
Performance Improvements on Tor
or,

Why Tor is slow and what we’re going to do about it

Roger Dingledine and Steven J. Murdoch
arma@torproject.org,steven.murdoch@cl.cam.ac.uk

Tor Tech Report 2009-11-001
November 9, 2009

As Tor’s user base has grown, the performance of the Tor network has suffered. This
document describes our current understanding of why Tor is slow, and lays out our options for
fixing it.

Over the past few years, our funding (and thus our development effort) has focused on
usability and blocking-resistance. We’ve come up with a portable self-contained Windows
bundle; deployed tools to handle the upcoming censorship arms race; further developed
supporting applications like Vidalia, Torbutton, and Thandy; made it easier for users to be relays
by adding better rate limiting and an easy graphical interface with uPnP support; developed an
effective translation and localization team and infrastructure; and spread understanding of Tor
in a safe word-of-mouth way that stayed mostly under the radar of censors.

In parallel to adding these features, we’ve also been laying the groundwork for performance
improvements. We’ve been working with academics to write research papers on improving Tor’s
speed, funding some academic groups directly to come up with prototypes, and thinking hard
about how to safely collect metrics about network performance. But it’s becoming increasingly
clear that we’re not going to produce the perfect answers just by thinking hard. We need to roll
out some attempts at solutions, and use the experience to get better intuition about how to
really solve the problems.

We’ve identified six main reasons why the Tor network is slow. Problem #1 is that Tor’s
congestion control does not work well. We need to come up with ways to let “quiet” streams like
web browsing co-exist better with “loud” streams like bulk transfer. Problem #2 is that some
Tor users simply put too much traffic onto the network relative to the amount they contribute,
so we need to work on ways to limit the effects of those users and/or provide priority to the
other users. Problem #3 is that the Tor network simply doesn’t have enough capacity to handle
all the users that want privacy on the Internet. We need to develop strategies for increasing
the overall community of relays, and consider introducing incentives to make the network
more self-sustaining. Problem #4 is that Tor’s current path selection algorithms don’t actually
distribute load correctly over the network, meaning some relays are overloaded and some are

1

underloaded. We need to develop ways to more accurately estimate the properties of each relay,
and also ways for clients to select paths more fairly. Problem #5 is that Tor clients aren’t as
good as they should be at handling high or variable latency and connection failures. We need
better heuristics for clients to automatically shift away from bad circuits, and other tricks for
them to dynamically adapt their behavior. Problem #6 is that low-bandwidth users spend too
much of their network overhead downloading directory information. We’ve made a serious
dent in this problem already, but more work remains here too.

We discuss each reason more in its own section below. For each section, we explain our
current intuition for how to address the problem, how effective we think each fix would be,
how much effort and risk is involved, and the recommended next steps, all with an eye to what
can be accomplished in 2009.

While all six categories need to be resolved in order to make the Tor network fast enough to
handle everyone who wants to use it, we’ve ordered the sections by precedence. That is, solving
the earlier sections will be necessary before we can see benefits from solving the later sections.

Contents

1 Tor’s congestion control does not work well 3
1.1 TCP backoff slows down every circuit at once . 3
1.2 We chose Tor’s congestion control window sizes wrong 4

2 Some users add way too much load 5
2.1 Squeeze over-active circuits . 5
2.2 Throttle certain protocols at exits . 6
2.3 Throttle certain protocols at the client side . 7
2.4 Throttle all streams at the client side . 7
2.5 Default exit policy of 80,443 . 8
2.6 Better user education . 8

3 The Tor network doesn’t have enough capacity 8
3.1 Tor server advocacy . 9

3.1.1 Talks and trainings . 9
3.1.2 Better support for relay operators . 9
3.1.3 A Facebook app to show off your relay . 10
3.1.4 Look for new ways to get people to run relays 10

3.2 Funding more relays directly . 10
3.3 Handling fast Tor relays on Windows . 11
3.4 Relay scanning to find overloaded relays or broken exits 11
3.5 Getting dynamic-IP relays back into the relay list quickly 12
3.6 Incentives to relay . 12
3.7 Reachable clients become relays automatically . 13

2

4 Tor clients choose paths imperfectly 14
4.1 We don’t balance traffic over our bandwidth numbers correctly 14
4.2 The bandwidth estimates we have aren’t very accurate 16
4.3 Bandwidth might not even be the right metric to weight by 18
4.4 Considering exit policy in relay selection . 18
4.5 Older entry guards are overloaded . 20

5 Clients need to handle variable latency and failures better 20
5.1 Our round-robin and rate limiting is too granular 21
5.2 Better timeouts for giving up on circuits and trying a new one 22
5.3 If extending a circuit fails, try extending a few other places before abandoning

the circuit. 23
5.4 Improving efficiency of the Tor circuit-building protocol 23
5.5 Bundle the first data cell with the begin cell . 23

6 The network overhead may still be high for modem users 24
6.1 We’ve made progress already at directory overhead 24
6.2 Our TLS overhead can also be improved . 24

7 Last thoughts 25
7.1 Lessons from economics . 25
7.2 The plan moving forward . 27

1 Tor’s congestion control does not work well

One of Tor’s critical performance problems is in how it combines high-volume streams with
low-volume streams. We need to come up with ways to let the “quiet” streams (like web
browsing) co-exist better with the “loud” streams (like bulk transfer).

1.1 TCP backoff slows down every circuit at once

Tor combines all the circuits going between two Tor relays into a single TCP connection. This
approach is a smart idea in terms of anonymity, since putting all circuits on the same connection
prevents an observer from learning which packets correspond to which circuit. But over the
past year, research has shown that it’s a bad idea in terms of performance, since TCP’s backoff
mechanism only has one option when that connection is sending too many bytes: slow it down,
and thus slow down all the circuits going across it.

We could fix this problem by switching to a design with one circuit per TCP connection. But
that means that a relay with 1000 connections and 1000 circuits per connection would need a
million sockets open. That number is a problem for even the well-designed operating systems
and routers out there.

More generally, Tor currently uses two levels of congestion avoidance – TCP flow control
per-link, and a simple windowing scheme per-circuit. It has been suggested that this approach
is causing performance problems, because the two schemes interact badly.

3

Experiments show that moving congestion management to be fully end-to-end offers a
significant improvement in performance.

There have been two proposals to resolve this problem, but their underlying principle is the
same: use an unreliable protocol for links between Tor relays, and perform error recovery and
congestion management between the client and exit relay. Tor partially funded Joel Reardon’s
thesis [15] under Ian Goldberg. His thesis proposed using DTLS [16] (a UDP variant of TLS)
as the link protocol and a cut-down version of TCP to give reliability and congestion avoidance,
but largely using the existing Tor cell protocol. Csaba Kiraly et al. [3] proposed using IPSec [2]
to replace the entire Tor cell and link protocol.

Each approach has its own strengths and weaknesses. DTLS is relatively immature, and
Reardon noted deficiencies in the OpenSSL implementation of the protocol. However, the
largest missing piece from this proposal is a high-quality, privacy preserving TCP stack, under
a compatible license. Prior work has shown that there is a substantial privacy leak from TCP
stack and clockskew fingerprinting [5, 9]. Therefore to adopt this proposal, Tor would need to
incorporate a TCP stack, modified to operate in user-mode and to not leak identity information.

Reardon built a prototype around the TCP-Daytona stack [14], developed at IBM Labs,
and based on the Linux kernel TCP stack. This implementation is not publicly available and
its license is unclear, so it is unlikely to be suitable for use in Tor. Writing a TCP stack from
scratch is a substantial undertaking, and therefore other attempts have been to move different
operating system stacks into user-space. While there have been some prototypes, the maturity
of these systems have yet to be shown.

Kiraly et al.rely on the operating system IPsec stack, and a modification to the IKE key
exchange protocol to support onion routing. As with the proposal from Reardon, there is a risk
of operating system and machine fingerprinting from exposing the client TCP stack to the exit
relay. This could be resolved in a similar way, by implementing a user-mode IPsec stack, but
this would be a substantial effort, and would lose some of the advantages of making use of
existing building blocks.

Prof. Goldberg has a new student named Chris Alexander picking up where Joel left off.
He’s currently working on fixing bugs in OpenSSL’s implementation of DTLS along with other
core libraries that we’d need to use if we go this direction.

Impact: High.
Effort: High effort to get all the pieces in place.
Risk: High risk that it would need further work to get right.
Plan: We should keep working with them (and help fund Chris) to get this project closer to

something we can deploy. The next step on our side is to deploy a separate testing Tor network
that uses datagram protocols, based on patches from Joel and others, and get more intuition
from that. We could optimistically have this testbed network deployed in late 2009.

