
International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 103

Performance Improvements on the Network
Security Protocols

Tarek S. Sobh1, Ashraf Elgohary1, and M. Zaki2

(Corresponding author: Tarek S. Sobh)

Information System Department, Egyptian Armed Forces, Cairo, Egypt1

(Email: tarekbox2000@yahoo.com)

Computer and System Engineering Department, AL-Azhar University, Nasr City, Cairo, Egypt2

(Received Mar. 3, 2006; revised and accepted May 31, 2006 & Nov. 8, 2006)

Abstract

In a subscription-based remote service, a user is charged
a flat fee for a period of time independent of the actual
number of times the service is requested. The main con-
cern of the service manager is to make sure that only
customers that have paid the fee for the current period
are granted access to the service. To do this, the service
manager might give each user a username and a pass-
word to be used for accessing the service. An SSL/TLS
(Security Sockets Layer/ Transport Layer Security) ses-
sion is started each time a user requests the service. As
a part of the handshake protocol of SSL/TLS, the user
hands a certificate to the server and proves to be the le-
gitimate owner of the certificate. Then, the server ap-
plication matches the certificate against a list of qualified
certificates and decides whether to grant access. The most
time-consuming phase of the SSL/TLS security protocol
is the handshaking process between the client and the
server, since many messages should be sent until success-
ful negotiation is done and a secure session is created. In
this paper we introduce a security management system in
order to: 1) improve the handshaking process by making
use of SSL/TLS client-side session caching, and 2) allow-
ing trusted users to share sessions with others. According
to our experimental setup, the proposed enhancement of
SSL/TLS has improved its performance relative to the
corresponding traditional handshaking of SSL/TLS pro-
tocol.

Keywords: Certificate authority, client-side caching, se-
curity protocols, session management, session sharing,
SSL/TLS

1 Introduction

There is a significant and growing set of distributed com-
puting environments where the resources, resource stake
holders, and users are geographically and organizationally
distributed [27]. Security of data in transit over the In-

ternet has become increasingly important because of the
steadily growing data volume. Nowadays, every user of
a public network sends various types of data that range
from email to credit card details daily and he would like
such data to be protected when being in transit over a
public network. To this end, a practical SSL (Secure
Sockets Layer) protocol has been adopted for protection
of data in transit that encompasses all network services
that use TCP/IP to support typical application tasks of
communication between servers and clients. Security is
also critical to a wide range of current and future wire-
less data applications and services. Anand Raghunathan
highlights the challenges posed by the need for security
during system architecture design for wireless handsets,
and provides an overview of emerging techniques to ad-
dress them. The Internet holds unlimited promise for
changing the way we do business [19, 20], but not with-
out first addressing the security risks. A secure network
design starts with a strong security policy that defines
the freedom of access to information and dictates the de-
ployment of security in the network. Privacy, integrity,
and authenticity should be realized to protect informa-
tion transfer across network links.

There are a number of security protocols available for
securing communications on the Internet. The most rele-
vant security protocols to this work are IPSec (IP Security
Protocol), S/MIME (Secure/Multipurpose Internet Mail
Extension [15], Kerberos [4, 18, 26] and SSL/TLS (Secure
Sockets Layer /Transport Layer Security).

SSL/TLS runs above TCP/IP and below higher-level
protocols such as HTTP or IMAP as shown in Figure 1. It
uses TCP/IP on behalf of the higher-level protocols, and
in the process allows an SSL-enabled server to authenti-
cate itself to an SSL-enabled client, allows the client to
authenticate itself to the server, and allows both machines
to establish an encrypted connection.

SSL/TLS has a concept of a session. Once a session
negotiation is completed, the participants share the same
session secret and thus, they can authenticate the follow-



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 104

Figure 1: SSL runs above TCP/IP and below high-level
application protocols

ing messages using the session key. If the dynamically cre-
ated session secret is given to each service instance, it can
be used to authenticate the session participants [21, 30].
However, SSL/TLS is a two-party protocol, thus it is not
designed to share the same communication channel among
multiple parties. Another disadvantage of the TLS is its
dependence upon digital certificates, from certificate au-
thorities, where some times sensitive organizations need
to build and use there own digital certificates.

Another difficulty when using TLS is that the amount
of memory consumed by the session cache increases
roughly with the number of sessions cached on the TLS
server. So a hardware load balancer [6], or the client-side
session caching is used to overcome this problem. The
goal of this work is to overcome the TLS protocol’s prob-
lem by designing a security management system that uses
the traditional TLS protocol, and can use its own digi-
tal certificates. Moreover the system uses the client-side
session caching and session sharing techniques to improve
the TLS secure system performance. It should be obvious
that the proposed enhancement could improve the proto-
col speed while its security behavior is still unchanged.

This paper is organized as follows: Section 2 presents
the security protocols overview and SSL/TLS objectives
and architecture. Section 3 defines what is a session, the
session’s parameters and explains client side caching for
TLS approach in distributed implementations. Section 4
presents the proposed system model, goals, and compo-
nents. Section 5 presents formal analysis of performance
improvements on the proposed network security proto-
col. Section 6 includes the implementation details of the
proposed security system. Section 7 explains the perfor-
mance analysis of the proposed system. Section 7 refers
to some related works to the targets of this paper. Section
9 notifies the conclusion and recommendations for future
work.

2 SSL/TLS Protocols Overview

It is convenient to explain here the SSL/TLS structure
from the network point of view, and to explain the objec-
tives behind using it, as such.

2.1 The SSL Handshaking

The SSL protocol uses a combination of public-key and
symmetric key encryption. Symmetric key encryption is
much faster than public-key encryption, but public-key
encryption provides better authentication techniques. An
SSL session always begins with an exchange of messages
called the SSL handshake. The handshake allows the
server to authenticate itself to the client using public-key
techniques, then allows the client and the server to co-
operate in the creation of symmetric keys used for rapid
encryption, decryption, and tamper detection during the
session that follows. Optionally, the handshake also al-
lows the client to authenticate itself to the server. The
exact programmatic details of the messages exchanged
during the SSL handshake are beyond the scope of this
paper. However, the steps involved can be summarized
as follows (assuming the use of the cipher suites listed in
Cipher Suites with RSA Key Exchange):

1) The client sends the server the client’s SSL version
number, cipher settings, randomly generated data,
and other information the server needs to communi-
cate with the client using SSL.

