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SUMMARY

This dissertation is concerned with increasing the efficiency of systems with
cross-trained workforce and finite storage spaces. Our objective is to maximize pro-
duction rate and minimize setup costs (if they exist). More specifically, we determine
effective cross-training strategies and dynamic assignment policies for flexible servers
in production lines with finite buffers.

First, we study the assignment of flexible servers to stations in tandem lines with
service times that are not necessarily exponentially distributed. Our goal is to achieve
optimal or near-optimal throughput. For systems with infinite buffers, it is already
known that the effective assignment of flexible servers is robust to the service time
distributions. We provide analytical results for small systems and numerical results for
larger systems that support the same conclusion for tandem lines with finite buffers.
In the process, we propose server assignment heuristics that perform well for systems
with different service time distributions. Our research suggests that policies known
to be optimal or near-optimal for Markovian systems are also likely to be effective
when used to assign servers to tasks in non-Markovian systems.

Next, we identify optimal server assignment policies in under-staffed lines with
finite buffers. Our objective is to maximize the production rate. We study systems
with different flexibility structures and deterministic or exponential service times.
Our results show that, when the service times are deterministic, the production rate
of the line with full server flexibility can be obtained with partial flexibility, and
we also determine the critical skills required in order to achieve this. Furthermore,
we observe that the optimal server assignment policy for Markovian systems with

small buffer sizes is either of priority- or threshold-type, depending on the flexibility

x1



structure. Our numerical results imply that when the optimal assignment policies
for Markovian systems with small buffer sizes are employed in Markovian systems
with larger buffer sizes, near-optimal throughput of the fully flexible systems can be
achieved even with partial cross-training. Moreover, our numerical results provide
guidance about the choice of the best flexibility structure in Markovian lines.
Finally, we study the dynamic assignment of flexible servers to stations in the
presence of setup costs that are incurred when servers move between stations. The
goal is to maximize the long-run average profit. First, we prove the optimality of
“multiple threshold” policies for systems with small buffer sizes; i.e., we show that it
is optimal to move servers between stations when the number of jobs in the system
reaches certain thresholds that depend on the current locations of the servers. Then,
we investigate how the optimal server assignment policy for such systems depends on
the magnitude of the setup costs. Finally, we perform numerical experiments that
support the conjecture that multiple threshold policies are also optimal for systems

with larger buffer sizes.
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CHAPTER 1

INTRODUCTION

This thesis is concerned with performance improvement in tandem lines. Such sys-
tems exist in various industries, and companies perpetually need to identify new
strategies to increase their efficiency and stay competitive. It is important to include
the effective training and management of workforce among such strategies. In this
work, we study effective ways of using cross-training to increase the production rate
and profit of the systems under consideration.

Cross-training is a widely used strategy for adding flexibility to systems. It re-
quires less effort and resources compared to structural changes like modifying the
layout of the factory or the order of production. Furthermore, it has various advan-
tages for companies because it increases productivity and responsiveness, decreases
costs, and can even increase workers’ job satisfaction. However, once companies re-
sort to using agile workforce, they should also determine the most effective ways of
operating the workforce. Our goal in this thesis is to address this issue.

Queueing theory has been successfully used to model manufacturing systems.
Queueing models provide a good representation of discrete material flow, and they
are capable of capturing most situations that are observed in real-life (e.g., block-
age, setups, or failures). Contrary to most previous applications of queueing systems
that assume stationary servers, in this study we consider servers that are capable of
working at different stations (i.e., cross-trained servers). More specifically, we are
interested in improving the performance of manufacturing systems via effective use
of the cross-trained workforce. One possible way of employing flexible workforce is

to permanently pool several stations into a single station and then assigning a group



of cross-trained workers to this station. By contrast, we study how to dynamically
assign servers to stations in order to increase the system performance.

In this thesis, we study tandem manufacturing systems with flexible servers. We
assume that there is an infinite supply of jobs in front of the first station, infinite
room for completed jobs after the last station, and buffers of finite sizes between
the stations. We further assume that several servers can work on the same job,
and their service rates are additive if they are collaborating. Note that allowing
finite buffers is necessary to consider more realistic representations of actual systems
and their operations. For example, finite buffers occur frequently in manufacturing
environments due to physical constraints, and sometimes they are used to control
work-in-process (e.g., due to a desire for “just-in-time” processing). Having finite
buffers also makes our problem quite difficult, because the tools used in dealing with
infinite-buffered systems (e.g., fluid and diffusion limits) cannot be applied in our
problem.

Our first goal is to determine the dynamic server assignment policies that max-
imize the long-run average throughput in non-Markovian tandem systems. More
specifically, we want to show that the effective assignment of flexible servers is robust
to the service time distributions. Considering service time distributions other than
the exponential distribution is important to cover real-life situations where service
times are unlikely to have the memoryless property. At the same time, this is a
more difficult problem because Markov chain theory mostly does not apply in our
case. Given the difficulty associated with rigorously analyzing non-Markovian sys-
tems with finite buffers, we document the robustness of effective server assignment
policies to service time distributions by providing analytical results for small systems
and numerical results for larger systems. More specifically, we determine the opti-
mal server assignment policy for systems with two stations and two or three servers

to the extent possible, and support the robustness of the optimal server assignment



policy to service time distributions with extensive numerical experiments for other
systems. We also identify heuristic server assignment policies for systems with more
than two stations, show that these policies have good long-run average throughput
performance, and conclude that the performance of the heuristics is robust to the
service time distributions.

The second part of this thesis considers understaffed tandem lines (i.e., lines with
more tasks than servers) with the objective of maximizing the throughput. A com-
monly used strategy for addressing problems with understaffed lines is “task parti-
tioning,” which involves grouping the tasks and assigning each server to one group of
tasks, taking into account each server’s capabilities. Server flexibility yields improved
performance compared to strict task-portioning because strict task-partitioning cor-
responds to a subset of the policy space over which we solve our optimization problem
(see Section 4.3.1). Rather than strictly partitioning tasks and assigning servers to
them, in this thesis we consider various cross-training structures ranging from full
flexibility to zone-training, and using combinations of dedicated and flexible servers.
Partial cross-training strategies are especially important in industries where it is costly
or not possible to have fully flexible servers, such as when each task requires extensive
training or when the number of tasks is large compared to the number of available
servers. In this work, we focus on tandem lines with two flexible servers and three
stations because lines with more servers and stations become analytically intractable.
Our goal is to identify both the optimal server assignment policy and the critical
skills needed for the effective operation of fully and partially flexible systems. In the
process, we also show that when the objective is to maximize the throughput, most
(sometimes all) of the benefits of full flexibility can be obtained with partial flexibility.

The final part of this thesis studies dynamic assignment policies for flexible servers
in tandem lines with setups. We assume that a revenue is obtained each time a job

leaves the system and that there is a cost associated with server movements. Our



objective is to maximize the long-run average profit. To the best of our knowl-
edge, our work is the first that incorporates setups for a tandem system with finite
buffers. Incorporating positive switching costs is a more realistic representation of
actual systems, because server movements often cause some efficiency loss in real
life. However, the inclusion of setup costs also complicates the analysis due to the
necessity of keeping track of all server locations in the state space. Hence, most of
our results concentrate on systems with two stations and two flexible servers because
of the complexity associated with analyzing larger finite buffered systems. Our goal
is to determine the structure of the optimal policy analytically and numerically for
various systems, and to study how the optimal server assignment policy changes with
the setup costs.

The remainder of this thesis is organized as follows. In Chapter 2, we review the
previous research about flexible servers. In Chapter 3, we provide our results support-
ing the robustness of effective server assignment policies to service time distributions.
In Chapter 4, we study how partially flexible servers should be dynamically assigned
to stations in understaffed tandem lines. In Chapter 5, we consider the server as-
signment problem in the presence of setup costs. In Chapter 6, we describe the
contributions of this research and our future directions. Finally, we provide the de-
tails of the proofs of the results in Chapters 3, 4, and 5 in Appendices A, B, and C,

respectively.



CHAPTER 11

LITERATURE REVIEW

Queues with flexible servers can be used to model various manufacturing and service
systems. In this chapter, we provide a review of the work on effective flexible workforce
management. First, we study the permanent assignment of flexible servers to stations
in Section 2.1, concentrating on pooling in queueing systems. Next, we review the

research where servers can be dynamically assigned to stations in Section 2.2.

2.1 Permanent Workforce Assignment

Some of the earlier works on the server assignment problem consider the permanent
assignment of workers to stations. In a closed queueing network with identical servers,
Shantikumar and Yao [62, 63] study the optimal assignment of servers to stations.
They show that the optimal policy assigns more servers to stations with higher work-
load and they propose heuristic assignment policies that also appear to attain the
optimal throughput in systems with two stations. Hillier and So [42] study the per-
manent assignment of servers in overstaffed tandem systems with small buffer sizes,
and show that the interior stations should be given priority when assigning the extra
workforce. Hillier and So [43] consider the workload allocation problem together with
the server allocation problem in a tandem line. They show that unbalanced workload
and server allocations result in higher throughput than the corresponding balanced
system. Moreover, they show that when maximizing throughput is the goal, the most
effective way of unbalancing the line involves assigning all extra servers and the high-
est workload to the end stations. In earlier work, Hillier and Boiling [41] show that
unbalancing the line may increase the throughput, and that more workload should

be assigned to the end stations. They refer to this workload allocation as the bowl



phenomenon. Andradéttir, Ayhan, and Down [10] study tandem lines with two sta-
tions, and identify the optimal permanent assignment of servers to stations. When
there are two servers who are equally skilled at all tasks, they show that the faster
server should be assigned to the slower station. Finally, Yamazaki, Sakasegawa, and
Shanthikumar [73] consider a tandem line with no buffers between the stations. They
show that the two slowest stations should be placed at the two ends of the line, and
that the arrangement of the rest of the stations should be made according to the bowl
phenomenon.

One strategy to effectively manage a cross-trained workforce is to pool several
stations together permanently and to assign servers to the pooled stations as a team.
In an earlier work on parallel queues, Kleinrock [51] shows that pooling M/M/1
queues decrease the average waiting time for the customers. In a system with parallel
stations and general interarrival distributions, Smith and Whitt [65] show that pooling
decreases average waiting time if the service times have the same distribution but it
may be disadvantageous otherwise.

Benjaafar [24] shows that pooling in a queueing network with homogeneous cus-
tomers and workload allocation decreases the average waiting time and provides
bounds on the performance improvement in the pooled system. However, he shows
that if there are multiple customer classes, this conclusion is not always correct.
Mandelbaum and Reiman [54] also study complete and partial pooling in Jackson
networks. They show that complete pooling always helps in tandem systems, but it
may deteriorate the system performance for more general queueing networks. Buza-
cott [27] shows that complete pooling of stations in a tandem line is beneficial, es-
pecially in the presence of high processing time variability among the tasks. Argon
and Andradéttir [13] study the effects of partial pooling in tandem lines. They show
that pooling the stations at the beginning or end of the line result in higher system

throughput, but this is not always correct for the intermediate stations. Furthermore,



they show that in a line with balanced workload, pooling the central stations is even

better than pooling the stations near the beginning or end of the line.

2.2 Dynamic Workforce Assignment

We classify the dynamic server assignment literature with respect to the system con-
figuration. In Section 2.2.1, we review research on systems with parallel stations, in
Section 2.2.2 we study tandem lines, and finally in Section 2.2.3 we consider systems

with more general network configurations.
2.2.1 Parallel Systems

The majority of the research about systems with parallel stations is related to service
systems. More specifically, call centers have been an area of interest for various
researchers, see, e.g., Gans, Koole, and Mandelbaum [32] and Aksin, Armony, and
Mehrotra [5] for recent reviews.

Most papers concerned with parallel queueing systems have the objective of min-
imizing the holding cost. The majority of these papers assume infinite buffers and
analyze the system in heavy traffic, although some study a clearing system and use
Markov decision process (MDP) model. For a system with two stations in parallel,
one dedicated, and one flexible server, Bell and Williams [22] show that in heavy
traffic, the asymptotically optimal policy that minimizes the holding cost never idles
the dedicated server, and is of threshold type for the flexible server. Ahn, Duenyas,
and Zhang [3] consider a system similar to that of Bell and Williams [22] with the
modification that there are no arrivals. They show that the optimal policy might be
exhaustive or it might have a switching curve depending on the problem parameters.
Harrison and Lépez [40] are interested in a system with an arbitrary number of job
classes, fully trained servers, and linear holding costs. They study the associated
Brownian control problem and find a condition that leads to a heavy traffic resource

pooling. Using these results they conjecture an asymptotically optimal assignment



policy. Mandelbaum and Stolyar [55] propose and prove the asymptotic optimality of
the generalized cu-rule in the same system when the holding costs are convex and in-
creasing. Bell and Williams [23] also study the same system and prove the asymptotic
optimality of the dynamic threshold policy proposed in Williams [69].

Some recent works address server assignment issues that are observed in call cen-
ters. We now review a few such papers. Bhulai and Koole [26] study a call center
where the average waiting time of the incoming calls has to be kept below a limit,
whereas outgoing calls do not have any waiting time limit. They study the call blend-
ing problem; i.e., how to assign the staff dynamically to incoming and outgoing calls.
Gans and Zhou [33] analyze the same problem using different solution techniques,
and provide the optimal staffing rule when the service rates for the different customer
types can be different (Bhulai and Koole [26] provide a heuristic policy in this case).
Gurvich, Armony, and Mandelbaum [38] are interested in call centers with multiple
customer classes and fully flexible servers. They assume customers have different ser-
vice level requirements and provide asymptotically optimal staffing and assignment
policies. Armony and Magleras [14, 15] study a call center with a call-back option
and flexible servers. They identify asymptotically optimal routing and staffing rules
that guarantee that the maximum waiting time in the queue is not exceeded when
the customers use the call-back option. Bassamboo, Harrison, and Zeevi [21] study a
call center where arrivals to the system occur according to an arrival rate that varies
randomly over time, and customers abandon the system if they wait too long. They
present a staffing and routing algorithm that asymptotically minimizes the staffing
costs and penalty costs associated with abandonments. Finally, Gans and Zhou [34]
study the routing problem in a call center that outsources some of its operations.
They show that for call centers with high outsourcing requirements, routing struc-
tures with minimal coordination between the client and vendor may result in high

service levels.



Several papers focus on comparing the benefits of partial flexibility with full flex-
ibility in parallel queues, and here we review a few of them. Jordan and Graves
[48] study a setting with multiple products and plants, and show that most of the
demand can be satisfied even with partially flexible plants (as opposed to plants that
can produce all the products), as long as the assignment of products to plants is done
well. Graves and Tomlin [35] study a similar problem in multi-stage supply chains,
and show that partial flexibility structures (chaining, to be more specific) in each
stage are sufficient, and that there is no need to coordinate the flexibility structures
in different stages. Sheikhzadeh, Benjaafar, and Gupta [64] study the assignment of
products to machines in a plant and consider operational issues such as finite stor-
age spaces, setup times, work-in-process (WIP), inventory levels, and manufacturing
lead-time. Their work also supports the conclusion that most of the benefits of full
flexibility can be obtained by partial flexibility (using chaining structures). Guru-
muthi and Benjaafar [37] study a parallel service system with flexible servers. They
show that asymmetric server allocations are generally better than chaining structures
if the servers are heterogeneous and different customer types have different demand
rates. Wallace and Whitt [68] study routing and server assignment in a call cen-
ter, and show that most of the benefits of full flexibility can be reached even with
one additional skill per agent. Note that Hopp, Tekin, and Van Oyen [45] and An-
dradéttir, Ayhan, and Down [10] provide similar results related to the benefits of

partial flexibility in tandem systems, and they will be reviewed in Section 2.2.2.
2.2.2 Tandem Systems

Tandem systems are mostly employed in modeling of flow lines in production envi-
ronments. The papers that will be cited here have different objectives, including cost
minimization, throughput maximization, and line balancing.

Most papers on flexible servers in tandem lines focus on the cost minimization



problem in systems with two stations. Ahn, Duenyas, and Zhang [2] characterize
the necessary and sufficient conditions for assigning all servers to the same station
when there are two flexible servers and no external arrivals. When there is only one
flexible server and no dedicated servers, Iravani, Posner, and Buzacott [47] show that
the optimal policy in the second stage is greedy (e.g., the server never idles at the
second stage as long as there are jobs there, but may move to the first stage even
if second stage is not empty), and if the holding cost in the second stage is greater
than or equal to the one of the first stage, the optimal policy is also exhaustive (i.e.,
the server works at the second stage until it becomes empty). Ahn, Duenyas, and
Lewis [1] assume that there are two flexible servers, no dedicated servers, and Poisson
arrivals. They study the cases where the flexible servers collaborate on the same
job and where they do not collaborate but can work on separate jobs at the same
station in both finite and infinite horizon models. They present conditions under
which the optimal policy is exhaustive. Kaufman, Ahn, and Lewis [49] search for
the optimal server assignment policy when there are Poisson arrivals, no dedicated
servers, and the number of flexible servers varies randomly. They show that under
both the discounted and average cost criteria, there exists an exhaustive policy that
is optimal.

The papers reviewed in the preceding paragraph consider systems with no dedi-
cated servers. Other works address the cost minimization problem for systems with
both dedicated and flexible workforce. Rosberg, Varaiya, and Walrand [60] consider
a tandem line with Poisson arrivals, flexible workforce that can be assigned either to
the first station or to the second station, and dedicated workforce at the second sta-
tion. They find that the policy that minimizes the total expected or average cost has
a switching structure (when the number of jobs in front of the first station exceeds a
threshold whose value depend on the number of jobs in the second queue, it is optimal

to use all the flexible service effort at the first station; otherwise it is optimal to idle

10



the first station). With no exogenous arrivals, one dedicated server at each station,
and one flexible server, Farrar [31] studies the assignment of the flexible server that
minimizes the holding cost until all the initial jobs depart from the system. He shows
that the optimal control policy is transition monotone (i.e., after a service completion
at any station, the optimal service rate at that station does not increase, and the
optimal service rate at the other station does not decrease). Wu, Lewis, and Veatch
[72] consider a clearing system with dedicated servers at both stations and flexible
servers capable of working at either station. They show that there exists a transition
monotone policy that minimizes the holding cost both with and without failures of
dedicated servers. Under some additional assumptions, Wu, Down, and Lewis [71]
show the same result for the system with external arrivals.

Some papers consider the effects of setups in tandem systems with infinite buffers
between the stations. Duenyas, Gupta, and Olsen [29] consider a tandem line with
a single flexible server and positive setup times when the server switches between
the stations. They partially characterize the optimal policy and develop effective
heuristic assignment policies. Iravani, Posner, and Buzacott [47] study a two-stage
tandem queue with a flexible server, and identify the policy that minimizes the total
holding and setup costs. Sennott, Van Oyen, and Iravani [61] consider a tandem line
with a dedicated server at each station and one moving server. They allow positive
setup costs and setup times, and provide recommendations on how to use the moving
server more effectively.