1.2 We chose Tor’s congestion control window sizes wrong

Tor maintains a per-circuit maximum of unacknowledged cells (CIRCWINDOW). If this value is
exceeded, it is assumed that the circuit has become congested, and so the originator stops
sending. Kiraly proposed [4, 3] that reducing this window size would substantially decrease
latency (although not to the same extent as moving to an unreliable link protocol), while not
affecting throughput.

4

Specifically, right now the circuit window size is 512KB and the per-stream window size
is 256KB. These numbers mean that a user downloading a large file receives it (in the ideal
case) in chunks of 256KB, sending back acknowledgements for each chunk. In practice, though,
the network has too many of these chunks moving around at once, so they spend most of their
time waiting in buffers at relays.

Reducing the size of these chunks has several effects. First, we reduce memory usage at the
relays, because there are fewer chunks waiting and because they’re smaller. Second, because
there are fewer bytes vying to get onto the network at each hop, users should see lower latency.

More investigation is needed on precisely what should be the new value for the circuit
window, and whether it should vary. Out of 100KB, 512KB (current value in Tor) and 2560KB,
they found the optimum was 100KB for all levels of packet loss. However this was only
evaluated for a fixed network latency and relay bandwidth, where all users had the same
CIRCWINDOW value. Therefore, a different optimum may exist for networks with different
characteristics, and during the transition of the network to the new value.

Impact: Medium. It seems pretty clear that in the steady-state this patch is a good idea;
but it’s still up in the air whether the transition period will show immediate improvement or
if there will be a period where traffic from people who upgrade get clobbered by traffic from
people who haven’t upgraded yet.

Effort: Low effort to deploy – it’s a several line patch!
Risk: Medium risk that we haven’t thought things through well enough and we’d need to

back it out or change parts of it.
Plan: Once we start on Tor 0.2.2.x (in the next few months), we should put the patch in

and see how it fares. We should go for maximum effect, and choose the lowest possible window
setting of 100 cells (50KB).

2 Some users add way too much load

Section 1 described mechanisms to let low-volume streams have a chance at competing with
high-volume streams. Without those mechanisms, normal web browsing users will always get
squeezed out by people pulling down larger content and tolerating high latency. But the next
problem is that some users simply add more load than the network can handle. Just making
sure that all the load gets handled fairly isn’t enough if there’s too much load in the first place.

When we originally designed Tor, we aimed for high throughput. We figured that providing
high throughput would mean we get good latency properties for free. However, now that it’s
clear we have several user profiles trying to use the Tor network at once, we need to consider
changing some of those design choices. Some of those changes would aim for better latency
and worse throughput.

2.1 Squeeze over-active circuits

The Tor 0.2.0.30 release included this change:

- Change the way that Tor buffers data that it is waiting to write.
Instead of queueing data cells in an enormous ring buffer for each

5

client->relay or relay->relay connection, we now queue cells on a
separate queue for each circuit. This lets us use less slack memory,
and will eventually let us be smarter about prioritizing different
kinds of traffic.

Currently when we’re picking cells to write onto the network, we choose round-robin from
each circuit that wants to write. We could instead remember which circuits have written many
cells recently, and give priority to the ones that haven’t.

Technically speaking, we’re reinventing more of TCP here, and we’d be better served by a
general switch to DTLS+UDP. But there are two reasons to still consider this separate approach.

The first is rapid deployment. We could get this change into the Tor 0.2.2.x development
release in mid 2009, and as relays upgrade, the change would gradually phase in. This
timeframe is way earlier than the practical timeframe for switching to DTLS+UDP.

The second reason is the flexibility this approach provides. We could give priorities based
on recent activity (“if you’ve sent much more than the average in the past 10 seconds, then
you get slowed down”), or we could base it on the total number of bytes sent on the circuit so
far, or some combination. Even once we switch to DTLS+UDP, we may still want to be able to
enforce some per-circuit quality-of-service properties.

This meddling is tricky though: we could encounter feedback effects if we don’t perfectly
anticipate the results of our changes. For example, we might end up squeezing certain classes
of circuits too far, causing those clients to build too many new circuits in response. Or we might
simply squeeze all circuits too much, ruining the network for everybody.

Also, Bittorrent is designed to resist attacks like this – it periodically drops its lowest-
performing connection and replaces it with a new one. So we would want to make sure we’re
not going to accidentally increase the number of circuit creation requests and thus just shift the
load problem.

Impact: High, if we get it right.
Effort: Medium effort to deploy – we need to go look at the code to figure out where to

change, how to efficiently keep stats on which circuits are active, etc.
Risk: High risk that we’d get it wrong the first few times. Also, it will be hard to measure

whether we’ve gotten it right or wrong.
Plan: Step one is to evaluate the complexity of changing the current code. We should do

that for Tor 0.2.2.x in mid 2009. Then we should write some proposals for various meddling
we could do, and try to find the right balance between simplicity (easy to code, easy to analyze)
and projected effect.

2.2 Throttle certain protocols at exits

If we’re right that Bittorrent traffic is a main reason for Tor’s load, we could bundle a protocol
analyzer with the exit relays. When they detect that a given outgoing stream is a protocol
associated with bulk transfer, they could set a low rate limit on that stream. (Tor already
supports per-stream rate limiting, though we’ve never found a need for it.)

This is a slippery slope in many respects though. First is the wiretapping question: is an
application that automatically looks at traffic content wiretapping? It depends which lawyer
you ask. Second is the network neutrality question: remember Comcast’s famous “we’re just

6

delaying the traffic” quote. Third is the liability concern: once we add this feature in, what
other requests are we going to get for throttling or blocking certain content? And does the
capability to throttle certain content change the liability situation for the relay operator?

Impact: Medium-high.
Effort: Medium effort to deploy: need to find the right protocol recognition tools and sort

out how to bundle them.
Risk: This isn’t really an arms race we want to play. The “encrypted bittorrent” community

already has a leg up since they’ve been fighting this battle with the telco’s already. Plus the
other downsides.

Plan: Not a good move.

2.3 Throttle certain protocols at the client side

While throttling certain protocols at the exit side introduces wiretapping and liability problems,
detecting them at the client side is more straightforward. We could teach Tor clients to detect
protocols as they come in on the socks port, and automatically treat them differently – and
even pop up an explanation box if we like.

This approach opens a new can of worms though: clients could disable the “feature” and
resume overloading the network.

Impact: Medium-high.
Effort: Medium effort to deploy: need to find the right protocol recognition tools and sort

out how to bundle them.
Risk: This isn’t really an arms race we want to play either. Users who want to file-share

over Tor will find a way. Encouraging people to fork a new “fast” version of Tor is not a good
way to keep all sides happy.

Plan: Not a good move.

2.4 Throttle all streams at the client side

While we shouldn’t try to identify particular protocols as evil, we could set stricter rate limiting
on client streams by default. If we set a low steady-state rate with a high bucket size (e.g. allow
spikes up to 250KB but enforce a long-term rate for all streams of 5KB/s), we would probably
provide similar performance to what clients get now, and it’s possible we could alleviate quite a
bit of the congestion and then get even better and more consistent performance.

Plus, we could make the defaults higher if you sign up as a relay and pass your reachability
test.

The first problem is: how should we choose the numbers? So far we have avoided picking
absolute speed numbers for this sort of situation, because we won’t be able to predict a number
now which will still be the correct number in the future.

The second problem is the same as in the previous subsection – users could modify their
clients to disable these checks. So we would want to do this step only if we also put in throttling
at the exits or intermediate relays, a la Section 2.1. And if that throttling works, changing
clients (and hoping they don’t revert the changes) may be unnecessary.

Impact: Low at first, but medium-high later.

7

Effort: Low effort to deploy.
Risk: If we pick high numbers, we’ll never see much of an impact. If we pick low numbers,

we could accidentally choke users too much.
Plan: It’s not crazy, but may be redundant. We should consider in Tor 0.2.2.x whether to do

it, in conjunction with throttling at other points in the circuit.

2.5 Default exit policy of 80,443

We hear periodically from relay operators who had problems with DMCA takedown attempts,
switched to an exit policy of “permit only ports 80 and 443”, and no longer hear DMCA
complaints.

Does that mean that most file-sharing attempts go over some other port? If only a few exit
relays permitted ports other than 80 and 443, we would effectively squeeze the high-volume
flows onto those few exit relays, reducing the total amount of load on the network.

First, there’s a clear downside: we lose out on other protocols. Part of the point of Tor is
to be application-neutral. Also, it’s not clear that it would work long-term, since corporate
firewalls are continuing to push more and more of the Internet onto port 80.