2) The server sends the client the server’s SSL version
number, cipher settings, randomly generated data,
and other information the client needs to communi-
cate with the server over SSL. The server also sends
its own certificate and, if the client is requesting a
server resource that requires client authentication,
requests the client’s certificate.

3) The client uses some of the information sent by the
server to authenticate the server. If the server cannot
be authenticated, the user is warned of the problem
and informed that an encrypted and authenticated
connection cannot be established. If the server can
be successfully authenticated, the client goes on to
Step 4.

4) Using all data generated in the handshake so far, the
client (with the cooperation of the server, depending
on the cipher being used) creates the premaster secret
for the session, encrypts it with the server’s public
key (obtained from the server’s certificate, sent in
Step 2), and sends the encrypted premaster secret to
the server.

5) If the server has requested client authentication (an
optional step in the handshake), the client also signs
another piece of data that is unique to this handshake
and known by both the client and server. In this case
the client sends both the signed data and the client’s
own certificate to the server along with the encrypted
premaster secret.

6) If the server has requested client authentication, the
server attempts to authenticate the client (see Client
Authentication for details). If the client cannot be
authenticated, the session is terminated. If the client



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 105

can be successfully authenticated, the server uses its
private key to decrypt the premaster secret, then per-
forms a series of steps (which the client also performs,
starting from the same premaster secret) to generate
the master secret.

7) Both the client and the server use the master secret to
generate the session keys, which are symmetric keys
used to encrypt and decrypt information exchanged
during the SSL session and to verify its integrity–
that is, to detect any changes in the data between
the time it was sent and the time it is received over
the SSL connection.

8) The client sends a message to the server informing
it that future messages from the client will be en-
crypted with the session key. It then sends a sepa-
rate (encrypted) message indicating that the client
portion of the handshake is finished.

9) The server sends a message to the client informing
it that future messages from the server will be en-
crypted with the session key. It then sends a sepa-
rate (encrypted) message indicating that the server
portion of the handshake is finished.

10) The SSL handshake is now complete, and the SSL
session has begun. The client and the server use the
session keys to encrypt and decrypt the data they
send to each other and to validate its integrity.

2.2 TLS Goals

The goals of TLS protocol, in order of their priority [3]
are:

• Cryptographic security: TLS should be used to es-
tablish a secure connection between two parties.

• Interoperability: Independent programmers should
be able to develop applications utilizing TLS that will
then be able to successfully exchange cryptographic
parameters without knowledge of one another’s code.

• Extensibility: TLS seeks to provide a framework into
which new public key and bulk encryption methods
can be incorporated as necessary. This will also ac-
complish two sub-goals: to prevent the need to cre-
ate a new protocol (and risking the introduction of
possible new weaknesses) and to avoid the need to
implement an entire new security library.

• Relative efficiency: Cryptographic operations tend
to be highly CPU intensive, particularly public key
operations. For this reason, the TLS protocol has
incorporated an optional session caching scheme to
reduce the number of connections that need to be
established from scratch. Additionally, care has been
taken to reduce network activity.

2.3 TLS Protocol

The primary goal of the TLS Protocol is to provide pri-
vacy and data integrity between two communicating ap-
plications. The protocol is composed of two layers [21].

These two layers are the TLS Record Protocol and the
TLS Handshake Protocol. The TLS Record Protocol pro-
vides connection security that has two basic properties:

1) The connection is private: Symmetric cryptography
is used for data encryption (e.g., DES, RC4, etc.)
The keys for this symmetric encryption are gener-
ated uniquely for each connection and are based on
a secret negotiated by another protocol (such as the
TLS Handshake Protocol). The Record Protocol can
also be used without encryption.

2) The connection is reliable: Message transport in-
cludes a message integrity check using a keyed MAC.
Secure hash functions (e.g. SHA, MD5, etc) are used
for MAC computations. The Record Protocol can op-
erate without a MAC, but is generally only used in
this mode while another protocol is using the Record
Protocol as a transport for negotiating security pa-
rameters.

The TLS Record Protocol is used for encapsulation of
various higher level protocols. One such encapsulated pro-
tocol, the TLS Handshake Protocol [8], allows the server
and client to authenticate each other and to negotiate an
encryption algorithm and cryptographic keys before the
application protocol transmits or receives its first byte of
data. The TLS Handshake Protocol provides connection
security that has three basic properties:

1) The peer’s identity can be authenticated using asym-
metric, or public key, cryptography (e.g., RSA, DSS,
etc.). This authentication can be made optional, but
is generally required for at least one of the peers.

2) The negotiation of a shared secret is secure: the ne-
gotiated secret is unavailable to eavesdroppers, and
for any authenticated connection the secret cannot be
obtained, even by an attacker who can place himself
in the middle of the connection.

3) The negotiation is reliable: no attacker can mod-
ify the negotiation communication without being de-
tected by the parties to the communication.

One advantage of TLS is that its application protocol is
independent.Higher level protocols can work on top of the
TLS Protocol transparently. The TLS standard, however,
does not specify how protocols can add security. The
decision on how to initiate TLS handshaking and how to
interpret the authentication certificates exchanged is left
up to the judgment of the designers and implementors of
protocols that run on top of TLS.

When we study the TLS architecture, we find that the
most consuming phase is the handshake phase, which re-
quires a lot of messages to be sent between the client



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 106

and the server, until both ends agree each other. This
affects the overall communication, performance and net-
work traffic [21].

3 Concepts of Session Manage-
ment and Client Side Caching

for TLS

In TLS, when the handshake process between a client and
a server is successfully completed, a session is created to
link the client with the server. In practical, The server
while working will receive a lot of connection requests
which leads to a large number of connections will be cre-
ated and simultaneously running, so the server will need
a way to manage and monitoring these connections.

