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The exploration of a wide range of molecular structures has led to the 

development of high-performance conjugated polymer semiconductors for flexible 

electronic applications including displays, sensor and logic circuits. Nevertheless, many 

conjugated polymer field-effect transistors (OFETs) exhibit non-ideal device 

characteristics and device instabilities rendering them unfit for industrial applications. 

These often do not originate in the material’s intrinsic molecular structure, but rather in 
external trap states caused by chemical impurities or environmental species such as 

water. Here we demonstrate a highly efficient mechanism for the removal of water 

induced traps that are omnipresent in conjugated polymer devices even when processed 

in inert environments; we show the underlying mechanism by which small molecular 
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additives with water binding nitrile groups or alternatively water-solvent azeotropes are 

capable of removing water-induced traps leading to a significant improvement in 

OFETs performance. We also show how certain polymer structures containing strong 

hydrogen accepting groups will suffer from poor performances due to their high 

susceptibility to interact with water molecules; this allows us to set forth design 

guidelines for a next generation of stable, high performing conjugated polymers.   

 

 

Recently, donor-acceptor co-polymers with high field-effect mobilities > 1cm2/Vs 

have been reported with some materials showing exceptionally low disorder and 

performances exceeding that of amorphous silicon[1],[2],[3].  Due to their low cost and easy 

processing, these materials are promising candidates for applications in flexible displays or 

low-demanding organic electronic circuitry. As a result a lot of research effort has been put 

into further improving the performance of conjugated polymers by understanding their 

detailed structure-property relations[4],[5]. Often however, seemingly rational and carefully 

argued molecular design guidelines, such as the use of fluorine substitution and hydrogen-

bonding interactions to improve the planarity of the backbone, fail to result in the desired 

performance improvements[6],[7]. Even carefully designed and synthesized polymers deployed 

in optimized device structures frequently exhibit significant non-idealities in their 

characteristics, such as high turn-on and threshold voltages, strongly gate voltage dependent 

charge carrier mobilities or environmental degradation. Often such disappointing performance 

of new materials is attributed to factors such as kinks along the polymer backbone[8], the 

purity of the synthesis, remnant impurities acting as trap sites[9], or low molecular weight[10]. 

What is often overlooked or understated is however, the role that environmental species may 

play in influencing the performance of organic electronic devices and how effects due to 

extrinsic environmental species can mask more intrinsic molecular structure – electronic 

property relationships. Water and oxygen for instance have been well known to severely 

degrade charge transport characteristics in n-type polymers[11],[12]. Also in p-type OFETs 

water has been shown to be causing long-term bias stress effects[13] but its influence on the 

device characteristics is often ignored[14]. Given however, our current limited understanding 

of how species such as water behave when confined to a molecular superstructure such as the 

free volume of a polymer[15], this may be questionable. The complexity of the interactions 

between water and polymers is exemplified by studies demonstrating how organic molecules 

are capable of imposing highly organized local structures on water molecules[16], 
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fundamentally changing their characteristics. Here, we demonstrate how trap states caused by 

water molecules are one of the main origins for non-ideal transfer characteristics in p-type 

polymer FETs and in some cases, even the reason for underperformance of novel molecular 

designs.  

 

The work reported here builds on our recent discovery of a surprising improvement in 

the uniformity, operational and environmental stability of polymer FETs when molecular 

additives, such as certain small molecules or even residual solvents are incorporated into the 

polymer films[17]. We could show that the underlying mechanism is related to voids present in 

the microstructure of these amorphous and semi-crystalline donor-acceptor copolymers (Fig 

1a); water molecules present in the polymer powder, the solvents (even if anhydrous), the 

substrate, the dielectric or the environment get incorporated into these voids during processing 

(even if done under inert conditions) and act as traps to charge transport (Fig 1a); once a 

molecular additive is introduced to the polymer film, the voids are “filled” by the additive and 

device performance is significantly improved. Nevertheless, up to this point the precise 

interaction between the additive and individual water molecules has remained somewhat 

unclear and it has been difficult to establish if the additive is binding, displacing or removing 

water molecules. In the present work we are aiming to answer these questions by analyzing 

the interaction between trap-passivating solvent additives and water. We show that additives 

that form water-solvent azeotropes or hydrogen bonds to nitrile-groups or fluorine atoms are 

particularly effective in improving device performance and stability.  

 

We fabricated OFETs from the well-studied polymer indacenodithiophene-co-

benzothiadiazole (IDT-BT)[18],[2],[1] with the polymer film spun from various solvents and 

subsequently the films were annealed for only 2 minutes to remove the majority of the solvent 

yet to retain ~1 wt.% of residual solvent in the films (Fig 1b)[17]. We have now investigated an 

even wider range of solvents than in Ref. 17. Such an experiment is possible because IDT-BT 

is highly soluble in a wide range of non-polar and even some moderately polar solvents. For a 

wide range of solvents, the devices annealed for 2 minutes perform significantly better than 

reference devices annealed for 60 minutes (Fig. 1c). For some solvents such as 1-

methylnaphthalene[17] or 1,4-butanedithiol, the performance however, is not improved over 

the reference devices, i.e. the on-current is low and device turn-on is sluggish. We have aimed 

to establish what characteristics of the solvent lead to device improvement and were surprised 

to find a perfect empirical correlation between those solvents that improve device 
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performance and those that form azeotropes with water (Tab. 1).  Azeotropes are known to 

form when two or more distinct liquid compounds form a mixture that has the same, constant 

boiling point and boils congruently. The boiling point of the azeotrope can either be lower 

than that of any of the constituents (referred to as a positive azeotrope) or, less commonly, 

greater than the boiling point of any of the constituents (negative azeotrope). Often such as in 

the case of the ethanol-water azeotrope the relevant interactions are due to hydrogen bonding.  