To be clearer, we have more options here than the two extremes. We could switch the
default exit policy from allow-all-but-these-20-ports to accept-only-these-20-ports. We could
even get more complex, for example by applying per-stream rate limiting at the exit relays to
streams destined for certain ports.

Impact: Low? Medium? High?
Effort: Low effort to deploy.
Risk: The Tor network becomes less useful, roughly in proportion to the amount of speedup

we get.
Plan: I think we should take some of these steps in the Tor 0.2.2.x timeframe. The big

challenge here is that we don’t have much intuition about how effective the changes should be,
so we don’t know how far to go.

2.6 Better user education

We still run across users who think any anonymity system out there must have been designed
with file-sharing in mind. If we make it clearer in the FAQ and our webpage that Tor isn’t for
high-volume streams, that might combine well with the other approaches above.

Overall, the challenge of users who want to overload the system will continue. Tor is not
the only system that faces this challenge.

3 The Tor network doesn’t have enough capacity

Section 1 aims to let web browsing connections work better in the face of high-volume streams,
and Section 2 aims to reduce the overall load on the network. The third reason why Tor is slow
is that we simply don’t have enough capacity in the network to handle all the users who want
to use Tor.

8

Why do we call this the third problem rather than the number one problem? Just adding
more capacity to the network isn’t going to solve the performance problem. If we add more
capacity without solving the issues with high-volume streams, then those high-volume streams
will expand to use up whatever new capacity we add.

Economics tells us to expect that improving performance in the Tor network (i.e. increasing
supply) means that more users will arrive to fill the void. So in either case we shouldn’t be under
the illusion that Tor will magically just become faster once we implement these improvements.
We place the first two sections higher in priority because their goals are to limit the ability of the
high-volume users to become even higher-volume users, thus allowing the new capacity to be
more useful to the other users. We discuss the supply-vs-demand question more in Section 7.1.

3.1 Tor server advocacy

Encouraging more volunteers to run Tor servers, and existing volunteers to keep their servers
running, will increase network capacity and hence performance.

Impact: High, assuming we work on the plans from Section 1 and Section 2 also.
Effort: Medium to high, depending on how much we put in.
Risk: Low.
Plan: A clear win. We should do as many advocacy aspects as we can fit in.

3.1.1 Talks and trainings

One of the best ways we’ve found for getting new relays is to go to conferences and talk to
people in person. There are many thousands of people out there with spare fast network
connections and a willingness to help save the world. Our experience is that visiting them in
person produces much better results, long-term, than Slashdot articles.

Roger and Jake have been working on this angle, and Jake will be ramping up even more
on it in 2009.

Advocacy and education is especially important in the context of new and quickly-changing
government policies. In particular, the data retention question in Germany is causing instability
in the overall set of volunteers willing to run relays. Karsten’s latest metrics1 show that while
the number of relays in other countries held steady or went up during 2008, the numbers
in Germany went down over the course of 2008. On the other hand, the total amount of
bandwidth provided by German relays held steady during 2008 – so while other operators
picked up the slack, we still lost overall diversity of relays. These results tell us where to focus
our efforts.

3.1.2 Better support for relay operators

Getting somebody to set up a relay is one thing; getting them to keep it up is another thing
entirely. We lose relays when the operator reboots and forgets to set up the relay to start on
boot. We lose relays when the operator looks through the website and doesn’t find the answer
to a question.

1https://metrics.torproject.org/

9

https://metrics.torproject.org/

We’ve been working on a new service for relay operators called Tor Weather2. The idea is
that once you’ve set up your relay, you can subscribe to get an email whenever it goes down.
We need to work on the interface more, for example to let people subscribe to various levels of
notification, but the basic idea seems like a very useful one.

With Tor Weather you can also subscribe to watch somebody else’s relay; so this service
should tie in well for the people doing advocacy, to let them focus their follow-ups when a relay
they helped set up disappears.

We are also considering setting up a mailing list exclusively for relay operators, to give them
a better sense of community, to answer questions and concerns more quickly, etc.

We should also consider offering paid or subsidized support options so relay operators have
a place to go for help. Corporations and universities running relays could get direct phone,
email, or IM support options.

3.1.3 A Facebook app to show off your relay

We’re currently developing a Facebook application that will allow relay operators to link their
Tor relays to their Facebook profile. Volunteers who desire can therefore publicly get credit
for their contribution to the Tor network. This would raise awareness for Tor, and encourage
others to operate relays.

Opportunities for expansion include allowing relay operators to form “teams”, and for these
teams to be ranked on the contribution to the network. (Real world examples here include
the SETI screensaver and the MD5 hash crack challenges.) This competition may give more
encouragement for team members to increase their contribution to the network. Also, when
one of the team members has their relay fail, other team members may notice and provide
assistance on fixing the problem.

3.1.4 Look for new ways to get people to run relays

We are not primarily social engineers, and the people that we are good at convincing to set up
relays are not a very huge group.

We need to keep an eye out for more creative ways to encourage a broader class of users to
realize that helping out by operating a relay will ultimately be something they want to do.

3.2 Funding more relays directly

Another option is to directly pay hosting fees for fast relays (or to directly sponsor others to run
them).

The main problem with this approach is that the efficiency is low: at even cheap hosting
rates, the cost of a significant number of new relays grows quickly. For example, if we can
find 100 non-exit relays providing 1MB/s for as low as $100/mo (and at that price it’d be
renting space on a shared server, with all the resource sharing hassles that comes with), that’s
$120k per year. Figure some more for maintenance and coordination, the overhead to find 100
locations that are on sufficiently different networks and administrative zones, etc.

2https://weather.torproject.org/

10

https://weather.torproject.org/

The amount of work involved in running them as exit relays might be a few times this
cost, due to higher hosting fees, more effort involved in establishing and maintaining the right
relationships, having lawyers nearby, etc.

Plus the costs just keep coming, month after month.
Overall, it seems more sustainable to invest in better code, and community outreach and

education.
Impact: Medium.
Effort: High.
Risk: Low.
Plan: If we end up with extra funding, sure. Otherwise, I think our time and effort are

better spent on design and coding that will have long-term impact rather than be recurring
costs.

3.3 Handling fast Tor relays on Windows

Advocating that users set up relays is all well and good, but if most users are on Windows, and
Tor doesn’t support fast relays on Windows well, then we’re in a bad position.

Nick has been adapting libevent so it can handle a buffer-based abstraction rather than
the traditional Unix-style socket-based abstraction. Then we will modify Tor to use this new
abstraction. Nick’s blog post3 provides more detail.

Impact: Medium.
Effort: High, but we’re already halfway through.
Risk: Low.
Plan: Keep at it. We’re on schedule to get a test version (one that works for Nick) out in

September 2009. Then iterate until it works for everybody.

3.4 Relay scanning to find overloaded relays or broken exits

Part of the reason that Tor is slow is because some of the relays are advertising more bandwidth
than they can realistically handle. These anomalies might be due to bad load balancing on the
part of the Tor designers, bad rate limiting or flaky network connectivity on the part of the
relay operator, or malicious intent. Similarly, some exit relays might fail to give back the ‘real’
content, requiring users to repeat their connection attempts.

Mike has been working on tools to identify these relays: SpeedRacer4 and SoaT5. Once the
tools are further refined, we should be able to figure out if there are general classes of problems
(load balancing, common usability problems, etc) that mean we should modify our design to
compensate. The end goal is to get our tools to the point where they can automatically tell the
directory authorities to leave out certain misbehaving relays in the network status consensus,
and/or adjust the bandwidths they advertise for each relay.

Impact: Low.

3https://blog.torproject.org/blog/some-notes-progress-iocp-and-libevent
4https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.

BwAuthorities
5https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/ExitAuthority/README.

ExitScanning

11

https://blog.torproject.org/blog/some-notes-progress-iocp-and-libevent
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.BwAuthorities
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/BwAuthority/README.BwAuthorities
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/ExitAuthority/README.ExitScanning
https://gitweb.torproject.org/torflow.git/blob/HEAD:/NetworkScanners/ExitAuthority/README.ExitScanning

Effort: Medium.
Risk: Low.
Plan: Keep at it. We’re on schedule to get a test version (that works for Mike) out in mid

2009. Then iterate until it works for everybody.

3.5 Getting dynamic-IP relays back into the relay list quickly

Currently there is a delay of 2-5 hours between when a relay changes its IP address and when
that relay gets used again by clients. This delay causes two problems: relays on dynamic IP
addresses will be underutilized (contributing less to the total network capacity than they could),
and clients waste time connecting to relay IP addresses that are no longer listening.