3.1 Session Definition

A TLS session is an association between a client and a
server. Sessions are created by the handshake protocol.
Sessions define a set of cryptographic security parame-
ters, which can be shared among multiple connections.
Sessions are used to avoid the expensive negotiation of
new security parameters for each connection.

3.2 Session Parameters

A session state is defined by the following parameters:

• Session identifier: this is an identifier generated by
the server to identify a session with a chosen client;

• Peer certificate: X.509 certificate of the peer;

• Compression method: a method used to compress
data prior to encryption;

• Algorithm specification termed CipherSpec: specifies
the bulk data encryption algorithm and the hash al-
gorithm used during the session;

• Master secret: 48-byte data being a secret shared
between the client and server;

• “is resumable”: this is a flag indicating whether the
session can be used to initiate new connections.

There are several models for authorization in session
management systems. One is the pull model where the
user presents only his authenticated identity to the re-
source gateway (the policy enforcement point-PEP). PEP
finds (pulls) the policy information for the resource and
evaluates the user’s access [27]. A classic example of this
is local file system access where the user id of the pro-
cess that is attempting to reference the file is compared
to the access control list of the file. The other general
model is the push model, where the user presents one or
more tokens or assertions that grant the holder specific
rights to the resource. In this model, the gatekeeper has

to verify that the user has the rights to use the tokens and
then to interpret the rights that have been presented. The
original examples of this model were capability-based op-
erating systems where access to files and other objects was
granted on the basis of unforgettable tokens, called capa-
bilities, associated with a process [14] With the growing
use of digitally signed certificates that can be verified for
data integrity and authenticity, the push model is gaining
wider usage. There are also hybrids of the two models,
such as when a user presents identity information that
includes restrictions on his full set of rights, or presents
a handle to an authentication/authorization server from
which the gatekeeper may pull information about the user
and his rights. Here we recommend using hybrids of both
pull model and pushing model in order to handle an au-
thentication/authorization server.

3.3 Client Side Caching for TLS

TLS is a widely deployed protocol for securing network
traffic. It is commonly used for protecting web traffic and
some e-mail protocols such as IMAP and POP. In this pa-
per we consider a modification to the TLS handshake pro-
tocol that extends TLS’ session resumption mechanism
to reduce the load on the server. The amount of mem-
ory consumed by the session cache scales roughly with
the number of sessions cached on the server. The ex-
act amount of memory consumed by each session varies,
but is at minimum 48 bytes for the master secret. Since
session IDs are themselves 32 bytes, 100 bytes is a reason-
able approximation. Assuming a server operating at 1000
handshakes/second these rates are equally shared between
client and server, which are easily achievable with modern
hardware. Such session cache may occupy a considerable
amount of memory.

Shacham [24] indicates that when a cluster of SSL
servers behind a load balancer serves a web site, the prob-
lem of sharing the session cache becomes a distributed
systems problem. In general, server implementers choose
to ignore this problem. Instead, each server has its own
session cache and the load balancer is expected to direct
returning clients to their original server. This increases
load balancer complexity. Moreover, the need to main-
tain connection locality to make use of the session cache
can interfere with the load balancer’s ability to distribute
load evenly.

4 The Proposed Model

This model aims informally at proposing a reliable secu-
rity scheme that can provide secure communication using
TLS and to improve the handshaking process by using
a client session caching mechanism to reach the targets
stated in what follows.

4.1 Objectives

The main model objectives are to:



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 107

• Create a security system on the basis of the tradi-
tional SSL/TLS technology.

• Overcome the main disadvantage of SSL/TLS, which
is the dependence upon using digital certificates to
work properly. Actually, it is not designed to share
the same communication channel among multiple
parties by creating secure sessions between partici-
pants and allows super users permitted by the secu-
rity managers to share sessions with other connected
users.

• Use the client side session caching to improve the
server performance by caching the session parame-
ters needed for authentication on the client and us-
ing them directly to connect to the server rather than
repeating the whole process again.

4.2 System Model Components

Here many clients connect to the server for different busi-
ness purposes and all clients need to transmit data over
the network. The proposed system model contains net-
work resources, and different clients geographically and
organizationally distributed. Clients send various types of
data such as email and credit card details and they pro-
tect their data using secure connections over SSL/TLS
between servers and clients. You can notice that the
handshake protocol associate with each connection over
SSL/TLS will affect the overall performance and post-
pone the end user services especially in large business
applications. In order to achieve this secure connection
with better performance the proposed model uses client
side session caching for collecting register users informa-
tion and current connections and trusted users such as
Client 3 in Figure 2 can share this connection to other
users based on business security policy.

The proposed Security Manager System (SMS) consists
of the User Check Authority Module (UCAM), the Client
Side Session Caching Module (CSSCM), and the Sharing
Session Permission Module (SSPM). All these modules co-
operate with both the Session Manager Module (SMM)
and Session Security Database (SSDB) as shown in Fig-
ure 2.

4.2.1 The User Check Authority Module

It is responsible for checking the client entry verification,
specifying the user type (Trusted or Normal), and con-
nection type (TLS or Private Secure Session). When a
client try to connect to the server, this module checks the
user name and password and gets the data of the user
account and decides if this user is a Trusted User (i.e.
he can share session data with another user). Next, this
module decides which Security option will take to apply
secure authentication with the requesting client. A Client
may connect to the server by one of the following: 1) use
SSL/TLS, 2) use SSL/TLS With Client Authentication,
and 3) Use Secure Private Sessions.

� ✁ ✂ ✄ ☎ ✆ ✝

� ✁ ✂ ✄ ☎ ✆ ✞

� ✁ ✂ ✄ ☎ ✆ ✟
✠ ✡ ☛ ☞ ✌ ✆ ✄ ✍ ✎ ✌ ✄ ☛ ✏

� ✁ ✂ ✄ ☎ ✆ ☎� ✁ ✂ ✄ ☎ ✆ ✑� ✁ ✂ ✄ ☎ ✆ ✒

Security Manager System (SMS)

Figure 2: System model

4.2.2 The Session Manager Module

It is responsible for all the session’s operations (create,
join, end, query, notify), and monitoring the current ses-
sions.