There is however, no clear rule as to if two compounds form an azeotrope or are zeotropic (i.e. 

do not from azeotropes). Apart from tetralin, all the investigated azeotropes are positive, i.e., 

they have a reduced boiling point in comparison to water; interestingly tetralin which forms a 

negative azeotrope is also the solvent that leads to the least improvement in device 

characteristics and on-currents among the azeotrope solvents. Since the formation of a 

negative azeotrope implies a strong interaction between the compounds it is likely that water 

traps get passivated (i.e. water molecules interact more strongly with the solvent than they do 

with the polymer) while most of the water molecules still remains in the film; we expect this 

mechanism to be very similar to the case observed for small molecular additives before[17]. 

For the positive azeotropes on the other hand, the strong suppression in boiling point will 

make it easier to remove water molecules entirely resulting in the overall better performance 

observed. Between the various positive azeotropes we hence attribute the observed variations 

in on-current to both the differences in boiling point as well as azeotrope composition 

indicating how much water can efficiently be removed at a suppressed boiling point.  

 

We tested our hypothesis further by dipping the IDT-BT films into orthogonal 

solvents such as methanol, isopropanol (IPA), acetonitrile, n-butyl acetate or ethanol prior to a 

1h, 100°C anneal and the deposition of the dielectric layer (process schematically shown in 

Fig. 1b). We again find that all orthogonal solvents that are known to form azeotropes with 

water, significantly improve device performance (Fig. 1d, Tab 1).  Acetonitrile, which forms 

the azeotrope with the lowest boiling point as well as the highest strength (i.e. the highest 

fraction of water in the composition), results in the biggest improvement in device 

performance. Furthermore, all devices that have been exposed to an azeotrope solvent show 

ideal, textbook-like device characteristics including ideal output characteristics 

(Supplementary Section 1), a reduction of the threshold voltage and a significantly reduced 

gate voltage dependence of the charge carrier mobility with gate-voltage independent 

mobilities of 3 cm2/Vs being obtained for devices treated with acetonitrile (Fig. 2a). These are 

the highest mobilities and best performance reported for IDT-BT devices to date. 
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Furthermore, we observe a significant improvement in the output characteristics which turn 

from a highly non-ideal S-shape for the pristine device (Fig. 2b) into a perfectly linear shape 

after treatment with an azeotrope solvent (Fig. 2c). Methanol, on the other hand, which is 

zeotropic (non-azeotrope)[19] does not lead to improved devices over the reference. It is 

noteworthy, that this proposed mechanism could also help to explain why azeotrope forming 

and amine containing solvents have previously been shown to remove traps in e.g. P3HT 

films[20]. The clear correlation between device performance and the ability of the solvent to 

form an azeotrope with water strongly suggests that unbound water molecules trapped in the 

polymer’s microstructure are indeed responsible for device degradation as was argued already 

in Ref. 17. Their removal and/or passivation when the films are dipped into an azeotrope 

solvent leads to significantly improved device performance. Incidentally, it is interesting to 

note that this observation could also explain why polymer FETs with certain polymer 

dielectrics tend to show superior device performance. Commonly used dielectric polymers 

such as PMMA are frequently dissolved in azeotrope solvents like acetonitrile or n-butyl 

acetate. 

 

Although significantly improved device performance can be obtained either by 

spinning directly from an azeotrope solvent or alternatively by orthogonal treatment, the 

device performance usually degrades again if the films are annealed after being in contact 

with the azeotrope solvent. However, the durability of the improved device characteristics 

against annealing varies with the solvent used. Devices spun from DCB and then annealed for 

60 minutes are degraded and the beneficial effect of residual DCB solvent that can be 

observed in films annealed for only 2 minutes has clearly worn-off, most likely due to all 

solvent having evaporated. Further annealing degrades these devices even more significantly 

(Supplementary Fig S4a). Devices treated with an orthogonal azeotrope solvent, such as 

acetonitrile, are significantly more robust and only degrade slightly during extended annealing 

(Supplementary Fig S4b). They show, for example, only very minor reduction in on-current 

after annealing for one hour at 80°C. This is surprising given the comparatively lower boiling 

point of acetonitrile (82°C) compared to DCB (180°C). Although it is difficult to establish by 

how deeply the short (2 minutes) orthogonal solvent treatment swells the polymer film and  

penetrates into the bulk, the higher thermal stability suggests that the orthogonal solvent 

treatment can bind and/or remove water more efficiently than the solubilizing solvents. We 

attribute this to the more polar nature of the orthogonal solvents allowing them to interact 

with water molecules more strongly. For the solubilizing solvents on the other hand, a higher 
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amount of solvent is needed; once this is lost, degradation starts to set in as evident by the 

lower thermal stability.  

