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Taşkın for their friendship and support the last ten years.

Finally, I would like to thank my mother Mürüvvet Kırkızlar, my father Altay
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SUMMARY

This dissertation is concerned with increasing the efficiency of systems with

cross-trained workforce and finite storage spaces. Our objective is to maximize pro-

duction rate and minimize setup costs (if they exist). More specifically, we determine

effective cross-training strategies and dynamic assignment policies for flexible servers

in production lines with finite buffers.

First, we study the assignment of flexible servers to stations in tandem lines with

service times that are not necessarily exponentially distributed. Our goal is to achieve

optimal or near-optimal throughput. For systems with infinite buffers, it is already

known that the effective assignment of flexible servers is robust to the service time

distributions. We provide analytical results for small systems and numerical results for

larger systems that support the same conclusion for tandem lines with finite buffers.

In the process, we propose server assignment heuristics that perform well for systems

with different service time distributions. Our research suggests that policies known

to be optimal or near-optimal for Markovian systems are also likely to be effective

when used to assign servers to tasks in non-Markovian systems.

Next, we identify optimal server assignment policies in under-staffed lines with

finite buffers. Our objective is to maximize the production rate. We study systems

with different flexibility structures and deterministic or exponential service times.

Our results show that, when the service times are deterministic, the production rate

of the line with full server flexibility can be obtained with partial flexibility, and

we also determine the critical skills required in order to achieve this. Furthermore,

we observe that the optimal server assignment policy for Markovian systems with

small buffer sizes is either of priority- or threshold-type, depending on the flexibility

xi



structure. Our numerical results imply that when the optimal assignment policies

for Markovian systems with small buffer sizes are employed in Markovian systems

with larger buffer sizes, near-optimal throughput of the fully flexible systems can be

achieved even with partial cross-training. Moreover, our numerical results provide

guidance about the choice of the best flexibility structure in Markovian lines.

Finally, we study the dynamic assignment of flexible servers to stations in the

presence of setup costs that are incurred when servers move between stations. The

goal is to maximize the long-run average profit. First, we prove the optimality of

“multiple threshold” policies for systems with small buffer sizes; i.e., we show that it

is optimal to move servers between stations when the number of jobs in the system

reaches certain thresholds that depend on the current locations of the servers. Then,

we investigate how the optimal server assignment policy for such systems depends on

the magnitude of the setup costs. Finally, we perform numerical experiments that

support the conjecture that multiple threshold policies are also optimal for systems

with larger buffer sizes.

xii



CHAPTER I

INTRODUCTION

This thesis is concerned with performance improvement in tandem lines. Such sys-

tems exist in various industries, and companies perpetually need to identify new

strategies to increase their efficiency and stay competitive. It is important to include

the effective training and management of workforce among such strategies. In this

work, we study effective ways of using cross-training to increase the production rate

and profit of the systems under consideration.

Cross-training is a widely used strategy for adding flexibility to systems. It re-

quires less effort and resources compared to structural changes like modifying the

layout of the factory or the order of production. Furthermore, it has various advan-

tages for companies because it increases productivity and responsiveness, decreases

costs, and can even increase workers’ job satisfaction. However, once companies re-

sort to using agile workforce, they should also determine the most effective ways of

operating the workforce. Our goal in this thesis is to address this issue.

Queueing theory has been successfully used to model manufacturing systems.

Queueing models provide a good representation of discrete material flow, and they

are capable of capturing most situations that are observed in real-life (e.g., block-

age, setups, or failures). Contrary to most previous applications of queueing systems

that assume stationary servers, in this study we consider servers that are capable of

working at different stations (i.e., cross-trained servers). More specifically, we are

interested in improving the performance of manufacturing systems via effective use

of the cross-trained workforce. One possible way of employing flexible workforce is

to permanently pool several stations into a single station and then assigning a group
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of cross-trained workers to this station. By contrast, we study how to dynamically

assign servers to stations in order to increase the system performance.

In this thesis, we study tandem manufacturing systems with flexible servers. We

assume that there is an infinite supply of jobs in front of the first station, infinite

room for completed jobs after the last station, and buffers of finite sizes between

the stations. We further assume that several servers can work on the same job,

and their service rates are additive if they are collaborating. Note that allowing

finite buffers is necessary to consider more realistic representations of actual systems

and their operations. For example, finite buffers occur frequently in manufacturing

environments due to physical constraints, and sometimes they are used to control

work-in-process (e.g., due to a desire for “just-in-time” processing). Having finite

buffers also makes our problem quite difficult, because the tools used in dealing with

infinite-buffered systems (e.g., fluid and diffusion limits) cannot be applied in our

problem.

Our first goal is to determine the dynamic server assignment policies that max-

imize the long-run average throughput in non-Markovian tandem systems. More

specifically, we want to show that the effective assignment of flexible servers is robust

to the service time distributions. Considering service time distributions other than

the exponential distribution is important to cover real-life situations where service

times are unlikely to have the memoryless property. At the same time, this is a

more difficult problem because Markov chain theory mostly does not apply in our

case. Given the difficulty associated with rigorously analyzing non-Markovian sys-

tems with finite buffers, we document the robustness of effective server assignment

policies to service time distributions by providing analytical results for small systems

and numerical results for larger systems. More specifically, we determine the opti-

mal server assignment policy for systems with two stations and two or three servers

to the extent possible, and support the robustness of the optimal server assignment

2



policy to service time distributions with extensive numerical experiments for other

systems. We also identify heuristic server assignment policies for systems with more

than two stations, show that these policies have good long-run average throughput

performance, and conclude that the performance of the heuristics is robust to the

service time distributions.

The second part of this thesis considers understaffed tandem lines (i.e., lines with

more tasks than servers) with the objective of maximizing the throughput. A com-

monly used strategy for addressing problems with understaffed lines is “task parti-

tioning,” which involves grouping the tasks and assigning each server to one group of

tasks, taking into account each server’s capabilities. Server flexibility yields improved

performance compared to strict task-portioning because strict task-partitioning cor-

responds to a subset of the policy space over which we solve our optimization problem

(see Section 4.3.1). Rather than strictly partitioning tasks and assigning servers to

them, in this thesis we consider various cross-training structures ranging from full

flexibility to zone-training, and using combinations of dedicated and flexible servers.

Partial cross-training strategies are especially important in industries where it is costly

or not possible to have fully flexible servers, such as when each task requires extensive

training or when the number of tasks is large compared to the number of available

servers. In this work, we focus on tandem lines with two flexible servers and three

stations because lines with more servers and stations become analytically intractable.

Our goal is to identify both the optimal server assignment policy and the critical

skills needed for the effective operation of fully and partially flexible systems. In the

process, we also show that when the objective is to maximize the throughput, most

(sometimes all) of the benefits of full flexibility can be obtained with partial flexibility.

The final part of this thesis studies dynamic assignment policies for flexible servers

in tandem lines with setups. We assume that a revenue is obtained each time a job

leaves the system and that there is a cost associated with server movements. Our

3



objective is to maximize the long-run average profit. To the best of our knowl-

edge, our work is the first that incorporates setups for a tandem system with finite

buffers. Incorporating positive switching costs is a more realistic representation of

actual systems, because server movements often cause some efficiency loss in real

life. However, the inclusion of setup costs also complicates the analysis due to the

necessity of keeping track of all server locations in the state space. Hence, most of

our results concentrate on systems with two stations and two flexible servers because

of the complexity associated with analyzing larger finite buffered systems. Our goal

is to determine the structure of the optimal policy analytically and numerically for

various systems, and to study how the optimal server assignment policy changes with

the setup costs.

The remainder of this thesis is organized as follows. In Chapter 2, we review the

previous research about flexible servers. In Chapter 3, we provide our results support-

ing the robustness of effective server assignment policies to service time distributions.

In Chapter 4, we study how partially flexible servers should be dynamically assigned

to stations in understaffed tandem lines. In Chapter 5, we consider the server as-

signment problem in the presence of setup costs. In Chapter 6, we describe the

contributions of this research and our future directions. Finally, we provide the de-

tails of the proofs of the results in Chapters 3, 4, and 5 in Appendices A, B, and C,

respectively.
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CHAPTER II

LITERATURE REVIEW

Queues with flexible servers can be used to model various manufacturing and service

systems. In this chapter, we provide a review of the work on effective flexible workforce

management. First, we study the permanent assignment of flexible servers to stations

in Section 2.1, concentrating on pooling in queueing systems. Next, we review the

research where servers can be dynamically assigned to stations in Section 2.2.

2.1 Permanent Workforce Assignment

Some of the earlier works on the server assignment problem consider the permanent

assignment of workers to stations. In a closed queueing network with identical servers,

Shantikumar and Yao [62, 63] study the optimal assignment of servers to stations.

They show that the optimal policy assigns more servers to stations with higher work-

load and they propose heuristic assignment policies that also appear to attain the

optimal throughput in systems with two stations. Hillier and So [42] study the per-

manent assignment of servers in overstaffed tandem systems with small buffer sizes,

and show that the interior stations should be given priority when assigning the extra

workforce. Hillier and So [43] consider the workload allocation problem together with

the server allocation problem in a tandem line. They show that unbalanced workload

and server allocations result in higher throughput than the corresponding balanced

system. Moreover, they show that when maximizing throughput is the goal, the most

effective way of unbalancing the line involves assigning all extra servers and the high-

est workload to the end stations. In earlier work, Hillier and Boiling [41] show that

unbalancing the line may increase the throughput, and that more workload should

be assigned to the end stations. They refer to this workload allocation as the bowl
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phenomenon. Andradóttir, Ayhan, and Down [10] study tandem lines with two sta-

tions, and identify the optimal permanent assignment of servers to stations. When

there are two servers who are equally skilled at all tasks, they show that the faster

server should be assigned to the slower station. Finally, Yamazaki, Sakasegawa, and

Shanthikumar [73] consider a tandem line with no buffers between the stations. They

show that the two slowest stations should be placed at the two ends of the line, and

that the arrangement of the rest of the stations should be made according to the bowl

phenomenon.

One strategy to effectively manage a cross-trained workforce is to pool several

stations together permanently and to assign servers to the pooled stations as a team.

In an earlier work on parallel queues, Kleinrock [51] shows that pooling M/M/1

queues decrease the average waiting time for the customers. In a system with parallel

stations and general interarrival distributions, Smith and Whitt [65] show that pooling

decreases average waiting time if the service times have the same distribution but it

may be disadvantageous otherwise.

Benjaafar [24] shows that pooling in a queueing network with homogeneous cus-

tomers and workload allocation decreases the average waiting time and provides

bounds on the performance improvement in the pooled system. However, he shows

that if there are multiple customer classes, this conclusion is not always correct.

Mandelbaum and Reiman [54] also study complete and partial pooling in Jackson

networks. They show that complete pooling always helps in tandem systems, but it

may deteriorate the system performance for more general queueing networks. Buza-

cott [27] shows that complete pooling of stations in a tandem line is beneficial, es-

pecially in the presence of high processing time variability among the tasks. Argon

and Andradóttir [13] study the effects of partial pooling in tandem lines. They show

that pooling the stations at the beginning or end of the line result in higher system

throughput, but this is not always correct for the intermediate stations. Furthermore,
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they show that in a line with balanced workload, pooling the central stations is even

better than pooling the stations near the beginning or end of the line.

2.2 Dynamic Workforce Assignment

We classify the dynamic server assignment literature with respect to the system con-

figuration. In Section 2.2.1, we review research on systems with parallel stations, in

Section 2.2.2 we study tandem lines, and finally in Section 2.2.3 we consider systems

with more general network configurations.

2.2.1 Parallel Systems

The majority of the research about systems with parallel stations is related to service

systems. More specifically, call centers have been an area of interest for various

researchers, see, e.g., Gans, Koole, and Mandelbaum [32] and Akşin, Armony, and

Mehrotra [5] for recent reviews.

Most papers concerned with parallel queueing systems have the objective of min-

imizing the holding cost. The majority of these papers assume infinite buffers and

analyze the system in heavy traffic, although some study a clearing system and use

Markov decision process (MDP) model. For a system with two stations in parallel,

one dedicated, and one flexible server, Bell and Williams [22] show that in heavy

traffic, the asymptotically optimal policy that minimizes the holding cost never idles

the dedicated server, and is of threshold type for the flexible server. Ahn, Duenyas,

and Zhang [3] consider a system similar to that of Bell and Williams [22] with the

modification that there are no arrivals. They show that the optimal policy might be

exhaustive or it might have a switching curve depending on the problem parameters.

Harrison and López [40] are interested in a system with an arbitrary number of job

classes, fully trained servers, and linear holding costs. They study the associated

Brownian control problem and find a condition that leads to a heavy traffic resource

pooling. Using these results they conjecture an asymptotically optimal assignment
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policy. Mandelbaum and Stolyar [55] propose and prove the asymptotic optimality of

the generalized cµ-rule in the same system when the holding costs are convex and in-

creasing. Bell and Williams [23] also study the same system and prove the asymptotic

optimality of the dynamic threshold policy proposed in Williams [69].

Some recent works address server assignment issues that are observed in call cen-

ters. We now review a few such papers. Bhulai and Koole [26] study a call center

where the average waiting time of the incoming calls has to be kept below a limit,

whereas outgoing calls do not have any waiting time limit. They study the call blend-

ing problem; i.e., how to assign the staff dynamically to incoming and outgoing calls.

Gans and Zhou [33] analyze the same problem using different solution techniques,

and provide the optimal staffing rule when the service rates for the different customer

types can be different (Bhulai and Koole [26] provide a heuristic policy in this case).

Gurvich, Armony, and Mandelbaum [38] are interested in call centers with multiple

customer classes and fully flexible servers. They assume customers have different ser-

vice level requirements and provide asymptotically optimal staffing and assignment

policies. Armony and Magleras [14, 15] study a call center with a call-back option

and flexible servers. They identify asymptotically optimal routing and staffing rules

that guarantee that the maximum waiting time in the queue is not exceeded when

the customers use the call-back option. Bassamboo, Harrison, and Zeevi [21] study a

call center where arrivals to the system occur according to an arrival rate that varies

randomly over time, and customers abandon the system if they wait too long. They

present a staffing and routing algorithm that asymptotically minimizes the staffing

costs and penalty costs associated with abandonments. Finally, Gans and Zhou [34]

study the routing problem in a call center that outsources some of its operations.

They show that for call centers with high outsourcing requirements, routing struc-

tures with minimal coordination between the client and vendor may result in high

service levels.
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Several papers focus on comparing the benefits of partial flexibility with full flex-

ibility in parallel queues, and here we review a few of them. Jordan and Graves

[48] study a setting with multiple products and plants, and show that most of the

demand can be satisfied even with partially flexible plants (as opposed to plants that

can produce all the products), as long as the assignment of products to plants is done

well. Graves and Tomlin [35] study a similar problem in multi-stage supply chains,

and show that partial flexibility structures (chaining, to be more specific) in each

stage are sufficient, and that there is no need to coordinate the flexibility structures

in different stages. Sheikhzadeh, Benjaafar, and Gupta [64] study the assignment of

products to machines in a plant and consider operational issues such as finite stor-

age spaces, setup times, work-in-process (WIP), inventory levels, and manufacturing

lead-time. Their work also supports the conclusion that most of the benefits of full

flexibility can be obtained by partial flexibility (using chaining structures). Guru-

muthi and Benjaafar [37] study a parallel service system with flexible servers. They

show that asymmetric server allocations are generally better than chaining structures

if the servers are heterogeneous and different customer types have different demand

rates. Wallace and Whitt [68] study routing and server assignment in a call cen-

ter, and show that most of the benefits of full flexibility can be reached even with

one additional skill per agent. Note that Hopp, Tekin, and Van Oyen [45] and An-

dradóttir, Ayhan, and Down [10] provide similar results related to the benefits of

partial flexibility in tandem systems, and they will be reviewed in Section 2.2.2.

2.2.2 Tandem Systems

Tandem systems are mostly employed in modeling of flow lines in production envi-

ronments. The papers that will be cited here have different objectives, including cost

minimization, throughput maximization, and line balancing.

Most papers on flexible servers in tandem lines focus on the cost minimization
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problem in systems with two stations. Ahn, Duenyas, and Zhang [2] characterize

the necessary and sufficient conditions for assigning all servers to the same station

when there are two flexible servers and no external arrivals. When there is only one

flexible server and no dedicated servers, Iravani, Posner, and Buzacott [47] show that

the optimal policy in the second stage is greedy (e.g., the server never idles at the

second stage as long as there are jobs there, but may move to the first stage even

if second stage is not empty), and if the holding cost in the second stage is greater

than or equal to the one of the first stage, the optimal policy is also exhaustive (i.e.,

the server works at the second stage until it becomes empty). Ahn, Duenyas, and

Lewis [1] assume that there are two flexible servers, no dedicated servers, and Poisson

arrivals. They study the cases where the flexible servers collaborate on the same

job and where they do not collaborate but can work on separate jobs at the same

station in both finite and infinite horizon models. They present conditions under

which the optimal policy is exhaustive. Kaufman, Ahn, and Lewis [49] search for

the optimal server assignment policy when there are Poisson arrivals, no dedicated

servers, and the number of flexible servers varies randomly. They show that under

both the discounted and average cost criteria, there exists an exhaustive policy that

is optimal.

The papers reviewed in the preceding paragraph consider systems with no dedi-

cated servers. Other works address the cost minimization problem for systems with

both dedicated and flexible workforce. Rosberg, Varaiya, and Walrand [60] consider

a tandem line with Poisson arrivals, flexible workforce that can be assigned either to

the first station or to the second station, and dedicated workforce at the second sta-

tion. They find that the policy that minimizes the total expected or average cost has

a switching structure (when the number of jobs in front of the first station exceeds a

threshold whose value depend on the number of jobs in the second queue, it is optimal

to use all the flexible service effort at the first station; otherwise it is optimal to idle
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the first station). With no exogenous arrivals, one dedicated server at each station,

and one flexible server, Farrar [31] studies the assignment of the flexible server that

minimizes the holding cost until all the initial jobs depart from the system. He shows

that the optimal control policy is transition monotone (i.e., after a service completion

at any station, the optimal service rate at that station does not increase, and the

optimal service rate at the other station does not decrease). Wu, Lewis, and Veatch

[72] consider a clearing system with dedicated servers at both stations and flexible

servers capable of working at either station. They show that there exists a transition

monotone policy that minimizes the holding cost both with and without failures of

dedicated servers. Under some additional assumptions, Wu, Down, and Lewis [71]

show the same result for the system with external arrivals.

Some papers consider the effects of setups in tandem systems with infinite buffers

between the stations. Duenyas, Gupta, and Olsen [29] consider a tandem line with

a single flexible server and positive setup times when the server switches between

the stations. They partially characterize the optimal policy and develop effective

heuristic assignment policies. Iravani, Posner, and Buzacott [47] study a two-stage

tandem queue with a flexible server, and identify the policy that minimizes the total

holding and setup costs. Sennott, Van Oyen, and Iravani [61] consider a tandem line

with a dedicated server at each station and one moving server. They allow positive

setup costs and setup times, and provide recommendations on how to use the moving

server more effectively.

Several papers focus on line balancing via server flexibility. Bartholdi and Eisen-

stein [17] show that the “bucket brigade” policy results in a stable partition of work

if the work is infinitely divisible, servers are ordered from slowest to fastest, and the

service times are deterministic. Bartholdi, Bunimovich, and Eisenstein [16] study the

asymptotic behavior that may be observed in bucket brigades with two or three work-

ers. Bartholdi, Eisenstein, and Foley [19] study the performance of the bucket brigade
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policy when the work consists of discrete tasks whose service requirements have an

exponential distribution. Zavadlav, McClain, and Thomas [74] perform simulations

for systems with more servers than stations and conclude that when the servers are

fully cross-trained, all servers will be busy the same fraction of the time under the

assignment policy they propose. Ahn and Righter [4] characterize some properties of

the optimal policy for general tandem lines in order to achieve a balanced line. They

consider different objective functions like maximizing the job completion process and

minimizing holding costs. Moreover, they show that the optimal policy is often last-

buffer-last-served (LBLS) or first-buffer-first-served (FBFS). Ostolaza, McClain, and

Thomas [57] are interested in a tandem system where there are both dedicated tasks

that must be done at a particular station and shared tasks that can be done at ei-

ther of two consecutive stations. They propose and test some heuristics that result in

higher throughput, as well as a balanced workload among stations. McClain, Thomas,

and Sox [56] study dynamic load balancing in systems with small buffer sizes. Hopp,

Tekin, and Van Oyen [45] study the capacity balancing problem for a line with equal

number of workers and stations under a CONWIP (constant work-in-process) pol-

icy and show that a skill-chaining strategy with two skills per worker outperforms

a “cherry picking” strategy in which some workers are cross-trained at bottleneck

stations, especially in systems with high variability and low WIP.

With respect to maximizing the steady-state throughput of tandem lines with

finite buffers, Andradóttir, Ayhan, and Down [7] show that any nonidling policy is

optimal when the service rate only depends on the server or the station. They also

identify the optimal server assignment policy for Markovian systems with two stations,

two flexible servers, a finite buffer between the stations, and arbitrary service rates.

Moreover, they propose heuristic server assignment policies that yield near-optimal

throughput for larger systems. Andradóttir and Ayhan [6] are interested in Markovian

systems with two stations and more than two flexible servers. They identify the
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optimal server assignment policy for systems with three servers. For systems with

more than three servers, they conjecture the structure of the optimal policy and

support their conjecture with extensive numerical results. Andradóttir, Ayhan, and

Down [11] consider the effects of server failures in the same settings. Andradóttir,

Ayhan, and Down [10] study tandem lines with two stations, and dedicated and

flexible servers. They show how the optimal server assignment policy and throughput

change depending on the number of flexible and dedicated servers in the system. They

also give examples showing that for systems with moderate to large buffer sizes, most

of the benefits of the flexibility can be obtained even with a single flexible server.

2.2.3 General Queueing Networks

Less work has been done on server assignment for systems with structures other than

parallel and tandem. Such queueing networks can be used to model complex systems,

such as wafer production plants, where different types of products do not go through

the processing steps in the same order.

Hajek [39] considers systems with two stations where both external arrivals and

arrivals from the other station are possible. He proves the existence of an optimal

switching curve for finite horizon or long-run average cost problems. Tassiulas and

Bhattacharya [66] present a non-preemptive dynamic assignment policy and provide

some necessary conditions for this policy to achieve stability in a general queueing

networks. Andradóttir, Ayhan, and Down [8] also study general queueing networks

and they allow positive switchover times. They specify the maximal capacity and

propose server assignment policies that have capacity arbitrarily close to the maximal

capacity even in the existence of positive setup times. Their results also show the

robustness of the effective server assignment policies to the service time distribution

for the infinite-buffered tandem systems. Andradóttir, Ayhan, and Down [9] consider

a similar problem with the modification that both servers and stations can fail. They
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specify the maximal capacity for the network, provide server assignment algorithms

that perform arbitrarily close to the maximal capacity, and determine when server

flexibility can compensate for the failures. Dai and Lin [28] consider a more general

class of queueing networks called Stochastic Processing Networks. In their model,

some tasks may require multiple servers and materials may be split up or joined with

other materials. Under certain conditions, they show the throughput optimality of

maximum pressure policies that allocate the service effort according to the service

rates, buffer sizes, and network structure.
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CHAPTER III

ROBUSTNESS OF EFFECTIVE SERVER ASSIGNMENT

POLICIES TO SERVICE TIME DISTRIBUTIONS

3.1 Introduction

We consider a tandem line with N ≥ 2 stations and M ≥ 1 flexible servers. We

assume that there is an infinite supply of jobs in front of the first station, infinite

room for completed jobs after the last station, and a finite buffer of size 0 ≤ Bj <∞

between stations j − 1 and j, where j ∈ {2, . . . , N}. The line operates under the

manufacturing blocking mechanism, and travel times of the servers and setup times

at the stations are assumed to be negligible. Let µij denote the deterministic rate

with which server i ∈ {1, . . . ,M} works at station j ∈ {1, . . . , N}. We assume that∑N
j=1 µij > 0 for i ∈ {1, . . . ,M} (because the other case is equivalent to a system with

a smaller number of servers) and
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} (because otherwise

all policies have zero throughput). Several servers are allowed to work together on

the same job, in which case their service rates are additive. Service times at each

station j ∈ {1, . . . , N} are independent and identically distributed (i.i.d.) with mean

0 < m(j) <∞, and service times at different stations are independent.

Our work belongs to the set of papers dealing with throughput maximization

in tandem lines with finite buffers. However, unlike the earlier work, we focus on

non-Markovian systems. Iravani, Buzacott, and Posner [46] show that the effective

assignment of a flexible workforce is robust to the arrival process when the objective

is to minimize holding and setup costs. By contrast, we show the robustness of server

assignment policies to service time distributions when the objective is to maximize

throughput. Our results complement corresponding results for queueing networks
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with infinite buffers obtained by Andradóttir, Ayhan, and Down [8, 9], and suggest

that when capacity is the primary concern, effective server assignment policies are

robust with respect to the form of underlying service distributions, even in the finite

buffer setting.

The remainder of the chapter is organized as follows. In Section 3.2, we formulate

our problem and provide some general results about lines with two stations that will

be used later. In Section 3.3, we show that the server assignment policy proven to be

optimal for Markovian tandem lines with two stations and two servers in Andradóttir,

Ayhan, and Down [7] is also optimal both for deterministic systems if the buffer size

is arbitrary and for systems with general service times if the buffer size is zero. In

Section 3.4, we show that the optimal policy for tandem lines with two stations and

three servers is a threshold-type policy (as the optimal policy for Markovian systems

with two stations and three servers, see Andradóttir and Ayhan [6]) if the service

times are deterministic and the buffer size is arbitrary or if the service times follow a

general distribution and the buffer size is zero. In Section 3.5, we propose heuristic

server assignment policies for larger systems that appear to perform well for a broad

range of problems, and provide the results of numerical experiments that show that

policies that work well for Markovian systems also appear to be effective for non-

Markovian systems. In Section 3.6, we make some concluding remarks.

3.2 Problem Formulation and Preliminary Results

Let the state space S of the system be chosen to capture the number of jobs at

each station and the status (operating, starved, or blocked) of each station. Decision

epochs are the service completion times at any station, so that decisions are made

when changes to the state of the system are observable. Consequently, we will restrict

ourselves to the set Π of all Markovian stationary deterministic policies corresponding

to the state space S. We are interested in finding a policy in the set Π that maximizes
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the long-run average throughput. However, we also show that sometimes the best

policy in Π is also optimal over all possible ways of assigning servers to stations.

Specifically, for systems with two stations and intermediate buffer of size B2 = B,

we use the stochastic process {X(t) : t ≥ 0} to keep track of the number of jobs

that have already been processed at station 1 and are either waiting for service or

being processed at station 2. Hence, the state space is S = {0, 1, . . . , B + 2}, with

X(t) = 0 if a job is being processed at station 1 and station 2 is starved at time t ≥ 0;

X(t) = s ∈ {1, . . . , B + 1} if there are jobs being processed at both stations 1 and

2 and s − 1 jobs waiting to be processed in the intermediate buffer at time t ≥ 0;

finally, X(t) = B+ 2 if station 1 is blocked, B jobs are waiting to be processed in the

buffer, and one job is being processed at station 2 at time t ≥ 0.

In order to solve our optimization problem, we will identify the optimal action

in each state. For any s ∈ S, As denotes the set of allowable actions at state s.

Possible actions are idling a server or assigning the server to station 1 or 2. Note

that π = (d)∞ for every policy π in Π, where the corresponding decision rule d is a

(B + 3)-dimensional vector, with d(s) ∈ As for all s ∈ S.

We now provide two preliminary results about the structure of the optimal policy

for tandem lines with two stations.

Lemma 3.2.1 When N = 2, there exists an optimal policy that assigns all servers

to station 2 if station 1 is blocked, and to station 1 if station 2 is starved.

Proof: Let π be any policy that idles any of the servers when s = B + 2. Now

compare π with the policy π′ that assigns all the servers to station 2 when s = B+ 2

and agrees with π otherwise. The only difference between these two policies is the

transition time from state B + 2 to state B + 1, and this transition time is never

longer for π′. Consequently, the number of departures is never smaller under π′, and

hence there exists an optimal policy that does not idle any servers when s = B + 2.

A similar logic follows when s = 0. 2
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Lemma 3.2.2 When M = N = 2, there exists an optimal policy that does not idle

any of the servers when station 1 is not blocked, and station 2 is not starved.

Proof: If both servers are idled in state s ∈ {1, . . . , B + 1}, then s is an absorbing

state for {X(t)} and the long-run average throughput is zero. Consequently, at least

one of the two servers should be assigned to one of the stations in state s. Suppose

that one server is assigned to station 1 and the other server is left idle (the case where

one server is assigned to station 2 is similar). Then the only possible transition is

from state s to state s + 1. The transition time from s to s + 1 is never longer if

we assign both servers to station 1, which implies that the number of departures is

never smaller. Thus, assigning both servers to the same station is never worse than

assigning one to that station and idling the other. 2

Finding the optimal server assignment policy for finite queueing systems with

general service time distributions is a very difficult task in general, even when M =

N = 2. However, the following result facilitates the analysis for systems with two

stations and a buffer of size 0 between the stations. Hence, some of the theoretical

results in this paper are restricted to the case with N = 2 and B = 0, with numerical

results supporting our robustness conclusion for larger systems.

Lemma 3.2.3 When N = 2 and B = 0, the optimal policy minimizes the expected

time between successive visits of {X(t)} to state 1.

Proof: When the buffer size is zero, the state space becomes S = {0, 1, 2}. Every

time the process hits state 1, the process restarts regeneratively and there is exactly

one departure from the system between every two successive visits to state 1. Hence,

the long-run average throughput is the reciprocal of the expected time between two

visits to state 1 by the renewal reward theorem, and any policy that minimizes this

expected time maximizes the throughput. 2
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We conclude this section with a lemma that provides an upper bound on the

throughput of our system, and will be used for identifying the optimal policy for

deterministic systems.

Lemma 3.2.4 The maximal capacity of a tandem line with outside arrivals and in-

finite buffers between the stations is an upper bound on the throughput of the corre-

sponding tandem line with infinite amount of raw material in front of the first station

and finite buffers between the stations.

Proof: Consider the following “allocation” linear program (LP) with decision vari-

ables λ and {δij} for a system with N stations in tandem and M flexible servers:

max λ

s.t.
∑M

i=1 δij
µij
m(j)
≥ λ, for all j ∈ {1, . . . , N},∑N

j=1 δij ≤ 1, for all i ∈ {1, . . . ,M},

δij ≥ 0, for all i ∈ {1, . . . ,M}, j ∈ {1, . . . , N}.


(1)

In this LP, λ can be interpreted as capacity, and δij where i ∈ {1, . . . ,M}, j ∈

{1, . . . , N}, can be interpreted as the long-run proportion of time server i is assigned

to station j.

Let λ∗ denote the optimal value of λ for this LP. Then λ∗ is the maximal capacity

of the infinite-buffered version of our tandem line with an outside arrival process

that satisfies some stochastic assumptions (we refer to this system as “System 1”)

as shown by Andradóttir, Ayhan, and Down [8]. We use the stochastic process

B(t) = {X(t), V (t), Y (t)} to model this system, where X(t) is the vector showing

the number of jobs either in service or waiting for service at each station at time t,

V (t) is the residual interarrival time to the system at time t, and Y (t) is the vector

of residual service requirements at each station at time t.

Let T π denote the long-run average throughput under policy π ∈ Π in our system

with finite buffers and infinite amount of raw material in front of the first station
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(we refer to this system as “System 2”). Assume that there exists a policy π ∈ Π

such that T π = λ̄ > λ∗. Note that the state space of System 1 is NN×R×RN . and

that the state space of System 2 is S×RN , where S ⊆ NN−1 (we disregard the first

element of the state vector since the number of jobs in front of the first station is

infinite in System 2, and we do not need to keep track of a residual interarrival time

to the system). Let π′ be a policy for System 1 such that π′(s1, s, v, y) = π(s, y) for

s1 ∈ {0, 1, . . .}, s ∈ S, v ∈ R, and y ∈ RN (without loss of generality assume that π

idles servers rather than assigning them to stations that are blocked). Furthermore,

define π′(s1, s, v, y) for s1 ∈ {0, 1, . . .} s /∈ S, v ∈ R, and y ∈ RN such that System 1

will enter a state (s1, s
′, v′, y′) in finite time where s′ ∈ S, v′ ∈ R, and y′ ∈ RN (for

example, if s = (s2, . . . , sN) /∈ S, choose π′ such that all servers are assigned to the

station 2 ≤ i ≤ N that is closest to the end of the line among the stations where s′i

is not feasible given that s′i+1, . . . , s
′
N are feasible in System 2).

Now, use the policy π′ for System 1 with an outside arrival rate of λ ∈ (λ∗, λ̄).

It follows from part (ii) of Theorem 1 of Andradóttir, Ayhan, and Down [8] that the

system is not stable and that the buffer space in front of the first station will not

be empty almost surely after a finite amount of time (because π′ guarantees that

the number of jobs in the buffers between the stations will be bounded above for all

t ≥ 0). Hence the throughput of System 1 under π′ will be equal to the throughput λ̄

of System 2 under π. But this is a contradiction because the throughput of System 1

can not exceed λ (the departure rate cannot exceed the arrival rate) and we assumed

that λ < λ̄. Hence there cannot exist a policy π ∈ Π with T π > λ∗, and the result

follows. 2

3.3 Lines with Two Stations and Two Flexible Servers

In this section we consider the special case of a tandem line with two stations and two

flexible servers. Since we can relabel the servers if necessary, we assume that µ11

µ12
≥ µ21

µ22
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without loss of generality (we use the convention c/0 =∞, for all c ≥ 0, throughout

this thesis). This implies that µ11 > 0 and µ22 > 0 under our assumptions on the

service rates. When there are two servers, we represent the actions by aσ1σ2 , where

σi ∈ {0, 1, 2} for i ∈ {1, 2}. We use σi = 0 when server i is idle and σi = j ∈ {1, 2}

when server i is working at station j.

Andradóttir, Ayhan, and Down [7] show that for the corresponding Markovian

system, it is optimal to assign server 1 to station 1 and server 2 to station 2 when

neither station is blocked or starved, and both servers to station 1 (station 2) when

station 2 (station 1) is starved (blocked). Our goal is to generalize this result to

arbitrary service time distributions to the extent possible. The outline of this section

is as follows. We first consider the case when the service times are deterministic in

Section 3.3.1, then the case with general service times in Section 3.3.2.

3.3.1 Deterministic Service Times

When the service times are deterministic, we prove the following theorem by showing

that the long-run average throughput of the finite-buffered system under the proposed

policy is equal to “the maximal capacity” of the system, which is defined as a tight

upper bound on the set of arrival rates for which the infinite-buffered version of the

system (with outside arrivals) is stable.

Theorem 3.3.1 For a system with two stations in tandem, two flexible servers, a

finite intermediate buffer of arbitrary size, and deterministic service times, the optimal

policy is identical to the one of the corresponding Markovian system. Moreover, the

optimal throughput is equal to the maximal capacity of the system, regardless of the

size of the intermediate buffer.

Proof: Let u1 = m(1) and u2 = m(2) denote the service times at stations 1 and 2,

respectively. Now consider the allocation LP (1) with M = N = 2. Lemma 3.2.4

shows that the maximal capacity λ∗ of the line with outside arrivals and infinite
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buffers is an upper bound on the throughput of our finite-buffered tandem line with

infinite amount of raw material in front of the first station.

Lemma A.1.2 specifies the long-run average throughput if u1

µ11
≤ u2

µ22
and the

policy described in the theorem is used. Similarly, Lemma A.1.3 specifies the long-

run average throughput if u1

µ11
> u2

µ22
and the policy described in the theorem is used.

Lemma A.1.1 shows that the throughput is equal to λ∗ in both cases. Hence, the

policy of the theorem is optimal, and the proof is complete. 2

3.3.2 General Service Times

We consider a system with general service times and zero buffer between the stations.

The following theorem follows from sample path arguments and Lemma 3.2.3.

Theorem 3.3.2 For a system with two stations in tandem, two flexible servers, zero

buffer between the two stations, and service times having general distributions, the

optimal policy is the same as the one of the corresponding Markovian system.

Proof: Let the services times at stations 1 and 2 have the cumulative distribution

functions (CDF’s) F1 and F2, respectively. Lemmas 3.2.1 and 3.2.2 show that we can

use the following action space in order to determine the optimal policy:

As =


a11 for s = 0,

{a11, a12, a21, a22} for s = 1,

a22 for s = 2.

Let Eσ1σ2 denote the expected time between two consecutive visits to state 1 when

action aσ1σ2 is selected in state 1. Then,

E12 =

∫ ∞
0

∫ u2µ11
µ22

0

C1(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ ∞
u2µ11
µ22

C3(u1, u2)dF1(u1)dF2(u2),

E21 =

∫ ∞
0

∫ u2µ21
µ12

0

C2(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ ∞
u2µ21
µ12

C4(u1, u2)dF1(u1)dF2(u2),

E11 = E22 =

∫ ∞
0

∫ ∞
0

C5(u1, u2)dF1(u1)dF2(u2),
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where Ci(u1, u2), for i ∈ {1, . . . , 5}, are defined in Appendix A.1. Lemma A.1.4

now implies that E12 ≤ min{E11, E21, E22}, and hence, Lemma 3.2.3 shows that it is

optimal to use action a12 in state 1. 2

3.4 Lines with Two Stations and Three Flexible Servers

In this section, we consider the special case of a tandem line with two stations and

three flexible servers. By relabeling the servers if necessary, we can assume without

loss of generality that µ11

µ12
≥ µ21

µ22
≥ µ31

µ32
. This implies that µ11 > 0 and µ32 > 0 under

our assumptions on the service rates.

In this case, aσ1σ2σ3 denotes the possible actions in each state, where for i ∈

{1, 2, 3}, σi = 0 when server i is idle and σi = j when server i is working at station

j ∈ {1, 2}. We use the following lemmas in this section; their proofs are provided

in Appendix A.3. Note that Lemma 3.4.1 generalizes the result of Lemma 3.2.2 to

M = 3, but under the assumption that B = 0.

Lemma 3.4.1 It is optimal not to idle any of the servers in any state for a system

with two stations in tandem, three flexible servers, and zero buffer between the two

stations.

Lemma 3.4.2 Any policy that uses actions a111 or a222 in state 1 cannot be optimal

for a system with two stations in tandem, three flexible servers, and zero buffer between

the two stations.

Andradóttir and Ayhan [6] show that when the service times have an exponential

distribution, the optimal policy is as follows:

• when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

• when neither of the stations is blocked or starved (i.e., in states s ∈ {1, . . . , B+

1}), assign Servers 1 and 2 to Station 1, Server 3 to Station 2 if s < s∗; and

Server 1 to Station 1, Servers 2 and 3 to Station 2 if s ≥ s∗;
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• when Station 1 is blocked (i.e., in state B + 2), assign all servers to Station 2;

where the threshold s∗ ∈ S\{0} depends on the problem parameters (see Theo-

rem 3.1 in [6]). We prove similar results for systems with deterministic service time

distributions and arbitrary buffer size, as well as systems with general service time

distributions and zero buffer size. This section is organized as follows. In Section

3.4.1 we consider the system with deterministic service times, and in Section 3.4.2 we

study the system with general service times.

3.4.1 Deterministic Service Times

When the buffer size is bigger than zero, the theorem below shows that the optimal

policy is of threshold type, and specifies the value of the threshold. Furthermore,

it shows that if the service time u1 = m(1) at station 1 is large (small) relative to

the service time u2 = m(2) at station 2, then more service effort should be given to

station 1 (2), and indicates how the comparison of u1 and u2 should depend on the

service rates.

Theorem 3.4.1 For a system with two stations in tandem, three flexible servers, a

buffer of positive size between the two stations, and deterministic service times u1, u2

∈ R+ at stations 1, 2, respectively, the following policy is optimal:

• when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

• when neither of the stations is blocked or starved (i.e., in states s ∈ {1, . . . , B+

1}),

– if u1

u2
≤ µ11

µ22+µ32
, assign Server 1 to Station 1, Servers 2 and 3 to Station 2;

– if µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
, assign Servers 1 and 2 to Station 1, Server 3 to

Station 2 if s < s∗; and Server 1 to Station 1, Servers 2 and 3 to Station

2 if s ≥ s∗, where s∗ can be chosen to be any state in {2, . . . , B + 1};
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– if u1

u2
> µ11+µ21

µ32
, assign Servers 1 and 2 to Station 1, Server 3 to Station 2;

• when Station 1 is blocked (i.e., in state B + 2), assign all servers to Station 2.

Moreover, the optimal throughput is equal to the maximal capacity of the system,

regardless of the size of the intermediate buffer (as long as it is positive).

Proof: Lemma A.2.2 specifies the long-run average throughput when u1

u2
≤ µ11

µ22+µ32

and the policy described in the theorem is used. Similarly, Lemma A.2.3 specifies the

long-run average throughput when µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
and the policy described in

the theorem is used. Finally, Lemma A.2.4 specifies the long-run average throughput

when u1

u2
> µ11+µ21

µ32
and the policy described in the theorem is used. Lemma A.2.1

shows that the throughput is equal to the maximal capacity λ∗ of the line in all three

cases. Hence, the optimality of the policy of the theorem follows from Lemma 3.2.4,

and the proof is complete. 2

Theorem 3.4.1 shows that if the service times are deterministic, then the maximal

capacity of infinite-buffered systems can be achieved for any B > 0. Note, however,

that when B = 0 and µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
, there is no way to implement the

policy of Theorem 3.4.1, because this policy requires two adjacent states (s∗ − 1 and

s∗) where both stations are operating, and when B = 0, the state space is {0, 1, 2}

and the only state where both stations are operating is state 1. Consequently, it is

not always possible to attain the maximal capacity if the buffer size between the two

stations is zero, and a different approach is needed to determine the optimal policy

when µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
and B = 0.

More specifically, in the case of deterministic service times, we can exactly deter-

mine the time between two visits to state 1 for all possible policies in Π if the buffer

size is zero, and then use Lemma 3.2.3 to find the optimal policy. Let

r =
(µ11 + µ21)(µ11µ22 − µ12µ21 + µ11µ32 − µ12µ31)

(µ22 + µ32)(µ11µ32 − µ12µ31 + µ21µ32 − µ22µ31)
.
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The following theorem identifies the optimal dynamic server assignment policy if the

intermediate buffer between the stations is of size zero.

Theorem 3.4.2 For a system with two stations in tandem, three flexible servers,

zero buffer between the two stations, and deterministic service times u1, u2 ∈ R+ at

stations 1, 2, respectively, the following policy is optimal:

• when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

• when neither of the stations is blocked or starved (i.e., in state 1), assign Servers

1 and 2 to Station 1, Server 3 to Station 2 if u1

u2
> r, and Server 1 to Station

1, Servers 2 and 3 to Station 2 if u1

u2
≤ r;

• when Station 1 is blocked (i.e., in state 2), assign all servers to Station 2.

Moreover, the optimal throughput is equal to the maximal capacity of the system if

u1

u2
≤ µ11

µ22+µ32
or u1

u2
> µ11+µ21

µ32
.

Proof: When u1

u2
≤ µ11

µ22+µ32
or u1

u2
> µ11+µ21

µ32
, the optimality of the policy specified in

the theorem can be proved as in Theorem 3.4.1. Next, we will determine the optimal

policy when µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
. Lemmas 3.2.1, 3.4.1, and 3.4.2 show that the

following action space is suitable:

As =


a111 for s = 0,

{a112, a122, a121, a211, a212, a221} for s = 1,

a222 for s = 2.

Lemma A.3.1 shows that µ11

µ22+µ32
≤ r ≤ µ11+µ21

µ32
. When µ11

µ22+µ32
< u1

u2
≤ r, Lemma

A.3.2 shows that it is optimal to use action a122 in state 1. When r < u1

u2
≤ µ11+µ21

µ32
,

Lemma A.3.3 shows that it is optimal to use action a112 in state 1. This completes

the proof. 2
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3.4.2 General Service Times

Recall that F1 and F2 denote the CDF’s of the service times at stations 1 and 2,

respectively. Let Eσ1σ2σ3 denote the expected time between two visits to state 1 if

action a111 is used in state 0, action aσ1σ2σ3 is used in state 1, and action a222 is used

in state 2. Then,

E112 =

∫ ∞
0

∫ u2(µ11+µ21)
µ32

0

Ĉ1(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2(µ11+µ21)

µ32

Ĉ2(u1, u2)dF1(u1)dF2(u2),

E122 =

∫ ∞
0

∫ u2µ11
µ22+µ32

0

Ĉ3(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2µ11
µ22+µ32

Ĉ4(u1, u2)dF1(u1)dF2(u2),

where the functions Ĉi(u1, u2), for i ∈ {1, 2, 3, 4}, are defined in Appendix A.3. The

following theorem now identifies the optimal policy when the service times have a

general distribution and the buffer size is zero.

Theorem 3.4.3 For a system with two stations in tandem, three flexible servers, zero

buffer between the two stations, and service times coming from general distributions,

the optimal policy is a threshold policy like the one for the corresponding Markovian

system. In other words, the following policy is optimal:

• when Station 2 is starved (i.e., in state 0) assign all servers to Station 1;

• when neither of the stations is blocked or starved (i.e., in state 1), assign Servers

1 and 2 to Station 1, Server 3 to Station 2 if E112 ≤ E122, and Server 1 to Station

1 and Servers 2 and 3 to Station 2 if E122 < E112;

• when Station 1 is blocked (i.e., in state 2), assign all servers to Station 2.
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Proof: Using the same notation as above, let us define

E121 =

∫ ∞
0

∫ u2(µ11+µ31)
µ22

0

Ĉ5(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2(µ11+µ31)

µ22

Ĉ6(u1, u2)dF1(u1)dF2(u2),

E211 =

∫ ∞
0

∫ u2(µ21+µ31)
µ12

0

Ĉ7(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2(µ21+µ31)

µ12

Ĉ8(u1, u2)dF1(u1)dF2(u2),

E212 =

∫ ∞
0

∫ u2µ21
µ12+µ32

0

Ĉ9(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2µ21
µ12+µ32

Ĉ10(u1, u2)dF1(u1)dF2(u2),

E221 =

∫ ∞
0

∫ u2µ31
µ12+µ22

0

Ĉ11(u1, u2)dF1(u1)dF2(u2)

+

∫ ∞
0

∫ ∞
u2µ31
µ12+µ22

Ĉ12(u1, u2)dF1(u1)dF2(u2),

where the functions Ĉi(u1, u2), i ∈ {5, . . . , 12}, are defined in Appendix A.3. Lemma

3.2.1 shows that it is optimal to use action a111 in state 0 and action a222 in state 2.

Hence, only the optimal action in state 1 needs to be determined. Lemmas 3.4.1 and

3.4.2 show that, it is sufficient to consider actions a112, a122, a121, a211, a212, and a221

in state 1. We use Lemma 3.2.3 to compare different actions in state 1.

It is shown in the proofs of Lemmas A.3.3 and A.3.4 that for all u1, u2 ∈ R+, we

have

max{Ĉ1(u1, u2), Ĉ2(u1, u2)} ≤ min{Ĉ7(u1, u2), Ĉ8(u1, u2), Ĉ11(u1, u2), Ĉ12(u1, u2)}.

Consequently, it is clear that E112 ≤ min{E211, E221}, and actions a211 and a221 cannot

be optimal. Furthermore,

E112 =
∫ ∞

0

∫ u2µ21
µ12+µ32

0
Ĉ1(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ u2(µ11+µ21)
µ32

u2µ21
µ12+µ32

Ĉ1(u1, u2)dF1(u1)dF2(u2)

+
∫ ∞

0

∫ ∞
u2(µ11+µ21)

µ32

Ĉ2(u1, u2)dF1(u1)dF2(u2).
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We have shown in the proof of Lemma A.3.3 that, Ĉ1(u1, u2) ≤ Ĉ9(u1, u2) for all

u1, u2 ∈ R+, and if u1 > u2µ21

µ12+µ32
, then Ĉ1(u1, u2) < Ĉ10(u1, u2). We have shown

in Lemma A.3.4 that Ĉ2(u1, u2) ≤ Ĉ10(u1, u2) for all u1, u2 ∈ R+. Hence, we can

conclude that E112 ≤ E212, and action a212 cannot be optimal.

Similarly,

E122 =
∫ ∞

0

∫ u2µ11
µ22+µ32

0
Ĉ3(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ u2(µ11+µ31)
µ22

u2µ11
µ22+µ32

Ĉ4(u1, u2)dF1(u1)dF2(u2)

+
∫ ∞

0

∫ ∞
u2(µ11+µ31)

µ22

Ĉ4(u1, u2)dF1(u1)dF2(u2).

We know that Ĉ3(u1, u2) ≤ Ĉ5(u1, u2) for all u1, u2 ∈ R+ because

Ĉ3(u1, u2) ≤ Ĉ5(u1, u2)⇔ µ12

µ11

≤ µ12 + µ32

µ11 + µ31

⇔ µ12µ31 ≤ µ11µ32 ⇔
µ11

µ12

≥ µ31

µ32

.

Furthermore, we have shown in the proof of Lemma A.3.2 that Ĉ4(u1, u2) ≤ Ĉ6(u1, u2)

for all u1, u2 ∈ R+, and if u1 ≤ u2(µ11+µ31)
µ22

, then Ĉ4(u1, u2) ≤ Ĉ5(u1, u2). Hence, we

can conclude that E122 ≤ E121, and action a121 cannot be optimal.

The above discussion shows that either action a112 or a122 is optimal in state 1.

If E112 ≤ E122, then action a112 is no worse than action a122, and hence action a112 is

optimal. To the contrary, if E122 < E112, then action a122 is better than action a112,

and we can conclude that action a122 is optimal. 2

Theorems 3.4.1, 3.4.2, and 3.4.3 show the robustness of the form of the optimal

policy to the service time distribution (i.e., threshold policies are optimal in both the

Markovian and non-Markovian settings). However, the optimal value of the threshold

for server 2 is sensitive to the service time distributions. Note that when B > 0, the

threshold is arbitrary for the deterministic system for some values of u1, u2, and the

service rates. However, this is not correct in the same generality for the Markovian

system, see Andradóttir and Ayhan [6]. To further illustrate this point, define

rM =
(µ11 + µ21 + µ31)(µ11µ22 − µ12µ21)

(µ12 + µ22 + µ32)(µ21µ32 − µ22µ31)
.
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Assume that B = 0 and m(1) = m(2) = 1, and consider the optimal action in state 1.

If the service times are deterministic, then Theorem 3.4.2 shows that server 2 works

at station 1 if r < 1, or at station 2 if r ≥ 1. In the Markovian system, server 2 works

at station 1 if rM < 1, or at station 2 if rM ≥ 1 (see Theorem 3.1 of Andradóttir

and Ayhan [6]). Hence the threshold for server 2 (the state where server 2 starts

working at station 2), is either 1 or 2 in both cases, but the value of the threshold

may be different in Markovian and deterministic systems (e.g., for the system with

µ11 = µ32 = 2, µ12 = µ22 = 1, µ21 = 0.5, and µ31 = 0.1, we have r ' 0.94 and

rM ' 1.08). This is consistent with the results of Andradóttir, Ayhan, and Down

[11] for Markovian systems with server failures, where the optimal policy was found

to be of threshold type (as for systems without server failures), with the value of the

threshold depending on the server failures. Together these results suggest that the

optimality of the threshold policy of Andradóttir and Ayhan [6] is quite robust to the

assumptions it is derived under, but the value of the threshold must be determined

using the circumstances of the problem at hand.

3.5 Numerical Results

In this section, we present numerical results that support the conjecture that the

optimal server assignment policy is robust to the service time distributions. For this

purpose, we provide simulation results for systems with two stations, two flexible

servers, and non-exponential service times in Section 3.5.1 that show the effectiveness

of the optimal policy for Markovian systems in non-Markovian settings. We then

describe several heuristic server assignment policies for larger systems in Section 3.5.2,

and provide numerical results that suggest that our heuristics yield good throughput

performance and that their relative performance does not depend much on the service

time distribution.
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3.5.1 Optimal Policy for Small Systems

The results in Section 3.3 support the robustness of the optimal server assignment

policy to the service time distribution. In particular, we showed that the optimal

policy for Markovian systems with two servers and two stations is also optimal for

systems with deterministic service time distributions and arbitrary buffer size and

for systems with arbitrary service time distributions and zero buffer size. Here, we

provide numerical results for systems with two servers, two stations, and an inter-

mediate buffer of size one, two, or three that support the conjecture of robustness of

the optimal server assignment policy to the service time distribution. (Because of the

prohibitive amount of required computation time, systems with buffer sizes bigger

than three were not considered.) Our results complement the numerical results of

Andradóttir and Ayhan [6] who show that the optimal policy for Markovian systems

with two stations and three servers also significantly outperforms the expedite policy

of Van Oyen, Gel, and Hopp [67] (in which all servers work as a team that moves

with each job through the line) for certain non-Markovian systems.

More specifically, we assume that the service times at stations 1 and 2 are either

independent Erlang(2) random variables with CDF F (x) = 1−e−2x−2xe−2x for x ≥ 0

and squared coefficient of variation c2 = 0.5, or independent hyperexponential random

variables with CDF F (x) = 2/3(1 − e−2x) + 1/3(1 − e−x/2) for x ≥ 0 and squared

coefficient of variation c2 = 2. These same distributions were used to study non-

Markovian systems (with respect to the state space S) by Andradóttir and Ayhan

[6]. The service rates are randomly generated from a uniform distribution in the

interval (0, 100). In particular, for each service time distribution and each value of

B ∈ {1, 2, 3}, we create 5,000 sets of service rates {µ11, µ12, µ21, µ22} and estimate

the long-run average throughput under all non-idling server assignment policies in

Π (idling policies cannot be optimal when M = 2, see Lemmas 3.2.1 and 3.2.2).

Note that these systems can be modeled as Markov chains with state space larger
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than S because their service times come from the exponential distribution family.

Hence the policy iteration algorithm could be used to determine the optimal policy.

However, the set of Markovian stationary deterministic policies corresponding to their

Markovian state space is larger than Π, and not all decision epochs are observable in

this case. Hence simulation was instead used to compare the systems under the non-

idling policies in Π. We estimate the long-run average throughput by simulating each

system for 1,050,000 time units and truncating the first 50,000 time units. It is seen

that the policy proven to be optimal for Markovian systems in Andradóttir, Ayhan,

and Down [7] gives the best average throughput in all of the 5,000 random systems

generated for the Erlang(2) and hyperexponential distributions and each choice of B.

3.5.2 Heuristics for Larger Systems

For larger systems (with three or more stations and three or more servers), it can be

difficult to identify the optimal policy, even for Markovian systems. Furthermore, the

optimal policy may be undesirable for use in practice (e.g., because it is complicated or

difficult to implement). Thus, it is worthwhile to identify heuristic server assignment

policies for larger systems that are easy to implement and yield good throughput

performance. In this section, without loss of generality, we assume that m(j) = 1 for

j ∈ {1, . . . , N} to facilitate the definitions of the heuristics (otherwise one can replace

µij by µij/m(j) throughout). This implies that the service rates at each station are

to be interpreted as the task completion rates for the servers at the stations, instead

of the actual processing rates of the servers at the stations. We concentrate on

situations where M ≥ N , so that we have enough workforce to operate all stations

simultaneously, but many of our ideas are applicable even when M < N . The only

previous work we are aware of that studies heuristic server assignment policies for

systems with more servers than stations is Andradóttir and Ayhan [6], but they

consider the special case with N = 2.
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Our heuristics have two parts, namely a primary assignment and a contingency

plan, as in Andradóttir, Ayhan, and Down [7]. The primary assignment for each

server indicates the station where the server is assigned as long as that station is not

blocked or starved. The contingency plan shows where the server moves if the station

(s)he is primarily assigned to is blocked or starved. It should be noted that these

heuristics belong to Π.

More specifically, we present three heuristic primary assignments and six heuristic

contingency plans, and compare the performance of different combinations of these.

Let SRj denote the sum of the service rates of servers with primary assignment at

station j ∈ {1, . . . , N}.

We consider the following primary assignments:

PA1: Maximize ΠN
j=1SRj.

PA2: Maximize minj∈{1,...,N} SRj.

PA3: Assign server i to station j∗ = arg maxk∈{1,...,N} µik.

Note that PA2 has the objective of balancing the line, PA3 uses each server’s

capability as much as possible without taking into account other servers, and PA1

attempts to balance the line and take advantage of relative capabilities of the servers.

PA1 was proposed by Andradóttir, Ayhan, and Down [7] for Markovian systems with

M = N but has not been considered for systems with M > N . PA2 and PA3 are

new to this work.

We consider the following contingency plans:

CP1: When a station is starved but not blocked, servers having primary assign-

ment at that station move to the closest upstream station that is operating (neither

blocked or starved); when it is blocked, servers having primary assignment at that

station move to the closest downstream station that is operating.

CP2: This is the local heuristic with the modification that all servers unable to

work at their assigned station are working at the first station if the number of jobs
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in the system is less than the number of stations.

CP3: Whenever a server is unable to work at the station (s)he is primarily assigned

to, (s)he works at the station that is operating (not blocked or starved) where (s)he

has the highest rate compared to the other stations that are operating; i.e., server i

works at station j∗ = arg maxk∈I µik, where I is the set of stations that are operating.

CP4: Whenever a server is unable to work at the station (s)he is primarily assigned

to, (s)he works at the station that is operating where (s)he has the highest relative

rate with respect to the cumulative rate of all servers with primary assignment at

that station (compared to the other stations that are operating); i.e., server i works

at station j∗ = arg maxk∈I µik/SRk, where I is the set of stations that are operating.

CP5: This is a combination of CP1 and CP3. When a server is only starved, (s)he

moves to the upstream station that is operating where (s)he has the highest rate; when

a server is blocked, (s)he moves to the downstream station that is operating where

(s)he has the highest rate.

CP6: This is a combination of CP1 and CP4 with a logic similar to that used in

CP5.

Note that CP1 is the contingency plan of the local heuristic defined in Andradóttir,

Ayhan, and Down [7]. By contrast, CP2 through CP6 are first proposed in this work.

In CP1 servers create work for themselves, while in CP2 servers also try to push more

jobs into the system when the total number of jobs is low. CP3 and CP4, like PA3,

try to use each server’s capabilities to the extent possible. CP4 also considers servers’

relative rates compared to other servers, which implies that even though a server has

a high service rate at one station, if the other servers at that station already have

sufficiently high service rates, then this server is assigned to a station where (s)he is

needed more. CP5 and CP6 attempt to use each server’s capabilities to the extent

possible, and at the same time they try to create job for the servers at the stations

where they are primarily assigned to.
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We consider all combinations of the three primary assignment policies PA1, PA2,

and PA3 and the six contingency plans CP1 through CP6, with the exception that

PA3 is not used with CP4 or CP6. This is because when PA3 is used, it is possible not

to assign any servers to some stations primarily. Consequently, the initial service rate

is zero in these stations, leading to frequent ties when deciding where the blocked or

idle servers should move, and the CP4 and CP6 contingency plans lose their intended

benefits.

We performed simulations to compare the different combinations of primary as-

signments and contingency plans. The service requirements at the stations were all

i.i.d. with either the exponential, hyperexponential, or Erlang(2) distributions. The

parameters of the hyperexponential and Erlang(2) distributions were selected as in

Section 3.5.1, and the exponential distribution had rate 1. Hence, all the distribu-

tions had mean 1. We study systems with M = N = 3 and M = 6, N = 4. The

smaller system has the same number of servers as stations, and the bigger system is a

longer line with more servers than stations. Hence, we can observe the performance

of our heuristics in both balanced and over-staffed tandem lines. For the system with

M = N = 3, the service rates were drawn independently from a uniform distribu-

tion with range [0.5,2.5]. For the system with M = 6, N = 4, the service rates were

drawn independently from a uniform distribution with range (0,100). In other words,

we randomly generated sets of service rates {µij, for 1 ≤ i ≤ M and 1 ≤ j ≤ N},

and each experiment consists of estimating the long-run average throughput of such

a random system. The bigger system is already expected to have higher variability

than the smaller system, and we increase its variability further by choosing its service

rates from a larger range (corresponding to a more diverse workforce). In both cases,

the same sets of service rates were used for systems with different service time distri-

butions. Constant buffer sizes of one or four were used in each setting to understand

the effects of the buffer size on the effectiveness of the heuristics. Tables 1, 2, 3,
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and 4 display the mean and half length of 95% confidence intervals for the long-run

average throughput obtained by each heuristic under different system configurations.

Each confidence interval in Tables 1, 2, 3, and 4 was obtained from 50,000, 10,000,

10,000, and 5,000 experiments, respectively. The number of simulation experiments

was decreased when the buffer size and number of stations got bigger because of the

long required computational time.

For each set of generated service rates, we also determine the optimal policy when

the service times are exponentially distributed, and then employ this policy in sys-

tems with other service time distributions as well. The last row in Tables 1 through 4

gives the throughput achieved by the optimal policy for the exponential distribution

for the three distributions we consider. This policy provides the best possible per-

formance for systems with exponential service times, and is also used to benchmark

the performance of our heuristics for systems with Erlang(2) or hyperexponential ser-

vice times. (Although, the policy iteration algorithm could be used to determine the

optimal server assignment policy for systems with Erlang(2) and hyperexponential

distributed service times, we do not do this because the decision epochs would not

be observable in this case.) Furthermore, the first row in each table gives the average

throughput achieved by the expedite policy (see Section 3.5.1), also for benchmarking

purposes. (In this case, the long-run average throughput of each system can be esti-

mated using Monte Carlo simulation only, because the expected time spent at station

j given the service rates µ1j, . . . , µMj is equal to 1∑M
i=1 µij

, for 1 ≤ j ≤ N).

For systems with three stations and three flexible servers, Tables 1 and 2 show

that PA1 performs better than PA2 and PA3 for all three distributions, both buffer

sizes, and all six contingency plans. Among the contingency plans, we see that CP3,

CP4, CP5, and CP6 perform well, however in general CP4 and CP6 outperform

the others, and CP4 seems to be the best contingency plan. Finally, we note that

CP1 yields worse performance than the other five contingency plans for PA1 (and
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Table 1: Performance of Heuristics for Systems with Three Stations, Three Servers,
and Common Buffer Size One

Policy exponential Erlang hyperexponential

expedite 1.449 ± 0.003 1.449 ± 0.003 1.449 ± 0.003

PA1-CP1 1.675 ± 0.002 1.713 ± 0.002 1.583 ± 0.002
PA1-CP2 1.676 ± 0.002 1.714 ± 0.002 1.584 ± 0.002
PA1-CP3 1.692 ± 0.002 1.724 ± 0.002 1.599 ± 0.002
PA1-CP4 1.698 ± 0.002 1.731 ± 0.002 1.605 ± 0.002
PA1-CP5 1.691 ± 0.002 1.726 ± 0.002 1.601 ± 0.002
PA1-CP6 1.693 ± 0.002 1.729 ± 0.002 1.602 ± 0.002

PA2-CP1 1.658 ± 0.002 1.691 ± 0.002 1.560 ± 0.002
PA2-CP2 1.656 ± 0.002 1.690 ± 0.002 1.559 ± 0.002
PA2-CP3 1.676 ± 0.002 1.705 ± 0.002 1.574 ± 0.002
PA2-CP4 1.679 ± 0.002 1.709 ± 0.002 1.582 ± 0.002
PA2-CP5 1.672 ± 0.002 1.704 ± 0.002 1.576 ± 0.002
PA2-CP6 1.673 ± 0.002 1.705 ± 0.002 1.578 ± 0.002

PA3-CP1 1.614 ± 0.002 1.623 ± 0.002 1.526 ± 0.002
PA3-CP2 1.606 ± 0.002 1.628 ± 0.002 1.520 ± 0.002
PA3-CP3 1.641 ± 0.002 1.660 ± 0.002 1.550 ± 0.002
PA3-CP5 1.635 ± 0.002 1.656 ± 0.002 1.544 ± 0.002

exp opt 1.713 ± 0.002 1.747 ± 0.002 1.615 ± 0.002

usually for also PA2 and PA3) even though M = N in this example. Thus, the

five heuristics composed of PA1 and one of CP2 through CP6 outperform the local

heuristic of Andradóttir, Ayhan, and Down [7] in this example, even though M =

N (the local heuristic is designed for such systems). Nevertheless, CP1 is easy to

implement compared to some better performing contingency plans, and it may also

increase server motivation because every server concentrates on his/her own station,

by either working at that station or creating work for that station.

Similar conclusions follow for the system with four stations and six flexible servers,

see Tables 3 and 4. Even though there are now more servers than stations, and the

variability in the service rates is larger (reflecting a more diverse set of servers), our

heuristics remain robust.

Tables 1 through 4 also show that in the Markovian setting, our best heuristic

37



Table 2: Performance of Heuristics for Systems with Three Stations, Three Servers,
and Common Buffer Size Four

Policy exponential Erlang hyperexponential

expedite 1.450 ± 0.004 1.450 ± 0.004 1.450 ± 0.004

PA1-CP1 1.725 ± 0.003 1.747 ± 0.003 1.663 ± 0.003
PA1-CP2 1.725 ± 0.003 1.753 ± 0.003 1.665 ± 0.003
PA1-CP3 1.732 ± 0.003 1.754 ± 0.003 1.682 ± 0.003
PA1-CP4 1.742 ± 0.003 1.763 ± 0.003 1.689 ± 0.003
PA1-CP5 1.730 ± 0.003 1.758 ± 0.003 1.683 ± 0.003
PA1-CP6 1.740 ± 0.003 1.762 ± 0.003 1.687 ± 0.003

PA2-CP1 1.699 ± 0.003 1.723 ± 0.003 1.640 ± 0.003
PA2-CP2 1.703 ± 0.003 1.727 ± 0.003 1.639 ± 0.003
PA2-CP3 1.711 ± 0.003 1.733 ± 0.003 1.660 ± 0.003
PA2-CP4 1.717 ± 0.003 1.739 ± 0.003 1.664 ± 0.003
PA2-CP5 1.707 ± 0.003 1.734 ± 0.003 1.658 ± 0.003
PA2-CP6 1.714 ± 0.003 1.736 ± 0.003 1.659 ± 0.003

PA3-CP1 1.627 ± 0.003 1.640 ± 0.003 1.592 ± 0.003
PA3-CP2 1.638 ± 0.003 1.656 ± 0.003 1.595 ± 0.003
PA3-CP3 1.660 ± 0.003 1.676 ± 0.003 1.621 ± 0.003
PA3-CP5 1.675 ± 0.003 1.675 ± 0.003 1.620 ± 0.003

exp opt 1.763 ± 0.003 1.777 ± 0.003 1.699 ± 0.003

server assignment policy (i.e., PA1 with CP4) results in near-optimal mean through-

put; more specifically its performance is between 97% and 99% of the optimal through-

put for the Markovian systems we consider. We observe that all of our heuristics

outperform the expedite policy (by margins as high as 45%). Moreover, the optimal

policy of the Markovian system also performs well for the other two distributions.

Nevertheless, we do not consider it to be a good heuristic because it can be difficult

to implement for actual systems. Finally, we observe that the average throughput

values of our heuristics are affected by the variability in the service times. More

specifically, for each heuristic, the systems with Erlang(2) service time distributions

had the best throughput, and systems with hyperexponential service time distribu-

tions had the worst throughput. Such a result is expected, because Erlang(2) and

hyperexponential distributions have the smallest and biggest coefficients of variations,
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Table 3: Performance of Heuristics for Systems with Four Stations, Six Servers, and
Common Buffer Size One

Policy exponential Erlang hyperexponential

expedite 71.626 ± 0.188 71.626 ± 0.188 71.626 ± 0.188

PA1-CP1 97.123 ± 0.125 98.776 ± 0.122 93.666 ± 0.130
PA1-CP2 97.190 ± 0.129 98.897 ± 0.128 93.763 ± 0.135
PA1-CP3 98.129 ± 0.137 100.022 ± 0.137 95.101 ± 0.134
PA1-CP4 98.879 ± 0.138 101.484 ± 0.139 95.761 ± 0.143
PA1-CP5 98.191 ± 0.139 100.358 ± 0.137 95.210 ± 0.139
PA1-CP6 98.783 ± 0.134 101.386 ± 0.130 95.679 ± 0.138

PA2-CP1 95.343 ± 0.130 96.612 ± 0.129 91.414 ± 0.135
PA2-CP2 95.400 ± 0.129 96.810 ± 0.128 91.492 ± 0.137
PA2-CP3 96.013 ± 0.130 98.013 ± 0.130 92.641 ± 0.140
PA2-CP4 96.880 ± 0.129 98.561 ± 0.130 93.143 ± 0.138
PA2-CP5 96.213 ± 0.135 98.142 ± 0.132 92.732 ± 0.137
PA2-CP6 96.783 ± 0.133 98.490 ± 0.132 93.042 ± 0.135

PA3-CP1 89.425 ± 0.131 91.794 ± 0.129 84.985 ± 0.136
PA3-CP2 89.492 ± 0.139 91.951 ± 0.130 85.025 ± 0.139
PA3-CP3 91.051 ± 0.134 93.740 ± 0.133 86.783 ± 0.135
PA3-CP5 92.194 ± 0.137 94.840 ± 0.132 87.416 ± 0.135

exp opt 101.905 ± 0.121 103.734 ± 0.127 97.426 ± 0.138

respectively.