Next, in web services the Session Manager Creates
the TLS Session, saves the session parameters, which is
successfully created, and the user connection data in the
security database, now a secure connection is established
and data can be send in both sides.

The Session Manager’s Functions:
The session management functions [12] are shown in Fig-
ure 3, where a Security Management System (SMS) man-
ages sessions using the session manager. An SMS is re-
sponsible for:

• Assigning session IDs;

• Creating session secrets;

• Maintaining the status information for each session
and keeping the participants informed of the status,
and

• Shutting down sessions.

A session is created after a successful handshake pro-
cess or by resuming it using the cached parameters on the
client (by sending a StartSession request to the SMS).

There are two ways for a client to join the created
session. One is to ask the SMS by sending a JoinSession
request. If it is permitted according to the admission
policy set by the initiator and the SMS, the client receives
the session secret. The alternative way is for a Trusted
User to forward the session secret to the receiving client.

The Session Manager can do the following operations:

• CreateSession: when a client requests for a new con-
nection, a new session is created, then its data is
stored in the security database (SSDB).



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 108

(Trusted user)

Security Manager

System

Client 1
Client 2

NotifySession

StartSession

JoinSession

EndSession

QuerySession

(Trusted user)

Security Manager

System

Client 1
Client 2

NotifySession

StartSession

JoinSession

EndSession

QuerySession

(Trusted user)

Security Manager

System

Client 1Client 1
Client 2Client 2

NotifySession

StartSession

JoinSession

EndSession

QuerySession

Figure 3: The security manager operations

• StartSession: when a session is ended, it can be re-
sumed using the parameters that were cached on the
client.

• JoinSession: when a client (a registered user) asks
to share a created session, the Session Manager can
send the session secret to that client and allows him
to share the specified session.

• EndSession: this is done by the Session Manager to
destroy a certain session.

• QuerySession: this is done by the Session Manager
to retrieve information about certain session.

• NotifySession: An Session Manager should be capa-
ble of notifying its participants of changes in the ses-
sion status. In contrast to the previous messages,
which are all request/response, this message is one-
way. The most important change to be notified of is
the shutdown of the session. This message can also
be used for renewing a session secret before it expires.

If a trusted user would like to share the session he will
use:

• ForwardSession: When a trusted user wishes to invite
another party to participate in the session, he can do
so by sending a ¡ForwardSession¿ message to the new
participant.

• The forwarder must have the permission when for-
warding a session. The forwarder also needs to trust
the other party. This message needs to be protected
from eavesdroppers by an appropriate means because
this message contains the session secret.

The details of the admission policy are not presented
here but the policy must be digitally signed by the SMS if
the policy needs to be protected from unauthorized modi-
fications. Also if the forwarder needs to know the forward-
ing path, the forwarding path from the original requester
to the forwarder must be included in the message.

4.2.3 The Client Side Session Caching Module

As explained before, the client side session caching tech-
nique is used to decrease the load upon the server to man-
age the huge number of sessions usually being opened.
This module is responsible for allowing the client to cache
his session parameters, so that he can resume his connec-
tion without need to do full handshake process with the
server. After the session is created the SMS sends the
session’s parameters to the client, including the session
id, the cipher suite used by session.

4.2.4 The Session Security Database

Contains data for the registered users and their authori-
ties, all data of the connected sessions.

• Registered user table: stores information of all users
registered by the system like: user name, user pass-
word, security option, and connection type. This in-
formation is used by the User Check Authority Mod-
ule to check new user, and by the Session Manager
to create sessions.

• Current sessions data: stores information of all cur-
rent opened sessions like: session’s id, user name who
opened the session, cipher suite used. This infor-
mation is used by the Session Manager to perform
any session’s management operation (join, end, no-
tify, etc.).

4.2.5 The Sharing Session Permission Module

After the client is connected to the server and a secure ses-
sion is created, if the client is a trusted user, this module
sends to the client a permission message, to give the Client
the ability to share his session with the others (the Share
Session button in the client interface will be changed from
disabled status to enabled status).

5 Formal Analysis

As we have seen in Section 2 that the most time-
consuming phase of the SSL/TLS security protocol is the
handshaking process between client and server. Figure 4
presents server state diagram [1] with normal handshak-
ing process.

So we introduce the new management system in order
to improve the performance measure of the SSL/TLS pro-
tocol using session sharing and client side session caching.

A formal analysis to the proposed SSL/TLS enhance-
ments is pointed out in what follows:

• UID: Requesting guest user with its identity.

• PID: Service Provider with its identity.

• AS: Administrator who can share session with other
trusted users with its identity.



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 109

Start

Preparing

Data

Waiting Auth.

Acknowledge

Define Pre-

Master Secret

Client

Authentication

Master Secret

Generated

Session Keys

Generated

Checking Consistency

of Session Keys

Handshake Done

Successfully

Client Request

with SSL Info Client SSL

Info

Send Server SSL

Info to client

Client

Authenticates

Server

Authentication

Acknowledge

Negotiating

Pre-Master

Secret

NO

Yes

Execute Pre-

Defined Algorithm

with Client

Client Session

Keys

Generated

Inconsistent

Consistent

Figure 4: Server state diagram with normal handshaking
process

• RU: The user who uses shared session in order to
communicate with the server.

• SA: The session assigned by AS.

• CS: The session caching contains the necessary in-
formation parameters (session ID, issuer, owner ID,
public key and issuer’s signature, etc.)

• KDC: Key Distribution Center.

• WS: Web server connected with the client by a secure
connection.

• DC: Disconnect secure connection session.