Several papers focus on line balancing via server flexibility. Bartholdi and Eisen-
stein [17] show that the “bucket brigade” policy results in a stable partition of work
if the work is infinitely divisible, servers are ordered from slowest to fastest, and the
service times are deterministic. Bartholdi, Bunimovich, and Eisenstein [16] study the
asymptotic behavior that may be observed in bucket brigades with two or three work-

ers. Bartholdi, Eisenstein, and Foley [19] study the performance of the bucket brigade
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policy when the work consists of discrete tasks whose service requirements have an
exponential distribution. Zavadlav, McClain, and Thomas [74] perform simulations
for systems with more servers than stations and conclude that when the servers are
fully cross-trained, all servers will be busy the same fraction of the time under the
assignment policy they propose. Ahn and Righter [4] characterize some properties of
the optimal policy for general tandem lines in order to achieve a balanced line. They
consider different objective functions like maximizing the job completion process and
minimizing holding costs. Moreover, they show that the optimal policy is often last-
buffer-last-served (LBLS) or first-buffer-first-served (FBFS). Ostolaza, McClain, and
Thomas [57] are interested in a tandem system where there are both dedicated tasks
that must be done at a particular station and shared tasks that can be done at ei-
ther of two consecutive stations. They propose and test some heuristics that result in
higher throughput, as well as a balanced workload among stations. McClain, Thomas,
and Sox [56] study dynamic load balancing in systems with small buffer sizes. Hopp,
Tekin, and Van Oyen [45] study the capacity balancing problem for a line with equal
number of workers and stations under a CONWIP (constant work-in-process) pol-
icy and show that a skill-chaining strategy with two skills per worker outperforms
a “cherry picking” strategy in which some workers are cross-trained at bottleneck
stations, especially in systems with high variability and low WIP.

With respect to maximizing the steady-state throughput of tandem lines with
finite buffers, Andradéttir, Ayhan, and Down [7] show that any nonidling policy is
optimal when the service rate only depends on the server or the station. They also
identify the optimal server assignment policy for Markovian systems with two stations,
two flexible servers, a finite buffer between the stations, and arbitrary service rates.
Moreover, they propose heuristic server assignment policies that yield near-optimal
throughput for larger systems. Andradéttir and Ayhan [6] are interested in Markovian

systems with two stations and more than two flexible servers. They identify the
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optimal server assignment policy for systems with three servers. For systems with
more than three servers, they conjecture the structure of the optimal policy and
support their conjecture with extensive numerical results. Andradottir, Ayhan, and
Down [11] consider the effects of server failures in the same settings. Andraddttir,
Ayhan, and Down [10] study tandem lines with two stations, and dedicated and
flexible servers. They show how the optimal server assignment policy and throughput
change depending on the number of flexible and dedicated servers in the system. They
also give examples showing that for systems with moderate to large buffer sizes, most

of the benefits of the flexibility can be obtained even with a single flexible server.
2.2.3 General Queueing Networks

Less work has been done on server assignment for systems with structures other than
parallel and tandem. Such queueing networks can be used to model complex systems,
such as wafer production plants, where different types of products do not go through
the processing steps in the same order.

Hajek [39] considers systems with two stations where both external arrivals and
arrivals from the other station are possible. He proves the existence of an optimal
switching curve for finite horizon or long-run average cost problems. Tassiulas and
Bhattacharya [66] present a non-preemptive dynamic assignment policy and provide
some necessary conditions for this policy to achieve stability in a general queueing
networks. Andradéttir, Ayhan, and Down [8] also study general queueing networks
and they allow positive switchover times. They specify the maximal capacity and
propose server assignment policies that have capacity arbitrarily close to the maximal
capacity even in the existence of positive setup times. Their results also show the
robustness of the effective server assignment policies to the service time distribution
for the infinite-buffered tandem systems. Andradéttir, Ayhan, and Down [9] consider

a similar problem with the modification that both servers and stations can fail. They
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specify the maximal capacity for the network, provide server assignment algorithms
that perform arbitrarily close to the maximal capacity, and determine when server
flexibility can compensate for the failures. Dai and Lin [28] consider a more general
class of queueing networks called Stochastic Processing Networks. In their model,
some tasks may require multiple servers and materials may be split up or joined with
other materials. Under certain conditions, they show the throughput optimality of
maximum pressure policies that allocate the service effort according to the service

rates, buffer sizes, and network structure.
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CHAPTER II1

ROBUSTNESS OF EFFECTIVE SERVER ASSIGNMENT
POLICIES TO SERVICE TIME DISTRIBUTIONS

3.1 Introduction

We consider a tandem line with N > 2 stations and M > 1 flexible servers. We
assume that there is an infinite supply of jobs in front of the first station, infinite
room for completed jobs after the last station, and a finite buffer of size 0 < B; < oo
between stations j — 1 and j, where j € {2,..., N}. The line operates under the
manufacturing blocking mechanism, and travel times of the servers and setup times
at the stations are assumed to be negligible. Let p;; denote the deterministic rate
with which server ¢ € {1,..., M} works at station j € {1,..., N}. We assume that
Z;yzl pi; > 0fori e {1,..., M} (because the other case is equivalent to a system with
a smaller number of servers) and 32 yi;; > 0 for j € {1,..., N} (because otherwise
all policies have zero throughput). Several servers are allowed to work together on
the same job, in which case their service rates are additive. Service times at each
station j € {1,..., N} are independent and identically distributed (i.i.d.) with mean
0 < m(j) < oo, and service times at different stations are independent.

Our work belongs to the set of papers dealing with throughput maximization
in tandem lines with finite buffers. However, unlike the earlier work, we focus on
non-Markovian systems. Iravani, Buzacott, and Posner [46] show that the effective
assignment of a flexible workforce is robust to the arrival process when the objective
is to minimize holding and setup costs. By contrast, we show the robustness of server
assignment policies to service time distributions when the objective is to maximize

throughput. Our results complement corresponding results for queueing networks
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with infinite buffers obtained by Andradéttir, Ayhan, and Down [8, 9], and suggest
that when capacity is the primary concern, effective server assignment policies are
robust with respect to the form of underlying service distributions, even in the finite
buffer setting.

The remainder of the chapter is organized as follows. In Section 3.2, we formulate
our problem and provide some general results about lines with two stations that will
be used later. In Section 3.3, we show that the server assignment policy proven to be
optimal for Markovian tandem lines with two stations and two servers in Andradottir,
Ayhan, and Down [7] is also optimal both for deterministic systems if the buffer size
is arbitrary and for systems with general service times if the buffer size is zero. In
Section 3.4, we show that the optimal policy for tandem lines with two stations and
three servers is a threshold-type policy (as the optimal policy for Markovian systems
with two stations and three servers, see Andradéttir and Ayhan [6]) if the service
times are deterministic and the buffer size is arbitrary or if the service times follow a
general distribution and the buffer size is zero. In Section 3.5, we propose heuristic
server assignment policies for larger systems that appear to perform well for a broad
range of problems, and provide the results of numerical experiments that show that
policies that work well for Markovian systems also appear to be effective for non-

Markovian systems. In Section 3.6, we make some concluding remarks.

3.2 Problem Formulation and Preliminary Results

Let the state space S of the system be chosen to capture the number of jobs at
each station and the status (operating, starved, or blocked) of each station. Decision
epochs are the service completion times at any station, so that decisions are made
when changes to the state of the system are observable. Consequently, we will restrict
ourselves to the set II of all Markovian stationary deterministic policies corresponding

to the state space S. We are interested in finding a policy in the set IT that maximizes
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the long-run average throughput. However, we also show that sometimes the best
policy in II is also optimal over all possible ways of assigning servers to stations.

Specifically, for systems with two stations and intermediate buffer of size B, = B,
we use the stochastic process {X(t) : ¢ > 0} to keep track of the number of jobs
that have already been processed at station 1 and are either waiting for service or
being processed at station 2. Hence, the state space is S = {0,1,..., B + 2}, with
X(t) = 0if a job is being processed at station 1 and station 2 is starved at time ¢ > 0;
X(t) =s € {l,...,B + 1} if there are jobs being processed at both stations 1 and
2 and s — 1 jobs waiting to be processed in the intermediate buffer at time ¢t > 0;
finally, X (¢) = B+ 2 if station 1 is blocked, B jobs are waiting to be processed in the
buffer, and one job is being processed at station 2 at time ¢ > 0.

In order to solve our optimization problem, we will identify the optimal action
in each state. For any s € S, A, denotes the set of allowable actions at state s.
Possible actions are idling a server or assigning the server to station 1 or 2. Note
that m = (d)> for every policy 7 in II, where the corresponding decision rule d is a
(B + 3)-dimensional vector, with d(s) € A, for all s € S.

We now provide two preliminary results about the structure of the optimal policy

for tandem lines with two stations.

Lemma 3.2.1 When N = 2, there exists an optimal policy that assigns all servers

to station 2 if station 1 is blocked, and to station 1 if station 2 is starved.

Proof: Let m be any policy that idles any of the servers when s = B + 2. Now
compare m with the policy 7’ that assigns all the servers to station 2 when s = B + 2
and agrees with 7 otherwise. The only difference between these two policies is the
transition time from state B + 2 to state B + 1, and this transition time is never
longer for 7’. Consequently, the number of departures is never smaller under 7/, and
hence there exists an optimal policy that does not idle any servers when s = B + 2.

A similar logic follows when s = 0. O
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Lemma 3.2.2 When M = N = 2, there exists an optimal policy that does not idle

any of the servers when station 1 is not blocked, and station 2 is not starved.

Proof: If both servers are idled in state s € {1,..., B + 1}, then s is an absorbing
state for {X(t)} and the long-run average throughput is zero. Consequently, at least
one of the two servers should be assigned to one of the stations in state s. Suppose
that one server is assigned to station 1 and the other server is left idle (the case where
one server is assigned to station 2 is similar). Then the only possible transition is
from state s to state s + 1. The transition time from s to s + 1 is never longer if
we assign both servers to station 1, which implies that the number of departures is
never smaller. Thus, assigning both servers to the same station is never worse than
assigning one to that station and idling the other. O

Finding the optimal server assignment policy for finite queueing systems with
general service time distributions is a very difficult task in general, even when M =
N = 2. However, the following result facilitates the analysis for systems with two
stations and a buffer of size 0 between the stations. Hence, some of the theoretical
results in this paper are restricted to the case with N = 2 and B = 0, with numerical

results supporting our robustness conclusion for larger systems.

Lemma 3.2.3 When N = 2 and B = 0, the optimal policy minimizes the expected

time between successive visits of { X (t)} to state 1.

Proof: When the buffer size is zero, the state space becomes S = {0,1,2}. Every
time the process hits state 1, the process restarts regeneratively and there is exactly
one departure from the system between every two successive visits to state 1. Hence,
the long-run average throughput is the reciprocal of the expected time between two
visits to state 1 by the renewal reward theorem, and any policy that minimizes this

expected time maximizes the throughput. O
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We conclude this section with a lemma that provides an upper bound on the
throughput of our system, and will be used for identifying the optimal policy for

deterministic systems.

Lemma 3.2.4 The maximal capacity of a tandem line with outside arrivals and in-
finite buffers between the stations is an upper bound on the throughput of the corre-
sponding tandem line with infinite amount of raw material in front of the first station

and finite buffers between the stations.

Proof: Consider the following “allocation” linear program (LP) with decision vari-

ables A and {0;;} for a system with N stations in tandem and M flexible servers:

max A

s Yoity Qs > A, forall j € {1,..., N}, > "
S 6y <1, forallie{1,..., M},

9;; >0, forallie{1,...,. M}, je{l,...,N}.
In this LP, A can be interpreted as capacity, and d;; where ¢ € {1,..., M}, j €
{1,..., N}, can be interpreted as the long-run proportion of time server i is assigned
to station j.

Let A* denote the optimal value of A for this LP. Then A* is the maximal capacity
of the infinite-buffered version of our tandem line with an outside arrival process
that satisfies some stochastic assumptions (we refer to this system as “System 17)
as shown by Andradéttir, Ayhan, and Down [8]. We use the stochastic process
B(t) = {X(t),V(t),Y(t)} to model this system, where X (¢) is the vector showing
the number of jobs either in service or waiting for service at each station at time ¢,
V(t) is the residual interarrival time to the system at time ¢, and Y'(¢) is the vector
of residual service requirements at each station at time t.

Let T™ denote the long-run average throughput under policy 7 € II in our system

with finite buffers and infinite amount of raw material in front of the first station
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(we refer to this system as “System 2”). Assume that there exists a policy © € II
such that 77 = A > \*. Note that the state space of System 1 is N¥ xRxR”Y. and
that the state space of System 2 is SXRY where S C N¥~1 (we disregard the first
element of the state vector since the number of jobs in front of the first station is
infinite in System 2, and we do not need to keep track of a residual interarrival time
to the system). Let 7’ be a policy for System 1 such that 7'(sq,s,v,y) = 7(s,y) for
s1€{0,1,...},s€ S, v €R, and y € RY (without loss of generality assume that 7
idles servers rather than assigning them to stations that are blocked). Furthermore,
define 7'(s1, s,v,y) for s; € {0,1,...} s ¢ S, v € R, and y € R such that System 1
will enter a state (sq,s’,v’,y) in finite time where s € S, v € R, and ¢/ € RV (for
example, if s = (s3,...,5y) ¢ S, choose 7’ such that all servers are assigned to the
station 2 < ¢ < N that is closest to the end of the line among the stations where s,
is not feasible given that s, ,,..., sy are feasible in System 2).

Now, use the policy ' for System 1 with an outside arrival rate of A € (A*, )).
It follows from part (ii) of Theorem 1 of Andradéttir, Ayhan, and Down [8] that the
system is not stable and that the buffer space in front of the first station will not
be empty almost surely after a finite amount of time (because 7’ guarantees that
the number of jobs in the buffers between the stations will be bounded above for all
t > 0). Hence the throughput of System 1 under 7’ will be equal to the throughput A
of System 2 under 7. But this is a contradiction because the throughput of System 1
can not exceed A (the departure rate cannot exceed the arrival rate) and we assumed
that A < X. Hence there cannot exist a policy 7 € II with 77 > \*, and the result

follows. O

3.3 Lines with Two Stations and Two Flexible Servers

In this section we consider the special case of a tandem line with two stations and two

flexible servers. Since we can relabel the servers if necessary, we assume that Z—i; > %
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without loss of generality (we use the convention ¢/0 = oo, for all ¢ > 0, throughout
this thesis). This implies that py; > 0 and pge > 0 under our assumptions on the
service rates. When there are two servers, we represent the actions by a,,,,, where
o; € {0,1,2} for i € {1,2}. We use o, = 0 when server i is idle and o; = j € {1,2}
when server ¢ is working at station j.

Andradéttir, Ayhan, and Down [7] show that for the corresponding Markovian
system, it is optimal to assign server 1 to station 1 and server 2 to station 2 when
neither station is blocked or starved, and both servers to station 1 (station 2) when
station 2 (station 1) is starved (blocked). Our goal is to generalize this result to
arbitrary service time distributions to the extent possible. The outline of this section
is as follows. We first consider the case when the service times are deterministic in

Section 3.3.1, then the case with general service times in Section 3.3.2.
3.3.1 Deterministic Service Times

When the service times are deterministic, we prove the following theorem by showing
that the long-run average throughput of the finite-buffered system under the proposed
policy is equal to “the maximal capacity” of the system, which is defined as a tight
upper bound on the set of arrival rates for which the infinite-buffered version of the

system (with outside arrivals) is stable.

Theorem 3.3.1 For a system with two stations in tandem, two flexible servers, a
finite intermediate buffer of arbitrary size, and deterministic service times, the optimal
policy is identical to the one of the corresponding Markovian system. Moreover, the
optimal throughput is equal to the maximal capacity of the system, regardless of the

size of the intermediate buffer.

Proof: Let u; = m(1) and us = m(2) denote the service times at stations 1 and 2,
respectively. Now consider the allocation LP (1) with M = N = 2. Lemma 3.2.4

shows that the maximal capacity A* of the line with outside arrivals and infinite
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buffers is an upper bound on the throughput of our finite-buffered tandem line with
infinite amount of raw material in front of the first station.

Lemma A.1.2 specifies the long-run average throughput if ﬁ < ﬁ and the
policy described in the theorem is used. Similarly, Lemma A.1.3 specifies the long-
run average throughput if ﬁ > % and the policy described in the theorem is used.

Lemma A.1.1 shows that the throughput is equal to A* in both cases. Hence, the

policy of the theorem is optimal, and the proof is complete. O
3.3.2 General Service Times

We consider a system with general service times and zero buffer between the stations.

The following theorem follows from sample path arguments and Lemma 3.2.3.

Theorem 3.3.2 For a system with two stations in tandem, two flexible servers, zero
buffer between the two stations, and service times having general distributions, the

optimal policy is the same as the one of the corresponding Markovian system.

Proof: Let the services times at stations 1 and 2 have the cumulative distribution
functions (CDF’s) Fy and Fy, respectively. Lemmas 3.2.1 and 3.2.2 show that we can

use the following action space in order to determine the optimal policy:

ai for s =0,
As = {an, a2, @21, G22} for s =1,
Q99 for s = 2.

Let E,,,, denote the expected time between two consecutive visits to state 1 when

action a,,,, 1s selected in state 1. Then,

UK11

E12 = / /#22 C’l(ul,u2)dF1(u1)dF2(u2)+/ / C3(U1,U2)dF1(U1)dF2(’U,2),
0 Jo 0 el

UH21

E21 = / /”12 Cg(ul,UQ)dFl(Ul)ng(UQ)+/ / 04(u17u2)dF1(u1)dF2(u2)7
0 Jo 0 Jr2ka

Enw = Ea :/ / 05(U17U2)dF1(U1)dF2(U2),
0 0
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where Cj(uy,us), for i € {1,...,5}, are defined in Appendix A.1. Lemma A.1.4
now implies that Ejo < min{E, Fa, Eas}, and hence, Lemma 3.2.3 shows that it is

optimal to use action a1, in state 1. O

3.4 Lines with Two Stations and Three Flexible Servers

In this section, we consider the special case of a tandem line with two stations and
three flexible servers. By relabeling the servers if necessary, we can assume without
loss of generality that % > % > % This implies that g7, > 0 and pge > 0 under
our assumptions on the service rates.

In this case, ay,0,0, denotes the possible actions in each state, where for ¢ €
{1,2,3}, 0, = 0 when server i is idle and o; = j when server i is working at station
j € {1,2}. We use the following lemmas in this section; their proofs are provided

in Appendix A.3. Note that Lemma 3.4.1 generalizes the result of Lemma 3.2.2 to

M = 3, but under the assumption that B = 0.

Lemma 3.4.1 [t is optimal not to idle any of the servers in any state for a system
with two stations in tandem, three flexible servers, and zero buffer between the two

stations.

Lemma 3.4.2 Any policy that uses actions a1 or asss in state 1 cannot be optimal
for a system with two stations in tandem, three flexible servers, and zero buffer between

the two stations.

Andradéttir and Ayhan [6] show that when the service times have an exponential

distribution, the optimal policy is as follows:

e when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

e when neither of the stations is blocked or starved (i.e., in states s € {1,..., B+
1}), assign Servers 1 and 2 to Station 1, Server 3 to Station 2 if s < s*; and

Server 1 to Station 1, Servers 2 and 3 to Station 2 if s > s*;
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e when Station 1 is blocked (i.e., in state B + 2), assign all servers to Station 2;

where the threshold s* € S\{0} depends on the problem parameters (see Theo-
rem 3.1 in [6]). We prove similar results for systems with deterministic service time
distributions and arbitrary buffer size, as well as systems with general service time
distributions and zero buffer size. This section is organized as follows. In Section
3.4.1 we consider the system with deterministic service times, and in Section 3.4.2 we

study the system with general service times.
3.4.1 Deterministic Service Times

When the buffer size is bigger than zero, the theorem below shows that the optimal
policy is of threshold type, and specifies the value of the threshold. Furthermore,
it shows that if the service time u; = m(1) at station 1 is large (small) relative to
the service time us = m(2) at station 2, then more service effort should be given to
station 1 (2), and indicates how the comparison of u; and uy should depend on the

service rates.