We conclude that the heuristic that starts with a good primary assignment and

uses the relative efficiency of the servers in the contingency plan (i.e., the heuristic

comprised of PA1 and CP4) has the best performance among the heuristics that we

considered. The only problem with this heuristic involves ease of implementation,

especially in longer lines. The heuristic that uses PA1 with CP6 has performance

very close to the PA1-CP4 combination, and is easier to apply in actual systems.

Hence, for shorter lines (where determining what stations in the line have work is not

time consuming) we recommend the use of PA1 with CP4, but PA1 with CP6 may

be an attractive option for longer lines (where identifying stations with work for the

entire line is cumbersome).

39



Table 4: Performance of Heuristics for Systems with Four Stations, Six Servers, and
Common Buffer Size Four

Policy exponential Erlang hyperexponential

expedite 71.751 ± 0.267 71.751 ± 0.2670 71.751 ± 0.267

PA1-CP1 99.234 ± 0.153 101.881 ± 0.1584 95.313 ± 0.161
PA1-CP2 99.391 ± 0.154 102.084 ± 0.1633 95.439 ± 0.165
PA1-CP3 100.783 ± 0.163 103.453 ± 0.1732 96.431 ± 0.176
PA1-CP4 101.239 ± 0.168 104.064 ± 0.1719 97.319 ± 0.173
PA1-CP5 100.899 ± 0.166 103.148 ± 0.1692 96.642 ± 0.171
PA1-CP6 101.193 ± 0.170 104.055 ± 0.1704 97.215 ± 0.174

PA2-CP1 96.942 ± 0.160 99.643 ± 0.1583 92.611 ± 0.171
PA2-CP2 97.140 ± 0.169 99.742 ± 0.1683 92.790 ± 0.173
PA2-CP3 98.423 ± 0.165 100.703 ± 0.1690 93.940 ± 0.179
PA2-CP4 99.542 ± 0.175 101.841 ± 0.1714 95.444 ± 0.175
PA2-CP5 98.485 ± 0.165 100.627 ± 0.1703 94.001 ± 0.174
PA2-CP6 99.602 ± 0.170 101.873 ± 0.1701 95.464 ± 0.173

PA3-CP1 91.033 ± 0.167 93.493 ± 0.1674 86.356 ± 0.173
PA3-CP2 91.241 ± 0.164 93.664 ± 0.1701 87.564 ± 0.172
PA3-CP3 92.315 ± 0.170 94.948 ± 0.1722 88.654 ± 0.174
PA3-CP5 92.334 ± 0.171 95.130 ± 0.1689 88.678 ± 0.175

exp opt 104.425 ± 0.150 107.942 ± 0.1583 100.420 ± 0.164

3.6 Conclusion

We have studied non-Markovian tandem lines with finite buffers. For lines with two

stations and two or three flexible servers, we identified the optimal server assignment

policy for systems with deterministic service times and any finite buffer, and for

systems with general service times and zero buffer. We also provided numerical

results that strongly support the conjecture that the optimal server assignment policy

is robust to the service time distribution for arbitrary buffer sizes. Our study supports

the conjecture that the results of Andradóttir, Ayhan, and Down [7] and Andradóttir

and Ayhan [6], obtained for Markovian systems, also hold for non-Markovian systems.

Finally, we proposed heuristics for larger systems that were effective for different

service time distributions and system configurations (e.g., we could achieve up to 99%
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of the optimal throughput in Markovian systems). In the process, we noted that the

best performing heuristics take the relative efficiency of servers at stations into consid-

eration when assigning them dynamically to tasks. Furthermore, the heuristics that

perform well in the Markovian setting (including the optimal policy of the Markovian

system) also perform well for systems with different service time distributions. These

results support the conclusion that effective server assignment policies are robust to

service time distributions, even in larger systems.
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CHAPTER IV

FLEXIBLE SERVERS IN UNDERSTAFFED TANDEM

LINES

4.1 Introduction

In this chapter, we consider a production line with N > 2 stations and M ≥ 2 flexible

servers. We assume that the line is understaffed (so that N > M) and, without loss

of generality, that the expected service requirements at each station are equal to one

(i.e., m(j) = 1 for all j ∈ {1, . . . , N}). We further assume that the other assumptions

described in Section 3.1 hold and we use the notation described there.

Understaffed tandem lines with finite buffer spaces and more than one server are

quite typical in the garment manufacturing industry, assembly plants, and warehouses

(e.g., Bartholdi and Eisenstein [17, 18] and Lim and Yang [52]). In these settings,

labor costs constitute a big proportion of the operating costs (see, e.g., Bartholdi

and Hackman [20]), and hence it becomes an important task to effectively use the

workforce.

Other researchers have addressed the dynamic server assignment problem when

N ≥ M = 1 (Andradóttir, Ayhan, and Down [7], Duenyas, Gupta, and Olsen [29],

Iravani, Posner, and Buzacott [47]) and 2 = N ≤ M (Andradóttir and Ayhan [6],

Andradóttir, Ayhan, and Down [7, 11], Kırkızlar, Andradóttir, and Ayhan [50]).

However, unlike the earlier work, we analyze understaffed lines in the presence of

both finite buffers and multiple servers.

The benefits of partial flexibility in serial production lines also have been studied

by some researchers (Andradóttir, Ayhan, and Down [10], Hopp, Tekin, and Van Oyen

[45]). However, the works about partial flexibility in tandem systems only consider

42



lines with equal number of servers and stations, or systems with more servers than

stations. By contrast, in this work we consider an understaffed tandem line where

stations do not have workers that are assigned to them initially. Hence, it is not a

straightforward task to determine the bottleneck stations, and sometimes it is not

possible to label any station as bottleneck. Furthermore, we consider a longer line

than Andradóttir, Ayhan, and Down [10], and a different objective, release policy,

and collaboration structure than Hopp, Tekin, and Van Oyen [45].

The remainder of this chapter is organized as follows. In Section 4.2, we character-

ize the optimal assignment policy for systems with deterministic service requirements,

three stations and two flexible servers. In Section 4.3, we analyze the correspond-

ing Markovian system with small buffer sizes and different flexibility structures. In

Section 4.4, we propose heuristic server assignment policies, show that very simple

server assignment rules can achieve near-optimal throughput in Markovian systems

with larger buffer sizes, and provide some guidelines about how to select the best

flexibility structure. In Section 4.5, we make some concluding remarks.

4.2 Deterministic Systems

In this section we determine the optimal server assignment policy for systems with

deterministic service times. We also show that partial server flexibility can attain

all the benefits of full flexibility and provide the conditions for each partial training

strategy to be optimal.

Consider the following “allocation” linear program (LP) with decision variables λ
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and {δij}:

max λ

s.t. δ11µ11 + δ21µ21 ≥ λ,

δ12µ12 + δ22µ22 ≥ λ,

δ13µ13 + δ23µ23 ≥ λ,

δ11 + δ12 + δ13 ≤ 1,

δ21 + δ22 + δ23 ≤ 1,

δij ≥ 0, for all i ∈ {1, 2} and j ∈ {1, 2, 3}.

Let λ∗ denote the optimal value of λ for this LP. Andradóttir, Ayhan, and Down [8]

show that λ∗ is the maximal capacity of an infinite-buffered tandem line with three

stations, two flexible servers, and outside arrivals. Lemma 3.2.4 shows that λ∗ is an

upper bound on the throughput of our finite-buffered tandem line as well. Moreover,

if {δ∗ij} are optimal values of {δij}, then δ∗ij, where i ∈ {1, 2} and j ∈ {1, 2, 3}, can be

interpreted as the long-run proportion of time server i should be assigned to station

j in order to achieve the maximal capacity λ∗.

The LP described in the previous paragraph has five constraints (in addition to

the nonnegativity constraints) and seven variables. Since λ is always positive, we can

conclude that at least two elements of the set {δij} are zero (this also follows directly

from Proposition 2 of Andradóttir, Ayhan, and Down [8]). This proves that four

skills are sufficient to achieve the maximal capacity in systems with infinite buffers,

and hence it is of interest to determine to what extent this is also true for systems

with finite buffers. Consequently, we first analyze the system under the assumption

that the two servers have a total of four skills, and then show the implications of

this result for systems with fully cross-trained servers. We let (s1, s2) be the state of

our system, where s1 (s2) is the number of jobs that have already been processed at

station 1 (2) and are either waiting for service or being processed at station 2 (3).
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Then,

S = {(s1, s2) : s1 ∈ {0, 1, . . . , B2 + 2}, s2 ∈ {0, 1, . . . , B3 + 2}, s1 + s2 ≤ B2 +B3 + 3}

is our state space. We say that a station is “operating” if that station is neither

starved nor blocked.

In the following propositions, without loss of generality, we assume that the system

initially starts in a state s0 = (s0
1, s

0
2) where all the stations are operating and the

jobs at each station have not started service yet, so that they all have the full service

requirement. We let S0 ⊆ S be the set of such states. If the system does not start

in a state in S0, initially any policy that takes the process to such a state may be

employed. Recall that we assume that there is at least one server with positive service

rate at each station (since
∑M

i=1 µij > 0 for j ∈ {1, . . . , N}). For the system to reach

a state in S0, we can successively assign all servers to the station j ∈ {1, . . . , N} that

is closest to the end of the line among the stations that are either blocked or have

jobs with remaining service requirements not equal to one (i.e., jobs that have already

started their service). When there are no such stations left, we can assign all servers

to the station j ∈ {1, . . . , N−1} that is closest to the beginning of the line among the

stations that are preceding a station that is starved. When this is no longer possible

(because there are no such stations left), the system is in a state s0 ∈ S0 satisfying

the conditions mentioned previously. This is achievable in finite time and will not

affect the long-run average throughput.

We will consider systems with one dedicated and one fully flexible server in Section

4.2.1. Then, we will study systems with two partially flexible servers in Section 4.2.2.

Finally, in Section 4.2.3, we will determine the critical skills needed to achieve the

optimal performance of systems with fully flexible servers.
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4.2.1 Systems with One Dedicated and One Fully Flexible Server

In this section, we provide three propositions identifying the optimal server assign-

ment policies for systems with one dedicated and one fully flexible server. Without

loss of generality, we assume that the first server is the dedicated server, since the

other case is equivalent to this one by relabeling the servers.

Proposition 4.2.1 Assume that µ12 = µ13 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 1 until one

job is completed at station 1, then (if this does not cause the system to return

to state s0) idle server 1 until the next time the process hits state s0 ;

• every time the system reaches state s0, assign server 2 to station 2 until one

job is completed at station 2, then assign server 2 to station 3 until one job

is completed at station 3, and finally (if the system is not already in state s0)

assign server 2 to station 1 until the next time the process hits state s0.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: When µ12 = µ13 = 0, the allocation LP takes the simpler form:

max λ

s.t. µ11 + δ21µ21 ≥ λ, (2)

δ22µ22 ≥ λ, (3)

δ23µ23 ≥ λ, (4)

δ21 + δ22 + δ23 ≤ 1,

δ2j ≥ 0, for all j ∈ {1, 2, 3}.
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Note that our assumptions on the service rates in Section 3.1 imply that µ11, µ22, µ23 >

0, and our assumption that server 2 is fully flexible implies that µ21 > 0. If µ11 >

µ22µ23

µ22+µ23
, we see that the left-hand side of the constraint (2) is always bigger than

the left-hand sides of the constraints (3) and (4), and hence δ∗21 = 0 in the optimal

solution. Then, we find δ∗22 = µ23

µ22+µ23
and δ∗23 = µ22

µ22+µ23
, by solving the equations

δ∗22µ22 = δ∗23µ23 and δ∗22 + δ∗23 = 1. On the other hand, if µ11 ≤ µ22µ23

µ22+µ23
, then we see

that in the optimal solution all the constraints (2), (3), and (4) will be tight. Then,

we find δ∗22 = µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

, δ∗23 = µ22(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

, and δ∗21 = 1 − δ∗22 − δ∗23,

by solving the equations µ11 + δ∗21µ21 = δ∗22µ22 = δ∗23µ23 and δ∗21 + δ∗22 + δ∗23 = 1.

Consequently, the value of λ∗ in the optimal solution is as follows:

λ∗ =


µ22µ23

µ22+µ23
if µ11 >

µ22µ23

µ22+µ23
,

µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

if µ11 ≤ µ22µ23

µ22+µ23
.

(5)

Now, consider the policy described in the proposition and assume that the system

is in state s0 = (s0
1, s

0
2) at time T . When µ11 >

µ22µ23

µ22+µ23
(i.e., 1

µ11
< 1

µ22
+ 1

µ23
), server 1

can complete the job at station 1 before server 2 finishes processing a job at stations

2 and 3; hence server 2 does not help server 1. The states of the system and the

remaining service requirements for the jobs at each station will be as in Table 9 in

Appendix B.1. When µ11 ≤ µ22µ23

µ22+µ23
(i.e., 1

µ11
≥ 1

µ22
+ 1

µ23
), server 2 finishes processing

a job at stations 2 and 3, and helps server 1 afterwards. The states of the system and

the remaining service requirements for the jobs at each station will be as in Table

10 in Appendix B.1. We see that the system regenerates each time it hits the state

s0, that there is one departure from the system during each regenerative cycle, and

that the length of the cycle is equal to the reciprocal of equation (5). Hence we can

conclude that the policy given in the proposition is optimal. 2

The optimal policy described in Proposition 4.2.1 also balances the line. In ev-

ery regenerative cycle, the first server stops pushing new jobs into the system upon

completion of one service at station 1. Moreover, the proof of the proposition shows
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that the first server is idle only if the service rate of this server is high enough so

that utilizing him/her more would only cause blocking at the first station, rather

than increasing the throughput. The second server helps the first server at station

1 if (s)he is fast enough to complete jobs at stations 2 and 3 before the first server

completes one job at station 1. Finally, note that it is possible to attain the maximal

capacity of the four-skilled system above even with three skills (i.e., with µ21 = 0)

when µ11 ≥ µ22µ23

µ22+µ23
.

Proposition 4.2.2 Assume that µ11 = µ13 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 2 until one

job is completed at station 2, then (if this does not cause the system to return

to state s0) idle server 1 until the next time the process hits state s0;

• every time the system reaches state s0, do either of the following:

(a) assign server 2 to station 3 until one job is completed at station 3, then

assign server 2 to station 1 until one job is completed at station 1, and finally

(if the process is not already in state s0) assign server 2 to station 2 until the

next time the process hits state s0; or

(b) assign server 2 to station 1 until one job is completed at station 1, then

assign server 2 to station 3 until one job is completed at station 3, and finally

(if the system is not already in state s0) assign server 2 to station 2 until the

next time the process hits state s0.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.
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Proof: Proceeding as in the proof of Proposition 4.2.1, the value of λ in the optimal

solution of the allocation LP can be found as follows:

λ∗ =


µ21µ23

µ21+µ23
if µ12 >

µ21µ23

µ21+µ23
,

µ21µ23(µ12+µ22)
µ21µ23+µ22µ23+µ21µ22

if µ12 ≤ µ21µ23

µ21+µ23
.

(6)

Consider the policy described in the proposition and assume that the system is in

state s0 = (s0
1, s

0
2) at time T . When µ12 >

µ21µ23

µ21+µ23
, we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 11 or

Table 13 in Appendix B.1, if we use assignment rule (a) or (b), respectively. When

µ12 ≤ µ21µ23

µ21+µ23
, we obtain Table 12 or Table 14 in Appendix B.1, if we use assignment

rule (a) or (b), respectively. Optimality of the policy in the proposition can be shown

using similar arguments as in the proof of Proposition 4.2.1. 2

Similar to the previous proposition, we see that the dedicated server is idle only

if his/her service rate is high enough so that (s)he would not increase the throughput

by being utilized more. Moreover, by idling this server at certain times, we are able to

keep both stations operating rather than causing starvation or blocking at the second

station. Finally, note that the maximal capacity of the four-skilled system can be

reached even with three skills (i.e., with µ22 = 0) when µ12 ≥ µ21µ23

µ21+µ23
.

Proposition 4.2.3 Assume that µ11 = µ12 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 3 until one

job is completed at station 3, then (if this does not cause the system to return

to state s0) idle server 1 until the next time the process hits state s0;

• every time the system reaches state s0, assign server 2 to station 2 until one

job is completed at station 2, then assign server 2 to station 1 until one job
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is completed at station 1, and finally (if the system is not already in state s0)

assign server 2 to station 3 until the next time the process hits state s0.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.1, the value of λ in the optimal

solution of the allocation LP can be found as follows:

λ∗ =


µ21µ22

µ21+µ22
if µ13 >

µ21µ22

µ21+µ22
,

µ21µ22(µ13+µ23)
µ21µ22+µ21µ23+µ22µ23

if µ13 ≤ µ21µ22

µ21+µ22
.

(7)

Consider the policy described in the proposition and assume that the system is in

state s0 = (s0
1, s

0
2) at time T . When µ13 >

µ21µ22

µ21+µ22
, we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 15 in

Appendix B.1. When µ13 ≤ µ21µ22

µ21+µ22
, we obtain Table 16 in Appendix B.1. Optimality

of the policy in the proposition can be shown using similar arguments as in the proof

of Proposition 4.2.1. 2

We observe that when the dedicated server works at station 3, the optimal policy

is “symmetrical” with respect to the case where the dedicated server works at station

1. Now, the flexible server starts working at station 2, moves to station 1 upon

completion of the task at station 2, and finally moves to station 3. The decision of

employing or idling the dedicated server is also a symmetrical one. Idling occurs only

if the service rate of the dedicated server is high enough so that utilizing him/her more

would only cause starvation at the third station, and not increase the throughput.

Finally, note that the maximal capacity of the four-skilled system can be reached

even with three skills (i.e., with µ23 = 0) when µ13 ≥ µ21µ22

µ22+µ22
.

We observe that whenever there is a dedicated and a fully flexible server, the op-

timal server assignment policy for the flexible server focuses on keeping the dedicated

server’s station operating at all times. Furthermore, when the dedicated server is at
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station 2, the policies that have the flexible server giving preference to prevent either

blocking or starvation of station 2 are both optimal. Previous work (see the local

heuristic in Andradóttir, Ayhan, and Down [7]) puts priority on preventing blocking.

However, with deterministic service times, one can ensure that the dedicated server’s

station is always operating as long as the right assignment policy is used (in random

systems it is generally not possible to avoid blocking or starvation). Finally, using

similar arguments as in the proof of Proposition 4.2.2, one can show that, when the

dedicated server is at station 1 (3), the policy that assigns the flexible server to sta-

tion 3 (1) before station 2 in every regenerative cycle is also optimal. Hence, the

flexible server can process the jobs at the stations where there is no dedicated server

in arbitrary order, without any efficiency loss.

4.2.2 Systems with Two Partially Flexible Servers

In this section, we consider systems where each server is partially cross-trained; i.e.,

each server is capable of processing jobs at two stations. Again, we only consider

three different cross-training strategies, and the optimal server assignment policy for

the other three cases can be deduced from these by simply relabeling the servers.

Proposition 4.2.4 Assume that µ13 = µ22 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 2 until one job

is completed at station 2, then (if the system is not already in state s0) assign

server 1 to station 1 until one job is completed at station 1, and finally (if the

system is still not in state s0) idle server 1 until the next time the process hits

state s0;

• every time the system reaches state s0, assign server 2 to station 3 until one job

is completed at station 3, then (if the system is not already in state s0) assign
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server 2 to station 1 until one job is completed at station 1, and finally (if the

system is still not in state s0) idle server 2 until the next time the process hits

state s0.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: When µ13 = µ22 = 0, the allocation LP takes the simpler form:

max λ

s.t. δ11µ11 + δ21µ21 ≥ λ, (8)

δ12µ12 ≥ λ, (9)

δ23µ23 ≥ λ, (10)

δ11 + δ12 ≤ 1,

δ22 + δ23 ≤ 1,

δ11, δ12, δ22, δ23 ≥ 0.

Note that µ11, µ12, µ21, µ23 > 0 under our assumptions. If µ12 ≤ µ21µ23

µ21+µ23
, we see that

the left-hand side of the constraint (9) is always less than or equal to the left-hand

sides of the constraints (8) and (10), and hence δ∗11 = 0 in the optimal solution. Then,

we find δ∗21 = µ23

µ21+µ23
and δ∗23 = µ21

µ21+µ23
by solving the equations δ∗21µ21 = δ∗23µ23 and

δ∗21 + δ∗23 = 1. If µ23 ≤ µ11µ12

µ11+µ12
, similar arguments show that δ∗11 = µ12

µ11+µ12
and

δ∗12 = µ11

µ11+µ12
. On the other hand, if µ12 > µ21µ23

µ21+µ23
and µ23 > µ11µ12

µ11+µ12
, then we

see that in the optimal solution all the constraints (8), (9), and (10) will be tight.

Then, we find δ∗12 = µ23(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

, δ∗23 = µ12(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

, δ∗11 = 1 − δ∗12 and

δ∗22 = 1− δ∗23, by solving the equations δ∗11µ11 + δ∗21µ21 = δ∗12µ12 = δ∗23µ23, δ∗11 + δ∗12 = 1,
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and δ∗21 + δ∗23 = 1. Consequently, the value of λ∗ in the optimal solution is as follows:

λ∗ =


µ12 if µ12 ≤ µ21µ23

µ21+µ23
,

µ23 if µ23 ≤ µ11µ12

µ11+µ12
,

µ12µ23(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

if µ12 >
µ21µ23

µ21+µ23
and µ23 >

µ11µ12

µ11+µ12
.

(11)

Note that µ12 ≤ µ21µ23

µ21+µ23
(i.e., 1

µ12
≥ 1

µ21
+ 1

µ23
) and µ23 ≤ µ11µ12

µ11+µ12
(i.e., 1

µ23
≥ 1

µ11
+ 1

µ12
)

cannot hold at the same time, since we assumed that all the service rates are finite.

Consider the policy described in the proposition and assume that the system is in

state s0 = (s0
1, s

0
2) at time T . When µ12 ≤ µ21µ23

µ21+µ23
, we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 17

in Appendix B.2. When µ23 ≤ µ11µ12

µ11+µ12
, we obtain Table 18 in Appendix B.2. When

µ12 >
µ21µ23

µ21+µ23
and µ23 >

µ11µ12

µ11+µ12
(i.e., 1

µ12
< 1

µ21
+ 1

µ23
and 1

µ23
< 1

µ11
+ 1

µ12
), we obtain

Table 19 in Appendix B.2. Optimality of the policy in the proposition can be shown

using similar arguments as in the proof of Proposition 4.2.1. 2

Note that in the system with µ13 = µ22 = 0, the maximal capacity of the four-

skilled system can be reached even with three skills when either µ12 ≤ µ21µ23

µ21+µ23
or

µ23 ≤ µ11µ12

µ11+µ12
. In the former case (when µ12 ≤ µ21µ23

µ21+µ23
), the optimal throughput

can be achieved with µ11 = 0; in the latter case (when µ23 ≤ µ11µ12

µ11+µ12
), the optimal

throughput can be achieved with µ21 = 0.

Proposition 4.2.5 Assume that µ13 = µ21 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 1 until one job

is completed at station 1, then (if the system is not already in state s0) assign

server 1 to station 2 until one job is completed at station 2, and finally (if the

system is still not in state s0) idle server 1 until the next time the process hits

state s0;
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• every time the system reaches state s0, assign server 2 to station 3 until one job

is completed at station 3, then (if the system is not already in state s0) assign

server 2 to station 2 until one job is completed at station 2, and finally (if the

system is still not in state s0) idle server 2 until the next time the process hits

state s0.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.4, the value of λ in the optimal

solution of the allocation LP can be found as follows:

λ∗ =


µ11 if µ11 ≤ µ22µ23

µ22+µ23
,

µ23 if µ23 ≤ µ11µ12

µ11+µ12
,

µ11µ23(µ12+µ22)
µ11µ22+µ12µ23+µ11µ23

if µ11 >
µ22µ23

µ22+µ23
and µ23 >

µ11µ12

µ11+µ12
.

(12)

Note that µ11 ≤ µ22µ23

µ22+µ23
(i.e., 1

µ11
≥ 1

µ22
+ 1

µ23
) and µ23 ≤ µ11µ12

µ11+µ12
(i.e., 1

µ23
≥ 1

µ11
+ 1

µ12
)

cannot hold at the same time, since we assumed that all the service rates are finite.

Consider the policy described in the proposition and assume that the system is in

state s0 = (s0
1, s

0
2) at time T . When µ11 ≤ µ22µ23

µ22+µ23
, we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 20

in Appendix B.2. When µ23 ≤ µ11µ12

µ11+µ12
, we obtain Table 21 in Appendix B.2. When

µ11 >
µ22µ23

µ22+µ23
and µ23 >

µ11µ12

µ11+µ12
, we obtain Table 22 in Appendix B.2. Optimality of

the policy in the proposition can be shown using similar arguments as in the proof of

Proposition 4.2.1. 2

Note that in the system with µ13 = µ21 = 0, the maximal capacity of the four-

skilled system can be reached even with three skills when either µ11 ≤ µ22µ23

µ22+µ23
or

µ23 ≤ µ11µ12

µ11+µ12
. In the former case (when µ11 ≤ µ22µ23

µ22+µ23
), the optimal throughput

can be achieved with µ12 = 0; in the latter case (when µ23 ≤ µ11µ12

µ11+µ12
), the optimal

throughput can be achieved with µ22 = 0.
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Proposition 4.2.6 Assume that µ12 = µ21 = 0 and that the system is initially in a

state s0 ∈ S0. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

• every time the system reaches state s0, assign server 1 to station 1 until one job

is completed at station 1, then (if the system is not already in state s0) assign

server 1 to station 3 until one job is completed at station 3, and finally (if the

system is still not in state s0) idle server 1 until the next time the process hits

state s0;

• every time the system reaches state s0, assign server 2 to station 2 until one job

is completed at station 2, then (if the system is not already in state s0) assign

server 2 to station 3 until one job is completed at station 3, and finally (if the

system is still not in state s0) idle server 2 until the next time the process hits

state s0.

Moreover, this policy also attains the maximal capacity of the system, regardless of

the intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.4, the value of λ in the optimal

solution of the allocation LP can be found as follows:

λ∗ =


µ11 if µ11 ≤ µ22µ23

µ22+µ23
,

µ22 if µ22 ≤ µ11µ13

µ11+µ13
,

µ11µ22(µ13+µ23)
µ13µ22+µ11µ23+µ11µ22

if µ11 >
µ22µ23

µ22+µ23
and µ22 >

µ11µ13

µ11+µ13
.

(13)

Note that µ11 ≤ µ22µ23

µ22+µ23
(i.e., 1

µ11
≥ 1

µ22
+ 1

µ23
) and µ22 ≤ µ11µ13

µ11+µ13
(i.e., 1

µ22
≥ 1

µ11
+ 1

µ13
)

cannot hold at the same time, since we assumed that all the service rates are finite.

Consider the policy described in the proposition and assume that the system is in

state s0 = (s0
1, s

0
2) at time T . When µ11 ≤ µ22µ23

µ22+µ23
, we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 23
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in Appendix B.2. When µ22 ≤ µ11µ13

µ11+µ13
, we obtain Table 24 in Appendix B.2. When

µ11 >
µ22µ23

µ22+µ23
and µ22 >

µ11µ13

µ11+µ13
, we obtain Table 25 in Appendix B.2. Optimality of

the policy in the proposition can be shown using similar arguments as in the proof of

Proposition 4.2.1. 2

Note that in the system with µ12 = µ21 = 0, the maximal capacity of the four-

skilled system can be reached even with three skills when either µ11 ≤ µ22µ23

µ22+µ23
or

µ22 ≤ µ11µ13

µ11+µ13
. In the former case (when µ11 ≤ µ22µ23

µ22+µ23
), the optimal throughput

can be achieved with µ13 = 0; in the latter case (when µ22 ≤ µ11µ13

µ11+µ13
), the optimal

throughput can be achieved with µ23 = 0.

The descriptions of the optimal policies in Propositions 4.2.4, 4.2.5, and 4.2.6 show

that each server starts working at the station where (s)he is the only server trained

to work. Then, after completing the job at the station they are primarily assigned to,

the servers move to the other station where they are trained to work. Furthermore,

idling occurs only when one server is so fast that (s)he can complete one job at two

stations before the other server completes a job at one station. In this case, we idle

the fast server in order to balance the line and keep all the stations operating, because

utilizing the fast server more causes starvation or blocking in the system but does not

increase the throughput. It is also observed that these policies utilize each server in

order make sure that the other server is not blocked or starved. Perfect coordination

of the servers in order to prevent any productivity loss is achievable since the service

times are deterministic.

4.2.3 Identifying the Best Flexibility Structure

Propositions 4.2.1 through 4.2.6 show that when the servers have four skills and the

service times are deterministic, it is possible to reach the maximal capacity of the

corresponding four-skilled infinite-buffered systems in the finite-buffered settings. In

this section, given the potential skill of each server at each task (if the server were
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trained to perform the task), we determine the four critical skills that are sufficient

to attain the maximal capacity of the fully flexible system. In order to specify the

best flexibility structure for a four-skilled system, we need the following conditions:

{1} µ11µ22 ≥ µ12µ21; {2} µ11µ22 < µ12µ21; {3} µ11µ23 ≥ µ13µ21;

{4} µ11µ23 < µ13µ21; {5} µ12µ23 ≥ µ13µ22; {6} µ12µ23 < µ13µ22;

{7} µ11 ≤
µ22µ23

µ22 + µ23

; {8} µ11 >
µ22µ23

µ22 + µ23

; {9} µ12 ≤
µ21µ23

µ21 + µ23

;

{10} µ12 >
µ21µ23

µ21 + µ23

; {11} µ13 ≤
µ21µ22

µ21 + µ22

; {12} µ13 >
µ21µ22

µ21 + µ22

;

{13} µ21 ≤
µ12µ13

µ12 + µ13

; {14} µ21 >
µ12µ13

µ12 + µ13

; {15} µ22 ≤
µ11µ13

µ11 + µ13

;

{16} µ22 >
µ11µ13

µ11 + µ13

; {17} µ23 ≤
µ11µ12

µ11 + µ12

; {18} µ23 >
µ11µ12

µ11 + µ12

.

Conditions {1} through {6} compare the relative speeds of servers at different sta-

tions. For example, condition {1} implies that server 1 is relatively faster at station

1 than server 2 (at the same time server 2 is relatively faster at station 2 than server

1). Conditions {7} through {18} compare the service completion rate of servers in

different zones. For example, condition {7} implies that the service completion rate of

server 2 in the zone consisting of stations 2 and 3 is higher than the service completion

rate of server 1 at station 1, see the proof of Proposition 4.2.1.

The following theorem, whose proof is provided in Appendix B.3, specifies the

best flexibility structure for a system with three stations and two servers.

Theorem 4.2.1 For a tandem line with three stations, two flexible servers, arbitrary

buffer sizes between the stations, and deterministic service times, the assignment (and

hence cross-training) policy specified in Table 5 is optimal.

Note that Theorem 4.2.1 employs the optimal solution of the allocation LP, and

hence it also provides the optimal assignment policy for the corresponding infinite-

buffered system. Next, we show that any set of service rates µij, where i ∈ {1, 2} and

j ∈ {1, 2, 3}, has to satisfy exactly one of the cases mentioned in Theorem 4.2.1.
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Table 5: Critical Skills and Optimal Server Assignment Policy for a Deterministic
System with Three Stations and Two Servers

Case Conditions Satisfied Optimal Server Assignment Policy

a {1}, {3}, {7} Use Proposition 4.2.1
b {2}, {4}, {13} Relabel servers and use Proposition 4.2.1
c {2}, {5}, {9} Use Proposition 4.2.2
d {1}, {6}, {15} Relabel servers and use Proposition 4.2.2
e {4}, {6}, {11} Use Proposition 4.2.3
f {3}, {5}, {17} Relabel servers and use Proposition 4.2.3
g {2}, {3}, {10}, {18} Use Proposition 4.2.4
h {1}, {4}, {12}, {16} Relabel servers and use Proposition 4.2.4
i {1}, {5}, {8}, {18} Use Proposition 4.2.5
j {2}, {6}, {12}, {14} Relabel servers and use Proposition 4.2.5
k {3}, {6}, {8}, {16} Use Proposition 4.2.6
l {4}, {5}, {10}, {14} Relabel servers and use Proposition 4.2.6

Proposition 4.2.7 The twelve cases {a, . . . , l} in Theorem 4.2.1 are mutually exclu-

sive and collectively exhaustive.

Proof: Consider a set of service rates M = {µij | i = 1, 2 and j = 1, 2, 3}. The

elements of M have to satisfy one of conditions {1} and {2}, one of conditions {3}

and {4}, and one of conditions {5} and {6}. First assume that the elements of M

satisfy the conditions {1}, {3}, and {5}. Then, none of the cases except a, f , and

i can hold. The proof of Proposition 4.2.5 shows that conditions {7} and {17} are

mutually exclusive. If in addition to {1}, {3}, and {5}, condition {7} is satisfied,

then conditions {8} and {17} are not satisfied, and hence only case a holds. If in

addition to {1}, {3}, and {5}, condition {17} is satisfied, then conditions {7} and

{18} are not satisfied, and hence only case f holds. Finally, if conditions {1}, {3},

and {5} are satisfied and both of the conditions {7} and {17} are not satisfied, then

conditions {8} and {18} are satisfied, and hence only case i holds.

Similar arguments show that if conditions {1}, {3}, and {6} are satisfied, then

exactly one of the cases a, d, and k holds. If conditions {1}, {4}, and {6} are satisfied,
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then exactly one of the cases d, e, and h holds. If conditions {2}, {3}, and {5} are

satisfied, then exactly one of the cases c, f , and g holds. If conditions {2}, {4}, and

{5} are satisfied, then exactly one of the cases b, c, and l holds. If conditions {2},

{4}, and {6} are satisfied, then exactly one of the cases b, e, and j holds.

Finally, note that conditions {1}, {4}, and {5} cannot hold at the same time

because conditions {1} and {4} together imply that condition {6} is true. Similarly,

the conditions {2}, {3}, and {6} cannot hold at the same time because conditions

{2} and {3} together imply that condition {5} is true. This concludes the proof. 2

The criteria for deciding the best flexibility structure provided in Table 5 can be

summarized as follows. If one server is relatively fast at one station with respect

to the other stations (for example, conditions {1} and {3} imply that server 1 is

relatively fast at station 1 in case a) and at that station (s)he cannot finish one job

before the other server finishes service at both of the other stations (condition {7} in

case a), then this server should be dedicated to the station where (s)he is relatively

fast.

On the other hand, if the two servers are relatively fast at different stations with

respect to the same station (for example, conditions {2} and {3} imply that server

1 is relatively better than server 2 at station 2 compared to station 1 and server 2

is relatively better than server 1 at station 3 compared to station 1 in case g) and

they can finish a job at the station they are relatively fast at before the other server

can finish service at both of the other stations (conditions {10} and {18} in case g),

then they should work at the station where they are relatively fast at, and also at the

common station where they are both relatively slow.

The other cases (b through f and h through l) can be described similarly by

simply changing the labeling of the servers and the stations they are relatively faster

or slower at.
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In summary, we have observed that the optimal cross-training strategy in a finite-

buffered system with deterministic service times is the same as the one of the corre-

sponding infinite-buffered system. Moreover, the maximal possible throughput (cor-

responding to full cross-training and infinite buffers) can be obtained with partial

cross-training and finite buffers for deterministic systems, regardless of the size of the

buffers.

4.3 Markovian Systems

In this section, we consider systems with three stations, two servers, and exponentially

distributed service requirements at each station. In Section 4.3.1, we formulate the

problem and provide our preliminary results. In Section 4.3.2, we present our obser-

vations about the form of the optimal server assignment policy using some numerical

experiments. In Section 4.3.3, we show that four-skilled systems attain near-optimal

throughput as compared to fully cross-trained systems. Finally, we identify the opti-

mal server assignment policies for systems with one dedicated and one fully flexible

server in Section 4.3.4, and for systems with two partially flexible servers in Section

4.3.5.

4.3.1 Problem Formulation

Let Π be the set of Markovian stationary deterministic policies corresponding to the

state space S of the system, and let As denote the set of allowable actions in each

state s ∈ S. For all π ∈ Π and t ≥ 0, let Dπ(t) be the number of departures under

policy π by time t, and let

T π = lim
t→∞

IE[Dπ(t)]

t

be the long-run average throughput corresponding to the server assignment policy π.

The existence of this limit follows from Proposition 8.1.1 of Puterman [58]. We are

interested in finding a server assignment policy that maximizes the long-run average
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throughput. Theorem 9.1.8 of Puterman [58] shows the existence of an optimal deter-

ministic stationary policy, because our state space S is finite and similarly As is finite

for each s ∈ S. Hence, without loss of generality, we restrict ourselves to policies in

Π (implying that the decision epochs correspond to the service completion times at

the stations).

Specifically, for systems with three stations, we use the stochastic process {X(t) =

(X1(t), X2(t)) : t ≥ 0} to keep track of how the state of the system evolves with time,

where X1(t) (X2(t)) is the number of jobs that have already been processed at station

1 (2) and are either waiting for service or being processed at station 2 (3) at time

t ≥ 0. Possible actions are idling a server or assigning the server to station 1, 2, or 3.

When we use the term “idling,” we refer to voluntary idling of a server. For example

assigning a server to a station where (s)he is not cross-trained at is not considered as

an idling action because in fact the server is assigned to a station (even if (s)he can

not work there). We use the notation aσ1σ2 for possible actions, where σi ∈ {0, 1, 2, 3}

for i ∈ {1, 2}, with σi = 0 when server i is idle and σi = j ∈ {1, 2, 3} when server

i ∈ {1, 2} is assigned to station j ∈ {1, 2, 3}. In order to maximize the throughput in

our system, we will identify the optimal action in each state.

The following lemma is a generalization of Lemmas 3.2.1 and 3.2.2 to the system

with two servers and more than two stations.

Lemma 4.3.1 For a tandem line with N > 2 and M = 2, there exists an optimal

policy that is non-idling.

Proof: If both of the servers are idle in some state s, then s is an absorbing state

and the throughput is equal to zero. Hence, at least one of the servers should be

assigned to at least one of the stations. First, assume that one server is assigned to

station j ∈ {1, . . . , N} that is operating and the other server is left idle. Then, the

only transition in the system will be to a state s′ ∈ S with probability one. The
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transition time to state s′ is never longer if we assign both servers to station j; hence

the throughput is never less for the policy that assigns both servers to the same

station than for the policy that idles one of the servers. 2

4.3.2 Fully Cross-Trained Servers

When both of the servers are cross-trained at all the stations (i.e., µij > 0 for i ∈

{1, 2}, j ∈ {1, 2, 3}), the optimal server assignment policy is difficult to characterize.

Even for systems with fewer skills and small buffer sizes, we show in Sections 4.3.4 and

4.3.5 that the optimal policy sometimes does not have an easy description, and the

optimal assignment policy for fully flexible systems appears to be more complicated

than these. Hence, we performed simulation experiments to determine the optimal

assignment of fully cross-trained servers. We randomly generated 10,000 systems

where the service rates were drawn independently from a uniform distribution with

range [0.5,2.5]. Then, assuming that B2 = B3 = B, we used the policy iteration

algorithm for communicating Markov chains to identify the optimal server assignment

policy for each system and each B ∈ {0, 1, 2, 3, 4}. Here are our observations:

• At least one of the servers (sometimes both of them) appears to have a primary

assignment. In other words, at least one server is assigned to a specific station

as long as that station is neither starved or blocked.

• Primary assignment can change with the buffer size. In other words, sometimes

a server that has a primary assignment for one buffer size does not have a

primary assignment for another buffer size, or a server’s primary assignment

can be different for different buffer sizes.

• Primary assignment is not always where the server is fastest or according to

a simple multiplicative rule (which is the case when there are two stations in

tandem, as shown in Andradóttir, Ayhan, and Down [7]).
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• If both of the servers have primary assignments, their primary assignment is

not at the same station.

We observe in Sections 4.3.4 and 4.3.5 that the conclusions above sometimes hold even

for the optimal assignment policy for partially flexible servers. More specifically, we

will see that at least one server in lines with limited flexibility and small buffers has

a primary assignment, and we will provide some guidelines about how to determine

the primary assignment.

4.3.3 Partially Cross-Trained Servers

When the service requirements at each station are deterministic, it is shown in Sec-

tion 4.2.3 that it is possible to attain the maximum throughput (corresponding to

fully trained servers) when the servers are cross-trained to have four skills in total.

In Markovian systems, it is not possible to reach such a conclusion because of the

stochastic nature of the problem. Nevertheless, there is strong evidence that, espe-

cially for systems with medium to large buffer sizes, near-optimal throughput can

be obtained with four skills only. We performed 50,000 experiments for the systems

with the same parameters as in Section 4.3.2. We found the maximum throughput of

all four-skilled systems and compared it to the maximum throughput of the system

with six skills (i.e., both servers are fully cross-trained). The average performance

of the best four-skilled systems compared to the six-skilled system is given below for

B2 = B3 ∈ {0, 1, . . . , 4}.

• 91.94% of the optimal throughput of the six-skilled system if B2 = B3 = 0;

• 96.67% of the optimal throughput of the six-skilled system if B2 = B3 = 1;

• 98.27% of the optimal throughput of the six-skilled system if B2 = B3 = 2;

• 99.01% of the optimal throughput of the six-skilled system if B2 = B3 = 3;
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• 99.37% of the optimal throughput of the six-skilled system if B2 = B3 = 4.

We can conclude that even for small buffer sizes it is possible to achieve near-

optimal throughput of the fully flexible system with only four skills. Hence, it is

important to identify the optimal assignment policy for systems with four skills.

We start by determining the optimal server assignment policy for systems with one

dedicated and one fully flexible server in Section 4.3.4. Next, we consider systems

with two partially flexible servers in Section 4.3.5. We limit ourselves to buffers of

sizes zero or one in Section 4.3.4 and to buffers of size zero in Section 4.3.5 because

the expressions become analytically intractable for larger buffer sizes.

4.3.4 Systems with One Dedicated and One Fully Flexible Server

In this section, we identify the optimal server assignment policy when one server is

dedicated at stations 1, 2, or 3, respectively, and the other server is cross-trained at

all stations. Without loss of generality, we assume that first server is the dedicated

server because the otherwise we can relabel the servers. The proofs of the following

propositions are provided in Appendix B.4.

Proposition 4.3.1 Assume that µ12 = µ13 = 0 and B2, B3 ≤ 1. Then the following

server assignment policy is optimal for the Markovian system:

• assign server 1 to station 1;

• assign server 2 to station 2 if station 2 is operating, to station 3 if station 2 is

not operating (i.e., blocked or starved) but station 3 is operating, and to station

1 otherwise.

Proposition 4.3.2 Assume that µ11 = µ13 = 0 and B2, B3 ≤ 1. Then the following

server assignment policy is optimal for the Markovian system with three stations and

two servers:
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• assign server 1 to station 2;

• assign server 2 to station 1 if station 1 is operating and station 2 is both blocked

and starved, or not blocked and either will not become blocked or will become

both blocked and starved if the next event were a service completion at station

2;

assign server 2 to station 3 if station 3 is operating and station 1 is not operat-

ing, or if stations 1 and 3 are operating and station 2 is either blocked but not

starved or will become blocked but not starved if the next event were a service

completion at station 2;

assign server 2 to station 2 otherwise.

Proposition 4.3.3 Assume that µ11 = µ12 = 0 and B2, B3 ≤ 1. Then the following

server assignment policy is optimal for the Markovian system with three stations and

two servers:

• assign server 1 to station 3;

• assign server 2 to station 2 if station 2 is operating, to station 1 if station 2 is

not operating but station 1 is operating, and to station 3 otherwise.

We observe that if there is one dedicated and one flexible server, the flexible server

does not work at the station where the dedicated server is working, as long as any of

the other stations are operating. The assignment of the flexible server when both of

the other stations are operating has the goal of keeping the dedicated server’s station

operating.

Propositions 4.3.1, and 4.3.3 are similar to Propositions 4.2.1, and 4.2.3, respec-

tively. When the dedicated server is at station 1 (3), the main goal is to prevent

blocking (starvation) at station 1 (3), and hence the flexible server gives priority to
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station 2, then to station 3 (1) if the dedicated server is at station 1 (3), and finally

moves to the station where the dedicated server is working. This prioritization of the

stations is the same as in the corresponding deterministic systems.

When the dedicated server is at station 2, two goals (to prevent starvation and

blocking) conflict with each other. This explains the more complex structure of

the optimal assignment of the flexible server in Proposition 4.3.2. In order to keep

station 2 operating, the optimal policy gives priority to station 1 unless station 2 is

blocked (but not starved) or about to be blocked (but not starved). After station 1,

the flexible gives the second highest priority to station 3, and station 2 is the least

preferred station. The optimal policy for the corresponding deterministic system also

has a similar structure in that either of stations 1 or 3 can be given priority, but

station 2 is the least preferred station, see Proposition 4.2.2. As mentioned earlier,

the local heuristic in Andradóttir, Ayhan, and Down [7] gives preference to removing

blocking rather than starving in longer lines. We see that the optimal policy in our

system puts higher priority on removing starving than blocking, but it also considers

the immediate blocking possibility in station 2 and tries to prevent blocking before it

even happens.

We conclude this section by pointing out that the optimal policies provided in

Propositions 4.3.1, 4.3.2, and 4.3.3 are not necessarily unique. For example, the

proofs of Propositions 4.3.1 and 4.3.3 in Appendix B.4 for systems with a dedicated

server at station 1 or 3 and B2 = B3 = 0 suggest that the actions a12 and a13 are

both optimal whenever these actions are both in As. However, when B2 = B3 = 1,

there are some states s with a12, a13 ∈ As where the action a12 is strictly better than

the action a13. Hence, the policy descriptions in the propositions were chosen so that

the same policy would be optimal for systems with different buffer sizes.
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4.3.5 Systems with Two Partially Flexible Servers

In this section, we consider four-skilled systems where each server is cross-trained to

work at two stations. The following propositions provide the optimal server assign-

ment policy under different cross-training strategies. We identify the optimal server

assignment policy for three partially flexible systems out of six, because the other

cases directly follow by relabeling the servers. We limit ourselves to the systems with

zero buffer sizes, because for larger buffer sizes the expressions become analytically

intractable and the optimal policy becomes difficult to characterize. The proofs of

the following propositions are provided in Appendix B.5.

Proposition 4.3.4 Assume that µ13 = µ22 = 0 and B2 = B3 = 0. Then the following

server assignment policy is optimal for the Markovian system:

• assign server 1 to station 2 if station 2 is operating, and to station 1 otherwise;

• if µ11µ12 ≥ µ21µ23, assign server 2 to station 3 if station 3 is operating, and to

station 1 otherwise;

• if µ11µ12 < µ21µ23, assign server 2 to station 3 if station 3 is operating and

station 2 is either not starved or both starved and blocked, and to station 1

otherwise.

When both servers are cross-trained at station 1, we observe that server 1 (the

server that is cross-trained at stations 1 and 2) has a primary assignment at station

2. When µ11µ12 ≥ µ21µ23 (which can be interpreted as server 1 having better overall

performance), server 2 has a primary assignment at station 3. This is reasonable

because server 1 is already performing well enough at stations 1 and 2, and the

capacity of server 3 can be primarily given to station 3. When µ11µ12 < µ21µ23,

server 2 does not have a primary assignment at any station but gives priority to
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station 3 except when station 2 is starved but not blocked. In this case, since server

2 seems to perform well enough on stations 1 and 3, (s)he can shift some capacity

to station 1 (whenever needed) without causing poor performance at station 3. This

also allows the slower server (server 1 in this case) to spend more time on the task

where the faster server cannot work. To summarize, in the state where station 3

is operating and station 2 is starved but not blocked, server 2 works at station 3 if

µ11µ12 ≥ µ21µ23, and at station 1 otherwise. Hence, we can conclude that the focus of

server 2 changes depending on how the performance of server 1 compares to his/her

own.

Proposition 4.3.5 Assume that µ13 = µ21 = 0 and B2 = B3 = 0. Then the following

server assignment policy is optimal for the Markovian system:

• assign server 2 to station 3 if station 3 is operating, and to station 2 otherwise;

• if µ2
11µ

2
12 ≤ µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23), assign server 1 to station 1

if station 1 is operating, and to station 2 otherwise;

• if µ2
11µ

2
12 > µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23), assign server 1 to station 2

if station 2 is operating, and to station 1 otherwise.

When both servers are cross-trained at station 2, both servers have primary as-

signments. Server 2 (the server that is cross-trained at stations 2 and 3) has a primary

assignment at station 3 regardless of the service rates. However, server 1 can have a

primary assignment at station 1 or 2. This shows a preference for clearing blocking in

the system relative to starvation. If µ2
11µ

2
12 > µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23)

holds, then server 1 has a primary assignment at station 2, and otherwise server 1 has

a primary assignment at station 1. Unlike the corresponding condition in Proposition

4.3.4, each side of this inequality does not consist of simple multiplication of the rates

of each server at the different stations. It seems to suggest which server has an overall

68



better performance, but in a way that skews the selection of the better overall server

towards server 2 because the right-hand side is always bigger than µ22µ23µ11µ12. In

other words, it is more likely that server 1 is primarily assigned to station 1 (rather

than station 2) with this inequality than under the condition µ11µ12 ≤ µ22µ23 (which

is the criterion in Proposition 4.3.4 adapted to the current case).

Proposition 4.3.6 Assume that µ12 = µ21 = 0 and B2 = B3 = 0. Then the following

server assignment policy is optimal for the Markovian system:

• assign server 1 to station 1 if station 1 is operating, and to station 3 otherwise;

• assign server 2 to station 2 if station 2 is operating, and to station 3 otherwise.

When the two servers are cross-trained at station 3, both servers have primary as-

signments at the stations where only one server is cross-trained to work. By contrast,

Proposition 4.3.4 shows that when both servers are cross-trained at station 1, server

2 gives priority to station 3 but may move to station 1 even if station 3 (where only

server 2 is trained to work) is operating when station 2 is starved but not blocked,

depending on the service rates. By symmetry, when both servers are cross-trained at

station 3, we would expect server 1 to give priority to station 1 and to move to station

3 when station 2 is blocked but not starved, for some service rates. Note, however,

that when B2 = B3 = 0, (1, 2) is the only state where station 2 is blocked but not

starved. In fact, station 1 is also blocked in this state, and server 1 moves to station 3

even if the policy of the Proposition 4.3.6 is applied. Hence, even though the policies

look different, a closer examination suggests that they are more symmetrical than it

first appears.

The symmetry between the cases where both servers are trained at station 1

or 3, respectively, can be observed in systems with larger buffer sizes. Numerical

experiments show that when both servers are cross-trained at station 3, the optimal
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policy sometimes appears to be of threshold type for the server that is cross-trained

at stations 1 and 3. For example consider the case where the servers have the rates

µ11 = 2, µ12 = 0, µ13 = 3, µ21 = 0, µ22 = 1, and µ23 = 1. Note that we chose

these rates such that µ11µ13 ≥ µ22µ23 (which is the symmetrical to the inequality in

Proposition 4.3.4). When B2 = 1 and B3 = 0, the optimal policy assigns server 2

to station 2 if station 2 is operating, and to station 3 otherwise; and assigns server

1 to station 1 if station 1 is operating and station 2 is not blocked or both blocked

and starved, and to station 3 otherwise. In other words, the server that is cross-

trained at stations 2 and 3 has a primary assignment at station 2 (symmetrical to

the policy of Proposition 4.3.4), and the optimal assignment of the server that is

cross-trained at stations 1 and 3 is of threshold type. The optimal policy results in a

throughput of 0.8472, but the policy of Proposition 4.3.6 yields a throughput of 0.8100

(which corresponds to 95.61% of the optimal throughput). Similarly, the optimal

policy appears to be of threshold type when µ11µ12 ≥ µ21µ23 (µ11µ13 ≥ µ22µ23) and

B2, B3 > 0 in cases where both servers are trained at station 1 (3).

Overall, we observe that in the four-skilled systems with two partially flexible

servers, there is always one server with a primary assignment, and this result is con-

sistent with what we observed for the fully-flexible system. For the small systems we

considered, the primary assignment of one server does not depend on the service rates

or buffer sizes. However, whether or not the other server has a primary assignment,

and where (s)he is primarily assigned (see, e.g., Proposition 4.3.5), may depend on

the service rates and the buffer sizes. Moreover, the policies in Propositions 4.3.4 and

4.3.6 are symmetrical versions of each other (even though the special structure of the

system with B2 = B3 = 0 makes them seem different), while the policy in Proposition

4.3.5 is different from the others (as expected). When both servers are cross-trained

at station 2, we observe that the optimal policy is more complex than in the other

cases, which may result from the fact that station 2 can be starved or blocked, and
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the assignment policy has to prevent both of these events to the extent possible.

Propositions 4.3.4, 4.3.5, and 4.3.6 above also show that the optimal policy in the

Markovian setting is slightly different from the optimal policy of the corresponding

deterministic system. In the deterministic system, it is possible to coordinate the

service completions so that no blocking or starvation occurs. Since this is not the

case in the Markovian system, we see that the optimal policy is of a “threshold” type

that also aims to keep the stations operating. Furthermore, we note that the form of

the policy may be quite complicated, and that this special case with B2 = B3 = 0 does

not generalize to systems with bigger buffer sizes. In fact, our numerical experiments

in Section 4.4.1 suggest that the values of the thresholds, as well as the preferred

assignment for each server, can not be determined by simply using the optimal policy

for the system with B2 = B3 = 0. Note also that the policies specified in Propositions

4.3.4, 4.3.5, and 4.3.6 need not be unique. In fact the proofs of Propositions 4.3.4,

4.3.5, and 4.3.6 in Appendix B.5 show that there may be multiple actions that are

optimal in some states.

The optimal throughput can be calculated for the cross-training strategies pre-

sented in Propositions 4.3.1 through 4.3.6, but the task of finding the best partially

flexible system for a given set of (potential) service rates is not a simple task. When

the expressions for the optimal throughputs are compared with each other, we obtain

complex expressions that do not provide intuitive criteria to compare the flexibility

structures. However, in the next section, we use the best flexibility structure for

the corresponding deterministic system (see Theorem 4.2.1 and Table 5) and test

the performance of the corresponding optimal policy (see Propositions 4.3.1 through

4.3.6) for small systems in larger Markovian systems. More specifically, we use the

conditions in Table 5 to select a flexibility structure, and then we use Proposition 4.k

instead of Proposition 3.k, for k ∈ {1, . . . , 6}, to specify a server assignment policy.
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4.4 Numerical Results

In this section, we provide near-optimal heuristic server assignment policies and guide-

lines for selecting a good flexibility structure for understaffed Markovian lines. We

first present and test our server assignment heuristics for tandem lines with three

stations and two servers with four skills in Section 4.4.1. Then, in Section 4.4.2 we

compare the performance of lines with limited flexibility with the performance of lines

with full flexibility, and study guidelines for choosing a good partial flexibility struc-

ture, for four-skilled systems with three stations and two servers. Finally, in Section

4.4.3 we determine whether the solution of the allocation LP also provides a good

flexibility structure in Markovian lines with more than three stations.

4.4.1 Heuristic Server Assignment Policies

In this section, we present and compare three heuristic server assignment policies for

systems with three stations and two servers. Two of these policies use the results

obtained for Markovian systems with small buffer sizes in Sections 4.3.4 and 4.3.5.

More specifically, we consider the following heuristic policies for systems with four

given server skills.

Policy 1: Assign priorities to stations for each flexible server. A flexible server works

at a station with lower priority only if none of the stations with higher priority

is operating.

Policy 2: The optimal assignment policy for Markovian systems with small buffer

sizes (see Sections 4.3.4 and 4.3.5) is employed for systems with any buffer sizes.

Policy 3: A combination of the optimal assignment policy for Markovian systems

with small buffer sizes and the optimal policy found numerically for various

Markovian systems with larger buffer sizes. (This policy is only provided if the

optimal policy has a different structure when the buffer sizes are larger, and it
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will be described in detail for each flexibility structure).

Note that for some flexibility structures (i.e., when there is a dedicated server at

station 1 or 3 and a fully flexible server), some of the three policies above are identical.

In order to determine the priorities used in Policy 1, 50,000 systems were gener-

ated with service rates independently drawn from a uniform distribution with range

[0.5,2.5] and the buffer sizes independently drawn from the discrete uniform distribu-

tion with range {0, 1, 2, 3, 4, 5}. Then, all possible assignments were compared and

the one with the highest average throughput in 50,000 experiments was selected (in

each case, the long-run average throughput was determined using the stationary dis-

tribution of the Markov chain {X(t)}). When there is a dedicated server at station

1 or 3, the best average priority policy coincides with the optimal policy of the cor-

responding system with smaller buffer size (see Propositions 4.3.1 and 4.3.3). When

there is a dedicated server at station 2, the flexible server gives priority to station 1,

then to station 3, and finally moves to station 2 (this is also consistent with Propo-

sition 4.3.2 except for the states where station 2 is blocked but not starved or about

to be blocked but not starved). When the servers have two skills, each server gives

priority to the station where no other server is cross-trained. For example, when

server 1 is cross-trained at stations 1 and 2 and server 2 is cross-trained at stations

1 and 3; server 1 gives priority to station 2 and server 2 gives priority to station 3.

Policy 1 is the same as the optimal assignment policy given in Proposition 4.3.6 if

both servers are trained at station 3. Policy 1 is also consistent with Proposition

4.3.4 except for the states where station 3 is operating and station 2 is either not

starved or both blocked and starved, and when the service rates satisfy the condition

µ11µ12 < µ21µ23. Finally, Policy 1 is consistent with Proposition 4.3.5 except when

the service rates satisfy the condition µ2
11µ

2
12 > µ22µ23(µ11µ12 +µ11µ23 +µ12µ23 +µ2

23).

Policy 3 will be described only when both servers are cross-trained at two stations

since no improvement over the optimal policy for small systems was found for the
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systems with one dedicated server and one fully flexible server (in this case we let

Policy 3 be the same as Policy 2).

• When both servers are cross-trained at station 1, so that µ13 = µ22 = 0, Policy

3 is as follows. Server 1 has a primary assignment at station 2, but server 2 may

or may not have a primary assignment. In particular, similar to the optimal

policy for the system with B2 = B3 = 0, server 2 has a primary assignment

at station 3 when µ11µ12 ≥ µ21µ23. When µ11µ12 < µ21µ23, Policy 3 differs

from Policy 2 only in the states where station 2 would become starved but not

blocked if the next event were a service completion at station 2. In these states,

Policy 2 assigns server 2 to station 3 but Policy 3 assigns server 2 to station

1. Thus Policy 3 pushes more jobs into the system in order to keep the second

station operating, and this idea is similar to that of Proposition 4.3.2 in that it

tries to prevent starvation before it occurs.

• Policy 3 was defined using a similar idea when both servers are cross-trained at

station 3, so that µ12 = µ21 = 0. In this case, Policy 3 differs from Policy 2 only

in the states where station 2 is blocked but not starved, or will become blocked

but not starved after the next service completion at station 2, and when the

service rates satisfy the condition µ22µ23 < µ11µ13. In this case, Policy 3 assigns

server 1 to station 3, but Policy 2 assigns server 1 to station 1. This policy is

different from the optimal policy of the system with B2 = B3 = 0 (where both

servers have primary assignments) and is symmetric to Policy 3 for the case

where both servers are cross-trained at station 1.

• Policy 3 for the system where both servers are cross-trained at station 2, so

that µ13 = µ21 = 0, combines the ideas used in Policy 3 for the cases where

both servers are cross-trained at station 1 or 3 with the optimal policy of the

system with B2 = B3 = 0 when both servers are cross-trained at station 2.
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In particular, when (a) µ2
11µ

2
12 ≤ µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23) and

(b) µ2
22µ

2
23 ≤ µ11µ12(µ22µ23 + µ11µ23 + µ11µ22 + µ2

11), server 1 has a primary

assignment at station 1 and server 2 has a primary assignment at station 3.

Otherwise, depending of which of these inequalities are satisfied or not satisfied,

servers may move to station 2 in order to prevent blocking or starvation. More

specifically, if inequality (a) is not satisfied, server 1 gives priority to station 1

but moves to station 3 if station 2 is blocked (but not starved) or will become

blocked (but not starved) upon the next service completion at station 2. If

inequality (b) is not satisfied, server 2 gives priority to station 3 but moves to

station 1 if station 2 is starved (but not blocked) or will become starved (but

not blocked) upon the next service completion at station 2.

In order to evaluate the performance of Policies 1, 2, and 3 for each of the twelve

possible flexibility structures with four skills, we randomly generated 50,000 Marko-

vian systems with service rates µij, where i ∈ {1, 2} and j ∈ {1, 2, 3}, independently

drawn from a uniform distribution with range [0.5,2.5] and the buffer sizes B2, B3 in-

dependently drawn from the discrete uniform distribution with range {0, 1, 2, 3, 4, 5}.

For each system and flexibility structure, we use the policy iteration algorithm to find

the optimal throughput of the system. Table 6 shows the 95% confidence interval for

the throughput of these policies and the throughput of the optimal policy. The first

column shows the flexibility structure under consideration. More specifically, the first

set of numbers shows the stations where server 1 is cross-trained at, and the second

set of numbers (after the “-” sign) shows the stations where server 2 is cross-trained

at. Note that, the throughput of Policy 2 is not provided for systems with a dedi-

cated server at stations 1 or 3 and a fully flexible server, or with two partially flexible

servers that are both cross-trained at station 3, because Policies 1 and 2 are identical

in these cases. Similarly, for the systems with one dedicated and one fully flexible

server, the throughput of Policy 3 is not provided, because Policy 3 is defined to be
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the same as Policy 2 in these cases.

Table 6: Performance of Heuristics for Partially Flexible Understaffed Systems

Flexibility Policy 1 Policy 2 Policy 3 Optimal
Structure Policy

1-123 0.6759 ± 0.0018 — — 0.6759 ± 0.0018
123-1 0.6764 ± 0.0018 — — 0.6764 ± 0.0018
2-123 0.6622 ± 0.0017 0.6714 ± 0.0018 — 0.6717 ± 0.0018
123-2 0.6611 ± 0.0017 0.6703 ± 0.0018 — 0.6706 ± 0.0018
3-123 0.6759 ± 0.0018 — — 0.6759 ± 0.0018
123-3 0.6776 ± 0.0018 — — 0.6776 ± 0.0018
12-13 0.8426 ± 0.0011 0.8518 ± 0.0011 0.8538 ± 0.0011 0.8566 ± 0.0011
13-12 0.8419 ± 0.0011 0.8484 ± 0.0011 0.8506 ± 0.0011 0.8533 ± 0.0011
12-23 0.8573 ± 0.0011 0.8588 ± 0.0011 0.8601 ± 0.0011 0.8656 ± 0.0011
23-12 0.8558 ± 0.0011 0.8567 ± 0.0011 0.8590 ± 0.0011 0.8643 ± 0.0011
13-23 0.8491 ± 0.0011 — 0.8529 ± 0.0011 0.8667 ± 0.0011
23-13 0.8500 ± 0.0011 — 0.8538 ± 0.0011 0.8577 ± 0.0011

From Table 6, we see that Policy 1 attained more that 99% of the optimal through-

put in all the flexibility structures we considered. Moreover, when the dedicated server

is at station 1 (3), Policy 2 described in Propositions 4.3.1 (4.3.3) attained the op-

timal throughput in all the experiments we performed. When there is a dedicated

server at station 2, the policy described in Proposition 4.3.2 reached 99.95% of the

optimal throughput. On the other hand, when both servers have two skills, we ob-

serve that the strict priority policy (Policy 1) performs well and the optimal policy

for small systems (Policy 2) performs even better (it reaches more than 99% of the

optimal throughput in all cases). Finally, a threshold policy (Policy 3) seems to close

the optimality gap for Policy 2 by about 50% when there are two partially flexible

servers.

We also observe that in the system with one dedicated and one flexible server, the

flexibility structures with a dedicated server at the either end station seem to perform

better compared to the one with a dedicated server at station 2. The reason may be

that when the dedicated server is at one of the end stations, the flexible server can
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focus on making sure the dedicated server is not blocked (if (s)he is assigned to station

1) or not starved (if (s)he is assigned to station 3). By contrast, if the dedicated server

is at station 2, the flexible server has to attempt to make sure the dedicated server is

neither blocked nor starved. When there are two partially flexible servers, we see that

the flexibility structure with both servers cross-trained at the middle station seems

to perform better compared to the ones with both servers cross-trained at one of the

end stations. This is reasonable because training both servers at the middle station

allows each server to simultaneously be able to concentrate on one end of the line

while being able to help with the operation of the middle station. We also observe

that when Policy 1 is employed for systems with two partially flexible servers, the

flexibility structure where both servers are trained at station 3 performs statistically

better than the flexibility structure where both servers are trained at station 1. This

is consistent with our results about the optimal policy for such systems in Section

4.3.5, where the optimal policy for the case with µ12 = µ21 = 0 and B2 = B3 = 0

was shown to be a strict priority policy (as in Policy 1) and the optimal policy for

the case with µ13 = µ22 = 0 and B2 = B3 = 0 was shown to be a threshold policy for

some service rates.

We conclude that server assignment policies that are of priority or threshold type

are also effective in the systems with larger buffers sizes. The threshold policies

described in Propositions 4.3.1 and 4.3.3 seem to be optimal for systems with larger

buffer sizes as well. For the other cases, the form of the optimal server assignment

policy seems complicated (as in Section 4.3.2), but it is still possible to attain near-

optimal throughput with the simple heuristics described in this section.

4.4.2 Comparison with Full Flexibility and Selecting a Good Flexibility
Structure

In this section, we compare the performance of partially flexible lines with four skills

with the optimal performance of the corresponding fully flexible system. We perform
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50,000 experiments, as described in Section 4.4.1. In each experiment, we first use the

criteria in Theorem 4.2.1 to select a flexibility structure (that is known to be optimal

for deterministic systems with finite buffers) and use either a heuristic or optimal

server assignment policy to determine the throughput for this flexibility structure.

The resulting 95% confidence intervals for the long-run average throughput are shown

in the second column of Table 7. Then we determine the throughput of the best

heuristic (Policy 3) for each of the twelve flexibility structures that are shown in the

first column of Table 6, and the structure with the highest throughput is selected.

The resulting 95% confidence intervals on the throughput are provided in the third

column of Table 7. Finally, we compute the optimal long-run average throughput

of the fully flexible system, see the last column of Table 7 for the 95% confidence

interval on the optimal long-run average throughput.

Table 7: Comparison of the Throughput of Four-Skilled Systems with Six-Skilled
Systems

Policy Theorem 4.2.1 Best 4-skilled 6-skilled

Best Heuristic 1.0516 ± 0.0009 1.0552 ± 0.0009 —
Optimal 1.0567 ± 0.0009 1.0600 ± 0.0009 1.0822 ± 0.0010

We see from Table 7 that 97.51% of the benefits of full flexibility can be attained

with only four skills and our heuristic assignment policies. When the optimal assign-

ment policy is used with the best four-skilled flexibility structure, we see that the

average throughput is 97.95% of that of the fully flexible system. Observe that the

optimality gap is caused by the lack of two skills is larger than the optimality gap

caused by the use of heuristic server assignment policies.

When the criteria in Theorem 4.2.1 are used to select the flexibility structure,

Table 7 shows that the average throughput for the partially flexible systems is 97.17%

of the optimal throughput of the fully flexible system when the best heuristic (Policy

3) is employed, and 97.64% of the optimal throughput of the fully flexible system
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when the optimal assignment policy is employed. This also corresponds to 99.66%

and 99.67% of the corresponding results for the best four-skilled flexibility structure

under the best heuristic and the optimal assignment policies, respectively. Hence,

we can conclude that the criteria used for selecting the best system when the service

times are deterministic also work well for the Markovian system.