 

For some applications such as OLED backplanes a good encapsulation is provided 

which might make it possible to retain residual solvents within the films over the lifetime of 

the device. However, for most applications such encapsulation cannot be relied on and better 

long-term thermal stability than what can be achieved with the solvent additives discussed so 

far is needed. It is therefore of interest to introduce an additive that remains in the film 

permanently, yet is capable of binding water just like solvent-water azeotropes do. We have 

previously observed, that small molecules, that are in the solid state at room temperature, such 

as tetrafluoro-tetracyanoquinodimethane (F4-TCNQ), tetracyanoquinodimethane (TCNQ) or 

4-aminobenzonitrile (ABN) are able to provide similarly ideal transistors as obtained in the 

case of a water-solvent azeotrope[17]. Azeotropes form due to enthalpic interactions such as 

hydrogen bonding between solvents and water molecules; this makes it likely that the 

mechanism by which solid small molecules improve device performance, rely on a similar 

hydrogen bonding mechanism. Nitrile groups and fluorine atoms are some of the strongest 

hydrogen-bond acceptors known and are present in all molecular additives that we have so far 

observed to show a beneficial effect on device performance. Interestingly, owing to their 

strong electron withdrawing nature, these groups are also present in most organic dopants and 

might even contribute to device improvements seen in some doped polymer films. To 

investigate the specific effect of the hydrogen bond acceptor on device performance more 

systematically, we synthesized three new anthracene based additives AQ, DCAQ and TCAQ 

(Fig 3a, Supplementary Section 3) and blended them at 5wt. % into IDT-BT films processed 

from DCB; the ability of the additives to bind water should hence solely depend on the 

different electron withdrawing and hydrogen acceptor’s strength between the quinone and 

nitrile groups. Interestingly we find that only the addition of 5 wt.% of DCAQ leads to a 

significant improvement in device performance whereas those devices with AQ and TCAQ 

perform similarly to the reference device without an additive (Fig. 3b, left panel); the absence 

of a change in off-current furthermore suggests that the new additives do not lead to a charge 

transfer to the polymer and stability improvements are hence, unrelated to doping.  On first 

sight our finding seems surprising, as we would have expected TCAQ with four nitrile groups 

to be able to bind water more efficiently. Nevertheless, looking at the solubility of all 3 

molecules, we find that only AQ and DCAQ are able to dissolve sufficiently well in DCB, 

whereas the solubility of TCAQ is too low to yield a high enough additive loading of our 
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polymer film (Supplementary Section 4). Motivated by these results, we attached a tert-butyl 

side chain to the additives TCAQ and AQ to overcome the observed solubility issues. Indeed, 

we find that after the addition of a tert-butyl side chain, the TCAQ derivative (t-Bu-TCAQ) is 

showing the most pronounced improvement in device performance (Fig. 3b, right panel). The 

AQ derivative (t-Bu-AQ) on the other hand, still only yields marginal improvements of the 

liner transfer characteristics, whereas the saturation characteristics are still unchanged from 

the reference device. These results indicate that an effective additive has to possess a strong 

hydrogen accepting group as well as show good solubility and hence dispersion in the 

polymer film; this may also be the reason, why devices with azeotrope solvents have so far 

shown the most ideal performance as phase separation and agglomeration are not issues in 

this case. We should note that for the t-Bu-TCAQ additive as well as for some of the 

orthogonal solvents, we observe a slight increase in the off-current; we attribute this to an 

interaction between the solvent or additive, water and oxygen with the polymer as the additive 

or solvent alone should not be able to dope the polymer. We also tried to extend our additive 

design motif and attached four 2-ethylhexyl side chains to poorly soluble TCAQ. 

Unfortunately, this route resulted in additives that were too bulky to fill free space in the 

polymer leading to significant deteriorated on-currents. This suggests that as soon as the 

additive is becoming too bulky to fill voids in the polymer, it will inevitably distort the 

polymer’s microstructure (Supplementary Figure S8).  

 

Our results clearly demonstrate that additives with hydrogen accepting groups like 

nitrile or quinones are capable of binding residual water molecules in the film and passivating 

any water associated trap states. Interestingly, this suggests that polymers which themselves 

comprise strong hydrogen-bond acceptors, such as fluorine groups, in their molecular 

structure may offer water specific strong binding sites that could lead to device degradation.  