Theorem 3.4.1 For a system with two stations in tandem, three flexible servers, a
buffer of positive size between the two stations, and deterministic service times uy, us

€ R* at stations 1, 2, respectively, the following policy is optimal:
e when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

e when neither of the stations is blocked or starved (i.e., in states s € {1,..., B+

1}),

—if o< M—Q%, assign Server 1 to Station 1, Servers 2 and 3 to Station 2;

—f 1 cw < mtie gesion Servers 1 and 2 to Station 1, Server 3 to
22+ 132 u2 ©32

Station 2 if s < s*; and Server 1 to Station 1, Servers 2 and 3 to Station

2if s > s*, where s* can be chosen to be any state in {2,..., B+ 1};
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—if Z—; > %, assign Servers 1 and 2 to Station 1, Server 3 to Station 2;
e when Station 1 is blocked (i.e., in state B + 2), assign all servers to Station 2.

Moreover, the optimal throughput is equal to the mazximal capacity of the system,

regardless of the size of the intermediate buffer (as long as it is positive).

Proof: Lemma A.2.2 specifies the long-run average throughput when w < m;@ﬁ
and the policy described in the theorem is used. Similarly, Lemma A.2.3 specifies the
long-run average throughput when m < < % and the policy described in
the theorem is used. Finally, Lemma A.2.4 specifies the long-run average throughput
when Z—; > % and the policy described in the theorem is used. Lemma A.2.1
shows that the throughput is equal to the maximal capacity \* of the line in all three
cases. Hence, the optimality of the policy of the theorem follows from Lemma 3.2.4,
and the proof is complete. O

Theorem 3.4.1 shows that if the service times are deterministic, then the maximal
capacity of infinite-buffered systems can be achieved for any B > 0. Note, however,
that when B = 0 and ﬁ <2 < %, there is no way to implement the
policy of Theorem 3.4.1, because this policy requires two adjacent states (s* — 1 and
s*) where both stations are operating, and when B = 0, the state space is {0, 1,2}
and the only state where both stations are operating is state 1. Consequently, it is
not always possible to attain the maximal capacity if the buffer size between the two

stations is zero, and a different approach is needed to determine the optimal policy

when —41_ < W < muti and B = ()
p22+[132 uz — 32 ’

More specifically, in the case of deterministic service times, we can exactly deter-
mine the time between two visits to state 1 for all possible policies in II if the buffer
size is zero, and then use Lemma 3.2.3 to find the optimal policy. Let

(#11 + M21)(M11M22 — Mi2M21 + 11432 — ,u12,u31)
(M22 + LL32)(M11M32 — M12M31 + Mo1fb32 — ,u22,u31)'

25



The following theorem identifies the optimal dynamic server assignment policy if the

intermediate buffer between the stations is of size zero.

Theorem 3.4.2 For a system with two stations in tandem, three flexible servers,
zero buffer between the two stations, and deterministic service times uy,us € R* at

stations 1, 2, respectively, the following policy is optimal:
e when Station 2 is starved (i.e., in state 0), assign all servers to Station 1;

e when neither of the stations is blocked or starved (i.e., in state 1), assign Servers
1 and 2 to Station 1, Server 3 to Station 2 if >, and Server 1 to Station

1, Servers 2 and 3 to Station 2 if Z—; <ry
o when Station 1 is blocked (i.e., in state 2), assign all servers to Station 2.

Moreover, the optimal throughput is equal to the maximal capacity of the system if

u 1551 or ¥ > u11+u21‘
uz — p22+H32 u2 H32

. ui k11 ur p11+p21 : . . . .
Proof: When o < ot O T the optimality of the policy specified in

the theorem can be proved as in Theorem 3.4.1. Next, we will determine the optimal

policy when —#1i_ < wi < putier  [emmas 3.2.1, 3.4.1, and 3.4.2 show that the
w22+ 132 u2 H32

following action space is suitable:

a1 for s =0,
As = {CL1127 122, @121, A211, A212, Cl221} for s =1,
222 for s = 2.

Lemma A.3.1 shows that —£1 — < p < Hudbar  \Whep 41 < W < Lemma
w22+ 132 n32 w22+ 132 u2

A.3.2 shows that it is optimal to use action a9 in state 1. When r < o < oy

2 — p32

Lemma A.3.3 shows that it is optimal to use action aq1o in state 1. This completes

the proof. O
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3.4.2 General Service Times

Recall that F; and F, denote the CDF’s of the service times at stations 1 and 2,
respectively. Let E, ,,,, denote the expected time between two visits to state 1 if

action aj1; is used in state 0, action a,,q,0, 1S Used in state 1, and action agse is used

in state 2. Then,

ug(p11+m21)

Ei, = / / " 61(”1’U2)dF1(U1)dF2(U2)
0 0

+/ / é2(u1>U2)61F1(Ul)sz(UQ),
0 ug(p11+m21)
K32
UK

o0 pootpr3y -~
Eig = / / 03(U17 u2)dF1(u1)dF2(u2)
0 0

+/ / 64(U1,U2)dF1(U1)dF2(U2),
0 U2M]1

K22t 132

where the functions @(ul, ug), for i € {1,2,3,4}, are defined in Appendix A.3. The
following theorem now identifies the optimal policy when the service times have a

general distribution and the buffer size is zero.

Theorem 3.4.3 For a system with two stations in tandem, three flexible servers, zero
buffer between the two stations, and service times coming from general distributions,
the optimal policy is a threshold policy like the one for the corresponding Markovian

system. In other words, the following policy is optimal:
e when Station 2 is starved (i.e., in state 0) assign all servers to Station 1;

e when neither of the stations is blocked or starved (i.e., in state 1), assign Servers
1 and 2 to Station 1, Server 3 to Station 2 if F110 < Fioo, and Server 1 to Station

1 and Servers 2 and 3 to Station 2 if Ei9s < Fi12;

e when Station 1 is blocked (i.e., in state 2), assign all servers to Station 2.
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Proof: Using the same notation as above, let us define

ua(K11+#31)

~

Ey = / / e 05(U17U2)dF1(U1)dF2(U2)
0 0

+/ / éﬁ(ul,UQ)dFl(ul)ng(UQ),
0 ug(K11+131)
H22

ug(p21+131

. )
Eyn = / / " C?(uhUQ)dFl(Ul)dFZ(Uz)
0 0

+/ / ag(ul,’U,Q)dFl(’U,l)ng(UQ),
0 ug(r21+431)
K12
ugH2]

By = / /MQW32 69(Ulau2)dF1(U1)dF2(U2)
0 0

+/ / 610(111,Uz)dF1(U1)dF2(U2),
0 UuH21

H12+H32

U K3
H12+tp22 A~

Ey = / / 011(U17U2)dF1(U1)dF2(U2)
0 0

+/ 612<u1,UQ)dFl(ul)dFQ(UQ),
0

ug K31
H12+H22

where the functions @(ul, us), i € {5,...,12}, are defined in Appendix A.3. Lemma
3.2.1 shows that it is optimal to use action a;1; in state 0 and action as99 in state 2.
Hence, only the optimal action in state 1 needs to be determined. Lemmas 3.4.1 and
3.4.2 show that, it is sufficient to consider actions aii2, G122, @121, U211, 212, and Az
in state 1. We use Lemma 3.2.3 to compare different actions in state 1.

It is shown in the proofs of Lemmas A.3.3 and A.3.4 that for all u;,us € RT, we

have

-~ ~

max{al(ul, Us), éz(ul,uz)} < min{ay(ul,ug), 58(u1,uQ), Chi(uy, ug), Cra(ug, us)}.

Consequently, it is clear that E11o < min{Fa;1, Fa9; }, and actions agq; and age; cannot

be optimal. Furthermore,

0 121121 0o pl2(mi1trg))
k12+H32 =~ K32 o~
Bz :/ / C1(ur, uz)dFy(u1)dF2(uz2) +/ /u2M21 C1(u1, ug)dFy (uy)dFs (uz)
0 0 0 —aal
H12+TH32

+ / / 62(ul,UQ)dF1(U1)dF2(u2).
0 ug(p11+121)
132

28



We have shown in the proof of Lemma A.3.3 that, 61 (ug,ug) < ag(ul,ug) for all
up,uy € R, and if u; > %, then al(ul,UQ) < élo(ul,m). We have shown

in Lemma A.3.4 that 62(u1,u2) < alo(ul,ug) for all u;,us € RT. Hence, we can

conclude that 119 < FEbo, and action as1s cannot be optimal.

Similarly,
. U2111 00 ug(p11+131)
H22TH32 = H22 o]
E122=/ / 03(u1,u2)dF1(u1)dF2(u2)+/ / s Cy(ur, ug)dFy (u1)dFz(us)
0 0 0 “
H22+H32

+ / / 64(u1,uQ)dF1(u1)dF2(uQ).
0 ug(K11+131)
122

We know that ag(ul, ug) < 65(u1,u2) for all uy, us € RT because

=~ =~ M1z 12+ 32 M1l 31
Cs(ur, ug) < Cs(uy, ug) & — < ————= & piopizr < fiiplze & — > —.

M1t pan T+ st Hi2 32

Furthermore, we have shown in the proof of Lemma A.3.2 that 64 (ug,ug) < @;(ul, Usg)
for all uy,us € RY, and if u; < %, then 64(u1,u2) < 65(u1,uz). Hence, we
can conclude that Ej99 < Fjo1, and action aj9; cannot be optimal.

The above discussion shows that either action aj12 or a;ss is optimal in state 1.
If Fi15 < E199, then action aq1o is no worse than action ai99, and hence action aq1s is
optimal. To the contrary, if Fioo < FEjq9, then action aqoo is better than action aqo,
and we can conclude that action aq9o is optimal. O

Theorems 3.4.1, 3.4.2, and 3.4.3 show the robustness of the form of the optimal
policy to the service time distribution (i.e., threshold policies are optimal in both the
Markovian and non-Markovian settings). However, the optimal value of the threshold
for server 2 is sensitive to the service time distributions. Note that when B > 0, the
threshold is arbitrary for the deterministic system for some values of u, us, and the
service rates. However, this is not correct in the same generality for the Markovian

system, see Andradéttir and Ayhan [6]. To further illustrate this point, define

(pa1 + pror + ps1) (pa1plon — pazplor)
(,u12 + po2 + M32)(M21,u32 - M22M31).

v =

29



Assume that B = 0 and m(1) = m(2) = 1, and consider the optimal action in state 1.
If the service times are deterministic, then Theorem 3.4.2 shows that server 2 works
at station 1 if r < 1, or at station 2 if » > 1. In the Markovian system, server 2 works
at station 1 if ry; < 1, or at station 2 if rpy > 1 (see Theorem 3.1 of Andraddttir
and Ayhan [6]). Hence the threshold for server 2 (the state where server 2 starts
working at station 2), is either 1 or 2 in both cases, but the value of the threshold
may be different in Markovian and deterministic systems (e.g., for the system with
11 = fz2 = 2,12 = oz = 1,9y = 0.5, and puz; = 0.1, we have r ~ 0.94 and
ry =~ 1.08). This is consistent with the results of Andradoéttir, Ayhan, and Down
[11] for Markovian systems with server failures, where the optimal policy was found
to be of threshold type (as for systems without server failures), with the value of the
threshold depending on the server failures. Together these results suggest that the
optimality of the threshold policy of Andradéttir and Ayhan [6] is quite robust to the
assumptions it is derived under, but the value of the threshold must be determined

using the circumstances of the problem at hand.

3.5 Numerical Results

In this section, we present numerical results that support the conjecture that the
optimal server assignment policy is robust to the service time distributions. For this
purpose, we provide simulation results for systems with two stations, two flexible
servers, and non-exponential service times in Section 3.5.1 that show the effectiveness
of the optimal policy for Markovian systems in non-Markovian settings. We then
describe several heuristic server assignment policies for larger systems in Section 3.5.2,
and provide numerical results that suggest that our heuristics yield good throughput
performance and that their relative performance does not depend much on the service

time distribution.
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3.5.1 Optimal Policy for Small Systems

The results in Section 3.3 support the robustness of the optimal server assignment
policy to the service time distribution. In particular, we showed that the optimal
policy for Markovian systems with two servers and two stations is also optimal for
systems with deterministic service time distributions and arbitrary buffer size and
for systems with arbitrary service time distributions and zero buffer size. Here, we
provide numerical results for systems with two servers, two stations, and an inter-
mediate buffer of size one, two, or three that support the conjecture of robustness of
the optimal server assignment policy to the service time distribution. (Because of the
prohibitive amount of required computation time, systems with buffer sizes bigger
than three were not considered.) Our results complement the numerical results of
Andradéttir and Ayhan [6] who show that the optimal policy for Markovian systems
with two stations and three servers also significantly outperforms the expedite policy
of Van Oyen, Gel, and Hopp [67] (in which all servers work as a team that moves
with each job through the line) for certain non-Markovian systems.

More specifically, we assume that the service times at stations 1 and 2 are either
independent Erlang(2) random variables with CDF F(z) = 1—e2*—2ze¢™2® for x > (
and squared coefficient of variation ¢ = 0.5, or independent hyperexponential random
variables with CDF F(z) = 2/3(1 — e ) +1/3(1 — ¢7%/2) for > 0 and squared
coefficient of variation ¢*> = 2. These same distributions were used to study non-
Markovian systems (with respect to the state space S) by Andradéttir and Ayhan
[6]. The service rates are randomly generated from a uniform distribution in the
interval (0,100). In particular, for each service time distribution and each value of
B € {1,2,3}, we create 5,000 sets of service rates {1, p12, ft21, o2} and estimate
the long-run average throughput under all non-idling server assignment policies in
IT (idling policies cannot be optimal when M = 2, see Lemmas 3.2.1 and 3.2.2).

Note that these systems can be modeled as Markov chains with state space larger
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than S because their service times come from the exponential distribution family.
Hence the policy iteration algorithm could be used to determine the optimal policy.
However, the set of Markovian stationary deterministic policies corresponding to their
Markovian state space is larger than II, and not all decision epochs are observable in
this case. Hence simulation was instead used to compare the systems under the non-
idling policies in II. We estimate the long-run average throughput by simulating each
system for 1,050,000 time units and truncating the first 50,000 time units. It is seen
that the policy proven to be optimal for Markovian systems in Andradoéttir, Ayhan,
and Down [7] gives the best average throughput in all of the 5,000 random systems

generated for the Erlang(2) and hyperexponential distributions and each choice of B.
3.5.2 Heuristics for Larger Systems

For larger systems (with three or more stations and three or more servers), it can be
difficult to identify the optimal policy, even for Markovian systems. Furthermore, the
optimal policy may be undesirable for use in practice (e.g., because it is complicated or
difficult to implement). Thus, it is worthwhile to identify heuristic server assignment
policies for larger systems that are easy to implement and yield good throughput
performance. In this section, without loss of generality, we assume that m(j) =1 for
Jj €{1,..., N} to facilitate the definitions of the heuristics (otherwise one can replace
i; by pi;/m(jy) throughout). This implies that the service rates at each station are
to be interpreted as the task completion rates for the servers at the stations, instead
of the actual processing rates of the servers at the stations. We concentrate on
situations where M > N, so that we have enough workforce to operate all stations
simultaneously, but many of our ideas are applicable even when M < N. The only
previous work we are aware of that studies heuristic server assignment policies for
systems with more servers than stations is Andradéttir and Ayhan [6], but they

consider the special case with N = 2.
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Our heuristics have two parts, namely a primary assignment and a contingency
plan, as in Andradéttir, Ayhan, and Down [7]. The primary assignment for each
server indicates the station where the server is assigned as long as that station is not
blocked or starved. The contingency plan shows where the server moves if the station
(s)he is primarily assigned to is blocked or starved. It should be noted that these
heuristics belong to II.

More specifically, we present three heuristic primary assignments and six heuristic
contingency plans, and compare the performance of different combinations of these.
Let SR; denote the sum of the service rates of servers with primary assignment at
station j € {1,..., N}.

We consider the following primary assignments:

PA1: Maximize IT}_ | SR;.

PA2: Maximize minje(,. vy SR;.

PA3: Assign server i to station j* = arg maxyeq1,.... N} Mik-

Note that PA2 has the objective of balancing the line, PA3 uses each server’s
capability as much as possible without taking into account other servers, and PA1
attempts to balance the line and take advantage of relative capabilities of the servers.
PA1 was proposed by Andradéttir, Ayhan, and Down [7] for Markovian systems with
M = N but has not been considered for systems with M > N. PA2 and PA3 are
new to this work.

We consider the following contingency plans:

CP1: When a station is starved but not blocked, servers having primary assign-
ment at that station move to the closest upstream station that is operating (neither
blocked or starved); when it is blocked, servers having primary assignment at that
station move to the closest downstream station that is operating.

CP2: This is the local heuristic with the modification that all servers unable to

work at their assigned station are working at the first station if the number of jobs
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in the system is less than the number of stations.

CP3: Whenever a server is unable to work at the station (s)he is primarily assigned
to, (s)he works at the station that is operating (not blocked or starved) where (s)he
has the highest rate compared to the other stations that are operating; i.e., server ¢
works at station j* = arg maxges pix, where [ is the set of stations that are operating.

CP4: Whenever a server is unable to work at the station (s)he is primarily assigned
to, (s)he works at the station that is operating where (s)he has the highest relative
rate with respect to the cumulative rate of all servers with primary assignment at
that station (compared to the other stations that are operating); i.e., server i works
at station j* = arg maxges pix /SRy, where I is the set of stations that are operating.

CP5: This is a combination of CP1 and CP3. When a server is only starved, (s)he
moves to the upstream station that is operating where (s)he has the highest rate; when
a server is blocked, (s)he moves to the downstream station that is operating where
(s)he has the highest rate.

CP6: This is a combination of CP1 and CP4 with a logic similar to that used in
CP5.

Note that CP1 is the contingency plan of the local heuristic defined in Andradéttir,
Ayhan, and Down [7]. By contrast, CP2 through CP6 are first proposed in this work.
In CP1 servers create work for themselves, while in CP2 servers also try to push more
jobs into the system when the total number of jobs is low. CP3 and CP4, like PA3,
try to use each server’s capabilities to the extent possible. CP4 also considers servers’
relative rates compared to other servers, which implies that even though a server has
a high service rate at one station, if the other servers at that station already have
sufficiently high service rates, then this server is assigned to a station where (s)he is
needed more. CP5 and CP6 attempt to use each server’s capabilities to the extent
possible, and at the same time they try to create job for the servers at the stations

where they are primarily assigned to.
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We consider all combinations of the three primary assignment policies PA1, PA2,
and PA3 and the six contingency plans CP1 through CP6, with the exception that
PA3 is not used with CP4 or CP6. This is because when PA3 is used, it is possible not
to assign any servers to some stations primarily. Consequently, the initial service rate
is zero in these stations, leading to frequent ties when deciding where the blocked or
idle servers should move, and the CP4 and CP6 contingency plans lose their intended
benefits.

We performed simulations to compare the different combinations of primary as-
signments and contingency plans. The service requirements at the stations were all
i.i.d. with either the exponential, hyperexponential, or Erlang(2) distributions. The
parameters of the hyperexponential and Erlang(2) distributions were selected as in
Section 3.5.1, and the exponential distribution had rate 1. Hence, all the distribu-
tions had mean 1. We study systems with M = N = 3 and M = 6, N = 4. The
smaller system has the same number of servers as stations, and the bigger system is a
longer line with more servers than stations. Hence, we can observe the performance
of our heuristics in both balanced and over-staffed tandem lines. For the system with
M = N = 3, the service rates were drawn independently from a uniform distribu-
tion with range [0.5,2.5]. For the system with M = 6, N = 4, the service rates were
drawn independently from a uniform distribution with range (0,100). In other words,
we randomly generated sets of service rates {p;;, for 1 < i < M and 1 < 5 < N},
and each experiment consists of estimating the long-run average throughput of such
a random system. The bigger system is already expected to have higher variability
than the smaller system, and we increase its variability further by choosing its service
rates from a larger range (corresponding to a more diverse workforce). In both cases,
the same sets of service rates were used for systems with different service time distri-
butions. Constant buffer sizes of one or four were used in each setting to understand

the effects of the buffer size on the effectiveness of the heuristics. Tables 1, 2, 3,
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and 4 display the mean and half length of 95% confidence intervals for the long-run
average throughput obtained by each heuristic under different system configurations.
Each confidence interval in Tables 1, 2, 3, and 4 was obtained from 50,000, 10,000,
10,000, and 5,000 experiments, respectively. The number of simulation experiments
was decreased when the buffer size and number of stations got bigger because of the
long required computational time.