Table 8 gives the frequency with which each flexibility structure is chosen in

the 50,000 sets of service rates using the different criteria. The first column shows

the flexibility structure. The second column shows the frequency of selecting each

flexibility structure according to the selection rule of Theorem 4.2.1 (in other words it

is the frequency with which each flexibility structure provides the optimal solution of

the allocation LP). The third and four columns give the frequency for each flexibility

structure when the system with highest throughput is selected if the best heuristic

and the optimal assignment policies are employed, respectively.

Table 8: Frequency of Each Flexibility Structure Being the Best in Understaffed
Systems

Flexibility Structure Theorem 4.2.1 Best Heuristic Optimal

1-123 or 123-1 2.90% 2.90% 2.80%
2-123 or 123-2 3.00% 2.51% 2.39%
3-123 or 123-3 2.93% 2.98% 2.83%

12-13 or 13-12 30.70% 30.85% 28.90%
12-23 or 23-13 30.26% 31.89% 33.33%
13-23 or 23-13 30.21% 28.87% 29.75%

We observe that the flexibility structures with two partially flexible servers are

most of the time superior to the flexibility structures with one dedicated and one

fully flexible server. More specifically, Table 8 shows that all three selection criteria

select structures with two partially flexible servers almost ten times more often than

the structures with one dedicated and one fully flexible server. However, when there

is a dedicated and a fully flexible server in the system, we observe in Section 4.4.1
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that there is no big difference in the performances of the systems where the dedicated

server is at stations 1, 2, or 3, respectively. Similarly, when both servers have two

skills each, we see that systems that have both servers trained at stations 1, 2, or 3

perform in a very similar manner. Theorem 4.2.1 chooses any of the three flexibility

structures with one deterministic and one fully flexible server almost equally often,

with the one with a dedicated server at station 2 being selected slightly more often

than the other two. However, we observe that the cases with the dedicated server

at stations 1 or 3 tend to be the best structures more often than the case with the

dedicated server at station 2 when the best heuristic and optimal assignment policies

are used, although the frequencies of all three flexibility structures are also very close

to each other in this case. Among the flexibility structures where each server has

two skills, the flexibility structure where both servers are cross-trained at station 2

is the best more often than the others when the best heuristic and optimal policies

are employed, whereas Theorem 4.2.1 recommends it about as often as the other

structures with two flexible servers (each cross-trained at two stations). We observed

a similar result in Table 6 that showed that the flexibility structures that assign the

dedicated server to the end stations are superior to the one with a dedicated server

in the middle station, and the flexibility structure with both servers cross-trained at

the middle station is superior to the ones with both servers cross-trained at the end

stations.

We conclude that the solution of the allocation LP provides a good heuristic

for finding a good flexibility structure for a tandem line with three stations and two

servers. Even though this selection rule does not always find the best flexibility struc-

ture in each experiment, the performance of the flexibility structure it recommends is

near-optimal as shown in this section. Furthermore, heuristic server assignment poli-

cies for systems with four-skills perform almost as well as optimal server assignment

policies, and the frequency with which each flexibility structure is the best is very
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similar when the heuristic or optimal server assignment policies are employed. In the

next section, we will study if these results generalize to longer Markovian lines.

4.4.3 Longer Markovian Lines

In Section 4.3.3 we observed that systems with the same number of skills as the

optimal solution of the allocation LP attain near-optimal throughput in Markovian

systems with three stations and two servers. In this section we test this conjecture

for longer lines. More specifically, we consider tandem lines with two servers and four

or five stations. We randomly generate the service rates of each server at each station

with the same parameters as in Section 4.3.2. Then we find the optimal throughput

of each flexibility structure under consideration and compare the highest average

throughput among the all flexibility structures to the optimal throughput of the fully

flexible system. We assume Bj = B for all j ∈ {2, . . . , N}, where B ∈ {0, 1, 2, 3},

and we repeat the experiment for each different value of B.

For systems with two flexible servers and four stations, there are eight possible

skills and Proposition 2 of Andradóttir, Ayhan, and Down [8] shows that a five-

skilled system would be the optimal solution of the allocation LP. There are
(

8
5

)
= 56

different choices for these five skills, but under our assumptions (e.g., that the service

rate of both servers cannot be zero at the same station) it is sufficient to consider 32

different flexibility structures. We performed 50,000 experiments for each buffer size,

found the optimal server assignment policy for each of the 32 flexibility structures,

and identified best throughput among the optimal throughputs of the 32 flexibility

structures. Then, we compare this best throughput to the optimal throughput of

the corresponding fully flexible system, and on average the performance of the best

five-skilled system is:

• 93.14% of the optimal throughput of the eight-skilled system if B = 0;

• 96.80% of the optimal throughput of the eight-skilled system if B = 1;
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• 98.17% of the optimal throughput of the eight-skilled system if B = 2;

• 98.89% of the optimal throughput of the eight-skilled system if B = 3.

For the system with two flexible servers and five stations, there are ten possible

skills and we know that there exists a six-skilled system that reaches the maximal

capacity when the allocation LP is solved. Because of the high number of different

possible combinations (80, to be more specific) for selecting these six skills out of ten

while satisfying our assumptions, we only consider the 16 flexibility structures that

consist of “zones” (because they are the easiest ones to apply in the real systems). In

other words we allow each server to work only in consecutive stations. For example

a server cannot work in stations 2 and 4 unless (s)he is also cross-trained at station

3. Because of the prohibitive amount of computational time, for each different value

of B = 0, 1, 2 and 3, the number of experiments are 50,000, 10,000, 5,000 and 1,000,

respectively. On average the best six-skilled system with zones has the following

throughput:

• 86.02% of the optimal throughput of the ten-skilled system if B = 0;

• 87.92% of the optimal throughput of the ten-skilled system if B = 1;

• 88.22% of the optimal throughput of the ten-skilled system if B = 2;

• 88.45% of the optimal throughput of the ten-skilled system if B = 3.

For the system with four stations, even for the buffer sizes as small as one, the

throughput of the best partially flexible system is near-optimal (i.e., attains more

than 90% of the optimal throughput) compared to the fully flexible system. Espe-

cially when the buffer sizes reach three, the discrepancy between the performance of

partial and fully flexible systems becomes very small. For the system with five sta-

tions, even though the number of structures considered here are 20% of all possible
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combinations, we still reach almost 90% of the optimal throughput of the fully flex-

ible system. Hence, we can conclude that the solution of the allocation LP provides

a good guideline for selecting a flexibility structure even for longer Markovian lines

with finite buffers.

4.5 Conclusion

In this paper, we have studied understaffed tandem lines with finite buffers. More

specifically, we determined the optimal server assignment policy for systems with

three stations, two servers possessing four skills in total, and either deterministic ser-

vice times and arbitrary buffer sizes, or exponential service times and small buffer

sizes. Our results suggest that for deterministic systems, it is possible to attain the

benefits of full flexibility with only partial flexibility, and we identified the optimal

cross-training strategy for such systems. For Markovian systems, we observed that

the optimal policy can be of threshold or priority type depending on the service

rates and buffer sizes. Furthermore, we performed numerical experiments involv-

ing randomly generated Markovian systems that imply that even for small buffer

sizes, partial flexibility together with a good server assignment policy can attain

near-optimal throughput. Moreover, we observed that the optimal server assignment

policies of small buffered systems also performed well in tandem lines with larger

buffer sizes. Next, we determined the best flexibility structure for some random sys-

tems and showed that the solution of the allocation LP can be used to choose a good

flexibility structure in systems with three stations and two flexible servers. Finally, we

provided evidence that flexibility structures with the number of skills in the optimal

solution of the allocation LP also perform well in Markovian tandem lines with finite

buffers.
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CHAPTER V

FLEXIBLE SERVERS IN TANDEM LINES WITH SETUPS

5.1 Introduction

In this chapter we study the queueing network described in Chapter 3 with the

modification that a setup cost is incurred when servers move between the stations

and the service requirements at each station are independent and exponentially dis-

tributed with mean one. For all i ∈ {1, . . . ,M} and j, k ∈ {1, . . . , N}, let ci(j, k)

be the setup cost incurred when server i moves from station j to station k. We

assume that ci(j, j) = 0 and 0 ≤ ci(j, k) < ∞ for j 6= k. We further assume that

ci(j, k) ≤ ci(j, l) + ci(l, k) for all i ∈ {1, . . . ,M} and j, k, l ∈ {1, . . . , N}, so that the

least costly way of moving from one station to another does not include any interme-

diate stations. Every time there is a service completion at station N , a revenue of v

is obtained. Without loss of generality, we assume that v = 1. Our goal is to find the

dynamic server assignment policy that maximizes the long-run average profit.

Most existing works about systems with setups are on polling systems, where

there is only one server in the system and the customers leave after being served

at one station. Related work on polling systems includes Duenyas and Van Oyen

[30], Gupta and Srinivasan [36], Hofri and Ross [44], Reiman and Wein [59], and

references therein. We are only aware of a very limited number of works that study

systems with setups apart from polling systems. In particular, Andradóttir, Ayhan,

and Down [6, 9], Duenyas, Gupta, and Olsen [29], Iravani, Posner, and Buzacott [47],

and Sennott, Van Oyen, and Iravani [61] consider tandem lines or general queueing

networks with setups. However, all these papers assume that the storage spaces in

the system have infinite capacity. By contrast, we study a system with setups and
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finite buffer spaces.

The remainder of this chapter is organized as follows. In Section 5.2 we formulate

the problem. In Section 5.3 we provide preliminary results about tandem lines with

two stations and setups. In Section 5.4 we consider systems with two stations and

two generalist servers (i.e., servers that are equally skilled for all tasks) and identify

the optimal server assignment policy for systems with small buffer sizes. In Section

5.5 we provide our observations about systems with larger buffer sizes and/or with

specialist servers (i.e., servers who can be more skilled at some tasks than at others).

Finally, in Section 5.6 we make some concluding remarks.

5.2 Problem Formulation

In this section, we formulate the dynamic server assignment problem in the presence

of setups and illustrate our model for systems with two stations and two flexible

servers operating under the policy known to be throughput optimal without setup

costs.

For all all t ≥ 0, let Yj(t) ∈ {0, 1, . . . , Bj+1 + 2} denote the number of jobs that

have been served at station j and are either waiting for service or in service at station

j + 1 at time t for j ∈ {1, . . . , N − 1}. Similarly, for all t ≥ 0 and i ∈ {1, . . . ,M},

let Zi(t) denote the station that server i was assigned to under the policy π at the

time of the most recent service completion prior to time t in the queueing network

(letting Zi(t) be the previous location of server i, rather than the current location

of the server, will facilitate the translation of the optimization problem of interest

into a Markov decision problem). We will use the stochastic process {X(t)}, where

X(t) = (Y (t), Z(t)), Y (t) = (Y1(t), . . . , YN−1(t)), and Z(t) = (Z1(t), . . . , ZM(t)) for

all t ≥ 0, to model the state of the system as a function of time.

We assume that the class Π of server assignment policies under consideration

consists of all Markovian stationary deterministic policies corresponding to the state

85



space S ⊂ IRN+M−1 of the stochastic processes {X(t)}. In other words, the policies

in Π specify whether each server is idle or not, and the station in the network that

each non-idle server is assigned to as a function of the current state x ∈ S of the

stochastic process {X(t)}. Hence the server assignments may depend both on the

status of the stations and buffers in the network and also on the previous location of

the servers. Note that service may be preemptive when M ≥ 2 (i.e., there is more

than one server in the network) because a service completion at one station in the

network may trigger the movement of servers that are currently working at other

stations in the network. Without loss of generality, we do not consider actions that

assign a server to another station and then keep the server idle. The reason is that by

simply idling a server without any switchover, we obtain the same departure stream

from the system and postpone or avoid the setup costs that could result from idling

the server after a switchover (since ci(j, k) ≤ ci(j, l) + ci(l, k) for all i ∈ {1, . . . ,M}

and j, k, l ∈ {1, . . . , N}).

For all x ∈ S, let Ax denote the set of allowable actions in state x. We use

the notation aσ1σ2...σM to represent the actions, where σi is the assignment of server

i ∈ {1, . . . ,M} under this action. We use the convention that σi = 0 when server i

is voluntarily idled at its current station, and this is treated differently from the case

where server i is assigned to a station but is involuntarily idle since that station is

not operating. Then, we have Ax = A =
⋃
σ∈{0,...,N}M{aσ} for all x ∈ S. However,

in the proofs of Theorems 5.4.1, 5.4.2, 5.4.3, and 5.4.4, without loss of generality, we

consider a smaller action set because some of the actions are known to be suboptimal

in each state. We choose the decision rule d such that d(x) ∈ Ax for all x ∈ S,

and hence the policy π ∈ Π corresponding to the decision rule d can be represented

as π = (d)∞. Furthermore, we use the notation di(x) to denote the assignment

of server i ∈ {1, . . . ,M} in state x ∈ S under decision rule d. More specifically,

di(x) = σi for i ∈ {1, . . . ,M} when d(x) = aσ1σ2...σM . Finally, we use the vector
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δd(x) = (d1(x), . . . , dM(x)) to keep track of the assignments of all servers in state

x ∈ S under decision rule d.

For all π ∈ Π and t ≥ 0, let Dπ(t) be the number of departures from the network

under the server assignment policy π by time t, and let

T π = lim
t→∞

IE

{
Dπ(t)

t

}
(14)

be the long-run average throughput corresponding to the server assignment policy π.

Moreover, for all π ∈ Π and t ≥ 0, let Cπ(t) be the (cumulative) setup cost incurred

under the server assignment policy π in the period [0, t], and let

Cπ = lim
t→∞

IE

{
Cπ(t)

t

}
(15)

be the long-run average setup cost per unit time corresponding to the server assign-

ment policy π. Note that Proposition 8.1.1 of Puterman [58] shows that the limits

in equations (14) and (15) exist because we restrict ourselves to stationary policies,

and the state space and immediate rewards are finite. Then, T π −Cπ is the long-run

average profit under policy π ∈ Π. We are interested in finding a policy in Π that

maximizes the long-run average profit and we refer to this problem as the “original

optimization problem.”

We now explain how Andradóttir, Ayhan, and Kırkızlar [12] translate the original

optimization problem into an equivalent (discrete time) Markov decision problem.

Let SY ⊂ IRN−1 and SZ = {1, . . . , N}M denote the state spaces of the stochastic

processes {Y (t)} and {Z(t)}, respectively. For the remainder of this paper, we use

the decomposition x = (y, z) and x′ = (y′, z′), where x, x′ ∈ S, y, y′ ∈ SY , and

z, z′ ∈ SZ . For all a ∈ A, let πa = (da)
∞ ∈ Π be the server assignment policy with

da(x) = a for all x ∈ S. Then it is clear that under our assumptions, the stochastic

process {Y (t)} is a continuous time Markov chain with state space SY for all a ∈ A.

For all y, y′ ∈ SY and all a ∈ A, let Qa(y, y
′) be the rate at which the continuous time

Markov chain {Y (t)} goes from state y to state y′ (under the server assignment policy
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πa). Then, it is not difficult to see that for all π = (d)∞ ∈ Π, the stochastic process

{X(t)} is a continuous time Markov chain with state space S and with transition

rates

qd(x, x
′) =

 Qd(x)(y, y
′) if z′ = δd(x) + Iz ,

0 otherwise,

where Iz is an M -dimensional vector whose ith element is equal to 1(di(x)=0)zi and 1

is the indicator function. Hence, even if the decision rule voluntarily idles a server,

we still keep track of this server’s location in the state space.

It is also clear that for all π = (d)∞ ∈ Π, there exists a scalar qπ ≤
∑M

i=1 max1≤j≤N

µij <∞ such that the transition rates {qd(x, x′)} of the continuous time Markov chain

{X(t)} satisfy
∑

x′∈S,x′ 6=x qd(x, x
′) ≤ qπ for all x ∈ S. This shows that {X(t)} is uni-

formizable for all π ∈ Π. We let {X̃(k)} be the corresponding discrete time Markov

chain, so that {X̃(k)} has state space S and transition probabilities pd(x, x
′) =

qd(x, x
′)/qπ if x′ 6= x and pd(x, x) = 1 −

∑
x′∈S,x′ 6=x qd(x, x

′)/qπ for all x ∈ S. An-

dradóttir, Ayhan, and Kırkızlar [12] use the fact that {X(t)} is uniformizable to

translate the original optimization problem into an equivalent (discrete time) Markov

decision problem (using uniformization to do this type of translation was proposed

originally by Lippman [53]). In particular, it is well known that one can generate

sample paths of the continuous time Markov chain {X(t)}, by generating a Pois-

son process {K(t)} with rate qπ and at the times of the events of {K(t)}, the next

state of the continuous time Markov chain {X(t)} is generated using the transition

probabilities of the discrete time Markov chain {X̃(k)}.

Let Dy = {(y1, . . . , yN−2, yN−1 − 1)} for all y ∈ SY with yN−1 > 0, and let

ci(j, 0) = 0 for all i ∈ {1, . . . ,M} and j ∈ {1, . . . , N}. Then Andradóttir, Ayhan,

and Kırkızlar [12] show that if

R′′d(x) =
∑
y′∈Dy

Qd(x)(y, y
′)−

 ∑
y′∈SY \{y}

Qd(x)(y, y
′)

×( M∑
i=1

ci(zi, di(x))

)
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for all x ∈ S and π = (d)∞ ∈ Π, then the original optimization problem (that

maximizes the long-run average profit in our system) is equivalent to identifying the

policy π = (d)∞ ∈ Π that maximizes the following quantity:

lim
K→∞

IE

{
1

K

K∑
k=1

R′′d(X̃(k − 1))

}
. (16)

In the remainder of this paper, we analyze the alternative formulation (16) of the

original optimization problem.

In order to demonstrate the problem formulation more clearly, we provide an

example that employs the server assignment policy that maximizes the throughput of

the system with M = N = 2 and no setup costs if the servers are ordered such that

µ11µ22 ≥ µ12µ21 (as shown by Andradóttir, Ayhan, and Down [7]). The description

of the policy was modified in order to adapt it to our state space.

Example 5.2.1 Suppose that M = N = 2 and B2 = B <∞. Then

S = {(0, 1, 1), (1, 1, 1), . . . , (B + 2, 1, 1), (0, 1, 2), (1, 1, 2), . . . , (B + 2, 1, 2),

(0, 2, 1), (1, 2, 1), . . . , (B + 2, 2, 1), (0, 2, 2), (1, 2, 2), . . . , (B + 2, 2, 2)},(17)

where in state (l, k1, k2) ∈ S, l refers to the number of jobs that have been processed

at station 1 and are either in service or waiting for service at station 2, and km refers

to the station that server m was previously assigned to (prior to the most recent

service completion in the network) for m = 1, 2. Assume that for i = 1, 2, we have

ci(j, j) = 0 for j = 1, 2, ci(1, 2) = c↑i ≥ 0, and ci(2, 1) = c↓i ≥ 0.

Consider the policy π0 = (d0)∞ ∈ Π, where

d0(x) =


a11 if x ∈ {(0, 1, 1), (0, 1, 2), (0, 2, 1), (0, 2, 2)},

a22 if x ∈ {(B + 2, 1, 1), (B + 2, 1, 2), (B + 2, 2, 1), (B + 2, 2, 2)},

a12 otherwise.
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Let q = qπ = µ11 + µ12 + µ21 + µ22. Then

pd0(x, x
′) =



µ12+µ22

q
if y = 0, y′ = 0, and z′ = z,

µ11+µ21

q
if y = 0, y′ = 1, and z′ = (1, 1),

µ22

q
if y = l, y′ = l − 1, and z′ = (1, 2), ∀ 0 < l < B + 2,

µ12+µ21

q
if y = l, y′ = l, and z′ = z, ∀ 0 < l < B + 2,

µ11

q
if y = l, y′ = l + 1, and z′ = (1, 2), ∀ 0 < l < B + 2,

µ12+µ22

q
if y = B + 2, y′ = B + 1, and z′ = (2, 2),

µ11+µ21

q
if y = B + 2, y′ = B + 2, and z′ = z,

0 otherwise,

and

R′′d0(x) =



0 if x = (0, 1, 1),

−(µ11 + µ21)c↓2 if x = (0, 1, 2),

−(µ11 + µ21)c↓1 if x = (0, 2, 1),

−(µ11 + µ21)(c↓1 + c↓2) if x = (0, 2, 2),

µ22 − (µ11 + µ22)c↑2 if x = (l, 1, 1), ∀ 0 < l < B + 2,

µ22 if x = (l, 1, 2), ∀ 0 < l < B + 2,

µ22 − (µ11 + µ22)(c↓1 + c↑2) if x = (l, 2, 1), ∀ 0 < l < B + 2,

µ22 − (µ11 + µ22)c↓1 if x = (l, 2, 2), ∀ 0 < l < B + 2,

(µ12 + µ22)(1− c↑1 − c
↑
2) if x = (B + 2, 1, 1),

(µ12 + µ22)(1− c↑1) if x = (B + 2, 1, 2),

(µ12 + µ22)(1− c↑2) if x = (B + 2, 2, 1),

µ12 + µ22 if x = (B + 2, 2, 2).

Note that when the policy π0 is used and B > 0, then there are only B + 5 positive

recurrent states in S, namely (1, 1, 1), (B+ 1, 2, 2), and (l, 1, 2), where 0 ≤ l ≤ B+ 2.

Similarly, when this policy π is used and B = 0, then there are only B + 4 positive

recurrent states, namely (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).
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5.3 Preliminary Results

In this section we provide some preliminary results about tandem lines with two

stations and setup costs. We first present a result about the form of the optimal

server assignment policy.

Lemma 5.3.1 For a tandem line with N = 2, M ≥ 2, and positive setup costs, there

exists an optimal policy that does idle any server voluntarily when the first station is

blocked or the second station is starved.

Proof: When the first station is blocked, the system is in a state s = (B+2, z1, . . . , zM),

where (z1, . . . , zM) ∈ SZ . Now compare two policies π1 = (d1)∞ and π2 = (d2)∞ that

agree with each other apart from state s. Assume that d1
i (s) = zi and d2

i (s) = 0 for

some i ∈ {1, . . . ,M}, and d1
j(s) = d2

j(s) for j ∈ {1, . . . ,M} \ {i}. If zi = 1, then

the performance of π1 and π2 will be identical (since keeping a server at station 1 is

equivalent to idling that server in terms of cost). If zi = 2, then the next service com-

pletion under policy π1 will never be later than the one under policy π2, the system

state will be the same after the next service completion, and no extra cost will have

been incurred by keeping server i at the second station. Hence, Dπ1(t) ≥ Dπ2(t) for

all t ≥ 0, implying that T π1 ≥ T π2 .

We now restrict ourselves to policies with nonzero long-run average throughput

without loss of generality (this is possible because the optimal policy must have

positive throughput when M ≥ 2 since under our assumptions on the service rates

provided in Section 3.1, there exists a policy with stationary servers and positive

throughput). Define the setup cost per item produced up to time t under policy

π ∈ Π as uπ(t) = Cπ(t)/Dπ(t) and let uπ = limt→∞ IE{uπ(t)} be the long-run average

setup cost per item produced for all π ∈ Π. The existence of this limit can be shown

to follow from the strong law of large numbers for Markov Chains (see, e.g., Wolff

[70], page 164) when the long-run average throughput is nonzero, because the setup

91



cost incurred between two departures is finite (because we have a finite state space

and finite setup costs) and we consider stationary policies. Under both policies (π1

and π2), the system goes through the same sequence of states, but at the time of each

departure, the total setup cost incurred under policy π1 is equal to the total setup

cost incurred under policy π2. Hence, we can conclude that uπ1 = uπ2 . Note that for

all π ∈ Π, we have

T π − Cπ = lim
t→∞

IE

{
Dπ(t)

t

(
1− Cπ(t)

Dπ(t)

)}
= lim

t→∞
IE

{
Dπ(t)

t

}
lim
t→∞

IE

{
1− Cπ(t)

Dπ(t)

}
= T π(1− uπ).

Consequently, the long-run average profit under policy π1 is never less than the long-

run average profit under policy π2. Hence, there exists an optimal policy that never

idles the servers when the first station is blocked. A similar logic follows when the

second station is starved. 2

Now, for a system with two stations, consider the reversed line where station 1

is followed by station 2 and keep the labeling of the stations as in the original line

(i.e., station 2 is the upstream station and station 1 is the downstream station in the

reversed line). Let B denote the buffer size between the stations. Assume that the

forward line operates under a policy π = (d)∞ and that the reversed line operates

under a policy πR = (dR)∞, where dR(l, z) = d(B + 2 − l, z) for 0 ≤ l ≤ B + 2 and

z ∈ SZ (in both the forward and reversed lines, zi = j if the previous location of

server i is station j). The following reversibility result will be used to simplify the

proofs in the following sections.

Lemma 5.3.2 When N = 2, the policy π is optimal for the forward line if and only

if the policy πR is optimal for the reversed line.

Proof: Let κπ,1(x) and κπ,2(x) denote the sets of servers assigned to stations 1 and

2, respectively, under policy π when the original line is in state x ∈ S. Then we see
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that for {X(t)}, the transition rate from state x = (l, z) to (l + 1, z′) is
∑

i∈κπ,1(x) µi1

for l ∈ {0, . . . , B+1} and the transition rate from state x to (l−1, z′) is
∑

i∈κπ,2(x) µi2

for l ∈ {1, . . . , B + 2} and z, z′ ∈ SZ (where z′ is determined by κπ,1(x) and κπ,2(x)).

Now, let {(YR(t), ZR(t))} be the Markov chain corresponding to the reversed line.

It is easy to see that the stochastic process {(B + 2 − YR(t), ZR(t))} has the same

transition rates as the stochastic process {(Y (t), Z(t))}. Hence these two processes

are stochastically equivalent. Consequently, the long-run average profit of the forward

line under policy π is equal to the long-run average profit of the reversed line under

policy πR (because the departures from one system correspond to departures from

the first station of the other system, and the buffer size between the stations is finite),

and the result follows. 2

5.4 Systems with Generalist Servers

In this section we consider a tandem line with two stations and two generalist servers.

In other words, we assume that the service rate of a server at a station can be repre-

sented as the product of the server’s speed and a constant related to the complexity

level of the task at the station. Hence, we have µij = µiγj for i, j ∈ {1, 2}. Service

rates of this form can be used to model situations where each server is equally skilled

at all tasks. Furthermore, we assume that ci(1, 2) = ci(2, 1) = c ≥ 0 for i ∈ {1, 2}.

This is a reasonable assumption if the setup costs are due to the movement of the

servers or if every machine requires similar setup procedures. Our state space S is as

given in (17).

We first study the system where the service rates depend only on the station in

Section 5.4.1. Then we consider systems where the service rates depend only on the

server in Section 5.4.2. Finally we provide some results about systems where the

services depend both on the server and the station in Section 5.4.3.
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5.4.1 Service Rate Depends on the Station

In this section, we specify the optimal server assignment policy for small systems

where the service rates depend only on the station (so that µi = 1 for i ∈ {1, 2}).

We start with a system that has a buffer of size zero between the stations. The proof

of the following theorem is provided in Appendix C. Note that the interval for c in

part (ii) of Theorem 5.4.1 is non-empty when γ1 ≥ γ2, and the interval in part (iii)

of Theorem 5.4.1 is non-empty when γ1 < γ2.

Theorem 5.4.1 For a Markovian tandem line with two stations, two flexible servers,

and buffer of size zero between the stations, if µij = γj for i, j ∈ {1, 2}, then the

optimal server assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ min{ γ1
2γ1+4γ2

, γ2
4γ1+2γ2

}, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ ,

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ ,

a22 if x = (2, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).

(ii) If γ1 ≥ γ2 and γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
, then

d∗(x) =


a12 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (2, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 2, 2),

and the recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2).

(iii) If γ1 < γ2 and γ1
4γ1+2γ2

< c ≤ γ2
2

2γ2
1+2γ1γ2+2γ2

2
, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1)} or

x = (2, z1, z2) for all (z1, z2) ∈ SZ ,

(18)

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), and (2, 1, 2).
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(iv) If c > max{ γ2
1

2γ2
1+2γ1γ2+2γ2

2
,

γ2
2

2γ2
1+2γ1γ2+2γ2

2
}, then d∗(x) = a12 for all x ∈ S and the

recurrent states are (0, 1, 2), (1, 1, 2), and (2, 1, 2).

In the case without setups, we say that a server has a primary assignment at a

station if (s)he works at this station as long as it is operating (i.e., neither blocked

nor starved). However, in the presence of positive setup costs, servers may have

a preferred station, but not a primary assignment, because they may work at a

less preferred station even if their preferred station is operating, to avoid multiple

switchovers. We see that in our case both servers have a preferred station, but

not a primary assignment. More specifically, we say that server 1 has a preferred

assignment at station 1 and server 2 has a preferred assignment at station 2 when

the state (l, 1, 2) is recurrent for some l ∈ {0, . . . , B + 2} and the state (l, 2, 1) is

transient for all l ∈ {0, . . . , B + 2}. Note that since we have identical servers, the

policy described in Theorem 5.4.1 is not unique. For every different type of policy,

there is an alternative optimal policy where server 1 has a preferred assignment at

station 2 and server 2 has a preferred assignment at station 1.

Theorem 5.4.1 also shows that the optimal policy is of one of the following three

types :

• Neither server switches (Type 0);

• Only one server switches (Type 1);

• Both servers switch (Type 2).

We observe that for small values of c, each server works at the station to which (s)he

is primarily assigned as long as this station is operating, and works at the other

station otherwise; hence the optimal policy is of Type 2. We also see that this policy

is optimal for systems with c = 0. This is not surprising because any non-idling

policy is known to be optimal for systems with c = 0 and generalist servers, see
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Andradóttir, Ayhan, and Down [10]. In our case the optimal assignment policy is

more complicated because we also need to consider policies that involuntarily idle

the servers. For intermediate values of c, we observe that one server stops switching

to the other station (i.e., the optimal policy is of Type 1), and for large values of

c, neither server switches to the other station (i.e., the optimal policy is of Type 0).

Furthermore, if the policy is of Type 1, the switching server is the one that has a

preferred assignment at the faster station. Note that idling occurs under both Type

1 and Type 0 policies. An examination of the bounds on c in Theorem 5.4.1 shows

that the optimal policy is not of Type 2 for any value of c > 1
6
, and the optimal policy

is of Type 0 for all values of c > 1
2
. The recurrent states together with the actions in

these states under the optimal policy of Theorem 5.4.1 are depicted in Figures 1(a),

1(b), 1(c), and 1(d) (assuming that server 1 is the switching server in Figure 1(b) and

server 2 is the switching server in Figure 1(c)).

(a) Both Servers Switch (Type 2) (b) Only Server 1 Switches (Type 1)

(c) Only Server 2 Switches (Type 1) (d) Neither Server Switches (Type 0)

Figure 1: Recurrent States and Optimal Actions in Theorem 5.4.1
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Theorem 5.4.1 also introduces the notion of “multiple threshold” policies. In other

words, servers move between the stations when the number of jobs that are in service

or waiting for service at station 2 reaches a threshold. Furthermore, the value of this

threshold may depend on the locations of both servers prior to the most recent service

completion in the network as well as on the station to which they are moving. We use

the notation ti(z) to denote the threshold for server i ∈ {1, . . . ,M} to switch from

station zi to the other station 3 − zi when the previous locations of the servers are

represented in the vector z ∈ SZ . We use the convention that server i is assigned to

station 3− zi when the system is in state (ti(z), z). In Figure 1(a), server 1 switches

between stations in states (1, 2), (2, 2) with t1(1, 2) = 2, t1(2, 2) = 1; and server 2

switches between stations in states (1, 1), (1, 2) with t2(1, 1) = 1, and t2(1, 2) = 0. In

Figure 1(b), server 1 switches between stations in states (1, 2), (2, 2) with t1(1, 2) = 2

and t1(2, 2) = 0, but server 2 does not switch between stations at all in Figure 1(b).

Next, the following theorem provides the optimal server assignment policy for

a system with a buffer of size one between the stations. Its proof is provided in

Appendix C.

Theorem 5.4.2 For a Markovian tandem line with two stations, two flexible servers,

and buffer of size one between the stations, if µij = γj for i, j ∈ {1, 2}, then the optimal

server assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ min{ γ1
2γ1+2γ2

, γ2
2γ1+2γ2

}, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1, 1)} or

x = (2, z2, z2) for all (z1, z2) ∈ SZ \ {(2, 2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2),

(2, 2, 2), and (3, 1, 2).
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(ii) If γ1 ≥ γ2 and γ2
2γ1+2γ2

< c ≤ min{ γ2
1

2γ2
1+2γ2

2
,

2γ1γ2+γ2
2

2γ2
1+4γ1γ2

}, then

d∗(x) =


a12 if x = (y, z1, z2) for all y ∈ {0, 1} and (z1, z2) ∈ SZ or

x = (2, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and

(3, 1, 2).

(iii) If γ1 ≥ γ2, γ2
1 ≤ γ1γ2 + γ2

2 , and c >
γ2
1

2γ2
1+2γ2

2
, then d∗(x) = a12 for all x ∈ S and

the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

(iv) If γ1 ≥ γ2, γ2
1 > γ1γ2 + γ2

2 , and
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

< c ≤ 3γ3
1+γ2

1γ2−γ1γ2
2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then

d∗(x) =



a12 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (y, z1, z2) for all y ∈ {1, 2} and (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (y, 2, 2) for all y ∈ {1, 2} or

x = (3, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2),

and (3, 1, 2).

(v) If γ1 ≥ γ2, γ2
1 > γ1γ2 + γ2

2 and c >
3γ3

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then d∗(x) = a12 for all

x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

(vi) If γ1 < γ2 and γ1
2γ1+2γ2

< c ≤ min{ γ2
2

2γ2
1+2γ2

2
,

2γ1γ2+γ2
1

2γ2
2+4γ1γ2

}, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ \ {(1, 1)} or

x = (y, z1, z2) for all y ∈ {2, 3} and (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), and

(3, 1, 2).
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(vii) If γ1 < γ2, γ2
2 ≤ γ1γ2 + γ2

1 , and c >
γ2
2

2γ2
1+2γ2

2
, then d∗(x) = a12 for all x ∈ S and

the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

(viii) If γ1 < γ2, γ2
2 > γ1γ2 + γ2

1 , and
2γ1γ2+γ2

1

2γ2
2+4γ1γ2

< c ≤ 3γ3
2+γ1γ2

2−γ2
1γ2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (y, 1, 1) for all y ∈ {1, 2},

a12 if x = (y, z1, z2) for all y ∈ {1, 2} and (z1, z2) ∈ SZ \ {(1, 1)} or

x = (3, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2), (3, 1, 1),

and (3, 1, 2).

(ix) If γ1 < γ2, γ2
2 > γ1γ2 + γ2

1 , and c >
3γ3

2+γ1γ2
2−γ2

1γ2
4γ3

1+4γ2
1γ2+4γ1γ2

2+4γ3
2
, then d∗(x) = a12 for all

x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

Note that the interval for c in part (ii) of Theorem 5.4.2 is non-empty when

γ1 ≥ γ2, and the interval in part (iv) of Theorem 5.4.2 is non-empty when γ1 ≥ γ2

and γ2
1 > γ1γ2 +γ2

2 . Similarly, the interval in part (vi) of Theorem 5.4.2 is non-empty

when γ1 ≥ γ2, and the interval in part (viii) of Theorem 5.4.2 is non-empty when

γ1 ≥ γ2 and γ2
1 > γ1γ2 + γ2

2 .

We now depict the recurrent states and the optimal actions in Theorem 5.4.2.

More specifically, Figure 2(a) shows the optimal policy of Type 2 corresponding to

part (i) of Theorem 5.4.2. Figures 2(b) and 2(c) show the optimal policies of Type

1 (with different thresholds) where server 1 is the switching server corresponding to

parts (ii) and (iv) of Theorem 5.4.2, respectively. Finally, Figure 2(c) shows the

optimal policy of Type 0, corresponding to parts (iii), (v), (vii), and (ix) of Theorem

5.4.2.

We see that server 1 has a preferred assignment at station 1 and server 2 has a

preferred assignment at station 2 for all values of c. However, note that this policy is
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(a) Both Servers Switch (Type 2) (b) Only Server 1 Switches, t1(2, 2) = 1
(Type 1)

(c) Only Server 1 Switches, t1(2, 2) = 0
(Type 1)

(d) Neither Server Switches (Type 0)

Figure 2: Recurrent States and Optimal Actions in Theorem 5.4.2

not the unique optimal policy. Since the servers are identical, we can relabel them and

obtain alternative optimal policies where the preferred assignments of the servers are

switched. Furthermore, we see that as c increases, all the systems go through the same

set of optimal policies for B = 0 (although the cutoffs on the value of c depend on

the service rates). However, this is no longer correct when B = 1. More specifically,

when B = 1, we observe three or four different optimal policies for different values of

the setup cost. If the first station is faster and the service rates satisfy the condition

γ2
1 ≤ γ1γ2 + γ2

2 , then we observe three different optimal policies for different values of

the setup cost. If the first station is faster and the service rates satisfy the condition

γ2
1 > γ1γ2 +γ2

2 , then we observe four different optimal policies, depending on the value

of the setup cost (in particular, as the setup increases the first server completes more

jobs at station 2 before switching back to station 1). Also note that the transition

from one policy to another follows a similar pattern when B = 0 or B = 1. In both

cases, for small values of c both servers switch and the optimal policy is of Type 2,
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for intermediate values of c only one server switches (server 1 is the switching server

when γ1 ≥ γ2 and server 2 is the switching server when γ1 < γ2) and the optimal

policy is of Type 1, and for large values of c neither server switches and the optimal

policy is of Type 0. Moreover, when the optimal policy is of Type 1, we observe that

the switching server is the one that has a preferred assignment at the faster station.

Finally, we see that the optimal policy is not of Type 2 when c > 1
4

and is of Type 0

when c > 3
4
.

5.4.2 Service Rate Depends on the Server

In this section we study systems with small buffer sizes where the service rate depends

only on the server (so that γj = 1 for j ∈ {1, 2}). Without loss of generality, assume

that µ1 ≥ µ2 because we can relabel the servers otherwise. We first identify the

optimal server assignment policy for the system with buffer of size zero between the

stations. We provide the proof of the following theorem in Appendix C. Note that

the interval in part (ii) of Theorem 5.4.3 is non-empty when µ1 ≥ µ2.

Theorem 5.4.3 For a Markovian tandem line with two stations, two flexible servers,

and buffer of size zero between the stations, if µij = µi for i, j ∈ {1, 2}, then the

optimal server assignment policy π∗ = (d∗)∞ is as follows:

(i) If 0 ≤ c ≤ µ2

4µ1+2µ2
, then

d∗(x) =


a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ ,

a12 if x = (1, z1, z2) for all (z1, z2) ∈ SZ ,

a22 if x = (2, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2).
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(ii) If µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
, then

d∗(x) =


a12 if x = (y, z1, z2) for all y ∈ {0, 1} and (z1, z2) ∈ SZ or

x = (2, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2).

(iii) If c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
, then d∗(x) = a12 for all x ∈ S and the recurrent states are

(0, 1, 2), (1, 1, 2), and (2, 1, 2).

We see that the optimal server assignment policy in Theorem 5.4.3 is similar to the

optimal policy provided in Theorem 5.4.1 for the case where the service rate depends

only on the station, and has one of forms shown in Figure 1. More specifically, both

servers have preferred assignments. For small values of c they both switch to the

other station when their own station is not operating. For intermediate values of c,

the optimal policy becomes a multiple threshold policy with one switching server, and

for large values of c, the optimal policy does not allow the servers to switch (in the

recurrent states). However, we should note that the optimal policy is not unique in

this case either. Lemma 5.3.2 shows that there is another optimal policy that assigns

the faster server to the second station. In this case the preferred assignments of the

servers will be switched and for intermediate values of c, there is an optimal Type 1

policy similar to the Type 1 policy of the system where the service rate depends on

the station and γ1 < γ2.

We also see that the policy is not of Type 2 when c > 1
6
, and the policy is of

Type 0 when c > 1. Note that the switching is possible for a larger range of setup

costs compared to Theorem 5.4.1. For example when µ1 = 10 and µ2 = 1, switching

policies are optimal when c < 0.856. However, we saw in Section 5.4.1 that when

the service rates depend only on the server, no switching policy is optimal for c > 1
2
.
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When a server is extremely fast compared to the other server, it may be advantageous

to move this server, even for high values of the setup cost, to benefit from this high

service rate. However, the same logic does not follow when a station is extremely

fast compared to the other station because all the jobs have to be processed at both

stations. In other words, we take advantage of the faster station not by assigning

servers there, but by assigning servers disproportionally to the slower station.

Next, we provide the optimal assignment policy when the buffer size between the

stations is equal to one. The proof of the following theorem is is provided in Appendix

C.

Theorem 5.4.4 For a Markovian tandem line with two stations, two flexible servers,

and buffer of size one between the stations, if µij = µj for i, j ∈ {1, 2}, then the

optimal server assignment policy π = (d)∞ is as follows:

(i) If 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
, then

d∗(x) =



a11 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or x = (1, 1, 1),

a12 if x ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1), (2, 2, 1)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2),

(2, 1, 1), (2, 1, 2), (2, 2, 1), (2, 2, 2), (3, 1, 2), and (3, 2, 1).

(ii) If
4µ2

1µ2+5µ1µ2
2+3µ3

2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
≤ c < min{ µ2

2µ1
,

2µ4
1+2µ3

1µ2+µ2
1µ

2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
},

d∗(x) =


a12 if x = (y, z1, z2) for all y ∈ {0, 1} and (z1, z2) ∈ SZ or

x = (2, z1, z2) for all (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (3, z1, z2) for all (z1, z2) ∈ SZ or x = (2, 2, 2),

and the recurrent states are (0, 1, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and

(3, 1, 2).
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(iii) If 2µ5
1+µ4

1µ2 ≥ µ3
1µ

2
2+3µ2

1µ
3
2+2µ1µ

4
2+µ5

2 and µ2

2µ1
< c ≤ 3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

d∗(x) =



a12 if x = (0, z1, z2) for all (z1, z2) ∈ SZ or

x = (y, z1, z2) for all y ∈ {1, 2} and (z1, z2) ∈ SZ \ {(2, 2)},

a22 if x = (y, 2, 2) for all y ∈ {1, 2} or

x = (3, z1, z2) for all (z1, z2) ∈ SZ ,

and the recurrent states are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2),

and (3, 1, 2).

(iv) If 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2 and c >
3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

then d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2),

(2, 1, 2), and (3, 1, 2).

(v) If 2µ5
1 +µ4

1µ2 < µ3
1µ

2
2 +3µ2

1µ
3
2 +2µ1µ

4
2 +µ5

2 and c >
2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
, then

d∗(x) = a12 for all x ∈ S and the recurrent states are (0, 1, 2), (1, 1, 2), (2, 1, 2),

and (3, 1, 2).

Note that the interval in part (ii) of Theorem 5.4.2 is non-empty when µ1 ≥ µ2, and

the interval in part (iii) of Theorem 5.4.2 is non-empty when µ1 ≥ µ2 and 2µ5
1+µ4

1µ2 ≥

µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2. Note further that µ2

2µ1
≤ 2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2

when

2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2.

When B = 1, we see that for small values of c, there is no preferred assignment

of the servers. More specifically, both servers are at the same station when the

other station is not operating. When the number of jobs in the buffer reaches a

certain threshold and both stations are operating, the faster server switches to the

other station, and we thus cannot talk about a preferred station for each server.

Furthermore, the slower server also switches between the stations for small values

of c, because the increase in the throughput resulting from not idling this server

dominates the setup cost associated with moving him/her. More specifically, we see
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that t1(1, 1) = 2, t1(1, 2) = 3, t1(2, 1) = 0, t1(2, 2) = 1, t2(1, 2) = 3, and t2(2, 1) = 0.

We have four different thresholds for the first server that depend on the previous

locations of both servers, the station from which (s)he is moving, and the station to

which (s)he is moving.

Note that this optimal policy is not unique. The policy where the faster server has

a preferred assignment at station 2 is optimal as well (as a result of Lemma 5.3.2).

However, in this case the optimal server assignment policy of Type 1 would be similar

to the Type 1 policy of Theorem 5.4.2 with γ1 < γ2.

As c increases, the optimal policy follows a similar pattern to the optimal policy

given in Theorem 5.4.2 for the systems with B = 1 and station-dependent service

rates. More specifically, for small values of c, the optimal policy is of Type 2 (however

without any preferred assignments this time), for intermediate and high values of c,

the optimal policy is of Type 1 and Type 0, respectively. The recurrent states and

optimal actions for the optimal policy of Type 2 is depicted in Figure 3(a). The other

cases are omitted because they are same as the ones shown in Figures 2(b), 2(c), and

2(d). We also see that the optimal policy is not of Type 2 when c > 1
4

and is of Type

0 when c > 3
2
. When we let µ1 = 10 and µ2 = 1, then we see that the optimal Policy

is of Type 0 when c > 1.309. Hence, the switching policies are optimal for a larger

range of setup cost when B = 1 and the service rates depend only on the server, as

compared to Theorem 5.4.2 where the service rates depend only on the station. This

conclusion is similar to the one we made regarding the case with B = 0.

5.4.3 Service Rate Depends on Both the Server and the Station

We observed in Theorems 5.4.1 and 5.4.3 that the policy π0 is optimal in systems with

B = 0 when c is positive but small and the service rates depend either on the station

or on the server. However, when B > 0, the optimal policy provided in Theorems

5.4.2 and 5.4.4 is different from π0 even for small values of c. Hence, the servers
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(a) Both Servers Switch (Type 2)

Figure 3: Recurrent States and Optimal Actions in Theorem 5.4.4

have a primary assignment when B = 0, but this is not correct when B > 0. In this

section we consider systems with generalist servers whose service rates depend both

on the server and the station. The following proposition shows that the policy π0 is

not optimal when B > 0 and c > 0.

Proposition 5.4.1 In a tandem line with two stations, two generalist servers, and

buffer of size B > 0 between the stations, π0 is not optimal for the system with c > 0.

Proof: First, assume that µ1 ≥ µ2 and γ1 ≥ γ2, where at least one of the inequalities

is strict. Let π0 = (d0)∞ be as described in Example 5.2.1. It is not difficult to show

that

T π0 − Cπ0 =
(µ1 + µ2)γ1γ2

γ1 + γ2
−

2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)
(
(µ1γ1)B+1 + (µ2γ2)B+1

))
(γ1 + γ2)

(
(µ1γ1)B+2 − (µ2γ2)B+2

) .

Now define the policy π1 = (d1)∞ such that d1(1, 1, 1) = a11 and d1(x) = d0(x) for

x ∈ S \ {(1, 1, 1)}. In other words, π1 is a multiple threshold policy that assigns both

servers to station 1 if there are no jobs in the buffer and the servers are already at

station 1. One can show that

T π1 − Cπ1 =
(µ1 + µ2)γ1γ2

γ1 + γ2

−
2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)

(
(µ1γ1)B+1 + µ2γ2

(
(µ1γ1)B + (µ2γ2)B

))
(γ1 + γ2)

(
(µ1γ1)B+2 + µ2γ2(µ1γ1)B+1 − 2(µ2γ2)B+2

) .
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Some algebra shows that (T π1 − Cπ1)− (T π0 − Cπ0) = ε1
ε2

where

ε1 = 2c(µ1 + µ2)γ1γ2(µ1γ1 − µ2γ2)(µ2γ2)B+3
(
(µ1γ1)B − (µ2γ2)B

)
,

ε2 = (γ1 + γ2)
(
(µ1γ1)B+2 − (µ2γ2)B+2

)[(
(µ1γ1)B+2 − (µ2γ2)B+2

)
+µ2γ2

(
(µ1γ1)B+1 − (µ2γ2)B+1

)]
.

Then, it is easy to see that ε1
ε2
> 0 and π1 is a better policy than π0. If µ1 < µ2, then

we can relabel the servers. If γ1 < γ2, then define d1 such that d1(B + 1, 2, 2) = a22

and d1(x) = d(x) for x ∈ S \ {(B + 1, 2, 2)}, and Lemma 5.3.2 implies that π1 is a

better policy than π0. When µ1 = µ2 and γ1 = γ2, we can show that

T π0 − Cπ0 =
µ1γ1(2 +B − 4c)

2 +B
, T π1 − Cπ1 =

µ1γ1(3 + 2B − 6c)

3 + 2B
.

Then (T π1 −Cπ1)− (T π0 −Cπ0) = 2cBµ1γ1
6+7B+2B2 , and this quantity is strictly positive for

B > 0. Consequently, when c > 0, policy π0 is never optimal. 2

Proposition 5.4.1 also shows that, unlike the case with c = 0, it is not true that all

nonidling policies are optimal in the presence of small positive setup costs. Note that

in the papers that study the case with c = 0 (e.g., Andradóttir, Ayhan, and Down [7]),

Markovian stationary deterministic policies are employed, so that the same action is

used each time the number of jobs Y1(t) processed by station 1 but not by station 2

reaches the same level. However, in our case it is possible to employ different actions

in states with equal Y1(t) values, depending on the locations of the servers. More

specifically, when there are jobs at each station and the buffer is empty, the policy π1

considered in the proof of Proposition 5.4.1 sometimes assigns both servers to station

1, and sometimes assigns server 1 to station 1 and server 2 to station 2. Similarly,

the optimal server assignment policies for small systems do not immediately move

the servers back to their preferred stations for c > 0, as shown in Theorems 5.4.2 and

5.4.2 (when preferred assignments exist).

We conclude this section by pointing out that Proposition 5.4.1 does not neces-

sarily hold for systems with specialist servers. In particular, we will show in Section
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5.5.3 that the policy π0 may be optimal if the servers are specialists.

5.5 Numerical Results

In this section, we perform numerical experiments and provide our observations about

the form of the optimal policy for systems with generalist servers and larger buffers,

or specialist servers. We consider systems with common setup costs at any station

for both servers as in Section 5.4. In Section 5.5.1 we consider systems with an

intermediate buffer of size B > 1 and servers whose service rates depend on either

the station or the server. In Section 5.5.2 we consider systems with specialist servers

and B = 0. Finally, in Section 5.5.3, we consider systems with specialist servers and

an intermediate buffer of arbitrary size.

5.5.1 Systems with B > 1 and Service Rate Depending Either on the
Station or the Server

In this section we provide our observations about the form of the optimal policy

when the service rates depend on either the station or the server. Theorems 5.4.1

through 5.4.4 provide the optimal server assignment policy for these systems when

the buffer size between the stations is zero or one. Consequently, in this section, we

study systems with buffer sizes larger than one.

First we consider systems where the service rates depend only on the station. We

randomly generate 50,000 systems with the service rate at each station independently

drawn from a uniform distribution with range [0.5,2.5] and the setup cost drawn from a

uniform distribution with range (0,0.5) (we have also tried a larger range for the setup

cost and observed that most of the optimal policies ended up being of Type 0 with

no switching). Furthermore, the buffer size B between the stations is drawn from a

discrete uniform distribution with range {2, 3, 4, 5}. We determine the optimal server

assignment policy using the policy iteration algorithm for communicating Markov

chains.
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Our numerical results for systems with service rates depending only on the station

suggest that the optimal server assignment policy is similar to that of systems with

an intermediate buffer of size one, see Theorem 5.4.2. Both servers have a preferred

assignment and the optimal policy is a multiple threshold policy. Furthermore, some

properties of the thresholds can also be determined. For example, consider a system

where servers 1 and 2 have preferred assignments at stations 1 and 2, respectively

and assume that the policy types 0, 1, 2 are as defined in Section 5.4.1. If the optimal

policy is of Type 2, we observe that t1(1, 2) = B + 2, t1(2, 2) = l, t2(1, 1) = l + 1,

and t2(1, 2) = 0 for some l ∈ {1, . . . , B} (note that l = 1 in the policy of Figure

2(a)). If the optimal policy is of Type 1 and server 1 is the switching server, then

t1(1, 2) = B+2 and t1(2, 2) = l for some 0 ∈ {1, . . . , B} (note that l = 1 in the policy

of Figure 2(b) and l = 0 in the policy of Figure 2(c)). Similarly, if the optimal policy

is of Type 1 and server 2 is the switching server, then t2(1, 1) = l and t2(1, 2) = 0 for

some l ∈ {2, . . . , B + 2}.

Next, we study systems where the service rates depend only on the server. We

randomly generate 50,000 systems with the service rate of each server independently

drawn from a uniform distribution with range [0.5,2.5] and the parameters B and c

chosen as before. We observe that the optimal policy is of multiple threshold type

for any c > 0 and servers do not have preferred assignments for small values of c,

as in Theorem 5.4.4. Furthermore, we are able to make some conclusions regarding

the threshold values as well. For simplicity, we only provide our observations for the

case where server 1 is the faster server. If the optimal policy is of Type 2, we observe

that t1(1, 2) = B + 2, t1(2, 1) = 0, t2(1, 1) = l, t2(1, 2) = 0, t2(2, 1) = B + 2, and

t2(2, 2) ≤ l for some l ∈ {2, . . . , B + 1} (note that l = 2 and t2(2, 2) = 1 ≤ l in the

policy of Figure 3(a)). In other words, the thresholds for switching to station 1 is

never greater than the thresholds for switching to station 2 for the first server. If the

optimal policy is of Type 1, we see that t1(1, 2) = B + 2 and t1(2, 2) = l, for some
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l ∈ {0, . . . , B}.

We conclude that if the service rates depend only on either the station or the

server, then the form of the optimal policy is robust to the buffer size, and the

thresholds still have a certain dependency on each other for systems with B > 1.

However, the thresholds can take values in a broader range and can not be calculated

as easily as in Section 5.4.

5.5.2 Systems with B = 0 and Specialist Servers

Theorems 5.4.1 and 5.4.3 provide the optimal server assignment policy when B = 0

and the service rate depends on either the server or the station. More specifically,

they show that the optimal policy is one of the multiple threshold type policies shown

in Figure 1. In this section we provide our observations about the form of the optimal

policy and the values of the thresholds if the servers are specialists; i.e., the service

rates are not necessarily the products of two terms representing server skill and task

difficulty. We randomly generate 100,000 systems with the service rates independently

drawn from a uniform distribution with range [0.5, 2.5] and the setup cost drawn from

a uniform distribution with range (0, 0.5).

We observe that both servers have preferred assignments in each experiment and

the optimal policy is a multiple threshold policy. We now demonstrate these policies in

more detail for a system where servers 1 and 2 have preferred assignments at stations

1 and 2, respectively. If the optimal policy is of Type 2, then we have t1(1, 2) = 2,

t1(2, 2) = 1, t2(1, 1) = 1, and t2(1, 2) = 0, as in Figure 1(a). If the optimal policy is

of Type 1 and server 1 is the switching server, then we have t1((1, 2), 1, 2) = 2 and

t1((2, 2), 1) ∈ {0, 1}, as in Figures 1(b) and 4(a). If the optimal policy is of Type 1

and server 2 is the switching server, we have t2(1, 2) = 0 and t2(1, 1) ∈ {1, 2}, as in

Figures 1(c) and 4(b). Finally, if the setup cost is big, the optimal policy is of Type 0,

as in Figure 1(d). To summarize, the recurrent states under possible optimal policies
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for systems with B = 0 and specialist servers are as in Figures 1(a), 1(b), 1(c), 1(d),

4(a), and 4(b).

(a) Only Server 1 Switches (Type 1) (b) Only Server 2 Switches (Type 1)

Figure 4: Recurrent States and Optimal Actions in Section 5.5.2

Note that policies of Type 0, 1, or 2 were also observed for systems where the

service rate depends on either the server or the station and B = 0, as shown in

Section 5.4. However, for these systems, if the optimal policy is of Type 1 and the

switching server is server i ∈ {1, 2}, then ti(2, 2) or ti(1, 1) is never equal to one; i.e.,

the policies shown in Figures 4(a) and 4(b) are never optimal. Hence, we conclude that

the form of the policy is robust to the service rates, but the values of the thresholds

can take values in a broader range in systems with specialist servers.

5.5.3 Systems with B > 0 and Specialist Servers

In this section, we study systems with specialist servers and B > 0. More specifically,

we randomly generate 50,000 systems with the service rates and the setup cost chosen

as in Section 5.5.2, and the buffer size drawn from a discrete uniform distribution with

range {1, 2, 3, 4, 5}.

In all the experiments with specialist servers and B > 0 we observe that the

optimal policy is of multiple threshold type. More specifically, the optimal policies are

more general versions of the policies observed in Section 5.5.1. For example, consider

the case where the optimal policy is of Type 2 with servers 1 and 2 having preferred

assignments at stations 1 and 2, respectively. Then, we observe that t1(1, 2) = B+ 2,
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t1(2, 2) = k, t2(1, 1) = l, and t2(1, 2) = 0, where k, l ∈ {1, . . . , B + 1}. Unlike in

the case where the service rate depends only on the station or the server, we do not

observe any simple relation between the thresholds k and l. Note that we observed

some cases where l = 1 and k = B + 1 in the optimal policy (i.e., π0 was optimal).

Hence, in the presence of specialist servers, the policy that has primary assignments

(so that the servers switch back to their primary stations as soon as possible) can

be optimal, unlike in the case with generalist servers considered in Proposition 5.4.1.

Similar conclusions follow when the optimal policy is of Type 2 and the servers do

not have preferred assignments (as in the case where service rate depends only on

the servers). In this case, we observe that t1(1, 2) = B + 2, t1(2, 1) = 0, t2(1, 1) = k,

t2(1, 2) = 0, t2(2, 1) = B + 2, and t2(2, 2) = l, where k, l ∈ {1, . . . , B + 1}. When

the optimal policy is of Type 1, we observe similar patterns in the thresholds. For

example, if server 1 is the switching server and (s)he has a preferred assignment at

station 1, we see that t1(1, 2) = B + 2 and t1(2, 2) = k, where k ∈ {1, . . . , B + 1}.

From these results, we conclude that the form of the optimal policy remains the

same even when the buffer size is increased and the servers have different skills at

different stations. However, the thresholds can take values in a bigger set, and we do

not see simple dependencies between the thresholds as in Section 5.5.1.

5.6 Conclusion

In this work, we have studied the dynamic server assignment problem in the presence

of setup costs. More specifically, we have determined the optimal server assignment

policy for tandem systems with two stations, two servers, and small buffer sizes when

the service rates depend only on either the station or the server. We have shown

that the optimal policy is of “multiple threshold” type (i.e., servers move between

stations when the number of jobs in the system reaches certain thresholds that may

depend on the current locations of both servers). As the value of the setup cost
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increases, the optimal server assignment policy reduces the number of servers that

move between the stations, and when there is only one switching server in the system,

we have seen that the faster server or the server that is assigned to the faster station

is the switching server. Moreover, the servers generally have preferred assignments

(the only exception is the case when the service rates depend only on the server and

the value of the setup cost is small). Finally, we have shown that server movements

are more limited when the service rates depend only on the station than when the

service rates depend only on the server.

For systems with larger buffer sizes and/or specialist servers (whose rates can not

be described as products of two terms), we have performed numerical experiments

that suggest that the form of the optimal policy also has a multiple threshold structure

in this setting, and have provided our observations about the values of the thresholds.

Consequently, the form of the optimal policy appears to be quite robust with respect

to the service rates and the buffer sizes, but the thresholds can take more values in

systems with larger buffer sizes and/or specialist servers.
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CHAPTER VI

CONTRIBUTIONS AND FUTURE RESEARCH

DIRECTIONS

6.1 Contributions

We have studied effective cross-training and dynamic server assignment strategies

for tandem lines with finite buffers. First, we considered non-Markovian tandem

lines. We provided analytical results for tandem systems with two stations and two

or three flexible servers. More specifically, we have identified the optimal server

assignment policy for systems with deterministic service times and an intermediate

buffer of arbitrary size, and also for systems with general service time distributions

and an intermediate buffer of zero size. We have observed that the form of the

optimal policy is the same as for the corresponding Markovian system. For larger

systems, we presented and compared several heuristic server assignment policies that

performed well for various service time distributions. Systems with non exponential

service times and finite buffers are very common in real life, however most of the time

they are analytically intractable. Our research supports the conjecture that effective

dynamic server assignment policies for flexible servers are robust to the service time

distributions, and suggests that the analysis of Markovian lines can also provide

insights for non-Markovian lines.

In this thesis, we have also studied understaffed tandem lines with fully or par-

tially flexible servers. We have shown that, when the objective is to maximize the

throughput, most of the benefits of full flexibility can be obtained even with partial

flexibility. More specifically, for systems with three stations, two servers, and de-

terministic service times, we have determined the optimal server assignment policy
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when the intermediate buffers are of arbitrary size. Furthermore, we have identified

the critical skills that are necessary to attain the benefits of full flexibility in systems

with limited flexibility, and observed that these skills can be found by analyzing the

corresponding system with infinite buffers. We have also studied Markovian systems

with three stations and two servers under the partial flexibility structures that were

optimal in deterministic systems. We have determined the optimal server assignment

policies for such systems when the intermediate buffers are small and have developed

near-optimal heuristic server assignment policies for systems with larger intermediate

buffers. Finally, we have considered longer Markovian lines and provided numerical

examples showing that the partial flexibility structures known to be optimal for sys-

tems with infinite buffers performed well in our system as well. Most of the time,

tandem lines with more than two stations and finite buffers are very difficult to analyze

exactly. However, our research suggests that analyzing systems with infinite buffers is

effective with respect to identifying good flexibility structures for the corresponding

finite-buffered systems.

Finally, we have incorporated setup costs into the dynamic server assignment

problem. This problem had not been studied before in tandem systems with finite

buffers. We have considered systems with two stations and two flexible servers. For

systems with small buffer sizes and service times that depend on either the server

or the station, we have shown that the form of the optimal policy is of multiple

threshold type (i.e., there are different thresholds for the servers to switch to the

other station depending on the locations of all servers in the system). Furthermore,

we have determined the values of the thresholds and observed that server movements

were more limited in systems with identical servers as compared to systems with

identical stations. In the process, we observed that as the magnitude of the setup

cost grows, the number of servers who switch between the stations becomes smaller

in the optimal server assignment policy (i.e., first both servers switch, then only one,
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and finally none). For systems with larger buffer sizes and/or specialist servers, we

have provided numerical evidence supporting the conjecture that the optimal server

assignment policy is of multiple threshold type. However, the values of the thresholds

become more unpredictable when the servers are specialists and/or the intermediate

buffer size is large.

6.2 Future Research Directions

Our research in the area of performance improvements in tandem lines has provided

us with valuable insights on how to analyze systems with finite buffers. The allocation

LP (which is devised for infinite-buffered systems) has provided an attainable upper

bound on the throughput of the deterministic systems we have considered. Hence, our

first research direction is to generalize some of our results to systems with more servers

and more stations. More specifically, the first problem of interest is studying non-

Markovian tandem lines with two stations and more than two servers (this problem

has been studied for Markovian systems in Andradóttir and Ayhan [6]). We believe

that systems with general service time distributions are not analytically tractable

for systems with positive buffer sizes, however our initial results suggest that the

optimal server assignment policy can be determined for deterministic systems with

an intermediate buffer of arbitrary size and also for systems with general service time

distributions and an intermediate buffer of zero size. The second problem of interest is

identifying an optimal server assignment policy for systems with two servers and more

than three stations. The solution of the allocation LP is still analytically tractable in

this case, and we believe that the maximal capacity found from the allocation LP is

also attainable in deterministic systems with finite buffers.

Another future research direction is the analysis of finite parallel queueing systems.

The dynamic server assignment problem has been studied in this setting as well,

but mostly for systems with infinite buffers and under heavy traffic. These models
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have provided good insights for the analysis of certain call centers and computer

systems. However, the analysis of more general service systems may require finite

buffers (e.g., when an emergency room has reached its capacity, new patients may

not be accepted unless their health condition does not allow them to be transported

to another facility). The only work we are aware of that studies finite-buffered parallel

systems is Ahn, Duenyas, and Zhang [2] and they study a clearing system with no

arrivals. By contrast, we plan to study systems with multiple customer classes and

outside arrivals. We also believe that other problems of interest, like admission control

and dynamic pricing, can be considered in combination with the dynamic server

assignment problem. Our first goal is to determine the optimal server assignment

policy for simpler systems with finite buffers where every customer is allowed to enter

the system as long as the buffers are not full. Then, we plan to add admission control

or pricing mechanisms to our model.

117



APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

A.1 Lemmas Used in the Proofs of Theorems 3.3.1 and
3.3.2

Throughout this section, we will use the following notation.

C1(u1, u2) =
u1µ12

µ11(µ12 + µ22)
+

u2

µ12 + µ22

, C2(u1, u2) =
u1µ22

µ21(µ12 + µ22)
+

u2

µ12 + µ22

,

C3(u1, u2) =
u1

µ11 + µ21

+
u2µ21

µ22(µ11 + µ21)
, C4(u1, u2) =

u1

µ11 + µ21

+
u2µ11

µ12(µ11 + µ21)
,

C5(u1, u2) =
u1

µ11 + µ21

+
u2

µ12 + µ22

.

Lemma A.1.1 The maximal capacity of a tandem queueing network with two sta-

tions and two flexible servers is equal to

λ∗ =


1

C1(u1,u2)
if u1

µ11
≤ u2

µ22
,

1
C3(u1,u2)

if u1

µ11
> u2

µ22
.

(19)

Proof: It is clear that it suffices to show that equation (19) provides the optimal value

of λ in the allocation LP (see the proof of Theorem 3.3.1). We start by transforming

this LP to the standard form as follows:

min −λ

s.t. λ− δ11
µ11

u1

− δ21
µ21

u1

+ s1 = 0,

λ− δ12
µ12

u2

− δ22
µ22

u2

+ s2 = 0,

δ11 + δ12 = 1, (20)

δ21 + δ22 = 1, (21)

δij ≥ 0, for all i, j ∈ {1, 2}, s1, s2 ≥ 0.
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Note that there are no slack variables in equations (20) and (21), because it is always

possible to satisfy these constraints as equalities without worsening the objective

function value. Since there are four constraints (not including the nonnegativity

constraints), every feasible basis will have four elements.

Let D be a basis for the above LP, cB be the vector of coefficients of the elements

of D in the objective function, B be the coefficients of the elements of D in the

constraint matrix, and b be the right-hand side of the constraints. Also, let V denote

the coefficients of the non-basic variables in the constraint matrix, and cNB denote the

vector of coefficients of the non-basic variables in the objective function. We let cB and

cNB be row vectors, and b be a column vector. Then the following conditions guarantee

that the basis D is optimal (see, e.g., Theorem 3.1 of Bertsimas and Tsitsiklis [25]):

B−1b ≥ 0, (22)

cNB − cBB−1V ≥ 0. (23)

First, consider the basis D = {λ, δ11, δ12, δ22}. Some algebra shows that

B−1b =



µ11(µ12 + µ22)/(u1µ12 + u2µ11)

u1(µ12 + µ22)/(u1µ12 + u2µ11)

(u2µ11 − u1µ22)/(u1µ12 + u2µ11)

1


,

cNB − cBB−1V =


(µ11µ22 − µ12µ21)/(u1µ12 + u2µ11)

u1µ12/(u1µ12 + u2µ11)

u2µ11/(u1µ12 + u2µ11)

 .
Since our assumptions on the service rates imply that µ11µ22 − µ12µ21 ≥ 0, we can

conclude that D = {λ, δ11, δ12, δ22} is an optimal basis when u1

µ11
≤ u2

µ22
. The first

element in the matrix B−1b is the value of λ in the optimal basis, hence λ∗ = 1
C1(u1,u2)

in this case.
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Now consider the basis D = {λ, δ11, δ21, δ22}. Similar calculations show that

B−1b =



µ22(µ11 + µ21)/(u1µ22 + u2µ21)

1

(u1µ22 − u2µ11)/(u1µ22 + u2µ21)

u2(µ11 + µ21)/(u1µ22 + u2µ21)


,

cNB − cBB−1V =


(µ11µ22 − µ12µ21)/(u1µ22 + u2µ21)

u1µ22/(u1µ22 + u2µ21)

u2µ11/(u1µ22 + u2µ21)

 .
Hence, we can conclude that D = {λ, δ11, δ21, δ22} is an optimal basis when u1

µ11
> u2

µ22
.

The first element in the matrix B−1b is the value of λ in the optimal basis, hence

λ∗ = 1
C3(u1,u2)

in this case, which provides the desired result. 2

Lemma A.1.2 Consider the policy π = (d)∞, where d(0) = a11, d(B+ 2) = a22, and

d(s) = a12 for 1 ≤ s ≤ B + 1, for a system with N = M = 2. If u1

µ11
≤ u2

µ22
, then the

long-run average throughput under the policy π is equal to 1
C1(u1,u2)

.