5.1 Initialize/Resume SSL/TLS Connec-
tion

The user tries to get a secure connection and is granted
the connection parameters (session keys) for any reason it
disconnects (lost the secured connection). Now the user
tries to gain the secure connection again it does not have
to do the same steps again like normal SSL/TLS protocol
but it just retrieves the connection parameters from the
cache to regain the connection. Figure 5 introduces the

corresponding Finite State Machine of these steps.

UID → PID : (UID, AS , RU )

PID → KDC : (UID, AS , RU , PID)

KDC → PID : (UID, AS , RU )

KDC → CS : (UID, AS , RU , PID)

PID → UID : (PID, AS)AS

UID → CS(UID)

Cs → UID : (UID, AS , RU , PID)

Step 1. The user UID initiates the authentication pro-
cess by sending his identity to the service provider
PID.

Step 2. Service provider just forwards the received data
and his identity to the KDC.

Step 3. KDC realizes that both the user and the service
provider are its registered principal’s Then the KDC
assigns a session key to this request, encrypts the
session key and related data.

Step 4. KDC notifies the cache CS of new users that are
approved connection. Then it sends CS the connec-
tion parameters.

Step 5. Authenticated and administrator user receive
acceptance to open his secure session SA.

Step 6. User lost the secured connection (Disconnected).

Step 7. User requests the connection parameters to re-
connect the secured connection.

Step 8. Cache CS sends the connection parameters that
are saved in (Step 4)

5.2 Share Secure SSL/TLS Session

The administrator user tries to authenticate through the
service provider to the web server and gets connected.
The administrator user receives a request for secure con-
nection from a trusted user, so instead of bypassing the
request to the service provider and leave it take the nor-
mal sequence it just verifies the user and share the secure
connection with the trusted user so as to minimize the
time of creating a new secure connection.

UID → PID : (AS)

WS → PID : (AS , WS)

UID → UID : (UID, AS , RU )

AS → AS : (WS , AS)

RU → RU : (SA, AS , WS)

RU → CS : CS

Step 1. The administrator user AS initiates the authen-
tication process by sending his identity to the web
server via service provider PID.



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 110

UID (User) PID Service Provider KDC (Key

Distribution Center)

CS (Cache)

Idle Idle Idle Idle

Request

Waiting

Session Keys

Authenticatio

n UID, PID

Connection

to KDC

Fwd Request

Waiting

Session Keys

Send Session

Keys

New User

Approved Note

Connection

Approved

Fwd Keys

Done

Saving

Conn.

Parameters

Done
Approved

User

Guest User

Request

Fetching Conn.

Parameters

Waiting Conn.

Parameters

Request

Done

Approved

User

UID, AS, RU

UID, AS, RU, PID

UID, AS, RU

UID, AS, RU, PID

UID, AS, RU, PID

DC

UID

UID, AS, RU, PID

Figure 5: Finite state machine of the proposed protocol
enhancements with client side caching

Step 2. The web server opens secure session with ad-
ministrator user AS receives acceptance to open his
secure session SA.

Step 3. The trusted guest user to the administrator au-
thenticates his identity with administrator user.

Step 4. The authenticated user RU receives connection
acceptance from the administrator user AS.

Step 5. Trusted user RU connects to the server using
shared session with administrator user AS.

Step 6. Trusted user RU caches shared session param-
eters such as session ID into client side caching CS
for fast future connection with server. A finite state
machine of the proposed protocol enhancements with
session sharing is shown in Figure 6.

6 System Developments and Im-
plementation

Java language is mainly used in the implementation of the
model. It has been chosen to give the implementation the

UID (User) AS Administrator User CS (Cache)PID Service Provider WS Web Server

Idle Idle Idle Idle Idle

Auth

Request

Connecting

to WS
Waiting

Session Keys
Fwd Request

Authenticatio

n AS, PID
Waiting

Session Keys

Send Session

Parameters

Connection

Approved

Fwd Session

Parameters

Approved

AS

Request

Authenticatio

n UID

Session

Parameters

Waiting

Session Keys

Done

Finalizing

Conn. Creation

Connection

Test

Done

Approved

User

Session

Parameters

Saving Conn.

Parameters

Done
Done

Done

AS

AS, PID

UID

Testing Connection

Session Parameters

Figure 6: Finite state machine of the proposed protocol
enhancements with session sharing

ability to run either as a web application or a stand-alone
java application.

6.1 Secure Socket Communication

Secure Socket Communication is created either by an
SSLSocketFactory in client side or by an SSLServerSocket
in a server side for accepting an in-bound connection (In
turn, an SSLServerSocket is created by an SSLServer-
SocketFactory) [29].

Server Code for Secure Socket Communication:
When writing a Java program that acts as a server and
communicates with a client using secure sockets, the
socket communication is set up with code similar to the
following:

import java.io.*;

import javax.net.ssl.*;

. . .

int port = availablePortNumber;

SSLServerSocket s;

try {

SSLServerSocketFactory sslSrvFact =

(SSLServerSocketFactory)

SSLServerSocketFactory.getDefault();



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 111

s =(SSLServerSocket)sslSrvFact.createServerSocket(port);

SSLSocket c = (SSLSocket)s.accept();

OutputStream out = c.getOutputStream();

InputStream in = c.getInputStream();

// Send messages to the client through the Output-

Stream

// Receive messages from the client through the Input-

Stream

}

catch(IOException e) {

}

Client code for secure socket communication:
The client code to set up communication with a server
using secure sockets is similar to the following:

import java.io.*;

import javax.net.ssl.*;

. . .

int port = availablePortNumber;

String host = “hostname”;

try {

SLSocketFactory sslFact =

(SSLSocketFactory)SSLSocketFactory.getDefault();

SSLSocket s =

(SSLSocket)sslFact.createSocket(host, port);

OutputStream out = s.getOutputStream();

InputStream in = s.getInputStream();

// Send messages to the server through the Output-

Stream

// Receive messages from the server through the

InputStream

}

catch(IOException e) {

}

6.2 The System Interface

When the Security Manager System (SMS) starts, it cre-
ates server sockets for secure communications and guest
connections and the server is waiting for new connections
from the clients. The system logs all events occurred in
the first tab page “Log Data”, so that the SMS can mon-
itor all operations. In the “Registered Users” tab page,
The SMS retrieves the registered users data from its secu-
rity database (SSDB), including the user name and pass-
word, the security option, and the user type. When a
user is successfully connected to the server, and a session
is created, the data of this session is stored in the security
database.