For each set of generated service rates, we also determine the optimal policy when
the service times are exponentially distributed, and then employ this policy in sys-
tems with other service time distributions as well. The last row in Tables 1 through 4
gives the throughput achieved by the optimal policy for the exponential distribution
for the three distributions we consider. This policy provides the best possible per-
formance for systems with exponential service times, and is also used to benchmark
the performance of our heuristics for systems with Erlang(2) or hyperexponential ser-
vice times. (Although, the policy iteration algorithm could be used to determine the
optimal server assignment policy for systems with Erlang(2) and hyperexponential
distributed service times, we do not do this because the decision epochs would not
be observable in this case.) Furthermore, the first row in each table gives the average
throughput achieved by the expedite policy (see Section 3.5.1), also for benchmarking
purposes. (In this case, the long-run average throughput of each system can be esti-
mated using Monte Carlo simulation only, because the expected time spent at station

J given the service rates p1;, ..., ftar; is equal to ,for 1 < j < N).

1
Efil Hij

For systems with three stations and three flexible servers, Tables 1 and 2 show
that PA1 performs better than PA2 and PA3 for all three distributions, both buffer
sizes, and all six contingency plans. Among the contingency plans, we see that CP3,
CP4, CP5, and CP6 perform well, however in general CP4 and CP6 outperform
the others, and CP4 seems to be the best contingency plan. Finally, we note that

CP1 yields worse performance than the other five contingency plans for PA1 (and
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Table 1: Performance of Heuristics for Systems with Three Stations, Three Servers,
and Common Buffer Size One

H Policy H exponential H Erlang H hyperexponential H

| expedite [| 1.449 £ 0.003 | 1.449 + 0.003 | 1.449 £0.003 |
PA1-CP1 | 1.675 £ 0.002 | 1.713 4 0.002 | 1.583 + 0.002
PA1-CP2 | 1.676 & 0.002 | 1.714 & 0.002 | 1.584 + 0.002
PA1-CP3 | 1.692 & 0.002 | 1.724 & 0.002 | 1.599 + 0.002
PA1-CP4 | 1.698 & 0.002 | 1.731 & 0.002 | 1.605 + 0.002
PA1-CP5 | 1.691 £ 0.002 | 1.726 & 0.002 | 1.601 + 0.002
PA1-CP6 | 1.693 & 0.002 | 1.729 & 0.002 | 1.602 + 0.002
PA2-CP1 | 1.658 & 0.002 | 1.691 & 0.002 | 1.560 + 0.002
PA2-CP2 | 1.656 & 0.002 | 1.690 & 0.002 | 1.559 + 0.002
PA2-CP3 | 1.676 & 0.002 | 1.705 & 0.002 | 1.574 + 0.002
PA2-CP4 | 1.679 £ 0.002 | 1.709 & 0.002 | 1.582 + 0.002
PA2-CP5 | 1.672 £ 0.002 | 1.704 & 0.002 | 1.576 + 0.002
PA2-CP6 | 1.673 & 0.002 | 1.705 & 0.002 | 1.578 + 0.002
PA3-CP1 [ 1.614 £ 0.002 | 1.623 & 0.002 | 1.526 + 0.002
PA3-CP2 | 1.606 & 0.002 | 1.628 & 0.002 | 1.520 + 0.002
PA3-CP3 | 1.641 £ 0.002 | 1.660 & 0.002 | 1.550 + 0.002
PA3-CP5 | 1.635 & 0.002 | 1.656 & 0.002 | 1.544 + 0.002

| expopt | 1.713 +0.002 | 1.747 + 0.002 | 1.615 & 0.002 |

usually for also PA2 and PA3) even though M = N in this example. Thus, the
five heuristics composed of PA1 and one of CP2 through CP6 outperform the local
heuristic of Andradéttir, Ayhan, and Down [7] in this example, even though M =
N (the local heuristic is designed for such systems). Nevertheless, CP1 is easy to
implement compared to some better performing contingency plans, and it may also
increase server motivation because every server concentrates on his/her own station,
by either working at that station or creating work for that station.

Similar conclusions follow for the system with four stations and six flexible servers,
see Tables 3 and 4. Even though there are now more servers than stations, and the
variability in the service rates is larger (reflecting a more diverse set of servers), our
heuristics remain robust.

Tables 1 through 4 also show that in the Markovian setting, our best heuristic
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Table 2: Performance of Heuristics for Systems with Three Stations, Three Servers,
and Common Buffer Size Four

H Policy H exponential \ Erlang H hyperexponential H

| expedite | 1.450 & 0.004 || 1.450 + 0.004 || 1.450 & 0.004 ||
PA1-CP1 || 1.725 4 0.003 || 1.747 + 0.003 1.663 & 0.003
PA1-CP2 || 1.725 + 0.003 || 1.753 + 0.003 1.665 + 0.003
PA1-CP3 || 1.732 &+ 0.003 || 1.754 + 0.003 1.682 + 0.003
PA1-CP4 || 1.742 4+ 0.003 || 1.763 + 0.003 1.689 + 0.003
PA1-CP5 || 1.730 &+ 0.003 || 1.758 + 0.003 1.683 + 0.003
PA1-CP6 | 1.740 &+ 0.003 || 1.762 + 0.003 1.687 + 0.003
PA2-CP1 || 1.699 + 0.003 || 1.723 + 0.003 1.640 + 0.003
PA2-CP2 || 1.703 4+ 0.003 || 1.727 + 0.003 1.639 + 0.003
PA2-CP3 || 1.711 4 0.003 || 1.733 + 0.003 1.660 + 0.003
PA2-CP4 | 1.717 4 0.003 || 1.739 + 0.003 1.664 & 0.003
PA2-CP5 || 1.707 &+ 0.003 || 1.734 + 0.003 1.658 + 0.003
PA2-CP6 || 1.714 + 0.003 || 1.736 + 0.003 1.659 + 0.003
PA3-CP1 [ 1.627 &+ 0.003 || 1.640 + 0.003 1.592 + 0.003
PA3-CP2 | 1.638 &+ 0.003 || 1.656 + 0.003 1.595 + 0.003
PA3-CP3 || 1.660 &+ 0.003 || 1.676 + 0.003 1.621 + 0.003
PA3-CP5 || 1.675 £ 0.003 || 1.675 & 0.003 1.620 + 0.003

| expopt | 1.763 +0.003 | 1.777 +0.003 | 1.699 & 0.003 |

server assignment policy (i.e., PA1 with CP4) results in near-optimal mean through-
put; more specifically its performance is between 97% and 99% of the optimal through-
put for the Markovian systems we consider. We observe that all of our heuristics
outperform the expedite policy (by margins as high as 45%). Moreover, the optimal
policy of the Markovian system also performs well for the other two distributions.
Nevertheless, we do not consider it to be a good heuristic because it can be difficult
to implement for actual systems. Finally, we observe that the average throughput
values of our heuristics are affected by the variability in the service times. More
specifically, for each heuristic, the systems with Erlang(2) service time distributions
had the best throughput, and systems with hyperexponential service time distribu-
tions had the worst throughput. Such a result is expected, because Erlang(2) and

hyperexponential distributions have the smallest and biggest coefficients of variations,
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Table 3: Performance of Heuristics for Systems with Four Stations, Six Servers, and
Common Buffer Size One

H Policy H exponential Erlang H hyperexponential H
| expedite || 71.626 £ 0.188 | 71.626 + 0.188 || 71.626 & 0.188 |
PA1-CP1 || 97.123 & 0.125 || 98.776 £ 0.122 93.666 + 0.130
PA1-CP2 || 97.190 + 0.129 || 98.897 &£ 0.128 93.763 + 0.135
PA1-CP3 || 98.129 + 0.137 | 100.022 £ 0.137 95.101 + 0.134
PA1-CP4 || 98.879 + 0.138 || 101.484 + 0.139 95.761 + 0.143
PA1-CP5 || 98.191 + 0.139 || 100.358 & 0.137 95.210 + 0.139
PA1-CP6 || 98.783 + 0.134 | 101.386 £ 0.130 95.679 + 0.138
PA2-CP1 || 95.343 + 0.130 || 96.612 4 0.129 91.414 4+ 0.135
PA2-CP2 || 95.400 + 0.129 | 96.810 4 0.128 91.492 + 0.137
PA2-CP3 || 96.013 + 0.130 | 98.013 4 0.130 92.641 + 0.140
PA2-CP4 || 96.880 + 0.129 | 98.561 4+ 0.130 93.143 + 0.138
PA2-CP5 || 96.213 + 0.135 || 98.142 £ 0.132 92.732 + 0.137
PA2-CP6 || 96.783 + 0.133 || 98.490 £ 0.132 93.042 4+ 0.135
PA3-CP1 || 89.425 + 0.131 91.794 4+ 0.129 84.985 + 0.136
PA3-CP2 || 89.492 + 0.139 || 91.951 &£ 0.130 85.025 + 0.139
PA3-CP3 || 91.051 + 0.134 || 93.740 £ 0.133 86.783 + 0.135
PA3-CP5 || 92.194 + 0.137 || 94.840 4 0.132 87.416 + 0.135

| expopt | 101.905 & 0.121 || 103.734 + 0.127 | 97.426 + 0.138

respectively.

We conclude that the heuristic that starts with a good primary assignment and

uses the relative efficiency of the servers in the contingency plan (i.e., the heuristic

comprised of PA1 and CP4) has the best performance among the heuristics that we

considered. The only problem with this heuristic involves ease of implementation,

especially in longer lines. The heuristic that uses PA1 with CP6 has performance

very close to the PA1-CP4 combination, and is easier to apply in actual systems.

Hence, for shorter lines (where determining what stations in the line have work is not

time consuming) we recommend the use of PA1 with CP4, but PA1 with CP6 may

be an attractive option for longer lines (where identifying stations with work for the

entire line is cumbersome).
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Table 4: Performance of Heuristics for Systems with Four Stations, Six Servers, and

Common Buffer Size Four

H Policy \ exponential Erlang H hyperexponential H

| expedite | 71.751 £ 0.267 || 71.751 & 0.2670 || 71.751 & 0.267 ||
PA1-CP1 || 99.234 4+ 0.153 | 101.881 + 0.1584 || 95.313 4 0.161
PA1-CP2 || 99.391 + 0.154 || 102.084 + 0.1633 | 95.439 + 0.165
PA1-CP3 || 100.783 £ 0.163 || 103.453 + 0.1732 || 96.431 + 0.176
PA1-CP4 | 101.239 + 0.168 || 104.064 + 0.1719 | 97.319 + 0.173
PA1-CP5 || 100.899 + 0.166 | 103.148 + 0.1692 || 96.642 + 0.171
PA1-CP6 || 101.193 £ 0.170 || 104.055 + 0.1704 || 97.215 + 0.174
PA2-CP1 || 96.942 + 0.160 | 99.643 &+ 0.1583 || 92.611 + 0.171
PA2-CP2 || 97.140 + 0.169 | 99.742 + 0.1683 || 92.790 + 0.173
PA2-CP3 | 98.423 4+ 0.165 | 100.703 + 0.1690 | 93.940 + 0.179
PA2-CP4 || 99.542 4+ 0.175 | 101.841 + 0.1714 || 95.444 4+ 0.175
PA2-CP5 || 98.485 + 0.165 | 100.627 £ 0.1703 || 94.001 + 0.174
PA2-CP6 || 99.602 + 0.170 | 101.873 £ 0.1701 | 95.464 + 0.173
PA3-CP1 || 91.033 +£ 0.167 || 93.493 + 0.1674 || 86.356 &+ 0.173
PA3-CP2 || 91.241 + 0.164 || 93.664 &+ 0.1701 || 87.564 + 0.172
PA3-CP3 || 92.315 + 0.170 | 94.948 + 0.1722 || 88.654 + 0.174
PA3-CP5 || 92.334 + 0.171 || 95.130 &+ 0.1689 || 88.678 + 0.175

| expopt | 104.425 & 0.150 [| 107.942 + 0.1583 || 100.420 + 0.164 ||

3.6 Conclusion

We have studied non-Markovian tandem lines with finite buffers. For lines with two
stations and two or three flexible servers, we identified the optimal server assignment
policy for systems with deterministic service times and any finite buffer, and for
systems with general service times and zero buffer. We also provided numerical
results that strongly support the conjecture that the optimal server assignment policy
is robust to the service time distribution for arbitrary buffer sizes. Our study supports
the conjecture that the results of Andradéttir, Ayhan, and Down [7] and Andradéttir
and Ayhan [6], obtained for Markovian systems, also hold for non-Markovian systems.

Finally, we proposed heuristics for larger systems that were effective for different

service time distributions and system configurations (e.g., we could achieve up to 99%
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of the optimal throughput in Markovian systems). In the process, we noted that the
best performing heuristics take the relative efficiency of servers at stations into consid-
eration when assigning them dynamically to tasks. Furthermore, the heuristics that
perform well in the Markovian setting (including the optimal policy of the Markovian
system) also perform well for systems with different service time distributions. These
results support the conclusion that effective server assignment policies are robust to

service time distributions, even in larger systems.
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CHAPTER IV

FLEXIBLE SERVERS IN UNDERSTAFFED TANDEM

LINES

4.1 Introduction

In this chapter, we consider a production line with N > 2 stations and M > 2 flexible
servers. We assume that the line is understaffed (so that N > M) and, without loss
of generality, that the expected service requirements at each station are equal to one
(i.e., m(j) =1forall j € {1,...,N}). We further assume that the other assumptions
described in Section 3.1 hold and we use the notation described there.

Understaffed tandem lines with finite buffer spaces and more than one server are
quite typical in the garment manufacturing industry, assembly plants, and warehouses
(e.g., Bartholdi and Eisenstein [17, 18] and Lim and Yang [52]). In these settings,
labor costs constitute a big proportion of the operating costs (see, e.g., Bartholdi
and Hackman [20]), and hence it becomes an important task to effectively use the
workforce.

Other researchers have addressed the dynamic server assignment problem when
N > M =1 (Andradéttir, Ayhan, and Down [7], Duenyas, Gupta, and Olsen [29],
Iravani, Posner, and Buzacott [47]) and 2 = N < M (Andradéttir and Ayhan [6],
Andradéttir, Ayhan, and Down [7, 11], Kirkizlar, Andradéttir, and Ayhan [50]).
However, unlike the earlier work, we analyze understaffed lines in the presence of
both finite buffers and multiple servers.

The benefits of partial flexibility in serial production lines also have been studied
by some researchers (Andradéttir, Ayhan, and Down [10], Hopp, Tekin, and Van Oyen

[45]). However, the works about partial flexibility in tandem systems only consider
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lines with equal number of servers and stations, or systems with more servers than
stations. By contrast, in this work we consider an understaffed tandem line where
stations do not have workers that are assigned to them initially. Hence, it is not a
straightforward task to determine the bottleneck stations, and sometimes it is not
possible to label any station as bottleneck. Furthermore, we consider a longer line
than Andradéttir, Ayhan, and Down [10], and a different objective, release policy,
and collaboration structure than Hopp, Tekin, and Van Oyen [45].

The remainder of this chapter is organized as follows. In Section 4.2, we character-
ize the optimal assignment policy for systems with deterministic service requirements,
three stations and two flexible servers. In Section 4.3, we analyze the correspond-
ing Markovian system with small buffer sizes and different flexibility structures. In
Section 4.4, we propose heuristic server assignment policies, show that very simple
server assignment rules can achieve near-optimal throughput in Markovian systems
with larger buffer sizes, and provide some guidelines about how to select the best

flexibility structure. In Section 4.5, we make some concluding remarks.

4.2 Deterministic Systems

In this section we determine the optimal server assignment policy for systems with
deterministic service times. We also show that partial server flexibility can attain
all the benefits of full flexibility and provide the conditions for each partial training
strategy to be optimal.

Consider the following “allocation” linear program (LP) with decision variables A

43



and {d;;}:

max A
s.t. 011411 + a1 fto1 > A,
d1afb12 + Ooafton > A,
013113 + Oasflog > A,
011 + 012 + 013 < 1,
091 + 022 + 023 < 1,

9;; >0, for all i € {1,2} and j € {1,2,3}.

Let A* denote the optimal value of A for this LP. Andradéttir, Ayhan, and Down [§]
show that A* is the maximal capacity of an infinite-buffered tandem line with three
stations, two flexible servers, and outside arrivals. Lemma 3.2.4 shows that A\* is an
upper bound on the throughput of our finite-buffered tandem line as well. Moreover,
if {6;;} are optimal values of {d;;}, then d;;, where 7 € {1,2} and j € {1,2,3}, can be
interpreted as the long-run proportion of time server ¢ should be assigned to station
7 in order to achieve the maximal capacity A*.

The LP described in the previous paragraph has five constraints (in addition to
the nonnegativity constraints) and seven variables. Since A is always positive, we can
conclude that at least two elements of the set {¢;;} are zero (this also follows directly
from Proposition 2 of Andradéttir, Ayhan, and Down [8]). This proves that four
skills are sufficient to achieve the maximal capacity in systems with infinite buffers,
and hence it is of interest to determine to what extent this is also true for systems
with finite buffers. Consequently, we first analyze the system under the assumption
that the two servers have a total of four skills, and then show the implications of
this result for systems with fully cross-trained servers. We let (sy, s2) be the state of

our system, where s; ($3) is the number of jobs that have already been processed at

station 1 (2) and are either waiting for service or being processed at station 2 (3).
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Then,
S:{(Sl,SQ)Z S € {0,1,...,Bg+2}, So € {0,1,...,B3+2}, S1+ So §B2+Bg+3}

is our state space. We say that a station is “operating” if that station is neither
starved nor blocked.

In the following propositions, without loss of generality, we assume that the system
initially starts in a state s® = (s?,9) where all the stations are operating and the
jobs at each station have not started service yet, so that they all have the full service
requirement. We let S° C S be the set of such states. If the system does not start
in a state in S°, initially any policy that takes the process to such a state may be
employed. Recall that we assume that there is at least one server with positive service
rate at each station (since S22 ;> 0 for j € {1,..., N}). For the system to reach
a state in S°, we can successively assign all servers to the station j € {1,..., N} that
is closest to the end of the line among the stations that are either blocked or have
jobs with remaining service requirements not equal to one (i.e., jobs that have already
started their service). When there are no such stations left, we can assign all servers
to the station j € {1,..., N —1} that is closest to the beginning of the line among the
stations that are preceding a station that is starved. When this is no longer possible
(because there are no such stations left), the system is in a state s° € S° satisfying
the conditions mentioned previously. This is achievable in finite time and will not
affect the long-run average throughput.

We will consider systems with one dedicated and one fully flexible server in Section
4.2.1. Then, we will study systems with two partially flexible servers in Section 4.2.2.
Finally, in Section 4.2.3, we will determine the critical skills needed to achieve the

optimal performance of systems with fully flexible servers.
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4.2.1 Systems with One Dedicated and One Fully Flexible Server

In this section, we provide three propositions identifying the optimal server assign-
ment policies for systems with one dedicated and one fully flexible server. Without
loss of generality, we assume that the first server is the dedicated server, since the

other case is equivalent to this one by relabeling the servers.