Proof: Suppose that u1

µ11
< u2

µ22
and that the process {X(t)} is in state s when the

first service completion at station 1 takes place. At that time, the process {X(t)}

goes to state s+ 1. If s+ 1 < B+ 2, then a new job starts being processed at station

1, and the job being processed at station 2 has remaining service time r2 < u2. The

process {X(t)} will reach either state s or state s + 2 next depending on whether

r2
µ22

< u1

µ11
or not. If the process {X(t)} returns to state s, the remaining service time

at station 1 is no longer than u1. Consequently, the job at station 1 is completed

first, and the process {X(t)} goes next to state s + 1, at which time the remaining

service time at station 2 is

r
(1)
2 = u2 − µ22

(u1 − r2
µ22
µ11

µ11

)
= r2 +

(
u2 −

u1

µ11

µ22

)
∈ (r2, u2)
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because u1

µ11
< u2

µ22
and r2

µ22
< u1

µ11
. In this case, it is possible to have several (s+ 1)→

s → (s + 1) cycles, but each time the process {X(t)} reaches state s + 1 from state

s, a new job starts being processed at station 1 and the remaining service time at

station 2 is longer than the previous time (by a constant margin). Hence, there will

come a time when the job at station 1 will be finished before the job at station 2 in

state s+ 1, and the process {X(t)} will reach state s+ 2. Therefore, we can conclude

that the process {X(t)} never reaches state s− 1 after the first service completion at

station 1 in state s, and instead it eventually reaches state B + 2.

Once the process {X(t)} hits state B + 2, it comes back to state B + 1 after the

service completion at station 2. New jobs start being processed at each station, the

job at station 1 is finished first under the assumptions of the lemma, and the process

{X(t)} hits state B + 2 again. Since one job leaves the system each time the process

{X(t)} reaches state B+ 1, the long-run average throughput is equal to 1
C1(u1,u2)

, the

reciprocal of the time between transitions to state B + 1.

If u1

µ11
= u2

µ22
and the policy π is employed, then the process is either confined to

a single intermediate state, or to two adjacent intermediate states, and the long-run

average throughput is the reciprocal of u1

µ11
which is equal to 1

C1(u1,u2)
. This completes

the proof. 2

Lemma A.1.3 Consider the policy π = (d)∞, where d(0) = a11, d(B+ 2) = a22, and

d(s) = a12 for 1 ≤ s ≤ B + 1, for a system with N = M = 2. If u1

µ11
> u2

µ22
, then the

long-run average throughput under the policy π is equal to 1
C3(u1,u2)

.

Proof: Using an analysis similar to that of Lemma A.1.2, it can be shown that the

stochastic process {X(t)} ends up being confined to states 0 and 1. Since one job

leaves the system each time the process {X(t)} reaches state 1, the long-run average

throughput is equal to 1
C3(u1,u2)

, the reciprocal of the time between transitions to state

1. This completes the proof. 2

121



Lemma A.1.4 For all u1, u2 ∈ R+ we have

max{C1(u1, u2), C3(u1, u2)} ≤ min{C2(u1, u2), C4(u1, u2), C5(u1, u2)}.

Proof: It is easy to see that C1(u1, u2) ≤ C2(u1, u2), and C3(u1, u2) ≤ C4(u1, u2).

Furthermore, for all u1, u2 ∈ R+ we have C1(u1, u2) ≤ min{C4(u1, u2), C5(u1, u2)} and

C3(u1, u2) ≤ min{C2(u1, u2), C5(u1, u2)} because

C1(u1, u2)− C4(u1, u2) =
(u1µ12 + u2µ11)(µ12µ21 − µ11µ22)

µ11µ12(µ11 + µ21)(µ12 + µ22)
≤ 0,

C1(u1, u2)− C5(u1, u2) =
u1(µ12µ21 − µ11µ22)

µ11(µ11 + µ21)(µ12 + µ22)
≤ 0,

C3(u1, u2)− C2(u1, u2) =
(u1µ22 + u2µ21)(µ12µ21 − µ11µ22)

µ21µ22(µ11 + µ21)(µ12 + µ22)
≤ 0,

C3(u1, u2)− C5(u1, u2) =
u2(µ12µ21 − µ11µ22)

µ22(µ11 + µ21)(µ12 + µ22)
≤ 0.

Hence the result follows. 2

A.2 Lemmas Used in the Proof of Theorem 3.4.1

For simplicity, we will use the following notation:

Σ1 = µ11 + µ21 + µ31, Σ2 = µ12 + µ22 + µ32,

∆12 = µ11µ22 − µ12µ21, ∆13 = µ11µ32 − µ12µ31, ∆23 = µ21µ32 − µ22µ31.

Note that we have assumed ∆12 ≥ 0,∆13 ≥ 0, ∆23 ≥ 0, Σ1 > 0, and Σ2 > 0. Also,

let γj(u1, u2) for j ∈ {1, 2, 3} be defined as follows.

γ1(u1, u2) =
µ11Σ2

u1µ12 + u2µ11

, γ2(u1, u2) =
µ11µ22 + µ21µ22 + µ21µ32

u1µ22 + u2µ21

,

γ3(u1, u2) =
µ32Σ1

u1µ32 + u2µ31

.

Lemma A.2.1 The maximal capacity of a tandem queueing network with two sta-

tions and three flexible servers is equal to

λ∗ =


γ1(u1, u2) if u1

u2
≤ µ11

µ22+µ32
,

γ2(u1, u2) if µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
,

γ3(u1, u2) if u1

u2
> µ11+µ21

µ32
.

(24)
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Proof: It is clear that it suffices to show that equation (24) provides the optimal value

of λ in the allocation LP (see the proof of Theorem 3.4.1). We start by transforming

this LP to the standard form as follows:

min −λ

s.t. λ− δ11
µ11

u1

− δ21
µ21

u1

− δ31
µ31

u1

+ s1 = 0,

λ− δ12
µ12

u2

− δ22
µ22

u2

− δ32
µ32

u2

+ s2 = 0,

δ11 + δ12 = 1, (25)

δ21 + δ22 = 1, (26)

δ31 + δ32 = 1, (27)

δij ≥ 0, for all i ∈ {1, 2, 3}, j ∈ {1, 2}, s1, s2 ≥ 0.

Note that there are no slack variables in equations (25), (26), and (27) because it is

always possible to satisfy these constraints as equalities without worsening the objec-

tive function value. Since there are five constraints (not including the nonnegativity

constraints), every feasible basis will have five elements.

We will use the notation defined in the proof of Lemma A.1.1. Our approach will

be to start with an initial basis and show that this basis is optimal by verifying the

conditions (22) and (23).

First, consider the basis D = {λ, δ11, δ12, δ22, δ32}. Some algebra shows that

B−1b =



γ1(u1, u2)

u1Σ2/(u1µ12 + u2µ11)

(u2µ11 − u1(µ22 + µ32))/(u1µ12 + u2µ11)

1

1


,
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cNB − cBB−1V =



∆12/(u1µ12 + u2µ11)

∆13/(u1µ12 + u2µ11)

u1µ12/(u1µ12 + u2µ11)

u2µ11/(u1µ12 + u2µ11)


.

Hence, we conclude that D = {λ, δ11, δ12, δ22, δ32} is an optimal basis when u1

u2
≤

µ11

µ22+µ32
. The first element in the matrix B−1b is the value of λ in the optimal basis,

hence λ∗ = γ1(u1, u2) in this case.

Next, consider the basis D = {λ, δ11, δ21, δ22, δ32}. Similar calculations show that

B−1b =



γ2(u1, u2)

1

(u1(µ22 + µ32)− u2µ11)/(u1µ22 + u2µ21)

(u2(µ11 + µ21)− u1µ32)/(u1µ22 + u2µ21)

1


,

cNB − cBB−1V =



∆12/(u1µ22 + u2µ21)

∆23/(u1µ22 + u2µ21)

u1µ22/(u1µ22 + u2µ21)

u2µ21/(u1µ22 + u2µ21)


.

Hence, we conclude that D = {λ, δ11, δ21, δ22, δ32} is an optimal basis when µ11

µ22+µ32
≤

u1

u2
≤ µ11+µ21

µ32
. The first element in the matrix B−1b is the value of λ in the optimal

basis, hence λ∗ = γ2(u1, u2) in this case.

Finally, consider the basis D = {λ, δ11, δ21, δ31, δ32}. Similar calculations show that

B−1b =



γ3(u1, u2)

1

1

(u1µ32 − u2(µ11 + µ21))/(u1µ32 + u2µ31)

u2Σ1/(u1µ32 + u2µ31)


,
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cNB − cBB−1V =



∆13/(u1µ32 + u2µ31)

∆23/(u1µ32 + u2µ31)

u1µ32/(u1µ32 + u2µ31)

u2µ31/(u1µ32 + u2µ31)


.

Hence, we can conclude that D = {λ, δ11, δ21, δ31, δ32} is an optimal basis when u1

u2
≥

µ11+µ21

µ32
. The first element in the matrix B−1b is the value of λ in the optimal basis,

hence λ∗ = γ3(u1, u2) in this case, and this gives the desired result. 2

Lemma A.2.2 Consider the policy π = (d)∞, where d(0) = a111, d(B + 2) =

a222, and d(s) = a122 for 1 ≤ s ≤ B + 1, for a system with M = 3, N = 2. If

u1

u2
≤ µ11

µ22+µ32
, then the long-run average throughput under the policy π is equal to

γ1(u1, u2) when B ≥ 0.

Proof: If u1

µ11
< u2

µ22+µ32
, using an analysis similar to that of Lemma A.1.2, it can be

shown that the process {X(t)} ends up being confined to states B + 1 and B + 2.

Since one job leaves the system each time the process {X(t)} reaches state B+ 1, the

long-run average throughput is equal to the reciprocal of the time

u1

µ11

+
u2 − (µ22 + µ32) u1

µ11

Σ2

between transitions to state B + 1, which equals γ1(u1, u2).

If u1

u2
= µ11

µ22+µ32
and the policy π is employed, then the process is either confined

to a single intermediate state, or to two adjacent intermediate states, and the long-

run average throughput is the reciprocal of u1

µ11
which is equal to γ1(u1, u2). This

completes the proof. 2

Lemma A.2.3 Consider the policy π = (d)∞, where d(0) = a111, d(B + 2) =

a222, d(s) = a112 for 1 ≤ s < s∗, and d(s) = a122 for s∗ ≤ s ≤ B + 1, for a sys-

tem with M = 3, N = 2. If µ11

µ22+µ32
< u1

u2
≤ µ11+µ21

µ32
, then the long-run average

throughput under the policy π is equal to γ2(u1, u2) when B > 0.
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Proof: First assume that µ11

µ22+µ32
< u1

u2
< µ11+µ21

µ32
. Then, proceeding as in the proof

of Lemma A.1.2, we can show that the process {X(t)} eventually hits state s∗ − 1

regardless of whether the initial state s satisfies s < s∗ − 1 or s > s∗ − 1. We will

show that the process {X(t)} ends up being confined to the two intermediate states

s∗ − 1 and s∗ in the long-run, and compute the time between two consecutive visits

to state s∗ − 1.

If the remaining service time at station 2 is r
(0)
2 upon hitting state s∗ − 1 from

state s∗ − 2, then the process either goes next to state s∗ − 2 (if
r
(0)
2

µ32
< u1

µ11+µ21
) or to

state s∗ (if
r
(0)
2

µ32
≥ u1

µ11+µ21
). If the process next goes to state s∗−2, we can show (using

ideas in the proof of Lemma A.1.2) that eventually it will come back to state s∗ − 1

with the remaining service times r1 and r2 at stations 1 and 2 satisfying r1
µ11+µ21

< r2
µ32

,

and then the process will hit state s∗ next. Similarly, when state s∗ − 1 is entered

from state s∗, the job at station 1 will have a remaining service time smaller than u1,

a new job will start service at station 2, and the assumption u1

µ11+µ21
< u2

µ32
guarantees

that the process will go next to state s∗. Similarly, when state s∗ is entered from

state s∗ − 1, the remaining service time at station 2 will be smaller than u2, and a

new job will start service at station 1. The assumption that u2

µ22+µ32
< u1

µ11
guarantees

that the job at station 2 will be finished first, and the process will come back to state

s∗ − 1. Hence, if T denotes the first time {X(t)} hits state s∗ − 1 from state s∗, it is

clear that T <∞ and that {X(t)} is confined to states s∗ − 1 and s∗ for all t ≥ T .

Suppose now that at time T , the remaining service time at station 1 equals r
(0)
1 .

Then, the remaining service times at station 1 the next n times the process enters

state s∗ − 1 can be found using the following formula:

r
(n)
1 = u1 − µ11

(u2 − r
(n−1)
1

µ11+µ21
µ32

µ22 + µ32

)
for all n ≥ 1.
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A simple induction now yields

r
(n)
1 = u1

n−1∑
k=0

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)k
− u2

µ11

µ22 + µ32

n−1∑
k=0

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)k
+r

(0)
1

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)n
for all n ≥ 1. Hence, the time that {X(t)} spends in state s∗−1 before going to state

s∗ for the nth time is c
(n)
1 =

r
(n)
1

µ11+µ21
.

Similarly, the first time {X(t)} enters state s∗ from state s∗ − 1 after time T , the

remaining service time at station 2 equals r̄
(0)
2 = u2− r

(0)
1

µ11+µ21
µ32. Then, the remaining

service times at station 2 the next n times the process enters state s∗ can be found

using the following formula:

r̄
(n)
2 = u2 − µ32

(u1 − r̄
(n−1)
2

µ22+µ32
µ11

µ11 + µ21

)
for all n ≥ 1.

A simple induction now yields

r̄
(n)
2 = u2

n−1∑
k=0

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)k
− u1

µ32

µ11 + µ21

n−1∑
k=0

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)k
+r̄

(0)
2

( µ11µ32

(µ11 + µ21)(µ22 + µ32)

)n
for all n ≥ 1. Hence, the time that {X(t)} spends in state s∗ before going to state

s∗ − 1 for the nth time is c
(n)
2 =

r̄
(n)
2

µ22+µ32
.

Consequently, in the limit, the time between two transitions to state s∗ − 1 is

lim
n→∞

(
c

(n)
1 + c

(n)
2

)
=

u1µ22 + u2µ21

µ11µ22 + µ21µ22 + µ21µ32

. (28)

Convergence in (28) follows since we have µ11 > 0, µ32 > 0, and µ21 + µ22 > 0,

which in turn implies that 0 < µ11µ32

(µ11+µ21)(µ22+µ32)
< 1. Hence, the long-run average

throughput is equal to the reciprocal of this expression, which is γ2(u1, u2).

If u1

u2
= µ11+µ21

µ32
and the policy π is employed, then the process is either confined to

a single intermediate state s, or to two adjacent intermediate states s and s+1, where

s ∈ {1, . . . , s∗ − 1} (and the same analysis as above will follow when s = s∗ − 1). In
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either case, the long-run average throughput is the reciprocal of u2

µ32
, which is equal

to γ2(u1, u2). This completes the proof. 2

Lemma A.2.4 Consider the policy π = (d)∞, where d(0) = a111, d(B + 2) =

a222, and d(s) = a112 for 1 ≤ s ≤ B + 1, for a system with M = 3, N = 2. If

u1

u2
> µ11+µ21

µ32
, then the long-run average throughput under the policy π is equal to

γ3(u1, u2) when B ≥ 0.

Proof: Using an analysis similar to that of Lemma A.1.2, it can be shown that the

process {X(t)} ends up being confined to states 0 and 1. Since one job leaves the

system each time the process {X(t)} reaches state 1, long-run average throughput is

equal to the reciprocal of the time

u2

µ32

+
u1 − (µ11 + µ21) u2

µ32

Σ1

between transitions to state 1, which equals γ3(u1, u2). Hence, the result follows. 2

A.3 Lemmas Used in the Proofs of Theorems 3.4.2 and
3.4.3

According to the values of the service rates µ11, µ12, µ21, µ22, µ31, µ32, and the service

times u1 and u2, we have twelve different cases depending on which server finishes

his/her job first in state 1 under the actions a112, a122, a121, a211, a212, and a221, respec-

tively:

Case 1: u1

µ11+µ21
≤ u2

µ32
, Case 2: u1

µ11+µ21
> u2

µ32
,

Case 3: u1

µ11
≤ u2

µ22+µ32
, Case 4: u1

µ11
> u2

µ22+µ32
,

Case 5: u1

µ11+µ31
≤ u2

µ22
, Case 6: u1

µ11+µ31
> u2

µ22
,

Case 7: u1

µ21+µ31
≤ u2

µ12
, Case 8: u1

µ21+µ31
> u2

µ12
,

Case 9: u1

µ21
≤ u2

µ12+µ32
, Case 10: u1

µ21
> u2

µ12+µ32
,

Case 11: u1

µ31
≤ u2

µ12+µ22
, Case 12: u1

µ31
> u2

µ12+µ22
.
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Cases 1 and 2 occur under action a112, Cases 3 and 4 occur under action a122, Cases

5 and 6 occur under action a121, Cases 7 and 8 occur under action a211, Cases 9 and

10 occur under action a212, and Cases 11 and 12 occur under action a221.

The following are the times between two transitions to state 1 for these twelve

cases:

Ĉ1(u1, u2) =
u1(µ12 + µ22)

(µ11 + µ21)Σ2

+
u2

Σ2

, Ĉ2(u1, u2) =
u1

Σ1

+
u2µ31

µ32Σ1

,

Ĉ3(u1, u2) =
u1µ12

µ11Σ2

+
u2

Σ2

, Ĉ4(u1, u2) =
u1

Σ1

+
u2(µ21 + µ31)

(µ22 + µ32)Σ1

,

Ĉ5(u1, u2) =
u1(µ12 + µ32)

(µ11 + µ31)Σ2

+
u2

Σ2

, Ĉ6(u1, u2) =
u1

Σ1

+
u2µ21

µ22Σ1

,

Ĉ7(u1, u2) =
u1(µ22 + µ32)

(µ21 + µ31)Σ2

+
u2

Σ2

, Ĉ8(u1, u2) =
u1

Σ1

+
u2µ11

µ12Σ1

,

Ĉ9(u1, u2) =
u1µ22

µ21Σ2

+
u2

Σ2

, Ĉ10(u1, u2) =
u1

Σ1

+
u2(µ11 + µ31)

(µ12 + µ32)Σ1

,

Ĉ11(u1, u2) =
u1µ32

µ31Σ2

+
u2

Σ2

, Ĉ12(u1, u2) =
u1

Σ1

+
u2(µ11 + µ21)

(µ12 + µ22)Σ1

.

Note that γ1(u1, u2) = 1

Ĉ3(u1,u2)
and γ3(u1, u2) = 1

Ĉ2(u1,u2)
, where γ1(u1, u2) and

γ3(u1, u2) are defined in Appendix A.2.

Proof of Lemma 3.4.1: Lemma 3.2.1 shows that it is never optimal to idle the

servers in the end states. Hence it only remains to show that it is never optimal to

idle them in state 1. Note that we will not use the inequalities µ11

µ12
≥ µ21

µ22
≥ µ31

µ32
in

the proof. Hence, it suffices to show that the actions a100, a200, a110, a220, and a120 can

never be optimal in state 1, because all other actions with idling can be converted to

these actions by relabeling the servers. The proof of Lemma 3.2.2 shows that action

a111 is better than actions a100 and a110, and action a222 is better than actions a200

and a220. Hence, it suffices to show that action a122 is better than action a120 in state

1 when actions a111 and a222 are used in states 0 and 2, respectively.

The expected time between two visits to state 1 under action a122 was defined as

E122 in Section 3.4.2. The following is the expected time between two visits to state
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1 under actions a120:

E120 =

∫ ∞
0

∫ u2µ11
µ22

0

Ĉ13(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ ∞
u2µ11
µ22

Ĉ14(u1, u2)dF1(u1)dF2(u2),

where F1, F2 denote the CDF’s of the service times at stations 1 and 2, respectively,

and

Ĉ13(u1, u2) =
u1(µ12 + µ32)

µ11Σ2

+
u2

Σ2

, Ĉ14(u1, u2) =
u1

Σ1

+
u2(µ21 + µ31)

µ22Σ1

.

It is clear that Ĉ3(u1, u2) ≤ Ĉ13(u1, u2) and Ĉ4(u1, u2) ≤ Ĉ14(u1, u2) for all u1, u2

∈ R+ since µ32 ≥ 0. Also,

Ĉ4(u1, u2) ≤ Ĉ13(u1, u2)⇔ Θ := u1(µ12 + µ32)(µ22 + µ32)Σ1 + u2µ11(µ22 + µ32)Σ1

−u1µ11(µ22 + µ32)Σ2 − u2µ11(µ21 + µ31)Σ2 ≥ 0.

But the last inequality holds when u2

µ22+µ32
≤ u1

µ11
≤ u2

µ22
because in this case

Θ = u1(µ12 + µ32)(µ22 + µ32)(µ21 + µ31) + u2µ
2
11(µ22 + µ32)− u1µ11µ22(µ22 + µ32)

−u2µ11µ12(µ21 + µ31)

≥ u2µ11(µ12 + µ32)(µ21 + µ31) + u1µ11µ22(µ22 + µ32)− u1µ11µ22(µ22 + µ32)

−u2µ11µ12(µ21 + µ31)

= u2µ11µ32(µ21 + µ31) ≥ 0.

Hence,

E120 =
∫ ∞

0

∫ u2µ11
µ22+µ32

0
Ĉ13(u1, u2)dF1(u1)dF2(u2)

+
∫ ∞

0

∫ u2µ11
µ22

u2µ11
µ22+µ32

Ĉ13(u1, u2)dF1(u1)dF2(u2) +
∫ ∞

0

∫ ∞
u2µ11
µ22

Ĉ14(u1, u2)dF1(u1)dF2(u2)

≥
∫ ∞

0

∫ u2µ11
µ22+µ32

0
Ĉ3(u1, u2)dF1(u1)dF2(u2) +

∫ ∞
0

∫ u2µ11
µ22

u2µ11
µ22+µ32

Ĉ4(u1, u2)dF1(u1)dF2(u2)

+
∫ ∞

0

∫ ∞
u2µ11
µ22

Ĉ4(u1, u2)dF1(u1)dF2(u2)

= E122.

130



This implies that action a122 is better than action a120, and using Lemma 3.2.3 we

can conclude that the optimal policy should not allow servers to idle. 2

Proof of Lemma 3.4.2: Lemma 3.2.1 shows that the optimal action in state 0 is

a111, and the optimal action in state 2 is a222. When we use action a111 or a222 in

state 1 and actions a111 and a222 in states 0 and 2, respectively, the expected time

between two visits to state 1 can be found as

E111 = E222 =

∫ ∞
0

∫ ∞
0

Ĉ15(u1, u2)dF1(u1)dF2(u2),

where Ĉ15(u1, u2) = u1

Σ1
+ u2

Σ2
for all u1, u2 ∈ R+. It is clear that Ĉ3(u1, u2) ≤ Ĉ15(u1, u2)

for all u1, u2 ∈ R+ because

Ĉ3(u1, u2) ≤ Ĉ15(u1, u2)⇔ µ12Σ1 ≤ µ11Σ2 ⇔ 0 ≤ ∆12 + ∆13.

Similarly, it is clear that Ĉ4(u1, u2) ≤ Ĉ15(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2) ≤ Ĉ15(u1, u2)⇔ (µ21 + µ31)Σ2 ≤ (µ22 + µ32)Σ1 ⇔ 0 ≤ ∆12 + ∆13.

Then, with E122 being as defined in Section 3.4.2, E122 ≤ E111 = E222. Lemma 3.2.3

now yields that action a122 is better than actions a111 and a222 in state 1, and hence

actions a111 and a222 cannot be optimal in this state. 2

Lemma A.3.1 Let r be defined as in Section 3.4.1. Then, µ11

µ22+µ32
≤ r ≤ µ11+µ21

µ32
.

Proof: It is seen that

r ≤ µ11 + µ21

µ32

⇔ µ32∆12 ≤ µ22(∆13 + ∆23) + µ32∆23

⇔ 0 ≤ ∆23Σ2.

Similarly,

µ11

µ22 + µ32

≤ r ⇔ µ11∆23 ≤ µ11∆12 + µ21(∆12 + ∆13)

⇔ 0 ≤ ∆12Σ1.

Hence, the result follows. 2
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Lemma A.3.2 Consider the policy π = (d)∞, where d(0) = a111, d(1) = a122, and

d(2) = a222, for a system with M = 3, N = 2, and B = 0. If µ11

µ22+µ32
< u1

u2
≤ r, then

π is optimal.

Proof: Note that the assumption of the lemma implies that Case 4 holds (corre-

sponding to action a122), and Cases 2 and 3 do not hold (see Lemma A.3.1). The

other nine cases (corresponding to all other actions) may or may not hold depending

on the values of u1, u2, and the service rates. By Lemmas 3.2.1 and 3.2.3, it suffices

to show that Ĉ4(u1, u2) is no larger than the cycle times of the other cases that may

hold for u1 and u2. We have:

• Ĉ4(u1, u2) ≤ Ĉ1(u1, u2) when u1

u2
≤ r because

Ĉ4(u1, u2) ≤ Ĉ1(u1, u2)⇔ u2(∆12 + ∆13)

µ22 + µ32

≥ u1(∆13 + ∆23)

µ11 + µ21

⇔ r ≥ u1

u2

. (29)

• It is seen that

Ĉ4(u1, u2)− Ĉ5(u1, u2) =
u1(∆12 −∆23)

(µ11 + µ31)Σ1Σ2

+
u2(−∆12 −∆13)

(µ22 + µ32)Σ1Σ2

.

Now we analyze the numerator of this expression.

u1(µ22 + µ32)∆12 − u1(µ22 + µ32)∆23 − u2(µ11 + µ31)(∆12 + ∆13)

≤ u1(µ22 + µ32)∆12 − u1(µ22 + µ32)∆23 − u1µ22∆12 − u1µ22∆13 (30)

= u1µ32∆12 − u1(µ22 + µ32)∆23 − u1µ22∆13

= −u1(µ22 + µ32)∆23 + u1(µ11µ22µ32 − µ12µ21µ32 − µ11µ22µ32 + µ12µ22µ31)

= −u1(µ22 + µ32)∆23 − u1µ12∆23 ≤ 0.

Here (30) follows since Case 5 holds. Thus, Ĉ4(u1, u2) ≤ Ĉ5(u1, u2) when u1

and u2 are such that Case 5 holds.

• Ĉ4(u1, u2) ≤ Ĉ6(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2) ≤ Ĉ6(u1, u2)⇔ µ21µ22 + µ22µ31 ≤ µ21µ22 + µ21µ32 ⇔ 0 ≤ ∆23.
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• Ĉ4(u1, u2) ≤ Ĉ7(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2)− Ĉ7(u1, u2) =
u1(−∆12 −∆13)

(µ21 + µ31)Σ1Σ2

+
u2(−∆12 −∆13)

(µ22 + µ32)Σ1Σ2

≤ 0.

• Ĉ4(u1, u2) ≤ Ĉ8(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2) ≤ Ĉ8(u1, u2)⇔ µ12µ21 + µ12µ31 ≤ µ11µ22 + µ11µ32 ⇔ 0 ≤ ∆12 + ∆13.

• It is seen that

Ĉ4(u1, u2)− Ĉ9(u1, u2) =
u1(−∆12 + ∆23)

µ21Σ1Σ2

+
u2(−∆12 −∆13)

(µ22 + µ32)Σ1Σ2

.

Now we analyze the numerator of this expression.

−u1(µ22 + µ32)∆12 + u1(µ22 + µ32)∆23 − u2µ21(∆12 + ∆13)

≤ −u1(µ22 + µ32)(∆12 + ∆13) + u2µ11(∆12 + ∆13) (31)

= (∆12 + ∆13)
(
− u1(µ22 + µ32) + u2µ11

)
≤ 0.

Here (31) follows from u1

u2
≤ r and (29). The last inequality implies that

Ĉ4(u1, u2) ≤ Ĉ9(u1, u2) when µ11

µ22+µ32
< u1

u2
≤ r.

• It is seen that

Ĉ4(u1, u2) ≤ Ĉ10(u1, u2)

⇔ µ12µ21 + µ12µ31 + µ21µ32 + µ31µ32 ≤ µ11µ22 + µ11µ32 + µ22µ31 + µ31µ32

⇔ ∆23 ≤ ∆12 + ∆13. (32)

We will show that (32) holds whenever Cases 4 and 10 hold and u1

u2
≤ r. On the

contrary, suppose that (32) does not hold, so that ∆23 > ∆12 + ∆13. Equation
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(29) now gives:

u1(µ22 + µ32)(∆13 + ∆23) < u2(µ11 + µ21)∆23 (33)

⇒ (µ22 + µ32)(∆13 + ∆23) < (
µ12 + µ32

µ21

)(µ11 + µ21)∆23 (34)

⇒ (µ21µ22 + µ21µ32)∆13 < (µ11µ12 + µ11µ32 + µ12µ21 − µ21µ22)∆23

⇒ µ11µ21µ22µ32 − µ12µ21µ22µ31 + µ11µ21µ
2
32 − µ12µ21µ31µ32

< µ11µ21µ
2
32 − µ11µ22µ31µ32 + µ12µ

2
21µ32 − µ12µ21µ22µ31

+(µ11µ12 − µ21µ22)∆23

⇒ µ11µ21µ22µ32 − µ12µ
2
21µ32 + µ11µ22µ31µ32 − µ12µ21µ31µ32

< (µ11µ12 − µ21µ22)∆23

⇒ (µ21µ32 + µ31µ32)∆12 < (µ11µ12 − µ21µ22)∆23. (35)

Here (34) follows since Case 10 holds. If (35) is false, then we have a contradic-

tion, and conclude that (32) is correct. If (35) holds, the term on the right-hand

side of the inequality should be positive since the term on the left-hand side is

nonnegative. Hence, we must have µ11µ12 > µ21µ22.

Since Case 4 holds, we have u1(µ22 + µ32) > u2µ11. Equation (33) now yields

µ11(∆13 + ∆23) < (µ11 + µ21)∆23

⇒ µ2
11µ32 − µ11µ12µ31 < µ2

21µ32 − µ21µ22µ31

⇒ µ32(µ2
11 − µ2

21) < µ31(µ11µ12 − µ21µ22)

⇒ µ2
11 − µ2

21

µ11µ12 − µ21µ22

<
µ31

µ32

(36)

⇒ µ2
11 − µ2

21

µ11µ12 − µ21µ22

<
µ21

µ22

⇒ µ22(µ2
11 − µ2

21) < µ21(µ11µ12 − µ21µ22) (37)

⇒ µ11µ22 < µ12µ21. (38)

Here (36) and (37) follow from µ11µ12 > µ21µ22. But (38) contradicts µ11

µ12
≥ µ21

µ22
.

Therefore, we conclude that (32) holds. In other words Ĉ4(u1, u2) ≤ Ĉ10(u1, u2)
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when u1 and u2 are such that Cases 4 and 10 hold and u1

u2
≤ r.

• Ĉ4(u1, u2) ≤ Ĉ11(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2)− Ĉ11(u1, u2) =
u1(−∆13 −∆23)

µ31Σ1Σ2

+
u2(−∆12 −∆13)

(µ22 + µ32)Σ1Σ2

≤ 0.

• Ĉ4(u1, u2) ≤ Ĉ12(u1, u2) for all u1, u2 ∈ R+ because

Ĉ4(u1, u2) ≤ Ĉ12(u1, u2)

⇔ µ12µ21 + µ12µ31 + µ21µ22 + µ22µ31 ≤ µ11µ22 + µ11µ32 + µ21µ22 + µ21µ32

⇔ 0 ≤ ∆12 + ∆13 + ∆23.

The above arguments show that Ĉ4(u1, u2) is not longer than the cycle times

corresponding to the other cases that may hold for the service times u1 and u2. This

completes the proof. 2

Lemma A.3.3 Consider the policy π = (d)∞, where d(0) = a111, d(1) = a112, and

d(2) = a222, for a system with M = 3, N = 2, and B = 0. If r < u1

u2
≤ µ11+µ21

µ32
, then

π is optimal.

Proof: Note that the assumption of the lemma implies that Case 1 holds (corre-

sponding to action a112), and Cases 2 and 3 do not hold (see Lemma A.3.1). The

other nine cases (corresponding to all other actions) may or may not hold depending

on the values of u1, u2, and the service rates. By Lemmas 3.2.1 and 3.2.3, it suffices

to show that Ĉ1(u1, u2) is no larger than the cycle times of the other cases that may

hold for u1 and u2. We have:

• Ĉ1(u1, u2) < Ĉ4(u1, u2) when u1

u2
> r because

Ĉ1(u1, u2) < Ĉ4(u1, u2)⇔ u2(∆12 + ∆13)

µ22 + µ32

<
u1(∆13 + ∆23)

µ11 + µ21

⇔ r <
u1

u2

. (39)
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• It is seen that

Ĉ1(u1, u2) ≤ Ĉ5(u1, u2)

⇔ µ11µ12 + µ11µ22 + µ12µ31 + µ22µ31 ≤ µ11µ12 + µ11µ32 + µ12µ21 + µ21µ32

⇔ ∆12 ≤ ∆13 + ∆23. (40)

We will show that (40) holds whenever Cases 1 and 5 hold and u1

u2
> r. On the

contrary, suppose that (40) does not hold, so that ∆12 > ∆13 + ∆23. Equation

(39) now gives:

u2(µ11 + µ21)(∆12 + ∆13) < u1(µ22 + µ32)∆12 (41)

⇒ (µ11 + µ21)(∆12 + ∆13) < (µ22 + µ32)∆12(
µ11 + µ31

µ22

) (42)

⇒ (µ11µ22 + µ21µ22)∆13 < (µ11µ32 + µ22µ31 + µ31µ32 − µ21µ22)∆12

⇒ µ2
11µ22µ32 − µ11µ12µ22µ31 + µ11µ21µ22µ32 − µ12µ21µ22µ31

< µ2
11µ22µ32 + µ11µ

2
22µ31 − µ11µ12µ21µ32 − µ12µ21µ22µ31

+(µ31µ32 − µ21µ22)∆12

⇒ µ11µ12µ21µ32 − µ11µ12µ22µ31 + µ11µ21µ22µ32 − µ11µ
2
22µ31

< (µ31µ32 − µ21µ22)∆12

⇒ (µ11µ12 + µ11µ22)∆23 < (µ31µ32 − µ21µ22)∆12. (43)

Here (42) follows since Case 5 holds. If (43) is false, then we have a contradic-

tion, and conclude that (40) is correct. If (43) holds, the term on the right-hand

side of the inequality should be positive since the term on the left-hand side is

nonnegative. Hence, we must have µ31µ32 > µ21µ22. Combining this together

with µ21

µ22
≥ µ31

µ32
, we obtain µ32 > µ22.

136



Since Case 1 holds, we have u2(µ11 + µ21) ≥ u1µ32. Equation (41) now yields

µ32(∆12 + ∆13) < (µ22 + µ32)∆12

⇒ µ11µ
2
32 − µ12µ31µ32 < µ11µ

2
22 − µ12µ21µ22

⇒ µ11(µ2
32 − µ2

22) < µ12(µ31µ32 − µ21µ22)

⇒ µ11

µ12

<
µ31µ32 − µ21µ22

µ2
32 − µ2

22

(44)

⇒ µ21

µ22

<
µ31µ32 − µ21µ22

µ2
32 − µ2

22

⇒ µ21(µ2
32 − µ2

22) < µ22(µ31µ32 − µ21µ22) (45)

⇒ µ21µ32 < µ22µ31. (46)

Here (44) and (45) follow from µ32 > µ22. But (46) contradicts µ21

µ22
≥ µ31

µ32
.

Therefore, we conclude that (40) holds. In other words Ĉ1(u1, u2) ≤ Ĉ5(u1, u2)

when u1 and u2 are such that Cases 1 and 5 hold and u1

u2
> r.

• It is seen that

Ĉ1(u1, u2)− Ĉ6(u1, u2) =
u1(−∆13 −∆23)

(µ11 + µ21)Σ1Σ2

+
u2(∆12 −∆23)

µ22Σ1Σ2

.

Now we analyze the numerator of this expression.

−u1µ22(∆13 + ∆23) + u2(µ11 + µ21)(∆12 −∆23)

< −u2(µ11 + µ21)(∆13 + ∆23) + u1µ32(∆13 + ∆23) (47)

= (∆13 + ∆23)
(
− u2(µ11 + µ21) + u1µ32

)
≤ 0.

Here (47) follows from r < u1

u2
and (39). Thus, Ĉ1(u1, u2) < Ĉ6(u1, u2) when

r < u1

u2
≤ µ11+µ21

µ32
.

• Ĉ1(u1, u2) ≤ Ĉ7(u1, u2) for all u1, u2 ∈ R+ because

Ĉ1(u1, u2) ≤ Ĉ7(u1, u2)

⇔ µ12µ21 + µ12µ31 + µ21µ22 + µ22µ31 ≤ µ11µ22 + µ11µ32 + µ21µ22 + µ21µ32

⇔ 0 ≤ ∆12 + ∆13 + ∆23.
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• Ĉ1(u1, u2) ≤ Ĉ8(u1, u2) for all u1, u2 ∈ R+ because

Ĉ1(u1, u2)− Ĉ8(u1, u2) =
u1(−∆13 −∆23)

(µ11 + µ21)Σ1Σ2

+
u2(−∆12 −∆13)

µ12Σ1Σ2

≤ 0.

• Ĉ1(u1, u2) ≤ Ĉ9(u1, u2) for all u1, u2 ∈ R+ because

Ĉ1(u1, u2) ≤ Ĉ9(u1, u2)⇔ µ12µ21 + µ21µ22 ≤ µ11µ22 + µ21µ22 ⇔ 0 ≤ ∆12.

• It is seen that

Ĉ1(u1, u2)− Ĉ10(u1, u2) =
u1(−∆13 −∆23)

(µ11 + µ21)Σ1Σ2

+
u2(−∆12 + ∆23)

(µ12 + µ32)Σ1Σ2

.

Now we analyze the numerator of this expression.

−u1(µ12 + µ32)(∆13 + ∆23)− u2(µ11 + µ21)(∆12 −∆23) (48)

≤ −u2µ21(∆13 + ∆23)− u2(µ11 + µ21)∆12 + u2(µ11 + µ21)∆23

= −u2µ21∆13 − u2(µ11 + µ21)∆12 + u2µ11∆23

= −u2(µ11µ21µ32 − µ12µ21µ31 − µ11µ21µ32 + µ11µ22µ31)− u2(µ11 + µ21)∆12

= −u2Σ1∆12 ≤ 0.

Here (48) follows since Case 10 holds. Thus, Ĉ1(u1, u2) ≤ Ĉ10(u1, u2) when u1

and u2 are such that Case 10 holds.

• Ĉ1(u1, u2) ≤ Ĉ11(u1, u2) for all u1, u2 ∈ R+ because

Ĉ1(u1, u2) ≤ Ĉ11(u1, u2)⇔ µ12µ31 + µ22µ31 ≤ µ11µ32 + µ21µ32 ⇔ 0 ≤ ∆13 + ∆23.

• Ĉ1(u1, u2) ≤ Ĉ12(u1, u2) for all u1, u2 ∈ R+ because

Ĉ1(u1, u2)− Ĉ12(u1, u2) =
u1(−∆13 −∆23)

(µ11 + µ21)Σ1Σ2

+
u2(−∆13 −∆23)

(µ12 + µ22)Σ1Σ2

≤ 0.

The above arguments show that Ĉ1(u1, u2) is not longer than the cycle times

corresponding to the other cases that may hold for the service times u1 and u2. This

completes the proof. 2
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Lemma A.3.4 For all u1, u2 ∈ R+, we have Ĉ2(u1, u2) ≤ Ĉj(u1, u2), for j ∈

{7, 8, 10, 11, 12}.

Proof: Here are the comparisons of Ĉ2(u1, u2) with Ĉj(u1, u2) for j ∈ {7, 8, 10, 11, 12}.

• Ĉ2(u1, u2) ≤ Ĉ7(u1, u2) for all u1, u2 ∈ R+ because

Ĉ2(u1, u2)− Ĉ7(u1, u2) =
u1(−∆12 −∆13)

(µ21 + µ31)Σ1Σ2

+
u2(−∆13 −∆23)

µ32Σ1Σ2

≤ 0.

• Ĉ2(u1, u2) ≤ Ĉ8(u1, u2) for all u1, u2 ∈ R+ because

Ĉ2(u1, u2) ≤ Ĉ8(u1, u2)⇔ 0 ≤ ∆13.

• Ĉ2(u1, u2) ≤ Ĉ10(u1, u2) for all u1, u2 ∈ R+ because

Ĉ2(u1, u2) ≤ Ĉ10(u1, u2)⇔ µ12µ31 + µ31µ32 ≤ µ11µ32 + µ31µ32 ⇔ 0 ≤ ∆13.

• Ĉ2(u1, u2) ≤ Ĉ11(u1, u2) for all u1, u2 ∈ R+ because

Ĉ2(u1, u2)− Ĉ11(u1, u2) =
u1(−∆13 −∆23)

µ31Σ1Σ2

+
u2(−∆13 −∆23)

µ32Σ1Σ2

≤ 0.

• Ĉ2(u1, u2) ≤ Ĉ12(u1, u2) for all u1, u2 ∈ R+ because

Ĉ2(u1, u2) ≤ Ĉ12(u1, u2) ⇔ µ12µ31 + µ22µ31 ≤ µ11µ32 + µ21µ32

⇔ 0 ≤ ∆13 + ∆23. 2
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

B.1 Tables for Propositions 4.2.1, 4.2.2, and 4.2.3

In the last column of tables below, we use the convention that the service requirement

for a station is equal to one if this station is starved.

Table 9: Sample Path for the Understaffed System with µ12 = µ13 = 0, and µ11 ≥
µ22µ23

µ22+µ23

Case Time State Remaining Service
Requirement

1
µ11

< 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2) (1, 1− 1
µ11
µ22, 1)

T + 1
µ22

(s0
1, s

0
2 + 1) (1, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ11

> 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1− 1
µ22
µ11, 1, 1)

T + 1
µ11

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ11
− 1

µ22

)
µ23)

T + 1
µ22

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ11

= 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1, s

0
2 + 1) (1, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)
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Table 10: Sample Path for the Understaffed System with µ12 = µ13 = 0, and
µ11 <

µ22µ23

µ22+µ23

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1− 1
µ22
µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1 − 1, s0

2) (1−
(

1
µ22

+ 1
µ23

)
µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

+
(

1
µ11+µ21

)(
1− µ11

(
1
µ22

+ 1
µ23

))

Table 11: Sample Path for the Understaffed System with µ11 = µ13 = 0, and
µ12 ≥ µ21µ23

µ21+µ23
when assignment rule (a) is used

Case Time State Remaining Service
Requirement

1
µ12

< 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ12

(s0
1 − 1, s0

2 + 1) (1, 1, 1− 1
µ12
µ23)

T + 1
µ23

(s0
1 − 1, s0

2) (1, 1, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ12

> 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1, 1− 1

µ23
µ12, 1)

T + 1
µ12

(s0
1 − 1, s0

2) (1−
(

1
µ12
− 1

µ23

)
µ21, 1, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ12

= 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1 − 1, s0

2) (1, 1, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)
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Table 12: Sample Path for the Understaffed System with µ11 = µ13 = 0, and
µ12 <

µ21µ23

µ21+µ23
when assignment rule (a) is used

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1, 1− 1

µ23
µ12, 1)

T + 1
µ21

+ 1
µ23

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ21

+ 1
µ23

)
µ12, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

+
(

1
µ12+µ22

)(
1− µ12

(
1
µ21

+ 1
µ23

))

Table 13: Sample Path for the Understaffed System with µ11 = µ13 = 0, and
µ12 ≥ µ21µ23

µ21+µ23
when assignment rule (b) is used

Case Time State Remaining Service
Requirement

1
µ12

< 1
µ21

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ12

(s0
1 − 1, s0

2 + 1) (1− 1
µ12
µ21, 1, 1)

T + 1
µ21

(s0
1, s

0
2 + 1) (1, 1, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ12

> 1
µ21

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ21

(s0
1 + 1, s0

2) (1, 1− 1
µ21
µ12, 1)

T + 1
µ12

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ12
− 1

µ21

)
µ23)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

1
µ12

= 1
µ21

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ21

(s0
1, s

0
2 + 1) (1, 1, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

142



Table 14: Sample Path for the Understaffed System with µ11 = µ13 = 0, and
µ12 <

µ21µ23

µ21+µ23
when assignment rule (b) is used

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ21

(s0
1 + 1, s0

2) (1, 1− 1
µ21
µ12, 1)

T + 1
µ21

+ 1
µ23

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ21

+ 1
µ23

)
µ12, 1)

T + 1
µ21

+ 1
µ23

(s0
1, s

0
2) (1, 1, 1)

+
(

1
µ12+µ22

)(
1− µ12

(
1
µ21

+ 1
µ23

))

Table 15: Sample Path for the Understaffed System with µ11 = µ12 = 0, and
µ13 ≥ µ21µ22

µ21+µ22

Case Time State Remaining Service
Requirement

1
µ13

< 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ13

(s0
1, s

0
2 − 1) (1, 1− 1

µ13
µ22, 1)

T + 1
µ22

(s0
1 − 1, s0

2) (1, 1, 1)

T + 1
µ21

+ 1
µ22

(s0
1, s

0
2) (1, 1, 1)

1
µ13

> 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1, 1, 1− 1
µ22
µ13)

T + 1
µ13

(s0
1 − 1, s0

2) (1−
(

1
µ13
− 1

µ22

)
µ21, 1, 1)

T + 1
µ21

+ 1
µ22

(s0
1, s

0
2) (1, 1, 1)

1
µ13

= 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2) (1, 1, 1)

T + 1
µ21

+ 1
µ22

(s0
1, s

0
2) (1, 1, 1)
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Table 16: Sample Path for the Understaffed System with µ11 = µ12 = 0, and
µ13 <

µ21µ22

µ21+µ22

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1, 1, 1− 1
µ22
µ13)

T + 1
µ21

+ 1
µ22

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ21

+ 1
µ22

)
µ13)

T + 1
µ21

+ 1
µ22

(s0
1, s

0
2) (1, 1, 1)

+
(

1
µ13+µ23

)(
1− µ13

(
1
µ21

+ 1
µ22

))
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B.2 Tables for Propositions 4.2.4, 4.2.5, and 4.2.6

In the last column of tables below, we use the convention that the service requirement

for a station is equal to one if this station is starved.

Table 17: Sample Path for the Understaffed System with µ13 = µ22 = 0, and
µ12 ≤ µ21µ23

µ21+µ23

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1, 1− 1

µ23
µ12, 1)

T + 1
µ21

+ 1
µ23

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ21

+ 1
µ23

)
µ12, 1)

T + 1
µ12

(s0
1, s

0
2) (1, 1, 1)

Table 18: Sample Path for the Understaffed System with µ13 = µ22 = 0, and
µ23 ≤ µ11µ12

µ11+µ12

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ12

(s0
1 − 1, s0

2 + 1) (1, 1, 1− 1
µ12
µ23)

T + 1
µ11

+ 1
µ12

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ11

+ 1
µ21

)
µ23)

T + 1
µ23

(s0
1, s

0
2) (1, 1, 1)
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Table 19: Sample Path for the Understaffed System with µ13 = µ22 = 0, µ12 >
µ21µ23

µ21+µ23
, and µ23 >

µ11µ12

µ11+µ12

Case Time State Remaining Service
Requirement

1
µ12

< 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ12

(s0
1 − 1, s0

2 + 1) (1, 1, 1− 1
µ12
µ23)

T + 1
µ23

(s0
1 − 1, s0

2) (1−
(

1
µ23
− 1

µ12

)
µ11, 1, 1)

T + µ11µ23+µ12µ21+µ12µ23

µ12µ23(µ11+µ21)
(s0

1, s
0
2) (1, 1, 1)

1
µ12

> 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1, 1− 1

µ23
µ12, 1)

T + 1
µ12

(s0
1 − 1, s0

2) (1−
(

1
µ12
− 1

µ23

)
µ21, 1, 1)

T + µ11µ23+µ12µ21+µ12µ23

µ12µ23(µ11+µ21)
(s0

1, s
0
2) (1, 1, 1)

1
µ12

= 1
µ23

T + 1
µ12

(s0
1 − 1, s0

2) (1, 1, 1)

T + 1
µ12

+ 1
µ11+µ21

(s0
1, s

0
2) (1, 1, 1)

Table 20: Sample Path for the Understaffed System with µ13 = µ21 = 0, and
µ11 ≤ µ22µ23

µ22+µ23

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1− 1

µ23
µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1 − 1, s0

2) (1−
(

1
µ22

+ 1
µ23

)
µ11, 1, 1)

T + 1
µ11

(s0
1, s

0
2) (1, 1, 1)

Table 21: Sample Path for the Understaffed System with µ13 = µ21 = 0, and
µ23 ≤ µ11µ12

µ11+µ12

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2) (1, 1, 1− 1
µ11
µ23)

T + 1
µ11

+ 1
µ12

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ11

+ 1
µ12

)
µ23)

T + 1
µ23

(s0
1, s

0
2) (1, 1, 1)
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Table 22: Sample Path for the Understaffed System with µ13 = µ21 = 0, µ11 >
µ22µ23

µ22+µ23
, and µ23 >

µ11µ12

µ11+µ12

Case Time State Remaining Service
Requirement

1
µ11

< 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2) (1, 1, 1− 1
µ11
µ23)

T + 1
µ23

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ23
− 1

µ11

)
µ12, 1)

T + µ11µ22+µ11µ23+µ12µ23

µ11µ23(µ12+µ22)
(s0

1, s
0
2) (1, 1, 1)

1
µ11

> 1
µ23

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ23

(s0
1, s

0
2 − 1) (1− 1

µ23
µ11, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ11
− 1

µ23

)
µ12, 1)

T + µ11µ22+µ11µ23+µ12µ23

µ11µ23(µ12+µ22)
(s0

1, s
0
2) (1, 1, 1)

1
µ11

= 1
µ23

T + 1
µ11

(s0
1 + 1, s0

2 − 1) (1, 1, 1)

T + 1
µ11

+ 1
µ12+µ22

(s0
1, s

0
2) (1, 1, 1)

Table 23: Sample Path for the Understaffed System with µ12 = µ21 = 0, and
µ11 ≤ µ22µ23

µ22+µ23

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1− 1
µ22
µ11, 1, 1)

T + 1
µ22

+ 1
µ23

(s0
1 − 1, s0

2) (1−
(

1
µ22

+ 1
µ23

)
µ11, 1, 1)

T + 1
µ11

(s0
1, s

0
2) (1, 1, 1)

Table 24: Sample Path for the Understaffed System with µ12 = µ21 = 0, and
µ22 ≤ µ11µ13

µ11+µ13

Time State Remaining Service
Requirement

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2) (1, 1− 1
µ11
µ22, 1)

T + 1
µ11

+ 1
µ13

(s0
1 + 1, s0

2 − 1) (1, 1−
(

1
µ11

+ 1
µ13

)
µ22, 1)

T + 1
µ22

(s0
1, s

0
2) (1, 1, 1)
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Table 25: Sample Path for the Understaffed System with µ12 = µ21 = 0, µ11 >
µ22µ23

µ22+µ23
, and µ22 >

µ11µ13

µ11+µ13

Case Time State Remaining Service
Requirement

1
µ11

< 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ11

(s0
1 + 1, s0

2) (1, 1− 1
µ11
µ22, 1)

T + 1
µ22

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ22
− 1

µ11

)
µ13)

T + µ11µ22+µ11µ23+µ13µ22

µ11µ22(µ13+µ23)
(s0

1, s
0
2) (1, 1, 1)

1
µ11

> 1
µ22

T (s0
1, s

0
2) (1, 1, 1)

T + 1
µ22

(s0
1 − 1, s0

2 + 1) (1− 1
µ22
µ11, 1, 1)

T + 1
µ11

(s0
1, s

0
2 + 1) (1, 1, 1−

(
1
µ11
− 1

µ22

)
µ23)

T + µ11µ22+µ11µ23+µ13µ22

µ11µ22(µ13+µ23)
(s0

1, s
0
2) (1, 1, 1)

1
µ11

= 1
µ22

T + 1
µ11

(s0
1, s

0
2 + 1) (1, 1, 1)

T + 1
µ11

+ 1
µ13+µ23

(s0
1, s

0
2) (1, 1, 1)
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B.3 Proof of Theorem 4.2.1

It suffices to show that the optimal value of λ in the allocation LP in the presence of

fully flexible servers is equal to the throughput of the system with partially flexible

servers. First, we transform this LP to the standard form as follows:

min −λ

s.t. λ− δ11µ11 − δ21µ21 + s1 = 0,

λ− δ12µ12 − δ22µ22 + s2 = 0,

λ− δ13µ13 − δ23µ22 + s3 = 0,

δ11 + δ12 + δ13 = 1, (49)

δ21 + δ22 + δ23 = 1, (50)

δij ≥ 0, for all i ∈ {1, 2, 3}, j ∈ {1, 2}, s1, s2, s3 ≥ 0.

Note that no slack variables are needed in equations (49) and (50), because these

constraints can be satisfied as equalities without worsening the objective function

value. Every feasible basis will have five elements because there are five constraints

(not including the nonnegativity constraints) in the LP.

Let D be a basis for the above LP, cB be the vector of coefficients of the elements

of D in the objective function, B be the coefficients of the elements of D in the

constraint matrix, and b be the right-hand side of the constraints. Also, let V denote

the coefficients of the non-basic variables in the constraint matrix, and cNB denote the

vector of coefficients of the non-basic variables in the objective function. We let cB

and cNB be row vectors, and b be a column vector. The following conditions guarantee

that the basis D is optimal (see, e.g., Theorem 3.1 of Bertsimas and Tsitsiklis [25]):

B−1b ≥ 0, (51)

cNB − cBB−1V ≥ 0. (52)
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Consider the basis D = {λ, δ11, δ21, δ22, δ23}. Some algebra shows that

B−1b =



µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

µ22µ23−µ11(µ22+µ23)
µ21µ22+µ21µ23+µ22µ23

µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

µ22(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

1


,

cNB − cBB−1V =



µ23(µ11µ22−µ12µ21)
µ21µ22+µ21µ23+µ22µ23

µ22(µ11µ23−µ13µ21)
µ21µ22+µ21µ23+µ22µ23

µ22µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ22

µ21µ22+µ21µ23+µ22µ23


.

Hence we can conclude that D = {λ, δ11, δ21, δ22, δ23} is an optimal basis if conditions

{1}, {3}, and {7} hold. The first element in the matrix B−1b is the value of λ

in the optimal basis, hence λ∗ = µ22µ23(µ11+µ21)
µ21µ22+µ21µ23+µ22µ23

in this case. This result also

implies that cross-training the server 2 at all stations and server 1 at only station

1 corresponds to the best flexibility structure when case a holds. Furthermore, the

policy of Proposition 4.2.1 attains the maximal capacity in this case, hence it is the

optimal server assignment policy.

Relabeling the servers, we also see that D = {λ, δ11, δ12, δ13, δ21} is the optimal

basis if conditions {2}, {4}, and {13} hold. Hence, the best flexibility structure is

the one where server 2 is dedicated to station 1 and server 1 is trained at all stations.

Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.1.
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Next, consider the basis D = {λ, δ12, δ21, δ22, δ23}. Some algebra shows that

B−1b =



µ21µ23(µ12+µ22)
µ21µ22+µ21µ23+µ22µ23

µ23(µ12+µ22)
µ21µ22+µ21µ23+µ22µ23

µ21µ23−µ12(µ21+µ23)
µ21µ22+µ21µ23+µ22µ23

µ21(µ12+µ22)
µ21µ22+µ21µ23+µ22µ23

1


,

cNB − cBB−1V =



µ23(µ12µ21−µ11µ22)
µ21µ22+µ21µ23+µ22µ23

µ21(µ12µ23−µ13µ22)
µ21µ22+µ21µ23+µ22µ23

µ22µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ22

µ21µ22+µ21µ23+µ22µ23


.

Hence we can conclude that D = {λ, δ12, δ21, δ22, δ23} is an optimal basis when con-

ditions {2}, {5}, and {9} hold. The first element in the matrix B−1b is the value

of λ in the optimal basis, hence λ∗ = µ21µ23(µ12+µ22)
µ21µ22+µ21µ23+µ22µ23

in this case. This result

also implies that cross-training server 2 at all stations and server 1 at only station

2 corresponds to the best flexibility structure when case c holds. Furthermore, the

policy of Proposition 4.2.2 attains the maximal capacity in this case, hence it is the

optimal server assignment policy.

Relabeling the servers, it follows that D = {λ, δ11, δ12, δ13, δ22} is the optimal basis

if conditions {1}, {6}, and {15} hold. Hence, the best flexibility structure is the

one where server 2 is dedicated to station 2 and server 1 is trained at all stations.

Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.2.
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Now, consider the basis D = {λ, δ13, δ21, δ22, δ23}. Some algebra shows that

B−1b =



µ21µ22(µ13+µ23)
µ21µ22+µ21µ23+µ22µ23

µ22(µ13+µ23)
µ21µ22+µ21µ23+µ22µ23

µ21(µ13+µ23)
µ21µ22+µ21µ23+µ22µ23

µ21µ22−µ13(µ21+µ22)
µ21µ22+µ21µ23+µ22µ23

1


,

cNB − cBB−1V =



µ22(µ13µ21−µ11µ23)
µ21µ22+µ21µ23+µ22µ23

µ21(µ13µ22−µ12µ23)
µ21µ22+µ21µ23+µ22µ23

µ22µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ23

µ21µ22+µ21µ23+µ22µ23

µ21µ22

µ21µ22+µ21µ23+µ22µ23


.

Hence we can conclude that D = {λ, δ13, δ21, δ22, δ23} is an optimal basis if conditions

{4}, {6}, and {11} hold. The first element in the matrix B−1b is the value of λ

in the optimal basis, hence λ∗ = µ21µ22(µ13+µ23)
µ21µ22+µ21µ23+µ22µ23

in this case. This result also

implies that cross-training server 2 at all stations and the server 1 at only station

3 corresponds to the best flexibility structure when case e holds. Furthermore, the

policy of Proposition 4.2.3 attains the maximal capacity in this case, hence it is the

optimal server assignment policy.

Relabeling the servers, it is clear that D = {λ, δ11, δ12, δ13, δ23} is the optimal basis

if conditions {3}, {5}, and {17} hold. Hence, the best flexibility structure is the

one where server 2 is dedicated to station 3 and server 1 is trained at all stations.

Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.3.
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Consider the basis D = {λ, δ11, δ12, δ21, δ23}. Some algebra shows that

B−1b =



µ12µ23(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

µ12(µ21+µ23)−µ21µ23

µ11µ23+µ12µ21+µ12µ23

µ23(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

µ23(µ11+µ12)−µ11µ12

µ11µ23+µ12µ21+µ12µ23

µ12(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23


,

cNB − cBB−1V =



µ12(µ11µ23−µ13µ21)
µ11µ23+µ12µ21+µ12µ23

µ23(µ12µ21−µ11µ22)
µ11µ23+µ12µ21+µ12µ23

µ12µ23

µ11µ23+µ12µ21+µ12µ23

µ11µ23

µ11µ23+µ12µ21+µ12µ23

µ12µ21

µ11µ23+µ12µ21+µ12µ23


.

Hence we can conclude that D = {λ, δ11, δ12, δ21, δ23} is an optimal basis if conditions

{2}, {3}, {10}, and {18} hold. The first element in the matrix B−1b is the value of

λ in the optimal basis, hence λ∗ = µ12µ23(µ11+µ21)
µ11µ23+µ12µ21+µ12µ23

in this case. This result also

implies that cross-training the first server at stations 1 and 2, and server 2 at stations

1 and 3 corresponds to the best flexibility structure when case g holds. Furthermore,

the policy of Proposition 4.2.4 attains the maximal capacity in this case, hence it is

the optimal server assignment policy.

Relabeling the servers, we also see that D = {λ, δ11, δ13, δ21, δ22} is the optimal

basis if conditions {1}, {4}, {12} and {16} hold. Hence, the best flexibility structure

is the one where server 1 is trained at stations 1 and 3, and server 2 is trained at

stations 1 and 2. Furthermore, the maximal capacity can be attained by relabeling

the servers and employing the policy of Proposition 4.2.4.
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Consider the basis D = {λ, δ11, δ12, δ22, δ23}. Some algebra shows that

B−1b =



µ11µ23(µ12+µ22)
µ11µ22+µ11µ23+µ12µ23

µ23(µ12+µ22)
µ11µ22+µ11µ23+µ12µ23

µ11(µ22+µ23)−µ22µ23

µ11µ22+µ11µ23+µ12µ23

µ23(µ11+µ12)−µ11µ12

µ11µ22+µ11µ23+µ12µ23

µ11(µ12+µ22)
µ11µ22+µ11µ23+µ12µ23


,

cNB − cBB−1V =



µ11(µ12µ23−µ13µ22)
µ11µ22+µ11µ23+µ12µ23

µ23(µ11µ22−µ12µ21)
µ11µ22+µ11µ23+µ12µ23

µ12µ23

µ11µ22+µ11µ23+µ12µ23

µ11µ23

µ11µ22+µ11µ23+µ12µ23

µ11µ22

µ11µ22+µ11µ23+µ12µ23


.

Hence we can conclude that D = {λ, δ11, δ12, δ22, δ23} is an optimal basis if conditions

{1}, {5}, {8} and {18} hold. The first element in the matrix B−1b is the value of λ in

the optimal basis, hence λ∗ = µ11µ23(µ12+µ22)
µ11µ22+µ11µ23+µ12µ23

in this case. This result also implies

that cross-training the first server at stations 1 and 2, and server 2 at stations 2 and

3 corresponds to the best flexibility structure when case i holds. Furthermore, the

policy of Proposition 4.2.5 attains the maximal capacity in this case, hence it is the

optimal server assignment policy.

Relabeling the servers, we also see that D = {λ, δ12, δ13, δ21, δ22} is the optimal

basis if conditions {2}, {6}, {12} and {14} hold. Hence, the best flexibility structure

is the one where server 1 is trained at stations 2 and 3, and server 2 is trained at

stations 1 and 2. Furthermore, the maximal capacity can be attained by relabeling

the servers and employing the policy of Proposition 4.2.5.
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Finally, consider the basis D = {λ, δ11, δ13, δ22, δ23}. Some algebra shows that

B−1b =



µ11µ22(µ13+µ23)
µ11µ22+µ11µ23+µ13µ22

µ22(µ13+µ23)
µ11µ22+µ11µ23+µ13µ22

µ11(µ22+µ23)−µ22µ23

µ11µ22+µ11µ23+µ13µ22

µ11(µ13+µ23)
µ11µ22+µ11µ23+µ13µ22

µ22(µ11+µ13)−µ11µ13

µ11µ22+µ11µ23+µ13µ22


,

cNB − cBB−1V =



µ11(µ13µ22−µ12µ23)
µ11µ22+µ11µ23+µ12µ23

µ22(µ11µ23−µ13µ21)
µ11µ22+µ11µ23+µ12µ23

µ13µ22

µ11µ22+µ11µ23+µ12µ23

µ11µ23

µ11µ22+µ11µ23+µ12µ23

µ11µ22

µ11µ22+µ11µ23+µ12µ23


.

Hence we can conclude that D = {λ, δ11, δ13, δ22, δ23} is an optimal basis if conditions

{3}, {6}, {8}, and {16} hold. The first element in the matrix B−1b is the value of

λ in the optimal basis, hence λ∗ = µ11µ22(µ13+µ23)
µ11µ22+µ11µ23+µ13µ22

in this case. This result also

implies that cross-training the first server at stations 1 and 3, and server 2 at stations

2 and 3 corresponds to the best flexibility structure when case k holds. Furthermore,

the policy of Proposition 4.2.6 attains the maximal capacity in this case, hence it is

the optimal server assignment policy.

Relabeling the servers, we also see that D = {λ, δ12, δ13, δ21, δ23} is the optimal

basis when conditions {4}, {5}, {10} and {14} hold. Hence, the best flexibility

structure is the one where server 1 is trained at stations 2 and 3, and server 2 is

trained at stations 1 and 3. Furthermore, the maximal capacity can be attained by

relabeling the servers and employing the policy of Proposition 4.2.6.

Moreover, we already showed that there is an optimal basis for this LP with at

least two elements of the set {δij} being equal to zero. There are
(

6
2

)
= 15 different

ways of selecting two elements that will be equal to zero out of six. When δ1j = δ2j = 0

for some j ∈ {1, 2, 3}, the throughput is equal to zero. We can conclude that one of
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the twelve cases mentioned in the theorem will provide the optimal throughput since

the basis of each case above is one of the remaining twelve that are candidates for

the optimal basis (we also show this algebraically in Proposition 4.2.7). 2

B.4 Proofs of Propositions 4.3.1, 4.3.2, and 4.3.3

Proof of Proposition 4.3.1: When the service times are exponentially distributed,

it is easy to see that {X(t)} is a continuous-time Markov chain (CTMC). As described

in Section 4.3.1, the state space of this CTMC is S = {(s1, s2) : s1 ∈ {0, 1, . . . , B2 +

2}, s2 ∈ {0, 1, . . . , B3 + 2}, and s1 + s2 ≤ B2 + B3 + 3}. Lemma 4.3.1 shows that it

suffices to consider the policies that are non idling (even if a server is idle at a station

(s)he is assigned to, for notational convenience we treat this differently than the case

where that server is not assigned to any station). Then, the set of allowable actions

in state s ∈ S is

As =



a11 for s = (0, 0),

a12 for s = (B2 + 2, 0),

a13 for s = (B2 + 1, B3 + 2),

{a11, a12, a22} for s = (i, 0), where i ∈ {1, . . . , B2 + 1},

{a11, a13, a33} for s = (0, j) or s = (i, B3 + 2), where

i ∈ {1, . . . , B2} and j ∈ {1, . . . , B3 + 2},

{a12, a13} for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1},

{a11, a12, a13, a22, a33} for s = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 1}.

Note that we used the fact that assigning a server to a station that is blocked or starved

is equivalent to idling this server. For example idling a server is equivalent to assigning

that server to station 1 in state (B2+2, 0). Furthermore, in the states where more than

one station is operating, it is necessary to consider the actions where both servers are

assigned to the same station (even if one server is not cross-trained at that station).
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Proof of Lemma 4.3.1 shows that assigning servers to the same station is better than

idling one of the servers but it does not compare policies where they are assigned to

the same station (even if this causes involuntary idling) with the policies that assign

them to different stations (in which case both of them might be working). Under our

assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and µ12 = µ13 = 0),

it is clear that µ22 > 0 and µ23 > 0. Hence, we can conclude that the policy described

in the theorem corresponds to an irreducible Markov chain. Furthermore, {X(t)} is

uniformizable with the uniformization constant q = µ11+µ21+µ22+µ23 (see, Lippman

[53]). Consequently, we have a communicating Markov decision process. Thus, we can

use the policy iteration algorithm for communicating models as described in Section

9.5.1 of Puterman [58].

Note that π = (d)∞ for every policy π in Π, if d is the corresponding decision rule

with d(s) ∈ As for all s ∈ S. Similarly, let Pd be the probability transition matrix

corresponding to the policy π, and rd(s) denote the reward in state s when policy π

is employed.

We start the policy iteration algorithm by choosing

d0(s) =



a11 for s = (0, 0),

a12 for s = (B2 + 2, j), where j ∈ {0, . . . , B3 + 1},

a13 for s = (B2 + 1, B3 + 2),

a12 for s = (i, j), where i ∈ {1, . . . , B2 + 1} and j ∈ {0, . . . , B3 + 1},

a13 for s = (0, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2}

and j ∈ {1, . . . , B3 + 2}.

Then we obtain

rd0(s) =



0 for s = (0, 0) or s = (i, j), where i ∈ {1, . . . , B2 + 2}

and j ∈ {0, . . . , B3 + 1},

µ23 for s = (0, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 2},
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and

Pd0(s, s
′) =



µ11+µ21

q
for s = (0, 0) and s′ = (1, 0),

µ22+µ23

q
for s = s′ = (0, 0),

µ11

q
for s = (i, j), s′ = (i+ 1, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {0, . . . , B3 + 1},
µ21+µ23

q
for s = s′ = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {0, . . . , B3 + 1},
µ11

q
for s = (i, j), s′ = (i+ 1, j), where i = 0

and j ∈ {1, . . . , B3 + 1},
µ21+µ22

q
for s = s′ = (i, j), where i = 0

and j ∈ {1, . . . , B3 + 1},
µ11

q
for s = (i, j), s′ = (i+ 1, j), where i ∈ {0, . . . , B2}

and j = B3 + 2,

µ21+µ22

q
for s = s′ = (i, j), where i ∈ {0, . . . , B2}

and j = B3 + 2,

µ22

q
for s = (i, j), s′ = (i− 1, j + 1), where i ∈ {1, . . . , B2 + 2}

and j ∈ {0, . . . , B3 + 1},
µ11+µ21+µ23

q
for s = (i, j), s′ = (i− 1, j + 1) where i = B2 + 2

and j ∈ {0, . . . , B2 + 1},
µ23

q
for s = (i, j), s′ = (i, j − 1), where i = 0

and j ∈ {1, . . . , B3 + 1},
µ21+µ22

q
for s = (i, j), s′ = (i, j − 1), where i = 0

and j ∈ {1, . . . , B3 + 1},
µ23

q
for s = (i, j), s′ = (i, j − 1), where i ∈ {0, . . . , B2 + 1}

and j = B3 + 2,

µ11+µ21+µ22

q
for s = s′ = (B2 + 1, B2 + 2).