In such polymers it may not be possible for the molecular additives / residual solvent 

molecules to compete as effectively with water binding sites on the polymer backbone as in 

polymers like IDT-BT that contain no such strong hydrogen bonding sites. To test this 

hypothesis we have synthesized derivatives of the polymer IDT-BT with fluorine atoms 

placed on the benzothiadiazole (BT) unit. Our original motivation for the synthesis of these 

fluorinated polymers was, in fact, to planarize the polymer backbone through sulphur-fluorine 

interactions as done previously in the literature[21]. However, to our initial surprise we found 

that the backbone fluorination did not lead to a performance increase but instead, to a 

significant loss of performance with charge carrier mobilities dropping from 1.5 cm2/Vs for 
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IDT-BT over 1cm2/Vs for IDT-FBT to 0.5 cm2/Vs for IDT-DFBT (Fig 4a). We observed this 

performance drop consistently even though we used a solvent additive (DCB) to maintain 

nearly ideal device characteristic, i.e. a sharp turn-on of the transfer characteristics 

maintaining similar onset voltages and output characteristics showing similarly ideal shapes 

without any current suppression at low source-drain voltages (Supplementary Fig S11,12); the 

observed drop in current is therefore unlikely to be caused by contact resistance. Furthermore 

we did not observe significant changes in the polymer’s energetic disorder or morphology 

(Supplementary Fig. S12, 13). A powerful measure of energetic disorder is the Urbach energy 

extracted from photothermal deflection spectroscopy (PDS). All three polymers have very 

similar and low values of energetic disorder of 24-25 meV (Fig 4b). IDT-BT and IDT-FBT 

have near identical energy gaps, the band gap of IDT-2FBT is only slightly higher. Given this 

close similarity in the electronic structure and microstructure of the three polymers and the 

beneficial effect that we expected the fluorine substitution to have on backbone planarity the 

relative electrical performance of these polymers were a surprise to us.  

 

Although it is very difficult to exclude that there are not in fact subtle differences in 

microstructure that could provide an explanation for the observed, low performance of the 

fluorinated polymers, we would like to offer here a tentative, alternative explanation within 

the framework of water-induced traps. Owing to the strong electronegativity of the fluorine 

atom, the fluorine-hydrogen bond is among the strongest hydrogen bonds known; some water 

molecules will hence, inevitably not form an azeotrope with the solvent (keeping in mind that 

this mechanism relies on hydrogen bonding as well) and instead prefer to bind to the fluorine 

sites on the polymer backbone. The presence of highly polar water molecules close to the 

polymer backbone will consequently lead to a localization of charges and result in a drop in 

performance for the two fluorinated polymers relative to IDT-BT. Alternatively, the bonding 

of the fluorine groups to water molecules might prevent the planarization of the backbone, 

though this should manifest itself potentially in a higher Urbach energy.  

 

It is hard to prove this mechanism through direct experimentation as the trap 

concentrations involved are very small and beyond the detection limit of most analytical 

techniques. However, supporting evidence stems from similar observations in other polymer 

systems. We also synthesized fluorinated versions of the polymer TIF-BT, a related high 

mobility, low disorder conjugated polymer with, however, a much deeper HOMO level than 

IDT-BT. Indeed, here we also see a drop in performance once fluorine atoms are attached to 
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the BT unit (Fig 4c); yet, as compared to IDT-BT, the loss of performance is more drastic 

most likely owing to the deeper HOMO level of TIF-BT (5.8 eV for TIF-BT instead of 5.3 eV 

for IDT-BT) yielding a stronger driving force for trapping of holes on the polymer in water-

induced traps along the backbone[17]. Furthermore, we have compared published literature 

data for conjugated polymers containing fluorine substitutions; in agreement with our 

observations we find that in all cases (with the exception of crystalline P3HT, which has got a 

high energetic disorder, low lying HOMO level and furthermore, fluorination leads to a 

significant change in morphology), the fluorination of the polymer backbone consistently 

leads to a drop in device performance (Supplementary Fig. S14)[7],[22],[23],[24].   

 

Our observations allow us to set forth new design guidelines for conjugated polymers 

with high performance and operational stability. To minimize the sensitivity of the polymer to 

water induced traps we suggest that for novel polymer designs, the amount of strong electron 

withdrawing groups on the polymer backbone should be considered carefully. Clearly, in 

some systems, such as lactam-containing polymers based on diketopyrrolopyrole (DPP) or 

isoindigo or imide containing polymers based on naphthalene dimide, excellent transport 

properties can be achieved. This may potentially be a reflection of the electronic structure of 

the conjugated backbone of these donor acceptor-polymers that might modify the electron 

with-drawing nature of these functional group. It could also be that close to points where the 

hydrophobic, solubilizing side chains are attached on the polymer backbone, water molecules 

might not be able to get close enough to these election withdrawing groups. However, our 

results suggest that for novel amorphous and semi-crystalline polymer designs, strong 

electron withdrawing groups for planarization and short-contacts should be used with care and 

only incorporated at positions close to the attachment of the polymer side chain; this will 

minimize the risk of void formation close to the strongly electronegative component and 

reduce the probability of lone water molecules attaching.   