Proposition 4.2.1 Assume that p112 = p13 = 0 and that the system is initially in a
state s° € S°. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

o cvery time the system reaches state s°, assign server 1 to station 1 until one
job is completed at station 1, then (if this does not cause the system to return

to state s°) idle server 1 until the next time the process hits state s° ;

e cvery time the system reaches state s°, assign server 2 to station 2 until one
job is completed at station 2, then assign server 2 to station 3 until one job
is completed at station 3, and finally (if the system is not already in state s°)

assign server 2 to station 1 until the next time the process hits state s°.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: When p15 = 13 = 0, the allocation LP takes the simpler form:

max A

s.t. p11 + Oo1 i1 > A, (2)
dooflas > A, (3)
Dasflog > A, (4)

021 + 092 + da3 < 1,

925 > 0, for all j € {1,2,3}.
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Note that our assumptions on the service rates in Section 3.1 imply that 11, o2, tog >

0, and our assumption that server 2 is fully flexible implies that ps; > 0. If pyp >

H22 1423
p22+ 123

the left-hand sides of the constraints (3) and (4), and hence §5; = 0 in the optimal

, we see that the left-hand side of the constraint (2) is always bigger than

solution. Then, we find 0, = m;‘f; - and 033 = - +u23 by solving the equations
O3ottaz = O33p23 and 035 + 035 = 1. On the other hand, if yi; < F2E2- then we see

that in the optimal solution all the constraints (2), (3), and (4) will be tight. Then,

fin _ p23(p11+p21) * po2(p11+p21) n R B R
we d 522 H21 22+ p21 p23+p22 23 523 H21 22+ p21 p23+p22 423 and 521 22 23

by solving the equations g1 + 0321 = O39fi02 = 334403 and 03y + 055 + 033 = 1.

Consequently, the value of A* in the optimal solution is as follows:

H22423 : 122423
_H22/023 if _H224423
P p22+p23 par > pa2+tp2s’ (5)
po2 23 (11 +p21) i i < 1221423
w21 22+ 21 23 +H22 (123 1 = po+p23

Now, consider the policy described in the proposition and assume that the system

is in state s* = (sY,s9) at time T. When pq, > 42282 (e -L < L 4 server 1

p22+H23 H11 22 23 )
can complete the job at station 1 before server 2 finishes processing a job at stations
2 and 3; hence server 2 does not help server 1. The states of the system and the

remaining service requirements for the jobs at each station will be as in Table 9 in

Appendix B.1. When p;; < ;;zszg (i.e., ﬁ > i + ﬁ), server 2 finishes processing
a job at stations 2 and 3, and helps server 1 afterwards. The states of the system and
the remaining service requirements for the jobs at each station will be as in Table
10 in Appendix B.1. We see that the system regenerates each time it hits the state
sY, that there is one departure from the system during each regenerative cycle, and
that the length of the cycle is equal to the reciprocal of equation (5). Hence we can
conclude that the policy given in the proposition is optimal. O

The optimal policy described in Proposition 4.2.1 also balances the line. In ev-

ery regenerative cycle, the first server stops pushing new jobs into the system upon

completion of one service at station 1. Moreover, the proof of the proposition shows
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that the first server is idle only if the service rate of this server is high enough so
that utilizing him/her more would only cause blocking at the first station, rather
than increasing the throughput. The second server helps the first server at station
1 if (s)he is fast enough to complete jobs at stations 2 and 3 before the first server
completes one job at station 1. Finally, note that it is possible to attain the maximal
capacity of the four-skilled system above even with three skills (i.e., with ps; = 0)

> _M22p23
when Hir = p22+p23

Proposition 4.2.2 Assume that p111 = p13 = 0 and that the system is initially in a
state s° € S°. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

e cvery time the system reaches state s°, assign server 1 to station 2 until one
job is completed at station 2, then (if this does not cause the system to return

to state s°) idle server 1 until the next time the process hits state s°;

e cvery time the system reaches state s°, do either of the following:

(a) assign server 2 to station 3 until one job is completed at station 3, then
assign server 2 to station 1 until one job is completed at station 1, and finally
(if the process is not already in state s°) assign server 2 to station 2 until the
next time the process hits state s°; or

(b) assign server 2 to station 1 until one job is completed at station 1, then
assign server 2 to station 3 until one job is completed at station 3, and finally
(if the system is not already in state s°) assign server 2 to station 2 until the

next time the process hits state s°.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

48



Proof: Proceeding as in the proof of Proposition 4.2.1, the value of A in the optimal

solution of the allocation LP can be found as follows:

K21 K23 lf //lf12 > K21 (23

A\ = H21+H23 p21tp23’ (6)
p21p23(pi2+p22) if prgp < L2p2
21 p23+p22 423+ 1421 122 12 = p21+p2s”

Consider the policy described in the proposition and assume that the system is in
state s” = (s1, s3) at time 7. When 115 > 22125 we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 11 or

Table 13 in Appendix B.1, if we use assignment rule (a) or (b), respectively. When

H12 < M’ﬁfj;, we obtain Table 12 or Table 14 in Appendix B.1, if we use assignment
rule (a) or (b), respectively. Optimality of the policy in the proposition can be shown
using similar arguments as in the proof of Proposition 4.2.1. O

Similar to the previous proposition, we see that the dedicated server is idle only
if his/her service rate is high enough so that (s)he would not increase the throughput
by being utilized more. Moreover, by idling this server at certain times, we are able to
keep both stations operating rather than causing starvation or blocking at the second

station. Finally, note that the maximal capacity of the four-skilled system can be

reached even with three skills (i.e., with g9 = 0) when g5 > %

Proposition 4.2.3 Assume that pi;1 = p12 = 0 and that the system is initially in a
state s° € S°. Then the following server assignment policy is optimal for a determin-

1stic system with three stations and two servers:

e cvery time the system reaches state s°, assign server 1 to station 3 until one
job is completed at station 3, then (if this does not cause the system to return

to state s°) idle server 1 until the next time the process hits state s°;

e cvery time the system reaches state s°, assign server 2 to station 2 until one

job 1s completed at station 2, then assign server 2 to station 1 until one job
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is completed at station 1, and finally (if the system is not already in state s°)

assign server 2 to station 8 until the next time the process hits state s°.

Moreover, this policy attains the mazimal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.1, the value of A in the optimal

solution of the allocation LP can be found as follows:

H21 22 3 H21 22
= M21+p22 if s > p21+p22” (7)
21 22 (13 +p23) 1f,u < _p21p22
@21 p22+H21 23+ pH22 (423 13 = p21tp2e

Consider the policy described in the proposition and assume that the system is in
state s” = (s1,s3) at time 7. When 3 > ;22122 we obtain the states of the system
and the remaining service requirements for the jobs at each station as in Table 15 in
Appendix B.1. When pq3 < %, we obtain Table 16 in Appendix B.1. Optimality
of the policy in the proposition can be shown using similar arguments as in the proof
of Proposition 4.2.1. O

We observe that when the dedicated server works at station 3, the optimal policy
is “symmetrical” with respect to the case where the dedicated server works at station
1. Now, the flexible server starts working at station 2, moves to station 1 upon
completion of the task at station 2, and finally moves to station 3. The decision of
employing or idling the dedicated server is also a symmetrical one. Idling occurs only
if the service rate of the dedicated server is high enough so that utilizing him /her more
would only cause starvation at the third station, and not increase the throughput.
Finally, note that the maximal capacity of the four-skilled system can be reached
even with three skills (i.e., with po3 = 0) when py3 > ﬁ%

We observe that whenever there is a dedicated and a fully flexible server, the op-

timal server assignment policy for the flexible server focuses on keeping the dedicated

server’s station operating at all times. Furthermore, when the dedicated server is at
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station 2, the policies that have the flexible server giving preference to prevent either
blocking or starvation of station 2 are both optimal. Previous work (see the local
heuristic in Andradéttir, Ayhan, and Down [7]) puts priority on preventing blocking.
However, with deterministic service times, one can ensure that the dedicated server’s
station is always operating as long as the right assignment policy is used (in random
systems it is generally not possible to avoid blocking or starvation). Finally, using
similar arguments as in the proof of Proposition 4.2.2, one can show that, when the
dedicated server is at station 1 (3), the policy that assigns the flexible server to sta-
tion 3 (1) before station 2 in every regenerative cycle is also optimal. Hence, the
flexible server can process the jobs at the stations where there is no dedicated server

in arbitrary order, without any efficiency loss.

4.2.2 Systems with Two Partially Flexible Servers

In this section, we consider systems where each server is partially cross-trained; i.e.,
each server is capable of processing jobs at two stations. Again, we only consider
three different cross-training strategies, and the optimal server assignment policy for

the other three cases can be deduced from these by simply relabeling the servers.

Proposition 4.2.4 Assume that p113 = o = 0 and that the system is initially in a
state s° € S°. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

e cvery time the system reaches state s°, assign server 1 to station 2 until one job
is completed at station 2, then (if the system is not already in state s°) assign
server 1 to station 1 until one job is completed at station 1, and finally (if the
system is still not in state s°) idle server 1 until the next time the process hits

state s°;

o cuery time the system reaches state s°, assign server 2 to station 3 until one job

is completed at station 3, then (if the system is not already in state s°) assign
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server 2 to station 1 until one job is completed at station 1, and finally (if the
system is still not in state s°) idle server 2 until the next time the process hits

state sV.

Moreover, this policy attains the mazximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: When p15 = p9s = 0, the allocation LP takes the simpler form:

max A
s.t. Or1pt11 + Oa1 i1 > A, (8)
O1aft12 > A, (9)
dagflog > A, (10)
011 + 012 <1,
092 + 023 < 1,

011, 012, 022, 023 > 0.

Note that g1, f12, pi21, o3 > 0 under our assumptions. If g9 < %, we see that

the left-hand side of the constraint (9) is always less than or equal to the left-hand

sides of the constraints (8) and (10), and hence §7; = 0 in the optimal solution. Then,

* 23 x  _ _ p21 : : * gk
we find 03 = B— and 033 = B by solving the equations 63 fin1 = 0334123 and

* * < M2 S * K12
51+ 055 Lo I pog < PUE2, similar arguments show that o7, i, and

* _ M11 3 H21 123 . H11H12
5 . On the other hand, if pu15 > v and o3 > T then we

see that in the optimal solution all the constraints (8), (9), and (10) will be tight.

* po3(pi1+p21) * pi2(pi1+p21) * 1 — &% and
12 pi1p23tp12p21+p12p23 ) 23 piipesFpui2pe1+pizpes’ 1 12

Then, we find 0

57 = 1 =033, by solving the equations 07} 111 + 05y pto1 = 0jppt12 = O53t23, 011 + 075 = 1,
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and 03, + 055 = 1. Consequently, the value of A* in the optimal solution is as follows:

3 < _f21K23
Haz if Pz = po1tpes’
A= ; < g2 11
23 i P23 = pi1tpaz’ ( )
p1z2p23(p11+p21) : 121423 H11/412
if and g
P11 p23 120421 +H12 423 Haz > w21+p23 Moz = pi1+p12
< dmpm (1o 1> 1o 1 < pmmz (o > 141
Note that H12 = p21-+p23 ( ?piz — p21 + u23) and H23 = pi1tp12 <1 €. p23 — p11 + ,u12>

cannot hold at the same time, since we assumed that all the service rates are finite.
Consider the policy described in the proposition and assume that the system is in

state s” = (s{, s3) at time 7. When i, < ;22123 we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 17

in Appendix B.2. When pp3 < 222 " we obtain Table 18 in Appendix B.2. When

p11+p12’

12 > M‘Zfﬁ; and fi93 > % (i.e., ﬁ < ﬁ + ﬁ and ;ﬁ ﬁ + ﬁ), we obtain
Table 19 in Appendix B.2. Optimality of the policy in the proposition can be shown
using similar arguments as in the proof of Proposition 4.2.1. O

Note that in the system with ;3 = poo = 0, the maximal capacity of the four-
skilled system can be reached even with three skills when either gy < L2125

p21-+p23

o3 < % In the former case (when pjp < %), the optimal throughput

can be achieved with p1; = 0; in the latter case (when g3 < %), the optimal

throughput can be achieved with ps; = 0.

Proposition 4.2.5 Assume that p13 = pg1 = 0 and that the system is initially in a
state s € S°. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

e cuvery time the system reaches state s°, assign server 1 to station 1 until one job
is completed at station 1, then (if the system is not already in state s°) assign
server 1 to station 2 until one job is completed at station 2, and finally (if the
system is still not in state s°) idle server 1 until the next time the process hits

state s°;
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e cvery time the system reaches state s°, assign server 2 to station 3 until one job
is completed at station 3, then (if the system is not already in state s°) assign
server 2 to station 2 until one job is completed at station 2, and finally (if the
system is still not in state s°) idle server 2 until the next time the process hits

state sV.

Moreover, this policy attains the maximal capacity of the system, regardless of the

intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.4, the value of A in the optimal

solution of the allocation LP can be found as follows:

: < _M22pi23
H11 if i < 22 tpa3
A= if < Mgz 12
H23 H23 = pi1tpaz’ ( )
p11pe23(p12+p22) : H22 1423 H11p412
if n )
P11 p22+ 120423+ 111 423 Hi1 > p22+u23 and H23 > pn11+p12

< p22p23 (1o L o> 141 < 2 (o Lo 141
Note that H1i1 = Ho2+p23 (1 €. p11 T p22 + M23) and H23 = p11+p12 <1 €., p23 — p11 + ,u12>

cannot hold at the same time, since we assumed that all the service rates are finite.

Consider the policy described in the proposition and assume that the system is in

state s = (s, s3) at time 7. When ju; < 222220 we obtain the states of the system

and the remaining service requirements for the jobs at each station as in Table 20
in Appendix B.2. When p93 < %, we obtain Table 21 in Appendix B.2. When

1221423
K p22+ 123

and i3 > ;ﬁ Tflﬁ?, we obtain Table 22 in Appendix B.2. Optimality of
the policy in the proposition can be shown using similar arguments as in the proof of
Proposition 4.2.1. O

Note that in the system with p113 = po; = 0, the maximal capacity of the four-

skilled system can be reached even with three skills when either py; < %
pog < 2 T the former case (when py < -£2E2.)" the optimal throughput

pritpiz” 22+ 23

can be achieved with pio = 0; in the latter case (when g3 < ﬁ%), the optimal

throughput can be achieved with ps = 0.
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Proposition 4.2.6 Assume that j110 = po1 = 0 and that the system is initially in a
state s° € S°. Then the following server assignment policy is optimal for a determin-

istic system with three stations and two servers:

e cuery time the system reaches state s°, assign server 1 to station 1 until one job
is completed at station 1, then (if the system is not already in state s°) assign
server 1 to station 3 until one job is completed at station 3, and finally (if the
system is still not in state s°) idle server 1 until the next time the process hits

state s°;

e cuery time the system reaches state s°, assign server 2 to station 2 until one job
is completed at station 2, then (if the system is not already in state s°) assign
server 2 to station 3 until one job is completed at station 3, and finally (if the
system is still not in state s°) idle server 2 until the next time the process hits

state s°.

Moreover, this policy also attains the maximal capacity of the system, regardless of

the intermediate buffer sizes.

Proof: Proceeding as in the proof of Proposition 4.2.4, the value of A in the optimal

solution of the allocation LP can be found as follows:

if < _f22p23
Hu i = pa2+tp2s’
A= ; < _Hps 13
H22 if Ha2 = pi11tpas’ ( )
p11po2 (p13+p23)

lf ,LLII > H22 /423 and /4L22 > H11 413

p13p22+ 11 23+ H11 122 w22+ 123 p11+p1s”

< dapr (1o 1> 1 1 < pmms (o > 1o 1
Note that Hin > p22-+p2s <1 €, H11 — H22 + uzs) and H22 > p11+p13 (1 € p22 — pi11 + ,uls)

cannot hold at the same time, since we assumed that all the service rates are finite.

Consider the policy described in the proposition and assume that the system is in

state s = (sY,59) at time T. When p;; < 422823 "we obtain the states of the system
22+ 123

and the remaining service requirements for the jobs at each station as in Table 23
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in Appendix B.2. When p9 < %, we obtain Table 24 in Appendix B.2. When

M1 > % and fig9 > %» we obtain Table 25 in Appendix B.2. Optimality of
the policy in the proposition can be shown using similar arguments as in the proof of
Proposition 4.2.1. O

Note that in the system with g2 = po; = 0, the maximal capacity of the four-
skilled system can be reached even with three skills when either p; < £2£25 o

H22+ 123

H11p13 H22/423 1
P22 < In the former case (when pp; < e +u23)’ the optimal throughput

can be achieved with py3 = 0; in the latter case (when g < %), the optimal
throughput can be achieved with ps3 = 0.

The descriptions of the optimal policies in Propositions 4.2.4, 4.2.5, and 4.2.6 show
that each server starts working at the station where (s)he is the only server trained
to work. Then, after completing the job at the station they are primarily assigned to,
the servers move to the other station where they are trained to work. Furthermore,
idling occurs only when one server is so fast that (s)he can complete one job at two
stations before the other server completes a job at one station. In this case, we idle
the fast server in order to balance the line and keep all the stations operating, because
utilizing the fast server more causes starvation or blocking in the system but does not
increase the throughput. It is also observed that these policies utilize each server in
order make sure that the other server is not blocked or starved. Perfect coordination

of the servers in order to prevent any productivity loss is achievable since the service

times are deterministic.
4.2.3 Identifying the Best Flexibility Structure

Propositions 4.2.1 through 4.2.6 show that when the servers have four skills and the
service times are deterministic, it is possible to reach the maximal capacity of the
corresponding four-skilled infinite-buffered systems in the finite-buffered settings. In

this section, given the potential skill of each server at each task (if the server were
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trained to perform the task), we determine the four critical skills that are sufficient
to attain the maximal capacity of the fully flexible system. In order to specify the

best flexibility structure for a four-skilled system, we need the following conditions:

{1} pa1pean > paafion;

{4} paapes < paspion;

{2} p1pees < paafion;

{5} paapres > pispion;

{3} pa1pes > paspior;

{6} paopios < paspien;

(Thum < P22 (Shp > 22 {9} < PR
{13} pan < ﬁ, {14} por > ﬁ; {15} g < Mﬁllﬁ;jlg;
(16) o > L 17y gy < B g Sl

Conditions {1} through {6} compare the relative speeds of servers at different sta-
tions. For example, condition {1} implies that server 1 is relatively faster at station
1 than server 2 (at the same time server 2 is relatively faster at station 2 than server
1). Conditions {7} through {18} compare the service completion rate of servers in
different zones. For example, condition {7} implies that the service completion rate of
server 2 in the zone consisting of stations 2 and 3 is higher than the service completion
rate of server 1 at station 1, see the proof of Proposition 4.2.1.

The following theorem, whose proof is provided in Appendix B.3, specifies the

best flexibility structure for a system with three stations and two servers.

Theorem 4.2.1 For a tandem line with three stations, two flexible servers, arbitrary
buffer sizes between the stations, and deterministic service times, the assignment (and

hence cross-training) policy specified in Table 5 is optimal.

Note that Theorem 4.2.1 employs the optimal solution of the allocation LP, and
hence it also provides the optimal assignment policy for the corresponding infinite-
buffered system. Next, we show that any set of service rates p;;, where i € {1,2} and

j € {1,2,3}, has to satisfy exactly one of the cases mentioned in Theorem 4.2.1.
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Table 5: Critical Skills and Optimal Server Assignment Policy for a Deterministic
System with Three Stations and Two Servers

H Case ‘ Conditions Satisfied ‘ Optimal Server Assignment Policy H
a {1}, {3}, {7} Use Proposition 4.2.1
b {2}, {4}, {13} Relabel servers and use Proposition 4.2.1
c {2}, {5}, {9} Use Proposition 4.2.2
d {1}, {6}, {15} Relabel servers and use Proposition 4.2.2
e {4}, {6}, {11} Use Proposition 4.2.3
f {3}, {5}, {17} Relabel servers and use Proposition 4.2.3
g | {2}, {3}, {10}, {18} Use Proposition 4.2.4
h | {1}, {4}, {12}, {16} | Relabel servers and use Proposition 4.2.4
i {1}, {5}, {8}, {18} Use Proposition 4.2.5
g | {2}, {6}, {12}, {14} | Relabel servers and use Proposition 4.2.5
k {3}, {6}, {8}, {16} Use Proposition 4.2.6
I | {4}, {5}, {10}, {14} | Relabel servers and use Proposition 4.2.6

Proposition 4.2.7 The twelve cases {a,...,l} in Theorem 4.2.1 are mutually exclu-

sive and collectively exhaustive.