For all s, s′ ∈ S and a ∈ As, we use r(s, a) to denote the immediate reward in
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state s when action a is taken and p(s′|s, a) to denote the one-step probability of

going from state s to state s′ when action a is chosen in state s. It is easy to see that

{X(t)} is an irreducible Markov chain, and hence we can solve the following set of

equations to find a scalar g and a vector h, letting h(0, 0) = 0.

rd0 − ge+ (Pd0 − I)h = 0.

Then, we use the policy iteration algorithm to find d(s), where

d(s) ∈ arg max
a∈As

{
r(s, a) +

∑
s′∈S

p(s′|s, a)h(s′)
}
, ∀s ∈ S,

and set d(s) = d0(s) whenever possible. If one can show d(s) = d0(s) for all s ∈ S,

then the policy π is optimal. In particular, for all s ∈ As and a ∈ As, we want to

show that the following inequality holds:

(
r(s, d0(s)) +

∑
s′∈S

p(s′|s, d0(s))h(s′)
)
− r(s, a)−

∑
s′∈S

p(s′|s, a)h(s′) ≥ 0.

In the calculations below, ξk(s, B2, B3) for k ∈ {1, . . . , 11} and ξ(B2, B3) are

nonnegative constants that depend on the service rates, the state s = (i, j) ∈ S

under consideration, and the buffer sizes, and they are provided below. We assume

that B2, B3 ≤ 1 in the following calculations. First, consider the state s = (i, 0),

where i ∈ {1, . . . , B2 + 1}, and recall that d0(s) = a12. With some algebra we have,

for all i ∈ {1, . . . , B2 + 1},

(
r((i, 0), a12) +

∑
s′∈S

p(s′|(i, 0), a12)h(s′)
)
− r((i, 0), a11)−

∑
s′∈S

p(s′|(i, 0), a11)h(s′)

=
ξ1((i, 0), B2, B3)

ξ(B2, B3)
≥ 0,(

r((i, 0), a12) +
∑
s′∈S

p(s′|(i, 0), a12)h(s′)
)
− r((i, 0), a22)−

∑
s′∈S

p(s′|(i, 0), a22)h(s′)

=
ξ2((i, 0), B2, B3)

ξ(B2, B3)
≥ 0.

Recall that d0(s) = a13 for s = (0, j), where j ∈ {1, . . . , B3 + 2}. Then, we can show
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that, for all j ∈ {1, . . . , B3 + 2},

(
r((0, j), a13) +

∑
s′∈S

p(s′|(0, j), a13)h(s′)
)
− r((0, j), a11)−

∑
s′∈S

p(s′|(0, j), a11)h(s′)

=
ξ3((0, j), B2, B3)

ξ(B2, B3)
≥ 0,(

r((0, j), a13) +
∑
s′∈S

p(s′|(0, j), a13)h(s′)
)
− r((0, j), a33)−

∑
s′∈S

p(s′|(0, j), a33)h(s′)

=
ξ4((0, j), B2, B3)

ξ(B2, B3)
≥ 0.

Similarly, d0(s) = a13 for s = (i, B3 + 2), where i ∈ {1, . . . , B2}. We can show that,

for all i ∈ {1, . . . , B2},(
r((i, B3 + 2), a13) +

∑
s′∈S

p(s′|(i, B3 + 2), a13)h(s′)
)
− r((i, B3 + 2), a11)

−
∑
s′∈S

p(s′|(i, B3 + 2), a11)h(s′) =
ξ5((i, B3 + 2), B2, B3)

ξ(B2, B3)
≥ 0,(

r((i, B3 + 2), a13) +
∑
s′∈S

p(s′|(i, B3 + 2), a13)h(s′)
)
− r((i, B3 + 2), a33)

−
∑
s′∈S

p(s′|(i, B3 + 2), a33)h(s′) =
ξ6((i, B3 + 2), B2, B3)

ξ(B2, B3)
≥ 0.

For s = (i, j), where i ∈ {1, . . . , B2+1} and j ∈ {1, . . . , B3+1}, recall that d0(s) = a12.

Some algebra shows that, for all i ∈ {1, . . . , B2 + 1} and for all j ∈ {1, . . . , B3 + 1},

(
r((i, j), a12) +

∑
s′∈S

p(s′|(i, j), a12)h(s′)
)
− r((i, j), a11)−

∑
s′∈S

p(s′|(i, j), a11)h(s′)

=
ξ7((i, j), B2, B3)

ξ(B2, B3)
≥ 0,(

r((i, j), a12) +
∑
s′∈S

p(s′|(i, j), a12)h(s′)
)
− r((i, j), a22)−

∑
s′∈S

p(s′|(i, j), a22)h(s′)

=
ξ8((i, j), B2, B3)

ξ(B2, B3)
≥ 0,(

r((i, j), a12) +
∑
s′∈S

p(s′|(i, j), a12)h(s′)
)
− r((i, j), a33)−

∑
s′∈S

p(s′|(i, j), a33)h(s′)

=
ξ9((i, j), B2, B3)

ξ(B2, B3)
≥ 0,
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(
r((i, j), a12) +

∑
s′∈S

p(s′|(i, j), a12)h(s′)
)
− r((i, j), a13)−

∑
s′∈S

p(s′|(i, j), a13)h(s′)

=
ξ10((i, j), B2, B3)

ξ(B2, B3)
≥ 0.

Finally, d0(s) = a12 for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1}. Some algebra

shows that, for all j ∈ {1, . . . , B3 + 1},(
r((B2 + 2, j), a12) +

∑
s′∈S

p(s′|(B2 + 2, j), a12)h(s′)
)
− r((B2 + 2, j), a13)

−
∑
s′∈S

p(s′|(B2 + 2, j), a13)h(s′) =
ξ11((B2 + 2, j), B2, B3)

ξ(B2, B3)
≥ 0.

When B2 = B3 = 0, we obtain

ξ(0, 0) = µ11µ21µ
2
22µ23 + µ11µ

2
22µ

2
23 + µ2

11µ21µ
2
22 + µ3

11µ
2
22 + µ2

11µ
2
22µ23 + µ2

22µ
3
23

+µ21µ
2
22µ

2
23 + 2µ11µ21µ22µ

2
23 + 3µ3

11µ22µ23 + µ4
11µ22 + µ11µ22µ

3
23 + µ21µ22µ

3
23

+2µ2
11µ22µ

2
23 + µ3

11µ21µ22 + 3µ2
11µ21µ22µ23 + µ3

11µ21µ23 + µ4
11µ23 + 2µ3

11µ
2
23

+µ2
11µ

3
23 + 2µ2

11µ21µ
2
23 + µ11µ21µ

3
23

ξ1((1, 0), 0, 0) = µ11µ22µ23(µ11 + µ21)(µ2
11 + µ11µ22 + 2µ11µ23 + µ2

23),

ξ2((1, 0), 0, 0) = µ11µ
2
22µ

2
23(µ11 + µ23),

ξ3((0, 1), 0, 0) = µ2
11µ22µ23(µ11 + µ21)(µ11 + µ22 + µ23),

ξ3((0, 2), 0, 0) = µ11µ22µ23(µ11 + µ21)(µ2
11 + µ11µ22 + 2µ11µ23 + µ22µ23),

ξ4((0, 1), 0, 0) = µ11µ22µ
2
23(µ2

11 + µ11µ22 + µ11µ23 + µ22µ23),

ξ4((0, 2), 0, 0) = µ11µ22µ
2
23(µ11 + µ22),

ξ7((1, 1), 0, 0) = µ11µ22µ23(µ11 + µ21)(µ11 + µ23)(µ11 + µ22 + µ23),

ξ8((1, 1), 0, 0) = ξ9((1, 1), 0, 0) = µ11µ
2
22µ

3
23,

ξ10((1, 1), 0, 0) = ξ11((2, 1), 0, 0) = 0.

When B2 = 1 and B3 = 0, we obtain

ξ(1, 0) = µ5
11µ21µ23 + 3µ4

11µ21µ
2
23 + 3µ3

11µ22µ
3
23 + µ5

11µ21µ22 + 3µ3
11µ

2
22µ

2
23

+µ11µ
3
22µ

3
23 + 6µ4

11µ22µ
2
23 + µ2

11µ
3
22µ

2
23 + 5µ5

11µ22µ23 + µ11µ
2
22µ

4
23
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+2µ4
11µ21µ

2
22 + 2µ21µ

2
22µ

4
23 + µ2

11µ21µ
4
23 + 3µ3

11µ21µ
3
23 + µ3

11µ
3
22µ23

+4µ4
11µ

2
22µ23 + 3µ2

11µ21µ
2
22µ

2
23 + µ2

11µ22µ
4
23 + µ3

11µ21µ
3
22 + µ6

11µ22 + 2µ2
11µ

2
22µ

3
23

+µ11µ
3
22µ

3
23 + µ4

11µ
3
22 + µ3

22µ
4
23 + µ3

11µ
4
23 + µ6

11µ23 + 3µ5
11µ

2
23 + 3µ4

11µ
3
23

+µ2
11µ21µ

3
22µ23 + 2µ5

11µ
2
22 + µ11µ21µ22µ

4
23 + 5µ4

11µ21µ22µ23 + 6µ11µ21µ22µ
3
23

+4µ3
11µ21µ

2
22µ23 + 3µ2

11µ21µ22µ
3
23 + 2µ11µ21µ

2
22µ

3
23 + µ11µ21µ

3
22µ

2
23,

ξ1((1, 0), 1, 0) = µ2
11µ22µ23(µ4

11 + µ3
11µ21 + 2µ3

11µ22 + 3µ3
11µ23 + 2µ2

11µ21µ22

+3µ2
11µ21µ23 + 2µ2

11µ
2
22 + 2µ2

11µ22µ23 + 3µ2
11µ

3
23 + µ11µ21µ

2
22 + 2µ11µ21µ22µ23

+µ11µ
3
23 + 3µ11µ21µ

2
23 + µ21µ

3
23),

ξ1((2, 0), 1, 0) = µ11µ22µ23(µ5
11 + 3µ4

11µ23 + 2µ4
11µ22 + µ4

11µ21 + 3µ3
11µ

2
23 + µ3

11µ
2
22

+2µ3
11µ21µ22 + 3µ3

11µ21µ23 + 2µ3
11µ22µ23 + µ2

11µ21µ
2
22 + µ2

11µ
3
23 + 3µ2

11µ21µ
2
23

+3µ2
11µ21µ22µ23 + 2µ2

11µ22µ
2
23 + µ2

11µ
2
22µ23 + µ11µ21µ

2
22µ23 + µ11µ21µ

3
23

+µ11µ22µ
3
23 + 2µ11µ21µ22µ

2
23 + µ21µ22µ

2
23),

ξ2((1, 0), 1, 0) = µ11µ
2
22µ

2
23(µ3

11 + µ2
11µ22 + 2µ2

11µ23 + µ11µ22µ23 + µ11µ
2
23 + µ22µ

2
23),

ξ2((2, 0), 1, 0) = µ11µ
3
22µ

3
23(µ11 + µ23),

ξ3((0, 1), 1, 0) = µ3
11µ22µ23(µ3

11 + µ2
11µ21 + 2µ2

11µ22 + 2µ2
11µ23 + 2µ11µ21µ23

+2µ11µ21µ22 + µ11µ
2
22 + µ11µ

2
23 + µ11µ22µ23 + µ21µ

2
23 + µ21µ22µ23 + µ21µ

2
22),

ξ3((0, 2), 1, 0) = µ2
11µ22µ23(µ21µ

2
22µ23 + µ11µ21µ

2
22 + µ11µ

2
22µ23 + µ2

11µ
2
22 + µ4

11

+3µ11µ21µ22µ23 + 3µ2
11µ22µ23 + 2µ2

11µ21µ22 + 2µ3
11µ22 + 2µ11µ21µ

2
23 + 3µ3

11µ23

+2µ2
11µ

2
23 + µ3

11µ21 + 3µ2
11µ21µ23),

ξ4((0, 1), 1, 0) = µ11µ22µ
2
23(2µ2

11µ22µ23 + µ2
22µ

2
23 + µ2

11µ
2
22 + µ4

11 + 2µ3
11µ22

+2µ3
11µ22 + µ2

11µ
2
23 + µ11µ22µ

2
23 + µ11µ

2
22µ23),

ξ4((0, 2), 1, 0) = µ11µ22µ
2
23(µ11µ22µ23 + 2µ2

11µ22 + µ3
11 + µ2

22µ22 + µ2
11µ23 + µ11µ

2
22),

ξ5((1, 2), 1, 0) = µ11µ22µ23(µ3
11µ

2
22 + µ11µ21µ

2
22µ23 + µ21µ

2
22µ

2
23 + µ2

11µ
2
22µ23

+µ11µ
2
22µ

2
23 + µ2

11µ21µ
2
22 + 3µ3

11µ22µ23 + 3µ2
11µ21µ22µ23 + 2µ4

11µ22 + µ5
11
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+2µ11µ21µ22µ
2
23 + 2µ3

11µ21µ22 + 2µ2
11µ22µ

2
23 + 3µ4

11µ23 + 3µ3
11µ

2
23 + 3µ3

11µ21µ23

+µ4
11µ21 + µ2

11µ
3
23 + µ11µ21µ

3
23 + 3µ2

11µ21µ
2
23),

ξ6((1, 2), 1, 0) = µ11µ
2
22µ

4
23(µ11 + µ22),

ξ7((1, 1), 1, 0) = µ2
11µ22µ23(µ4

11 + 2µ3
11µ22 + µ3

11µ21 + 3µ3
11µ23 + 3µ2

11µ21µ23

+3µ2
11µ

2
23 + µ2

11µ
2
22 + 2µ2

11µ21µ22 + 3µ2
11µ22µ23 + µ11µ

2
22µ23 + 3µ11µ21µ

2
23

+µ11µ
3
23 + 3µ11µ21µ22µ23 + µ11µ22µ

2
23 + µ11µ21µ

2
22 + µ21µ

3
23 + µ21µ22µ

2
23

+µ21µ
2
22µ23),

ξ7((1, 1), 1, 0) = µ11µ22µ23(µ2
11µ21µ

2
22 + µ11µ21µ

2
22µ23 + µ3

11µ
2
22 + µ21µ

2
22µ

2
23 + µ5

11

+µ11µ
2
22µ

2
23 + µ2

11µ
2
22µ23 + µ11µ22µ

3
23 + 3µ3

11µ22µ23 + 2µ4
11µ22 + µ21µ22µ

3
23

+µ3
11µ21µ22 + 2µ11µ21µ22µ

2
23 + 2µ2

11µ22µ
2
23 + 3µ2

11µ21µ22µ23 + µ3
11µ21µ23

+µ11µ21µ
3
23 + 3µ2

11µ21µ
2
23 + µ4

11µ21 + 3µ3
11µ

2
23 + µ2

11µ
3
23 + 3µ4

11µ23),

ξ8((1, 1), 1, 0) = µ11µ
2
22µ

2
23(µ2

11 + µ22µ23 + µ11µ23 + µ11µ22),

ξ8((2, 1), 1, 0) = µ11µ
3
22µ

4
23,

ξ9((1, 1), 1, 0) = µ11µ
2
22µ

2
23(µ2

11 + µ22µ23 + µ11µ23 + µ11µ22),

ξ9((2, 1), 1, 0) = µ11µ
3
22µ

4
23,

ξ10((1, 1), 1, 0) = 0,

ξ10((2, 1), 1, 0) = 0,

ξ11((3, 1), 1, 0) = 0.

When B2 = 0 and B3 = 1, we obtain

ξ(0, 1) = µ21µ
3
22µ

3
23 + 2µ11µ

2
22µ

4
23 + µ5

11µ21µ23 + 3µ4
11µ21µ

2
23 + 3µ3

11µ21µ
3
23

+µ2
11µ

3
22µ

2
23 + µ3

11µ
3
22µ23 + 4µ3

11µ
2
22µ

2
23 + 5µ5

11µ22µ23 + µ3
11µ21µ

3
22 + µ21µ

2
22µ

4
23

+µ5
11µ21µ22 + 2µ2

11µ22µ
4
23 + 5µ4

11µ
2
22µ23 + µ2

11µ21µ
4
23 + µ11µ

3
22µ

3
23 + 3µ2

11µ
2
22µ

2
23

+4µ3
11µ22µ

3
23 + 7µ4

11µ22µ
2
23 + µ2

11µ21µ
3
22µ23 + 2µ4

11µ21µ
2
22 + µ11µ21µ

3
22µ23

+2µ11µ21µ22µ
4
23 + 4µ2

11µ21µ
2
22µ

2
23 + 4µ2

11µ21µ22µ
3
23 + 3µ11µ21µ

2
22µ

3
23 + µ6

11µ23
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+5µ3
11µ21µ

2
22µ23 + 7µ3

11µ21µ22µ
2
23 + 5µ4

11µ21µ22µ23 + µ3
22µ

4
23 + µ6

11µ22

+µ4
11µ

3
22 + µ3

11µ
4
23 + 2µ5

11µ
2
22 + 3µ5

11µ
2
23 + 3µ4

11µ
3
23,

ξ1((1, 0), 0, 1) = µ3
11µ22µ23(µ5

11 + 2µ4
11µ22 + µ4

11µ21 + 3µ4
11µ23 + 2µ3

11µ21µ22

+3µ3
11µ21µ23 + 3µ3

11µ22µ23 + µ3
11µ

2
22 + 3µ3

11µ
2
23 + 3µ2

11µ21µ
2
23 + µ2

11µ22µ
2
23

+3µ2
11µ21µ22µ23 + µ2

11µ21µ
2
22 + µ2

11µ
3
23 + µ11µ22µ

3
23 + µ11µ21µ

3
23 + µ21µ22µ

2
23

µ11µ21µ22µ
2
23)

ξ2((1, 0), 0, 1) = µ11µ
2
22µ

2
23(µ3

11 + µ2
11µ22 + 2µ2

11µ23 + µ11µ22µ23 + µ11µ
2
23 + µ22µ

2
23),

ξ3((0, 1), 0, 1) = µ3
11µ22µ23(µ3

11 + µ2
11µ21 + 2µ2

11µ22 + 2µ2
11µ23 + 2µ11µ21µ23

+2µ11µ21µ22 + µ11µ
2
22 + µ11µ

2
23 + 2µ11µ22µ23 + µ21µ

2
23 + 2µ21µ22µ23 + µ21µ

2
22),

ξ3((0, 2), 0, 1) = µ2
11µ22µ23(µ21µ

2
22µ23 + 2µ11µ21µ

2
23 + µ21µ22µ

2
23 + µ2

11µ
2
22 + µ4

11

+4µ11µ21µ22µ23 + µ11µ22µ
2
23 + µ11µ

2
22µ23 + 2µ3

11µ22 + µ11µ21µ
2
22 + µ3

11µ21

+2µ2
11µ

2
23 + 3µ3

11µ23 + 3µ2
11µ21µ23) + 2µ2

11µ21µ22 + 4µ2
11µ22µ23),

ξ3((0, 3), 0, 1) = µ11µ22µ23(µ5
11 + 2µ4

11µ22 + µ4
11µ21 + 3µ4

11µ23 + 3µ3
11µ21µ23

+2µ3
11µ21µ22 + 4µ3

11µ22µ23 + µ3
11µ

2
22 + 3µ3

11µ
2
23 + 3µ2

11µ22µ
2
23 + µ2

11µ
2
22µ23

+4µ2
11µ21µ22µ23 + µ2

11µ21µ
2
22 + 3µ2

11µ21µ
2
23 + µ11µ21µ

2
22µ23 + µ11µ

2
22µ

2
23

+3µ11µ21µ22µ
2
23 + µ21µ

2
22µ

2
23),

ξ4((0, 1), 0, 1) = µ11µ22µ
2
23(µ4

11 + 2µ3
11µ22 + 2µ3

11µ23 + µ2
11µ

2
22 + µ11µ

2
22µ23 + µ2

11µ
2
23

+2µ11µ22µ
2
23 + 3µ2

11µ22µ23 + µ2
22µ

2
23),

ξ4((0, 2), 0, 1) = µ11µ22µ
3
23(µ3

11 + 2µ2
11µ22 + µ2

11µ23 + µ11µ
2
22 + 2µ11µ22µ23 + µ2

22µ23),

ξ4((0, 3), 0, 1) = µ11µ22µ
4
23(µ2

11 + 2µ11µ22 + µ2
22),

ξ7((1, 1), 0, 1) = µ11µ22µ23(µ5
11 + 2µ4

11µ22 + µ4
11µ21 + 3µ4

11µ23 + 2µ3
11µ21µ22

+3µ3
11µ

2
23 + 4µ3

11µ22µ23 + µ3
11µ

2
22 + 3µ3

11µ21µ23 + µ2
11µ

2
22µ23 + 2µ2

11µ22µ
2
23

+µ2
11µ

3
23 + µ2

11µ21µ
2
22 + 4µ2

11µ21µ22µ23 + 3µ2
11µ21µ

2
23 + µ11µ22µ

3
23 + 2µ11µ21µ22µ

2
23

+µ11µ21µ
2
22µ23 + µ11µ21µ

3
23 + µ21µ22µ

3
23),
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ξ7((1, 2), 0, 1) = µ11µ22µ23(µ5
11 + 2µ4

11µ22 + µ4
11µ21 + 3µ4

11µ23 + 2µ3
11µ21µ22

+3µ3
11µ

2
23 + 4µ3

11µ22µ23 + µ3
11µ

2
22 + 3µ3

11µ21µ23 + µ2
11µ

2
22µ23 + 3µ2

11µ22µ
2
23

+µ2
11µ

3
23 + µ2

11µ21µ
2
22 + 4µ2

11µ21µ22µ23 + 3µ2
11µ21µ

2
23 + µ11µ

2
22µ

2
23 + µ11µ22µ

3
23

+µ11µ21µ
2
22µ23 + 3µ11µ21µ22µ

2
23 + µ11µ21µ

3
23 + µ21µ

2
22µ

2
23 + µ21µ22µ

3
23),

ξ8((1, 1), 0, 1) = µ11µ
2
22µ

2
23(µ2

11 + µ11µ22 + µ11µ23 + µ22µ23),

ξ8((1, 2), 0, 1) = µ11µ
2
22µ

4
23(µ11 + µ22),

ξ9((1, 1), 0, 1) = µ11µ
2
22µ

2
23(µ2

11 + µ11µ22 + 2µ11µ23 + µ22µ23),

ξ9((1, 2), 0, 1) = µ11µ
2
22µ

4
23(µ11 + µ22),

ξ10((1, 1), 0, 1) = µ2
11µ

2
22µ

4
23,

ξ10((1, 1), 0, 1) = 0,

ξ11((2, 1), 0, 1) = µ11µ
2
22µ

4
23(µ11 + µ22),

ξ11((1, 2), 0, 1) = 0.

When B2 = B3 = 1, we obtain

ξ(1, 1) = 4µ8
11µ

2
22 + 4µ6

11µ
4
22 + µ5

22µ
5
23 + 3µ3

11µ21µ22µ
5
23 + µ8

11µ21µ23 + µ21µ
5
22µ

4
23

+7µ5
11µ

4
22µ23 + µ11µ21µ

5
22µ

3
23 + µ3

11µ21µ
5
22µ23 + 4µ2

11µ21µ
2
22µ

5
23 + µ5

11µ
5
23

+4µ7
11µ21µ

2
23 + 4µ6

11µ
4
23 + 6µ7

11µ
3
23 + 4µ2

11µ
4
22µ

4
23 + 6µ4

11µ
4
22µ

2
23 + 5µ3

11µ
4
22µ

3
23

+3µ11µ
4
22µ

5
23 + 4µ5

11µ21µ
4
22 + 8µ3

11µ
3
22µ

4
23 + 4µ2

11µ
3
22µ

5
23 + 17µ6

11µ
3
22µ23

+19µ5
11µ

3
22µ

2
23 + 13µ4

11µ
3
22µ

3
23 + 6µ6

11µ21µ
3
22 + 4µ7

11µ21µ
2
22 + 11µ4

11µ
2
22µ

4
23

+4µ3
11µ

2
22µ

5
22 + 18µ7

11µ
2
22µ23 + 28µ6

11µ
2
22µ

2
23 + 23µ5

11µ
2
22µ

3
23 + µ8

11µ21µ22

+19µ6
11µ22µ

3
23 + 18µ7

11µ22µ
2
23 + 8µ8

11µ22µ23 + 11µ5
11µ22µ

4
23 + 3µ4

11µ22µ
5
23

+µ11µ
5
22µ

4
23 + 4µ8

11µ
2
23 + µ9

11µ23 + 4µ5
11µ21µ

4
23 + µ4

11µ21µ
5
23 + 6µ6

11µ21µ
3
23

+6µ7
11µ

3
22 + µ9

11µ22 + µ21µ
4
22µ

5
23 + µ2

11µ
5
22µ

3
23 + µ4

11µ21µ
5
22 + 3µ11µ21µ

3
22µ

5
23

+µ5
11µ

5
22 + µ2

11µ21µ
2
22µ

5
23 + 19µ4

11µ21µ
3
22µ

2
23 + 17µ5

11µ21µ
3
22µ

2
23 + 13µ3

11µ21µ
3
22µ

3
23

+23µ4
11µ21µ

2
22µ

3
23 + 6µ3

11µ21µ
2
22µ

4
23 + 8µ2

11µ21µ
3
22µ

4
23 + 11µ4

11µ21µ22µ
4
23
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+19µ5
11µ21µ22µ

3
23 + 18µ6

11µ21µ22µ
2
23 + 8µ7

11µ21µ22µ23 + 28µ5
11µ21µ

2
22µ23

+7µ4
11µ21µ

4
22µ23 + 4µ11µ21µ

4
22µ

4
23 + 11µ3

11µ21µ
2
22µ

4
23 + 18µ6

11µ21µ
2
22µ23

+5µ2
11µ21µ

4
22µ

3
23 + µ3

11µ
5
22µ

2
23 + µ4

11µ
5
22µ23,

ξ1((1, 0), 1, 1) = µ2
11µ22µ23(3µ11µ21µ

3
22µ

2
23 + 6µ11µ21µ

2
22µ

3
23 + 10µ3

11µ21µ
2
22µ23

+12µ3
11µ21µ22µ

2
23 + 11µ4

11µ21µ22µ23 + 7µ2
11µ21µ22µ

3
23 + 2µ11µ21µ22µ

4
23 + µ6

11µ21

+µ11µ21µ
2
22µ

3
23 + 4µ3

11µ21µ
3
23 + 4µ5

11µ21µ23 + µ2
11µ21µ

4
23 + 6µ4

11µ21µ
2
23 + 4µ6

11µ23

+4µ4
11µ

3
23 + 6µ5

11µ
2
23 + µ7

11 + µ3
11µ

4
23 + 3µ3

11µ
3
22µ23 + µ21µ

2
22µ

4
23 + µ11µ

2
22µ

4
23

+6µ3
11µ

2
22µ

2
23 + 10µ4

11µ
2
22µ23 + µ2

11µ
2
22µ

3
23 + 11µ5

11µ22µ23 + 12µ4
11µ22µ

2
23 + µ3

11µ
4
22

+2µ2
11µ22µ

4
23 + 7µ3

11µ22µ
3
23 + 4µ3

11µ21µ
3
22 + 4µ4

11µ
3
22 + 6µ4

11µ21µ
2
22 + µ2

11µ21µ
4
22

+4µ5
11µ21µ22 + 4µ6

11µ22 + 6µ5
11µ

2
22),

ξ1((2, 0), 1, 1) = µ11µ22µ23(µ3
11µ

4
22µ23 + 4µ5

11µ
3
23 + 4µ7

11µ23 + 4µ4
11µ

4
22 + µ7

11µ21

+3µ3
11µ

3
22µ

2
23 + 6µ4

11µ
3
22µ23 + 12µ4

11µ
2
22µ

2
23 + 13µ5

11µ
2
22µ

3
23 + 6µ3

11µ
2
22µ

3
23

+15µ5
11µ22µ

2
23 + 12µ6

11µ22µ23 + 10µ4
11µ22µ

3
23 + µ11µ

3
22µ

4
23 + µ4

11µ
3
23 + 6µ6

11µ
2
23

+3µ3
11µ22µ

4
23 + 3µ2

11µ
2
22µ

4
23 + µ8

11 + µ2
11µ

3
22µ

3
23 + 4µ5

11µ
3
23 + 6µ6

11µ
2
22 + 4µ7

11µ22

+3µ2
11µ21µ

3
22µ

2
23 + µ11µ21µ

3
22µ

3
23 + 6µ3

11µ21µ
3
22µ

1
23 + 6µ5

11µ21µ
2
22 + µ21µ

3
22µ

4
23

+3µ11µ21µ
2
22µ

4
23 + 12µ3

11µ21µ
2
22µ

2
23 + 13µ4

11µ21µ
2
22µ23 + 6µ2

11µ21µ
2
22µ

3
23

+12µ5
11µ21µ22µ23 + 15µ4

11µ21µ22µ
2
23 + 3µ2

11µ21µ22µ
4
23 + 10µ3

11µ21µ22µ
3
23

+µ2
11µ21µ

4
22µ23 + µ3

11µ21µ
4
22 + 4µ4

11µ21µ
3
22 + 6µ5

11µ21µ
2
23 + µ3

11µ21µ
4
23 + 4µ4

11µ21µ
3
23

+4µ6
11µ21µ22 + 4µ6

11µ21µ23),

ξ2((1, 0), 1, 1) = µ11µ
2
22µ

2
23(µ3

22µ
3
23 + µ2

11µ
3
22µ23 + 4µ2

11µ
2
22µ

2
23 + 5µ3

11µ
2
22µ23 + µ3

11µ
3
22

+7µ3
11µ22µ

2
23 + 7µ4

11µ22µ23 + 3µ2
11µ22µ

3
23 + 3µ11µ

2
22µ

3
23 + µ3

11µ
3
23 + 3µ5

11µ23

+3µ4
11µ

2
23 + 3µ4

11µ
2
22 + 3µ5

11µ22 + µ6
11 + µ11µ

2
22µ

3
23),

ξ2((2, 0), 1, 1) = µ11µ
3
22µ

3
23(µ2

11µ
2
22 + µ11µ

2
22µ23 + µ2

22µ
2
23 + 3µ2

11µ22µ23 + 2µ3
11µ22

+2µ11µ22µ
2
23 + µ4

11 + µ2
11µ

2
23 + 2µ3

11µ23),
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ξ3((0, 1), 1, 1) = µ4
11µ22µ23(µ5

11 + µ3
11µ

2
23 + 3µ4

11µ23 + 8µ3
11µ22µ23 + 6µ2

11µ22µ
2
23

+µ4
11µ21 + µ21µ

4
22 + µ2

11µ
3
23 + 4µ3

11µ22µ23 + µ11µ21µ
3
23 + 3µ3

11µ21µ23 + 4µ2
11µ

3
22

+3µ2
11µ21µ

2
23 + 4µ4

11µ22 + 6µ2
11µ21µ

2
22 + 4µ11µ21µ

3
22 + 7µ2

11µ
2
22µ23 + µ11µ

4
22

+2µ11µ
3
22µ23 + 7µ11µ21µ

2
22µ23 + 2µ21µ

3
22µ23 + µ21µ

2
21µ

2
23 + 2µ21µ22µ

3
23

+2µ11µ22µ
3
23 + 6µ11µ21µ22µ

2
23 + 8µ2

11µ21µ22µ23 + 6µ3
11µ

2
22 + 3µ11µ

2
22µ

2
23),

ξ3((0, 2), 1, 1) = µ3
11µ22µ23(6µ4

11µ
2
22 + µ2

11µ
4
23 + 11µ3

11µ22µ
2
23 + 4µ5

11µ22 + 4µ2
11µ22µ

3
23

+µ5
11µ21 + µ21µ

2
22µ

3
23 + µ11µ

2
22µ

3
23 + 4µ3

11µ
3
22 + 7µ2

11µ
2
22µ

2
23 + µ21µ

3
22µ

2
23

+µ11µ
3
22µ

2
23 + µ11µ

4
22µ23 + 12µ4

11µ22µ23 + 6µ2
11µ

3
22µ23 + µ21µ

4
22µ23 + 13µ3

11µ
2
22µ23

+2µ3
11µ

3
23 + 2µ2

11µ21µ
3
23 + 5µ4

11µ
2
23 + 5µ3

11µ21µ
2
23 + 4µ4

11µ21µ23 + µ6
11 + 4µ5

11µ23

+4µ11µ21µ22µ
3
23 + 7µ11µ21µ

2
22µ

2
23 + 11µ2

11µ21µ22µ
2
23 + 6µ11µ21µ

3
22µ23 + µ11µ21µ

4
22

+12µ3
11µ21µ22µ23 + 12µ2

11µ21µ
2
22µ23 + 4µ4

11µ21µ22 + 4µ2
11µ21µ

3
22 + 6µ3

11µ21µ
2
22),

ξ3((0, 3), 1, 1) = µ2
11µ22µ23(4µ6

11µ23 + 4µ5
11µ21µ23 + 3µ3

11µ21µ
3
23 + µ2

11µ21µ
4
22 + µ7

11

+6µ5
11µ

2
23 + 6µ4

11µ21µ
2
23 + 5µ2

11µ
3
22µ

2
23 + 3µ4

11µ
3
23 + 4µ3

11µ21µ
3
22 + 6µ4

11µ21µ
2
22

+4µ5
11µ21µ22 + 4µ4

11µ
3
22 + 6µ5

11µ
2
22 + µ3

11µ
4
22 + 2µ2

11µ
2
22µ

3
23 + 6µ3

11µ22µ
3
23

+15µ4
11µ22µ

2
23 + µ11µ

4
22µ22 + 13µ3

11µ
2
22µ

2
23 + µ21µ

4
22µ

2
23 + 6µ3

11µ
3
22µ23 + µ2

11µ
4
22µ23(53)

+13µ4
11µ

2
22µ23 + 12µ5

11µ22µ23 + 2µ11µ21µ
2
22µ

3
23 + 6µ2

11µ21µ22µ
3
23 + 15µ3

11µ21µ22µ
2
23

+13µ2
11µ21µ

2
22µ

2
23 + 5µ11µ21µ

3
22µ

2
23 + 6µ2

11µ21µ
3
22µ23 + 12µ4

11µ21µ22µ23 + µ6
11µ21

+13µ3
11µ21µ

2
22µ23 + µ11µ21µ

4
22µ23 + 4µ6

11µ22),

ξ4((0, 1), 1, 1) = µ11µ22µ
2
23(µ7

11 + µ2
11µ

4
22µ23 + 6µ5

11µ
2
22 + 10µ4

11µ
2
22µ23 + 8µ4

11µ22µ
2
23

+8µ3
11µ

2
22µ

2
23 + 4µ2

11µ
2
22µ

3
23 + 5µ3

11µ
3
22µ23 + 9µ5

11µ22µ23 + 3µ6
11µ23 + 3µ5

11µ
2
23

+µ4
11µ

3
23 + 4µ6

11µ22 + 3µ3
11µ22µ

3
23 + 3µ11µ

3
22µ

3
23 + 4µ4

11µ
3
22 + µ11µ

4
22µ

2
23 + µ4

22µ
3
23

+µ3
11µ

4
22 + 4µ2

11µ
3
22µ

2
23),

ξ4((0, 2), 1, 1) = µ11µ22µ
3
23(µ6

11 + 2µ5
11µ23 + 3µ11µ

3
22µ

2
23 + 4µ3

11µ
3
22 + µ2

11µ
4
22 + µ5

11µ22

+6µ4
11µ

2
22 + 4µ2

11µ
2
22µ

2
23 + µ4

22µ
2
23 + µ11µ

4
22µ23 + 7µ3

11µ
2
22µ23 + 3µ3

11µ22µ
2
23
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+6µ4
11µ22µ23 + 4µ2

11µ
3
22µ23 + µ4

11µ
3
23),

ξ4((0, 3), 1, 1) = µ11µ22µ
4
23(µ5

11 + µ11µ
4
22 + 4µ2

11µ
3
22 + µ4

11µ23 + 3µ11µ
3
22µ23 + 6µ3

11µ
2
22

+3µ3
11µ22µ23 + µ4

22µ23 + 4µ4
11µ22 + 4µ2

11µ
2
22µ23),

ξ5((1, 3), 1, 1) = µ11µ22µ23(10µ3
11µ21µ22µ

3
23 + 4µ11µ21µ

3
22µ

3
23 + 8µ2

11µ21µ
2
22µ

3
23 + µ8

11

+15µ4
11µ21µ22µ

2
23 + 5µ2

11µ21µ
3
22µ

2
23 + 13µ3

11µ21µ
2
22µ

2
23 + µ11µ21µ

4
22µ

2
23 + µ3

11µ21µ
4
23

+4µ4
11µ21µ

3
23 + 6µ5

11µ21µ
2
23 + µ21µ

4
22µ

3
23 + 4µ7

11µ22 + 4µ5
11µ

3
22 + µ7

11µ23 + 6µ6
11µ

2
22

+µ4
11µ

4
22 + 4µ6

11µ21µ22 + µ11µ21µ
2
22µ

4
23 + µ4

11µ
4
23 + 4µ5

11µ
3
23 + 4µ6

11µ21µ23

+4µ7
11µ23 + 2µ3

11µ22µ
4
23 + µ2

11µ
2
22µ

4
23 + 4µ2

11µ
3
22µ

3
23 + 8µ3

11µ
2
22µ

3
23 + 10µ4

11µ22µ
3
23

+4µ4
11µ21µ

3
23 + 6µ5

11µ21µ
2
22 + µ3

11µ21µ
4
22 + µ11µ

4
22µ

3
23 + µ2

11µ
4
22µ

2
23 + 13µ4

11µ
2
22µ

2
23

+15µ5
11µ22µ

2
23 + 5µ3

11µ
3
22µ

2
23 + 6µ4

11µ
3
22µ23 + 13µ5

11µ
2
22µ23 + µ3

11µ
4
22µ23 + µ6

11µ
2
23

+12µ6
11µ22µ23 + 12µ5

11µ21µ22µ23 + 6µ3
11µ21µ

3
22µ23 + 13µ4

11µ21µ
2
22µ23

+µ2
11µ21µ

4
22µ

2
23 + 2µ11µ21µ22µ

4
23),

ξ6((1, 3), 1, 1) = µ11µ
2
22µ

5
23(µ3

11 + 3µ11µ
2
22 + 3µ2

11µ22 + µ3
23),

ξ7((1, 1), 1, 1) = µ2
11µ22µ23(µ3

11µ
4
23 + µ3

11µ
4
22 + 4µ4

11µ
3
23 + 4µ6

11µ22 + 6µ5
11µ

2
22 + µ7

11

+4µ5
11µ21µ22 + 6µ4

11µ21µ
3
23 + 6µ5

11µ
2
23 + 4µ6

11µ23 + 4µ4
11µ

3
22 + 4µ5

11µ21µ23

+3µ3
11µ21µ

3
23 + 4µ3

11µ21µ
3
22 + 6µ4

11µ21µ
2
22 + 14µ4

11µ22µ
2
23 + 10µ3

11µ
2
22µ

2
23

+13µ4
11µ

2
22µ23 + µ2

11µ
4
22µ23 + 3µ2

11µ
2
22µ

3
23 + 12µ5

11µ22µ23 + 6µ3
11µ

3
22µ23

+8µ3
11µ22µ

3
23 + 2µ2

11µ
3
22µ

2
23 + 3µ11µ21µ

2
22µ

3
23 + 10µ2

11µ21µ
2
22µ

2
23 + 13µ3

11µ21µ
2
22µ23

+12µ4
11µ21µ22µ23 + 2µ11µ21µ22µ

4
23 + 14µ3

11µ21µ22µ
2
23 + 8µ2

11µ21µ22µ
3
23 + µ6

11µ21

+µ21µ
2
22µ

4
23 + µ11µ

2
22µ

4
23 + 2µ2

11µ22µ
4
23 + µ2

11µ21µ
4
22 + µ11µ21µ

4
22µ23 + µ2

11µ21µ
4
23

+2µ11µ21µ
3
22µ

2
23 + 6µ2

11µ21µ
3
22µ23),

ξ7((2, 1), 1, 1) = µ11µ22µ23(µ3
11µ

4
22µ23 + µ2

11µ
4
22µ

2
23 + 4µ5

11µ
3
22 + 4µ7

11µ23 + µ4
11µ

4
22

+µ7
11µ21 + 13µ3

11µ21µ
2
22µ

2
23 + 3µ11µ21µ

2
22µ

4
23 + 12µ5

11µ21µ22µ23 + 3µ2
11µ21µ22µ

4
23

+15µ4
11µ21µ22µ

2
23 + 10µ3

11µ21µ22µ
3
23 + 5µ3

11µ
2
22µ

3
23 + 6µ4

11µ
3
22µ23 + 13µ4

11µ
2
22µ

2
23

168



+13µ5
11µ

2
22µ23 + 7µ3

11µ
2
22µ

3
23 + 15µ5

11µ22µ
2
23 + 12µ6

11µ22µ23 + 10µ4
11µ

1
22µ

3
23

+µ11µ
3
22µ

4
23 + µ4

11µ
4
23 + 6µ6

11µ
2
23 + 7µ2

11µ21µ
2
22µ

3
23 + 13µ4

11µ21µ
2
22µ23 + µ8

11

+5µ2
11µ21µ

3
22µ

2
23 + 3µ3

11µ22µ
4
23 + 3µ2

11µ
2
22µ

4
23 + 2µ2

11µ
3
22µ

3
23 + 2µ11µ21µ

3
22µ

3
23

+6µ3
11µ21µ

3
22µ23 + µ2

11µ21µ
4
22µ23 + µ11µ21µ

4
22µ

2
23 + 4µ5

11µ
3
23 + 6µ6

11µ
2
22 + 4µ7

11µ22

+µ3
11µ21µ

4
22 + 4µ4

11µ21µ
3
22 + 6µ5

11µ21µ
2
22 + 4µ6

11µ22µ23 + µ21µ
3
22µ

4
23 + µ3

11µ21µ
4
23

+4µ6
11µ21µ23 + 6µ5

11µ21µ
2
22 + 4µ4

11µ21µ
3
22),

ξ7((1, 2), 1, 1) = µ2
11µ22µ23(4µ4

11µ
3
23 + 4µ5

11µ21µ23 + 6µ5
11µ

2
23 + µ3

11µ
4
23 + 4µ3

11µ21µ
3
23

+µ2
11µ21µ

4
23 + 9µ2

11µ21µ22µ
3
23 + 2µ11µ21µ22µ

4
23 + 5µ11µ21µ

2
22µ

3
23 + 5µ11µ21µ

3
22µ

2
23

+4µ4
11µ

3
22 + 4µ6

11µ22 + µ3
11µ

4
22 + 4µ3

11µ21µ
3
23 + µ2

11µ21µ
4
22 + 6µ5

11µ
2
22 + 4µ5

11µ21µ22

+6µ4
11µ21µ

2
22 + µ7

11 + µ6
11µ21 + 13µ2

11µ21µ
2
22µ

2
23 + µ21µ

2
22µ

4
23 + µ21µ

3
22µ

3
23

+µ21µ
4
22µ

2
23 + µ11µ

2
22µ

4
23 + µ11µ21µ

4
22µ23 + 13µ3

11µ21µ
2
22µ23 + 12µ5

11µ22µ23

+4µ6
11µ23 + 13µ4

11µ
2
22µ23 + 15µ3

11µ21µ22µ
2
23 + 15µ4

11µ22µ
2
23 + 9µ3

11µ22µ
3
23

+13µ3
11µ

2
22µ

2
23 + 6µ3

11µ
3
22µ23 + 5µ2

11µ
3
22µ

2
23 + 5µ2

11µ
2
22µ

3
23 + 2µ2

11µ22µ
4
23

+µ2
11µ

4
22µ23 + µ11µ

3
22µ

3
23 + 4µ11µ

4
22µ

2
23 + 12µ4

11µ21µ22µ23 + 6µ2
11µ21µ

3
22µ23

+6µ4
11µ21µ

2
23),

ξ7((2, 2), 1, 1) = µ11µ22µ23(6µ5
11µ21µ

2
23 + 4µ4

11µ21µ
3
23 + 4µ7

11µ23 + 4µ4
11µ

4
23

+4µ6
11µ21µ23 + 6µ6

11µ
2
23 + 6µ3

11µ21µ
3
22µ23 + µ3

11µ21µ
4
23 + 4µ5

11µ
3
23 + 6µ5

11µ21µ
2
22

+µ21µ
4
22µ

3
23 + µ7

11µ21 + 4µ21µ
3
22µ

4
23 + µ3

11µ21µ
4
22 + 6µ6

11µ
2
22 + 4µ7

11µ22 + 4µ5
11µ

3
23

+15µ4
11µ21µ22µ

2
23 + µ4

11µ
4
22 + 12µ5

11µ21µ22µ23 + 12µ6
11µ22µ23 + 15µ5

11µ22µ
2
23

+13µ4
11µ21µ

2
22µ23 + 13µ3

11µ21µ
2
22µ

2
23 + 10µ3

11µ21µ22µ
3
23 + µ2

11µ21µ
4
22µ23

+3µ2
11µ21µ22µ

4
23 + 8µ2

11µ21µ
2
22µ

3
23 + 5µ2

11µ21µ
3
22µ

3
23 + 3µ11µ21µ

2
22µ

4
23 + µ8

11

+13µ5
11µ

2
22µ23 + 6µ4

11µ
3
22µ23 + 13µ4

11µ
2
22µ

2
23 + µ3

11µ
4
22µ23 + 3µ3

11µ22µ
4
23

+8µ3
11µ

2
22µ

3
23 + 5µ3

11µ
3
22µ

2
23 + 4µ2

11µ
3
22µ

3
23 + 3µ2

11µ
2
22µ

4
23 + µ2

11µ
4
22µ

2
23 + µ11µ

4
22µ

3
23

+10µ4
11µ22µ

3
23 + µ3

11µ21µ
4
22 + 4µ6

11µ21µ23 + µ11µ
3
22µ

4
23 + 4µ11µ21µ

3
22µ

3
23

µ11µ21µ
4
22µ

2
23),
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ξ8((1, 1), 1, 1) = µ11µ
2
22µ

3
23(5µ3

11µ22µ23 + 3µ3
11µ

2
23 + 3µ2

11µ22µ
2
23 + 3µ11µ

2
22µ

2
23 + µ5

11

+4µ2
11µ

2
22µ23 + µ2

11µ
3
23 + 3µ4

11µ22 + µ3
22µ

2
23 + µ11µ

3
22µ23 + 2µ4

11µ23 + µ3
11µ

2
23),

ξ8((2, 1), 1, 1) = µ11µ
3
22µ

4
23(µ2

22µ23 + µ11µ
2
22 + 2µ11µ22µ23 + µ2

11µ23 + µ3
11 + 2µ2

11µ22),

ξ8((1, 2), 1, 1) = µ11µ
2
22µ

4
23(µ3

22µ23 + 3µ2
11µ

2
22 + 3µ2

11µ22µ23 + µ11µ
3
23 + µ4

11 + 3µ3
11µ22

µ3
11µ23 + 3µ11µ

2
22µ23),

ξ8((2, 2), 1, 1) = µ11µ
3
22µ

5
23(µ2

22 + 2µ11µ22 + µ2
11),

ξ9((1, 1), 1, 1) = µ11µ
2
22µ

3
23(µ3

22µ
2
23 + 3µ11µ

2
22µ

2
23 + 4µ2

11µ
2
22µ23 + µ11µ

3
22µ23 + µ5

11

+2µ4
11µ23 + µ3

11µ
2
23 + 5µ3

11µ22µ23 + 4µ2
11µ22µ

2
23 + µ2

11µ
3
23 + 3µ4

11µ22 + 2µ3
11µ

2
22),

ξ9((2, 1), 1, 1) = µ11µ
3
22µ

4
23(µ2

22µ23 + µ11µ
2
22 + 3µ11µ22µ23 + 2µ2

11µ23 + µ3
11

+2µ2
11µ22),

ξ9((1, 2), 1, 1) = µ11µ
2
22µ

4
23(µ3

22µ23 + 3µ2
11µ

2
22 + 3µ2

11µ22µ23 + µ3
11µ23 + µ11µ

3
22

+3µ3
11µ22 + µ4

11 + 3µ11µ
2
22µ23),

ξ9((2, 2), 1, 1) = µ11µ
3
22µ

5
23(µ2

22 + 2µ11µ22 + µ2
11),

ξ10((1, 1), 1, 1) = µ3
11µ

3
22µ

5
23,

ξ10((2, 1), 1, 1) = µ2
11µ

3
22µ

5
23(µ11 + µ22),

ξ10((1, 2), 1, 1) = 0,

ξ10((2, 2), 1, 1) = 0,

ξ11((3, 1), 1, 1) = µ11µ
3
22µ

5
23(µ2

11 + 2µ11µ22 + µ2
22).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy π = (d0)∞. 2
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Proof of Proposition 4.3.2 : The set of allowable actions in state s ∈ S is

As =



a21 for s = (0, 0),

a22 for s = (B2 + 2, 0),

a23 for s = (B2 + 1, B3 + 2),

{a11, a21, a22} for s = (i, 0), where i ∈ {1, . . . , B2 + 1},

{a21, a23} for s = (0, j) or s = (i, B3 + 2), where

i ∈ {1, . . . , B2} and j ∈ {1, . . . , B3 + 2},

{a22, a23, a33} for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1},

{a11, a21, a22, a23, a33} for s = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 1}.

Under our assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and

µ11 = µ13 = 0), it is clear that µ21 > 0 and µ23 > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant q = µ12 + µ21 + µ22 + µ23.

We start the policy iteration algorithm by choosing

d0(s) =



a21 for s = (i, 0) where i ∈ {0, . . . , B2 + 1},

a22 for s = (B2 + 2, 0),

a23 for s = (B2 + 2, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2 + 1},

and j ∈ {1, . . . , B3 + 1},

a21 for s = (i, j), where i ∈ {0, . . . , B2 + 1} and j ∈ {1, . . . , B3},

a21 for s = (i, B3 + 1) or s = (0, B3 + 2), where i ∈ {0, 1},

a23 for s = (i, B3 + 1), where i ∈ {2, . . . , B2 + 1}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below,

φk(s, B2, B3) for k ∈ {1, . . . , 14} and φ(B2, B3) are nonnegative constants that depend
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on the service rates, the state s = (i, j) ∈ S under consideration, and the buffer sizes,

and they are provided below. We assume that B2, B3 ≤ 1 in the following calculations.

First, consider the state s = (i, 0), where i ∈ {1, . . . , B2 + 1}, and recall that

d0(s) = a21. Some algebra shows that, for all i ∈ {1, . . . , B2 + 1},(
r((i, 0), a21) +

∑
s′∈S

p(s′|(i, 0), a21)h(s′)
)
− r((i, 0), a11)−

∑
s′∈S

p(s′|(i, 0), a11)h(s′)

=
φ1((i, 0), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, 0), a21) +
∑
s′∈S

p(s′|(i, 0), a21)h(s′)
)
− r((i, 0), a22)−

∑
s′∈S

p(s′|(i, 0), a22)h(s′)

=
φ2((i, 0), B2, B3)

φ(B2, B3)
≥ 0.

Recall that d0(s) = a21 for s = (0, j), where j ∈ {1, . . . , B3 + 2}. Then, we can show

that, for all j ∈ {1, . . . , B3 + 2},(
r((0, j), a21) +

∑
s′∈S

p(s′|(0, j), a21)h(s′)
)
− r((0, j), a23)−

∑
s′∈S

p(s′|(0, j), a23)h(s′)

=
φ3((0, j), B2, B3)

φ(B2, B3)
≥ 0.

Similarly, d0(s) = a23 for s = (i, B3 + 2), where i ∈ {1, . . . , B2}. We can show that,

for all i ∈ {1, . . . , B2},(
r((i, B3 + 2), a23) +

∑
s′∈S

p(s′|(i, B3 + 2), a23)h(s′)
)
− r((i, B3 + 2), a21)

−
∑
s′∈S

p(s′|(i, B3 + 2), a21)h(s′) =
φ4((i, B3 + 2), B2, B3)

φ(B2, B3)
≥ 0.

For s = (i, j), where i ∈ {1, . . . , B2 + 1} and j ∈ {1, . . . , B3} or (i, j) = (1, B3 + 1),

recall that d0(s) = a21. Some algebra shows that, for all i ∈ {1, . . . , B2 + 1} and

j ∈ {1, . . . , B3} or (i, j) = (1, B3 + 1),(
r((i, j), a21) +

∑
s′∈S

p(s′|(i, j), a21)h(s′)
)
− r((i, j), a11)−

∑
s′∈S

p(s′|(i, j), a11)h(s′)

=
φ5((i, j), B2, B3)

φ(B2, B3)
≥ 0,
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(
r((i, j), a21) +

∑
s′∈S

p(s′|(i, j), a21)h(s′)
)
− r((i, j), a22)−

∑
s′∈S

p(s′|(i, j), a22)h(s′)

=
φ6((i, j), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, j), a21) +
∑
s′∈S

p(s′|(i, j), a21)h(s′)
)
− r((i, j), a33)−

∑
s′∈S

p(s′|(i, j), a33)h(s′)

=
φ7((i, j), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, j), a21) +
∑
s′∈S

p(s′|(i, j), a21)h(s′)
)
− r((i, j), a23)−

∑
s′∈S

p(s′|(i, j), a23)h(s′)

=
φ8((i, j), B2, B3)

φ
≥ 0.

For s = (i, B3 + 1), where i ∈ {2, . . . , B2 + 1}, recall that d0(s) = a23. Some algebra

shows that, for all i ∈ {2, . . . , B2 + 1},(
r((i, j), a23) +

∑
s′∈S

p(s′|(i, j), a23)h(s′)
)
− r((i, j), a11)−

∑
s′∈S

p(s′|(i, j), a11)h(s′)

=
φ9((i, j), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, j), a23) +
∑
s′∈S

p(s′|(i, j), a23)h(s′)
)
− r((i, j), a22)−

∑
s′∈S

p(s′|(i, j), a22)h(s′)

=
φ10((i, j), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, j), a23) +
∑
s′∈S

p(s′|(i, j), a23)h(s′)
)
− r((i, j), a33)−

∑
s′∈S

p(s′|(i, j), a33)h(s′)

=
φ11((i, j), B2, B3)

φ(B2, B3)
≥ 0,(

r((i, j), a23) +
∑
s′∈S

p(s′|(i, j), a23)h(s′)
)
− r((i, j), a21)−

∑
s′∈S

p(s′|(i, j), a21)h(s′)

=
φ12((i, j), B2, B3)

φ(B2, B3)
≥ 0.

Finally, d0(s) = a23 for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1}. Some algebra

shows that, for all j ∈ {1, . . . , B3 + 1},(
r((B2 + 2, j), a23) +

∑
s′∈S

p(s′|(B2 + 2, j), a23)h(s′)
)
− r((B2 + 2, j), a22)

−
∑
s′∈S

p(s′|(B2 + 2, j), a22)h(s′) =
φ13((B2 + 2, j), B2, B3)

φ(B2, B3)
≥ 0,
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(
r((B2 + 2, j), a23) +

∑
s′∈S

p(s′|(B2 + 2, j), a23)h(s′)
)
− r((B2 + 2, j), a33)

−
∑
s′∈S

p(s′|(B2 + 2, j), a33)h(s′) =
φ14((B2 + 2, j), B2, B3)

φ(B2, B3)
≥ 0.

When B2 = B3 = 0, we obtain

φ(0, 0) = µ12µ
2
21µ23 + µ21µ22µ

2
23 + µ2

21µ22µ23 + 2µ12µ21µ22µ23 + µ3
12µ21 + µ2

12µ21µ22

+2µ2
12µ21µ23 + µ12µ21µ

2
23 + 2µ12µ

2
21µ22 + µ2

12µ
2
21 + µ2

21µ
2
23 + µ2

12µ22µ23 + µ3
12µ23

+µ12µ22µ
2
23 + µ2

12µ
2
23,

φ1((1, 0), 0, 0) = µ12µ
2
21µ

2
23,

φ2((1, 0), 0, 0) = µ12µ21µ23(µ12µ22 + µ2
12 + µ22µ23 + µ12µ23),

φ3((0, 1), 0, 0) = µ12µ
2
21µ

2
23,

φ3((0, 2), 0, 0) = 0,

φ5((1, 1), 0, 0) = µ12µ21µ23(µ12 + µ22),

φ6((1, 1), 0, 0) = µ12µ21µ23(µ12µ22 + µ2
12 + µ22µ23 + µ12µ23 + µ12µ21 + µ21µ22),

φ7((1, 1), 0, 0) = µ12µ21µ23(µ2
21 + µ22µ23 + µ21µ23 + µ2

12 + µ12µ21),

φ8((1, 1), 0, 0) = 0,

φ13((2, 1), 0, 0) = µ12µ21µ23(µ12µ22 + µ2
12 + µ21µ22 + µ12µ21),

φ14((2, 1), 0, 0) = µ12µ21µ
3
23.

When B2 = 1 and B3 = 0, we obtain

φ(1, 0) = µ3
12µ

3
23 + 2µ4

12µ
2
21 + µ3

21µ
3
23 + µ5

12µ21 + 2µ4
12µ

2
23 + µ5

12µ23 + µ12µ
3
21µ

2
23

+µ3
12µ

3
23 + µ3

21µ22µ
2
23 + µ2

12µ
3
21µ23 + 3µ2

12µ
2
21µ

2
23 + 4µ4

12µ21µ23 + 4µ3
12µ

2
21µ23

+4µ3
12µ21µ

2
23 + 2µ2

12µ21µ
3
23 + µ2

21µ22µ
3
23 + 2µ12µ

2
21µ

3
23 + µ2

12µ
3
21µ22 + µ4

12µ21µ22

+µ4
12µ22µ23 + 2µ3

12µ22µ
2
23 + 2µ12µ

3
21µ22µ23 + 4µ2

12µ
2
21µ22µ23 + 4µ2

12µ21µ22µ
2
23

+2µ3
12µ

2
21µ22 + µ2

12µ22µ
3
23 + 3µ12µ

2
21µ22µ

2
23 + 4µ3

12µ21µ22µ23 + 2µ12µ21µ22µ
3
23,

φ1((1, 0), 1, 0) = µ2
12µ

2
21µ

2
23(µ12µ21µ23 + µ2

12µ22 + µ12µ22µ23 + µ2
12µ23 + µ2

12µ21),
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φ1((2, 0), 1, 0) = µ2
12µ

3
21µ

3
23(µ12µ21 + µ2

12 + µ12µ22),

φ2((1, 0), 1, 0) = µ12µ
2
21µ

2
23(µ12µ21µ

2
23 + µ2

12µ21µ22 + µ12µ21µ22µ23 + µ2
12µ21µ23 + µ4

12

+µ3
12µ21 + µ21µ22µ

2
23 + µ3

12µ22 + µ12µ22µ
2
23 + µ2

12µ
2
23 + 2µ2

12µ22µ23 + 2µ3
12µ23),

φ2((2, 0), 1, 0) = µ2
12µ21µ

2
23(µ12µ22 + µ21µ22 + µ22µ23 + µ2

12 + µ12µ21 + µ12µ23)

φ3((0, 1), 1, 0) = µ12µ
3
21µ

2
23,

φ3((0, 2), 1, 0) = 0,

φ4((1, 2), 1, 0) = µ12µ
3
21µ

2
23,

φ5((1, 1), 1, 0) = µ12µ
2
21µ23(2µ12µ23 + µ12µ22 + µ12µ21 + 2µ22µ23 + µ2

12),

φ6((1, 1), 1, 0) = µ12µ21µ23(µ3
12 + 2µ2

12µ23 + µ2
12µ22 + µ2

12µ21 + 2µ12µ22µ23 + µ12µ
2
23

+µ12µ21µ22 + µ22µ
2
23),

φ7((1, 1), 1, 0) = µ12µ
2
21µ

2
23(µ2

12 + 2µ12µ22 + µ22µ23 + µ21µ22),

φ8((1, 1), 1, 0) = 0,

φ9((2, 1), 1, 0) = µ12µ
2
21µ23(µ2

12 + µ12µ22 + 2µ12µ21 + µ21µ22),

φ10((2, 1), 1, 0) = µ12µ21µ23(µ3
12 + µ12µ22µ23 + 2µ12µ21µ22 + µ2

12µ22 + µ2
21µ22

+µ2
12µ23 + µ12µ

2
21 + 2µ2

12µ21),

φ11((2, 1), 1, 0) = µ12µ21µ
2
23(µ2

22µ23 + 2µ12µ22µ23 + µ22µ
2
23 + µ2

12µ22 + µ12µ
2
22

+µ12µ
2
23)

φ12((2, 1), 1, 0) = µ2
12µ

3
21µ

2
23,

φ13((3, 1), 1, 0) = µ12µ21µ23(µ2
21µ22µ23 + µ12µ

2
21µ22 + µ12µ21µ22µ23 + 2µ2

12µ21µ22

+µ3
12µ22 + µ2

12µ22µ23 + µ12µ
2
21µ23 + µ2

12µ
2
21 + µ2

12µ21µ23 + 2µ2
12µ21 + µ3

12µ23

+µ4
12),

φ14((3, 1), 1, 0) = µ12µ21µ
2
23(µ12µ

2
22 + µ12µ

2
23 + 2µ21µ

2
22 + µ2

21µ23 + µ3
12),

When B2 = 0 and B3 = 1, we obtain

φ(0, 1) = µ2
21µ

3
23 + 2µ2

12µ21µ22µ23 + µ3
12µ21µ22 + µ3

12µ22µ23 + µ4
12µ21 + µ3

12µ
2
21
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+µ4
12µ23 + µ2

12µ22µ
2
23 + µ3

12µ
2
23 + µ12µ21µ

3
23 + µ21µ22µ

3
23 + µ12µ22µ

3
23 + µ2

12µ
3
23

+2µ2
12µ21µ

2
23 + µ2

12µ
2
21µ22 + 2µ12µ21µ22µ

2
23 + 2µ3

12µ21µ23 + µ2
12µ

2
21µ23 + µ2

21µ22µ
2
23

+µ12µ
2
21µ22µ23 + µ12µ

2
21µ

2
23,

φ1((1, 0), 0, 1) = µ12µ
3
21µ

2
23,

φ2((1, 0), 0, 1) = µ12µ21µ23(µ12µ
2
23 + µ3

12 + µ22µ
2
23 + µ2

12µ23 + µ2
12µ22 + µ12µ22µ23),

φ3((0, 1), 0, 1) = µ12µ
2
21µ

2
23(µ12 + µ23),

φ3((0, 2), 0, 1) = µ12µ
2
21µ

3
23,

φ3((0, 3), 0, 1) = 0,

φ5((1, 1), 0, 1) = µ12µ
2
21µ23(µ2

12 + µ12µ21 + µ21µ22 + µ2
22),

φ5((1, 2), 0, 1) = µ2
12µ21µ23(µ12µ21 + µ21µ23 + µ21µ22 + µ2

21 + µ22µ23 + µ12µ23

+µ2
23 + µ12µ22),

φ6((1, 1), 0, 1) = µ12µ21µ23(µ12µ21µ22 + µ2
12µ21 + µ12µ

2
23 + µ22µ

2
23 + µ2

12µ23 + µ3
12

+µ12µ22µ23 + µ2
12µ22),

φ7((1, 2), 0, 1) = µ12µ21µ23(µ2
12µ21 + µ12µ21µ23 + µ12µ21µ22 + µ21µ22µ23 + µ2

12µ23

+µ3
12 + µ12µ22µ23 + µ2

12µ22 + µ12µ
2
23 + µ22µ

2
23),

φ7((1, 1), 0, 1) = µ12µ
2
21µ

2
23(µ12 + µ22),

φ7((1, 2), 0, 1) = µ12µ21µ
2
23(µ12µ23 + µ2

23 + µ22µ23 + µ12µ22),

φ8((1, 1), 0, 1) = µ2
12µ

3
21µ

2
23,

φ8((1, 2), 0, 1) = µ2
12µ

2
21µ

3
23,

φ13((2, 1), 0, 1) = µ2
12µ21µ23(µ2

12µ21 + µ12µ21µ23 + µ12µ21µ22 + µ21µ22µ23 + µ2
12µ23

+µ3
12 + µ2

12µ22 + µ12µ
2
23 + µ12µ22µ23 + µ22µ

2
23),

φ13((2, 2), 0, 1) = µ12µ21µ23(µ4
12µ21 + µ3

12µ21µ22 + 3µ3
12µ21µ23 + 3µ2

12µ21µ
2
23 + 3µ4

12µ23

+µ12µ21µ
3
23 + 3µ12µ21µ22µ

2
23 + µ21µ22µ

3
23 + µ5

12 + µ22µ
2
23 + µ4

12µ22 + 3µ2
12µ21µ22µ23

+3µ3
12µ

2
23 + 3µ3

12µ22µ23 + 2µ2
12µ

3
23 + 3µ2

12µ22µ
2
23 + 2µ12µ22µ

3
23),
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φ14((2, 1), 0, 1) = µ12µ21µ
2
23(µ2

12µ22 + µ12µ
2
23 + µ21µ

2
22 + µ12µ21µ23),

φ14((2, 2), 0, 1) = µ12µ
2
21µ

4
23.