There are several approaches that can mitigate this problem by notifying clients sooner
about IP address changes. The first approach is to continue on our path of simplifying directory
information (see Section 6.1): if we can put out “diffs” of the network status more often than
once an hour, clients can get updated quicker. A second approach is for each relay to estimate
how volatile its IP address is, and advertise this in its descriptor. Clients then ignore relays
with volatile IP addresses and old descriptor. Similarly, directory authorities could prioritise the
distribution of updated IP addresses for freshly changed relays.

As a last note here, we currently have some bugs that are causing relays with dynamic IP
addresses to fall out of the network entirely. If a third to half of the relays are running on
dynamic IP addresses, that’s really bad.

Impact: Low-medium.
Effort: Low-medium.
Risk: Low.
Plan: Track down and fix bugs for Tor 0.2.2.x. Continue simplifying directory information

so we can get new info to clients quicker.

3.6 Incentives to relay

Our blog post on this topic6 explains our work to-date on this topic. The current situation is
that we have two designs to consider: one that’s quite simple but has a serious anonymity
problem, and one that’s quite complex.

I think we should move forward with the first (simple but flawed) design. There are several
pieces to moving it forward. The first phase is changing Tor’s queueing mechanisms to be
able to give some circuits priority over others. This step also ties into the other development
items in this document regarding cell-, circuit-, and connection-priorities. The second phase is
then redesigning the “gold star” mechanism so the priority earned by relays lasts long enough
that there’s a sufficient anonymity set for them. We’ll need to look at current and projected
network metrics to discover a good upper bound on relay churn. The question to answer is:
“What period of time, taken as a rolling snapshot of which relays are present in the network,
guarantees a sufficiently large anonymity set for high-priority relays?” Hopefully the answer is
something like 7 or 14 days. There are other missing pieces in there, like “what do we mean by

6https://blog.torproject.org/blog/two-incentive-designs-tor

12

https://blog.torproject.org/blog/two-incentive-designs-tor

sufficiently?”, that we’ll just have to guess about. The third phase is to actually sort out how to
construct and distribute gold-star cryptographic certificates that entry relays can verify.

Notice that with the new certificates approach, we can reward users who contribute to the
network in other ways than running a fast public relay – examples might include top sponsors,
users who run stable bridge relays, translators, people who fix bugs, etc.

Impact: Medium-high.
Effort: Medium-high.
Risk: Medium-high: if we screw up the balance of our community-oriented infrastructure,

we might end up hurting more than we help.
Plan: Accomplishing the three phases above will put us in a much better position to decide

whether to deploy this idea. At the same time, the more complex options might become more
within reach as other research teams investigate and refine them, so we should keep an eye on
them too.

3.7 Reachable clients become relays automatically

Even if we don’t add in an incentive scheme, simply making suitable users into relays by default
should do a lot for our capacity problems.

We’ve made many steps toward this goal already, with automated reachability testing,
bandwidth estimation, UPnP support built in to Vidalia, and so on.

There are a few risks here though. First, relaying traffic could introduce anonymity vulnera-
bilities, and we need to learn more about that first. (That’s on the roadmap for 2009.) Second,
making clients into relays by default could make some users upset. Third, this approach could
change how sysadmins view Tor. By putting ourselves into the same category as Skype, we
would scale up the “blocking Tor connections” arms race by a level that’s hard to predict. Also,
we need to finish deployment of Section 3.3 before we can roll this out, or we’ll just make a
bunch of Windows machines crash.

We had originally been avoiding the “everybody a relay” design until we had a better plan
for scaling the directory to be able to distribute tens of thousands of relay addresses. I think
these two plans are not as related as we first thought, though. For example, a very simple
answer for what to do if we get more relays than our current directory scheme can handle is to
publish only the best relays, for some metric of best that considers capacity, expected uptime,
etc. That should be a perfectly adequate stopgap measure. The step after that would be to
consider splintering the network into two networkstatus documents, and clients flip a coin to
decide which they use. Ultimately, if we are so lucky as to get into the position of having too
many relays, we’ll want to look at the distribution and properties of the relays we have when
deciding what algorithms would best make use of them.

Impact: High.
Effort: Medium, now that we’ve done a lot of hard work already.
Risk: Medium.
Plan: Wrap up our investigations into the anonymity implications of being a relay, at the

same time as working on a plan for exactly how the Tor client should decide if it’s suitable for
elevation to relay status. This is going to happen, it’s just a matter of how soon.

13

4 Tor clients choose paths imperfectly

Even when we sort out the congestion control issues, the problem of users abusing the network
with too much traffic, and the question of overall capacity, we still face a fourth problem. Users
need to choose their paths in such a way that everybody is using the network efficiently.

Right now, Tor relays estimate their capacity by observing the largest traffic burst they’ve
seen themselves do in the past day. They advertise that bandwidth capacity in the directory
information, and clients weight their path selection by the bandwidth of each relay. For example,
a relay that advertises 100KB/s peak bandwidth will be chosen twice as often as a relay that
advertises 50KB/s peak bandwidth.

There are several problems with our current algorithm that are worth fixing.

4.1 We don’t balance traffic over our bandwidth numbers correctly

Selecting relays with a probability proportional to their bandwidth contribution to the network
may not be the optimal algorithm. Murdoch and Watson [11] investigated the performance
impact of different relay selection algorithms, and came up with a model to describe the optimal
path selection strategies based on how loaded the network is.

Tor’s current selection strategy is optimal when the network is fully loaded. That is, if every
single byte is going to be used, then weighting by capacity is the right way to do it. But if the
network is not fully loaded, then the fast relays end up with less load than the slow relays. To
compensate, clients should pick faster relays with higher probability.

In particular, we can estimate the network load because all Tor relays publish both their
capacity and usage in their relay descriptor (but see Section 4.2 for problems that crop up
there). The Tor network is currently loaded at around 50%. This level is much higher than
most reasonable networks, indicating that our plan in Section 3 to get more overall capacity is
a good one. But 50% is quite far from 100% when it becomes to optimal load balancing.

To find the optimum relay selection probabilities for the model, Steven used a hill-climbing
algorithm to minimize network latency, with a Tor directory snapshot as input. The results
(shown in Figure 1 and Figure 2) depend on the network load relative to overall capacity. As
load approaches capacity, the optimum selection probabilities converge to the one currently
used by Tor: relay bandwidth proportional to network capacity. However, as load drops, the
optimized selection algorithm favors slow relays less and faster relays more; many relays are
not used at all.

Anecdotal evidence supports the theory that the fast relays in the Tor network have more
spare capacity than they should. Several users have posted that they get much better Tor
performance if they hard-code their paths to only use the fastest ten relays (and ignore the
huge anonymity implications, of course).

The relay selection probabilities in these graphs are tuned to a particular level of network
load. Figure 3 shows how average network latency is affected by relay selection probabilities,
for different levels of network load. For all load levels examined, the optimized selection
probabilities offer lower latency when compared to Tor’s current selection algorithm. However,
there’s a downside to tailoring for a particular load level: if we see a much heavier load in
practice than the one we had in mind when we tuned our selection biases, then we end up
overbalancing the network in the other direction.

14

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●

●●
●●●●●●●●

●●●●
●●●●●●

●●●●●
●

●●
●

●

●
●●●

●

0 2000 4000 6000 8000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0
0.

02
5

0.
03

0
0.

03
5

Bandwidth (cells/s)

S
el

ec
tio

n
pr

ob
ab

ili
ty

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●

●●
●●●●●●●●

●●●●
●●●●●●

●●●●●
●

●●
●

●

●
●●●

●

●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●

●●●●●●●
●●●●

●●●●
●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●

●●
●●●●●●●●

●●●●
●●●●●●

●●●●
●

●
●●

●
●

●
●●●

●

●●●
●●●

●●
●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●

●●●●●●●●●
●

●●●
●●●●●

●●●
●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●

●●
●●●

●●●●●
●

●●●
●●●●●●

●●●
●●

●

●●
●

●

●
●●●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●

●●●●
●

●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●
●●●●

●●●
●●●●●

●
●●●

●
●●
●●●

●●
●●●

●

●●

●

●

●

●
●●

●

●●
●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●
●●●●●●

●●●●
●●●●●●●●●●

●●●●●●●●●●●●●●●●
●●●●●●●

●●●●●●●●●
●●●

●●●●
●

●●●
●●●●●●●●●●●●●●●●●●

●
●●●●●●●

●●●
●●●●

●●●
●●●●●

●
●●●

●
●●
●●●

●●
●●●

●

●●

●

●

●

●
●●

●

Optimum node selection probability

50%

75%

90%
>99%

Figure 1: Optimum relay selection probabilities for a variety of network loads. Tor is currently
at around 50% utilization. The relay selection probabilities currently used by Tor are shown in
black.