 

In summary, the results presented here provide further strong evidence that molecular 

water is one of the predominant sources of degradation in polymer OFETs, which comprise 

high mobility conjugated polymers with a near amorphous microstructure. Hydrogen bonding 

between water and strong electron withdrawing groups such as the nitrile group or 

alternatively the formation of water-solvent azeotropes can effectively bind these water 

molecules, passivate/eliminate the associated water-induced traps and significantly improve 

device performance. The beneficial effect of using water-solvent azeotropes is unfortunately 
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not permanent and water traps will re-form when the solvents evaporate from the film and 

water molecules diffuse back into the films. Hence, for permanent stability, solid, small 

molecular additives with strong electron withdrawing groups are needed that are capable of 

binding and passivating water molecules in the film. Yet, for such solid, molecular additives 

their solubility within the polymer needs to be sufficiently high to ensure that all water-

induced traps can be efficiently passivated; a careful selection of highly soluble molecules 

with strong hydrogen bond accepting groups is therefore, required. However, another 

consideration is the design of the polymer backbone. We have shown circumstantially, that in 

a wide range of systems substitution of the backbone by fluorine atoms can have a detrimental 

impact on charge transport because the fluorine atoms induce water binding in close 

proximity to the charge transporting polymer backbone leading to reduction in carrier 

mobility. Our results provide clear strategies for further improving the performance and 

operation stability of polymer FETs through the use of molecular additives and refined design 

guidelines for novel polymer structures.  
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Figure 1 Effect of water removal through azeotrope solvents on the performance of 

OFETs (a, left panel) Passivation of water induced traps in the polymer’s microstructure 

(green) through the use of additives (red); (a, right panel)  Removal of additives allows water 

molecules (blue) to interact with polarons on the polymer backbone and disturb charge 

transport (b) Method of water removal in IDT-BT OFETs (L = 20um, W = 1mm); (i) 

Reference top gate device with the polymer film (green) initially containing residual solvent 

(blue) after spin-coating. Annealing at 100 C on a hotplate (red) for 1h removes the residual 

solvent. This is followed by the deposition of the dielectric (blue) and gate (yellow); (ii) 

Device prepared with residual solvent being deliberately left in the polymer film. Only a short 

anneal for 2 minutes is used which removes most of the solvent, but leaves residual solvent 

filling voids in the film; (iii) Devices prepared under conditions in which the annealed 

polymer film is soaked in an orthogonal solvent and subsequently annealed at 100°C for 1h; 

c) Saturation (VDS = -50V) transfer characteristics of an annealed reference device (black) and 

devices with residual azeotrope and zeotrope solvents processed according to (ii); (d) 

Saturation transfer characteristics of devices treated with orthogonal solvents according to 

(iii). Devices treated with methanol (zeotrope) were reproduced several times with 2 devices 

from different batches shown. 
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Figure 2 Azeotrope treatment yielding improved device performance (a) Gate-voltage 

dependence of extracted charge carrier mobility for a reference IDT-BT OFET (L = 20um, W 

= 1mm) and a device treated with orthogonal acetonitrile; (b) corresponding output 

characteristics (shown for VG = -60 and -40 V) for a reference device; (c) output 

characteristics for a device after acetonitrile exposure. 
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Solvent Processing 

BP. Of 

solvent (C) 

Bp of 

compound (C) 

% by 

weight Improvement 

Acetonitrile Orthogonal 82 76.0 86 Yes 

N-butyl Acetate Orthogonal 126 90.0 73 Yes 

IPA Orthogonal 82.6 82.5 88 Yes 

Ethanol Orthogonal 78.3 78.4 96 Yes 

Methanol Orthogonal 64.7 Zeotrope - No 

Toluene Solvating 110.6 84.1 80 Yes 

Xylene Solvating 144.0 94.5 60 Yes 

Cyclohexane Solvating 80.7 69.8 91 Yes 

Chlorobenzene Solvating 131.0 90.2 n.a. Yes 

Tetralin Solvating 208.0 108.2 n.a. Yes 

Butanedithiol Solvating 106 Zeotrope - No 

Benzene Solvating 80.1 80.2 91 Yes 

(Methyl)naphtalene Solvating 240 Zeotrope - No 

 

 

Table 1 List of Azeotropes of various solvents with water. Azeotropes of various solvents 

with water introduced to the film by blending or orthogonal processing. Data taken from 

Ref[[25],[19],[26]]. For some solvents, the literature data for azeotrope composition by weight 

was not available (marked as n.a.).  
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Figure 3 improving the performance of polymer OFETs with molecular additives. (a) 

Structure of an IDT-BT OFET (L = 20um, W = 1mm) as well as the molecular structure of 

the polymer IDT-BT and the additives AQ, DCAQ and TCAQ; b) Linear (dashed lines, VD = 

-5V) and saturation (Solid lines, VD = -50V) transfer characteristics of IDTBT OFETs with 

5% of the molecular additives AQ, DCAQ and TCAQ (left panel) and t-Bu-AQ and t-Bu-

TCAQ (right panel)  blended into the polymer film. The performance is compared to a 

reference device (black) without any additive in the film.  
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Figure 4 Effect of fluorination on charge transport. (a) Saturation (VDS = -50V) transfer 

characteristics of OFETs made with IDT-BT, IDT-FBT and IDT-2FBT; extracted charge 

carrier mobilities are shown as an inset; b) Energetic disorder measured by Photothermal  

Deflection Spectroscopy (PDS) with all polymers exhibiting Urbach Energies (EU) of 24-25 

meV; (c) Saturation (VDS = -50V) transfer characteristics of OFETs made with TIF-BT, TIF-

FBT and TIF-2FBT; extracted charge carrier mobilities are shown as an inset; b) Energetic 

disorder measured by Photothermal  Deflection Spectroscopy (PDS) of the polymers in (c). 