When B2 = B3 = 1, we obtain

φ(1, 1) = 3µ3
12µ

4
22µ23 + µ12µ21µ

5
22µ23 + µ12µ21µ

5
22µ23 + 4µ2

12µ21µ
5
23 + µ3

12µ
5
23

+12µ5
12µ22µ

2
23 + 10µ4

12µ22µ
3
23 + 6µ4

12µ21µ
3
22 + 4µ5

12µ21µ
2
22 + 7µ4

12µ
2
22µ

2
23

+4µ3
12µ

2
22µ

3
22 + 9µ5

12µ
2
22µ23 + 4µ4

12µ
2
22µ

2
23 + 3µ5

12µ
3
23 + µ6

12µ21µ22 + 3µ6
12µ

2
22

+4µ7
12µ21 + 4µ4

12µ
4
23 + 6µ6

12µ
2
23 + 4µ12µ

4
22µ

3
23 + 2µ2

12µ
4
22µ

2
23 + 3µ12µ

4
22µ

3
23

+3µ12µ
2
22µ

5
23 + 4µ3

12µ21µ
4
22 + 3µ3

12µ22µ
4
23 + 4µ2

12µ22µ
5
23 + 4µ5

12µ
2
22µ23 + µ4

12µ
4
21

+4µ4
12µ22µ

3
23 + 8µ6

12µ22µ23 + 4µ7
12µ22 + 16µ3

12µ22µ
4
23 + 3µ3

12µ22µ
4
23 + µ4

12µ
4
22

+12µ3
12µ

2
22µ

3
23 + 6µ12µ21µ

2
22µ

4
23 + 4µ2

12µ21µ
2
22µ

3
23 + 11µ3

12µ21µ22µ
3
23 + 13µ6

12µ
2
22

+16µ5
12µ21µ22µ23 + 13µ5

12µ22µ
2
23 + 8µ4

12µ
2
21µ22µ23 + 25µ5

12µ21µ22µ23 + µ7
12µ22

+µ12µ
3
22µ

4
23 + 4µ6

12µ
2
23 + µ7

12µ23 + 2µ3
12µ21µ

4
23 + µ4

12µ21µ
3
23 + 4µ4

12µ21µ
3
23

+9µ4
12µ21µ

2
22µ23 + 2µ12µ21µ

3
22µ

3
23 + 7µ12µ21µ

2
22µ

4
23 + 12µ4

12µ21µ
2
22µ23 + 2µ4

12µ
4
23

+2µ21µ
2
22µ

5
23 + µ2

12µ
3
22µ

3
23 + µ2

12µ21µ
5
22 + 3µ12µ21µ22µ

5
23,

φ1((1, 0), 1, 1) = µ2
12µ21µ23(µ2

12µ
2
21µ23 + 4µ12µ21µ22µ

2
23 + 5µ12µ21µ

2
22µ23 + µ5

12

+6µ3
12µ

2
23 + 6µ2

12µ
2
22µ23 + µ12µ

2
22µ

2
23 + 14µ3

12µ22µ23 + 8µ2
12µ22µ

2
23 + µ12µ

4
22

+2µ2
12µ

2
22µ23 + 3µ12µ

2
22µ

2
23 + 4µ3

12µ21µ22 + 4µ2
12µ

3
22 + 4µ2

12µ21µ
2
22 + µ21µ

4
22

+8µ3
12µ21µ22 + 7µ2

12µ21µ22µ23 + 4µ2
12µ22µ

2
23 + 2µ12µ22µ

3
23 + µ5

12µ21 + 2µ4
12µ22

+4µ4
12µ23 + 6µ3

12µ
2
23 + µ12µ

4
23 + 2µ12µ

3
22µ23 + µ21µ

2
22µ

2
23 + µ12µ

4
23

+2µ3
12µ21µ21 + 3µ3

12µ
2
22),

φ1((2, 0), 1, 1) = µ12µ21µ23(2µ2
12µ

3
22µ23 + 3µ3

12µ
3
23 + 4µ5

12µ23 + 2µ2
12µ

4
22 + µ5

12µ21

+2µ2
12µ21µ22µ

2
23 + 3µ12µ22µ

4
23 + µ6

12 + µ12µ
2
22µ

3
23 + 3µ5

12µ23 + 5µ4
12µ

2
22 + 4µ5

12µ22

+3µ12µ
3
22µ

2
23 + 4µ2

12µ21µ
3
22 + 10µ2

12µ
2
22µ

2
23 + 4µ3

12µ
2
22µ23 + 6µ2

12µ22µ
3
23

+6µ4
12µ22µ23 + 4µ2

12µ22µ
3
23 + µ12µ22µ

4
23 + µ3

12µ
3
23 + 6µ4

12µ
2
23 + 12µ3

12µ22µ
2
23
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+3µ2
22µ

4
23 + 4µ12µ21µ

2
22µ

2
23 + 11µ3

12µ
2
22µ23 + 6µ2

12µ21µ
2
22µ23 + µ21µ

4
22µ23

+µ2
12µ

4
22 + 4µ3

12µ
2
21µ22 + 3µ3

12µ21µ
2
23 + µ3

12µ21µ
2
23 + 4µ5

12µ21 + 2µ3
12µ

3
21),

φ2((1, 0), 1, 1) = µ12µ
2
21µ

2
23(µ3

22µ23 + µ2
12µ22µ23 + µ2

22µ
2
23 + 3µ12µ

2
22µ23 + µ12µ

3
22

+4µ12µ22µ
2
23 + 9µ2

12µ22µ23 + 3µ2
12µ21µ23 + 2µ12µ

3
23 + µ3

12µ23 + 3µ3
12µ23),

φ2((2, 0), 1, 1) = µ12µ
3
21µ

3
23(µ12µ

2
22 + µ12µ

2
22 + µ2

22µ23 + 2µ12µ22µ23 + 2µ2
12µ22

+µ3
12 + µ2

12µ23 + 2µ12µ
2
23),

φ3((0, 1), 1, 1) = µ3
12µ

2
21µ23(µ4

12 + µ2
12µ

2
23 + 3µ3

12µ23 + 3µ2
12µ

2
22 + µ2

12µ
2
23 + µ12µ

3
23

+3µ12µ21µ
2
23 + 2µ3

12µ22 + 7µ2
12µ21µ22 + 4µ12µ

2
21µ22 + 7µ12µ

2
22µ23 + µ12µ

3
22

+3µ12µ
2
22µ23 + 2µ2

21µ
2
22 + µ21µ

2
21µ23 + µ3

12µ21),

φ3((0, 2), 1, 1) = µ2
12µ21µ23(µ3

12µ
2
22 + µ2

12µ
3
23 + 6µ12µ22µ

3
23 + 4µ4

12µ22 + 2µ12µ
3
22µ23

+2µ3
12µ

2
23 + 2µ2

12µ21µ
2
23 + 5µ3

12µ
2
23 + µ2

12µ21µ
2
23 + 2µ3

12µ21µ23 + µ5
12 + 4µ4

12µ23

+µ4
12µ21 + µ21µ

3
22µ23 + µ2

22µ
3
23 + 4µ2

12µ
3
22 + 8µ12µ

2
22µ

2
23 + µ21µ

3
22µ23 + µ12µ

2
22µ

2
23

+4µ2
12µ21µ

2
23 + µ12µ

4
22 + 12µ3

12µ22µ23 + 2µ2
12µ

2
22µ23 + 9µ2

12µ
2
22µ23 + 4µ2

12µ21µ
2
22

+8µ2
12µ21µ22µ23 + 8µ12µ21µ

2
22µ23 + 4µ3

12µ21µ22),

φ3((0, 3), 1, 1) = µ2
12µ21µ23(µ4

12µ23 + µ3
12µ21µ23 + 3µ12µ21µ

3
23 + µ21µ

4
22 + µ5

12

+4µ3
12µ21µ22 + 4µ4

12µ22 + 6µ3
12µ

2
22 + 2µ12µ22µ

3
23 + 6µ3

12µ22µ
3
23 + 3µ4

12µ22

+6µ3
12µ

2
23 + 2µ2

12µ21µ
2
23 + 3µ2

12µ
2
22µ23 + 3µ2

12µ
3
23 + 6µ12µ

2
21µ

2
22 + 4µ2

12µ21µ
2
22

+11µ4
12µ23 + 6µ3

12µ22µ23 + 2µ12µ21µ
3
23 + 6µ12µ21µ22µ

2
23 + 6µ2

12µ21µ22µ23

+12µ12µ21µ
2
22µ23 + µ12µ

2
21µ22µ23),

φ4((1, 3), 1, 1) = µ12µ
2
21µ23(µ5

12 + µ4
22µ23 + 4µ3

12µ
2
22 + 8µ2

12µ
2
22µ23 + 4µ2

12µ22µ
2
23

+3µ12µ
2
22µ

2
23 + 2µ2

12µ
2
22µ23 + 5µ3

12µ22µ23 + 6µ4
12µ23 + 3µ3

12µ
2
23 + 4µ2

12µ
2
22µ23

+7µ2
12µ

3
23 + 4µ4

12µ22 + µ12µ22µ
3
23 + 3µ12µ

2
22µ

2
23 + µ12µ

2
22µ

2
23 + µ3

21µ
2
23 + µ3

12µ
2
21),

φ5((1, 1), 1, 1) = µ12µ
2
21µ

3
23(2µ3

12µ22µ23 + 3µ3
12µ

2
23 + 4µ2

12µ22µ
2
23 + µ12µ

2
22µ

2
23 + µ5

12

+2µ2
12µ

2
22µ23 + 2µ2

12µ
3
23 + µ4

12µ22 + µ3
22µ

2
23 + µ12µ

3
22µ23 + µ4

12µ23 + µ3
12µ

2
23),
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φ5((2, 1), 1, 1) = µ12µ
3
21µ

4
23(µ2

22µ23 + 2µ12µ
2
22 + 2µ12µ22µ23 + µ2

12µ23 + µ3
12 + µ2

12µ22),

φ5((1, 2), 1, 1) = µ12µ
2
21µ

4
23(µ3

22µ23 + 2µ2
12µ

2
22 + 2µ2

12µ22µ23 + 3µ12µ
3
23 + µ4

12 + µ3
12µ22

µ3
12µ23 + 2µ12µ

2
22µ23),

φ6((1, 1), 1, 1) = µ2
12µ21µ23(µ3

12µ
3
23 + µ2

12µ
4
22 + 2µ4

12µ
2
23 + 4µ5

12µ22 + 3µ4
12µ

2
22 + µ6

12

+13µ4
12µ22µ23 + µ12µ

4
22µ23 + 2µ12µ

2
22µ

3
23 + 8µ4

12µ22µ23 + 5µ2
12µ

2
22µ23 + µ5

12µ21

+4µ2
12µ22µ

3
23 + 3µ12µ

3
22µ

2
23 + 2µ12µ21µ

2
22µ

2
23 + 7µ12µ21µ

2
22µ23 + 11µ2

12µ21µ
2
22µ23

+3µ4
12µ21µ22 + 6µ2

12µ21µ
3
23 + 4µ4

12µ
2
23 + 3µ5

12µ23 + 4µ4
12µ

2
22 + 6µ3

12µ21µ22µ23

+4µ5
12µ21 + 2µ12µ21µ22µ

3
23 + 11µ2

12µ21µ22µ
2
23 + 7µ12µ

2
21µ22µ

2
23 + µ3

22µ
2
23

+µ21µ
2
22µ

3
23 + µ12µ22µ

4
23 + 3µ12µ21µ

4
23 + µ2

12µ21µ
3
22 + µ21µ

4
22µ23 + µ2

12µ21µ
3
23

+4µ12µ21µ
3
22µ23),

φ6((2, 1), 1, 1) = µ12µ21µ23(µ2
12µ

4
22µ23 + µ2

12µ
3
22µ

2
23 + 2µ4

12µ
3
22 + 3µ6

12µ23 + µ3
12µ

4
22

+13µ5
12µ22µ23 + 7µ3

12µ
2
22µ

2
23 + 15µ4

12µ22µ
2
23 + 12µ6

12µ22 + 10µ4
12µ

3
23

+µ3
22µ

4
23 + µ4

12µ
3
23 + 4µ5

12µ
2
23 + 5µ12µ21µ

2
22µ

3
23 + 11µ3

12µ21µ
2
22µ23 + 4µ4

12µ21µ
2
22

+µ6
12µ21 + 2µ2

12µ21µ
2
22µ

2
23 + 2µ12µ21µ22µ

4
23 + 11µ5

12µ21µ23 + 2µ2
12µ21µ22µ

3
23

+3µ2
12µ21µ

2
22µ

2
23 + 5µ3

12µ22µ
3
23 + 5µ2

12µ
2
22µ

3
23 + 6µ4

12µ
2
22µ23 + 12µ3

12µ
3
22µ23 + µ7

12

+3µ12µ21µ
3
22µ

2
23 + 2µ2

12µ22µ
4
23 + µ2

12µ21µ
4
23 + 2µ2

12µ
2
22µ

3
23 + 2µ12µ21µ

2
22µ

3
23

+3µ5
12µ21µ23 + 6µ4

12µ21µ
2
22),

φ6((1, 2), 1, 1) = µ12µ21µ23(2µ4
12µ

3
23 + 5µ5

12µ21µ23 + 2µ5
12µ

2
23 + 2µ3

12µ
4
23 + µ3

12µ21µ
3
23

+3µ4
12µ

3
22 + 2µ6

12µ22 + µ3
12µ

4
22 + 5µ3

12µ21µ
3
23 + µ2

12µ21µ
4
22 + 3µ5

12µ
2
22 + µ5

12µ21µ22

+µ21µ
4
22µ

2
23 + µ12µ

2
22µ

4
23 + 3µ12µ21µ

4
22µ23 + 4µ3

12µ21µ
2
22µ23 + 10µ5

12µ22µ23

+7µ4
12µ21µ

2
22 + µ6

12µ21 + 9µ2
12µ21µ

2
22µ

2
23 + µ21µ

2
22µ

4
23 + 6µ21µ

3
22µ

3
23 + 3µ4

12µ21µ
2
23

+2µ2
12µ21µ

4
23 + 6µ2

12µ21µ22µ
3
23 + 2µ12µ21µ22µ

4
23 + 2µ12µ21µ

2
22µ

3
23 + 4µ12µ21µ

3
22µ

2
23

+11µ3
12µ

2
22µ

2
23 + 6µ3

12µ
3
22µ23 + 5µ2

12µ
3
22µ

2
23 + 4µ2

12µ
2
22µ

3
23 + 4µ2

12µ22µ
4
23 + µ7

12),

φ7((1, 1), 1, 1) = µ12µ
2
12µ

3
23(2µ3

22µ
2
23 + µ12µ

2
22µ

2
23 + 3µ2

12µ
2
22µ23 + 2µ12µ

3
22µ23 + µ5

12
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+µ4
12µ23 + µ3

12µ
2
23 + 5µ3

12µ22µ23 + 4µ2
12µ22µ

2
23 + µ2

12µ
3
23 + 2µ4

12µ22),

φ7((2, 1), 1, 1) = µ12µ
4
21µ

3
23(2µ2

22µ23 + 2µ12µ
2
22 + µ12µ22µ23 + µ2

12µ23 + µ3
12

+2µ2
12µ22),

φ7((1, 2), 1, 1) = µ12µ
2
21µ

4
23(µ3

22µ23 + 2µ2
12µ

2
22 + 4µ2

12µ22µ23 + 2µ3
12µ23 + µ12µ

3
22

+2µ3
12µ22 + µ4

12 + 3µ12µ
2
22µ23),

φ8((1, 1), 1, 1) = µ3
12µ

3
21µ

5
23,

φ8((2, 1), 1, 1) = µ2
12µ

3
21µ

5
23(µ12 + µ22),

φ8((1, 2), 1, 1) = 0,

φ9((2, 2), 1, 1) = µ12µ
3
21µ

5
23(µ2

22 + µ12µ22 + µ2
12),

φ10((2, 2), 1, 1) = µ12µ21µ23(2µ5
12µ21µ

2
23 + 3µ2

12µ21µ
5
23 + 4µ7

12µ23 + 5µ4
12µ

4
23

+3µ21µ
4
22µ

3
23 + 3µ7

12µ21 + 2µ21µ
3
22µ

4
23 + µ2

12µ21µ
4
22 + 5µ6

12µ
2
22 + 2µ7

12µ22 + 2µ5
12µ

3
23

+11µ4
12µ21µ22µ

2
23 + µ4

12µ
4
22 + 8µ5

12µ21µ22µ23 + 5µ6
12µ22µ23 + 13µ5

12µ22µ
2
23

+12µ4
12µ21µ

2
22µ23 + 13µ3

12µ21µ
2
22µ

2
23 + 10µ3

12µ21µ22µ
3
23 + µ2

12µ21µ
4
22µ23 + µ12µ

3
22µ

4
23

+8µ5
12µ

2
22µ23 + 6µ4

12µ
3
22µ23 + 11µ4

12µ
2
22µ

2
23 + µ3

12µ
4
22µ23 + 3µ3

12µ22µ
4
23 + 6µ4

12µ22µ
3
23

+2µ3
12µ

2
22µ

3
23 + 5µ3

12µ
3
22µ

2
23 + 4µ2

12µ
3
22µ

3
23 + 4µ2

12µ
2
22µ

4
23 + µ2

12µ
4
22µ

2
23 + 3µ12µ

4
22µ

3
23

+2µ3
12µ21µ

4
22 + 4µ6

12µ21µ
2
23 + 2µ12µ21µ

3
22µ

3
23),

φ11((2, 2), 1, 1) = µ12µ
3
21µ

5
23(µ2

22 + µ12µ22 + µ2
12),

φ12((2, 2), 1, 1) = 0,

φ13((3, 1), 1, 1) = µ12µ21µ
3
23(µ6

12 + µ5
12µ23 + 4µ12µ

3
22µ

2
23 + 2µ3

12µ
3
22 + 3µ2

12µ
4
22 + µ5

12µ22

+4µ4
12µ22µ23 + 4µ2

12µ
3
22µ23 + µ4

12µ
2
23),

φ13((3, 2), 1, 1) = µ12µ21µ23(2µ3
12µ21µ22µ

3
23 + 4µ12µ21µ

3
22µ

3
23 + 4µ2

12µ21µ
2
22µ

3
23 + µ8

12

+4µ4
12µ21µ

3
23 + 6µ5

12µ21µ
2
23 + µ21µ

4
22µ

3
23 + 4µ7

12µ22 + 4µ5
12µ

3
22 + µ7

12µ23 + 6µ6
12µ

2
22

+2µ4
12µ21µ22µ

2
23 + 5µ2

12µ21µ
3
22µ

2
23 + 3µ3

12µ21µ
2
22µ

2
23 + µ12µ21µ

4
22µ

2
23 + µ3

12µ21µ
4
23

+µ7
12µ23 + 2µ3

12µ22µ
4
23 + µ2

12µ
2
22µ

4
23 + 4µ2

12µ
3
22µ

3
23 + 8µ3

12µ
2
22µ

3
23 + 10µ4

12µ22µ
3
23
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+µ4
12µ

4
22 + 2µ6

12µ21µ22 + µ12µ21µ
2
22µ

4
23 + µ4

12µ
4
23 + 2µ5

12µ
3
23 + 4µ6

12µ21µ23

+4µ4
12µ21µ

3
23 + 6µ5

12µ21µ
2
22 + µ3

12µ21µ
4
22 + µ12µ

4
22µ

3
23 + µ2

12µ
4
22µ

2
23 + 13µ4

12µ
2
22µ

2
23

+12µ6
12µ22µ23 + 12µ5

12µ21µ22µ23 + 6µ3
12µ21µ

3
22µ23 + 13µ4

12µ21µ
2
22µ23

+µ2
12µ21µ

4
22µ

2
23 + 4µ12µ21µ22µ

4
23),

φ14((3, 1), 1, 1) = µ12µ
3
21µ

5
23(µ2

12 + µ12µ22 + µ2
22),

φ14((3, 2), 1, 1) = µ12µ
2
21µ

5
23(µ3

12 + 4µ12µ
2
22 + 2µ2

12µ22 + µ3
23).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy π = (d0)∞. 2

Proof of Proposition 4.3.3 : The set of allowable actions in state s ∈ S is

As =



a31 for s = (0, 0),

a32 for s = (B2 + 2, 0),

a33 for s = (B2 + 1, B3 + 2),

{a31, a32} for s = (i, 0), where i ∈ {1, . . . , B2 + 1},

{a11, a13, a33} for s = (0, j) or s = (i, B3 + 2), where

i ∈ {1, . . . , B2} and j ∈ {1, . . . , B3 + 2},

{a22, a32, a33} for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1},

{a11, a22, a31, a32, a33} for s = (i, j), where i ∈ {1, . . . , B2 + 1}

and j ∈ {1, . . . , B3 + 1}.

Under our assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and

µ11 = µ12 = 0), it is clear that µ21 > 0 and µ22 > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant q = µ13 + µ21 + µ22 + µ23.
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We start the policy iteration algorithm by choosing

d0(s) =



a31 for s = (0, 0),

a32 for s = (B2 + 2, j), where j ∈ {0, . . . , B3 + 1},

a33 for s = (B2 + 1, B3 + 2),

a32 for s = (i, j), where i ∈ {1, . . . , B2 + 1} and j ∈ {0, . . . , B3 + 1},

a31 for s = (0, j) or s = (i, B3 + 2), where i ∈ {1, . . . , B2}

and j ∈ {1, . . . , B3 + 2}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below,

ψk(s, B2, B3) for k ∈ {1, . . . , 11} and ψ(B2, B3) are nonnegative constants that depend

on the service rates, the state s = (i, j) ∈ S under consideration, and the buffer sizes,

and they are provided below. We assume that B2, B3 ≤ 1 in the following calculations.

First, consider the state s = (i, 0), where i ∈ {1, . . . , B2 + 1}, and recall that

d0(s) = a32. Some algebra shows that, for all i ∈ {1, . . . , B2 + 1},

(
r((i, 0), a32) +

∑
s′∈S

p(s′|(i, 0), a32)h(s′)
)
− r((i, 0), a31)−

∑
s′∈S

p(s′|(i, 0), a31)h(s′)

=
ψ1((i, 0), B2, B3)

ψ(B2, B3)
≥ 0.

Recall that d0(s) = a31 for s = (0, j), where j ∈ {1, . . . , B3 + 2}. Then, we can show,

for all j ∈ {1, . . . , B3 + 2}, that

(
r((0, j), a31) +

∑
s′∈S

p(s′|(0, j), a31)h(s′)
)
− r((0, j), a11)−

∑
s′∈S

p(s′|(0, j), a11)h(s′)

=
ψ2((0, j), B2, B3)

ψ(B2, B3)
≥ 0,(

r((0, j), a31) +
∑
s′∈S

p(s′|(0, j), a31)h(s′)
)
− r((0, j), a33)−

∑
s′∈S

p(s′|(0, j), a33)h(s′)

=
ψ3((0, j), B2, B3)

ψ(B2, B3)
≥ 0.

Similarly, d0(s) = a31 for s = (i, B3 + 2), where i ∈ {1, . . . , B2}. We can show that,
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for all i ∈ {1, . . . , B2},(
r((i, B3 + 2), a31) +

∑
s′∈S

p(s′|(i, B3 + 2), a31)h(s′)
)
− r((i, B3 + 2), a11)

−
∑
s′∈S

p(s′|(i, B3 + 2), a11)h(s′) =
ψ4((i, B3 + 2), B2, B3)

ψ(B2, B3)
≥ 0,(

r((i, B3 + 2), a31) +
∑
s′∈S

p(s′|(i, B3 + 2), a31)h(s′)
)
− r((i, B3 + 2), a33)

−
∑
s′∈S

p(s′|(i, B3 + 2), a33)h(s′) =
ψ5((i, B3 + 2), B2, B3)

ψ(B2, B3)
≥ 0.

For s = (i, j), where i ∈ {1, . . . , B2+1} and j ∈ {1, . . . , B3+1}, recall that d0(s) = a32.

Some algebra shows that, for all i ∈ {1, . . . , B2 + 1} and for all j ∈ {1, . . . , B3 + 1},

(
r((i, j), a32) +

∑
s′∈S

p(s′|(i, j), a32)h(s′)
)
− r((i, j), a11)−

∑
s′∈S

p(s′|(i, j), a11)h(s′)

=
ψ6((i, j), B2, B3)

ψ(B2, B3)
≥ 0,(

r((i, j), a32) +
∑
s′∈S

p(s′|(i, j), a32)h(s′)
)
− r((i, j), a22)−

∑
s′∈S

p(s′|(i, j), a22)h(s′)

=
ψ7((i, j), B2, B3)

ψ(B2, B3)
≥ 0,(

r((i, j), a32) +
∑
s′∈S

p(s′|(i, j), a32)h(s′)
)
− r((i, j), a33)−

∑
s′∈S

p(s′|(i, j), a33)h(s′)

=
ψ8((i, j), B2, B3)

ψ(B2, B3)
≥ 0,(

r((i, j), a32) +
∑
s′∈S

p(s′|(i, j), a32)h(s′)
)
− r((i, j), a31)−

∑
s′∈S

p(s′|(i, j), a31)h(s′)

=
ψ9((i, j), B2, B3)

ψ(B2, B3)
≥ 0.

Finally, d0(s) = a32 for s = (B2 + 2, j), where j ∈ {1, . . . , B3 + 1}. Some algebra

shows that, for all j ∈ {1, . . . , B3 + 1},

(
r((B2 + 2, j), a32) +

∑
s′∈S

p(s′|(B2 + 2, j), a32)h(s′)
)
− r((B2 + 2, j), a22)

−
∑
s′∈S

p(s′|(B2 + 2, j), a22)h(s′) =
ψ10((B2 + 2, j), B2, B3)

ψ(B2, B3)
≥ 0,
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(
r((B2 + 2, j), a32) +

∑
s′∈S

p(s′|(B2 + 2, j), a32)h(s′)
)
− r((B2 + 2, j), a33)

−
∑
s′∈S

p(s′|(B2 + 2, j), a33)h(s′) =
ψ11((B2 + 2, j), B2, B3)

ψ(B2, B3)
≥ 0.

When B2 = B3 = 0, we obtain

ψ(0, 0) = µ3
13µ

2
22 + µ4

13µ21 + 2µ2
13µ

2
21µ22 + µ13µ

2
21µ

2
22 + µ3

21µ
2
22 + µ13µ21µ

3
23

+µ2
13µ21µ

2
22 + µ3

21µ22µ23 + 2µ3
13µ

2
21 + µ4

13µ22 + µ4
13µ22 + 3µ3

13µ21µ22 + µ2
13µ

3
21

+µ3
13µ21µ23 + µ3

13µ22µ23 + 2µ13µ
2
21µ22µ23 + 2µ2

13µ
2
13µ23 + µ2

13µ
2
22µ23 + µ2

21µ
2
22µ23

+µ13µ
3
21µ23 + µ13µ21µ22µ

2
23 + 3µ2

13µ21µ22µ23

ψ1((1, 0), 0, 0) = µ13µ
3
21µ

2
22,

ψ2((0, 1), 0, 0) = µ13µ
3
21µ

2
22,

ψ2((0, 2), 0, 0) = µ13µ
2
21µ22(µ13µ22 + µ21µ22 + µ2

13 + µ13µ21),

ψ3((0, 1), 0, 0) = µ13µ21µ22(µ2
21µ23 + µ2

13µ23 + 2µ13µ21µ23 + µ21µ22µ23 + µ13µ22µ23

+µ3
13 + µ13µ

2
21 + 2µ2

13µ21 + µ13µ21µ22 + µ2
13µ22),

ψ3((0, 2), 0, 0) = µ13µ21µ22(µ2
13 + µ13µ22 + µ13µ23 + µ22µ23 + µ21µ23 + µ13µ21),

ψ6((1, 1), 0, 0) = µ13µ
2
21µ

2
22(µ2

13 + µ13µ22 + 2µ13µ21 + µ21µ22),

ψ7((1, 1), 0, 0) = µ13µ
2
21µ

2
22(µ13 + µ21),

ψ8((1, 1), 0, 0) = µ13µ21µ22(µ2
21µ23 + µ13µ22µ23 + 2µ13µ21µ23 + µ2

13µ23 + µ13µ
2
21

+µ3
13 + µ2

13µ22 + 2µ2
13µ21),

ψ9((1, 1), 0, 0) = µ2
13µ

3
21µ

2
22,

ψ10((2, 1), 0, 0) = µ13µ21µ
2
22(µ2

21µ22 + µ13µ21µ22 + µ2
13µ22 + µ3

13 + 2µ2
13µ21 + µ13µ

2
21),

ψ11((2, 1), 0, 0) = µ13µ21µ22(µ2
13µ22µ23 + µ13µ21µ22µ23 + µ2

13µ22µ23 + µ13µ
2
21µ23

+µ4
13 + 2µ2

13µ21µ23 + µ3
13µ23 + µ13µ

2
21µ22 + µ2

13µ21µ22 + µ3
13µ22 + µ2

13µ
2
21

+2µ3
13µ21),
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When B2 = 1 and B3 = 0, we obtain

ψ(1, 0) = µ4
21µ

2
22µ23 + 2µ4

13µ22µ
2
23 + 2µ13µ

4
21µ

2
22 + µ13µ

3
21µ

3
22 + 3µ2

13µ
3
21µ

2
22

+µ2
13µ

4
21µ23 + 3µ3

13µ
3
21µ23 + 5µ4

13µ21µ
2
22 + 2µ2

13µ
4
21µ22 + µ5

13µ22µ23 + µ3
13µ

3
22µ23

+4µ3
13µ

3
21µ22 + 5µ5

13µ21µ22 + 7µ4
13µ

2
21µ22 + 4µ3

13µ
2
21µ

2
22 + µ3

13µ21µ
3
22 + µ2

13µ
2
21µ

3
22

+µ5
13µ21µ23 + µ3

21µ
3
22µ23 + µ13µ

2
21µ

3
22µ23 + µ2

13µ21µ
3
22µ23 + 3µ13µ

3
21µ

2
22µ23

+4µ2
13µ

3
21µ22µ23 + 4µ2

13µ
2
21µ

2
22µ23 + 5µ4

13µ21µ22µ23 + 2µ13µ
4
21µ22µ23 + µ6

13µ21

+5µ3
13µ21µ

2
22µ23 + 7µ3

13µ
2
21µ22µ23 + µ3

13µ
4
21 + µ4

21µ
3
22 + µ4

13µ
3
22 + µ6

13µ22

+2µ5
13µ

2
22 + 3µ4

13µ
3
21 + 3µ5

13µ
2
21 + 3µ4

13µ
2
21µ22,

ψ1((1, 0), 1, 0) = µ13µ
4
21µ

2
22(µ13 + µ22),

ψ1((2, 0), 1, 0) = µ13µ
3
21µ

2
22(µ2

13 + µ13µ22 + 2µ13µ21 + µ21µ22),

ψ2((0, 1), 1, 0) = µ13µ
4
21µ

2
22(µ13 + µ22),

ψ2((0, 2), 1, 0) = µ13µ
3
21µ22(µ21µ

2
22 + µ2

13µ21 + 2µ13µ21µ22 + µ3
13 + 2µ2

13µ22 + µ13µ
2
22),

ψ3((0, 1), 1, 0) = µ13µ21µ22(µ5
13 + µ4

13µ23 + 3µ4
13µ21 + 2µ4

13µ22 + 2µ3
13µ22µ23 + µ3

13µ
2
22

+3µ3
13µ

2
21 + 4µ3

13µ21µ23 + 3µ3
13µ21µ23 + 3µ2

13µ
2
21µ22 + 4µ2

13µ21µ22µ23 + µ2
13µ

2
22µ23

+µ2
13µ21µ

2
22 + µ2

13µ
3
21 + 3µ2

13µ
2
21µ23 + µ13µ

2
21µ

2
22 + µ13µ

3
21µ22 + µ13µ

3
21µ23

+µ13µ21µ
2
22µ23 + 3µ13µ

2
21µ22µ23 + µ2

21µ
2
22µ23 + µ3

21µ22µ23),

ψ3((0, 2), 1, 0) = µ2
13µ21µ22(3µ3

13µ21 + µ3
13µ23 + 2µ3

13µ22 + 2µ2
13µ21µ22 + 2µ2

13µ
2
21

+3µ2
13µ

2
22 + 3µ2

13µ21µ23 + 2µ2
13µ22µ23 + µ13µ21µ

2
22 + 2µ13µ

2
21µ22 + µ13µ

2
22µ23

+µ4
13 + 4µ13µ21µ22µ23 + µ2

21µ22µ23 + µ21µ
2
22µ23),

ψ4((1, 2), 1, 0) = µ13µ
2
21µ22(2µ13µ

2
21µ22 + µ2

13µ
2
21 + µ13µ21µ

2
22 + 2µ3

13µ21 + µ2
13µ

2
22

2µ4
13 + 2µ3

13µ22 + µ2
21µ

2
22 + 2µ2

13µ21µ22),

ψ5((1, 2), 1, 0) = µ3
13µ21µ22(µ2

21µ23 + µ2
13µ21 + 2µ21µ22µ23 + 2µ13µ21µ23 + µ3

13

+2µ13µ21µ22 + 2µ2
13µ21 + 2µ2

22µ23 + 2µ13µ22µ23 + µ13µ
2
22 + 2µ2

13µ22 + µ2
13µ23),

ψ6((1, 1), 1, 0) = µ13µ
3
21µ

2
22(µ2

13 + µ13µ22 + µ21µ22 + 2µ13µ21),
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ψ6((2, 1), 1, 0) = µ13µ
2
21µ

2
22(µ4

13 + 3µ3
13µ21 + 2µ3

13µ22 + 3µ2
13µ

2
21 + 4µ2

13µ21µ22

+µ2
13µ

2
22 + 3µ13µ

2
21µ22 + µ13µ21µ

2
22 + µ2

21µ
2
22),

ψ7((1, 1), 1, 0) = µ13µ
3
21µ

2
22(µ2

13 + µ13µ22 + µ21µ22 + µ13µ21),

ψ7((2, 1), 1, 0) = µ13µ
2
21µ

2
22(4µ13µ

2
21 + µ2

21µ22 + µ13µ21µ22 + 2µ2
13µ21 + µ3

13 + µ2
13µ22),

ψ8((1, 1), 1, 0) = µ13µ21µ22(µ2
13µ

2
22µ23 + µ3

21µ22µ23 + 2µ3
13µ22µ23 + 3µ2

13µ
2
21µ23

+µ13µ21µ
2
22µ23 + 3µ3

13µ21µ23 + 2µ13µ
2
21µ22µ23 + 4µ2

13µ21µ22µ23 + µ13µ
3
21µ23

+µ4
13µ23 + 3µ3

13µ
2
21 + µ2

13µ
3
21 + 3µ4

13µ21 + 2µ4
13µ22 + µ3

13µ
2
22 + µ2

13µ21µ
2
22 + µ5

13

+µ13µ
3
21µ22 + 2µ2

13µ
2
21µ22 + 4µ3

13µ21µ22),

ψ8((1, 2), 1, 0) = µ13µ21µ22(µ4
13µ23 + 3µ4

13µ21 + 2µ4
13µ22 + 3µ3

13µ21µ22 + 3µ3
13µ

2
21

+µ5
13 + 2µ3

13µ22µ23 + 3µ3
13µ21µ23 + µ3

13µ
2
22 + 3µ2

13µ21µ22µ23 + µ2
13µ

2
21µ22 + µ2

13µ
3
21

+µ2
13µ

2
22µ23 + 3µ2

13µ
2
21µ23 + µ13µ

2
21µ22µ23 + µ13µ

3
21µ22 + µ13µ

3
21µ23 + µ3

13µ22µ23),

ψ9((1, 1), 1, 0) = µ2
13µ

4
21µ

2
22,

ψ9((1, 2), 1, 0) = µ2
13µ

3
21µ

2
22(µ2

13 + µ13µ22 + 2µ13µ21 + µ21µ22),

ψ10((3, 1), 1, 0) = µ13µ21µ22(µ3
13µ

2
22µ23 + µ13µ

3
21µ

2
22 + 2µ2

13µ
3
21µ22 + 2µ13µ

3
21µ22µ23

+µ2
13µ

3
21µ23 + µ3

13µ
3
21 + µ2

13µ
2
21µ

2
22 + µ13µ

2
21µ

2
22µ23 + 3µ2

13µ
2
21µ22µ23 + 3µ4

13µ
2
21

+3µ3
13µ

2
21µ22 + 3µ3

13µ
2
21µ23 + µ2

13µ21µ
2
22µ23 + µ3

13µ21µ
2
22 + 4µ4

13µ21µ22 + 3µ5
13µ21

+4µ3
13µ21µ22µ23 + 3µ4

13µ21µ23 + µ4
13µ

2
22 + µ3

13µ
2
22µ23 + 2µ4

13µ22µ23 + 2µ5
13µ22

µ6
13 + µ5

13µ23,

ψ10((3, 1), 1, 0) = µ13µ21µ
2
22(µ5

13 + 3µ4
13µ21 + 2µ4

13µ22 + 3µ3
13µ

2
21 + 4µ3

13µ21µ22

+µ3
13µ

2
22 + µ2

13µ
3
21 + 3µ2

13µ
2
21µ22 + µ2

13µ21µ
2
22 + 2µ13µ

3
21µ22 + µ3

21µ
2
22 + µ13µ

2
21µ

2
22),

When B2 = 0 and B3 = 1, we obtain

ψ(0, 1) = 6µ2
13µ

2
22µ

3
23 + µ4

13µ
2
22µ23 + 2µ5

13µ21µ22 + µ4
13µ

3
22 + 3µ4

13µ
3
21 + 2µ5

13µ
2
22

+µ3
21µ

3
22µ23 + µ13µ

3
21µ

3
22 + 3µ3

13µ
3
21µ23 + µ2

13µ
4
21µ23 + µ3

13µ
4
21 + 2µ4

13µ
2
22µ23
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+µ4
13µ

2
22µ23 + µ5

13µ22µ23 + µ13µ
4
21µ

2
22 + µ4

21µ
3
22 + µ2

13µ
4
21µ22 + 3µ5

13µ
2
21 + µ6

13µ21

+µ3
13µ

3
22µ23 + µ13µ

4
21µ22µ23 + µ6

13µ22 + 5µ4
13µ21µ22µ23 + 4µ3

13µ21µ
2
22µ23

+4µ2
13µ

3
21µ22µ23 + 4µ2

13µ
2
21µ

2
22µ23 + 5µ4

13µ21µ22µ23 + 2µ13µ
4
21µ22µ23 + µ6

13µ21

+µ2
13µ21µ

3
22µ23 + 6µ3

13µ
2
21µ22µ23 + 3µ2

13µ
2
21µ

2
22µ23 + 4µ4

13µ21µ
2
22 + 3µ3

13µ
2
21µ

2
22

+µ3
13µ21µ

3
22 + µ2

13µ
2
21µ

3
22 + 3µ4

13µ
2
21µ23 + µ13µ

2
21µ

3
22µ23 + 3µ3

13µ
3
21µ22 + 2µ2

13µ
3
21µ

2
22

+3µ2
13µ

3
21µ22µ23 + 2µ13µ

3
21µ

2
22µ23,

ψ1((1, 0), 0, 1) = µ13µ
4
21µ

3
22,

ψ2((0, 1), 0, 1) = µ13µ
4
21µ

3
22,

ψ2((0, 2), 0, 1) = µ13µ
3
21µ

2
22(µ2

13 + µ13µ21 + µ13µ22 + µ21µ22),

ψ2((0, 3), 0, 1) = µ13µ
2
21µ22(µ2

13µ
2
22 + µ13µ21µ

2
22 + 2µ3

13µ21 + µ2
13µ

2
21 + 2µ3

13µ22 + µ4
13

+µ2
21µ

2
22 + µ13µ

2
21µ22 + 2µ2

13µ21µ22),

ψ3((0, 1), 0, 1) = µ13µ21µ22(µ2
13µ

2
22µ23 + µ2

13µ21µ
2
22 + µ3

13µ
2
22 + µ2

21µ
2
22µ23 + µ13µ

2
21µ

2
22

+µ13µ21µ
2
22µ23 + µ13µ

3
21µ22 + 3µ3

13µ21µ23 + 2µ3
13µ22µ23 + 2µ2

13µ
2
21µ22 + µ3

13µ22µ23

+3µ2
13µ21µ22µ23 + 2µ13µ

2
21µ22µ23 + 2µ4

13µ22 + 3µ3
13µ

2
21 + 3µ4

13µ21 + µ4
13µ23

+µ2
13µ

3
21 + 3µ2

13µ
2
21µ23 + µ13µ

3
21µ23 + µ5

13 + 3µ3
13µ21µ23),

ψ3((0, 2), 0, 1) = µ2
13µ21µ22(µ3

13µ23 + 2µ3
13µ22 + 3µ3

13µ21 + 2µ3
13µ22 + 3µ2

13µ21µ23

+µ2
13µ

2
22 + 2µ2

13µ22µ23 + 3µ2
13µ21µ22 + 3µ2

13µ
2
21 + µ13µ

2
21µ22 + 3µ13µ

2
21µ23 + µ4

13

+µ13µ
3
21 + 3µ13µ21µ22µ23 + µ13µ21µ

2
22 + µ13µ

2
22µ23 + µ3

21µ23 + µ2
21µ22µ23

+µ21µ
2
22µ23),

ψ3((0, 3), 0, 1) = µ3
13µ21µ22(µ3

13 + 2µ2
13µ22 + 2µ2

13µ21 + µ2
13µ23 + 2µ13µ21µ23

+µ13µ
2
22 + µ13µ21µ22 + µ13µ

2
21 + 2µ13µ22µ23 + µ2

22µ23 + µ21µ22µ23 + µ2
21µ23),

ψ6((1, 1), 0, 1) = µ13µ
3
21µ

3
22(µ2

13 + 2µ13µ21 + µ13µ22 + µ21µ22),

ψ6((1, 2), 0, 1) = µ13µ
2
21µ

2
22(µ13µ21µ

3
22 + 4µ2

13µ21µ
2
22 + 5µ3

13µ21µ22 + 4µ2
13µ

2
21µ22

+3µ13µ
2
21µ

2
22 + µ2

21µ
3
22 + µ3

13µ
2
21 + 2µ4

13µ21 + µ5
13 + 3µ4

13µ22 + 3µ3
13µ

2
22 + µ2

13µ
3
22),
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ψ7((1, 1), 0, 1) = µ13µ
3
21µ

3
22(µ13 + µ21),

ψ7((1, 2), 0, 1) = µ13µ
2
21µ

2
22(µ13µ

2
21 + µ2

13µ21 + µ2
13µ22 + µ3

13 + µ2
21µ22 + µ13µ21µ22),

ψ8((1, 1), 0, 1) = µ13µ21µ22(µ5
13 + 2µ4

13µ22 + 3µ4
13µ21 + µ4

13µ23 + 2µ3
13µ22µ23 + µ3

13µ
2
22

+3µ3
13µ21µ22 + 3µ3

13µ21µ23 + 3µ3
13µ

2
21 + 3µ2

13µ21µ22µ23 + 3µ2
13µ

2
21µ23 + µ2

13µ21µ
2
22

+µ3
13µ

2
21 + 2µ2

13µ
2
21µ22 + µ2

13µ
2
22µ23 + µ13µ21µ

2
22µ23 + µ13µ

3
21µ22 + 2µ13µ

2
21µ22µ23

+µ13µ
3
21µ23 + µ2

21µ22µ
2
23),

ψ8((1, 2), 0, 1) = µ2
13µ21µ22(3µ3

13µ21 + 2µ3
13µ22 + µ3

13µ23 + 2µ2
13µ22µ23 + 3µ2

13µ
2
21

+3µ2
13µ21µ23 + µ2

13µ
2
22 + 2µ13µ21µ22µ23 + µ13µ

2
22µ23 + 3µ13µ

2
21µ23 + µ4

13 + µ13µ
3
21

+µ3
21µ23),

ψ9((1, 1), 0, 1) = µ2
13µ

4
21µ

3
22,

ψ9((1, 2), 0, 1) = µ3
13µ

4
21µ

3
22,

ψ10((2, 1), 0, 1) = µ13µ21µ22(µ3
13 + µ13µ

2
21 + 2µ2

13µ21 + µ2
13µ22 + µ13µ21µ22 + µ2

21µ22),

ψ10((2, 2), 0, 1) = µ13µ21µ
2
22(µ3

21µ
3
22 + 3µ13µ

3
21µ

2
22 + 3µ2

13µ
3
21µ22 + µ3

13µ
3
21 + µ13µ

2
21µ

3
22

+4µ2
13µ

2
21µ

2
22 + 3µ3

13µ
2
21µ22 + 3µ4

13µ
2
21 + µ2

13µ21µ
3
22 + 5µ3

13µ21µ
2
22 + 7µ4

13µ21µ22

+3µ5
13µ21 + µ3

13µ
3
22 + 3µ4

13µ
2
22 + 3µ5

13µ22 + µ6
13),

ψ11((1, 2), 0, 1) = µ13µ21µ22(3µ4
13µ

2
21 + µ2

13µ
2
21µ

2
22 + µ13µ

3
21µ

2
22 + 3µ4

13µ22µ23 + µ6
13

+µ2
13µ

3
22µ23 + 3µ3

13µ
2
22µ23 + µ5

13µ23 + 3µ4
13µ21µ23 + 3µ3

13µ
2
21µ23 + µ2

13µ
3
21µ23

+µ13µ
2
21µ

2
22µ23 + 3µ5

13µ21 + 6µ4
13µ21µ22 + 5µ3

13µ
2
21µ22 + 2µ2

13µ
3
21µ22 + 3µ3

13µ21µ
2
22

+6µ3
13µ21µ22µ23 + 5µ2

13µ
2
21µ22µ23 + 3µ2

13µ21µ
2
22µ23 + 3µ4

13µ
2
22 + 3µ5

13µ22

+µ3
21µ

2
22µ23 + µ3

13µ
3
21 + 2µ13µ

3
21µ22µ23 + µ3

13µ
3
22),

ψ11((2, 2), 0, 1) = µ2
13µ21µ22(µ3

21µ
2
22µ23 + 3µ4

13µ21µ23 + µ2
13µ

3
21µ23 + 3µ3

13µ
2
21µ23 + µ6

13

+3µ4
13µ

2
22 + µ3

13µ
3
22 + µ2

13µ
3
22µ23 + 3µ3

13µ
2
22µ23 + µ5

13µ23 + 3µ5
13µ22 + 3µ4

13µ22µ23

+µ13µ
2
21µ

2
22µ23 + 5µ2

13µ
2
21µ22µ23 + 2µ13µ

3
21µ22µ23 + 6µ3

13µ21µ22µ23 + 5µ3
13µ

2
21µ22

+3µ3
13µ21µ

2
22 + 6µ4

13µ21µ22 + 2µ2
13µ

3
21µ22 + 3µ2

13µ21µ
2
22µ23 + µ2

13µ
2
21µ

2
22 + µ3

13µ
3
21

+µ13µ
3
21µ

2
22 + 3µ5

13µ21 + 3µ4
13µ

2
21),

188



When B2 = B3 = 1, we obtain

ψ(1, 1) = µ7
13µ

3
22 + 4µ6

13µ
4
22 + µ5

22µ
5
21 + 3µ3

13µ
5
21µ22µ23 + µ8

13µ21µ23 + µ21µ
5
22µ

4
23

+3µ13µ
4
22µ

5
23 + 4µ5

13µ21µ
4
22 + 4µ3

13µ
4
21µ

3
22 + 4µ2

13µ
3
22µ

5
23 + 17µ6

13µ
3
22µ23

+19µ5
13µ

3
22µ

2
23 + 13µ4

13µ
3
21µ

3
22 + 6µ6

13µ21µ
3
22 + 4µ7

13µ21µ
2
22 + 11µ4

13µ
2
22µ

4
23

+4µ3
13µ

2
22µ

5
23 + 11µ7

13µ
2
22µ23 + 2µ6

13µ
2
22µ

2
23 + 7µ5

13µ
3
21µ

2
22 + µ8

13µ21µ22

+12µ5
13µ

4
22µ23 + 2µ13µ21µ

5
22µ

3
23 + µ3

13µ21µ
5
22µ23 + 4µ2

13µ
5
21µ

2
22µ23 + µ5

13µ
5
21

+3µ7
13µ21µ

2
23 + 4µ6

13µ
4
23 + 6µ7

13µ
3
23 + 3µ2

13µ
4
22µ

4
23 + 6µ4

13µ
4
22µ

2
23 + 5µ3

13µ
4
22µ

3
23

+12µ6
13µ22µ

3
23 + 4µ7

13µ
2
21µ22 + 2µ8

13µ22µ23 + 5µ5
13µ

4
21µ22 + 3µ4

13µ
5
21µ22

+µ13µ
5
22µ

4
23 + 4µ8

13µ
2
23 + µ9

13µ23 + 4µ5
13µ21µ

4
23 + µ4

13µ21µ
5
23 + 2µ6

13µ21µ
3
23

+4µ7
13µ

3
22 + µ9

13µ22 + µ21µ
4
22µ

5
23 + µ2

13µ
3
21µ

5
22 + µ4

13µ21µ
5
22 + 2µ13µ21µ

3
22µ

5
23

+µ5
13µ

5
22 + µ2

13µ21µ
2
22µ

5
23 + 16µ4

13µ21µ
3
22µ

2
23 + 17µ5

13µ21µ
2
22µ

2
23 + 7µ3

13µ
4
21µ

3
22

+2µ4
13µ21µ

2
22µ

3
23 + 4µ3

13µ21µ
2
22µ

4
23 + 8µ2

13µ21µ
3
22µ

4
23 + 11µ4

13µ21µ22µ
4
23

+17µ5
13µ21µ22µ

3
23 + 12µ6

13µ21µ22µ
2
23 + 6µ7

13µ21µ22µ23 + 7µ5
13µ

2
21µ

2
22µ23,

ψ1((1, 0), 1, 1) = µ2
13µ21µ22(2µ2

13µ21µ
3
22µ23 + 6µ2

13µ
2
21µ

2
22µ23 + 2µ3

13µ21µ
2
22µ23

+µ13µ21µ
2
22µ

3
23 + 4µ3

13µ
3
21µ23 + 3µ5

13µ21µ23 + µ2
13µ21µ

4
23 + 2µ4

13µ21µ
2
23 + 2µ6

13µ23

+2µ4
13µ

3
23 + 6µ5

13µ
2
23 + µ7

13 + µ3
13µ

4
23 + 2µ3

13µ
3
22µ23 + µ21µ

2
22µ

4
23 + µ13µ

2
22µ

4
23

+5µ3
13µ21µ22µ

2
23 + 5µ4

13µ21µ22µ23 + 5µ2
13µ

3
21µ22µ23 + 3µ13µ

4
21µ22µ23 + µ6

13µ21

+6µ3
13µ

2
21µ

2
22 + 3µ4

13µ
2
22µ23 + µ2

13µ
3
21µ

2
22 + 9µ5

13µ22µ23 + 12µ4
13µ22µ

2
23 + µ3

13µ
4
22

+4µ5
13µ21µ23 + 2µ6

13µ22 + 2µ5
13µ

2
22),

ψ1((2, 0), 1, 1) = µ13µ21µ22(µ3
13µ

4
22µ23 + 2µ5

13µ
3
23 + 4µ7

13µ23 + 3µ4
13µ

4
22 + µ7

13µ21

+11µ5
13µ22µ

2
23 + 6µ6

13µ22µ23 + 8µ4
13µ22µ

3
23 + µ13µ

3
22µ

4
23 + µ4

13µ
4
23 + 6µ6

13µ
2
23

+2µ3
13µ22µ

4
23 + 2µ2

13µ
4
21µ

2
22 + µ8

13 + µ2
13µ

3
22µ

3
23 + 3µ5

13µ
3
23 + 3µ6

13µ
2
22 + 4µ7

13µ22

+3µ3
13µ

3
22µ

2
23 + 3µ4

13µ
3
22µ23 + 6µ4

13µ
2
22µ

2
23 + 9µ5

13µ
2
22µ23 + 3µ3

13µ
2
22µ

3
23

+6µ5
13µ21µ22µ23 + 15µ4

13µ21µ22µ
2
23 + 2µ2

13µ21µ22µ
4
23 + 10µ3

13µ21µ22µ
3
23
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+µ2
13µ21µ

4
22µ23 + µ3

13µ21µ
4
22 + 4µ4

13µ21µ
3
22 + 6µ5

13µ21µ
2
23 + µ3

13µ21µ
4
23 + 4µ4

13µ21µ
3
23

+3µ13µ21µ
2
22µ

4
23 + 15µ3

13µ21µ
2
22µ

2
23 + 4µ4

13µ21µ
2
22µ23 + 6µ2

13µ21µ
2
22µ

3
23),

ψ2((0, 1), 1, 1) = µ13µ
2
21µ22(µ7

13 + µ2
13µ21µ

4
22 + 6µ5

13µ
2
22 + 2µ4

13µ
2
22µ23 + 8µ4

13µ
2
21µ22

+µ4
13µ

3
23 + 4µ6

13µ22 + 3µ3
13µ22µ

3
23 + 3µ13µ

3
22µ

3
23 + 4µ4

13µ
3
22 + µ13µ

4
22µ

2
23 + µ4

22µ
3
23

+4µ3
13µ

2
22µ

2
23 + 2µ2

13µ
3
21µ

2
22 + 3µ3

13µ
3
22µ23 + 12µ5

13µ22µ23 + 2µ6
13µ23 + 3µ5

13µ
2
21

+2µ2
13µ

3
22µ

2
23),

ψ2((0, 2), 1, 1) = µ13µ
3
21µ22(µ6

13 + 2µ5
13µ21 + 2µ13µ

2
21µ

3
22 + 4µ3

13µ
3
22 + 2µ2

13µ
4
22 + µ5

13µ22

+3µ4
13µ

2
22 + 4µ2

13µ
2
22µ

2
23 + µ4

22µ
2
23 + µ13µ

4
22µ23 + 7µ3

13µ
2
22µ23 + 3µ3

13µ22µ
2
23

+6µ4
13µ22µ23 + 4µ2

13µ
3
22µ23 + µ4

13µ
2
23),

ψ2((0, 3), 1, 1) = µ13µ
4
21µ22(µ5

13 + 2µ13µ
4
22 + 4µ2

13µ
3
22 + 3µ4

13µ23 + 2µ13µ
3
22µ23 + µ3

13µ
2
22

+3µ3
13µ21µ22 + µ4

22µ23 + 4µ4
13µ22 + 2µ2

13µ21µ
2
22),

ψ3((0, 1), 1, 1) = µ4
13µ21µ22(µ5

13 + µ3
13µ

2
23 + 3µ4

13µ23 + 4µ3
13µ21µ22 + 3µ2

13µ
2
21µ22

+3µ2
13µ

2
21µ23 + 4µ4

13µ22 + 6µ2
13µ21µ

2
22 + 4µ13µ21µ

3
22 + 7µ2

13µ
2
22µ23 + µ13µ

4
22

+µ4
13µ21 + µ21µ

4
22 + µ2

13µ
3
23 + 2µ3

13µ22µ23 + 2µ13µ21µ
3
23 + 6µ3

13µ21µ23 + 3µ2
13µ

3
22

+2µ13µ
3
22µ23 + 5µ13µ21µ

2
22µ23 + 2µ21µ

3
22µ23 + µ21µ

2
21µ

2
23 + 2µ21µ22µ

3
23),

ψ3((0, 2), 1, 1) = µ3
13µ21µ22(4µ4

13µ
2
22 + 2µ2

13µ
4
23 + 5µ3

13µ22µ
2
23 + 2µ5

13µ22 + 4µ2
13µ22µ

3
23

+3µ13µ
3
22µ

2
23 + µ13µ21µ

4
22 + 5µ4

13µ21µ22 + 2µ2
13µ

3
22µ23 + 2µ21µ

4
22µ23 + 11µ3

13µ21µ
2
22

+µ5
13µ21 + µ3

21µ
2
22µ23 + µ13µ

3
21µ

2
22 + 4µ3

13µ
3
22 + 7µ2

13µ
2
22µ

2
23 + µ21µ

3
22µ

2
23

+2µ3
13µ

3
23 + 2µ2

13µ21µ
3
23 + 5µ4

13µ
2
23 + 5µ3

13µ
2
21µ23 + 4µ4

13µ21µ23 + µ6
13 + 4µ5

13µ23

+2µ13µ21µ22µ
3
23 + 2µ13µ

2
21µ

2
22µ23 + 5µ2

13µ
2
21µ22µ23 + 3µ13µ21µ

3
22µ23 + µ13µ21µ

4
22

+3µ3
13µ21µ22µ23 + 5µ2

13µ21µ
2
22µ23 + 2µ4

13µ21µ22 + 4µ2
13µ21µ

3
22 + 6µ3

13µ21µ
2
22),

ψ3((0, 3), 1, 1) = µ2
13µ21µ23(2µ6

13µ21 + 4µ5
13µ21µ23 + 2µ3

13µ
3
21µ23 + µ2

13µ21µ
4
22 + µ7

13

+4µ5
13µ21µ22 + 4µ4

13µ
3
22 + 6µ5

13µ
2
22 + µ3

13µ
4
22 + 2µ2

13µ
2
22µ

3
23 + 6µ3

13µ22µ
3
23

+9µ4
13µ22µ

2
23 + 2µ13µ

4
22µ22 + 13µ3

13µ
2
22µ

2
23 + µ21µ

4
22µ

2
23 + 3µ3

13µ
3
22µ23 + µ2

13µ
4
22µ23
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+13µ4
13µ

2
22µ23 + 12µ5

13µ22µ23 + 2µ13µ21µ
2
22µ

3
23 + 6µ2

13µ21µ22µ
3
23 + 15µ3

13µ
2
21µ22µ23

+2µ5
13µ

2
21 + 6µ4

13µ
2
21µ23 + 2µ2

13µ
3
21µ

2
22 + 3µ4

13µ
3
21 + 4µ3

13µ21µ
3
22 + 3µ4

13µ21µ
2
22

+4µ3
13µ21µ

2
22µ23 + 4µ6

13µ22),

ψ4((1, 3), 1, 1) = µ13µ
3
21µ

4
23(µ3

13 + 3µ13µ
2
22 + 3µ2

13µ22 + µ3
21),

ψ5((1, 3), 1, 1) = µ13µ21µ23(2µ3
13µ

3
21µ22µ23 + 4µ13µ

3
21µ

3
22µ23 + 2µ2

13µ
3
21µ

2
22µ23 + µ8

13

+2µ4
13µ

3
21µ23 + 2µ5

13µ21µ
2
23 + µ21µ

4
22µ

3
23 + 4µ7

13µ22 + 4µ3
13µ

3
22µ

2
23 + µ7

13µ23 + 6µ6
13µ

2
22

+2µ4
13µ

4
22 + 4µ6

13µ21µ22 + µ13µ21µ
2
22µ

4
23 + µ4

13µ
4
23 + 4µ5

13µ
3
23 + 4µ6

13µ21µ23 + µ6
13µ

2
23

+11µ4
13µ21µ22µ

2
23 + 5µ2

13µ21µ
3
22µ

2
23 + 10µ3

13µ21µ
2
22µ

2
23 + µ13µ21µ

4
22µ

2
23 + µ3

13µ21µ
4
23

+4µ7
13µ23 + 2µ3

13µ22µ
4
23 + µ2

13µ
2
22µ

4
23 + 4µ2

13µ
3
22µ

3
23 + 8µ3

13µ
2
22µ

3
23 + 10µ4

13µ22µ
3
23

+4µ4
13µ21µ

3
23 + 6µ5

13µ21µ
2
22 + µ3

13µ21µ
4
22 + µ13µ

4
22µ

3
23 + µ2

13µ
4
22µ

2
23 + 13µ4

13µ
2
22µ

2
23

+4µ5
13µ

2
21µ22 + 5µ3

13µ
2
21µ

3
22 + 6µ4

13µ
3
22µ23 + 2µ5

13µ
2
22µ23 + µ3

13µ
4
22µ23),

ψ6((1, 1), 1, 1) = µ13µ
3
21µ

2
22(2µ3

22µ
2
21 + µ13µ

2
21µ

2
22 + 2µ2

13µ21µ
2
22 + µ13µ21µ

3
22 + µ5

13

+4µ4
13µ21 + µ3

13µ
2
21 + 5µ3

13µ23µ22 + 4µ2
13µ

2
21µ22 + µ2

13µ
3
21 + µ4

13µ22 + 3µ3
13µ

2
22),

ψ6((2, 1), 1, 1) = µ13µ
4
21µ

3
22(µ21µ

2
22 + µ13µ

2
22 + 3µ13µ21µ22 + µ2

13µ21 + µ3
13

+2µ2
13µ22),

ψ6((1, 2), 1, 1) = µ13µ
4
21µ

2
22(µ21µ

3
22 + 3µ2

13µ
2
22 + 3µ2

13µ23µ22 + µ3
13µ21 + µ13µ

3
22

+µ3
13µ22 + µ4

13 + 2µ13µ21µ
2
22),

ψ6((2, 2), 1, 1) = µ13µ
5
21µ

3
22(µ2

22 + 2µ13µ22 + 2µ2
13),

ψ7((1, 1), 1, 1) = µ13µ
3
21µ

2
22(5µ3

13µ21µ22 + 3µ3
13µ

2
21 + 2µ2

13µ
2
21µ22 + 3µ13µ

2
21µ

2
22 + µ5

13

+2µ2
13µ21µ

2
22 + µ2

13µ
3
21 + 3µ4

13µ22 + µ2
21µ

3
22 + µ13µ21µ

3
22 + µ3

13µ
2
21),

ψ7((2, 1), 1, 1) = µ13µ
4
21µ

3
22(µ2

22µ23 + µ13µ
2
22 + 2µ13µ22µ23 + µ2

13µ23 + µ3
13 + 2µ2

13µ22),

ψ7((1, 2), 1, 1) = µ13µ
4
21µ

2
22(2µ21µ

3
22 + 3µ2

13µ
2
22 + 2µ2

13µ21µ22 + µ13µ
3
21 + µ4

13 + 3µ3
13µ22

µ3
13µ21 + 4µ13µ21µ

2
22),

ψ7((2, 2), 1, 1) = µ13µ
5
21µ

3
22(µ2

22 + 2µ13µ22 + 2µ2
13),
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ψ8((1, 1), 1, 1) = µ2
13µ21µ23(µ3

13µ
4
21 + µ3

13µ
4
22 + 2µ4

13µ
3
21 + 4µ6

13µ22 + 2µ5
13µ

2
22 + µ7

13

+3µ3
13µ21µ

3
23 + 4µ3

13µ21µ
3
22 + 6µ4

13µ21µ
2
22 + 5µ4

13µ
2
21µ22 + 7µ3

13µ
2
21µ

2
22 + 6µ5

13µ
2
23

+6µ4
13µ21µ22µ23 + 2µ13µ

4
21µ22µ23 + 14µ3

13µ
2
21µ22µ23 + 2µ2

13µ
3
21µ22µ23 + µ6

13µ21

+7µ4
13µ

2
22µ23 + µ2

13µ
4
22µ23 + 3µ2

13µ
2
22µ

3
23 + 12µ5

13µ22µ23 + 6µ3
13µ

3
22µ23 + 4µ4

13µ
3
22

+4µ5
13µ21µ22 + 6µ4

13µ
2
21µ23 + 4µ6

13µ21 + 4µ5
13µ21µ23 + 6µ2

13µ21µ
3
22µ23 + µ4

21µ
2
22µ23

+8µ3
13µ22µ

3
23 + 2µ2

13µ
3
22µ

2
23 + 3µ13µ

3
21µ

2
22µ23 + 6µ2

13µ
2
21µ

2
22µ23 + 7µ3

13µ21µ
2
22µ23

+µ13µ
2
22µ

4
23 + 2µ2

13µ22µ
4
23 + µ2

13µ21µ
4
22 + µ13µ21µ

4
22µ23 + µ2

13µ21µ
4
23),

ψ8((2, 1), 1, 1) = µ13µ22µ23(2µ3
13µ21µ

4
22 + µ2

13µ
2
21µ

4
22 + 4µ5

13µ
3
22 + 4µ7

13µ21 + µ4
13µ

4
22

+13µ4
13µ

2
21µ22µ23 + 5µ3

13µ
3
21µ22µ23 + 5µ3

13µ
3
21µ

2
22 + 6µ4

13µ21µ
3
22 + 4µ4

13µ
2
21µ

2
22

+µ7
13µ21 + 4µ3

13µ
2
21µ

2
22µ23 + 3µ13µ21µ

2
22µ

4
23 + 12µ5

13µ21µ22µ23 + 3µ2
13µ21µ22µ

4
23

+µ13µ
3
22µ

4
23 + µ4

13µ
4
23 + 6µ6

13µ
2
23 + 7µ2

13µ21µ
2
22µ

3
23 + 13µ4

13µ21µ
2
22µ23 + µ8

13

+2µ3
13µ21µ

3
22µ23 + µ2

13µ21µ
4
22µ23 + 3µ13µ

2
21µ

4
22µ23 + 4µ5

13µ
3
21 + 6µ6

13µ
2
22 + 4µ7

13µ22

+µ3
13µ21µ

4
22 + 4µ4

13µ21µ
3
22 + 6µ5

13µ21µ
2
22 + 2µ6

13µ22µ23 + µ21µ
3
22µ

4
23 + µ3

13µ21µ
4
23

+2µ6
13µ21µ23 + 6µ5

13µ21µ
2
22 + 4µ4

13µ21µ
3
22),

ψ8((1, 2), 1, 1) = µ2
13µ21µ23(µ4

13µ
3
21 + 4µ5

13µ21µ23 + 6µ5
13µ

2
21 + 3µ3

13µ
4
21 + 3µ3

13µ21µ
3
21

+4µ4
13µ

3
22 + 4µ6

13µ22 + µ3
13µ

4
22 + 4µ3

13µ21µ
3
23 + µ2

13µ21µ
4
22 + 6µ5

13µ
2
22 + 4µ5

13µ21µ22

+µ2
13µ

4
21µ23 + 6µ2

13µ
3
21µ22µ23 + 2µ13µ

4
21µ22µ23 + 2µ13µ

3
21µ

2
22µ23 + 5µ13µ21µ

3
22µ

2
23

+2µ4
13µ21µ

2
22 + µ7

13 + µ6
13µ21 + 13µ2

13µ21µ
2
22µ

2
23 + µ21µ

2
22µ

4
23 + 3µ21µ

3
21µ

3
22

+4µ6
13µ23 + 13µ4

13µ
2
22µ23 + 15µ3

13µ21µ22µ
2
23 + 15µ4

13µ22µ
2
23 + 9µ3

13µ22µ
3
23

+µ2
13µ

4
22µ23 + µ13µ

3
22µ

3
23 + 4µ13µ

4
22µ

2
23 + 12µ4

13µ21µ22µ23 + 6µ2
13µ21µ

3
22µ23

+6µ4
13µ21µ

2
23),

ψ8((2, 2), 1, 1) = µ13µ21µ23(2µ5
13µ

2
21µ23 + 4µ4

13µ
3
21µ23 + 2µ7

13µ21 + µ13µ
4
22µ

3
23 + µ8

13

+µ21µ
3
21µ

4
22 + 2µ7

13µ21 + 3µ4
21µ

3
22µ23 + µ3

13µ21µ
4
22 + 6µ6

13µ
2
22 + 4µ7

13µ22 + 4µ5
13µ

3
21

+4µ6
13µ21µ23 + 6µ6

13µ
2
23 + 6µ3

13µ21µ
3
22µ23 + µ3

13µ21µ
4
23 + 2µ5

13µ
3
23 + 2µ5

13µ21µ
2
22
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+2µ4
13µ21µ

2
22µ23 + 5µ3

13µ21µ
2
22µ

2
23 + 10µ3

13µ21µ22µ
3
23 + µ2

13µ21µ
4
22µ23 + µ2

13µ
4
22µ

2
23

+3µ2
13µ21µ22µ

4
23 + 8µ2

13µ21µ
2
22µ

3
23 + 5µ2

13µ
3
22µ

3
23 + 3µ13µ21µ

2
22µ

4
23 + 5µ4

13µ
4
21

+11µ5
13µ

2
22µ23 + 6µ4

13µ
3
22µ23 + 13µ4

13µ
2
22µ

2
23 + µ3

13µ
4
22µ23 + 3µ3

13µ22µ
4
23

+4µ3
13µ

3
21µ

2
22 + 5µ3

13µ
3
22µ

2
23 + 4µ2

13µ
3
22µ

3
23 + 3µ2

13µ
2
22µ

4
23 + 6µ4

13µ
3
21µ22 + µ3

13µ21µ
2
22µ

2
23

+4µ5
13µ21µ

2
23 + µ13µ

3
22µ

4
23 + 4µ13µ21µ

3
22µ

3
23 + µ13µ

2
21µ

4
22µ23),

ψ9((1, 1), 1, 1) = µ3
13µ

5
21µ

3
22,

ψ9((2, 1), 1, 1) = 0,

ψ9((1, 2), 1, 1) = µ2
13µ

5
21µ

3
22(µ13 + µ22),

ψ9((2, 2), 1, 1) = 0,

ψ10((3, 1), 1, 1) = µ13µ
5
21µ

2
22(µ2

13 + 2µ13µ22 + 2µ2
22).

ψ10((3, 1), 1, 1) = µ13µ
5
21µ

4
22,

ψ11((3, 1), 1, 1) = µ13µ
2
21µ

2
22(2µ3

22µ
3
21 + µ2

13µ21µ
3
22 + 3µ2

13µ
2
21µ

2
22 + µ3

13µ21µ
2
22 + µ3

13µ
3
22

+2µ3
13µ

2
21µ22 + 7µ4

13µ21µ22 + 2µ2
13µ

3
21µ22 + 3µ13µ

2
22µ

3
23 + µ3

13µ
3
21 + 3µ5

13µ21 + 2µ6
13

+3µ4
13µ

2
22 + 3µ5

13µ22 + µ13µ
3
21µ

2
22 + 2µ4

13µ
2
21),

ψ11((3, 2), 1, 1) = µ13µ
3
21µ

3
22(µ2

13µ
2
22 + µ13µ

2
22µ23 + µ2

22µ
2
23 + 3µ2

13µ22µ23 + 2µ3
13µ22

+2µ13µ22µ
2
23 + µ4

13 + µ2
13µ

2
23 + 2µ3

13µ23).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality

of the policy π = (d0)∞. 2
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B.5 Proofs of Propositions 4.3.4, 4.3.5, and 4.3.6

Proof of Proposition 4.3.4 : The set of allowable actions in state s ∈ S is

As =



a11 for s = (0, 0),

a23 for s = (2, 0),

a13 for s = (1, 2),

{a11, a21, a22} for s = (1, 0),

{a11, a13, a33} for s ∈ {(0, 1), (0, 2)},

{a22, a23, a33} for s = (2, 1),

{a11, a13, a21, a22, a23, a33} for s = (1, 1).

Under our assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and

µ13 = µ22 = 0), it is clear that µ12 > 0 and µ23 > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant q = µ11 + µ12 + µ21 + µ23.

First assume that µ11µ12 ≥ µ21µ23 and start the policy iteration algorithm by

choosing

d0(s) =



a11 for s = (0, 0),

a13 for s ∈ {(0, 1), (0, 2)},

a21 for s = (1, 0),

a31 for s ∈ {(1, 1), (1, 2), (2, 0), (2, 1)}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, αk

for k ∈ {1, . . . , 13} and α are nonnegative constants when µ11µ12 ≥ µ21µ23. They

depend on the service rates and the state under consideration, and they are provided

below.