The trusted user allows sharing of his session with any
other user request by choosing the user name from right
list, then press the share session button, this will send
the session ID to the selected user. In the normal client
window the share session button is disabled because it is
allowed for trusted users only.

The guest client can ask for sharing a trusted user by

typing his nickname and select the trusted user he wants
from the left list then press the guest button; this will
send a request message to the trusted user, who can send
back the session ID to the requester. Now, the clients
can chat with the trusted client, and they can exchange
messages or files to each other.

7 The System Performance

In this section we introduce the performance analysis for
this work according to our experimental setup. The ex-
perimental work has been performed on a real network,
Figure 7. Such network includes coaxial and UTP cables,
multi-port repeater, switches, and a router. It contains
neither fiber optic cables nor wireless communications,
e.g. IEEE 802.11b through n.

� ✁ ✂ ✄ ☎ ✆

✝ ✞ ✟ ✄ ✠ ✡

128 .223 .2.1

Database Server

☛ ☞ ✌ ✍ ☞ ☞ ✎ ✍ ☛ ✍ ✏ ☛ ✑ ✒ ✓ ✔ ✒ ✒ ✕ ✔ ✑ ✔ ✖ ✗

✘ ✙ ✚ ✛ ✙ ✙ ✜ ✛ ✙ ✛ ✙

✑ ✒ ✓ ✔ ✒ ✒ ✕ ✔ ✢ ✔ ✢

✣ ✤ ✥ ✦ ✧ ★ ✦ ✩ ✤ ✪ ✫ ✪ ✬ ★ ✭
✑ ✒ ✓ ✔ ✒ ✒ ✕ ✔ ✒ ✔ ✒ ✮ ✗

✯ ✰ ✱ ✲ ✳ ✴ ✲ ✵ ✰ ✶ ✷ ✶ ✸ ✴ ✹
✺ ✻ ✼ ✽ ✻ ✻ ✾ ✽ ✺ ✽ ✾ ✿

❀ ✱ ✶ ❁ ✴ ✲ ✵

Figure 7: The experimental setup

7.1 Performance of Session Creation

While experimenting our system we noticed that when a
trusted user try to establish a full handshake connection
it costs in average 7 seconds, but when he tried to share
his session with other guests or try to resume a session
it costs in average 2 seconds. This is shown in Figure 8,
where the proposed design has improved the performance
of the underlying system by 3.5 times in average compared
with the handshaking of typical TLS.

From the above figure, we conclude that the perfor-
mance is improved by 350% (from 7 sec. for full hand-
shake, to 2 sec. for session sharing) when using the session
sharing technique rather than the full handshake to create
a new session.

7.2 Performance of File Transfer

We tried to measure difference in the performance of a
file transfer using the plain file transfer method and the
secure file transfer method which we present in our model,
our results were as shown in Figure 9.

From the above figure we conclude that using the se-
cure file transfer which was proposed in our system in-
creases the time for a file transfer, but this is normal be-
cause in our design the file is converted to an encrypted



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 112

Figure 8: Analysis of session creation performance

Figure 9: Comparison between methods of a file transfer

stream of bytes, this encryption from sender side and the
decryption at the receiver side takes this delay, but finally
we are ensured of the safe file transfer.

7.3 The Effect of Number of Users on File
Transfer Performance

We tried to test the secure file transfer of the system us-
ing the same previous file sizes, but in case of different
number of connected users we got the results represented
in Table 1.

From that table it is concluded that, when the num-
ber of concurrent users increased, the time of file transfer
for the same file size is also increased. The relation is
nonlinear, however, this is normal due to the increase in
network traffic.

8 Related Work

Because each new SSL connection incurs a handshake pro-
cess, to be established high-traffic will potentially take

Table 1: File transfer time

Size Number of Transfer
(MB) connected users (Seconds)
7.54 5 3.50

15 3.90
25 4.00
35 4.2

10.10 5 4.00
15 3.9
25 5.00
35 5.30

18.00 5 850
15 8.80
25 9.00
35 9.50

26.60 5 12.50
15 12.80
25 13.00
35 13.70

place. Thus, such sites may need a means of minimiz-
ing the performance degradation by bearing the security
burden. Many existing systems and both hardware and
software products had been introduced to supports the
SSL/TLS tasks.

8.1 Existing Systems

The Community Authorization Service (CAS) [17] is a
new authorization service being developed by the Globus
project [10] for Grid environments. Their authorization
model allows a resource site to grant a community access
to resources and the authorization server for that commu-
nity to grant access to the community members. This is
implemented by having the user contact the CAS server
to get a delegated proxy certificate [28], which includes a
rights restriction extension that limits what resources can
be accessed. The resource gatekeeper must interpret the
restricted rights extension and verify that the community
has such rights to the resource. Since the delegated proxy
is a short-lived X.509 certificate it can be passed between
the user and the resource gateway as part of the GSI/SSL
connection. There is no additional information that needs
to be conveyed, as is the case when a user needs to pass
attribute certificates to the gatekeeper. CAS examination
of policy and granting of rights is done before the gate-
keeper is contacted. This means the user must ask for
all the rights she will need in advance of referencing the
resource.

Policy about resources is stored and managed by the
CAS servers and so far mainly consists of lists of objects
and allowed rights. This information is included in the
rights restriction extension of the delegated proxy. The
intent of the CAS project is to extend the policy language
as the need arises. The CAS administrator is responsible



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 113

for adding each community member to the appropriate
groups. The CAS administrator may also delegate ad-
ministration of subsets of the objects to additional people.
VOMS is another ad hoc solution to authentication in a
GSI-enabled Grid [2]. It is similar to the CAS model, but
the VOMS server is run by a virtual organization and sup-
plies authorization information about its own members.
This service is implanted and used within the European
Data Grid.