Proof: Consider a set of service rates M = {p;; | « = 1,2 and j = 1,2,3}. The
elements of M have to satisfy one of conditions {1} and {2}, one of conditions {3}
and {4}, and one of conditions {5} and {6}. First assume that the elements of M
satisfy the conditions {1}, {3}, and {5}. Then, none of the cases except a, f, and
i can hold. The proof of Proposition 4.2.5 shows that conditions {7} and {17} are
mutually exclusive. If in addition to {1}, {3}, and {5}, condition {7} is satisfied,
then conditions {8} and {17} are not satisfied, and hence only case a holds. If in
addition to {1}, {3}, and {5}, condition {17} is satisfied, then conditions {7} and
{18} are not satisfied, and hence only case f holds. Finally, if conditions {1}, {3},
and {5} are satisfied and both of the conditions {7} and {17} are not satisfied, then
conditions {8} and {18} are satisfied, and hence only case ¢ holds.

Similar arguments show that if conditions {1}, {3}, and {6} are satisfied, then

exactly one of the cases a, d, and k holds. If conditions {1}, {4}, and {6} are satisfied,
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then exactly one of the cases d, e, and h holds. If conditions {2}, {3}, and {5} are
satisfied, then exactly one of the cases ¢, f, and ¢ holds. If conditions {2}, {4}, and
{5} are satisfied, then exactly one of the cases b, ¢, and [ holds. If conditions {2},
{4}, and {6} are satisfied, then exactly one of the cases b, e, and j holds.

Finally, note that conditions {1}, {4}, and {5} cannot hold at the same time
because conditions {1} and {4} together imply that condition {6} is true. Similarly,
the conditions {2}, {3}, and {6} cannot hold at the same time because conditions
{2} and {3} together imply that condition {5} is true. This concludes the proof. O

The criteria for deciding the best flexibility structure provided in Table 5 can be
summarized as follows. If one server is relatively fast at one station with respect
to the other stations (for example, conditions {1} and {3} imply that server 1 is
relatively fast at station 1 in case a) and at that station (s)he cannot finish one job
before the other server finishes service at both of the other stations (condition {7} in
case a), then this server should be dedicated to the station where (s)he is relatively
fast.

On the other hand, if the two servers are relatively fast at different stations with
respect to the same station (for example, conditions {2} and {3} imply that server
1 is relatively better than server 2 at station 2 compared to station 1 and server 2
is relatively better than server 1 at station 3 compared to station 1 in case g) and
they can finish a job at the station they are relatively fast at before the other server
can finish service at both of the other stations (conditions {10} and {18} in case g),
then they should work at the station where they are relatively fast at, and also at the
common station where they are both relatively slow.

The other cases (b through f and h through [) can be described similarly by
simply changing the labeling of the servers and the stations they are relatively faster

or slower at.
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In summary, we have observed that the optimal cross-training strategy in a finite-
buffered system with deterministic service times is the same as the one of the corre-
sponding infinite-buffered system. Moreover, the maximal possible throughput (cor-
responding to full cross-training and infinite buffers) can be obtained with partial

cross-training and finite buffers for deterministic systems, regardless of the size of the

buffers.

4.3 Markovian Systems

In this section, we consider systems with three stations, two servers, and exponentially
distributed service requirements at each station. In Section 4.3.1, we formulate the
problem and provide our preliminary results. In Section 4.3.2, we present our obser-
vations about the form of the optimal server assignment policy using some numerical
experiments. In Section 4.3.3, we show that four-skilled systems attain near-optimal
throughput as compared to fully cross-trained systems. Finally, we identify the opti-
mal server assignment policies for systems with one dedicated and one fully flexible
server in Section 4.3.4, and for systems with two partially flexible servers in Section

4.3.5.
4.3.1 Problem Formulation

Let II be the set of Markovian stationary deterministic policies corresponding to the
state space S of the system, and let A, denote the set of allowable actions in each
state s € S. For all 7 € Il and ¢ > 0, let D™(¢) be the number of departures under

policy 7 by time ¢, and let

E[D™(1)]

T = lim

be the long-run average throughput corresponding to the server assignment policy 7.
The existence of this limit follows from Proposition 8.1.1 of Puterman [58]. We are

interested in finding a server assignment policy that maximizes the long-run average

60



throughput. Theorem 9.1.8 of Puterman [58] shows the existence of an optimal deter-
ministic stationary policy, because our state space S is finite and similarly A, is finite
for each s € S. Hence, without loss of generality, we restrict ourselves to policies in
IT (implying that the decision epochs correspond to the service completion times at
the stations).

Specifically, for systems with three stations, we use the stochastic process { X (t) =
(X1(t), Xa(t)) : t > 0} to keep track of how the state of the system evolves with time,
where X;(t) (Xa(t)) is the number of jobs that have already been processed at station
1 (2) and are either waiting for service or being processed at station 2 (3) at time
t > 0. Possible actions are idling a server or assigning the server to station 1, 2, or 3.
When we use the term “idling,” we refer to voluntary idling of a server. For example
assigning a server to a station where (s)he is not cross-trained at is not considered as
an idling action because in fact the server is assigned to a station (even if (s)he can
not work there). We use the notation a,,,, for possible actions, where o; € {0, 1,2, 3}
for i € {1,2}, with o; = 0 when server ¢ is idle and o; = 5 € {1,2,3} when server
i € {1,2} is assigned to station j € {1,2,3}. In order to maximize the throughput in
our system, we will identify the optimal action in each state.

The following lemma is a generalization of Lemmas 3.2.1 and 3.2.2 to the system

with two servers and more than two stations.

Lemma 4.3.1 For a tandem line with N > 2 and M = 2, there exists an optimal

policy that is non-idling.

Proof: If both of the servers are idle in some state s, then s is an absorbing state
and the throughput is equal to zero. Hence, at least one of the servers should be
assigned to at least one of the stations. First, assume that one server is assigned to
station j € {1,..., N} that is operating and the other server is left idle. Then, the

only transition in the system will be to a state s’ € S with probability one. The
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transition time to state s’ is never longer if we assign both servers to station j; hence
the throughput is never less for the policy that assigns both servers to the same

station than for the policy that idles one of the servers. O
4.3.2 Fully Cross-Trained Servers

When both of the servers are cross-trained at all the stations (i.e., p;; > 0 for ¢ €
{1,2}, j € {1,2,3}), the optimal server assignment policy is difficult to characterize.
Even for systems with fewer skills and small buffer sizes, we show in Sections 4.3.4 and
4.3.5 that the optimal policy sometimes does not have an easy description, and the
optimal assignment policy for fully flexible systems appears to be more complicated
than these. Hence, we performed simulation experiments to determine the optimal
assignment of fully cross-trained servers. We randomly generated 10,000 systems
where the service rates were drawn independently from a uniform distribution with
range [0.5,2.5]. Then, assuming that By = B3 = B, we used the policy iteration
algorithm for communicating Markov chains to identify the optimal server assignment

policy for each system and each B € {0,1,2,3,4}. Here are our observations:

e At least one of the servers (sometimes both of them) appears to have a primary
assignment. In other words, at least one server is assigned to a specific station

as long as that station is neither starved or blocked.

e Primary assignment can change with the buffer size. In other words, sometimes
a server that has a primary assignment for one buffer size does not have a
primary assignment for another buffer size, or a server’s primary assignment

can be different for different buffer sizes.

e Primary assignment is not always where the server is fastest or according to
a simple multiplicative rule (which is the case when there are two stations in

tandem, as shown in Andradéttir, Ayhan, and Down [7]).
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e If both of the servers have primary assignments, their primary assignment is

not at the same station.

We observe in Sections 4.3.4 and 4.3.5 that the conclusions above sometimes hold even
for the optimal assignment policy for partially flexible servers. More specifically, we
will see that at least one server in lines with limited flexibility and small buffers has
a primary assignment, and we will provide some guidelines about how to determine

the primary assignment.
4.3.3 Partially Cross-Trained Servers

When the service requirements at each station are deterministic, it is shown in Sec-
tion 4.2.3 that it is possible to attain the maximum throughput (corresponding to
fully trained servers) when the servers are cross-trained to have four skills in total.
In Markovian systems, it is not possible to reach such a conclusion because of the
stochastic nature of the problem. Nevertheless, there is strong evidence that, espe-
cially for systems with medium to large buffer sizes, near-optimal throughput can
be obtained with four skills only. We performed 50,000 experiments for the systems
with the same parameters as in Section 4.3.2. We found the maximum throughput of
all four-skilled systems and compared it to the maximum throughput of the system
with six skills (i.e., both servers are fully cross-trained). The average performance
of the best four-skilled systems compared to the six-skilled system is given below for

B, = B; € {0,1,...,4)}.

91.94% of the optimal throughput of the six-skilled system if By = B3 = 0;

96.67% of the optimal throughput of the six-skilled system if By = B3 = 1;

98.27% of the optimal throughput of the six-skilled system if By = By = 2;

99.01% of the optimal throughput of the six-skilled system if By = By = 3;
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e 99.37% of the optimal throughput of the six-skilled system if By = By = 4.

We can conclude that even for small buffer sizes it is possible to achieve near-
optimal throughput of the fully flexible system with only four skills. Hence, it is
important to identify the optimal assignment policy for systems with four skills.
We start by determining the optimal server assignment policy for systems with one
dedicated and one fully flexible server in Section 4.3.4. Next, we consider systems
with two partially flexible servers in Section 4.3.5. We limit ourselves to buffers of
sizes zero or one in Section 4.3.4 and to buffers of size zero in Section 4.3.5 because

the expressions become analytically intractable for larger buffer sizes.
4.3.4 Systems with One Dedicated and One Fully Flexible Server

In this section, we identify the optimal server assignment policy when one server is
dedicated at stations 1, 2, or 3, respectively, and the other server is cross-trained at
all stations. Without loss of generality, we assume that first server is the dedicated
server because the otherwise we can relabel the servers. The proofs of the following

propositions are provided in Appendix B.4.

Proposition 4.3.1 Assume that pi12 = pi3 = 0 and By, B3 < 1. Then the following

server assignment policy is optimal for the Markovian system:
e assign server 1 to station 1;

e assign server 2 to station 2 if station 2 is operating, to station 3 if station 2 is
not operating (i.e., blocked or starved) but station 3 is operating, and to station

1 otherwise.

Proposition 4.3.2 Assume that pi11 = pi3 = 0 and By, B3 < 1. Then the following
server assignment policy is optimal for the Markovian system with three stations and

two servers:
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e assign server 1 to station 2;

e assign server 2 to station 1 if station 1 is operating and station 2 is both blocked
and starved, or not blocked and either will not become blocked or will become
both blocked and starved if the next event were a service completion at station
2:
assign server 2 to station 3 if station 3 is operating and station 1 is not operat-
ing, or if stations 1 and 3 are operating and station 2 is either blocked but not
starved or will become blocked but not starved if the next event were a service
completion at station 2;

assign server 2 to station 2 otherwise.

Proposition 4.3.3 Assume that j11, = pi2 = 0 and By, B3 < 1. Then the following
server assignment policy is optimal for the Markovian system with three stations and

two servers:
e assign server 1 to station 3;

e assign server 2 to station 2 if station 2 is operating, to station 1 if station 2 is

not operating but station 1 is operating, and to station 3 otherwise.

We observe that if there is one dedicated and one flexible server, the flexible server
does not work at the station where the dedicated server is working, as long as any of
the other stations are operating. The assignment of the flexible server when both of
the other stations are operating has the goal of keeping the dedicated server’s station
operating.

Propositions 4.3.1, and 4.3.3 are similar to Propositions 4.2.1, and 4.2.3, respec-
tively. When the dedicated server is at station 1 (3), the main goal is to prevent

blocking (starvation) at station 1 (3), and hence the flexible server gives priority to
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station 2, then to station 3 (1) if the dedicated server is at station 1 (3), and finally
moves to the station where the dedicated server is working. This prioritization of the
stations is the same as in the corresponding deterministic systems.

When the dedicated server is at station 2, two goals (to prevent starvation and
blocking) conflict with each other. This explains the more complex structure of
the optimal assignment of the flexible server in Proposition 4.3.2. In order to keep
station 2 operating, the optimal policy gives priority to station 1 unless station 2 is
blocked (but not starved) or about to be blocked (but not starved). After station 1,
the flexible gives the second highest priority to station 3, and station 2 is the least
preferred station. The optimal policy for the corresponding deterministic system also
has a similar structure in that either of stations 1 or 3 can be given priority, but
station 2 is the least preferred station, see Proposition 4.2.2. As mentioned earlier,
the local heuristic in Andradéttir, Ayhan, and Down [7] gives preference to removing
blocking rather than starving in longer lines. We see that the optimal policy in our
system puts higher priority on removing starving than blocking, but it also considers
the immediate blocking possibility in station 2 and tries to prevent blocking before it
even happens.

We conclude this section by pointing out that the optimal policies provided in
Propositions 4.3.1, 4.3.2, and 4.3.3 are not necessarily unique. For example, the
proofs of Propositions 4.3.1 and 4.3.3 in Appendix B.4 for systems with a dedicated
server at station 1 or 3 and By = B3 = 0 suggest that the actions a;s and a3 are
both optimal whenever these actions are both in A;. However, when By = B; = 1,
there are some states s with a2, a13 € A; where the action a5 is strictly better than
the action aq3. Hence, the policy descriptions in the propositions were chosen so that

the same policy would be optimal for systems with different buffer sizes.
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4.3.5 Systems with Two Partially Flexible Servers

In this section, we consider four-skilled systems where each server is cross-trained to
work at two stations. The following propositions provide the optimal server assign-
ment policy under different cross-training strategies. We identify the optimal server
assignment policy for three partially flexible systems out of six, because the other
cases directly follow by relabeling the servers. We limit ourselves to the systems with
zero buffer sizes, because for larger buffer sizes the expressions become analytically
intractable and the optimal policy becomes difficult to characterize. The proofs of

the following propositions are provided in Appendix B.5.

Proposition 4.3.4 Assume that ji13 = po2 = 0 and By = B3 = 0. Then the following

server assignment policy is optimal for the Markovian system:
e assign server 1 to station 2 if station 2 is operating, and to station 1 otherwise;

® if py1ftio > o1 oz, assign server 2 to station 3 if station 3 is operating, and to

station 1 otherwise;

o if pypine < poifies, assign server 2 to station 3 if station 3 is operating and
station 2 1s either not starved or both starved and blocked, and to station 1

otherwise.

When both servers are cross-trained at station 1, we observe that server 1 (the
server that is cross-trained at stations 1 and 2) has a primary assignment at station
2. When 11112 > po1ptes (which can be interpreted as server 1 having better overall
performance), server 2 has a primary assignment at station 3. This is reasonable
because server 1 is already performing well enough at stations 1 and 2, and the
capacity of server 3 can be primarily given to station 3. When pyip10 < fio1pto3,

server 2 does not have a primary assignment at any station but gives priority to
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station 3 except when station 2 is starved but not blocked. In this case, since server
2 seems to perform well enough on stations 1 and 3, (s)he can shift some capacity
to station 1 (whenever needed) without causing poor performance at station 3. This
also allows the slower server (server 1 in this case) to spend more time on the task
where the faster server cannot work. To summarize, in the state where station 3
is operating and station 2 is starved but not blocked, server 2 works at station 3 if
[11ft12 > Mooz, and at station 1 otherwise. Hence, we can conclude that the focus of
server 2 changes depending on how the performance of server 1 compares to his/her

OWIl.

Proposition 4.3.5 Assume that pi3 = 121 = 0 and By = B3 = 0. Then the following

server assignment policy is optimal for the Markovian system:

e assign server 2 to station 3 if station 3 is operating, and to station 2 otherwise;

o if 1313y < poopiaz(pan i + pa1fies + fifies + H3s), assign server 1 to station 1

if station 1 1s operating, and to station 2 otherwise;

o if 13113y > pospias(pai iz + paipies + pizpies + p33), assign server 1 to station 2

iof station 2 1is operating, and to station 1 otherwise.

When both servers are cross-trained at station 2, both servers have primary as-
signments. Server 2 (the server that is cross-trained at stations 2 and 3) has a primary
assignment at station 3 regardless of the service rates. However, server 1 can have a
primary assignment at station 1 or 2. This shows a preference for clearing blocking in
the system relative to starvation. If ¥, 2, > pioopios (1112 + piiplos + fioples + pas)
holds, then server 1 has a primary assignment at station 2, and otherwise server 1 has
a primary assignment at station 1. Unlike the corresponding condition in Proposition
4.3.4, each side of this inequality does not consist of simple multiplication of the rates

of each server at the different stations. It seems to suggest which server has an overall
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better performance, but in a way that skews the selection of the better overall server
towards server 2 because the right-hand side is always bigger than pospozpiript12. In
other words, it is more likely that server 1 is primarily assigned to station 1 (rather
than station 2) with this inequality than under the condition pi1qpt10 < pogpieg (which

is the criterion in Proposition 4.3.4 adapted to the current case).

Proposition 4.3.6 Assume that 2 = 121 = 0 and By = By = 0. Then the following

server assignment policy is optimal for the Markovian system:
e assign server 1 to station 1 if station 1 is operating, and to station 3 otherwise;

e assign server 2 to station 2 if station 2 is operating, and to station 3 otherwise.

When the two servers are cross-trained at station 3, both servers have primary as-
signments at the stations where only one server is cross-trained to work. By contrast,
Proposition 4.3.4 shows that when both servers are cross-trained at station 1, server
2 gives priority to station 3 but may move to station 1 even if station 3 (where only
server 2 is trained to work) is operating when station 2 is starved but not blocked,
depending on the service rates. By symmetry, when both servers are cross-trained at
station 3, we would expect server 1 to give priority to station 1 and to move to station
3 when station 2 is blocked but not starved, for some service rates. Note, however,
that when By = B3 = 0, (1,2) is the only state where station 2 is blocked but not
starved. In fact, station 1 is also blocked in this state, and server 1 moves to station 3
even if the policy of the Proposition 4.3.6 is applied. Hence, even though the policies
look different, a closer examination suggests that they are more symmetrical than it
first appears.

The symmetry between the cases where both servers are trained at station 1
or 3, respectively, can be observed in systems with larger buffer sizes. Numerical

experiments show that when both servers are cross-trained at station 3, the optimal
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policy sometimes appears to be of threshold type for the server that is cross-trained
at stations 1 and 3. For example consider the case where the servers have the rates
pin = 2, pi2 = 0, g1z = 3, po1 = 0, poe = 1, and po3 = 1. Note that we chose
these rates such that py1p13 > pigapies (which is the symmetrical to the inequality in
Proposition 4.3.4). When By = 1 and B3 = 0, the optimal policy assigns server 2
to station 2 if station 2 is operating, and to station 3 otherwise; and assigns server
1 to station 1 if station 1 is operating and station 2 is not blocked or both blocked
and starved, and to station 3 otherwise. In other words, the server that is cross-
trained at stations 2 and 3 has a primary assignment at station 2 (symmetrical to
the policy of Proposition 4.3.4), and the optimal assignment of the server that is
cross-trained at stations 1 and 3 is of threshold type. The optimal policy results in a
throughput of 0.8472, but the policy of Proposition 4.3.6 yields a throughput of 0.8100
(which corresponds to 95.61% of the optimal throughput). Similarly, the optimal
policy appears to be of threshold type when puyqp112 > po1piss (f11/113 > fiaaptes) and
Bs, B3 > 0 in cases where both servers are trained at station 1 (3).