First, consider the state s = (1, 0), and recall that d0(s) = a21. Some algebra
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shows that,(
r((1, 0), a21) +

∑
s′∈S

p(s′|(1, 0), a21)h(s′)
)
− r((1, 0), a11)−

∑
s′∈S

p(s′|(1, 0), a11)h(s′)

=
α1

α
≥ 0,(

r((1, 0), a21) +
∑
s′∈S

p(s′|(1, 0), a21)h(s′)
)
− r((1, 0), a22)−

∑
s′∈S

p(s′|(1, 0), a22)h(s′)

=
α2

α
≥ 0.

Recall that d0(s) = a13 for s ∈ {(0, 1), (0, 2)}. Then, we can show that(
r((0, 1), a13) +

∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a11)−

∑
s′∈S

p(s′|(0, 1), a11)h(s′)

=
α3

α
≥ 0,(

r((0, 1), a13) +
∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a33)−

∑
s′∈S

p(s′|(0, 1), a33)h(s′)

=
α4

α
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a11)−

∑
s′∈S

p(s′|(0, 2), a11)h(s′)

=
α5

α
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a33)−

∑
s′∈S

p(s′|(0, 2), a33)h(s′)

=
α6

α
≥ 0.

For s = (1, 1), recall that d0(s) = a23. Some algebra shows that(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a11)−

∑
s′∈S

p(s′|(1, 1), a11)h(s′)

=
α7

α
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a22)−

∑
s′∈S

p(s′|(1, 1), a22)h(s′)

=
α8

α
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a33)−

∑
s′∈S

p(s′|(1, 1), a33)h(s′)

=
α9

α
≥ 0,
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(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a13)−

∑
s′∈S

p(s′|(1, 1), a13)h(s′)

=
α10

α
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a21)−

∑
s′∈S

p(s′|(1, 1), a21)h(s′)

=
α11

α
≥ 0.

Finally, d0(s) = a23 for s = (2, 1). Some algebra shows that

(
r((2, 1), a23) +

∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a22)−

∑
s′∈S

p(s′|(2, 1), a22)h(s′)

=
α12

α
≥ 0,(

r((2, 1), a23) +
∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a33)−

∑
s′∈S

p(s′|(2, 1), a33)h(s′)

=
α13

α
≥ 0.

Next, assume that µ11µ12 < µ21µ23 and start the policy iteration algorithm by

choosing

d′0(s) =



a11 for s ∈ {(0, 0), (0, 1)},

a13 for s = (0, 2),

a21 for s = (1, 0),

a31 for s ∈ {(1, 1), (1, 2), (2, 0), (2, 1)}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, α′k

for k ∈ {1, . . . , 13} and α′ are nonnegative constants when µ11µ12 < µ21µ23. They

depend on the service rates and the state under consideration, and they are provided

below.

First, consider the state s = (1, 0), and recall that d′0(s) = a21. Some algebra

shows that

(
r((1, 0), a21) +

∑
s′∈S

p(s′|(1, 0), a21)h(s′)
)
− r((1, 0), a11)−

∑
s′∈S

p(s′|(1, 0), a11)h(s′)

=
α′1
α′
≥ 0,
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(
r((1, 0), a21) +

∑
s′∈S

p(s′|(1, 0), a21)h(s′)
)
− r((1, 0), a22)−

∑
s′∈S

p(s′|(1, 0), a22)h(s′)

=
α′2
α′
≥ 0.

Recall that d′0(s) = a11 for s = (0, 1). Then, we can show that

(
r((0, 1), a11) +

∑
s′∈S

p(s′|(0, 1), a11)h(s′)
)
− r((0, 1), a13)−

∑
s′∈S

p(s′|(0, 1), a13)h(s′)

=
α′3
α′
≥ 0,(

r((0, 1), a11) +
∑
s′∈S

p(s′|(0, 1), a11)h(s′)
)
− r((0, 1), a33)−

∑
s′∈S

p(s′|(0, 1), a33)h(s′)

=
α′4
α′
≥ 0.

Recall that d′0(s) = a13 for s = (0, 2). Then, we can show that

(
r((0, 2), a13) +

∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a11)−

∑
s′∈S

p(s′|(0, 2), a11)h(s′)

=
α′5
α′
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a33)−

∑
s′∈S

p(s′|(0, 2), a33)h(s′)

=
α′6
α′
≥ 0.

For s = (1, 1), recall that d′0(s) = a23. Some algebra shows that

(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a11)−

∑
s′∈S

p(s′|(1, 1), a11)h(s′)

=
α′7
α′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a22)−

∑
s′∈S

p(s′|(1, 1), a22)h(s′)

=
α′8
α′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a33)−

∑
s′∈S

p(s′|(1, 1), a33)h(s′)

=
α′9
α′
≥ 0,

197



(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a13)−

∑
s′∈S

p(s′|(1, 1), a13)h(s′)

=
α′10

α′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a21)−

∑
s′∈S

p(s′|(1, 1), a21)h(s′)

=
α′11

α′
≥ 0.

Finally, d′0(s) = a23 for s = (2, 1). Some algebra shows that

(
r((2, 1), a23) +

∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a22)−

∑
s′∈S

p(s′|(2, 1), a22)h(s′)

=
α′12

α′
≥ 0,(

r((2, 1), a23) +
∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a33)−

∑
s′∈S

p(s′|(2, 1), a33)h(s′)

=
α′13

α′
≥ 0.

α = 2µ2
11µ21µ

3
23 + µ3

11µ
3
12 + µ3

11µ
2
12µ23 + 2µ11µ

2
12µ

2
21µ23 + µ11µ

3
12µ21µ23 + µ2

12µ
4
23

+µ2
11µ

2
12µ

2
21 + µ2

11µ
3
12µ21 + µ3

11µ
2
12µ21 + µ11µ

3
12µ

2
23 + µ2

11µ
3
12µ23 + 2µ2

12µ
2
21µ

2
23

+4µ11µ12µ21µ
3
23 + 4µ11µ

2
12µ21µ

2
23 + 3µ2

11µ12µ21µ
2
23 + 2µ11µ12µ

2
21µ

2
23 + µ2

11µ
2
21µ

2
23

+µ3
11µ12µ21µ23 + 2µ2

11µ12µ
3
23 + 2µ2

11µ
2
12µ

2
23 + µ3

11µ12µ
2
23 + µ3

11µ21µ
3
23 + µ3

12µ
3
23

+2µ11µ
2
21µ

3
23 + µ11µ21µ

4
23 + µ12µ21µ

4
23 + µ11µ12µ

4
21 + 3µ11µ

2
12µ

3
23 + 3µ2

12µ21µ
3
23

+2µ12µ
2
21µ

3
23 + µ2

21µ
4
23 + µ2

11µ12µ
2
21µ23 + 3µ2

11µ
2
12µ22µ23 + µ3

12µ21µ
2
23,

α1 = µ12µ23(µ11 + µ21)(µ2
11µ21µ23 + µ2

11µ
2
12 + µ2

11µ12µ21 + µ11µ12µ21µ23 + µ21µ
3
23

+2µ11µ21µ
2
23 + µ12µ21µ

2
23),

α2 = µ2
12µ21µ

2
23(µ2

11 + µ11µ12 + 2µ11µ23 + µ11µ21 + µ12µ23 + µ2
23 + µ21µ23),

α3 = µ12µ23(µ11 + µ21)(µ11µ12 − µ21µ23)(µ11µ12 + µ11µ21 + µ11µ23),

α4 = µ11µ12µ
2
23(µ2

11µ21 + µ2
11µ21 + 2µ11µ21µ23 + µ11µ

2
21 + µ11µ

2
12 + 2µ11µ12µ21

+2µ11µ12µ23 + 2µ12µ21µ23 + µ21µ
2
23 + µ2

21µ23 + µ12µ
2
23 + µ2

12µ23),
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α5 = µ12µ23(µ11 + µ21)(µ2
11µ12µ23 + µ2

11µ21µ23 + µ2
11µ

2
12 + µ2

11µ12µ21 + µ11µ
2
12µ23

+2µ11µ12µ21µ23 + µ11µ12µ
2
23 + µ11µ21µ

2
23 − µ2

21µ
2
23),

α6 = µ11µ12µ
3
23(µ11µ21 + µ11µ12 + µ2

12 + µ21µ23 + 2µ12µ21 + µ2
21 + µ12µ23),

α7 =
µ12µ23

µ11 + µ23

(µ11 + µ21)(µ2
11µ

2
21µ23 + µ2

11µ
2
12µ21 + 2µ2

11µ
2
12µ23 + µ2

11µ
3
12 + µ21µ

4
23

+2µ2
11µ12µ21µ23 + 2µ11µ21µ

3
23 + 2µ11µ

2
12µ21µ23 + 2µ11µ12µ21µ

2
23 + µ11µ

2
12µ

2
23

+µ11µ
3
12µ23 − µ12µ

2
21µ

2
23 + µ12µ21µ

3
23),

α8 = µ2
12µ23(µ3

11µ21 + µ3
11µ12 + µ2

11µ12µ21 + 2µ2
11µ21µ23 + µ2

11µ12µ23 + µ12µ21µ
2
23

+µ2
11µ

2
21 + µ11µ12µ21µ23 + 2µ11µ

2
21µ23 + 2µ11µ21µ

2
23 + µ21µ

3
23 + 2µ2

21µ
2
23),

α9 = µ12µ
2
23(µ3

11µ21 + µ3
11µ12 + 2µ2

11µ12µ23 + µ2
11µ12µ21 + µ2

11µ
2
21 + 2µ2

11µ21µ23

+µ11µ
2
12µ23 + 2µ11µ12µ21µ23 + µ11µ12µ

2
23 + µ11µ21µ

2
23 + 2µ11µ

2
21µ23 + µ2

21µ
2
23),

α10 = µ12µ
2
23(µ11 + µ21)(µ2

11µ21µ23 + µ2
11µ

2
12 + µ2

11µ12µ21 + µ11µ12µ21µ23 + µ21µ
3
23

+2µ11µ21µ
2
23 + µ12µ21µ

2
23),

α11 =
µ2

12µ23

µ11 + µ23

(µ11 + µ21)(µ2
11µ12µ23 + µ2

11µ21µ23 + µ2
11µ

2
12 + µ2

11µ12µ21 + µ11µ
2
12µ23

+2µ11µ12µ21µ23 + µ11µ12µ
2
23 + µ11µ21µ

2
23 − µ2

21µ
2
23),

α12 = µ2
12µ23(µ3

11µ12µ21 + µ3
11µ

2
12 + µ3

11µ12µ23 + µ3
11µ21µ23 + µ2

11µ
2
12µ21 + µ2

11µ12µ21

+3µ2
11µ12µ21µ23 + 2µ2

11µ21µ
2
23 + µ2

11µ
2
12µ23 + 2µ2

11µ12µ
2
23 + µ2

11µ
2
21µ23 + µ2

21µ
3
23

+µ11µ
2
12µ21µ23 + µ11µ

2
12µ

2
23 + µ11µ12µ

3
23 + µ11µ21µ

3
23 + 2µ11µ12µ

2
21µ23

+2µ11µ
2
21µ

2
23 + 4µ11µ12µ21µ

2
23 + µ12µ21µ

3
23 + 2µ12µ

2
21µ

2
23 + µ2

12µ21µ
2
23),

α13 = µ12µ
2
23(µ3

11µ12µ21 + µ3
11µ

2
12 + µ3

11µ12µ23 + µ3
11µ21µ23 + µ2

11µ
2
12µ21 + µ2

11µ12µ
2
21

+3µ2
11µ12µ21µ23 + 2µ2

11µ21µ
2
23 + µ2

11µ
2
12µ23 + 2µ2

11µ12µ
2
23 + µ2

11µ
2
21µ23 + µ2

21µ
3
23

+µ11µ
2
12µ21µ23 + µ11µ

2
12µ

2
23 + µ11µ12µ

3
23 + µ11µ21µ

3
23 + 2µ11µ12µ

2
21µ23

+2µ11µ
2
21µ

2
23 + 4µ11µ12µ21µ

2
23 + µ12µ21µ

3
23 + 2µ12µ

2
21µ

2
23 + µ2

12µ21µ
2
23).

α′ = µ2
11µ21µ

2
23 + µ11µ

2
12µ

2
21 + µ2

12µ
2
21µ23 + µ2

21µ
3
23 + µ11µ

3
12µ21 + 2µ11µ

2
12µ

2
23

+µ11µ21µ
3
23 + µ2

11µ
2
12µ21 + µ11µ

2
21µ

2
23 + 2µ2

12µ12µ
2
23 + µ12µ21µ

3
23 + µ11µ12µ

2
21µ23
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+µ2
11µ12µ21µ23 + 2µ11µ

2
12µ21µ23 + 2µ11µ12µ21µ

2
23 + µ12µ

2
21µ

2
23 + µ3

11µ12µ23

+µ11µ
3
12µ23 + µ2

11µ
3
12 + µ2

11µ12µ
2
23 + µ11µ12µ

3
23 + µ3

12µ21µ23 + µ3
12µ

2
23 + µ2

12µ
3
23),

α′1 = µ12µ21µ23(µ11 + µ21)(µ11 + µ23)(µ12 + µ21),

α′2 = µ2
12µ21µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23),

α′3 = µ12µ23(µ21µ23 − µ11µ12)(µ11µ12 + µ11µ21 + µ11µ23),

α′4 = µ11µ12µ23(µ11µ12µ21 + µ11µ
2
12 + µ11µ21µ23 + µ11µ12µ23 + µ2

12µ23 + µ21µ
2
23

+µ12µ
2
23 + µ12µ21µ23),

α′5 = µ11µ12µ23(µ11 + µ21)(µ12 + µ21)(µ12 + µ23),

α′6 = µ11µ12µ
2
23(µ12µ21 + µ21µ23 + µ2

12 + µ12µ23),

α′7 = µ12µ23(µ11 + µ21)(µ11µ
2
12 + µ11µ12µ21 + µ11µ21µ23 + µ21µ

2
23),

α′8 = µ2
12µ23(µ2

11µ12 + µ2
11µ21 + µ11µ12µ21 + µ11µ21µ23 + µ11µ

2
21 + µ21µ

2
23 + µ2

21µ23

+µ12µ21µ23),

α′9 = µ12µ
2
23(µ2

11µ21 + µ2
11µ12 + µ11µ

2
12 + µ11µ12µ23 + µ11µ12µ21 + µ11µ

2
21 + µ2

21µ23

+µ11µ21µ23),

α′10 = µ12µ21µ
2
23(µ11 + µ21)(µ11 + µ23),

α′11 = µ11µ
2
12µ23(µ11 + µ21)(µ12 + µ21),

α′12 = µ2
12µ23(µ2

11µ21 + µ2
11µ12 + µ11µ

2
21 + µ11µ12µ23 + µ11µ12µ21 + µ11µ21µ23

+µ2
21µ23 + µ12µ21µ23),

α′13 = µ12µ
2
23(µ2

11µ21 + µ2
11µ12 + µ11µ

2
21 + µ11µ12µ23 + µ11µ12µ21 + µ11µ21µ23

+µ2
21µ23 + µ12µ21µ23).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality

of the policy π = (d0)∞ when µ11µ12 ≥ µ21µ23 and the optimality of the policy

π = (d′0)∞ when µ11µ12 < µ21µ23. 2

200



Proof of Proposition 4.3.5 : The set of allowable actions in state s ∈ S is

As =



a11 for s = (0, 0),

a23 for s = (2, 0),

a13 for s = (1, 2),

{a11, a12, a22} for s = (1, 0),

{a11, a13, a33} for s ∈ {(0, 1), (0, 2)},

{a22, a23, a33} for s = (2, 1),

{a11, a12, a13, a22, a23, a33} for s = (1, 1).

Under our assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and

µ13 = µ21 = 0), it is clear that µ11 > 0 and µ23 > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant q = µ11 + µ12 + µ22 + µ23.

First assume that µ2
11µ

2
12 ≤ µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23) and start the

policy iteration algorithm by choosing

d0(s) =



a12 for s ∈ {(0, 0), (1, 0)},

a13 for s ∈ {(0, 1), (0, 2), (1, 1)},

a22 for s = (2, 0),

a23 for s ∈ {(1, 2), (2, 1)}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, βk

for k ∈ {1, . . . , 13} and β are nonnegative constants when µ2
11µ

2
12 ≤ µ22µ23(µ11µ12 +

µ11µ23 + µ12µ23 + µ2
23). They depend on the service rates and the state under consid-

eration, and they are provided below.

First, consider the state s = (1, 0), and recall that d0(s) = a21. Some algebra
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shows that

(
r((1, 0), a12) +

∑
s′∈S

p(s′|(1, 0), a12)h(s′)
)
− r((1, 0), a11)−

∑
s′∈S

p(s′|(1, 0), a11)h(s′)

=
β1

β
≥ 0,(

r((1, 0), a12) +
∑
s′∈S

p(s′|(1, 0), a12)h(s′)
)
− r((1, 0), a22)−

∑
s′∈S

p(s′|(1, 0), a22)h(s′)

=
β2

β
≥ 0.

Recall that d0(s) = a13 for s ∈ {(0, 1), (0, 2)}. Then, we can show that

(
r((0, 1), a13) +

∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a11)−

∑
s′∈S

p(s′|(0, 1), a11)h(s′)

=
β3

β
≥ 0,(

r((0, 1), a13) +
∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a33)−

∑
s′∈S

p(s′|(0, 1), a33)h(s′)

=
β4

β
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a11)−

∑
s′∈S

p(s′|(0, 2), a11)h(s′)

=
β5

β
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a33)−

∑
s′∈S

p(s′|(0, 2), a33)h(s′)

=
β6

β
≥ 0.

For s = (1, 1), recall that d0(s) = a13. Some algebra shows that

(
r((1, 1), a13) +

∑
s′∈S

p(s′|(1, 1), a13)h(s′)
)
− r((1, 1), a11)−

∑
s′∈S

p(s′|(1, 1), a11)h(s′)

=
β7

β
≥ 0,(

r((1, 1), a13) +
∑
s′∈S

p(s′|(1, 1), a13)h(s′)
)
− r((1, 1), a22)−

∑
s′∈S

p(s′|(1, 1), a22)h(s′)

=
β8

β
≥ 0,
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(
r((1, 1), a13) +

∑
s′∈S

p(s′|(1, 1), a13)h(s′)
)
− r((1, 1), a33)−

∑
s′∈S

p(s′|(1, 1), a33)h(s′)

=
β9

β
≥ 0,(

r((1, 1), a13) +
∑
s′∈S

p(s′|(1, 1), a13)h(s′)
)
− r((1, 1), a12)−

∑
s′∈S

p(s′|(1, 1), a12)h(s′)

=
β10

β
≥ 0,(

r((1, 1), a13) +
∑
s′∈S

p(s′|(1, 1), a13)h(s′)
)
− r((1, 1), a23)−

∑
s′∈S

p(s′|(1, 1), a23)h(s′)

=
β11

β
≥ 0.

Finally, d0(s) = a23 for s = (2, 1). Some algebra shows that

(
r((2, 1), a23) +

∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a22)−

∑
s′∈S

p(s′|(2, 1), a22)h(s′)

=
β12

β
≥ 0,(

r((2, 1), a23) +
∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a33)−

∑
s′∈S

p(s′|(2, 1), a33)h(s′)

=
β13

β
≥ 0.

Next, assume that µ2
11µ

2
12 > µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23) and start the

policy iteration algorithm by choosing

d′0(s) =



a12 for s = (0, 0),

a13 for s ∈ {(0, 1), (0, 2)},

a22 for s ∈ {(1, 0), (2, 0)},

a23 for s ∈ {(1, 1), (1, 2), (2, 1)}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, β′k

for k ∈ {1, . . . , 13} and β′ are nonnegative constants when µ2
11µ

2
12 > µ22µ23(µ11µ12 +

µ11µ23 + µ12µ23 + µ2
23). They depend on the service rates and the state under consid-

eration, and they are provided below.

First, consider the state s = (1, 0), and recall that d′0(s) = a22. Some algebra
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shows that

(
r((1, 0), a22) +

∑
s′∈S

p(s′|(1, 0), a22)h(s′)
)
− r((1, 0), a11)−

∑
s′∈S

p(s′|(1, 0), a11)h(s′)

=
β′1
β′
≥ 0,(

r((1, 0), a22) +
∑
s′∈S

p(s′|(1, 0), a22)h(s′)
)
− r((1, 0), a12)−

∑
s′∈S

p(s′|(1, 0), a12)h(s′)

=
β′2
β′
≥ 0.

Recall that d0(s) = a13 for s ∈ {(0, 1), (0, 2)}. Then, we can show that

(
r((0, 1), a13) +

∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a11)−

∑
s′∈S

p(s′|(0, 1), a11)h(s′)

=
β′3
β′
≥ 0,(

r((0, 1), a13) +
∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a33)−

∑
s′∈S

p(s′|(0, 1), a33)h(s′)

=
β′4
β′
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a11)−

∑
s′∈S

p(s′|(0, 2), a11)h(s′)

=
β′5
β′
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a33)−

∑
s′∈S

p(s′|(0, 2), a33)h(s′)

=
β′6
β′
≥ 0.

For s = (1, 1), recall that d′0(s) = a23. Some algebra shows that

(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a11)−

∑
s′∈S

p(s′|(1, 1), a11)h(s′)

=
β′7
β′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a22)−

∑
s′∈S

p(s′|(1, 1), a22)h(s′)

=
β′8
β′
≥ 0,
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(
r((1, 1), a23) +

∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a33)−

∑
s′∈S

p(s′|(1, 1), a33)h(s′)

=
β′9
β′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a12)−

∑
s′∈S

p(s′|(1, 1), a12)h(s′)

=
β′10

β′
≥ 0,(

r((1, 1), a23) +
∑
s′∈S

p(s′|(1, 1), a23)h(s′)
)
− r((1, 1), a13)−

∑
s′∈S

p(s′|(1, 1), a13)h(s′)

=
β′11

β′
≥ 0.

Finally, d′0(s) = a23 for s = (2, 1). Some algebra shows that

(
r((2, 1), a23) +

∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a22)−

∑
s′∈S

p(s′|(2, 1), a22)h(s′)

=
β′12

β′
≥ 0,(

r((2, 1), a23) +
∑
s′∈S

p(s′|(2, 1), a23)h(s′)
)
− r((2, 1), a33)−

∑
s′∈S

p(s′|(2, 1), a33)h(s′)

=
β′13

β′
≥ 0.

β = µ3
11µ

2
12µ22 + µ4

11µ12µ23 + µ3
11µ12µ

2
23 + µ3

11µ
2
22µ23 + 3µ3

11µ12µ
2
23 + 2µ2

11µ
2
12µ

2
23

+µ2
12µ22µ

3
23 + µ12µ22µ

4
23 + µ4

11µ22µ23 + µ11µ
2
22µ

3
23 + µ11µ

2
12µ

3
23 + µ11µ22µ

4
23

+µ11µ12µ
4
23 + µ2

11µ
2
22µ

2
23 + µ12µ

2
22µ

3
23 + µ3

11µ
2
12µ23 + µ4

11µ12µ22 + 2µ2
11µ22µ

3
23

+µ2
11µ

2
12µ22µ23 + µ2

11µ12µ22µ
2
23 + 2µ3

11µ
3
23 + µ11µ

2
12µ22µ

2
23 + µ11µ12µ

2
22µ

2
23

+2µ3
11µ12µ22µ23 + 3µ2

11µ12µ21µ
2
23 + 2µ11µ12µ21µ

3
23 + 3µ2

11µ12µ
3
23 + µ4

11µ
2
12

+µ4
11µ

2
23 + 3µ3

11µ22µ
2
23 + µ2

11µ
4
23 + µ2

22µ
4
23,

β1 = µ2
11µ22µ23(µ11µ

2
12 + 2µ11µ12µ23 + µ2

11µ12 + µ11µ12µ22 + µ12µ
2
23 + µ2

11µ23

+2µ11µ
2
23 + µ3

23 + µ11µ22µ23),

β2 = µ11µ23(µ12 + µ22)(µ11µ12µ22µ23 + µ12µ22µ
2
23 + µ22µ

3
23 + µ11µ22µ

2
23 − µ2

11µ
2
12),
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β3 = µ3
11µ23(µ11µ

2
12 + µ2

12µ22 + µ12µ22µ23 + µ11µ12µ22 + µ12µ
2
22 + µ11µ22µ23

+µ22µ
2
23 + µ2

22µ23),

β4 = µ11µ
2
23(µ11µ

2
12µ22 + µ11µ

2
12µ23 + 2µ2

11µ
2
12 + µ2

12µ22µ23 + 2µ2
11µ12µ23 + µ3

11µ12

+µ12µ22µ
2
23 + 2µ2

11µ12µ22 + µ11µ12µ
2
23 + µ12µ

2
22µ23 + 2µ11µ12µ22µ23 + µ11µ12µ

2
22

+µ2
22µ

2
23 + µ2

11µ22µ23 + µ11µ22µ
2
23 + µ11µ

2
22µ23),

β5 = µ2
11µ23(3µ2

11µ
2
12µ23 + µ3

11µ
2
12 + 2µ11µ

2
12µ22µ23 + µ11µ

2
12µ

2
23 + µ2

11µ
2
12µ22 + µ2

22µ
3
23

+µ2
12µ22µ

2
23 + µ2

11µ12µ
2
22 + µ12µ22µ

3
23 + 2µ11µ12µ

2
22µ23 + 4µ2

11µ12µ22µ23

+µ11µ12µ
3
23 + µ3

11µ12µ22 + 3µ11µ12µ22µ
2
23 + µ3

11µ12µ23 + µ12µ
2
22µ

2
23 + 2µ2

11µ12µ
2
23

+µ2
11µ

2
22µ23 + 2µ11µ

2
22µ

2
23 + 3µ2

11µ22µ
2
23 + µ3

11µ22µ23 + 2µ11µ22µ
3
23),

β6 = µ11µ
3
23(2µ2

11µ
2
12 + µ11µ

2
12µ22 + µ11µ

2
12µ23 + µ2

12µ22µ23 + µ3
11µ12 + 2µ2

11µ12µ23

+µ12µ22µ
2
23 + 2µ11µ12µ22µ23 + µ11µ12µ

2
22 + 2µ2

11µ12µ22 + µ11µ12µ
2
23 + µ12µ

2
22µ23

+µ11µ
2
22µ23 + µ2

22µ
2
23 + µ2

11µ
2
23 + µ11µ22µ

2
23),

β7 = µ2
11µ23(µ2

12µ22µ23 + µ11µ
2
12µ22 + µ11µ

2
12µ23 + µ2

11µ
2
12 + µ11µ12µ

2
22 + µ2

11µ12µ22

+2µ11µ12µ22µ23 + µ12µ
2
22µ23 + 2µ12µ22µ

2
23 + 2µ11µ22µ

2
23 + µ22µ

3
23 + µ2

22µ
2
23

+µ2
11µ22µ23 + µ11µ

2
22µ23),

β8 =
µ11µ23

µ11 + µ23

(µ12 + µ22)(−µ2
11µ

2
12µ23 + 2µ3

11µ12µ23 + µ2
11µ12µ

2
23 + µ12µ22µ

3
23 + µ22µ

4
23

+µ4
11µ12 + 2µ11µ12µ22µ

2
23 + µ3

11µ12µ22 + µ2
11µ12µ22µ23 + µ11µ22µ

3
23),

β9 = µ12µ
2
23(µ11µ

2
12µ23 + µ2

11µ
2
12 + µ2

11µ22µ23 + µ11µ12µ
2
23 + µ12µ22µ

2
23 + µ2

22µ
2
23

+2µ2
11µ12µ23 + µ2

11µ12µ23 + µ12µ
2
22µ23 + µ3

11µ12 + µ11µ12µ22µ23),

β10 = µ2
11µ12µ23(µ12 + µ22)(µ3

11 + 2µ2
11µ23 + µ2

11µ22 + µ11µ
2
23 + µ11µ22µ23 + µ22µ

2
23),

β11 =
µ11µ

2
23

µ11 + µ23

(µ12 + µ22)(µ11µ12µ22µ23 + µ12µ22µ
2
23 + µ22µ

3
23 + µ11µ22µ

2
23 − µ2

11µ
2
12),

β12 = µ11µ12µ23(µ12 + µ22)(µ3
11 + 2µ2

11µ23 + µ2
11µ22 + µ11µ

2
23 + µ11µ22µ23 + µ22µ

2
23),

β13 = µ11µ12µ2
23(µ3

11 + 2µ2
11µ23 + µ2

11µ22 + µ11µ
2
23 + µ11µ22µ23 + µ22µ

2
23),

β′ = µ11µ
2
12µ

2
23 + µ3

11µ
2
23 + µ3

11µ12µ23 + 3µ11µ12µ
3
23 + µ3

11µ22µ23 + µ2
11µ

2
12µ23
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+2µ2
11µ22µ

2
23 + µ3

11µ12µ22 + 2µ3
11µ12µ23 + 2µ11µ22µ

3
23 + µ11µ

4
23 + µ22µ

4
23 + µ2

12µ
3
23

+µ12µ
4
23 + µ2

11µ12µ22µ23 + µ11µ12µ22µ
2
23 + µ12µ22µ

3
23 + µ3

11µ
2
12 + 2µ2

11µ
3
23,

β′1 = µ2
11µ23(µ11µ

2
12 + µ11µ12µ22 + µ11µ22µ23 + µ22µ

2
23),

β′2 = µ11µ23(µ2
11µ

2
12 − µ11µ12µ22µ23 − µ12µ22µ

2
23 − µ22µ

3
23 − µ11µ22µ

2
23),

β′3 = µ2
11µ23(µ11µ

2
12 + µ11µ12µ22 + µ22µ

2
23 + µ11µ22µ23),

β′4 = µ11µ
2
23(µ11µ

2
12 + µ2

12µ23 + µ12µ22µ23 + µ12µ
2
23 + 2µ2

11µ12 + µ11µ12µ22 + µ22µ
2
23

+2µ11µ12µ23 + µ11µ22µ23),

β′5 = µ2
11µ23(µ11µ

2
12 + µ2

12µ23 + µ2
12µ23 + µ12µ22µ23 + µ11µ12µ23 + µ11µ12µ22

+2µ22µ
2
23 + µ11µ22µ23),

β′6 = µ11µ
3
23(µ2

12 + µ11µ12 + µ12µ22 + µ12µ23 + µ22µ23),

β′7 = µ2
11µ23(µ3

12µ23 + µ11µ
3
12 + µ2

12µ
2
23 + µ2

12µ22µ23 + 2µ11µ
2
12µ23 + µ11µ

2
12µ22

+µ22µ
3
23 + 2µ12µ22µ

2
23 + 2µ11µ12µ22µ23 + µ11µ22µ

2
23),

β′8 =
µ11µ23

µ12 + µ23

(µ12 + µ22)(µ11µ12µ23 + µ2
11µ23 − µ22µ

2
23),

β′9 = µ11µ12µ
2
23(µ12µ23 + 2µ11µ23 + µ22µ23 + µ2

23 + µ2
11),

β′10 = µ11µ23(µ2
11µ

3
12 + µ2

11µ
2
12µ22 + 2µ2

11µ
2
12µ23 + µ2

11µ12µ22µ23 + µ11µ
3
12µ23

+µ11µ
2
12µ

2
23 + µ11µ

2
12µ22µ23 − µ11µ22µ

3
23 − µ2

12µ22µ
2
23 − µ12µ

2
22µ

2
23 − µ2

22µ
3
23

−µ12µ22µ
3
23 − µ22µ

4
23),

β′11 =
µ11µ

2
23

µ12 + µ23

(µ2
11µ

2
12 − µ11µ12µ22µ23 − µ12µ22µ

2
23 − µ22µ

3
23 − µ11µ22µ

2
23),

β′12 = µ11µ12µ23(µ12 + µ22)(µ2
11µ23 + µ2

11µ12 + µ12µ
2
23 + µ3

23 + µ11µ12µ23 + 2µ11µ
2
23),

β′13 = µ11µ12µ2
23(µ3

23 + µ12µ
2
23 + µ2

11µ22 + µ2
11µ23 + µ11µ12µ23 + 2µ11µ

2
23),

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy π = (d0)∞ when µ2
11µ

2
12 ≤ µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 + µ2

23) and the

optimality of the policy π = (d′0)∞ when µ2
11µ

2
12 > µ22µ23(µ11µ12 + µ11µ23 + µ12µ23 +

µ2
23). 2
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Proof of Proposition 4.3.6 : The set of allowable actions in state s ∈ S is

As =



a11 for s = (0, 0),

a12 for s = (2, 0),

a33 for s = (1, 2),

{a11, a12, a22} for s = (1, 0),

{a11, a13, a33} for s ∈ {(0, 1), (0, 2)},

{a22, a32, a33} for s = (2, 1),

{a11, a12, a13, a22, a32, a33} for s = (1, 1).

Under our assumptions on the service rates (
∑M

i=1 µij > 0 for j ∈ {1, . . . , N} and

µ12 = µ21 = 0), it is clear that µ11 > 0 and µ22 > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant q = µ11 + µ13 + µ22 + µ23.

We start the policy iteration algorithm by choosing

d0(s) =



a12 for s ∈ {(0, 0), (1, 0), (1, 1), (2, 0)},

a13 for s ∈ {(0, 1), (0, 2)},

a32 for s = (2, 1),

a33 for s = (1, 2).

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, χk

for k ∈ {1, . . . , 13} and χ are nonnegative constants. They depend on the service

rates and the state under consideration. They are provided below.

First, consider the state s = (1, 0), and recall that d0(s) = a21. Some algebra

shows that(
r((1, 0), a12) +

∑
s′∈S

p(s′|(1, 0), a12)h(s′)
)
− r((1, 0), a11)−

∑
s′∈S

p(s′|(1, 0), a11)h(s′)

=
χ1

χ
≥ 0,
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(
r((1, 0), a12) +

∑
s′∈S

p(s′|(1, 0), a12)h(s′)
)
− r((1, 0), a22)−

∑
s′∈S

p(s′|(1, 0), a22)h(s′)

=
χ2

χ
≥ 0.

Recall that d0(s) = a13 for s ∈ {(0, 1), (0, 2)}. Then, we can show that

(
r((0, 1), a13) +

∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a11)−

∑
s′∈S

p(s′|(0, 1), a11)h(s′)

=
χ3

χ
≥ 0,(

r((0, 1), a13) +
∑
s′∈S

p(s′|(0, 1), a13)h(s′)
)
− r((0, 1), a33)−

∑
s′∈S

p(s′|(0, 1), a33)h(s′)

=
χ4

χ
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a11)−

∑
s′∈S

p(s′|(0, 2), a11)h(s′)

=
χ5

χ
≥ 0,(

r((0, 2), a13) +
∑
s′∈S

p(s′|(0, 2), a13)h(s′)
)
− r((0, 2), a33)−

∑
s′∈S

p(s′|(0, 2), a33)h(s′)

=
χ6

χ
≥ 0.

For s = (1, 1), recall that d0(s) = a12. Some algebra shows that

(
r((1, 1), a12) +

∑
s′∈S

p(s′|(1, 1), a12)h(s′)
)
− r((1, 1), a11)−

∑
s′∈S

p(s′|(1, 1), a11)h(s′)

=
χ7

χ
≥ 0,(

r((1, 1), a12) +
∑
s′∈S

p(s′|(1, 1), a12)h(s′)
)
− r((1, 1), a22)−

∑
s′∈S

p(s′|(1, 1), a22)h(s′)

=
χ8

χ
≥ 0,(

r((1, 1), a12) +
∑
s′∈S

p(s′|(1, 1), a12)h(s′)
)
− r((1, 1), a33)−

∑
s′∈S

p(s′|(1, 1), a33)h(s′)

=
χ9

χ
≥ 0,(

r((1, 1), a12) +
∑
s′∈S

p(s′|(1, 1), a12)h(s′)
)
− r((1, 1), a13)−

∑
s′∈S

p(s′|(1, 1), a13)h(s′)

=
χ10

χ
≥ 0,
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(
r((1, 1), a12) +

∑
s′∈S

p(s′|(1, 1), a12)h(s′)
)
− r((1, 1), a32)−

∑
s′∈S

p(s′|(1, 1), a32)h(s′)

=
χ11

χ
≥ 0.

Finally, d0(s) = a32 for s = (2, 1). Some algebra shows that

(
r((2, 1), a32) +

∑
s′∈S

p(s′|(2, 1), a32)h(s′)
)
− r((2, 1), a22)−

∑
s′∈S

p(s′|(2, 1), a22)h(s′)

=
χ12

χ
≥ 0,(

r((2, 1), a32) +
∑
s′∈S

p(s′|(2, 1), a32)h(s′)
)
− r((2, 1), a33)−

∑
s′∈S

p(s′|(2, 1), a33)h(s′)

=
χ13

χ
≥ 0.

χ = µ5
11µ

2
22 + µ5

11µ13µ22 + µ3
11µ

2
13µ

2
23 + µ11µ

2
13µ

3
22µ23 + 2µ11µ

3
22µ

3
23 + 4µ3

11µ
3
22µ23

+3µ2
11µ

3
22µ

2
23 + µ5

11µ13µ23 + µ5
11µ22µ23 + 2µ2

11µ
2
22µ

3
23 + µ3

11µ22µ
3
23 + 4µ4

11µ
2
22µ23

+4µ3
11µ

2
22µ

2
23 + 2µ4

11µ22µ
2
23 + 4µ4

11µ13µ22µ23 + 4µ3
11µ13µ22µ

2
23 + 6µ3

11µ13µ
2
22µ23

+5µ2
11µ13µ

2
22µ

2
23 + 2µ2

11µ13µ22µ
3
23 + 3µ4

11µ13µ
2
22 + 3µ3

11µ13µ
3
22 + 2µ3

11µ
2
13µ

2
22

+2µ11µ13µ
2
22µ

3
23 + 4µ2

11µ13µ
3
22µ23 + 3µ2

11µ
2
13µ

2
22µ23 + 2µ11µ

2
13µ

2
22µ

2
23 + µ4

22µ
3
23

+3µ11µ13µ
3
22µ

2
23 + µ13µ

3
22µ

3
23 + µ3

11µ13µ
3
23 + 2µ4

11µ13µ
2
23 + µ2

11µ
4
22µ23 + µ5

11µ
2
13

+µ11µ
4
22µ

2
23 + 2µ4

11µ
3
22 + µ3

11µ
4
23 + 2µ4

11µ
2
13µ22 + 3µ3

11µ
2
13µ22µ23 + 2µ4

11µ
2
13µ23

+2µ4
11µ

2
13µ23 + 2µ2

11µ
2
13µ22µ

2
23 + µ2

11µ13µ
4
22 + µ2

11µ
2
13µ

3
22 + µ3

11µ
2
13µ

2
23 + µ2

13µ
3
22µ

2
23

+µ13µ
4
22µ

2
23 + µ11µ13µ

4
22µ23,

χ1 = µ2
11µ22(2µ2

11µ
2
13µ23 + 4µ11µ

2
13µ22µ23 + 3µ2

13µ22µ
2
23 + µ11µ

2
13µ

2
23 + µ3

11µ
2
13

+µ2
11µ

2
13µ22 + 3µ2

11µ13µ22µ23 + µ3
11µ13µ22 + 2µ11µ13µ22µ

2
23 + µ3

11µ13µ23 + µ2
22µ

3
23

+2µ2
11µ13µ

2
23 + µ13µ22µ

3
23 + µ2

11µ13µ
2
22 + µ11µ13µ

3
23 + 2µ11µ13µ

2
22µ23 + µ13µ

2
22µ

2
23

+µ3
11µ22µ23 + 2µ2

11µ22µ
2
23 + µ11µ

3
22µ23 + 2µ2

11µ
2
22µ23 + 2µ11µ

2
22µ

2
23 + µ11µ22µ

3
23),

χ2 = µ11µ
2
22(µ2

13µ22µ
2
23 + µ2

11µ
2
13µ22 + µ11µ

2
13µ22µ23 + µ11µ

2
13µ

2
23 + 2µ2

11µ
2
13µ23

+µ3
11µ

2
13 + µ11µ13µ

3
23 + µ13µ22µ

3
23 + 2µ11µ13µ22µ

2
23 + µ3

11µ13µ22 + µ2
11µ13µ

2
22
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+2µ2
11µ13µ22µ23 + µ13µ

2
22µ

2
23 + µ3

11µ13µ23 + 2µ2
11µ13µ

2
23 + µ11µ13µ

2
22µ23 + µ2

22µ
3
23

+µ2
11µ22µ

2
23 + µ11µ

2
22µ

2
23 + µ11µ22µ

3
23),

χ3 = µ11µ22(µ13µ
2
22µ

3
23 + µ13µ

3
22µ

2
23 + µ2

13µ
2
22µ

2
23 + 2µ11µ13µ22µ

3
23 + 2µ3

11µ13µ
2
22

+µ4
11µ13µ22 + µ2

11µ13µ
3
22 + µ2

11µ
2
13µ

2
22 + 2µ3

11µ
2
13µ22 + µ3

22µ
3
23 + µ4

11µ
2
13 + µ4

11µ13µ23

+2µ11µ
2
22µ

3
23 + 3µ2

11µ
2
13µ22µ23 + µ11µ

2
13µ

2
22µ23 + 2µ11µ

2
13µ22µ

2
23 + 4µ2

11µ13µ22µ
2
23

+µ11µ13µ
3
22µ23 + 3µ11µ13µ

2
22µ

2
23 + 3µ3

11µ13µ22µ23 + 3µ2
11µ13µ

2
22µ23 + µ2

11µ22µ
3
23

+µ3
11µ22µ

2
23 + µ2

11µ13µ
3
23 + 2µ3

11µ13µ
2
23 + 2µ3

11µ
2
13µ23 + µ2

11µ
2
13µ

2
23 + 2µ2

11µ
2
22µ

2
23

µ11µ
3
22µ

2
23),

χ4 = µ11µ22(µ11 + µ22)(µ11 + µ23)(µ13 + µ23)(µ2
11µ23 + µ11µ22µ23 + µ11µ13µ23

+µ2
22µ23 + µ13µ22µ23),

χ5 = µ11µ22(µ13µ
2
22µ

3
23 + µ13µ

3
22µ

2
23 + µ2

13µ
2
22µ

2
23 + 2µ11µ13µ22µ

3
23 + 2µ3

11µ13µ
2
22

+µ4
11µ13µ22 + µ2

11µ13µ
3
22 + µ2

11µ
2
13µ

2
22 + 2µ3

11µ
2
13µ22 + µ3

22µ
3
23 + µ4

11µ
2
13 + µ3

11µ13µ
2
23

+2µ11µ
2
22µ

3
23 + 3µ2

11µ
2
13µ22µ23 + µ11µ

2
13µ

2
22µ23 + 2µ11µ

2
13µ22µ

2
23 + 2µ2

11µ13µ22µ
2
23

+µ11µ13µ
3
22µ23 + 2µ11µ13µ

2
22µ

2
23 + 3µ3

11µ13µ22µ23 + 3µ2
11µ13µ

2
22µ23 + µ2

11µ22µ
3
23

+µ2
11µ13µ

3
23 + 2µ3

11µ
2
13µ23 + µ2

11µ
2
13µ

2
23),

χ6 = µ11µ22µ23(µ11 + µ22)(µ13 + µ23)(µ2
11µ13 + µ11µ22µ23 + µ11µ13µ23 + µ2

22µ23

+µ13µ22µ23),

χ7 = µ11µ
2
22(µ2

13µ22µ
2
23 + µ11µ

2
13µ22µ23 + 2µ2

11µ
2
13µ23 + µ3

11µ
2
13 + µ11µ

2
13µ

2
23 + µ4

11µ13

+µ2
11µ

2
13µ22 + µ2

11µ13µ
2
22 + µ13µ

2
22µ

2
23 + 3µ2

11µ13µ22µ23 + 2µ11µ13µ22µ
2
23 + µ2

22µ
3
23

+2µ3
11µ13µ22 + µ13µ22µ

3
23 + µ11µ13µ

2
22µ23 + µ11µ13µ

3
23 + 2µ2

11µ13µ
2
23 + 2µ3

11µ13µ23

+µ11µ22µ
3
23),

χ8 = µ2
13µ23(µ3

11µ22 + µ3
11µ13 + µ2

11µ13µ22 + 2µ2
11µ22µ23 + µ2

11µ13µ23 + µ13µ22µ
2
23

+µ2
11µ

2
22 + µ11µ13µ22µ23 + 2µ11µ

2
22µ23 + 2µ11µ22µ

2
23 + µ22µ

3
23 + 2µ2

22µ
2
23),

χ9 = µ11µ22(µ11 + µ22)(µ13 + µ23)(µ3
11µ13 + 2µ2

11µ13µ23 + µ11µ13µ
2
23 + µ13µ22µ

2
23

+µ2
22µ

2
23),
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χ10 = µ2
11µ13µ22(µ13 + µ23)(µ22µ

2
23 + µ11µ

2
23 + 2µ2

11µ23 + µ11µ22µ23 + µ3
11 + µ2

11µ22),

χ11 = µ11µ
2
22µ23(µ13 + µ23)(µ2

11µ13 + µ11µ22µ23 + µ11µ13µ23 + µ2
22µ23 + µ13µ22µ23),

χ12 = µ11µ13µ
2
22(2µ3

11µ23 + 2µ11µ22µ
2
23 + µ2

11µ
2
23 + 3µ2

11µ22µ23 + µ11µ
2
22µ23 + µ2

22µ
2
23

+µ2
11µ

2
22 + 2µ3

11µ22 + µ4
11),

χ13 = µ11µ13µ22(µ11 + µ22)(µ13 + µ23)(µ2
11µ22 + µ22µ

2
23 + µ11µ

2
23 + 2µ2

11µ23 + µ3
11

+µ11µ22µ23).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy π = (d0)∞. 2
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APPENDIX C

PROOFS FOR CHAPTER 5

Proof of Theorem 5.4.1: Lemma 5.3.1 shows that servers should not be voluntarily

idle when station 1 is blocked or station 2 is starved (even though a server will not be

working when (s)he is assigned to a station that is blocked or starved). Furthermore,

when both stations are operating, if a server is at station j ∈ {1, 2} before the previous

server completion, any action that idles this server and assigns the other server to

station j cannot be optimal. For example, actions a01 and a20 cannot be optimal at

a state (l, 1, 2) where 1 ≤ l ≤ B + 1 since they are strictly dominated by actions a11

and a22, respectively. The states (0, 1, 1) and (B + 2, 2, 2) are transient under any

policy π ∈ Π and the actions at these states do not affect the long-run average profit.

Hence, they are omitted in the proof since any feasible action can be chosen in these

states. Hence, we can use the following action space:

Ax =



{a11, a12, a21} for x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

{a02, a11, a12, a20, a21, a22} for x ∈ {(l, 1, 1) where 1 ≤ l ≤ B + 1},

{a02, a10, a11, a12, a21, a22} for x ∈ {(l, 1, 2) where 1 ≤ l ≤ B + 1},

{a01, a11, a12, a20, a21, a22} for x ∈ {(l, 2, 1) where 1 ≤ l ≤ B + 1},

{a01, a10, a11, a12, a21, a22} for x ∈ {(l, 2, 2) where 1 ≤ l ≤ B + 1},

{a12, a21, a22} for x ∈ {(B + 2, 1, 1), (B + 2, 1, 2), (B + 2, 2, 1)}.

Since the action space and the state space are finite, Theorem 9.1.8 of Puterman

[58] shows the existence of an optimal Markovian stationary deterministic policy.

Furthermore, under our assumptions on the service rates, we must have γ1, γ2 > 0.

Hence, the policies described in the theorem correspond to an irreducible Markov

chain and we can use the Linear Program (LP) approach for communicating Markov
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decision processes as in Sections 8.8.2 and 9.5.2 of Puterman [58].

Consider the following LP:

max
∑

x∈S
∑

a∈Ax r(x, a)ω(x, a)

s.t.
∑

a∈Ax′
ω(x′, a)−

∑
x∈S

∑
a∈Ax p(x

′|x, a)ω(x, a) = 0, for all x′ ∈ S,∑
x∈S

∑
a∈Ax ω(x, a) = 1,

ω(x, a) ≥ 0, for all x ∈ S, a ∈ Ax,


(54)

where, for all x ∈ S and a ∈ Ax, r(x, a) is the immediate reward of choosing action

a in state x and p(x′|x, a) is the one-step transition probability from state x to x′

if action a is chosen in state x. Then, in every basic feasible solution corresponding

to a policy described in the theorem, we can conclude that for each x ∈ S there

exists at most a single action ax ∈ Ax such that ω(x, ax) > 0 as a result of Corollary

8.8.7 of Puterman [58] (which can be applied since the policies we consider in the

description of the theorem result in a single recurrent class). Furthermore, for every

basic feasible optimal solution x∗ if we define Sw∗ = {x ∈ S :
∑

a∈Ax w
∗(x, a) > 0},

then the optimal decision rule is as follows:

dw∗(x) =

 a if w∗(x, a) > 0 for x ∈ Sw∗ ,

a′ for some a′ such that
∑

y∈Sw∗ p(y|x, a
′) > 0 for x ∈ S \ Sw∗ .

We first prove the optimality of the policy for 0 ≤ c ≤ min{ γ2
2γ1+4γ2

, γ1
4γ1+2γ2

}.

Consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)},

Now, let D be a basis for the LP (54), cB be the vector of coefficients of the elements of

D in the objective function, B be the coefficients of the elements of D in the constraint

matrix, and b be the right-hand side of the constraints. More specifically, consider
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the basic solution ω corresponding to the policy π = (d)∞ with the basis

D = {ω((0, 1, 2), (1, 1)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 1)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (2, 2)), ω((2, 1, 2), (2, 2)), ω((2, 2, 1), (2, 2))}.

Consequently, we have

cB = {−2cγ1,−2cγ1,−4cγ1, γ2 − c(γ1 + γ2), γ2, γ2, γ2 − c(γ1 + γ2),

2γ2(1− 2c), 2γ2(1− c), 2γ2(1− c)},

B =



2γ1/q 0 0 −γ2/q . . . 0 0

0 2γ1/q 0 0 . . . 0 0

0 0 2γ1/q 0 . . . 0 0

−2γ1/q −2γ1/q −2γ1/q (γ1 + γ2)/q . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . 0 0

0 0 0 0 . . . −2γ2/q −2γ2/q

0 0 0 0 . . . 0 0

0 0 0 0 . . . 2γ2/q 0

1 1 1 1 . . . 1 1



,

where q is the uniformization constant. Note that the equation corresponding to one

of the states is redundant, and hence the equation corresponding to state (2, 2, 1) is

eliminated. Furthermore, it is easy to see that ω is also a stationary distribution

for the Markov Chain Xπ (since it has finite state space and one recurrent class,

stationary distribution exists). Moreover, Corollary 8.8.7 of Puterman [58] implies

that ω is a basic feasible solution. Then, in order to show the optimality of this basic

feasible solution, we need only to show that

cBB−1vy − cy ≥ 0 (55)
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for each nonbasic variable y, where vy is the column in the constraint matrix of LP

(54), and cy is the coefficient corresponding to y in the objective function. For states

(0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a12) − cw((0,1,2),a12) = cBB−1vw((0,2,1),a21) − cw((0,2,1),a21)

= cBB−1vw((0,2,2),a12) − cw((0,2,2),a12) = cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
γ1(γ2 − 2cγ1 − 4cγ2)

γ1 + γ2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12)

=
γ1γ2(1− 2c)

γ1 + γ2

.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ min{ γ2
2γ1+4γ2

, γ1
4γ1+2γ2

}.

For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) = cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = 0,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) = 4cγ2,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) = cBB−1vw((1,1,2),a10) − cw((1,1,2),a10)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) = 4cγ1,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) = 4cγ2,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) = cBB−1vw((1,1,1),a20) − cw((1,2,1),a20)

=
γ1γ2(1− 2c)

γ1 + γ2

,
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cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) = 4cγ1,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) = 4cγ2,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) = 4cγ1,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) = cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) = 0.

Finally, for states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) = cBB−1vw((2,1,2),a12) − cw((2,1,2),a12)

= cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = cBB−1vw((2,2,1),a21) − cw((2,2,1),a21)

=
γ2(γ1 − 4cγ1 − 2cγ2)

γ1 + γ2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = cBB−1vw((2,2,1),a12) − cw((2,2,1),a12)

=
γ1γ2(1− 2c)

γ1 + γ2

.

These quantities are also nonnegative when c, γ1, and γ2 satisfy the assumptions

above. Hence we have shown that the inequality (55) is satisfied for all nonbasic

variables. We can conclude that D is an optimal basis for LP (54), and consequently

π = (d)∞ is an optimal policy when 0 ≤ c ≤ min{ γ2
2γ1+4γ2

, γ1
4γ1+2γ2

}. We see that the

recurrent states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and (2, 1, 2) under this policy. In the

transient states (i.e., states in S \ Sw∗) we can select an action that will take the

process to one of the recurrent states and this shows that the policy π∗ described in

the theorem is optimal when 0 ≤ c ≤ min{ γ2
2γ1+4γ2

, γ1
4γ1+2γ2

}.
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Next, let γ1 ≥ γ2 and γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
, and consider the decision rule

d, where d(x) is defined as follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (2, 2)), ω((2, 1, 2), (2, 2)), ω((2, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,1),a11) − cw((0,2,1),a11)

= cBB−1vw((0,2,2),a11) − cw((0,2,2),a11) =
γ1(2γ1 + γ2)(4cγ2 + 2cγ1 − γ2)

(γ1 + γ2)2
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) = 2cγ1,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) = 0.

These quantities are nonnegative because c > γ2
2γ1+4γ2

. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
γ1γ2(2cγ1 + 4cγ2 − γ2)

(γ1 + γ2)2
,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = 0,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ2(1− 2c)

γ1 + γ2

,
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cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)

(γ1 + γ2)2
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2)

(γ1 + γ2)2
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ1γ2(γ1 + 2cγ2)

(γ1 + γ2)2
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
γ1(4cγ2

1 + 8cγ2
2 + 10cγ1γ2 − γ2

2)

(γ1 + γ2)2
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2
,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
γ2(2cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ

2
2)

(γ1 + γ2)2

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
γ1(6cγ1 + 8cγ2 − γ2)

(γ1 + γ2)2
,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) = cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
γ1(2cγ1 + 4cγ2 − γ2)

2(γ1 + γ2)
.

These quantities are nonnegative because γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Finally, for

states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) = cBB−1vw((2,1,2),a12) − cw((2,1,2),a12)

= cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = cBB−1vw((2,2,1),a21) − cw((2,2,1),a21)
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=
γ2(γ2

1 − 2cγ2
1 − 2cγ2

2 − 2cγ1γ2)

(γ1 + γ2)2
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = cBB−1vw((2,2,1),a12) − cw((2,2,1),a12)

=
γ1γ2(2cγ2 + γ1)

(γ1 + γ2)2
.

These quantities are nonnegative because c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Hence, the policy π =

(d)∞ is an optimal policy and the recurrent states under this policy are (0, 1, 2),

(0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗)

we can select an action that will take the process to one of the recurrent states and

this shows that the policy π∗ described in the theorem is optimal when γ1 ≥ γ2 and

γ2
2γ1+4γ2

< c ≤ γ2
1

2γ2
1+2γ1γ2+2γ2

2
.

When γ1 < γ2 and γ1
4γ1+2γ2

< c ≤ γ2
2

2γ2
1+2γ1γ2+2γ2

2
, and consider the decision rule d,

where d(x) is defined as follows for all x ∈ S:

d(x) =


a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 1, 1)},

a12 if x ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1)},

Lemma 5.3.2 and the previous result (for the case where γ1 ≥ γ2 and γ2
2γ1+4γ2

< c ≤
γ2
1

2γ2
1+2γ1γ2+2γ2

2
) show that the policy π = (d)∞ optimal. The recurrent states under this

policy are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1) and (2, 1, 2); and in the transient states

we can select the actions that take the process to one of the recurrent states. Hence,

the policy π∗ described in the theorem is optimal when γ1 < γ2 and γ1
4γ1+2γ2

< c ≤
γ2
2

2γ2
1+2γ1γ2+2γ2

2
.

Next, let γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
, and consider the decision rule d, where

d(x) is defined as follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 1)},
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The basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((0,2,1),a11) − cw((0,2,1),a11) =
γ1(γ1 − γ2)(2γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
γ3

1

γ2
1 + 2γ1γ2 + γ2

2

,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2)

γ2
1 + γ1γ2 + γ2

2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. For state

(1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
γ1(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
γ1γ2(γ1 − γ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
(γ1 + γ2)(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ

2
2

γ2
1 + 2γ1γ2 + γ2

2

,
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cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − 2γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

(γ1 + γ2)2
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ

2
2

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
γ1(γ1 + γ2(2γ1 − γ2))

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
γ2

1(γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
γ1γ2(γ1 + γ2)

γ2
1 + γ1γ2 + γ2

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
γ1(8cγ2

1 + 8cγ2
2 + 8cγ1γ2 + γ1γ2 − 3γ2

1)

(γ1 + γ2)2
,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
γ1(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 + γ2

1 − γ2
2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
γ1(γ1 − γ2)(γ1 + γ2)

2γ2
1 + 2γ1γ2 + 2γ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ1γ2 − γ2

1)

2γ2
1 + 2γ1γ2 + 2γ2

2

.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Finally, for

states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) =
γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,
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cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) = cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
2γ2(2cγ2

1 + 2cγ2
2 + 2cγ1γ2 − γ2

1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
γ2(4cγ2

1 + 4cγ2
2 + 4cγ1γ2 − γ2

1)

2γ2
1 + 2γ1γ2 + 2γ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
γ2

1γ2

γ2
1 + γ1γ2 + γ2

2

cBB−1vw((2,2,1),a21) − cw((2,2,1),a21) = 0.

These quantities are nonnegative because γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
. Hence,

the policy π = (d)∞ is an optimal policy and the recurrent states under this policy

are (0, 1, 2), (1, 1, 2), and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗) we

can select an action that will take the process to one of the recurrent classes and

this shows that the policy π∗ described in the theorem is optimal when γ1 ≥ γ2 and

c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
.

Finally, let γ1 < γ2 and c >
γ2
2

2γ2
1+2γ1γ2+2γ2

2
, and consider the following decision rule:

d(x) =


a11 if x ∈ {(0, 2, 1), (1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1)},

Lemma 5.3.2 and the previous result (for the case where γ1 ≥ γ2 and c >
γ2
1

2γ2
1+2γ1γ2+2γ2

2
)

show that this policy is optimal. Under the policy π = (d)∞, the recurrent states

are (0, 1, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1) and (2, 1, 2); and in the transient states we can

select the actions that take the process to one of the recurrent states. Hence, the

policy π∗ described in the theorem is optimal when γ1 < γ2 and c >
γ2
2

2γ2
1+2γ1γ2+2γ2

2
.

Hence the proof is complete. 2

Proof of Theorem 5.4.2: We will use the LP approach for communicating

Markov decision processes using the notation in the proof of Theorem 5.4.1.
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Here, we prove the result when γ1 ≥ γ2 because the result for the other case

follows from the reversibility of two station tandem lines, as shown in Lemma 5.3.2.

We first prove the optimality of the policy for 0 ≤ c ≤ γ2
2γ1+2γ2

. Consider the decision

rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 1, 1)},

a12 if x ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)},

More specifically, consider the basic solution ω corresponding to the policy π = (d)∞

with the basis

D = {ω((0, 1, 2), (1, 1)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 1)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 2)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 2))}.

For states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a12) − cw((0,1,2),a12) = cBB−1vw((0,2,1),a21) − cw((0,2,1),a21)

= cBB−1vw((0,2,2),a12) − cw((0,2,2),a12) = cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
γ1(γ2 − 2cγ1 − 2cγ2)

γ1 + γ2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12)

=
γ1γ2

γ1 + γ2

.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ γ2
2γ1+2γ2

. For state
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(1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ1γ2(γ1 + cγ1)

γ1 + γ2

,

cBB−1vw((1,1,1),a12) − cw((1,1,1),a12) = cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = cγ2,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) = 6cγ2,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ2

γ1 + γ2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
2cγ1(2γ1 + γ2)

γ1 + γ2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
2cγ2(2γ1 + γ2)

γ1 + γ2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ2

γ1 + γ2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
2cγ1(2γ1 + γ2)

γ1 + γ2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
2cγ2(2γ1 + γ2)

γ1 + γ2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
2cγ1(2γ1 + γ2)

γ1 + γ2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) = 0,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) =
2cγ1γ2

γ1 + γ2

.
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For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
2cγ1γ2

γ1 + γ2

,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = 0,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
2cγ2

γ1 + 2γ2

,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
γ1γ2

γ1 + γ2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
2cγ1(2γ1 + 3γ2)

γ1 + γ2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22) =
2cγ2(2γ1 + 2γ2)

γ1 + γ2

,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
γ1γ2

γ1 + γ2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
2cγ1(2γ1 + 3γ2)

γ1 + γ2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
2cγ2(2γ1 + 2γ2)

γ1 + γ2

,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10)

=
γ1(γ2 + cγ1)

γ1 + γ2

,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11) = 6cγ1,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) = cBB−1vw((1,2,2),a21) − cw((2,2,2),a21) = 2cγ1.
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Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

= cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
γ2(γ1 − 2cγ1 − 2cγ2)

γ1 + γ2

,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) = cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)

=
γ1γ2

γ1 + γ2

.

These quantities are also nonnegative when c, γ1, and γ2 satisfy the assumptions

above. Hence we have shown that the inequality (55) is satisfied for all nonbasic

variables. We can conclude that D is an optimal basis for LP (54), and consequently

π = (d)∞ is an optimal policy when 0 ≤ c ≤ γ2
2γ1+2γ2

. We see that the recurrent states

are (0, 1, 2), (1, 1, 1), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 2) and (3, 1, 2) under

this policy. In the transient states (i.e., states in S \Sw∗) we can select an action that

will take the process to one of the recurrent states and this shows that the policy π∗

described in the theorem is optimal when 0 ≤ c ≤ γ2
2γ1+2γ2

.

Next, let γ2
2γ1+2γ2

< c ≤ min{ γ2
1

2γ2
1+2γ2

2
,

2γ1γ2+γ2
2

2γ2
1+4γ1γ2

}, and consider the decision rule d,

where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1), (2, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 2)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 2))}.
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Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,1),a11) − cw((0,2,1),a11)

= cBB−1vw((0,2,2),a11) − cw((0,2,2),a11) =
2γ1(γ1 + γ2)(2cγ1 + 2cγ2 − γ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) = 2cγ1,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) = 0.

These quantities are nonnegative because c > γ2
2γ1+2γ2

. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ2(2γ3

1 + 4γ2
1γ2 + 4γ1γ

2
2 + γ3

2 − 4cγ3
1 − 6cγ2

1γ2 − 4cγ1γ
2
2)

2(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,1,1),a12) − cw((1,1,1),a12) = cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

=
γ2(γ2

2 + 2γ1γ2 − 2cγ2
1 − 4cγ1γ2)

2(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
γ2(γ2

2 + 2γ1γ2 + 2cγ2
1 + 4cγ1γ2)

γ2
1 + γ1γ2 + γ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ2(γ1 + γ2 − 2cγ1)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ2

1γ2(γ2
1 + 2cγ2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
γ1(2γ1 + γ2)(2cγ2

1 + 4cγ1γ2 + 4cγ2
2 − γ2

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22)

=
γ2(2γ2

1γ2 + γ1γ
2
2 + 2cγ3

1 + 2cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ2

1γ2(γ2
1 + 2cγ2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ2(γ1 + γ2 − 2cγ1)

γ2
1 + γ1γ2 + γ2

2

,
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cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
γ1(2γ1 + γ2)(2cγ2

1 + 4cγ1γ2 + 4cγ2
2 − γ2

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =

=
γ2(2γ2

1γ2 + γ1γ
2
2 + 2cγ3

1 + 2cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
γ2

1γ2(γ1 + 2cγ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
γ1(2γ1 + γ2)(2cγ2

1 + 4cγ1γ2 + 4cγ2
2 − γ2

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) = 0,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) =
γ1γ2(2γ1γ2 + γ2

2 − 2cγ2
1 − 4cγ1γ2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
γ1γ2(2cγ2

1 + 4cγ1γ2 + 4cγ2
2 − γ2

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = 0,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
γ2(γ1γ

2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
γ1γ2(γ2

1 + 2cγ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
γ1(4cγ3

1 + 10cγ2
1γ2 + 12cγ1γ

2
2 + 8cγ3

2 − γ3
2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22) =
γ2(γ1γ

2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,
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for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
γ1γ2(1− 2c)

γ1 + γ2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
γ1γ2(γ2

1 + 2cγ2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
γ1(4cγ3

1 + 10cγ2
1γ2 + 12cγ1γ

2
2 + 8cγ3

2 − γ3
2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
γ2(γ1γ

2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10),

=
γ1(2γ2

1γ2 + γ1γ
2
2 + 2cγ3

1 + 2cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ1γ2 + γ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11) =
γ1(6cγ2

1 + 8cγ1γ2 + 8cγ2
2 − γ2

2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) = cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
γ1(2cγ2

1 + 4cγ1γ2 + 4cγ2
2 − γ2

2)

2(γ2
1 + γ1γ2 + γ2

2)
.

These quantities are nonnegative because γ2
2γ1+2γ2

< c ≤ min{ γ2
1

2γ2
1+2γ2

2
,

2γ1γ2+γ2
2

2γ2
1+4γ1γ2

}. Fi-

nally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

= cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
γ2(γ2

1 − 2cγ2
1 − 2cγ2

2)

γ2
1 + γ1γ2 + γ2

2

,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) = cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)

=
γ1γ2(2cγ2 + γ1)

γ2
1 + γ1γ2 + γ2

2

.

These quantities are nonnegative because c ≤ γ2
1

2γ2
1+2γ2

2
. Hence, the policy π = (d)∞

is an optimal policy and the recurrent states under this policy are (0, 1, 2), (1, 1, 2),

(1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2). In the transient states (i.e., states in S \ Sw∗)

we can select an action that will take the process to one of the recurrent states and
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this shows that the policy π∗ described in the theorem is optimal when γ2
2γ1+2γ2

< c ≤

min{ γ2
1

2γ2
1+2γ2

2
,

2γ1γ2+γ2
2

2γ2
1+4γ1γ2

}.

Now, let γ2
1 ≤ γ1γ2 + γ2

2 and c >
γ2
1

2γ2
1+2γ2

2
, and consider the decision rule d, where

d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2),

(3, 1, 1), (3, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1), (2, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (1, 2)), ω((3, 1, 2), (1, 2)), ω((3, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
2γ1(2cγ2

1 + 2cγ2
2 − γ2

2)

γ2
1 + γ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
γ1(4cγ2

1 + 4cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((0,2,1),a11) − cw((0,2,1),a11) =
2γ1(γ1 − γ2)(γ1 + γ2)

γ2
1 + γ2

2

,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
γ3

1

γ2
1 + γ2

2

,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =
γ1(2cγ2

1 + 2cγ2
2 − γ2

1)

γ2
1 + γ2

2

.
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These quantities are nonnegative because c >
γ2
1

2γ2
1+2γ2

2
. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
γ2

2(γ2
1 + 3γ1γ2 + γ2

2)

2(γ1 + γ2)(γ2
1 + γ2

2)

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ2(4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2 − 2γ3
1 − γ2

1γ2 + 3γ1γ
2
2 + γ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a12) − cw((1,1,1),a12) =
γ2(γ2

2 + γ1γ2 − γ2
1)

2(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

==
4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2 − 2γ3
1 − 3γ2

1γ2 + γ1γ
2
2 + γ3

2

γ2
1 + γ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
γ2(γ2

2 + γ1γ2 − γ2
1 + 4cγ3

1 + 4cγ3
2)

γ2
1 + γ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ

2
2

γ2
1 + γ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
γ1(γ2

1γ2 − γ1γ
2
2 − γ3

2 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
γ1(4cγ2

1 + 4cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22)

=
γ2(γ2

1γ2 + γ1γ
2
2 − γ3

1 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ

2
2

γ2
1 + γ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
γ1(2γ1 + γ2)(γ2

1 + γ1γ2 − γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
γ2

1(γ1 + γ2)

γ2
1 + γ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
γ1γ2(γ2

1 + 3γ1γ2 + γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

232



and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
γ1(2cγ3

1 + 2cγ2
1γ2 + 2cγ1γ

2
2 + 2cγ3

2 − γ3
1)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
γ1(γ2

1γ2 − γ1γ
2
2 − γ3

1 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22)

=
γ2(γ1γ2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
γ1(2cγ3

1 + 2cγ2
1γ2 + 2cγ1γ

2
2 + 2cγ3

2 + γ1γ
2
2 − γ2

1γ2 − γ3
1)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
γ1γ2(γ2

1 + γ1γ2 − γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) =
(γ1 + γ2)(2cγ2

1 + 2cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22)

=
γ1(γ1γ

2
2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
γ2

1γ2

γ2
1 + γ2

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11)

=
γ1(γ1γ

2
2 + γ2

1γ2 − γ3
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
(γ1 + γ2)(4cγ2

1 + 4cγ2
2 − γ2

1)

γ2
1 + γ2

2

,
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cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
γ1(γ1γ

2
2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
γ2

1γ2

γ2
1 + γ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
γ1(2γ3

1 + 3γ2
1γ2 + γ1γ

2
2 − γ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
γ2

1(γ1 + γ2)

γ2
1 + γ2

2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
γ1γ2(γ2

1 + γ1γ2 + γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01)

=
γ1(γ1γ

2
2 + γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a10) − cw((2,2,2),a10) =
γ2

12(γ2
1 + γ1γ2 + γ2

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11) =
γ1(γ2

1 + γ1γ2 − γ2
2 + 4cγ2

1 + 4cγ2
2)

γ2
1 + γ2

2

,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
γ1(γ2

1 + γ1γ2 − γ2
2)

2(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
−γ1γ

2
2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2

2(γ2
1 + γ2

2)
,

These quantities are nonnegative because γ2
1 ≤ γ1γ2 + γ2

2 and c >
γ2
1

2γ2
1+2γ2

2
. Finally,

for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a21) =
γ2(2cγ2

1 + 2cγ2
2 − γ2

1)

γ2
1 + γ2

2

,
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cBB−1vw((3,1,1),a22) − cw((3,1,1),a22) = cBB−1vw((3,1,2),a22) − cw((3,1,2),a22)

=
2γ2(2cγ2

1 + 2cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) =
γ2(4cγ2

1 + 4cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)
γ2

1γ2

γ2
1 + γ2

2

cBB−1vw((3,2,1),a21) − cw((3,2,1),a21) = 0.