8.2 Existing Products

Many hardware and software solutions had been intro-
duced to improve the SSL/TLS performance.

8.2.1 Software Products

Beside the Client Side Session Caching technique used in
this paper, Hovav Shacham and Dan Boneh had intro-
duced two software approaches to improve the SSL/TLS
performance [23, 24]. First was fast-track mechanism, sec-
ond was improving the SSL handshake performance via
batching.

• Fast-track mechanism: The “fast-track” mechanism
provides a client side cache of a server’s permanent
public parameters and negotiated parameters in the
course of an initial, enabling handshake. These pa-
rameters (like the server’s certificate chain, the pre-
ferred client-server cipher suite, and the preferred
client-server compression method) need not be resent
on subsequent handshakes. Fast-track reduces both
network traffic and the number of round trips, and
requires no additional server state. These savings
are most useful in high latency environments such as
wireless networks [24].

• Batching the handshake requests: It is an algorithmic
approach for speeding up SSL’s performance on a web
server. The batching improves the performance of
SSL’s handshake protocol by up to a factor of 2.5 for
1024-bit RSA keys. It is designed for heavily loaded
web servers handling many concurrent SSL sessions
[23]. The basic idea is as follows: the web server
waits until it receives b handshake requests from b
different clients. It then treats these b handshakes
as a batch and performs the necessary computations
for all b handshakes at once. The experiments show
that, for b = 4, batching the SSL handshakes in this
way results in a factor of 2.5 speedup over doing the
b handshakes sequentially, without requiring any ad-
ditional hardware.

8.2.2 Hardware Products

Many hardware solutions were introduced to improve the
performance when using the TLS protocol, the result was
the appearing of the SSL Accelerators and the SSL Of-
floaders.

• The SSL accelerator: It was introduced in 1998,
the hardware SSL Accelerator was a dedicated co-
processor used to sped the RSA operation (hand-
shake process), but it had a number of drawbacks:
it required special software and drivers in order to
work, it was only able to accelerate one server at a
time, and it did nothing for the other components
of SSL. While the first two drawbacks affected inter-
operability, maintainability, and scalability, the third
proved to be the greatest limiting factor of the accel-
erator. Because the accelerator only acted upon the
RSA key exchange, and not on the bulk (symmetric)
cryptography or the message digest, it left the de-
cryption and the hashing to the server’s host CPU.
Although this was relatively not very burdensome for
the servers, it nonetheless left the data obfuscated
and unreadable by content networking gear, caching
systems, and intrusion detection systems.

• The SSL offloader: It was the second step to improve
SSL performance; it processed not only the asym-
metric component of SSL, but also all components
of SSL. This means that with an offloader, the host
CPU on the web-server is not responsible for process-
ing any portion of the SSL traffic. Also, offloaders
provide universal compatibility with web and appli-
cation server platforms, avoiding the need to load
special software or drivers on the servers. Moreover,
because offloaders are network attached, they can of-
fload multiple servers rather than just one, and they
can also scale easily to accommodate any size site.

Many SSL accelerator products appeared like the Al-
teon SSL Accelerator (from Nortel Networks) [16],
the BIG-IP SSL Accelerator 400/800 (from f5 net-
works), also many SSL offloader products appeared
like SonicWALL SSL-R and SSL-RX offloaders. [25]

9 Conclusion

In this paper a security scheme has been proposed to ex-
tend the use of SSL/TLS protocol and to provide a high
performance session management system. It allows build-
ing secure communications without need to get a digital
certificate from a Certificate Authority (CA). This fea-
ture is adequate for organizations that need to build their
own SSL/TLS environments. According to the proposed
model the security management system (SMS) can give
the trusted users a facility to share sessions among them-
selves and other users. Thus a secure community can be
built up under the protection of SSL/TLS.

Also, here an enhancement to the TLS handshake pro-
tocol that makes it easier to use is presented. Such en-
hancement will be useful, specially, in environments where
fast connections are needed while a large number of clients
are already connected to the server. This is achieved by
making use of the client-side session caching approach. In
fact, such session caching relocates the session cache from



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 114

the client to the server allowing the server to maintain
a much larger set of records. Accordingly, the connec-
tions that have required a full handshake can be resumed
rather than activated. It is noticed that using client side
session caching and session sharing techniques have re-
duced the session creation time by 350%. Such perfor-
mance improvement has been achieved whilst the security
measurements are kept unchanged.

References

[1] A. V. Aho, R. Sethi, and T. D. Ulman, Compilers:
Principals Techniqes and Tools, A disown Wesley,
1986.

[2] R. Alfieri, R. Cecchini, V. Ciaschini, L. Dell’agnello,
A. Frohner, A. Gianoli, K. Lorentey, and F. Spataro,
VOMS, “An authorization system for virtual organi-
zations,” in 1st European Across Grids Conference,
Feb. 2003.

[3] C. Allen and T. Dierks, The TLS Protocol Version
1.0, IETF RFC 2246, 1999.

[4] C. Baliello, A. Basso, and C. D. Giusto, Kerberos
Protocol: an Overview, Distributed Systems, Italy,
Fall 2002.

[5] M. Blaze, J. Ioannidis, and A. D. Keromytis, “Trust
management for IPsec,” ACM Transactions on Infor-
mation and System Security (TISSEC), vol. 5, no. 2,
pp. 95-118, 2002.

[6] W. Chou, “Inside SSL: Accelerating secure transac-
tions,” IEEE, IT Professional, vol. 4, no. 5, pp. 37-
41, Sep./Oct. 2002.

[7] D. Clark, Vulnerability’s of IPSEC, SANS Institute,
as part of the Information Security Reading Room,
Mar. 14, 2002.

[8] G. Diaz, F. Cuartero, V. Valero, and F. Pelayo, “Au-
tomatic verification of the TLS handshake protocol,”
in Proceedings of the 2004 ACM symposium on Ap-
plied computing, pp. 789-794, 2004.