Overall, we observe that in the four-skilled systems with two partially flexible
servers, there is always one server with a primary assignment, and this result is con-
sistent with what we observed for the fully-flexible system. For the small systems we
considered, the primary assignment of one server does not depend on the service rates
or buffer sizes. However, whether or not the other server has a primary assignment,
and where (s)he is primarily assigned (see, e.g., Proposition 4.3.5), may depend on
the service rates and the buffer sizes. Moreover, the policies in Propositions 4.3.4 and
4.3.6 are symmetrical versions of each other (even though the special structure of the
system with By = Bs = 0 makes them seem different), while the policy in Proposition
4.3.5 is different from the others (as expected). When both servers are cross-trained
at station 2, we observe that the optimal policy is more complex than in the other

cases, which may result from the fact that station 2 can be starved or blocked, and
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the assignment policy has to prevent both of these events to the extent possible.

Propositions 4.3.4, 4.3.5, and 4.3.6 above also show that the optimal policy in the
Markovian setting is slightly different from the optimal policy of the corresponding
deterministic system. In the deterministic system, it is possible to coordinate the
service completions so that no blocking or starvation occurs. Since this is not the
case in the Markovian system, we see that the optimal policy is of a “threshold” type
that also aims to keep the stations operating. Furthermore, we note that the form of
the policy may be quite complicated, and that this special case with By = B3 = 0 does
not generalize to systems with bigger buffer sizes. In fact, our numerical experiments
in Section 4.4.1 suggest that the values of the thresholds, as well as the preferred
assignment for each server, can not be determined by simply using the optimal policy
for the system with B, = B3 = 0. Note also that the policies specified in Propositions
4.3.4, 4.3.5, and 4.3.6 need not be unique. In fact the proofs of Propositions 4.3.4,
4.3.5, and 4.3.6 in Appendix B.5 show that there may be multiple actions that are
optimal in some states.

The optimal throughput can be calculated for the cross-training strategies pre-
sented in Propositions 4.3.1 through 4.3.6, but the task of finding the best partially
flexible system for a given set of (potential) service rates is not a simple task. When
the expressions for the optimal throughputs are compared with each other, we obtain
complex expressions that do not provide intuitive criteria to compare the flexibility
structures. However, in the next section, we use the best flexibility structure for
the corresponding deterministic system (see Theorem 4.2.1 and Table 5) and test
the performance of the corresponding optimal policy (see Propositions 4.3.1 through
4.3.6) for small systems in larger Markovian systems. More specifically, we use the
conditions in Table 5 to select a flexibility structure, and then we use Proposition 4.k

instead of Proposition 3.k, for k € {1,...,6}, to specify a server assignment policy.
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4.4 Numerical Results

In this section, we provide near-optimal heuristic server assignment policies and guide-
lines for selecting a good flexibility structure for understaffed Markovian lines. We
first present and test our server assignment heuristics for tandem lines with three
stations and two servers with four skills in Section 4.4.1. Then, in Section 4.4.2 we
compare the performance of lines with limited flexibility with the performance of lines
with full flexibility, and study guidelines for choosing a good partial flexibility struc-
ture, for four-skilled systems with three stations and two servers. Finally, in Section
4.4.3 we determine whether the solution of the allocation LP also provides a good

flexibility structure in Markovian lines with more than three stations.
4.4.1 Heuristic Server Assignment Policies

In this section, we present and compare three heuristic server assignment policies for
systems with three stations and two servers. Two of these policies use the results
obtained for Markovian systems with small buffer sizes in Sections 4.3.4 and 4.3.5.
More specifically, we consider the following heuristic policies for systems with four

given server skills.

Policy 1: Assign priorities to stations for each flexible server. A flexible server works
at a station with lower priority only if none of the stations with higher priority

is operating.

Policy 2: The optimal assignment policy for Markovian systems with small buffer

sizes (see Sections 4.3.4 and 4.3.5) is employed for systems with any buffer sizes.

Policy 3: A combination of the optimal assignment policy for Markovian systems
with small buffer sizes and the optimal policy found numerically for various
Markovian systems with larger buffer sizes. (This policy is only provided if the

optimal policy has a different structure when the buffer sizes are larger, and it
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will be described in detail for each flexibility structure).

Note that for some flexibility structures (i.e., when there is a dedicated server at
station 1 or 3 and a fully flexible server), some of the three policies above are identical.

In order to determine the priorities used in Policy 1, 50,000 systems were gener-
ated with service rates independently drawn from a uniform distribution with range
[0.5,2.5] and the buffer sizes independently drawn from the discrete uniform distribu-
tion with range {0,1,2,3,4,5}. Then, all possible assignments were compared and
the one with the highest average throughput in 50,000 experiments was selected (in
each case, the long-run average throughput was determined using the stationary dis-
tribution of the Markov chain {X(¢)}). When there is a dedicated server at station
1 or 3, the best average priority policy coincides with the optimal policy of the cor-
responding system with smaller buffer size (see Propositions 4.3.1 and 4.3.3). When
there is a dedicated server at station 2, the flexible server gives priority to station 1,
then to station 3, and finally moves to station 2 (this is also consistent with Propo-
sition 4.3.2 except for the states where station 2 is blocked but not starved or about
to be blocked but not starved). When the servers have two skills, each server gives
priority to the station where no other server is cross-trained. For example, when
server 1 is cross-trained at stations 1 and 2 and server 2 is cross-trained at stations
1 and 3; server 1 gives priority to station 2 and server 2 gives priority to station 3.
Policy 1 is the same as the optimal assignment policy given in Proposition 4.3.6 if
both servers are trained at station 3. Policy 1 is also consistent with Proposition
4.3.4 except for the states where station 3 is operating and station 2 is either not
starved or both blocked and starved, and when the service rates satisfy the condition
iipe < poipes. Finally, Policy 1 is consistent with Proposition 4.3.5 except when
the service rates satisfy the condition p?, 2y > paofios(f11 1o + f11 fos + fiafioz + [13s)-

Policy 3 will be described only when both servers are cross-trained at two stations

since no improvement over the optimal policy for small systems was found for the
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systems with one dedicated server and one fully flexible server (in this case we let

Policy 3 be the same as Policy 2).

e When both servers are cross-trained at station 1, so that p3 = pee = 0, Policy
3 is as follows. Server 1 has a primary assignment at station 2, but server 2 may
or may not have a primary assignment. In particular, similar to the optimal
policy for the system with By = B3 = 0, server 2 has a primary assignment
at station 3 when py1p10 > poiptos. When pqqpt1o < pio1ptes, Policy 3 differs
from Policy 2 only in the states where station 2 would become starved but not
blocked if the next event were a service completion at station 2. In these states,
Policy 2 assigns server 2 to station 3 but Policy 3 assigns server 2 to station
1. Thus Policy 3 pushes more jobs into the system in order to keep the second
station operating, and this idea is similar to that of Proposition 4.3.2 in that it

tries to prevent starvation before it occurs.

e Policy 3 was defined using a similar idea when both servers are cross-trained at
station 3, so that p10 = pe; = 0. In this case, Policy 3 differs from Policy 2 only
in the states where station 2 is blocked but not starved, or will become blocked
but not starved after the next service completion at station 2, and when the
service rates satisfy the condition poopioy < p114413. In this case, Policy 3 assigns
server 1 to station 3, but Policy 2 assigns server 1 to station 1. This policy is
different from the optimal policy of the system with By, = B3 = 0 (where both
servers have primary assignments) and is symmetric to Policy 3 for the case

where both servers are cross-trained at station 1.

e Policy 3 for the system where both servers are cross-trained at station 2, so
that @13 = poy = 0, combines the ideas used in Policy 3 for the cases where
both servers are cross-trained at station 1 or 3 with the optimal policy of the

system with By = B3 = 0 when both servers are cross-trained at station 2.
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In particular, when (a) pi;pfy < froopios(pa1pi + a1 ftos + faopios + p135) and
(b) pdapizs < parpirz(pozfios + paifies + paifiee + p31), server 1 has a primary
assignment at station 1 and server 2 has a primary assignment at station 3.
Otherwise, depending of which of these inequalities are satisfied or not satisfied,
servers may move to station 2 in order to prevent blocking or starvation. More
specifically, if inequality (a) is not satisfied, server 1 gives priority to station 1
but moves to station 3 if station 2 is blocked (but not starved) or will become
blocked (but not starved) upon the next service completion at station 2. If
inequality (b) is not satisfied, server 2 gives priority to station 3 but moves to
station 1 if station 2 is starved (but not blocked) or will become starved (but

not blocked) upon the next service completion at station 2.

In order to evaluate the performance of Policies 1, 2, and 3 for each of the twelve
possible flexibility structures with four skills, we randomly generated 50,000 Marko-
vian systems with service rates p;;, where i € {1,2} and j € {1, 2, 3}, independently
drawn from a uniform distribution with range [0.5,2.5] and the buffer sizes Bs, B in-
dependently drawn from the discrete uniform distribution with range {0, 1,2, 3,4,5}.
For each system and flexibility structure, we use the policy iteration algorithm to find
the optimal throughput of the system. Table 6 shows the 95% confidence interval for
the throughput of these policies and the throughput of the optimal policy. The first
column shows the flexibility structure under consideration. More specifically, the first
set of numbers shows the stations where server 1 is cross-trained at, and the second
set of numbers (after the “-” sign) shows the stations where server 2 is cross-trained
at. Note that, the throughput of Policy 2 is not provided for systems with a dedi-
cated server at stations 1 or 3 and a fully flexible server, or with two partially flexible
servers that are both cross-trained at station 3, because Policies 1 and 2 are identical
in these cases. Similarly, for the systems with one dedicated and one fully flexible

server, the throughput of Policy 3 is not provided, because Policy 3 is defined to be
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the same as Policy 2 in these cases.

Table 6: Performance of Heuristics for Partially Flexible Understaffed Systems

Flexibility Policy 1 Policy 2 Policy 3 Optimal

Structure Policy
1-123 0.6759 4+ 0.0018 — — 0.6759 4+ 0.0018
123-1 0.6764 4+ 0.0018 — — 0.6764 4+ 0.0018
2-123 0.6622 4+ 0.0017 | 0.6714 + 0.0018 — 0.6717 + 0.0018
123-2 0.6611 4+ 0.0017 | 0.6703 + 0.0018 — 0.6706 + 0.0018
3-123 0.6759 4+ 0.0018 — — 0.6759 4+ 0.0018
123-3 0.6776 4+ 0.0018 — — 0.6776 + 0.0018
12-13 0.8426 4+ 0.0011 | 0.8518 + 0.0011 | 0.8538 £ 0.0011 || 0.8566 4+ 0.0011
13-12 0.8419 4+ 0.0011 | 0.8484 + 0.0011 | 0.8506 + 0.0011 | 0.8533 4+ 0.0011
12-23 0.8573 4+ 0.0011 | 0.8588 + 0.0011 | 0.8601 £ 0.0011 || 0.8656 4+ 0.0011
23-12 0.8558 4+ 0.0011 | 0.8567 + 0.0011 | 0.8590 £ 0.0011 || 0.8643 4+ 0.0011
13-23 0.8491 4+ 0.0011 — 0.8529 4+ 0.0011 || 0.8667 + 0.0011
23-13 0.8500 4+ 0.0011 — 0.8538 4+ 0.0011 || 0.8577 + 0.0011

From Table 6, we see that Policy 1 attained more that 99% of the optimal through-
put in all the flexibility structures we considered. Moreover, when the dedicated server
is at station 1 (3), Policy 2 described in Propositions 4.3.1 (4.3.3) attained the op-
timal throughput in all the experiments we performed. When there is a dedicated
server at station 2, the policy described in Proposition 4.3.2 reached 99.95% of the
optimal throughput. On the other hand, when both servers have two skills, we ob-
serve that the strict priority policy (Policy 1) performs well and the optimal policy
for small systems (Policy 2) performs even better (it reaches more than 99% of the
optimal throughput in all cases). Finally, a threshold policy (Policy 3) seems to close
the optimality gap for Policy 2 by about 50% when there are two partially flexible
Servers.

We also observe that in the system with one dedicated and one flexible server, the
flexibility structures with a dedicated server at the either end station seem to perform
better compared to the one with a dedicated server at station 2. The reason may be

that when the dedicated server is at one of the end stations, the flexible server can

76



focus on making sure the dedicated server is not blocked (if (s)he is assigned to station
1) or not starved (if (s)he is assigned to station 3). By contrast, if the dedicated server
is at station 2, the flexible server has to attempt to make sure the dedicated server is
neither blocked nor starved. When there are two partially flexible servers, we see that
the flexibility structure with both servers cross-trained at the middle station seems
to perform better compared to the ones with both servers cross-trained at one of the
end stations. This is reasonable because training both servers at the middle station
allows each server to simultaneously be able to concentrate on one end of the line
while being able to help with the operation of the middle station. We also observe
that when Policy 1 is employed for systems with two partially flexible servers, the
flexibility structure where both servers are trained at station 3 performs statistically
better than the flexibility structure where both servers are trained at station 1. This
is consistent with our results about the optimal policy for such systems in Section
4.3.5, where the optimal policy for the case with po = e = 0 and By = By = 0
was shown to be a strict priority policy (as in Policy 1) and the optimal policy for
the case with p13 = s = 0 and By = B3z = 0 was shown to be a threshold policy for
some service rates.

We conclude that server assignment policies that are of priority or threshold type
are also effective in the systems with larger buffers sizes. The threshold policies
described in Propositions 4.3.1 and 4.3.3 seem to be optimal for systems with larger
buffer sizes as well. For the other cases, the form of the optimal server assignment
policy seems complicated (as in Section 4.3.2), but it is still possible to attain near-

optimal throughput with the simple heuristics described in this section.

4.4.2 Comparison with Full Flexibility and Selecting a Good Flexibility
Structure

In this section, we compare the performance of partially flexible lines with four skills

with the optimal performance of the corresponding fully flexible system. We perform
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50,000 experiments, as described in Section 4.4.1. In each experiment, we first use the
criteria in Theorem 4.2.1 to select a flexibility structure (that is known to be optimal
for deterministic systems with finite buffers) and use either a heuristic or optimal
server assignment policy to determine the throughput for this flexibility structure.
The resulting 95% confidence intervals for the long-run average throughput are shown
in the second column of Table 7. Then we determine the throughput of the best
heuristic (Policy 3) for each of the twelve flexibility structures that are shown in the
first column of Table 6, and the structure with the highest throughput is selected.
The resulting 95% confidence intervals on the throughput are provided in the third
column of Table 7. Finally, we compute the optimal long-run average throughput
of the fully flexible system, see the last column of Table 7 for the 95% confidence
interval on the optimal long-run average throughput.

Table 7: Comparison of the Throughput of Four-Skilled Systems with Six-Skilled
Systems

H Policy H Theorem 4.2.1 | Best 4-skilled H 6-skilled H

Best Heuristic || 1.0516 £ 0.0009 | 1.0552 £ 0.0009 —
Optimal 1.0567 4+ 0.0009 | 1.0600 £+ 0.0009 || 1.0822 £+ 0.0010

We see from Table 7 that 97.51% of the benefits of full flexibility can be attained
with only four skills and our heuristic assignment policies. When the optimal assign-
ment policy is used with the best four-skilled flexibility structure, we see that the
average throughput is 97.95% of that of the fully flexible system. Observe that the
optimality gap is caused by the lack of two skills is larger than the optimality gap
caused by the use of heuristic server assignment policies.

When the criteria in Theorem 4.2.1 are used to select the flexibility structure,
Table 7 shows that the average throughput for the partially flexible systems is 97.17%
of the optimal throughput of the fully flexible system when the best heuristic (Policy

3) is employed, and 97.64% of the optimal throughput of the fully flexible system
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when the optimal assignment policy is employed. This also corresponds to 99.66%
and 99.67% of the corresponding results for the best four-skilled flexibility structure
under the best heuristic and the optimal assignment policies, respectively. Hence,
we can conclude that the criteria used for selecting the best system when the service
times are deterministic also work well for the Markovian system.

Table 8 gives the frequency with which each flexibility structure is chosen in
the 50,000 sets of service rates using the different criteria. The first column shows
the flexibility structure. The second column shows the frequency of selecting each
flexibility structure according to the selection rule of Theorem 4.2.1 (in other words it
is the frequency with which each flexibility structure provides the optimal solution of
the allocation LP). The third and four columns give the frequency for each flexibility
structure when the system with highest throughput is selected if the best heuristic
and the optimal assignment policies are employed, respectively.

Table 8: Frequency of Each Flexibility Structure Being the Best in Understaffed
Systems

H Flexibility Structure H Theorem 4.2.1 | Best Heuristic | Optimal H

1-123 or 123-1 2.90% 2.90% 2.80%
2-123 or 123-2 3.00% 2.51% 2.39%
3-123 or 123-3 2.93% 2.98% 2.83%
12-13 or 13-12 30.70% 30.85% 28.90%
12-23 or 23-13 30.26% 31.89% 33.33%
13-23 or 23-13 30.21% 28.87% 29.75%

We observe that the flexibility structures with two partially flexible servers are
most of the time superior to the flexibility structures with one dedicated and one
fully flexible server. More specifically, Table 8 shows that all three selection criteria
select structures with two partially flexible servers almost ten times more often than
the structures with one dedicated and one fully flexible server. However, when there

is a dedicated and a fully flexible server in the system, we observe in Section 4.4.1
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that there is no big difference in the performances of the systems where the dedicated
server is at stations 1, 2, or 3, respectively. Similarly, when both servers have two
skills each, we see that systems that have both servers trained at stations 1, 2, or 3
perform in a very similar manner. Theorem 4.2.1 chooses any of the three flexibility
structures with one deterministic and one fully flexible server almost equally often,
with the one with a dedicated server at station 2 being selected slightly more often
than the other two. However, we observe that the cases with the dedicated server
at stations 1 or 3 tend to be the best structures more often than the case with the
dedicated server at station 2 when the best heuristic and optimal assignment policies
are used, although the frequencies of all three flexibility structures are also very close
to each other in this case. Among the flexibility structures where each server has
two skills, the flexibility structure where both servers are cross-trained at station 2
is the best more often than the others when the best heuristic and optimal policies
are employed, whereas Theorem 4.2.1 recommends it about as often as the other
structures with two flexible servers (each cross-trained at two stations). We observed
a similar result in Table 6 that showed that the flexibility structures that assign the
dedicated server to the end stations are superior to the one with a dedicated server
in the middle station, and the flexibility structure with both servers cross-trained at
the middle station is superior to the ones with both servers cross-trained at the end
stations.

We conclude that the solution of the allocation LP provides a good heuristic
for finding a good flexibility structure for a tandem line with three stations and two
servers. Even though this selection rule does not always find the best flexibility struc-
ture in each experiment, the performance of the flexibility structure it recommends is
near-optimal as shown in this section. Furthermore, heuristic server assignment poli-
cies for systems with four-skills perform almost as well as optimal server assignment

policies, and the frequency with which each flexibility structure is the best is very
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similar when the heuristic or optimal server assignment policies are employed. In the

next section, we will study if these results generalize to longer Markovian lines.
4.4.3 Longer Markovian Lines

In Section 4.3.3 we observed that systems with the same number of skills as the
optimal solution of the allocation LP attain near-optimal throughput in Markovian
systems with three stations and two servers. In this section we test this conjecture
for longer lines. More specifically, we consider tandem lines with two servers and four
or five stations. We randomly generate the service rates of each server at each station
with the same parameters as in Section 4.3.2. Then we find the optimal throughput
of each flexibility structure under consideration and compare the highest average
throughput among the all flexibility structures to the optimal throughput of the fully
flexible system. We assume B; = B for all j € {2,..., N}, where B € {0,1, 2,3},
and we repeat the experiment for each different value of B.