These quantities are nonnegative because c >
γ2
1

2γ2
1+2γ2

2
. Hence, the policy π = (d)∞

is an optimal policy and the recurrent states under this policy are (0, 1, 2), (1, 1, 2),

(2, 1, 2), and (3, 1, 2). In the transient states (i.e., states in S \ Sw∗) we can select an

action that will take the process to one of the recurrent states and this shows that the

policy π∗ described in the theorem is optimal when γ2
1 ≤ γ1γ2 + γ2

2 and c >
γ2
1

2γ2
1+2γ2

2
.

Next, let γ2
1 > γ1γ2 + γ2

2 and
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

< c ≤ 3γ2
1+γ2

1γ2−γ1γ2
2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, and consider the

decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =


a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1), (2, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 2)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic
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variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,1),a11) − cw((0,2,1),a11)

= cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

−2γ1γ
2
2 − 3γ2

1γ2 − γ3
2 + 6cγ3

1 + 14cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ3

2

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) = 2cγ1,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) = 0.

These quantities are nonnegative because c >
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ1γ2(3γ2

1 + 4γ1γ2 + 2γ2
2 − 4cγ2

1 − 4cγ1γ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
2γ1γ2(−2γ1γ2 − γ2

2 + 2cγ2
1 + 4cγ1γ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = 0,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22)

=
2γ2(2γ2

1γ2 + γ1γ
2
2 + 4cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ2(3γ2

1 + 4γ1γ2 + 2γ2
2 − 4cγ2

1 − 4cγ1γ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ2

1γ2(3γ1 + 4cγ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
2γ1(−2γ1γ

2
2 − γ3

2 + 6cγ3
1 + 14cγ2

1γ2 + 12cγ1γ
2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22)

=
2γ2(2γ2

1γ2 + γ1γ
2
2 + 4cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,
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for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ2

1γ2(3γ1 + 4cγ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ2(3γ2

1 + 4γ1γ2 + 2γ2
2 − 4cγ2

1 − 4cγ1γ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11)

=
2γ1(−2γ1γ

2
2 − γ3

2 + 6cγ3
1 + 14cγ2

1γ2 + 12cγ1γ
2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22)

=
2γ2(2γ2

1γ2 + γ1γ
2
2 + 4cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
γ2

1(γ1γ2 − γ2
2 + 2cγ2

1 + 4cγ1γ2 + 4cγ2
2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
γ1(−2γ2

1γ2 − 3γ1γ
2
2 − γ3

2 + 8cγ3
1 + 18cγ2

1γ2 + 12cγ1γ
2
2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) = cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
γ1(γ1 + γ2)(−2γ1γ2 − γ2

2 + 2cγ2
1 + 4cγ1γ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
γ1γ2(3γ2

1 + γ1γ2 + 2γ2
2 − 4cγ2

1 − 4cγ1γ2 − 4cγ2
2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
2γ1γ2(γ1γ2 − γ2

2 + 2cγ2
1 + 4cγ1γ2 + 4cγ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = 0,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22)

=
2γ2(γ2

1γ2 + 2γ1γ
2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,
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for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
γ1γ2(3γ2

1 + γ1γ2 + 2γ2
2 − 4cγ2

1 − 4cγ1γ2 − 4cγ3
2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
γ1γ2(γ1 + γ2)(3γ2

1 + 4cγ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11)

=
2γ1(γ1γ

2
2 − γ3

2 + 6cγ3
1 + 14cγ2

1γ2 + 12cγ1γ
2
2 + 8cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = 2c(γ1 + γ2),

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
2γ2(γ2

1γ2 + 2γ1γ
2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
γ1γ2(γ1 + γ2)(3γ2

1 + 4cγ2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,2,1),a20) − cw((2,2,1),a20) =
γ1γ2(3γ2

1 − γ1γ2 − 2γ2
2 + 4cγ2

1 + 4cγ1γ2 + 4cγ3
2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =

=
2γ1(γ1γ

2
2 − γ3

2 + 6cγ3
1 + 14cγ2

1γ2 + 12cγ1γ
2
2 + 8cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) = 2c(γ1 + γ2),

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
2γ2(γ2

1γ2 + 2γ1γ
2
2 + 2cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10),

=
γ2(2γ2

1γ2 + γ1γ
2
2 + 4cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 4cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
2γ1(−γ2

1γ2 − γ1γ
2
2 − γ3

2 + 10cγ3
1 + 22cγ2

1γ2 + 16cγ1γ
2
2 + 8cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) = cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
γ1(γ1 + γ2)(−γ1γ2 − 2γ2

2 + 4cγ2
1 + 8cγ1γ2 + 4γ2

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,
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These quantities are nonnegative because
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

< c ≤ 3γ2
1+γ2

1γ2−γ1γ2
2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
. Finally,

for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

= cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
γ2(3γ3

1 + γ2
1γ2 − γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4γ1γ

2
2 + 4cγ3

2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) = cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)

=
γ1γ2(3γ2

1 + γ1γ2 − γ2
2 + 2cγ2

1 + 8cγ1γ2 + 4cγ2
2)

3γ3
1 + 6γ2

1γ2 + 4γ1γ2
2 + 2γ3

2

,

These quantities are nonnegative because γ2
1 > γ1γ2 + γ2

2 and c >
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

. Hence,

the policy π = (d)∞ is an optimal policy and the recurrent states under this policy

are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2). In the transient

states (i.e., states in S \Sw∗) we can select an action that will take the process to one

of the recurrent states and this shows that the policy π∗ described in the theorem is

optimal when
2γ1γ2+γ2

2

2γ2
1+4γ1γ2

< c ≤ 3γ2
1+γ2

1γ2−γ1γ2
2

4γ2
1+4γ2

1γ2+4γ2
1γ2+4γ2

2
.

Finally, let γ2
1 > γ1γ2 + γ2

2 and c >
3γ2

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
, and consider the decision

rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2),

(3, 1, 1), (3, 1, 2)},

a21 if x ∈ {(0, 2, 1), (1, 2, 1), (2, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 2), (3, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (2, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (1, 2)), ω((3, 1, 2), (1, 2)), ω((3, 2, 1), (2, 2))}.
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Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
γ1(−γ2

1γ2 − γ1γ
2
2 − γ3

2 + 4cγ3
1 + 4cγ2

1γ2 + 4γ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21)

=
γ1(−3γ3

1 − γ2
1γ2 + γ1γ

2
2 + 8cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 8cγ3

2)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((0,2,1),a11) − cw((0,2,1),a11) =
γ1(γ1 − γ2)(3γ2

1 + 3γ1γ2 + γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
γ2

1(3γ2
1 + γ1γ2 − γ2

2)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
γ1(−3γ3

1 − γ2
1γ2 + γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

These quantities are nonnegative because c >
3γ2

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
. For state (1, 1, 1)

we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
γ2

2(γ2
1 + 3γ1γ2 + γ2

2)

2(γ1 + γ2)(γ2
1 + γ2

2)

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
γ2(4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2 − 2γ3
1 − γ2

1γ2 + 3γ1γ
2
2 + γ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
γ1γ2(γ2

1 − γ1γ2 − γ2
1)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

=
−3γ3

1 − γ2
1γ2 + γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2

2(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22)

=
γ2(−γ3

1 + γ2
1γ2 + γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
γ1γ

2
2

γ2
1 + γ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,
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cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
γ1(γ2

1γ2 − γ1γ
2
2 − γ2

2 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

=
−3γ3

1 − γ2
1γ2 + γ1γ

2
2 + 8cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 8cγ3

2

2(γ2
1 + γ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22)

=
γ1(−γ3

1 + γ2
1γ2 + γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
γ1γ

2
2

γ2
1 + γ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
γ1(3γ2

1 − γ1γ2 − γ2
2)

γ2
1 + γ2

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
γ1(3γ2

1 − γ1γ2 − γ2
2)

2(γ2
1 + γ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
2γ2

1γ2

γ2
1 + γ2

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
γ1(2cγ3

1 + 2cγ2
1γ2 + 2cγ1γ

2
2 + 2cγ3

2 − γ3
1)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
γ3

1γ2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
γ1(γ2

1 − γ1γ2 − γ2
2 + 4cγ2

1 + 4cγ1γ2 + 4cγ2
2)

γ2
1 + γ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
(γ1 + γ2)(2cγ2

1 + 2cγ2
2 − γ2

1)

γ2
1 + γ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
γ2(γ1γ2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
.
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For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
γ1(2cγ3

1 + 2cγ2
1γ2 + 2cγ1γ

2
2 + 2cγ3

2 + γ1γ
2
2 − γ2

1γ2 − γ3
1)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
γ1γ2(γ2

1 − γ1γ2 + γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21)

=
−3γ3

1 − γ2
1γ

2
2 + γ1γ

2
2 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2

2(γ2
1 + γ2

2)
,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
2γ2(−γ2

1 + γ1γ2 + 2cγ2
1 + 2cγ2

2)

γ2
1 + γ2

2

,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
γ2

1γ2

γ2
1 + γ2

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11)

=
γ1(γ2

1γ2 + γ1γ
2
2 − γ3

2 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21)

=
−3γ3

1 − γ2
1γ

2
2 + γ1γ

2
2 + 8cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 8cγ3

2

2(γ2
1 + γ2

2)
,

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22) =
2γ2(−γ2

1 + γ1γ2 + 2cγ2
1 + 2cγ2

2)

γ2
1 + γ2

2

,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
γ2

1γ2

γ2
1 + γ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
γ1γ

3
2

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
γ1(3γ3

1 + 2γ2
1γ2 − γ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
γ1(3γ2

1 + γ1γ2 − γ2
2)

2(γ2
1 + γ2

2)
,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
γ1γ2(γ2

1 + γ1γ2 + γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)
,
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and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01)

=
γ1(γ1γ

2
2 + γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a10) − cw((2,2,2),a10) =
γ2

1(γ2
1 + γ1γ2 + γ2

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
γ1(2γ3

1 + γ2
1γ

2
2 − γ1γ

2
2 − γ3

2 + 4cγ3
1 + 4cγ2

1γ2 + 4cγ1γ
2
2 + 4cγ3

2)

2(γ2
1 + γ2

2)
,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
γ1(γ1 − γ2)(γ1 + γ1)

γ2
1 + γ2

2

,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
−γ1γ

2
2 − γ2

1γ2 − γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2

2(γ2
1 + γ2

2)
,

These quantities are nonnegative because γ2
1 > γ1γ2 + γ2

2 and c >
3γ2

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
.

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21)

=
γ2(γ1γ

2
2 − γ2

1γ2 − 3γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((3,1,1),a22) − cw((3,1,1),a22) = cBB−1vw((3,1,2),a22) − cw((3,1,2),a22)

=
γ2(γ1γ

2
2 − γ2

1γ2 − 3γ3
1 + 4cγ3

1 + 4cγ2
1γ2 + 4cγ1γ

2
2 + 4cγ3

2)

(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21)

=
γ2(γ1γ

2
2 − γ2

1γ2 − 3γ3
1 + 8cγ3

1 + 8cγ2
1γ2 + 8cγ1γ

2
2 + 8cγ3

2)

2(γ1 + γ2)(γ2
1 + γ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12) =
γ1γ2(3γ2

1 + γ1γ2 − γ2
2)

(γ1 + γ2)(γ2
1 + γ2

2)

cBB−1vw((3,2,1),a21) − cw((3,2,1),a21) = 0.

These quantities are nonnegative because c >
3γ2

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
. Hence, the policy

π = (d)∞ is an optimal policy and the recurrent states under this policy are (0, 1, 2),

(1, 1, 2), (2, 1, 2), and (3, 1, 2). In the transient states (i.e., states in S \ Sw∗) we can

select an action that will take the process to one of the recurrent states and this
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shows that the policy π∗ described in the theorem is optimal when γ2
1 > γ1γ2 + γ2

2

and c >
3γ2

1+γ2
1γ2−γ1γ2

2

4γ3
1+4γ2

1γ2+4γ1γ2
2+4γ3

2
. Hence the proof is complete. 2

Proof of Theorem 5.4.3: We will use the LP approach for communicating

Markov decision processes using the notation in the proof of Theorem 5.4.1.

Recall that we assumed that µ1 ≥ µ2 since the servers can be relabeled otherwise.

We first prove the optimality of the policy for 0 ≤ c ≤ µ2

4µ1+2µ2
. Consider the decision

rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2)},

a12 if x ∈ {(1, 1, 1), (1, 1, 2), (1, 2, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(2, 1, 1), (2, 1, 2), (2, 2, 1)},

More specifically, consider the basic solution ω corresponding to the policy π = (d)∞

with the basis

D = {ω((0, 1, 2), (1, 1)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 1)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (2, 2)), ω((2, 1, 2), (2, 2)), ω((2, 2, 1), (2, 2))}.

For states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a12) − cw((0,1,2),a12) = cBB−1vw((0,2,2),a12) − cw((0,2,2),a12)

=
1

2
µ2 − 2cµ1 − cµ2,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
1

2
µ1(1− 2c),

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
1

2
µ2(1− 2c),

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) = cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
1

2
µ1 − cµ1 − 2cµ2.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ µ2

4µ1+2µ2
. For state
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(1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
1

2
µ1(1− 2c),

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
1

2
µ2(1− 2c),

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) = cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = 0,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) = 2c(µ1 + µ2),

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
1

2
µ1(1− 2c),

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
1

2
µ2(1− 2c),

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) = cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

= cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) = 2c(µ1 + µ2),

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
1

2
µ1(1− 2c),

cBB−1vw((1,2,1),a20) − cw((1,2,1),a20) =
1

2
µ2(1− 2c),

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) = cBB−1vw((1,2,1),a12) − cw((1,2,1),a12)

= cBB−1vw((1,2,1),a22) − cw((1,2,12),a22) = 2c(µ1 + µ2),

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
1

2
µ1(1− 2c),

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
1

2
µ1(1− 2c),

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) = 2c(µ1 + µ2),

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) = cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) = 0.

Finally, for states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) = cBB−1vw((2,1,2),a12) − cw((2,1,2),a12)
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=
1

2
µ1 − cµ1 − 2cµ2,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = cBB−1vw((2,2,1),a21) − cw((2,2,1),a21)

=
1

2
µ2 − 2cµ1 − cµ2,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
1

2
µ2(1− 2c),

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
1

2
µ1(1− 2c).

These quantities are also nonnegative when 0 ≤ c ≤ µ2

4µ1+2µ2
. Hence we have shown

that the inequality (55) is satisfied for all nonbasic variables. We can conclude that D

is an optimal basis for LP (54), and consequently π = (d)∞ is an optimal policy when

0 ≤ c ≤ µ2

4µ1+2µ2
. We see that the recurrent states are (0, 1, 2), (1, 1, 1), (1, 2, 2), and

(2, 1, 2) under this policy. In the transient states (i.e., states in S \Sw∗) we can select

an action that will take the process to one of the recurrent states and this shows that

the policy π∗ described in the theorem is optimal when 0 ≤ c ≤ µ2

4µ1+2µ2
.

Next, let µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
, and consider the decision rule d, where d(x)

is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1)},

a22 if x ∈ {(1, 2, 2), (2, 1, 2), (2, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (2, 1)), ω((2, 1, 2), (2, 2)), ω((2, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic
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variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
(µ1 + µ2)(2µ1 + µ2)(4cµ1 + 2cµ2 − µ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21)

=
2µ3

1 + µ2
1µ2 − 3µ1µ

2
2 − µ3

2 − 2cµ3
1 + 12cµ2

1µ2 + 10cµ1µ
2
2 + 2cµ3

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
2µ1 + µ2 − 2cµ1

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) =
2µ2

1 − µ2
1µ2 − 2cµ3

1 − 2cµ1µ2 − 2cµ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
2µ3

1 + µ2
1µ2 − 3µ1µ

2
2 − µ3

2 − 2cµ3
1 + 4cµ2

1µ2 + 4cµ1µ
2
2

4µ2
1 + 3µ1µ2 + µ2

2

.

These quantities are nonnegative because µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. For state

(1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
2µ2

1 + µ2
1µ2 + µ2

2 + 2cµ2
1 − 4cµ1µ2 − 2cµ2

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
µ1µ2 + 4µ2

1 + 4µ1µ2 + 2µ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
µ1(µ1 + µ2)(4cµ1 + 2cµ2 − µ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) = 0,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
µ1µ2 + 4cµ2

1 + 4cµ1µ2 + 2cµ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
2µ2

1 + µ2
1µ2 + µ2

2 + cµ2
1 − 4cµ1µ2 − 2cµ2

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ1(µ1 + µ2 − 3cµ1 − cµ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) = 2c(µ1 + µ2),

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
12cµ2

1 + 8cµ1µ2 + 2cµ2
2 − µ1µ2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
µ1µ2 + 4cµ2

1 + 4cµ1µ2 + 2cµ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,
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for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
2µ2

1 + µ2
1µ2 + µ2

2 − 2cµ3
1 − 4cµ1µ2 − 2cµ2

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
2µ1µ2(µ1 + cµ1 + cµ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) = cBB−1vw((1,2,1),a12) − cw((1,2,1),a12)

=
µ1µ2 + 4cµ2

1 + 4cµ1µ2 + 2cµ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
2µ2(µ1 + µ2)(µ1 + cµ1 + cµ2)

4µ2
1 + 3µ1µ2 + µ2

2

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
µ1µ2 + 2µ2

2 + 4cµ2
1 − 4cµ1µ2 − 2cµ2

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) ==
2µ2

1 − µ2
1µ2 − 2cµ3

1 − 2cµ1µ2 − 2cµ2
2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
(µ1 + µ2)(12cµ2

1 + 8cµ1µ2 + 2cµ2
2 − µ1µ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) = cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
2µ1(µ1 + µ2)(4cµ1 + 2cµ2 − µ2)

4µ2
1 + 3µ1µ2 + µ2

2

.

These quantities are nonnegative because µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Finally, for

states (2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) =
2µ3

1 + µ2
1µ2 − µ1µ

2
2 − µ3

2 − 2cµ3
1 − 4cµ2

1µ2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
µ2(µ1 + µ2)(4cµ1 + 2cµ2 − µ2)

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a12) − cw((2,1,2),a12) =
2µ2

1 − µ1µ2 − 2cµ2
1 − 2cµ1µ2 − 2cµ2

2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
µ2

2 + 8cµ2
1 + 2cµ1µ2

4µ2
1 + 3µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12)

=
2µ3

1 + µ2
1µ2 − µ1µ

2
2 − µ3

2 − 2cµ3
1 + 4cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2

4µ2
1 + 3µ1µ2 + µ2

2

.

These quantities are nonnegative because µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Hence, the

policy π = (d)∞ is an optimal policy and the recurrent states under this policy are
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(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), and (2, 1, 2). In the transient states (i.e., states in

S \ Sw∗) we can select an action that will take the process to one of the recurrent

states and this shows that the policy π∗ described in the theorem is optimal when

µ2

4µ1+2µ2
< c ≤ 2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
.

Next, let
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
< c ≤ 2µ2

1−µ2
2

2µ2
1+2µ1µ2+2µ2

2
, and consider the decision rule d, where

d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 1)},

The basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (2, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
(µ1 + µ2)(2cµ2

1 + 2cµ1µ2 + 2cµ2
2 − µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
µ2(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − µ2
2

µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) = 0,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =
µ2(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

.

These quantities are nonnegative because c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. For state (1, 1, 1) we
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have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
µ1(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − 2µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

.

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 4µ2
1 + µ1µ2 + 2µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 2µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − µ2
1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ2

1µ2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
µ2

1(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
µ1µ2(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = 2cµ2,
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cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 3µ2
1 + 2µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − µ2
1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
µ1(µ1 + µ2)(µ1 − µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ1µ2)

µ2
1 + µ1µ2 + µ2

2

.

These quantities are nonnegative because c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Finally, for states

(2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) =
µ2(2µ2

1 − µ2
2 − 2cµ2

1 − 2cµ1µ2 − 2cµ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) = cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
µ2(µ1 + µ2)(µ1 − µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 2µ2
1 + µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − 2µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
µ2(2µ2

1 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

.

These quantities are nonnegative because
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
< c ≤ 2µ2

1−µ2
2

2µ2
1+2µ1µ2+2µ2

2
. Hence,

the policy π = (d)∞ is an optimal policy and the recurrent states under this policy

are (0, 1, 2), (1, 1, 2), and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗) we

can select an action that will take the process to one of the recurrent states and this

shows that the policy π∗ described in the theorem is optimal when
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
<

c ≤ 2µ2
1−µ2

2

2µ2
1+2µ1µ2+2µ2

2
.

Finally, let c >
2µ2

1−µ2
2

2µ2
1+2µ1µ2+2µ2

2
, and consider the decision rule d, where d(x) is
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defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 1)},

The basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
µ2(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) = 0,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =
µ2(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

.

These quantities are nonnegative because c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. For state (1, 1, 1) we

have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
µ1(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
µ2(µ1 + µ2)(µ1 − µ2)

µ2
1 + µ1µ2 + µ2

2

,

252



cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

.

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 4µ2
1 + µ1µ2 + 2µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 + µ1µ2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − µ2
1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ2

1µ2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
(µ1 + µ2)(µ2

1 + µ1µ2 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
µ2

1(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
µ1µ2(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = 2cµ2,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 3µ2
1 + 2µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 + µ2
1 − µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
µ1(µ1 + µ2)(µ1 − µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − µ1µ2)

µ2
1 + µ1µ2 + µ2

2

.
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These quantities are nonnegative because c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Finally, for states

(2, 1, 1), (2, 1, 2) and (2, 2, 1) we have

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) =
µ2(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − 2µ2
1 + µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) = cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
(µ1 + µ2)(2cµ2

1 + 2cµ2
1µ2 + 2cµ2

2 − 2µ2
1 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
µ1(4cµ2

1 + 4cµ2
1µ2 + 4cµ2

2 − 2µ2
1 + µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
µ2(2µ2

1 − µ2
2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
µ2(µ1 + µ2)(µ1 − µ2)

µ2
1 + µ1µ2 + µ2

2

.

These quantities are nonnegative because c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Hence, the policy π =

(d)∞ is an optimal policy and the recurrent states under this policy are (0, 1, 2),

(1, 1, 2), and (2, 1, 2). In the transient states (i.e., states in S \ Sw∗) we can select an

action that will take the process to one of the recurrent states and this shows that

the policy π∗ described in the theorem is optimal when c >
2µ2

1−µ1µ2

2µ2
1+2µ1µ2+2µ2

2
. Hence the

proof is complete. 2

Proof of Theorem 5.4.4: We will use the LP approach for communicating

Markov decision processes using the notation in the proof of Theorem 5.4.1.

Here, we prove the result when µ1 ≥ µ2 since the servers can be relabeled other-

wise. We first prove the optimality of the policy for 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
.

Consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 1, 2), (0, 2, 1), (0, 2, 2), (1, 1, 1)},

a12 if x ∈ {(1, 1, 2), (1, 2, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1), (2, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)},

More specifically, consider the basic solution ω corresponding to the policy π = (d)∞
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with the basis

D = {ω((0, 1, 2), (1, 1)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 1)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (2, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 2)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 2))}.

For states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a12) − cw((0,1,2),a12) = cBB−1vw((0,2,2),a12) − cw((0,2,2),a12)

=
4µ2

1µ2 + 5µ1µ
2
2 + 3µ3

2 − 12cµ3
1 − 20cµ2

1µ2 − 12cµ1µ
2
2 − 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) =
µ1(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 + 4cµ1µ2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
4µ3

1 + 4µ2
1µ2 + 5µ1µ

2
2 + 4cµ3

1 − 4cµ3
2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) = cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 − 12cµ2
1µ2 − 20cµ1µ

2
2 − 12cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
.

It is clear that these quantities are nonnegative when 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
.

For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 + 4cµ2
1µ2 + 8cµ1µ

2
2 + 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20) =
4µ2

1µ2 + 5µ1µ
2
2 + 3µ3

2 + 8cµ3
1 + 8cµ2

1µ2 + 4cµ3
2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,1,1),a12) − cw((1,1,1),a12) =
2c(µ1 + µ2)(µ2

1 + µ1µ2 + µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
2cµ1(µ1 + µ2)(2µ1 + µ2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
4c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,
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for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 + 4cµ2
2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
4µ2

1 + 5µ1µ2 + 3µ2
2 − 8cµ2

1 − 12cµ1µ2 − 4cµ2
2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) =
2c(µ1 + µ2)(5µ2

1 + 6µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
2c(µ1 + µ2)(5µ2

1 + 7µ1µ2 + 3µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ1(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 + 4cµ2
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20)

=
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 − 12cµ1µ2 − 8cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
2c(µ1 + µ2)(2µ2

1 + 4µ1µ2 + 3µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
2c(µ1 + µ2)(3µ2

1 + 5µ1µ2 + 4µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
2c(µ1 + µ2)(4µ2

1 + 7µ1µ2 + 4µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 − 8cµ2
1µ2 − 8cµ1µ

2
2 − 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10)

=
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 − 12cµ1µ2 − 8cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
2c(µ1 − µ2)(µ1 + µ2)2

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) =
2cµ1(µ1 + µ2)(µ1 + 2µ2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,
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For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 − 8cµ2
1µ2 − 8cµ1µ

2
2 − 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 − 12cµ1µ2 − 8cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
2cµ1(µ1 + µ2)(µ1 + 2µ2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) =
2c(µ1 − µ2)(µ1 + µ2)2

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 + 4cµ2

1 − 4cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10)

=
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 − 12cµ1µ2 − 8cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
2c(µ1 + µ2)(4µ2

1 + 7µ1µ2 + 4µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
2c(µ1 + µ2)(3µ2

1 + 5µ1µ2 + 4µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 4cµ2

1 + 4cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20)

=
µ2(4µ2

1 + 5µ1µ2 + 3µ2
2 − 8cµ2

1 − 12cµ1µ2 − 4cµ3
2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
2c(µ1 + µ2)(5µ2

1 + 7µ1µ2 + 3µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
2c(µ1 + µ2)(5µ2

1 + 5µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,
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and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) =
4µ2

1µ2 + 5µ1µ
2
2 + 3µ3

2 + 8cµ3
1 − 8cµ2

1µ2 − 4cµ3
2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,2,2),a10) − cw((2,2,2),a10)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 + 4cµ2
1µ2 + 8cµ1µ

2
2 + 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11) =
2c(µ1 + µ2)(3µ2

1 + 4µ1µ2 + 2µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
2cµ1(µ1 + µ2)(2µ1 + µ2)

4µ2
1 + 5µ1µ2 + 3µ2

2

,

cBB−1vw((1,2,2),a21) − cw((2,2,2),a21) =
2c(µ1 + µ2)(µ2

1 + µ1µ2 + µ2
2)

4µ2
1 + 5µ1µ2 + 3µ2

2

.

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

=
4µ3

1 + 5µ2
1µ2 + 3µ1µ

2
2 − 4cµ3

1 − 12cµ2
1µ2 − 20cµ1µ

2
2 − 12cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
4µ2

1µ2 + 5µ1µ
2
2 + 3µ3

2 − 12cµ3
1 − 20cµ2

1µ2 − 12cµ1µ
2
2 − 4cµ3

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) =
4µ2

1µ2 + 5µ1µ
2
2 + 3µ2

2 + 4cµ2
1 − 4cµ2

2

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12) =
µ1(4µ2

1µ2 + 5µ1µ
2
2 + 3µ2

2 − 4cµ2
1 + 4cµ1µ2)

2(4µ2
1 + 5µ1µ2 + 3µ2

2)
.

These quantities are also nonnegative when 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
. Hence

we have shown that the inequality (55) is satisfied for all nonbasic variables. We can

conclude that D is an optimal basis for LP (54), and consequently π = (d)∞ is an

optimal policy when 0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
. We see that the recurrent states

are (0, 1, 2), (0, 2, 1), (1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (2, 1, 1), (2, 1, 2), (2, 2, 1),

(2, 2, 2), (3, 1, 2) and (3, 2, 1) under this policy. In the transient states (i.e., states in

S \ Sw∗) we can select an action that will take the process to one of the recurrent

states and this shows that the policy π∗ described in the theorem is optimal when

0 ≤ c ≤ 4µ2
1µ2+5µ1µ2

2+3µ3
2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
.
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Next, let
4µ2

1µ2+5µ1µ2
2+3µ3

2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
≤ c < µ2

2µ1+2µ2
, and consider the decision rule d,

where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1), (1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 1, 1), (2, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 1, 1), (3, 1, 2), (3, 2, 1)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (2, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 2)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
−4µ2

1µ2 − 5µ1µ
2
2 − 3µ3

2 + 12cµ3
1 + 20cµ2

1µ2 + 12cµ1µ
2
2 + 4cµ3

2

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12)

=
2µ4

1 + 2µ3
1µ2 + µ2

1µ
2
2 − µ1µ

3
2 − 2cµ4

1 − 4cµ3
1µ2 − 4cµ2

1µ
2
2 − 4cµ1µ

3
2 − 2cµ4

2

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21)

=
(µ1 + µ2)(−4µ2

1µ2 − 5µ1µ
2
2 − 3µ3

2 + 12cµ3
1 + 20cµ2

1µ2 + 12cµ1µ
2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =

=
(µ1 + µ2)(2µ3

1 − 5µ1µ
2
2 − 3µ3

2 − 2cµ3
1 + 10cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
.

. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
µ2(2µ3

1 + 4µ2
1µ2 + 4µ1µ

2
2 + µ3

2 − 4cµ3
1 − 6cµ2

1µ2 − 4cµ1µ
2
2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,
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cBB−1vw((1,1,1),a12) − cw((1,1,1),a12)

=
(µ1 + µ2)(2µ2

1µ2 + 3µ1µ
2
2 + 2µ3

2 − 4cµ3
1 − 10cµ2

1µ2 − 6cµ1µ
2
2 − 2cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
µ1(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
2µ2(µ1 + µ2)(2µ2

1 + 2µ1µ2 + µ2
2 − 2cµ2

1)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1µ2(µ1 + µ2 − 2cµ1)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ2

1µ2(µ2
1 + 2cµ2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
(µ1 + µ2)(−2µ2

1µ2 − 3µ1µ
2
2 − 2µ3

2 + 12cµ3
1 + 18cµ2

1µ2 + 12cµ1µ
2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21) = 2c(µ1 + µ2)

=
2(µ1 + µ2)(−µ2

1µ2 − 2µ1µ
2
2 − µ3

2 + 8cµ3
1 + 11cµ2

1µ2 + 7cµ1µ
2
2 + 2cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

2µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ2

1µ2(µ2
1 + 2cµ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ1µ2(µ1 + µ2 − 2cµ1)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11)

=
2(µ1 + µ2)(µ1µ

2
2 + 4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
2(µ1 + µ2)(−3cµ2

1 − cµ1µ2 + µ2
2 + 2µ1µ2 + µ2

1)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22)

=
(µ1 + µ2)(4µ2

1µ2 + 5µ1µ
2
2 + 2µ3

2 − 4cµ3
1 − 8cµ2

1µ2 − 2cµ1µ
2
2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,
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and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
µ2

1µ2(µ1 + 2cµ2)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
(µ1 + µ2)(−2µ2

1µ2 − 3µ1µ
2
2 − 2µ3

2 + 12cµ3
1 + 18cµ2

1µ2 + 12cµ1µ
2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
2(µ1 + µ2)2(−µ1µ2 − µ2

2 + 4cµ2
1 + 3cµ1µ2 + cµ2

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) =
µ1(µ1 + µ2)(µ2 − 2cµ1)

2µ2
1 + µ1µ2 + µ2

2

.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
µ1µ2(1− 2c)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
µ1(µ1 + µ2)(µ2 − 2cµ1)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) =
(µ1 + µ2)(µ2 − 2cµ1 − 2cµ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
µ2(µ1 + µ2)(2µ2

1 + 2µ1µ2 + µ2
2 − 2cµ2

1)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
µ1µ2(1− 2c)

2µ1 + µ2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
µ1µ2(µ2

1 + 2cµ2)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11)

=
(µ1 + µ2)(8cµ3

1 + 12cµ2
1µ2 + 10cµ1µ

2
2 + 4cµ3

2 − µ3
2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
(µ1 + µ2)(−µ2 + 6cµ1 + 4cµ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
(µ1 + µ2)(4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,
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for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ1µ2(µ2 + 2cµ1 + 4cµ2)

2µ1 + µ2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
µ1µ2(µ2

1 + 2cµ2)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
(µ1 + µ2)(2cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
(µ1 + µ2)(2cµ1 + µ2)

2µ1 + µ2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
µ2(µ1 + µ2)(2µ2

1 + 2µ1µ2 + µ2
2 − 2cµ1µ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10),

=
µ1(2µ2

1µ2 + µ1µ
2
2 + 2cµ3

1 + 2cµ2
1µ2 + 8cµ1µ

2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
(µ1 + µ2)(−µ1µ

2
2 − µ3

2 + 12cµ3
1 + 16cµ2

1µ2 + 12cµ1µ
2
2 + 4cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2)2

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
(µ1 + µ2)(−2µ2

1 − 2µ1µ
2
2 − µ3

2 + 8cµ3
1 + 10cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

=
2µ4

1 + 2µ3
1µ2 + µ2

1µ
2
2 − µ1µ

3
2 − 2cµ4

1 − 4cµ3
1µ2 − 4cµ2

1µ
2
2 − 4cµ1µ

3
2 − 2cµ4

2

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21) = 0,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21) = 2cµ1,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)

=
2µ3

1 + 2µ2
1µ2 + µ1µ

2
2 − µ3

2 − 2cµ3
1 + 4cµ2

1µ2 + 4cµ1µ
2
2 + 2cµ3

2

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

These quantities are nonnegative because
4µ2

1µ2+5µ1µ2
2+3µ3

2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
≤ c < µ2

2µ1+2µ2
. Hence,

the policy π = (d)∞ is an optimal policy and the recurrent states under this policy
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are (0, 1, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2). In the transient states

(i.e., states in S \Sw∗) we can select an action that will take the process to one of the

recurrent states and this shows that the policy π∗ described in the theorem is optimal

when
4µ2

1µ2+5µ1µ2
2+3µ3

2

12µ3
1+20µ2

1µ2+12µ1µ2
2+4µ3

2
≤ c < µ2

2µ1+2µ2
.

Next, let µ2

2µ1+2µ2
< c ≤ min{ µ2

2µ1
,

2µ4
1+2µ3

1µ2+µ2
1µ

2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
}, and consider the de-

cision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1), (1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1)},

a22 if x ∈ {(2, 2, 2), (3, 1, 2)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (1, 2)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (2, 1)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 1))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
2(µ1 + µ2)2(4cµ2

1 + 3cµ2
1µ2 + µ2

2 − µ1µ2 − µ2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12)

=
2µ4

1 + 2µ3
1µ2 − µ2

1µ
2
2 − 5µ1µ

3
2 − 2µ4

1 + 12cµ3
1µ2 + 18cµ2

1µ
2
2 + 10cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) =
µ1µ2(µ2

1 + 2µ1µ2 + µ2
2 − 3cµ2

1 − cµ1µ2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =

=
(µ1 + µ2)(2µ3

1 + 2µ2
1µ2 − 5µ1µ

2
2 − 2cµ3

1 + 10cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
.
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. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
µ2(µ1 + µ2)(2cµ1 + µ2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a12) − cw((1,1,1),a12) =
(µ1 + µ2)(µ2 − 2cµ1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21) =
µ1(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
2 + µ1µ2 + µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1(µ2

1 − µ1µ2 + 2cµ2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ2

1µ2(µ2
1 + 2cµ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

=
(µ1 + µ2)(3µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(2cµ2

1 + 2cµ2
2 + µ1µ2 + µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ1µ

2
2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ1µ2(µ1 + µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11)

=
(µ1 + µ2)(4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12)

=
(µ1 + µ2)(4cµ3

1 + 2cµ1µ
2
2 + 2cµ3

2 + 3µ1µ
2
2 + µ3

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22)

=
µ2(µ1 + µ2)(−2cµ3

1 + 2cµ1µ2 + 2cµ2
2 + 2µ2

1 + 4µ1µ2 + µ2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,
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and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
µ1µ2(µ1 + µ2)2

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ2

2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =

=
(µ1 + µ2)(4cµ3

1 + 8cµ2
1µ2 + 4cµ1µ

2
2 − 3µ1µ

2
2 − µ3

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21) =
µ1(µ1 + µ2)(µ2 − 2cµ1)

µ2
1 + µ1µ2 + µ2

2

.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
(µ1 + µ2)(4cµ2

1 + 4cµ2
1µ2 + 2cµ1µ

2
2 + µ1µ

2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
µ1(µ1 + µ2)(µ2 − 2cµ1)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21) = 0,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22)

=
(µ1 + µ2)(4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
µ1µ2(µ2

1 + 2cµ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
(µ1 + µ2)(42cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) = 2c(µ1 + µ2),

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
(µ1 + µ2)(4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,
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for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ1µ2(µ2

1 + 2cµ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
(µ1 + µ2)(2cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) = 2c(µ1 + µ2),

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
(µ1 + µ2)(4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10),

=
µ1(µ1µ

2
2 − µ3

2 + cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
(µ1 + µ2)(4cµ3

1 + 5cµ2
1µ2 + 4cµ1µ

2
2 + cµ3

2 + µ2
1µ2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) = cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
µ1(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 4cµ2
2 − µ2

2)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
.

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) =
(µ1 − µ2)(µ1 + µ2)(2µ2

1 + 2µ1µ2 + µ2
2 − 2µ2

1)

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a22) − cw((3,2,1),a22)

=
(µ1 + µ2)(2cµ1 + 2cµ2 − µ2)

2µ1 + µ2

,

cBB−1vw((3,1,2),a12) − cw((3,1,2),a12) =
µ1(2cµ1 + µ2)

2µ1 + µ2

,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21)

=
2µ4

1 + 2µ3
1µ2 + µ2

1µ
2
2 − µ1µ

3
2 − 2cµ4

1 − 4cµ3
1µ2 − 4cµ2

1µ
2
2 − 4cµ1µ

3
2 − 2cµ4

2

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12)

=
2µ4

1 + 2µ3
1µ2 − µ2

1µ
2
2 − 2µ1µ

3
2 + 2cµ4

1 + 8cµ3
1µ2 + 10cµ2

1µ
2
2 + 6µ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(µ2
1 + µ1µ2 + µ2

2)
,
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These quantities are nonnegative if µ2

2µ1+2µ2
< c ≤ min{ µ2

2µ1
,

2µ4
1+2µ3

1µ2+µ2
1µ

2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
}.

Hence, the policy π = (d)∞ is an optimal policy and the recurrent states under this

policy are (0, 1, 2), (1, 1, 2), (1, 2, 2), (2, 1, 2), (2, 2, 2), and (3, 1, 2). In the transient

states (i.e., states in S \Sw∗) we can select an action that will take the process to one

of the recurrent states and this shows that the policy π∗ described in the theorem is

optimal when µ2

2µ1+2µ2
< c ≤ min{ µ2

2µ1
,

2µ4
1+2µ3

1µ2+µ2
1µ

2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
}.

Let 2µ5
1+µ4

1µ2 ≥ µ3
1µ

2
2+3µ2

1µ
3
2+2µ1µ

4
2+µ5

2 and µ2

2µ1
< c ≤ 3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

and consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1), (2, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1), (3, 1, 1), (3, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 2), (3, 1, 2)},

Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (2, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (1, 1)), ω((3, 1, 2), (2, 2)), ω((3, 2, 1), (2, 1))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
−2µ2

1µ2 − 2µ1µ
2
2 − µ3

2 + 12cµ3
1 + 12cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21) = cBB−1vw((0,2,1),a12) − cw((0,2,1),a12)

=
3µ4

1 + 2µ3
1µ2 − 3µ2

1µ
2
2 − 4µ1µ

3
2 − 2cµ4

1 + 20cµ3
1µ2 + 18cµ2

1µ
2
2 + 8cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) =
µ1µ2(3µ2

1 + 2µ1µ2 + µ2
2 − 2cµ2

1)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,
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cBB−1vw((0,2,2),a21) − cw((0,2,2),a21) =

=
(µ1 + µ2)(−3µ2

1µ2 − 2µ1µ
2
2 − µ3

2 + 12cµ3
1 + 12cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
.

. For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) = cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
µ2(2µ3

1 + 5µ3
1µ2 + +µ3

2 − 4cµ3
1 + cµ2

1µ2 + 4cµ1µ
2
2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) = 0,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

=
µ1(µ1 + µ2)(8cµ2

1 + 6cµ1µ2 + 2cµ2
2 − µ1µ2 − 2µ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
(µ1 + µ2)(4cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2

3µ2
1 + µ1µ2 + µ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1(µ2

1 + µ1µ2 + 2µ2
2 − cµ1)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ2

1µ2(µ2
1 + 2cµ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11) = 2c(µ1 + µ2),

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

=
(µ1 + µ2)(−µ2

1µ2 − 2µ1µ
2
2 + 20cµ3

1 + 16cµ2
1µ2 + 8cµ1µ

2
2 + 2cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(4cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2

3µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ2

1µ2(µ2
1 + 2cµ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ1µ2(µ1 + µ2 + 2cµ1)

3µ2
1 + µ1µ2 + µ2

2

,
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cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) = cBB−1vw((1,2,1),a12) − cw((1,2,1),a12)

=
2(µ1 + µ2)(µ2

1µ2 + 2µ1µ
2
2 + 4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
µ2(µ1 + µ2)2(3µ1 + 2cµ1 + 2cµ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) = cBB−1vw((1,2,2),a10) − cw((1,2,2),a10),

=
µ2

1µ2(µ1 + 2cµ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11) =
(µ1 + µ2)(8cµ2

1 + 4cµ1µ2 + 2cµ2
2 − µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
µ1(µ1 + µ2)(2cµ1 − µ2)

(2µ1 + µ2)(2µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
µ1(µ1 + µ2)(12cµ2

1 + 8cµ1µ2 + 2cµ2
2 − 3µ1µ2 − 3µ2

2)

3µ2
1 + µ1µ2 + µ2

2

.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) = cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
µ1(µ1 + µ2)(4cµ2

1 + 3cµ1µ2 + cµ2
2 + 2µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12) = cBB−1vw((2,1,1),a21) − cw((2,1,1),a21)

=
µ1(µ1 + µ2)(2cµ1 − µ2)

2µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22)

=
(µ1 + µ2)(10cµ3

1 + 13cµ2
1µ2 + 9cµ1µ

2
2 + 3cµ2

2 + µ2
1µ2 − µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
µ2(µ1 + µ2)(2cµ1 + µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
µ1µ2(µ2

1 + 2cµ2)

3µ2
1 + µ1µ2 + µ2

2

,
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cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
(µ1 + µ2)(3cµ2

1 − cµ1µ2 + cµ2
2 + µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
(µ1 + µ2)(8cµ2

1 + 2cµ1µ2 + 2cµ2
2 − µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
(µ1 + µ2)(10cµ3

1 + 9cµ2
1µ2 + 7cµ1µ

2
2 + 3cµ2

2 + 2µ2
1µ2 + 2µ1µ

2
2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ2(µ1 + µ2)(2cµ1 + µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
µ1µ2(µ2

1 + 2cµ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
(µ1 + µ2)(cµ2

1 + cµ1µ2 + cµ2
2 + µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 + µ1µ2 − µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
(µ1 + µ2)(6cµ3

1 + 11cµ2
1µ2 + 9cµ1µ

2
2 + 3cµ2

2 + 3µ2
1µ2 + µ1µ

2
2 − µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) = cBB−1vw((2,2,2),a10) − cw((2,2,2),a10),

=
µ1(2µ2

1µ2 + µ1µ
2
2 + cµ2

1µ2 + 4cµ1µ
2
2 + 4cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
(µ1 + µ2)(6cµ3

1 + 11cµ2
1µ2 + 9cµ1µ

2
2 + 3cµ2

2 + 3µ2
1µ2 + µ1µ

2
2 − µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12)

=
µ1(µ1 + µ2)(8cµ2

1 + 6cµ1µ2 + 2cµ2
2 − µ1µ2 − 2µ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
(µ1 + µ2)(2µ1µ

2
2 − µ3

2 + 4cµ3
1 + 6cµ2

1µ2 + 6cµ1µ
2
2 + 2cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,
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Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a12) − cw((3,1,1),a12) = cBB−1vw((3,1,2),a12) − cw((3,1,2),a12)

=
−2cµ4

1 − 4cµ3
1µ2 − 4cµ2

1µ
2
2 − 4cµ1µ

3
2 − 2cµ4

2 + 3µ4
1 + 3cµ3

1µ2 − 2cµ1µ
3
2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21) = cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
µ1(12cµ3

1 + 2cµ2
1µ2 + µ1µ

2
2 + 2µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21)

=
3µ4

1 + 2µ3
1µ2 − 3µ1µ

3
2 − 2µ4

2 + 2cµ4
1 + 8cµ3

1µ2 + 14cµ1µ
3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12) =
8cµ2

1 + 6cµ1µ2 + 2cµ2
2 − 2µ1µ2 − 2µ2

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

These quantities are nonnegative because 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2

and µ2

2µ1
< c ≤ 3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
. Hence, the policy π = (d)∞ is an optimal

policy and the recurrent states under this policy are (0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2),

(2, 1, 2), (2, 2, 2), and (3, 1, 2). In the transient states (i.e., states in S \ Sw∗) we can

select an action that will take the process to one of the recurrent states and this

shows that the policy π∗ described in the theorem is optimal when 2µ5
1 + µ4

1µ2 ≥

µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2 and µ2

2µ1
< c ≤ 3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
.

Now, let 2µ5
1 +µ4

1µ2 ≥ µ3
1µ

2
2 +3µ2

1µ
3
2 +2µ1µ

4
2 +µ5

2 and c >
3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

and consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1), (2, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 1), (1, 1, 2), (2, 1, 2), (3, 1, 1), (3, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1), (3, 2, 1)},

a22 if x ∈ {(1, 2, 2), (2, 2, 2)},
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Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 2)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (2, 2)),

ω((2, 1, 1), (1, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (1, 2)), ω((3, 1, 2), (1, 2)), ω((3, 2, 1), (2, 1))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
12cµ3

1 + 12cµ2
1µ2 + 6cµ1µ

2
2 + 2cµ3

2 − 3µ2
1µ2 − 2µ1µ

2
2 − µ3

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21)

=
3µ4

1 + 2µ3
1µ2 − 4µ1µ

3
2 − µ4

2 − 2cµ4
1 + 20cµ3

1µ2 + 18cµ2
1µ

2
2 + 8cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a11) − cw((0,2,1),a11) =
µ1µ2(3µ2

1 + 2µ1µ2 + µ2
2 − 2cµ2

1)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
µ2

1(3µ2
1 + µ1µ2 − µ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
3µ4

1 + 2µ3
1µ2 − 4µ1µ

3
2 − µ4

2 − 2cµ4
1 + 8cµ3

1µ2 + 8cµ2
1µ

2
2 + 2cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
µ2(µ3

1 + µ2
1µ2 + µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
µ2(2cµ3

1 + 2cµ2
1µ2 + 4cµ1µ

2
2 + 4cµ3

2 + 2µ3
1 − µ2

1µ2 + 3µ1µ
2
2 + µ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11)

=
(µ1 − µ2)(µ1 + µ2)(3µ3

1 + 5µ2
1µ2 + 5µ1µ

2
2 + 2µ3

2 − 2cµ3
1 − 6cµ2

1µ2 − 2cµ1µ
2
2)

µ2(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

(56)
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cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

=
µ1(µ1 + µ2)(−µ1µ2 − µ2

2 + 8cµ2
1 + 6cµ1µ2 + 2cµ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,1),a22) − cw((1,1,1),a22) =
(µ1 + µ2)(4cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ1µ2(2cµ1 + µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ1µ2(µ2

1 + 2cµ2
2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
3µ4

1 + 2µ3
1µ2 − 3µ1µ

3
2 − 2µ3

2 − 2cµ4
1 + 8cµ3

1µ2 + 14cµ2
1µ

2
2 + 8cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

=
−µ2

1µ2 − 2µ1µ
2
2 + 20cµ3

1 + 16cµ2
1µ2 + 8cµ1µ

2
2 + 2cµ3

2

2(µ2
1 + µ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22) =
(µ1 + µ2)(4cµ2

1 + 2cµ1µ2 + 2cµ2
2 + µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ3

1µ2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ1µ

2
2

µ2
1 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11)

=
3µ4

1 + 2µ3
1µ2 − µ1µ

3
2 − 2µ3

2 − 2cµ4
1 + 8cµ2

1µ
2
2 + 6cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12)

=
µ2

1µ2 + 2µ1µ
2
2 + 4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
µ2(µ1 + µ2)2(2cµ1 + 2cµ2 + 3µ1)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
µ1(cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2 + µ2
1µ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,
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cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
µ2

1µ
2
2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
3µ4

1 + 2µ3
1µ2 − 2µ2

1µ
2
2 − 4µ1µ

3
2 − 2cµ4

1 + 12cµ3
1µ2 + 16cµ2

1µ
2
2 + 8cµ1µ

3
2 + 2cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((1,2,2),a12) − cw((1,2,2),a12) =
µ1(µ1 + µ2)(2cµ1 − µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
µ1(µ1 + µ2)(−3µ1µ2 − 3µ2

2 − µ3
1 + 12cµ2

1 + 8cµ1µ2 + 2cµ2
2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) =
µ1µ

3
2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
µ1(2cµ3

1 + 2cµ2
1µ2 + 2cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2 − µ2

1µ2 − µ3
1)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a12) − cw((2,1,1),a12)

=
(µ1 + µ2)(−3µ4

1 − 2µ3
1µ2 − µ1µ

3
2 + µ4

2 + 2cµ4
1 + 4cµ3

1µ2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21)

=
−3µ4

1 − 2µ3
1µ2 − 2µ2

1µ
2
2 + 2µ1µ

3
2 + 2µ4

2 + 2cµ4
1 + 8cµ3

1µ2 − 2cµ2
1µ

2
2 − 2cµ1µ

3
2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22) =
2µ2(−µ2

1 + µ1µ2 + 2cµ2
1 + 2cµ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
µ1µ

3
2

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
µ2

1µ2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11) =
(µ1 + µ2)(3cµ2

1 − cµ1µ2 + cµ2
2 + µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21) =
(µ1 + µ2)(8cµ2

1 + 2cµ2
2 − µ1µ2 + µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,
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cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
3µ4

1 + 2µ3
1µ2 + µ2

1µ
2
2 − 2µ4

2 − 2cµ4
1 + 6cµ3

1µ2 + 13cµ2
1µ

2
2 + 9cµ1µ

3
2 + 3cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ2

1µ2

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
µ1µ

3
2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
(µ1 + µ2)(cµ2

1 + cµ1µ2 + cµ2
2 + µ1µ2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
(µ1 + µ2)(4cµ2

1 + 4cµ1µ2 + 2cµ2
2 + µ1µ2 − µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22)

=
3µ4

1 + 2µ3
1µ2 + 3µ2

1µ
2
2 − 3µ4

2 − 2cµ4
1 + 2cµ3

1µ2 + 15cµ2
1µ

2
2 + 11cµ1µ

3
2 + 3cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01)

=
µ1(µ1µ

2
2 + µ2

1µ2 − µ3
1 + 2cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 2cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a10) − cw((2,2,2),a10) =
µ2

1(µ2
1 + 2µ1µ2 + µ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
µ1(2µ3

1 + µ2
1µ

2
2 − µ1µ

2
2 − µ3

2 + 2cµ3
1 + 4cµ2

1µ2 + 4cµ1µ
2
2 + 2cµ3

2)

2(µ2
1 + µ2

2)
,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
(µ1 + µ2)(8cµ2

1 + 6cµ1µ2 + 2cµ2
2 − µ1µ2 − µ2

2)

3µ2
1 + µ1µ2 + µ2

2

,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
3µ4

1 + 3µ3
1µ2 + 2µ1µ

3
2 − 3µ4

2 − 2cµ4
1 + 2cµ3

1µ2 + 14cµ2
1µ

2
2 + 8cµ1µ

3
2 + 3cµ4

2

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21)

=
µ2(2µ1µ

2
2 + 2µ2

1µ2 − 3µ3
1 + 4cµ3

1 + 4cµ2
1µ2 + 4cµ1µ

2
2 + 4cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,
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= cBB−1vw((3,1,1),a22) − cw((3,1,1),a22) = cBB−1vw((3,1,2),a22) − cw((3,1,2),a22)

=
µ1(−µ1µ

2
2 − µ3

2 + 6cµ3
1 + 13cµ2

1µ2 + 9cµ1µ
2
2 + 3cµ3

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,1,2),a21) − cw((3,1,2),a21)

=
3µ4

1 + 2µ3
1µ2 − 2µ1µ

3
2 + 2cµ4

1 + 4µ3
1µ2 + 4µ2

1µ
2
2 + 4µ1µ

3
2 + 2µ4

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12) =
µ1µ2(3µ2

1 + µ1µ2 − µ2
2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)

cBB−1vw((3,2,1),a21) − cw((3,2,1),a21)

=
µ2(µ1 + µ2)(−µ1µ2 − µ2

2 + 8cµ2
1 + 6cµ1µ2 + 2cµ2

2)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
.

These quantities are nonnegative because 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2

and c >
3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
. Hence, the policy π = (d)∞ is an optimal policy

and the recurrent states under this policy are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

In the transient states (i.e., states in S \ Sw∗) we can select an action that will

take the process to one of the recurrent states and this shows that the policy π∗

described in the theorem is optimal when 2µ5
1 + µ4

1µ2 ≥ µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2

and c >
3µ4

1+2µ3
1µ2−2µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
.

Finally, let 2µ5
1+µ4

1µ2 < µ3
1µ

2
2+3µ2

1µ
3
2+2µ1µ

4
2+µ5

2 and c >
2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
,

and consider the decision rule d, where d(x) is defined as follows for all x ∈ S:

d(x) =



a11 if x ∈ {(0, 2, 1), (1, 1, 1)},

a12 if x ∈ {(0, 1, 2), (0, 2, 2), (1, 1, 2), (1, 2, 2), (2, 1, 1), (2, 1, 2),

(3, 1, 1), (3, 1, 2)},

a21 if x ∈ {(1, 2, 1), (2, 2, 1), (3, 2, 1)},

a22 if x ∈ {(2, 2, 2)},
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Then, the basic solution ω corresponding to the policy π = (d)∞ has the basis

D = {ω((0, 1, 2), (1, 2)), ω((0, 2, 1), (1, 1)), ω((0, 2, 2), (1, 2)),

ω((1, 1, 1), (1, 1)), ω((1, 1, 2), (1, 2)), ω((1, 2, 1), (2, 1)), ω((1, 2, 2), (1, 2)),

ω((2, 1, 1), (1, 1)), ω((2, 1, 2), (1, 2)), ω((2, 2, 1), (2, 1)), ω((2, 2, 2), (2, 2)),

ω((3, 1, 1), (1, 2)), ω((3, 1, 2), (1, 2)), ω((3, 2, 1), (2, 1))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1, 2), (0, 2, 1), and (0, 2, 2), we have :

cBB−1vw((0,1,2),a11) − cw((0,1,2),a11) = cBB−1vw((0,2,2),a11) − cw((0,2,2),a11)

=
2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ2 + 4cµ1µ
2
2 + 2cµ3

2 + µ3
1µ2 − µ2

1µ2 − 2µ1µ
3
2 − 2µ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((0,1,2),a21) − cw((0,1,2),a21)

=
µ2(4cµ4

1 + 8cµ3
1µ2 + 8cµ2

1µ2 + 8cµ1µ
2
2 + 4cµ3

2 + µ3
1µ2 − µ2

1µ2 − 2µ1µ
3
2 − 2µ4

2)

(µ1 + µ2)2(µ2
1 + µ2

2)
,

cBB−1vw((0,2,1),a12) − cw((0,2,1),a12) =
µ1µ2(µ2

1µ2 + 2µ1µ
2
2 + 2µ3

2 − µ3
1)

(2µ1 + µ2)(3µ2
1 + µ1µ2 + µ2

2)
,

cBB−1vw((0,2,1),a21) − cw((0,2,1),a21) = 0,

cBB−1vw((0,2,2),a21) − cw((0,2,2),a21)

=
µ2(2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ2 + 4cµ1µ
2
2 + 2cµ3

2 + µ3
1µ2 − µ2

1µ2 − 2µ1µ
3
2 − 2µ4

2)

(µ1 + µ2)2(µ2
1 + µ2

2)
,

For state (1, 1, 1) we have :

cBB−1vw((1,1,1),a02) − cw((1,1,1),a02) =
µ3

1 + 2µ2
1µ2 + 2µ3

2

µ2
1 + µ2

2

cBB−1vw((1,1,1),a20) − cw((1,1,1),a20)

=
µ2(2cµ3

1 + 2cµ2
1µ2 + 4cµ1µ

2
2 + 4cµ3

2 + 2µ3
1 − µ2

1µ2 + 3µ1µ
2
2 + µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,1,1),a11) − cw((1,1,1),a11) =
µ2(−µ3

1 + 5µ2
1µ2 + µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,1,1),a21) − cw((1,1,1),a21)

=
−µ4

1 − µ3
1µ2 − µ2

1µ
2
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,
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cBB−1vw((1,1,1),a22) − cw((1,1,1),a22)

=
−µ3

1 + µ1µ
2
2 + µ3

2 + 2cµ3
1 + 4cµ2

1µ2 + 2cµ1µ
2
2 + 2cµ3

2

µ2
1 + µ2

2

,

for state (1, 1, 2) we obtain :

cBB−1vw((1,1,2),a02) − cw((1,1,2),a02) =
µ3

1 + µ1µ
2
2 − 2µ3

2 + 2cµ3
1 + 2cµ1µ

2
2 + 2cµ3

2

µ2
1 + µ2

2

,

cBB−1vw((1,1,2),a10) − cw((1,1,2),a10) =
µ3

1 + µ1µ
2
2 + µ3

2 + cµ3
1 + 4cµ1µ

2
2 + 3cµ2

1µ2

µ2
1 + µ2

2

,

cBB−1vw((1,1,2),a11) − cw((1,1,2),a11)

=
µ3

1µ2 − µ1µ
3
2 − µ4

2 + 2cµ4
1 + 4cµ3

1µ2 + 4cµ2
1µ

2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,1,2),a21) − cw((1,1,2),a21)

=
−µ4

1 − µ2
1µ

2
2 − µ1µ

3
2 − µ4

2 + 4cµ4
1 + 8cµ3

1µ2 + 8cµ2
1µ

2
2 + 8cµ1µ

3
2 + 4cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,1,2),a22) − cw((1,1,2),a22)

=
−µ4

1 + µ2
1µ

2
2 + µ1µ

3
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

for state (1, 2, 1) we obtain :

cBB−1vw((1,2,1),a01) − cw((1,2,1),a01) =
µ2

1µ2

µ2
1 + µ2

2

,

cBB−1vw((1,1,1),a20) − cw((1,2,1),a20) =
µ1µ

2
2

µ2
1 + µ2

2

,

cBB−1vw((1,2,1),a11) − cw((1,2,1),a11) =
µ2

1(µ2
1 + µ1µ2 + µ2

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,2,1),a12) − cw((1,2,1),a12) =
µ4

1 + µ2
1µ

2
2 + µ1µ

3
2 + µ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,2,1),a22) − cw((1,2,1),a22) =
µ2

2(2µ2
1 + 2µ2

1µ2 + µ2
2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

and for state (1, 2, 2) we have :

cBB−1vw((1,2,2),a01) − cw((1,2,2),a01) =
µ1(2cµ3

1 + cµ2
1µ2 + 2cµ1µ

2
2 + 2cµ3

2 + µ3
1)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,2,2),a10) − cw((1,2,2),a10) =
µ3

1µ2

(µ1 + µ2)(µ2
1 + µ2

2)
,
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cBB−1vw((1,2,2),a11) − cw((1,2,2),a11)

=
µ3

1µ2 − µ1µ
3
2 − µ4

2 + 2cµ4
1 + 4cµ3

1µ2 + 4cµ2
1µ

2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,2,2),a21) − cw((1,2,2),a21)

=
−µ4

1 − µ2
1µ

2
2 − µ1µ

3
2 − µ4

2 + 2cµ4
1 + 4cµ3

1µ2 + 4cµ2
1µ

2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((1,2,2),a22) − cw((1,2,2),a22) =
µ2(−µ3

1 + 5µ2
1µ2 + µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
.

For state (2, 1, 1) we have :

cBB−1vw((2,1,1),a02) − cw((2,1,1),a02) =
µ1µ

3
2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a20) − cw((2,1,1),a20)

=
µ1(2cµ3

1 + 2cµ2
1µ2 + 2cµ1µ

2
2 + 2cµ3

2 + µ1µ
2
2 − µ2

1µ2 − µ3
1)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a11) − cw((2,1,1),a11) =
µ2(µ3

1 + µ2
1µ2 − µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a21) − cw((2,1,1),a21)

=
−2µ4

1 − 2µ3
1µ2 − µ2

1µ
2
2 + µ1µ

3
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,1),a22) − cw((2,1,1),a22)

=
−µ4

1 − µ3
1µ2 + µ1µ

3
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

for state (2, 1, 2) we obtain :

cBB−1vw((2,1,2),a02) − cw((2,1,2),a02) =
µ1µ2(2µ1 + cµ2)

µ2
1 + µ2

2

,

cBB−1vw((2,1,2),a10) − cw((2,1,2),a10) =
µ1(µ1 + 2µ2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,2),a11) − cw((2,1,2),a11)

=
µ3

1µ2 + µ1µ
3
2 − µ4

2 + 2cµ4
1 + 4cµ3

1µ2 + 4cµ2
1µ

2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,1,2),a21) − cw((2,1,2),a21)

=
−2µ4

1 − 2µ3
1µ2 − µ2

1µ
2
2 + µ1µ

3
2 + 4cµ4

1 + 8cµ3
1µ2 + 8cµ2

1µ
2
2 + 8cµ1µ

3
2 + 4cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,
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cBB−1vw((2,1,2),a22) − cw((2,1,2),a22)

=
−µ4

1 − µ3
1µ2 + µ1µ

3
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

for state (2, 2, 1) we obtain :

cBB−1vw((2,2,1),a01) − cw((2,2,1),a01) =
µ2

1µ2

µ2
1 + µ2

2

,

cBB−1vw((2,1,1),a20) − cw((2,2,1),a20) =
µ1µ

3
2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,1),a11) − cw((2,2,1),a11) =
2µ4

1 + 3µ3
1µ2 + 2µ2

1µ
2
2 − µ1µ

3
2 − µ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,1),a12) − cw((2,2,1),a12) =
µ1(2µ3

1 + 2µ2
1µ2 + µ1µ

2
2 − µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,1),a22) − cw((2,2,1),a22) =
µ2

1(µ2
1 + µ1µ2 + µ2

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

and for state (2, 2, 2) we have :

cBB−1vw((2,2,2),a01) − cw((2,2,2),a01) =
µ1(2µ1µ

2
2 + µ3

1 + 4cµ3
1 + 4cµ2

1µ2 + 2cµ3
2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,2),a10) − cw((2,2,2),a10) =
µ2

1µ
2
2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,2),a11) − cw((2,2,2),a11)

=
2µ3

1 + µ2
1µ2 − µ3

2 + 2cµ3
1 + 2cµ2

1µ2 + 2cµ1µ
2
2 + 2cµ3

2)

µ2
1 + µ2

2

,

cBB−1vw((2,2,2),a12) − cw((2,2,2),a12) =
µ1(µ3

1 + µ2
1µ2 − µ3

2)

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((2,2,2),a21) − cw((2,2,2),a21)

=
−µ4

1 − µ3
1µ2 − µ2

1µ
2
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

Finally, for states (3, 1, 1), (3, 1, 2) and (3, 2, 1) we have

cBB−1vw((3,1,1),a21) − cw((3,1,1),a21)

=
−3µ4

1 − 3µ3
1µ2 − µ2

1µ
2
2 + 2µ1µ

3
2 + 2cµ4

1 + 4cµ3
1µ2 + 4cµ2

1µ
2
2 + 4cµ1µ

3
2 + 2cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((3,1,1),a22) − cw((3,1,1),a22) = cBB−1vw((3,1,2),a22) − cw((3,1,2),a22)

=
−2µ4

1 − 2µ3
1µ2 − µ2

1µ
2
2 + µ1µ

3
2 + 4cµ4

1 + 8cµ3
1µ2 + 8cµ2

1µ
2
2 + 8cµ1µ

3
2 + 4cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,
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cBB−1vw((3,1,2),a21) − cw((3,1,2),a21)

=
−3µ4

1 − 3µ3
1µ2 − µ2

1µ
2
2 + 2µ1µ

3
2 + 4cµ4

1 + 8cµ3
1µ2 + 8cµ2

1µ
2
2 + 8cµ1µ

3
2 + 4cµ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((3,2,1),a12) − cw((3,2,1),a12) =
3µ4

1 + 3µ3
1µ2 + 2µ2

1µ
2
2 − 3µ1µ

3
2 − µ4

2

(µ1 + µ2)(µ2
1 + µ2

2)
,

cBB−1vw((3,2,1),a21) − cw((3,2,1),a21) =
(µ1 − µ2)(µ2

1 + µ1µ2 + µ2
2)

µ2
1 + µ2

2

.

These quantities are nonnegative because 2µ5
1 + µ4

1µ2 < µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2

and c >
2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
. Hence, the policy π = (d)∞ is an optimal policy

and the recurrent states under this policy are (0, 1, 2), (1, 1, 2), (2, 1, 2), and (3, 1, 2).

In the transient states (i.e., states in S \ Sw∗) we can select an action that will

take the process to one of the recurrent states and this shows that the policy π∗

described in the theorem is optimal when 2µ5
1 + µ4

1µ2 < µ3
1µ

2
2 + 3µ2

1µ
3
2 + 2µ1µ

4
2 + µ5

2

and c >
2µ4

1+2µ3
1µ2+µ2

1µ
2
2−µ1µ3

2

2µ4
1+4µ3

1µ2+4µ2
1µ

2
2+4µ1µ3

2+2µ4
2
. Hence the proof is complete. 2
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[9] Andradóttir, S., Ayhan, H., and Down, D. G., “Compensating for failures
with flexible servers,” Operations Research, vol. 55, pp. 753–768, 2007.
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2003. He started his graduate studies at the Georgia Institute of Technology, Atlanta,

GA, in 2003. He received his M.S. degree in Mathematics in 2006 and his Ph.D. degree

in Industrial and Systems Engineering in 2008 under the supervision of Dr. Sigrún
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