Specifically, each probability distribution has a cut-off point at which (according to the
model) at least one relay will have a higher load than its capacity, at which its queue length,
and hence latency, will become infinite. For the optimized selection probability distributions,
this cut-off point is a few percent above the level they were designed to operate at. For Tor’s
current selection algorithm, it is when the overall network capacity equals the overall network
load.

In this respect the Tor selection algorithm reaches the theoretical optimum, as no network
can operate at greater than 100% utilization while maintaining finite latency. However, in
a real instantiation of any of these alternative probability distributions, the network latency
would not become infinite; instead a connection would time out and a different circuit would
be selected. So in practice, if the wrong probability distribution was selected, the network
would converge at a different one. Unfortunately the standard queuing theory models cannot
handle this case; we need to move to a simulation rather than using equations and assumptions,
to estimate the real effect.

Impact: Low-medium.
Effort: Medium, since we still need to get a better sense of the correct network load to

expect, and we need to experiment to see if the model actually matches reality.
Risk: Low, since we can always back out the changes.
Plan: It seems clear that some adjustments should be done in terms of biasing selection

toward the faster relays. The exact load level to anticipate remains an open question though.

15

●●● ●● ●●●●●●●● ●●●● ●●●●●● ●●●●● ● ●● ● ● ● ●●● ●

0 2000 4000 6000 8000

0.
00

0
0.

00
5

0.
01

0
0.

01
5

Bandwidth (cells/s)

S
el

ec
tio

n
pr

ob
ab

ili
ty

 −
 T

or
's

 s
el

ec
tio

n
pr

ob
ab

ili
ty

●●● ●● ●●●●●●●● ●●●● ●●●●●● ●●●●● ● ●● ● ● ● ●●● ●●
●● ●●●●●●●● ●●●● ●●●●●● ●●●●● ● ●● ● ● ● ●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●● ●●●●

●●●●●●
●●●●●

●
●●

●
●

●
●●●

●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●
●●●●

●
●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●

●●
●●●

●●●●●
●

●●●
●

●●●●●

●●
●●●

●

●●
●

●

●

●
●●

●

●●●
●●●●●●●●●●●●●●●●●●●●

●●●●●●●
●●●●●●

●●●●●●●●●
●●●●●●●●●●●●●●●●●

●●●●●●●●
●●●●●●●●●

●●●
●●●●

●
●●●

●●●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●●

●●
●●●

●●●●●
●

●●●
●

●●●●●

●●
●●●

●

●●
●

●

●

●
●●

●

Selection probabilility compared to Tor

50%

75%

90%

>99%

Figure 2: Difference between Tor’s current relay selection probabilities and the optimum, for a
variety of network loads. For Tor’s current network load (≈ 50%) shown in pink, the slowest
relays are not used at all, and the slower relays are favoured less.

Fortunately, in our new networkstatus algorithm, the directory authorities declare the band-
widths for each relay. So we can just reweight them on the fly and clients will use the new
numbers. That means once enough clients have upgraded to using the bandwidths specified in
the networkstatus, we can start to experiment with shifting the biases and see what results we
get.

4.2 The bandwidth estimates we have aren’t very accurate

Weighting relay selection by bandwidth only works if we can accurately estimate the bandwidth
for each relay.

Snader and Borisov [17] examined three strategies for estimating the bandwidth for each
relay. The first strategy was Tor’s current approach of looking for peaks in the actual bytes it’s
handled in the past day. The second strategy was active probing by the directory authorities.
For their third strategy, they proposed that each Tor relay opportunistically monitor the data
rates that it achieves when communicating with other Tor relays. Since currently Tor uses a
clique topology, given enough time, all relays will communicate with all other Tor relays. If
each Tor relay reports their measurements back to the directory authorities, then the median
report should be a good estimate of that relay’s bandwidth. As a bonus, this estimate should
be difficult to game, when compared to the current approach of self-advertising bandwidth
capacity.

16

0 20 40 60 80 100

0
5

10
15

Latency for varying network loads

Network load (%)

A
ve

ra
ge

 q
ue

ui
ng

 d
el

ay
 (

m
s)

●●● ●

Figure 3: Average network latency against network load. Three relay selection probabilities are
shown, optimized for 50%, 75%, and 90% network load. The Tor relay selection algorithm is
also included (black). The dots on the x axis show the level of network load at which the relay
selection probability distributions are optimized for. The line is cut off when the model predicts
that at least one relay will have an infinite queue length, which occurs before load = capacity
for all relay selection algorithms except for Tor’s current one.

Experiments show that opportunistic bandwidth measurement has a better systematic error
than Tor’s current self-advertised measure, although has a poorer log-log correlation (0.48 vs.
0.57). The most accurate scheme is active probing of capacity, with a log-log correlation of
0.63, but this introduces network overhead.

All three schemes suffer from fairly poor accuracy. Perhaps this inaccuracy is due to some
relays with high variance in bandwidth capacity? We need to explore this area more to
understand why our estimates are not as good as they could be.

Impact: Low-medium.
Effort: Medium, since we still need to get a better sense of the correct network load to

expect, and we need to experiment to see if the model actually matches reality.
Risk: Low, since we can always back out the changes.
Plan: More research remains here to figure out what algorithms will actually produce

more accurate bandwidth estimates. As with Section 4.1 above, once we do have some better
numbers, we can change the weights in the directory, and clients will immediately move to the
better numbers. We should also experiment with augmenting our estimates with active probes
from Mike’s SpeedRacer tool.

17

4.3 Bandwidth might not even be the right metric to weight by

The current Tor network selection algorithm biases purely by bandwidth. This approach will
sometimes cause high latency circuits due to multiple ocean crossings or otherwise congested
links. An alternative approach would be to not only bias selection of relays based on bandwidth,
but to also bias the selection of hops based on expected latency.

Micah Sherr is finishing his PhD thesis at Penn under Matt Blaze, exploring exactly this
issue. In the past we’ve avoided any sort of path selection algorithm that requires pairwise
measurements of the network, because communicating N 2 measurements to clients would
take too much bandwidth. Micah solves this problem by using a virtual coordinate system – a
three or four dimension space such that distance between relays in the virtual coordinate space
corresponds to the network latency (or other metric) between them.

His experiments show that we could see a significant speedup in the Tor network if users
choose their paths based on this new relay selection algorithm. More research remains, of
course, but the initial results are very promising.

On the other hand, reducing the number of potential paths would also have anonymity
consequences, and these would need to be carefully considered. For example, an attacker who
wishes to monitor traffic could create several relays, on distinct /16 subnets, but with low
latency between them. A Tor client trying to minimize latency would be more likely to select
these relays for both entry and exit than it would otherwise. This particular problem could be
mitigated by selecting entry and exit relay as normal, and only using latency measurements to
select the middle relay.

Impact: Medium-high.
Effort: Medium-high, since we first need to sort out how effective the algorithm is, and

then we need to figure out a migration plan.
Risk: Medium, since a new selection algorithm probably carries with it a new set of

anonymity-breaking papers that will only come out a few years after we deploy.
Plan: Micah is going to write a design proposal for getting relays to compute and maintain

their virtual coordinates based on latency. Once we deploy that, we’ll have some actual data
points, and we’ll be in a better position to simulate whether the idea will help in reality.
Counting deployment time, that means we probably won’t have clients using this scheme until
2010.

4.4 Considering exit policy in relay selection

When selecting an exit relay for a circuit, the Tor client will build a list of all exit relays which
can carry the desired stream, then select from them with a probability weighted by each relay’s
capacity7. This means that relays with more permissive exit policies will be candidates for more
circuits, and hence will be more heavily loaded compared to relays with restrictive policies.

Figure 4 shows the exit relay capacity for a selection of port numbers. It can be clearly seen
that there is a radical difference in the availability of relays for certain ports (generally those
not in the default exit policy). Any traffic to these ports will be routed through a small number
of exit relays, and if they have a permissive exit policy, they will likely become overloaded from

7The actual algorithm is slightly more complex: in particular, exit relays which are also guard relays will be
weighted less, and some circuits are created preemptively without any destination port in mind.

18

22 25 80 119 135 443 563 8080 6667

Port number

E
xi

t c
ap

ac
ity

 a
va

ila
bl

e
(%

)

0

20

40

60

80

100

Nodes
Bandwidth

Figure 4: Exit relay capacity, in terms of number of relays and advertised bandwidth for a
selection of port numbers.

all the other traffic they receive. The extent of this effect will depend on how much traffic in
Tor is to ports which are not in the default exit policy.

