our method by using the same amino acid sequence set for both of these
methods.

Table 2 shows the result of performance comparison of these 2 methods. Seventy-
eight and 88 sequences were selected as positive and negative examples, respectively.
Positive examples were the same sequences as those used in section 4, while negative
examples were sequences presented in the literature [2, 3] as sequences that are not
N-myristoylated sequences.

The classification results for the sequences used in our method (BONSAIiis)
are expressed as probabilities ranging from 0% to 100%. On the other hand, the
classification results on the website [9] (NMT) are expressed as RELIABLE, TWI-

LIGHT ZONE, and NO, which indicate that N-myristoylation of a given sequence
will occur, can not be judged, and will not occur, respectively. Hence, we have de-
rived relationships for these 2 different expressions as follows: RELIABLE = 55% ≤ p,
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Table 2. Performance comparison between the proposed method
(BONSAIiis) and the method used in the website [9] (NMT).
Symbols used for the classification results are as follows:
P=N-myristoylated, U=unknown, N=not N-myristoylated.

(a) 78 N-myristoylated sequences

P U N accuracy

BONSAIiis 74 1 3 94.9%

NMT 72 6 0 92.3%

(b) 88 not N-myristoylated sequences

P U N accuracy

BONSAIiis 9 6 73 83.0%

NMT 6 13 69 74.0%

TWILIGHT ZONE = 45% ≤ p < 55%, and NO = p < 45% for probability p provided
by BONSAIiis. From Table 2, we can see that

• the 2 methods express almost the same accuracy rates for positive examples
(N-myristoylated sequences), but BONSAIiis expresses a higher accuracy rate
than NMT for negative sequences, and

• the number of false positives in case of NMT is less than that obtained by
BONSAIiis for both positive and negative examples.

Based on these results, we cannot emphasize that our BONSAIiis method is superior
to the method used in NMT in terms of the accuracy rate. However, our method
offers a great advantage over the NMT method with respect to computational time
owing to the structure of the decision tree used in our method for classification
rules. False positives in the NMT method were less in number than in BONSAIiis,
because the algorithm used in the NMT method [10] is more complex than decision
trees. The number of false positives and negatives will increase as an error when
only poor rules exist naturally in examples because BONSAI creates decision trees
using the local optimum solution by the local search method. Thus, if BONSAIiis
uses other system such as the database used in the NMT method, the accuracy rate
of classification will be higher and the number of false positives will be reduced.
BONSAIiis can find desirable rules in addition to reducing the process time without
requiring complex algorithms.

6. Conclusion

In the previous paper [6], we modified BONSAI in order that it enables the assigning
of positions of amino acids from the N-terminus. When sequences that occupy the
low selective positions for amino acid were given, the modified BONSAI in [6] have
produced decision trees with large depths, similar to a decision list, such as the tree
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in Figure 3, in which all conditions for classifying positive and negative examples
are reflected as node labels. We reported 2 types of new rules in the previous paper
[6]; however, it is difficult to interpret rules for N-myristoylated sequences with a
decision tree having such a large depth.

Futher, taking into account the fact that N-myristoylated sequences have the low
selective positions for amino acid, we have further modified BONSAI by introducing
a new concept called an “insignificant indexing symbol.” The insignificant indexing
symbol will be assigned to amino acid symbols unimportant for N-myristoylation.
This introduction allows BONSAI to distinguish letters that do not concern with
the rules of classification as either positive and negative examples. We have not
yet found a new rule regarding the node patterns in decision trees obtained using
BONSAIiis, although several known biological rules were confirmed.

However BONSAI is based on the theory that PAC learnability can search for
the local optimum solution using local search, the local optimum solution found
using BONSAI does not necessarily represent the global optimum solution. Other
learning systems based on other algorithms such as support vector machine may
be expected to improve the accuracy rate of classification and to find new rules for
N-myristoylation.
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