All three polymers exhibit very similar Urbach energies (EU) of 31-32 meV. 
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Here we demonstrate a highly efficient mechanism for the removal of water induced 

traps that are omnipresent in conjugated polymer devices even when processed in inert 

environments; we show the underlying mechanism by which small molecular additives with 

water binding nitrile groups or alternatively water-solvent azeotropes are capable of 

completely removing water-induced traps leading to a significant improvement in OFETs 

performance. 
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Performance Improvements in Conjugated Polymer Devices by Removal of Water 

Induced Traps 
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Section 1 – Device fabrication and output characteristics of IDTBT OFETs  

 

The devices used for this study were top-gate bottom contact field-effect transistors (L = 

20um, W = 1mm) fabricated on glass substrates with photo-lithographically defined 

electrodes of Ti/Au (10 nm/ 30 nm). Since we are presenting a study on the effect of water 

molecules on charge transport, all fabrication and measurement steps described herein were 

carefully conducted in a N2 glove box with controlled ppm levels of water and oxygen present. 

The investigation of the effects of solvent additives was done by processing the polymer films 

in three different ways: (i) IDTBT polymer powder was spun from 1-2-Dichlorobenzene 

(DCB) (10g/l) and reference devices were subsequently annealed for 1 hour at 100°C to 

remove most of the residual solvents from voids in the film; (ii) IDTBT polymer powder was 

dissolved in solvents that are known to form either azeotropes or zeotropes with water; these 

films were annealed for only 2 minutes at 100°C to leave residual solvent in the film; (iii) 

IDTBT polymer films were spun from dichlorobenzene solution and after annealing at 100°C 

to remove bulk solvent, films were treated for 2 minutes with an orthogonal 

azeotrope/zeotrope solvent; this was followed by a further 60 minute anneal at 100°C. For the 

investigation of small molecular solid additives, we mixed custom-synthesized additives 

(dissolved at 2g/l in DCB) at given weight percentages of 5wt. % into the polymer solution 

(10g/l in DCB) and consecutively annealed these films at 100°C for 1 hour. For all devices 

presented in this study, a fluorinated polymer dielectric (Cytop, annealed at 80°C for 15 

minutes) was used.  The last step of the sample fabrication was the evaporation of a 20nm 

thick gold top gate through a shadow mask. To avoid heating and thus, further annealing of 

the polymer, gates were evaporated at low base pressures of 5 10-6 mBar, in an evaporator 

with a water cooled sample stage and a large source-sample distance.  

 

 

 



     

21 

 

-60 -50 -40 -30 -20 -10 0
0.00

0.02

0.04

0.06

0.08

0.10

VG =-40V

VG =-60V

Pristine device, 60min  annealing

 

 

I D
 (

A
)

VDS (V)
 

Fig. S1 Output characteristics of a pristine IDTBT OTFT (L=20um, W=1mm) processed from 

DCB and annealed for 60 minutes.  
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Fig. S2 Output characteristics of an IDTBT OTFT (L=20um, W=1mm) processed from DCB 

and annealed for 2 minutes only leaving residual solvent in the film that can hydrogen bond to 

water molecules in the film and form an azeotrope.  
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Fig. S3 Output characteristics of an IDTBT OTFT (L=20um, W=1mm) treated with a) IPA 

and b) n-butyl acetate.  
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Section 2 – Heat stability of solvent treated devices  

 

We noticed that the orthogonal solvent treatment leads to significantly improved heat stability. 

All devices that have been treated with an orthogonal solvent, degrade significantly slower 

during a storage test at 80-90°C over extended time periods.  These results suggest, that the 

reference devices are only stable as long as water forms an azeotrope with residual solvent in 

the film; once residual 1,2-Dichlorobenzene (DCB) solvent evaporates during extended 

annealing, water is released and forms charge traps. The orthogonal solvent on the contrary is 

capable of removing the water entirely and only slow back-diffusion of water degrades the 

device performance. 
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Fig. S4 Heat stability of solvent treated IDTBT OTFTs (L=20um, W=1mm); Solid lines 

represent saturation transfer characteristics (VD = -50V) and dashed lines represent linear 

characteristics (VD = -5V); Devices were annealed in nitrogen for (i) 1h at 80°C, (ii) 1h at 

90°C and subsequently (iii) 16h at 80°C; a) Reference IDTBT OTFT spun from DCB; b) 

IDTBT OTFT treated with acetonitrile before depositing the dielectric. 
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Section 3 –Synthesis of DCAQ, TCAQ and t-Bu-TCAQ 

 

 
 

Procedure adapted from literature[27]. To an ice-cooled solution of anthraquinone (4.16 g, 20.0 

mmol) and malononitrile (3.50 g, 53.0 mmol) in dichloromethane (125 ml) was added 

dropwise titanium tetrachloride (11.5 ml, 105 mmol) and subsequently pyridine (35 ml, 433 

mmol). The reaction mixture was allowed to warm to room temperature over five hours, 

concentrated and subsequently quenched with aqueous hydrochloric acid and then extracted 

with dichloromethane. The combined organic extracts were dried over anhydrous magnesium 

sulphate and concentrated. Purification by column chromatography (dichloromethane/hexane, 

silica) afforded AQ (pale yellow solid, 0.78 g, 19% recovery of starting material), DCAQ 

(yellow solid, 0.25 g, 0.98 mmol, 5% yield) and TCAQ (yellow solid, 1.54 g, 5.06 mmol, 

25% yield). 