The overloading of permissive exit relays can be counteracted by adjusting the selection
probability of a relay based on its exit policy and knowledge of the global network load per-port.
While it should improve performance, this modification will make it easier for malicious exit
relays to select traffic they wish to monitor. For example, an exit relay which wants to attack
SSH sessions can currently list only port 22 in its exit policy. Currently they will get a small
amount of traffic compared to their capacity, but with the modification they will get a much
larger share of SSH traffic. (On the other hand, a malicious exit relay could already do this by
artificially inflating its advertised bandwidth capacity.)

To properly balance exit relay usage, it is necessary to know the usage of the Tor network, by
port. McCoy et al. [7] have figures for protocol usage in Tor, but these figures were generated
through deep packet inspection, rather than by port number. Furthermore, the exit relay
they ran used the fairly permissive default exit policy. Therefore, their measurements will
underestimate the relative traffic on ports which are present in the default exit policy, and
are also present in more restrictive policies. To accurately estimate the Tor network usage by
port, it is necessary to measure the network usage by port on one or more exit relays, while
simultaneously recording the exit policy of all other exit relays considered usable.

We could instead imagine more crude approaches. For example, in Section 3.4 we suggest
using a tool like SpeedRacer or SoaT to identify relays that are overloaded. We could then
either instruct clients to avoid them entirely, or reduce the capacity associated with that relay

19

in the directory status to reduce the attention the relay gets from clients. Then we could avoid
the whole question of why the relays are overloaded. On the other hand, understanding the
reasons for load hotspots can help us resolve them at the architectural level.

Impact: Low-medium.
Effort: Low-medium.
Risk: Low.
Plan: When we’re gathering statistics for metrics, we should make a point of gathering

some anonymized data about destination ports seen by a few exit relays. Then we will have
better intuition about whether we should solve this by reweighting at the clients, reweighting
in the directory status, or ignoring the issue entirely.

4.5 Older entry guards are overloaded

While the load on exit relays is skewed based on having an unusual exit policy, load on entry
guards is skewed based on how long they’ve been in the network.

Since Tor clients choose a small number of entry guards and keep them for several months,
a relay that’s been listed with the Guard flag for a long time will accumulate an increasing
number of clients. A relay that just earned its Guard flag for the first time will see very few
clients.

To combat this skew, clients should rotate entry guards every so often. We need to look at
network performance metrics and discern how long it takes for the skew to become noticeable –
it might be that rotating to a new guard after a week or two is enough to substantially resolve
the problem. We also need to consider the added risk that higher guard churn poses versus
the original attack they were designed to thwart [12], but I think a few weeks should still be
plenty high.

At the same time, there are fewer relays with the Guard flag than there should be. While the
Exit flag really is a function of the relay’s exit policy, the required properties for entry guards
are much more vague: we want them to be “fast enough”, and we want them to be “likely to
be around for a while more”. I think the requirements currently are too strict. This scarcity
of entry guards in turn influences the anonymity the Tor network can provide, since there are
fewer potential entry points into the network.

Impact: High.
Effort: Low.
Risk: Low.
Plan: We should do it, early in Tor 0.2.2.x. We’ll need proposals first, both for the “dropping

old guards” plan (to assess the tradeoff from the anonymity risk) and for the “opening up the
guard criteria” plan.

5 Clients need to handle variable latency and failures better

The next issue we need to tackle is that Tor clients aren’t as good as they should be at handling
high or variable latency and connection failures. First, we need ways to smooth out the latency
that clients see. Then, for the cases where we can’t smooth it out enough, we need better

20

Circuit extension time

Time [s]

D
en

si
ty

0 1 2 3 4 5 6 7 8 9 10

0.
0

0.
2

0.
4

0.
6

0.
8

1st hop

2nd hop

3rd hop

All hops

Figure 5: Number of seconds it takes to establish each hop of a 3-hop circuit. The higher density
of samples around 2s, 3s, etc indicate that rate limiting at each relay is introducing extra delay
into the responses.

heuristics for clients to automatically shift away from bad circuits, and other tricks for them to
dynamically adapt their behavior.

5.1 Our round-robin and rate limiting is too granular

Tor’s rate limiting uses a token bucket approach to enforce a long-term average rate of incoming
and outgoing bytes, while still permitting short-term bursts above the allowed bandwidth. Each
token represents permission to send another byte onto the network (or read from the network).
Every second new tokens are added, up to some cap (the bucket size).

So Tor relays that have cells buffered waiting to go out onto the network will wait until
the new second arrives, and then deliver as many cells as they can. In practice, this behavior
results in traffic ‘bumps’ at the beginning of each second, with little network traffic the rest of
the time. Mike and Karsten have been collecting data from circuit extension times (how long it
takes to establish each hop of a circuit); the bumps are easily seen in Figure 5.

Our original theory when designing Tor’s rate limiting was that one-second granularity
should be sufficient: cells will go out as quickly as possible while the bucket still has tokens,
and once it’s empty there’s nothing we can do but wait until the next second for permission to
send more cells.

We should explore refilling the buckets more often than once a second, for three reasons.
First, we’ll get a better intuition about how full the buffers really are: if we spread things out
better, then we could reduce latency by perhaps multiple seconds. Second, spikes-and-silence
is not friendly for TCP, so averaging the flows ourselves might mean much smoother network
performance. Third, sub-second precision will give us more flexibility in our priority strategies
from Section 2.1.

On the other hand, we don’t want to go too far: cells are 512 bytes, so it isn’t useful to think

21

in units smaller than that. Also, every network write operation carries with it overhead from
the TLS record, the TCP header, and the IP packet header. Finally, network transmission unit
(MTU) sizes vary, but if we could use a larger packet on the wire and we don’t, then we’re not
being as efficient as we could be.

Impact: Low-Medium.
Effort: Medium.
Risk: Low, unless we add in bad feedback effects and don’t notice.
Plan: We should continue collecting metrics to get better intuition here. While we’re

designing priority stategies for Section 2.1, we should keep the option of higher-resolution
rate-limiting in mind.

5.2 Better timeouts for giving up on circuits and trying a new one

Some circuits are established very quickly, and some circuits take many seconds to form. The
time it takes for the circuit to open can give us a hint about how well that circuit will perform
for future traffic. We should discard extremely slow circuits early, so clients never have to even
try them.

The question, though, is how to decide the right timeouts? If we set a static timeout in the
clients, then choosing a number that’s too low will cause clients to discard too many circuits.
Worse, clients on really bad connections will never manage to establish a circuit. On the other
hand, setting a number that’s too high won’t change the status quo much.

Fallon Chen worked during her Google-Summer-of-Code-2008 internship with us on col-
lecting data about how long it takes for clients to establish circuits, and analyzing the data
to decide what shape the distribution has (it appears to be a Pareto distribution). The goal is
for clients to track their own circuit build times, and then be able to recognize if a circuit has
taken longer than it should have compared to the previous circuits. That way clients with fast
connections can discard not-quite-fast-enough circuits, whereas clients with slow connections
can discard only the really-very-slow circuits. Not only do clients get better performance, but
we can also dynamically adapt our paths away from overloaded relays.

Mike and Fallon wrote a proposal8 explaining the details of how to collect the stats, how
many data points the client needs before it has a good sense of the expected build times, and
so on.

Further, there’s another case in Tor where adaptive timeouts would be smart: how long we
wait in between trying to attach a stream to a given circuit and deciding that we should try a
new circuit. Right now we have a crude and static “try 10 seconds on one, then try 15 seconds
on another” algorithm, which is both way too high and way too low, depending on the context.

Impact: Medium.
Effort: Medium, but we’re already part-way through it.
Risk: Low, unless we’ve mis-characterized the distribution of circuit extend times, in which

case clients end up discarding too many circuits.
Plan: We should deploy the changes in clients in Tor 0.2.2.x to collect circuit times, and see

how that goes. Then we should gather data about stream timeouts to build a plan for how to

8https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/151-path-selection-
improvements.txt

22

https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/151-path-selection-improvements.txt
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/151-path-selection-improvements.txt

resolve the second piece.

5.3 If extending a circuit fails, try extending a few other places before
abandoning the circuit.

Right now, when any extend operation fails, we abandon the entire circuit. As the reasoning
goes, any other approach allows an attacker who controls some relays (or part of the network)
to dictate our circuits (by declining to extend except to relays that he can successfully attack).

However, this reasoning is probably too paranoid. If we try at most three times for each
hop, we greatly increase the odds that we can reuse the work we’ve already done, but we don’t
much increase the odds that an attacker will control the entire circuit.