[9] T. Dierks and C. Allen, The TLS Pro-
tocol, version 1, IETF RFC 2246, 1999.
(http://www.ietf.org/rfc/rfc2246.txt)

[10] I. Foster and C. Kesselman, The Grid: Blueprint
for a New Computing Infrastructure, Morgan Kauf-
mann, San Mateo, CA, 1999.

[11] A. Godber and P. Dasgupta, “Secure wireless gate-
way,” in Proceedings of the ACM workshop on Wire-
less security, pp. 41-46, 2002.

[12] S. Hada and H. Maruyama, Session Authentication
Protocol for Web Services, IBM Research, Tokyo Re-
search Laboratory, 2002.

[13] R. Housley, W. Polk, W. Ford, and D.
Solo, Internet X.509 Public Key Infras-
tructure Certificate and CRL Profile, 2001.
(http://www.ietf.org/internetdrafts/draft-ietf-
pkix-new-part1-12.txt)

[14] H. M. Levy, Capability-Based Computer Sys-
tems, Digital Press, Bedford, MA, 1984.
(http://www.cs.washington.edu/homes/levy/capabook/)

[15] H. Moser, S/MIME, Dec. 2001-Jan. 2002,
mail@heinz.at

[16] Nortel Networks, Alteon 8661 SSL Acceler-
ation Module for the Passport 8600, 2003.
(http://www.nortelnetworks.com)

[17] L. Pearlman, V. Welch, I. Foster, C. Kesselman,
and S. Tuecke, “A community authorization ser-
vice for group collaboration,” in Proceedings of
the IEEE 3rd International Workshop on Poli-
cies for Distributed Systems and Networks, 2002.
(http://www.globus.org/research/papers.html#CAS-
2002)

[18] A. A. Pirzada and C. McDonald, “Kerberos assisted
Authentication in Mobile Ad-hoc Networks,” in Pro-
ceedings of the 27th conference on Australasian com-
puter science, vol. 26, pp. 41-46, 2004.

[19] A. Raghunathan, N. Potlapally, and S. Ravi, “Secur-
ing wireless Data: System architecture challenges,”
in Proceedings of the 15th international symposium
on System Synthesis (ISSS’02), pp. 195-200, Oct.
2002.

[20] S. Ravi, A. Raghunathan, N. Potlapally, and M.
Sankaradass, “System design methodologies for a
wireless security processing platform,” in 39th Design
Automation Conference (DAC’02), pp. 777, Jun.
2002.

[21] E. Rescorla and Addison-Wesley, SSL and TLS De-
signing and Building Secure Systems, IEEE Cipher,
E40, Dec. 19, 2000.

[22] RSA, RSA BSAFE, RC2, RC4, RC5, and MD5 are
trademarks or registered trademarks of RSA Data
Security, Inc., 1999.

[23] H. Shacham and D. Boneh, “Improving SSL hand-
shake performance via batching.” in proceedings of
the RSA Conference 2001, Lecture Notes in Com-
puter Science, Vol. 2020, Springer-Verlag, pp. 28-
43,Apr. 2001.

[24] H. Shacham, D. Boneh, and E. Rescorla, “Client
Side Caching for TLS,” in Proceedings of the Sym-
posium on Network and Distributed System Security
(SNDSS’02), pp. 195-202, 2002.

[25] SonicWALL, SSL-R and SonicWALL
SSL-RX,High Performance Commer-
cial Application Accelerators, 2002.
(http://www.sonicwall.com/products/trans.asp)

[26] P. Todaro, An Overview of the Kerberos Authentica-
tion Protocol, SANS Institute, as part of GIAC prac-
tical repository, Oct. 2003.

[27] M. R. Thompson, A. Essiari, and S. Mudumbai,
“Certificate-based authorization policy in a PKI en-
vironment,” ACM Transactions on Information and
System Security, vol. 6, no. 4, pp. 566-588, Nov. 2003.

[28] S. Tuecke, D. Engert, I. Foster, V. Welch, M. Thomp-
son, L. Pearlman, and C. Kesselman, Internet X.509
Public Key Infrastructure Proxy Certificate Pro-
file, IETF draft, 2002. (http://ww.ietf.org/internet-
drafts/draft-ietf-pkix-proxy-03.txt)



International Journal of Network Security, Vol.6, No.1, PP.103–115, Jan. 2008 115

[29] B. R. Wetmore, Java Secure Socket Extension
(JSSE) API, JavaOne, Sun’2000 worldwide java de-
veloper conference, 2000.

[30] A. Yasinsac and J. Childs, “Analyzing internet se-
curity protocol” in Proceedings of the 6th IEEE In-
ternational Symposium on High Assurance Systems
Engineering (HASE’01), pp. 149-159, 2001.

Tarek S. Sobh received his B.Sc.
degree in computer engineering from
Military Technical College, Cairo,
Egypt in 1987. He received his M.Sc.
and Ph.D. degrees from Computer and
System Engineering Department, Fac-
ulty of Engineering, Al-Azhar Univer-
sity, Cairo, Egypt. He has designed

and developed several package for business applications
and security systems. His research of interest includes
network management and security, distributed systems,
knowledge discovery, and software engineering.

Ashraf Elgohary received his B.S.
in computer engineering from Military
Technical College, Cairo in 1993. He
received his M.Sc. degree from Com-
puter and System Engineering Depart-
ment, Faculty of Engineering, AL-
Azhar University, Cairo, Egypt in
2005. He works in network security

and database systems fields.

M. Zaki is the professor of soft-
ware engineering, Computer and Sys-
tem Engineering Department, Faculty
of Engineering, Al-Azhar University at
Cairo. He received his B.Sc. and
M.Sc. degrees in electrical engineer-
ing from Cairo University in 1968 and
1973 respectively. He received his Ph.

D. degrees in computer engineering from Warsaw Tech-
nical University, Poland in 1977. His fields of interest
include artificial intelligence, soft computing, and dis-
tributed systems.