 

AQ: 1H NMR (400 MHz, CDCl3) δ 8.32 (dd, J = 5.7, 3.3 Hz, 1H), 7.81 (dd, J = 5.7, 3.3 Hz, 

1H). 

DCAQ: 1H NMR (400 MHz, CDCl3) δ 8.34 – 8.27 (m, 1H), 7.81 – 7.74 (m, 1H). 

TCAQ :1H NMR (400 MHz, CDCl3) δ 8.26 (dd, J = 5.9, 3.3 Hz, 1H), 7.75 (dd, J = 5.9, 3.3 Hz, 

1H). 

 
 

To an ice-cooled solution of 2-tert-butylanthraquinone (5.29 g, 20.0 mmol) and malononitrile 

(3.63 g, 55.0 mmol) in dichloromethane (125 ml) was added dropwise titanium tetrachloride 

(11.5 ml, 105 mmol) and subsequently pyridine (35 ml, 433 mmol). The reaction mixture was 

allowed to warm to room temperature over five hours, concentrated and subsequently 

quenched with aqueous hydrochloric acid. The solid product was filtered and washed several 

times with water and dried. Purification by column chromatography (ethyl acetate/hexane 1:4, 

silica) and subsequent recrystallisation from acetic acid afforded t-Bu-TCAQ as yellow 

crystals (4.30 g, 11.9 mmol, 60% yield). 

 
1H NMR (400 MHz, CDCl3) δ 8.28 (d, J = 1.7 Hz, 1H), 8.27 – 8.24 (m, 2H), 8.22 – 8.19 (m, 

1H), 7.76 – 7.71 (m, 3H), 1.41 (s, 9H). 13C NMR (101 MHz, CDCl3) δ 161.05, 160.16, 157.02, 
132.47, 132.43, 130.55, 130.45, 130.19, 129.66, 127.69, 127.31, 125.40, 113.49, 113.47, 

113.39, 113.30, 82.97, 82.39, 35.98, 30.86. 
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Section 4 – Solubility of additives 

 

We investigated the solubility of the molecular additives AQ, DCAQ and TCAQ in 1,2-

Dichlorobenzene by using UV-vis absorption spectroscopy. The molecules were dissolved in 

DCB at the concentrations 0.100, 0.050, 0.025, 0.001 mg/mL and their respective absorption 

spectra were measured (blue symbols). For normal processing, additives were added from a 

2mg/ml solution. These solutions were diluted by 90 and 95% and their absorption spectra 

were recorded (Red symbols). Using the Beer-Lambert Law, we determined the solubility of 

the additive in the used solution.  
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Fig. S5 a) Absorption of TCAQ solutions in 1,2-Dichlorobenzene (DCB) diluted to 0.100, 

0.075, 0.050, 0.025, 0.001 mg/mL (blue) as well as the reference solution diluted by 90%; b) 

Beer-Lambert Law plotted for the diluted TCAQ solutions giving a solubility limit of 0.55 

mg/ml 
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Fig. S6 Absorption of DCAQ solutions in 1,2-Dichlorobenzene (DCB) diluted to 0.100, 

0.050, 0.025, 0.001 mg/mL (blue) as well as the reference solution diluted by 95%; b) Beer-

Lambert Law plotted for the diluted DCAQ solutions giving a solubility limit of 1.8 mg/ml 

(i.e. almost all DCAQ is dissolved 
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Fig. S7 Absorption of AQ solutions in 1,2-Dichlorobenzene (DCB) diluted to 0.500, 0.250, 

0.100, 0.050, 0.025 mg/mL (blue) as well as the reference solution diluted by 95%; b) Beer-

Lambert Law plotted for the diluted AQ solutions giving a solubility limit above 2 mg/ml (i.e. 

all AQ is dissolved) 
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Section 5 – Highly soluble additives 

 

 

We have synthesized the highly soluble derivatives of the molecule TCAQ with four C2C6 

alkyl side chains attached to the molecule (EH-TCAQ).  

 

  

 
 

To an ice-cooled solution of 2,3,6,7-tetrakis(2-ethylhexyl)anthraquinone[28] (300 mg, 0.457 

mmol) and malononitrile (106 mg, 1.6 mmol) in dichloromethane (10 ml) was added 

dropwise titanium tetrachloride (0.35 ml, 3.2 mmol) and subsequently pyridine (1.0 ml, 13 

mmol). The reaction mixture was allowed to warm to room temperature over five hours, 

concentrated and subsequently quenched with aqueous hydrochloric acid and then extracted 

with dichloromethane. The combined organic extracts were dried over anhydrous magnesium 

sulphate and concentrated. Purification by column chromatography (dichloromethane/hexane, 

silica) afforded EH-DCAQ (yellow oil, 177 mg, 0.25 mmol, 55% yield) and EH-TCAQ 

(yellow oil, 87 mg, 0.12 mmol, 25% yield). 