Overall, this modification should cut down on the total number of extend attempts in the
network. This result is particularly helpful since some of our other schemes in this document
involve increasing that number.

Impact: Low.
Effort: Low.
Risk: Low-medium. We need to actually do some computations to confirm that the risk of

whole-path compromise is as low as we think it is.
Plan: Do the computations, then write a proposal, then do it.

5.4 Improving efficiency of the Tor circuit-building protocol

A number of proposals [1, 13] have been published in the literature on how to improve the effi-
ciency of the Tor handshake protocol. These would reduce the latency of circuit establishment,
and lower CPU load on nodes. Applying a modification like this would break existing clients, so
Tor’s version negotiation functionality would be required to permit both protocol to operate
in parallel. Compared to the existing Tor protocol, the proposed modifications are not as well
analyzed so there is a risk that they will have some weaknesses. Some also relax Tor’s security
assurances (e.g. perfect forward secrecy) in order to offer improved performance.

Impact: Low.
Effort: High.
Risk: High.
Plan: Not yet. Cryptographic overhead does not appear to be a significant component of

latency. If, later on, circuit establishment overhead starts to be a significant contributor to
performance problems, we should re-evaluate.

5.5 Bundle the first data cell with the begin cell

In Tor’s current design, clients send a “relay begin” cell to specify the intended destination for
our stream, and then wait for a “relay connected” cell to confirm the connection is established.
Only then do they complete the SOCKS handshake with the local application, and start reading
application traffic.

We could modify our local proxy protocol in the case of Privoxy or Polipo so it sends the
web request to the SOCKS port during the handshake. Then we could optimistically include the

23

first cell worth of application data in the original begin cell. This trick would allow us to cut
out an entire network round-trip every time we establish a new connection through Tor. The
result would be quicker page loads for users.

Alas, this trick would involve extending the SOCKS protocol, which isn’t usually a polite
strategy when it comes to interoperating with other applications. On the other hand, it should
be possible to extend it in a backwards-compatible way: applications that don’t know about the
trick would still behave the same and still work fine (albeit in a degraded mode where they
waste a network round-trip).

Impact: Medium.
Effort: Medium.
Risk: Low.
Plan: Overall, it seems like a delicate move, but with potentially quite a good payoff. I’m

not convinced yet either way.

6 The network overhead may still be high for modem users

Even if we resolve all the other pieces of the performance question, there still remain some
challenges posed uniquely by users with extremely low bandwidth – for example, users on
modems or cell phones. We need to optimize the Tor protocols so they are efficient enough that
Tor can be practical in this situation too.

6.1 We’ve made progress already at directory overhead

We’ve already made great progress at reducing directory overhead, both for bootstrapping and
maintenance. Our blog post on the topic provides background and details9.

Proposal 158 further reduces the directory overhead, and is scheduled to be deployed in
Tor 0.2.2.x.10

Impact: Low for normal users, high for low-bandwidth users.
Effort: Medium, but we’re already a lot of the way through it.
Risk: Low.
Plan: We should roll out proposal 158. Then we’ll be in good shape for a while. The next

directory overhead challenge will be in advertising many more relays; but first we need to get
the relays.

6.2 Our TLS overhead can also be improved

OpenSSL will, by default, insert an empty TLS application record before any one which contains
data. This is to prevent an attack, by which someone who has partial control over the plaintext
of a TLS stream, can also confirm guesses as to the plaintext which he does not control. By
including an empty application record, which incorporates a MAC, the attacker is made unable
to control the CBC initialization vector, and hence does not have control of the input to the
encryption function [8].

9https://blog.torproject.org/blog/overhead-directory-info%3A-past%2C-present%2C-future
10https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/158-microdescriptors.txt

24

https://blog.torproject.org/blog/overhead-directory-info%3A-past%2C-present%2C-future
https://gitweb.torproject.org/torspec.git/blob/HEAD:/proposals/158-microdescriptors.txt

This application record does introduce an appreciable overhead. Most Tor cells are sent
in application records of their own, giving application records of 512 bytes (cell) + 20 bytes
(MAC) + 12 bytes (TLS padding) + 5 bytes (TLS application record header) = 549 bytes. The
empty application records contain only 20 bytes (MAC) + 12 bytes (TLS padding) + 5 bytes
(TLS application record header) = 37 bytes. There is also a 20 byte IP header and 32 byte TCP
header.

Thus the overhead saved by removing the empty TLS application record itself is 37/(549+
37+ 20+ 32) = 5.8%. This calculation is assuming that the same number of IP packets will be
sent, because currently Tor sends packets, with only one cell, far smaller than the path MTU. If
Tor were to pack cells optimally efficiently into packets, then removing the empty application
records would also reduce the number of packets, and hence TCP/IP headers, that needed to
be sent. The reduction in TCP/IP header overhead would be 37/(549+ 37) = 6.3%.

Of course, the empty application record was inserted for a reason – to prevent an attack
on the CBC mode of operation used by TLS, so before removing it we must be confident the
attack does not apply to Tor. Ben Laurie (one of the OpenSSL developers) concluded that in his
opinion Tor could safely remove the insertion of empty TLS application records [6]. Steven was
able to come up with only certificational weaknesses (discussed in the above analysis), which
are expensive to exploit and give little information to the attacker.

Impact: Low.
Effort: Low.
Risk: Medium, since our initial analysis might be wrong.
Plan: Do it in the Tor 0.2.2.x or 0.2.3.x timeframe. Not critical.

7 Last thoughts

7.1 Lessons from economics

Imagine we implement all the solutions above, and it doubles the effective capacity of the
Tor network. The naïve hypothesis is that users would then experience twice the throughput.
Unfortunately this is not true, because it assumes that the number of users does not vary with
bandwidth available. In fact, as the supply of the Tor network’s bandwidth increases, there will
be a corresponding increase in the demand for bandwidth from Tor users. Simple economics
shows that performance of Tor and other anonymization networks is controlled by how the
number of users scales with available bandwidth; this relationship can be represented by a
demand curve.11

Figure 6 is the typical supply and demand graph from economics textbooks, except with
long-term throughput per user substituted for price, and number of users substituted for
quantity of goods sold. As the number of users increases, the bandwidth supplied by the
network falls.

In drawing the supply curve, we have assumed the network’s bandwidth is constant and
shared equally over as many users as needed. The shape of the demand curve is much harder
to even approximate, but for the sake of discussion, we have drawn three alternatives. The

11The economics discussion is based on a blog post published in Light Blue Touchpaper [10]. The property
discussed was also observed by Andreas Pfitzmann in response to a presentation at the PET Symposium [18].

25

Number of users

T
hr

ou
gh

pu
t p

er
 u

se
r

● A

● B

●

C

Supply

Demand

Figure 6: Hypothetical supply and demand curves for Tor network resources. As supply goes
up, point A corresponds to no increase in users, whereas points B and C represent more users
arriving to use up some of the new capacity.

number of Tor users and the throughput they each get is the intersection between the supply
and demand curves – the equilibrium. If the number of users is below this point, more users
will join and the throughput per user will fall to the lowest tolerable level. Similarly, if the
number of users is too high, some will be getting lower throughput than their minimum, so
will give up, improving the network for the rest of the users.

Now assume Tor’s bandwidth grows by 50% – the supply curve shifts, as shown in the figure.
By comparing how the equilibrium moves, we can see how the shape of the demand curve
affects the performance improvement that Tor users see. If the number of users is independent
of performance, shown in curve A, then everyone gets a 50% improvement, which matches
the naïve hypothesis. More realistically, the number of users increases, so the performance
gain is less. The shallower the curve gets, the smaller the performance increase will be. For
demand curve B, there is a 18% increase in the number of Tor users and a 27% increase in
throughput. On the other hand, with curve C there are 33% more users and so only a 13%
increase in throughput for each user.

The above analysis glosses over many topics. One interesting analysis is reaching equilibrium
– in fact it could take some time between the network bandwidth changing and the user
population reaching stability. If this period is sufficiently long and network bandwidth is
sufficiently volatile it might never reach equilibrium. We might also consider effects which shift
the demand curve. In normal economics, marketing makes people buy a product even though
they considered it too expensive. Similarly, a Slashdot article or news of a privacy scandal

26

could make Tor users more tolerant of the poor performance. Finally, the user perception of
performance is an interesting and complex topic. In this analyis we assumed that performance
is equivalent to throughput; but actually latency, packet loss, predictability, and their interaction
with TCP/IP congestion control are important components too.

So what does all this tell us?
The above discussion has argued that the speed of an anonymity network will converge

on the slowest level that the most tolerant users will consider usable. This is problematic
because there is significant variation in levels of tolerance between different users and different
protocols. Most notably, file sharing users are subject to high profile legal threats, and do not
require interactive traffic, so they will continue to use a network even if the performance is
considerably lower than the usable level for web browsing.