 

EH-AQ: 1H NMR (400 MHz, CDCl3) δ 8.02 (s, 1H), 2.76 – 2.61 (m, 2H), 1.66 (dd, J = 12.1, 

6.0 Hz, 1H), 1.40 – 1.15 (m, 8H), 0.88 (dt, J = 8.9, 7.2 Hz, 6H). 13C NMR (101 MHz, CDCl3) 

δ 183.94, 147.63, 131.40, 128.67, 40.68, 37.64, 32.67, 29.02, 25.82, 23.17, 14.24, 11.05. 
EH-DCAQ: 1H NMR (400 MHz, CDCl3) δ 8.05 (s, 1H), 8.02 (s, 1H), 2.75 – 2.60 (m, 2H), 

1.77 – 1.58 (m, 1H), 1.45 – 1.16 (m, 8H), 0.96 – 0.78 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 
182.69, 161.41, 146.98, 146.94, 131.05, 129.65, 129.05, 128.73, 114.78, 81.03, 40.78, 40.61, 

37.75, 37.51, 32.80, 32.64, 29.07, 28.97, 25.85, 25.78, 23.14, 23.13, 14.21, 14.20, 10.99, 

10.98. 

EH-TCAQ: 1H NMR (400 MHz, CDCl3) δ 7.97 (s, 1H), 2.74 – 2.55 (m, 2H), 1.68 (dd, J = 

11.9, 6.0 Hz, 1H), 1.45 – 1.22 (m, 8H), 0.95 – 0.80 (m, 6H). 13C NMR (101 MHz, CDCl3) δ 
160.56, 146.32, 129.20, 127.69, 113.92, 80.97, 40.72, 37.72, 32.78, 29.07, 25.77, 23.12, 14.22, 

10.86. 

 

Unfortunately, we observe a drop in transistor on-current for increasing additive loading in 

the polymer film.  Already for a 5 wt. % additive loading with the molecule C2C6-TCAQ 

leads to a drop in transistor on-current by a factor of 3.5; this is in stark contrast to what we 

observe in the case of TCAQ and tert-but TCAQ (Fig. 4). Increasing the additive loading even 

further to 20 wt.% results in a more significant drop in the on-current by more than one order 

of magnitude as compared to the reference device. We hence, associate this loss of 

performance to the steric hindrance induced by the bulky C2C6 branched alkyl side chains.  
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Fig. S8 Linear (dashed lines) and Saturation (solid lines) transfer characteristics of the highly 

soluble TCAQ derivative C2C6-TCAQ (molecular structure shown). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

-60 -50 -40 -30 -20 -10 0 10
1E-10

1E-9

1E-8

1E-7

1E-6

1E-5

1E-4

1E-3

 

 

I D
 (

A
)

VG (V)

 Pristine

 5% EH-TCAQ

 20% EH-TCAQ



     

29 

 

Section 6 – Backbone fluorinated polymers 

 

 

 
 

Fig. S9 Molecular structures (from left to right) of the polymers IDT-BT, IDT-FBT, IDT-

DFBT 

 

 
Fig. S10 Molecular structures (from left to right) of the polymers TIF-BT, TIF-FBT, TIF-

DFBT; information on the polymer synthesis can be found in Ref [[29]] 

 

 

 

To exclude that the observed drop in current after adding fluorine atoms to the polymer BT 

unit is not caused by contact resistance, we have compared the output characteristics for the 

polymers IDT-BT, IDT-FBT and IDT-DFBT. We clearly find that even at low voltages, the 

output characteristics maintain a linear shape and no pinching or S-shape is observed, as 

would be the case in the absence of an additive (See Fig. S1). The solvent-azeotrope is hence, 

still forming. However some water molecules will inevitably hydrogen bond to the Fluorine 

atom(s) on the BT unit. Since this interaction is most likely stronger than the solvent-water 

interaction, this will lead to a drop in current.  
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Fig. S11 Output characteristics of the polymers IDT-BT 
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Fig. S12 Output characteristics of the polymers IDT-FBT and IDT-DFBT 

 

 

We also confirmed that the polymer microstructure is not significantly impacted by adding 

fluorine atoms to the polymer backbone. Here we show representative data for the polymers 

from the TIF-series showing similar crystallinities and surface roughness.  

 

 

 

 
 

 

Fig. S13 GIWAXs (a-c) and Atomic-force microscopy (d-f, data scale: 0-5 nm) images of the 

polymers TIF-BT, TIF-FBT and TIF-DF-BT. Images adapted from Ref [[29]] 

 

 

(d) TIF-BT (f) TIF-2FBT (e) TIF-FBT 
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Fig. S14 Field-effect mobilities extracted for various polymers with and without fluorine 

attached to the backbone; black bars represent polymers without fluorine, red bars are 

polymers with 1 fluorine per monomer and blue bars are polymers with 2 fluorine atoms per 

monomer. All data shown were taken from literature[23],[24],[6]  or shown explicitly in this work 

(IDT-BT, TIF-BT)  

 

 

 