In conventional markets, this type of problem is solved by differential pricing, for example
different classes of seat on airline flights. In this model, several equilibrium points are allowed
to form, and the one chosen will depend on the cost/benefit tradeoffs of the customers. A
similar strategy could be used for Tor, allowing interactive web browsing users to get higher
performance, while forcing bulk data transfer users to have lower performance (but still
tolerable for them). Alternatively, the network could be configured to share resources in a
manner such that the utility to each user is more equal. In this case, it will be acceptable to all
users that a single equilibrium point is formed, because its level will no longer be characterized
in terms of simple bandwidth.

Section 2 is an example of the former strategy. Web browsing users will be offered better per-
formance, so we should attract more of them, but hopefully not so many that the performance
returns to current levels. In constrast, bulk-traffic users will be given poorer performance, but
since they are less sensitive to latency, it could be that they do not mind. Section 1 could be
used to implement the latter strategy. If web-browsing users are more sensitive to latency than
bandwidth, then we could optimize the network for latency rather than throughput.

7.2 The plan moving forward

Our next steps should be to work with funders and developers to turn this set of explanations and
potential fixes into a roadmap: we need to lay out all the solutions, sort out the dependencies,
assign developers to tasks, and get everything started.

At the same time, we need to continue to work on ways to measure changes in the network:
without ‘before’ and ‘after’ snapshots, we’ll have a much tougher time telling whether a given
idea is actually working. Many of the plans here have a delay between when we roll out the
change and when the clients and relays have upgraded enough for the change to be noticeable.
Since our timeframe requires rolling out several solutions at the same time, an increased focus
on metrics and measurements will be critical to keeping everything straight.

Lastly, we need to be aware that ramping up development on performance may need to push
out or downgrade other items on our roadmap. So far, Tor has been focusing our development
energy on the problems that funders are experiencing most severely at the time. This approach
is good to make sure that we’re always working on something that’s actually important. But
it also means that next year’s critical items don’t get as much attention as they should, and
last year’s critical items don’t get as much maintenance as they should. Ultimately we need to

27

work toward having consistent funding for core Tor development and maintenance as well as
feature-oriented funding.

References

[1] Aniket Kate, Greg Zaverucha, and Ian Goldberg. Pairing-based onion routing. In Nikita
Borisov and Philippe Golle, editors, Proceedings of the Seventh Workshop on Privacy
Enhancing Technologies (PET 2007), Ottawa, Canada, June 2007. Springer.

[2] S. Kent and K. Seo. Security architecture for the internet protocol. RFC 4301, IETF,
December 2005.

[3] C. Kiraly, Bianchi G., and R. Lo Cigno. Solving performance issues in anonymization over-
lays with a L3 approach. Technical Report DISI-08-041, University of Trento, September
2008. version 1.1, http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf.

[4] Csaba Kiraly. Effect of Tor window size on performance. Email to or-dev@freehaven.net,
February 2009. http://archives.seul.org/or/dev/Feb-2009/msg00000.html.

[5] Tadayoshi Kohno, Andre Broido, and kc claffy. Remote physical device fingerprinting. In
IEEE Symposium on Security and Privacy, pages 211–225, Oakland, CA, US, May 2005.
IEEE Computer Society.

[6] Ben Laurie. On TLS empty record insertion. Email to or-dev@freehaven.net, in thread
“Re: Empty TLS application records being injected in Tor streams”, December 2008.
http://archives.seul.org/or/dev/Dec-2008/msg00005.html.

[7] Damon McCoy, Kevin Bauer, Dirk Grunwald, Tadayoshi Kohno, and Douglas Sicker.
Shining light in dark places: Understanding the Tor network. In Nikita Borisov and Ian
Goldberg, editors, Proceedings of the Eighth International Symposium on Privacy Enhancing
Technologies (PETS 2008), pages 63–76, Leuven, Belgium, July 2008. Springer.

[8] Bodo Möller. Security of CBC ciphersuites in SSL/TLS: Problems and countermeasures,
May 2004. http://www.openssl.org/~bodo/tls-cbc.txt.

[9] Steven J. Murdoch. Hot or not: Revealing hidden services by their clock skew. In CCS ’06:
Proceedings of the 9th ACM Conference on Computer and Communications Security, pages
27–36, Alexandria, VA, US, October 2006. ACM Press.

[10] Steven J. Murdoch. Economics of Tor performance. Light Blue Touchpaper, 18
July 2007. http://www.lightbluetouchpaper.org/2007/07/18/economics-of-tor-
performance/.

[11] Steven J. Murdoch and Robert N. M. Watson. Metrics for security and performance in
low-latency anonymity networks. In Nikita Borisov and Ian Goldberg, editors, Proceedings
of the Eighth International Symposium on Privacy Enhancing Technologies (PETS 2008),
pages 115–132, Leuven, Belgium, July 2008. Springer.

28

http://disi.unitn.it/locigno/preprints/TR-DISI-08-041.pdf
http://archives.seul.org/or/dev/Feb-2009/msg00000.html
http://archives.seul.org/or/dev/Dec-2008/msg00005.html
http://www.openssl.org/~bodo/tls-cbc.txt
http://www.lightbluetouchpaper.org/2007/07/18/economics-of-tor-performance/
http://www.lightbluetouchpaper.org/2007/07/18/economics-of-tor-performance/

[12] Lasse Øverlier and Paul Syverson. Locating hidden servers. In Proceedings of the 2006
IEEE Symposium on Security and Privacy. IEEE CS, May 2006.

[13] Lasse Øverlier and Paul Syverson. Improving efficiency and simplicity of Tor circuit
establishment and hidden services. In Nikita Borisov and Philippe Golle, editors, Privacy
Enhancing Technologies: 7th International Symposium, PET 2007, pages 134–152. Springer-
Verlag, LNCS 4776, 2007.

[14] Prashant Pradhan, Srikanth Kandula, Wen Xu, Anees Shaikh, and Erich Nahum. Daytona:
A user-level TCP stack, 2002. http://nms.lcs.mit.edu/~kandula/data/daytona.pdf.

[15] Joel Reardon. Improving Tor using a TCP-over-DTLS tunnel. Master’s thesis, University
of Waterloo, September 2008. http://hdl.handle.net/10012/4011.

[16] E. Rescorla and N. Modadugu. Datagram transport layer security. RFC 4347, IETF, April
2006.

[17] Robin Snader and Nikita Borisov. A tune-up for Tor: Improving security and performance
in the Tor network. In Network & Distributed System Security Symposium. Internet Society,
February 2008.

[18] Rolf Wendolsky, Dominik Herrmann, and Hannes Federrath. Performance comparison of
low-latency anonymisation services from a user perspective. In Nikita Borisov and Philippe
Golle, editors, Proceedings of the Seventh Workshop on Privacy Enhancing Technologies (PET
2007), Ottawa, Canada, June 2007. Springer.

29

http://nms.lcs.mit.edu/~kandula/data/daytona.pdf
http://hdl.handle.net/10012/4011

	Tor's congestion control does not work well
	TCP backoff slows down every circuit at once
	We chose Tor's congestion control window sizes wrong

	Some users add way too much load
	Squeeze over-active circuits
	Throttle certain protocols at exits
	Throttle certain protocols at the client side
	Throttle all streams at the client side
	Default exit policy of 80,443
	Better user education

	The Tor network doesn't have enough capacity
	Tor server advocacy
	Talks and trainings
	Better support for relay operators
	A Facebook app to show off your relay
	Look for new ways to get people to run relays

	Funding more relays directly
	Handling fast Tor relays on Windows
	Relay scanning to find overloaded relays or broken exits
	Getting dynamic-IP relays back into the relay list quickly
	Incentives to relay
	Reachable clients become relays automatically

	Tor clients choose paths imperfectly
	We don't balance traffic over our bandwidth numbers correctly
	The bandwidth estimates we have aren't very accurate
	Bandwidth might not even be the right metric to weight by
	Considering exit policy in relay selection
	Older entry guards are overloaded

	Clients need to handle variable latency and failures better
	Our round-robin and rate limiting is too granular
	Better timeouts for giving up on circuits and trying a new one
	If extending a circuit fails, try extending a few other places before abandoning the circuit.
	Improving efficiency of the Tor circuit-building protocol
	Bundle the first data cell with the begin cell

	The network overhead may still be high for modem users
	We've made progress already at directory overhead
	Our TLS overhead can also be improved

	Last thoughts
	Lessons from economics
	The plan moving forward