For systems with two flexible servers and four stations, there are eight possible
skills and Proposition 2 of Andradéttir, Ayhan, and Down [8] shows that a five-
skilled system would be the optimal solution of the allocation LP. There are (g) =56
different choices for these five skills, but under our assumptions (e.g., that the service
rate of both servers cannot be zero at the same station) it is sufficient to consider 32
different flexibility structures. We performed 50,000 experiments for each buffer size,
found the optimal server assignment policy for each of the 32 flexibility structures,
and identified best throughput among the optimal throughputs of the 32 flexibility
structures. Then, we compare this best throughput to the optimal throughput of
the corresponding fully flexible system, and on average the performance of the best

five-skilled system is:
e 93.14% of the optimal throughput of the eight-skilled system if B = 0;
e 96.80% of the optimal throughput of the eight-skilled system if B = 1;
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e 98.17% of the optimal throughput of the eight-skilled system if B = 2;

e 98.89% of the optimal throughput of the eight-skilled system if B = 3.

For the system with two flexible servers and five stations, there are ten possible
skills and we know that there exists a six-skilled system that reaches the maximal
capacity when the allocation LP is solved. Because of the high number of different
possible combinations (80, to be more specific) for selecting these six skills out of ten
while satisfying our assumptions, we only consider the 16 flexibility structures that
consist of “zones” (because they are the easiest ones to apply in the real systems). In
other words we allow each server to work only in consecutive stations. For example
a server cannot work in stations 2 and 4 unless (s)he is also cross-trained at station
3. Because of the prohibitive amount of computational time, for each different value
of B=0,1,2 and 3, the number of experiments are 50,000, 10,000, 5,000 and 1,000,
respectively. On average the best six-skilled system with zones has the following

throughput:
e 86.02% of the optimal throughput of the ten-skilled system if B = 0;
e 87.92% of the optimal throughput of the ten-skilled system if B = 1;
e 88.22% of the optimal throughput of the ten-skilled system if B = 2;
e 88.45% of the optimal throughput of the ten-skilled system if B = 3.

For the system with four stations, even for the buffer sizes as small as one, the
throughput of the best partially flexible system is near-optimal (i.e., attains more
than 90% of the optimal throughput) compared to the fully flexible system. Espe-
cially when the buffer sizes reach three, the discrepancy between the performance of
partial and fully flexible systems becomes very small. For the system with five sta-

tions, even though the number of structures considered here are 20% of all possible
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combinations, we still reach almost 90% of the optimal throughput of the fully flex-
ible system. Hence, we can conclude that the solution of the allocation LP provides
a good guideline for selecting a flexibility structure even for longer Markovian lines

with finite buffers.

4.5 Conclusion

In this paper, we have studied understaffed tandem lines with finite buffers. More
specifically, we determined the optimal server assignment policy for systems with
three stations, two servers possessing four skills in total, and either deterministic ser-
vice times and arbitrary buffer sizes, or exponential service times and small buffer
sizes. Our results suggest that for deterministic systems, it is possible to attain the
benefits of full flexibility with only partial flexibility, and we identified the optimal
cross-training strategy for such systems. For Markovian systems, we observed that
the optimal policy can be of threshold or priority type depending on the service
rates and buffer sizes. Furthermore, we performed numerical experiments involv-
ing randomly generated Markovian systems that imply that even for small buffer
sizes, partial flexibility together with a good server assignment policy can attain
near-optimal throughput. Moreover, we observed that the optimal server assignment
policies of small buffered systems also performed well in tandem lines with larger
buffer sizes. Next, we determined the best flexibility structure for some random sys-
tems and showed that the solution of the allocation LP can be used to choose a good
flexibility structure in systems with three stations and two flexible servers. Finally, we
provided evidence that flexibility structures with the number of skills in the optimal
solution of the allocation LP also perform well in Markovian tandem lines with finite

buffers.
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CHAPTER V

FLEXIBLE SERVERS IN TANDEM LINES WITH SETUPS

5.1 Introduction

In this chapter we study the queueing network described in Chapter 3 with the
modification that a setup cost is incurred when servers move between the stations
and the service requirements at each station are independent and exponentially dis-
tributed with mean one. For all i € {1,..., M} and j,k € {1,..., N}, let ¢;(j,k)
be the setup cost incurred when server ¢ moves from station j to station k. We
assume that ¢;(7,7) = 0 and 0 < ¢;(j, k) < oo for j # k. We further assume that
ci(4,k) < ei(4,0) + ¢i(l,k) for all i € {1,..., M} and j, k,l € {1,..., N}, so that the
least costly way of moving from one station to another does not include any interme-
diate stations. Every time there is a service completion at station N, a revenue of v
is obtained. Without loss of generality, we assume that v = 1. Our goal is to find the
dynamic server assignment policy that maximizes the long-run average profit.

Most existing works about systems with setups are on polling systems, where
there is only one server in the system and the customers leave after being served
at one station. Related work on polling systems includes Duenyas and Van Oyen
[30], Gupta and Srinivasan [36], Hofri and Ross [44], Reiman and Wein [59], and
references therein. We are only aware of a very limited number of works that study
systems with setups apart from polling systems. In particular, Andradéttir, Ayhan,
and Down [6, 9], Duenyas, Gupta, and Olsen [29], Iravani, Posner, and Buzacott [47],
and Sennott, Van Oyen, and Iravani [61] consider tandem lines or general queueing
networks with setups. However, all these papers assume that the storage spaces in

the system have infinite capacity. By contrast, we study a system with setups and
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finite buffer spaces.

The remainder of this chapter is organized as follows. In Section 5.2 we formulate
the problem. In Section 5.3 we provide preliminary results about tandem lines with
two stations and setups. In Section 5.4 we consider systems with two stations and
two generalist servers (i.e., servers that are equally skilled for all tasks) and identify
the optimal server assignment policy for systems with small buffer sizes. In Section
5.5 we provide our observations about systems with larger buffer sizes and/or with
specialist servers (i.e., servers who can be more skilled at some tasks than at others).

Finally, in Section 5.6 we make some concluding remarks.

5.2 Problem Formulation

In this section, we formulate the dynamic server assignment problem in the presence
of setups and illustrate our model for systems with two stations and two flexible
servers operating under the policy known to be throughput optimal without setup
costs.

For all all t > 0, let Y;(¢) € {0,1,...,Bj41 + 2} denote the number of jobs that
have been served at station j and are either waiting for service or in service at station
j+ 1 at time ¢t for j € {1,...,N — 1}. Similarly, for all t > 0 and i € {1,..., M},
let Z;(t) denote the station that server i was assigned to under the policy 7 at the
time of the most recent service completion prior to time ¢ in the queueing network
(letting Z;(t) be the previous location of server i, rather than the current location
of the server, will facilitate the translation of the optimization problem of interest
into a Markov decision problem). We will use the stochastic process {X(t)}, where
X(t) = (Y(t),Z(t), Y(t) = (Yi(t),...,Yn_1(t)), and Z(t) = (Z1(t),..., Zy(t)) for
all £ > 0, to model the state of the system as a function of time.

We assume that the class I of server assignment policies under consideration

consists of all Markovian stationary deterministic policies corresponding to the state

85



IRVTM=1 of the stochastic processes {X()}. In other words, the policies

space S C
in II specify whether each server is idle or not, and the station in the network that
each non-idle server is assigned to as a function of the current state z € S of the
stochastic process {X(t)}. Hence the server assignments may depend both on the
status of the stations and buffers in the network and also on the previous location of
the servers. Note that service may be preemptive when M > 2 (i.e., there is more
than one server in the network) because a service completion at one station in the
network may trigger the movement of servers that are currently working at other
stations in the network. Without loss of generality, we do not consider actions that
assign a server to another station and then keep the server idle. The reason is that by
simply idling a server without any switchover, we obtain the same departure stream
from the system and postpone or avoid the setup costs that could result from idling
the server after a switchover (since ¢;(j, k) < ¢;(4,1) + ¢;(1, k) for all ¢ € {1,..., M}
and j, k,l € {1,...,N}).

For all x € S, let A, denote the set of allowable actions in state x. We use
the notation as,s,.., to represent the actions, where o; is the assignment of server
i € {1,..., M} under this action. We use the convention that o; = 0 when server i
is voluntarily idled at its current station, and this is treated differently from the case
where server ¢ is assigned to a station but is involuntarily idle since that station is
not operating. Then, we have A, = A = er{o,...,N}M{aa} for all x € S. However,
in the proofs of Theorems 5.4.1, 5.4.2, 5.4.3, and 5.4.4, without loss of generality, we
consider a smaller action set because some of the actions are known to be suboptimal
in each state. We choose the decision rule d such that d(z) € A, for all x € S,
and hence the policy m € II corresponding to the decision rule d can be represented
as m = (d)>®. Furthermore, we use the notation d;(z) to denote the assignment
of server i € {1,..., M} in state x € S under decision rule d. More specifically,

di(z) = o; for i € {1,..., M} when d(z) = ay,0,..0,,- Finally, we use the vector
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da(z) = (di(x),...,dy(x)) to keep track of the assignments of all servers in state
x € S under decision rule d.
For all m € IT and t > 0, let D™(t) be the number of departures from the network

under the server assignment policy 7 by time ¢, and let
D™ (t
T”—lim]E{ t()} (14)

be the long-run average throughput corresponding to the server assignment policy 7.

Moreover, for all 7 € IT and ¢ > 0, let C™(¢) be the (cumulative) setup cost incurred

under the server assignment policy 7 in the period [0, t], and let

o {0} -

t—o0

be the long-run average setup cost per unit time corresponding to the server assign-
ment policy m. Note that Proposition 8.1.1 of Puterman [58] shows that the limits
in equations (14) and (15) exist because we restrict ourselves to stationary policies,
and the state space and immediate rewards are finite. Then, 77 — C™ is the long-run
average profit under policy © € II. We are interested in finding a policy in II that
maximizes the long-run average profit and we refer to this problem as the “original
optimization problem.”

We now explain how Andradéttir, Ayhan, and Kirkizlar [12] translate the original
optimization problem into an equivalent (discrete time) Markov decision problem.
Let Sy ¢ RY ™' and Sz = {1,..., N} denote the state spaces of the stochastic
processes {Y(t)} and {Z(t)}, respectively. For the remainder of this paper, we use
the decomposition z = (y,z) and =’ = (v/,z'), where x,2" € S, y,y € Sy, and
2,2 € Sy. Forall a € A, let m, = (d,)>® € II be the server assignment policy with
d.(x) = a for all x € S. Then it is clear that under our assumptions, the stochastic
process {Y(t)} is a continuous time Markov chain with state space Sy for all a € A.
For all y,3/ € Sy and all a € A, let Q,(y,y’) be the rate at which the continuous time

Markov chain {Y ()} goes from state y to state ' (under the server assignment policy
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7a). Then, it is not difficult to see that for all # = (d)> € II, the stochastic process
{X(t)} is a continuous time Markov chain with state space S and with transition

rates
Qu)(y,y) if 2 =d4(x) + .,

0 otherwise,

qa(z,2') =

where I, is an M-dimensional vector whose i*" element is equal to 1(4;(@)=0)2i and 1
is the indicator function. Hence, even if the decision rule voluntarily idles a server,
we still keep track of this server’s location in the state space.

It is also clear that for all 7 = (d)> € II, there exists a scalar ¢; < S.0 max;<j<y
fi; < oo such that the transition rates {g4(z, z")} of the continuous time Markov chain
{X(t)} satisty 3, icg sy qa(7,2") < g for all z € S. This shows that {X(¢)} is uni-
formizable for all = € II. We let {X(k)} be the corresponding discrete time Markov
chain, so that {X(k)} has state space S and transition probabilities py(z,z’) =
qa(x,2')/ ¢z if 2" # x and pa(z,2) = 1 =3 g sy @a(T,2')/qr for all z € S. An-
dradéttir, Ayhan, and Kirkizlar [12] use the fact that {X(¢)} is uniformizable to
translate the original optimization problem into an equivalent (discrete time) Markov
decision problem (using uniformization to do this type of translation was proposed
originally by Lippman [53]). In particular, it is well known that one can generate
sample paths of the continuous time Markov chain {X ()}, by generating a Pois-
son process {K(t)} with rate ¢, and at the times of the events of {K ()}, the next
state of the continuous time Markov chain {X(¢)} is generated using the transition
probabilities of the discrete time Markov chain {X (k)}.

Let D, = {(y1,...,yn—2,yn—1 — 1)} for all y € Sy with yy_1 > 0, and let
¢i(7,0) =0 for alli € {1,...,M} and j € {1,...,N}. Then Andradéttir, Ayhan,

and Kirkizlar [12] show that if

M
Ry(z) = Z Qa)(y,y') — Z Qaw)(y,y') | X <Z ci(zi,di(x))>
y' €Dy ¥ €Sy \{y} i=1
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for all x € S and 7 = (d)> € II, then the original optimization problem (that
maximizes the long-run average profit in our system) is equivalent to identifying the
policy m = (d)>° € II that maximizes the following quantity:
li ElKMXk1 16
Jim. {EZ HX (-~ >>}. (16)
In the remainder of this paper, we analyze the alternative formulation (16) of the
original optimization problem.

In order to demonstrate the problem formulation more clearly, we provide an
example that employs the server assignment policy that maximizes the throughput of
the system with M = N = 2 and no setup costs if the servers are ordered such that
fi1fia > pzftor (as shown by Andradéttir, Ayhan, and Down [7]). The description

of the policy was modified in order to adapt it to our state space.
Example 5.2.1 Suppose that M = N =2 and By = B < oo. Then

S = {(0,1,1),(1,1,1),...,(B+2,1,1),(0,1,2),(1,1,2),..., (B +2,1,2),

(0,2,1),(1,2,1),...,(B+2,2,1),(0,2,2),(1,2,2),...,(B+2,2,2)},(17)

where in state (I, k1, k2) € S, [ refers to the number of jobs that have been processed
at station 1 and are either in service or waiting for service at station 2, and k,, refers
to the station that server m was previously assigned to (prior to the most recent
service completion in the network) for m = 1,2. Assume that for i = 1,2, we have
¢i(j,j) =0for j =1,2, ¢;(1,2) = ¢! >0, and ¢(2,1) = ¢! > 0.

Consider the policy my = (dp)*> € II, where

ap, if x € {(0,1,1),(0,1,2),(0,2,1),(0,2,2)},
do(r) = 4 ap ifre{(B+2,1,1),(B+2,1,2),(B+2,21),(B+2,2,2)},

a9 otherwise.
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Let ¢ = qr = p11 + 12 + pio1 + pro2. Then

Pdy (l‘, lJ) =

and

a0 () =

(

\

pi2+p22

q

Bi1+p21

ify=0,9 =0, and 2’ = z,

ify=0,y =1,and 2 = (1,1),

22 ify=10y =101—1,and 2/ =(1,2),VO<I< B+2,
mrlit ify =1,y =l and 2’ =2, V0 <l < B+2,

s ify=10y =1014+1,and 2/ =(1,2),V0O<I< B+2,
szqruzz ify=B+2,9y=B+1,and 2/ = (2,2),

ouqruzl ify=B+2,9y=B+2,and 2/ = z,

0 otherwise,

0 itz =(0,1,1),

—(p11 + 1)y

—(p1 + M21)C%

—(pia1 + par) (i + c3)

pian — (a1 + i) ch

22

paz — (i + pr2) (e + cb)
piaz — (pia1 + pia2)cy

(112 + pa2) (1 — CI - Cg)
(112 + pa2) (1 — CD
(a2 + p22) (1 — cb)

12 + 22

if v =(B+2,21),
if v = (B+2,2,2).

Note that when the policy 7y is used and B > 0, then there are only B + 5 positive

recurrent states in S, namely (1,1,1), (B+1,2,2), and (I,1,2), where 0 <1 < B+2.

Similarly, when this policy 7 is used and B = 0, then there are only B + 4 positive

recurrent states, namely (0, 1,2), (1,1,1), (1,2,2), and (2,1, 2).
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5.3 Preliminary Results

In this section we provide some preliminary results about tandem lines with two
stations and setup costs. We first present a result about the form of the optimal

server assignment policy.

Lemma 5.3.1 For a tandem line with N = 2, M > 2, and positive setup costs, there
exists an optimal policy that does idle any server voluntarily when the first station is

blocked or the second station is starved.

Proof: When the first station is blocked, the system is in a state s = (B+2, z1, ..., 2p),
where (z1,...,2y) € Sz. Now compare two policies 71 = (d')*™ and 1y = (d?)™ that
agree with each other apart from state s. Assume that d}(s) = z; and d?(s) = 0 for
some i € {1,...,M}, and dj(s) = di(s) for j € {1,..., M} \ {i}. If z; = 1, then
the performance of m; and my will be identical (since keeping a server at station 1 is
equivalent to idling that server in terms of cost). If z; = 2, then the next service com-
pletion under policy m; will never be later than the one under policy 75, the system
state will be the same after the next service completion, and no extra cost will have
been incurred by keeping server i at the second station. Hence, D™ (t) > D™(t) for
all t > 0, implying that T7™ > T72.

We now restrict ourselves to policies with nonzero long-run average throughput
without loss of generality (this is possible because the optimal policy must have
positive throughput when M > 2 since under our assumptions on the service rates
provided in Section 3.1, there exists a policy with stationary servers and positive
throughput). Define the setup cost per item produced up to time ¢ under policy
mellasu™(t) = C™(t)/D"(t) and let u™ = lim;_, o, IE{u™ ()} be the long-run average
setup cost per item produced for all 7 € II. The existence of this limit can be shown
to follow from the strong law of large numbers for Markov Chains (see, e.g., Wolff

[70], page 164) when the long-run average throughput is nonzero, because the setup
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cost incurred between two departures is finite (because we have a finite state space
and finite setup costs) and we consider stationary policies. Under both policies (7
and 7y), the system goes through the same sequence of states, but at the time of each
departure, the total setup cost incurred under policy 7 is equal to the total setup
cost incurred under policy me. Hence, we can conclude that v™ = u™. Note that for

all 7 € II, we have

" -0 = limIE{DW(t) (1— CW@)}

t—o0 t D~ (t)
s D)) .. C(t)
- }LI?OE{ ¢ }}E&E 1_Dw(t)}
= T7(1—u").

Consequently, the long-run average profit under policy 7 is never less than the long-
run average profit under policy 7. Hence, there exists an optimal policy that never
idles the servers when the first station is blocked. A similar logic follows when the
second station is starved. O

Now, for a system with two stations, consider the reversed line where station 1
is followed by station 2 and keep the labeling of the stations as in the original line
(i.e., station 2 is the upstream station and station 1 is the downstream station in the
reversed line). Let B denote the buffer size between the stations. Assume that the
forward line operates under a policy m = (d)* and that the reversed line operates
under a policy mr = (dg)*, where dg(l,2) = d(B+2—1,z) for 0 <[ < B+ 2 and
z € Sz (in both the forward and reversed lines, z; = j if the previous location of
server ¢ is station j). The following reversibility result will be used to simplify the

proofs in the following sections.

Lemma 5.3.2 When N = 2, the policy 7 is optimal for the forward line if and only

if the policy wr 1s optimal for the reversed line.

Proof: Let r,1(x) and k. 2(z) denote the sets of servers assigned to stations 1 and

2, respectively, under policy m when the original line is in state x € S. Then we see
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that for {X(¢)}, the transition rate from state z = (I, z) to (I +1,2) is 3 e, () Hit
for 1 € {0,..., B+1} and the transition rate from state x to (I —1,2") is 3_,c,. ) Hi2
forl € {1,...,B+2} and z, 2’ € Sz (where 2’ is determined by k. 1(x) and k. 2(x)).
Now, let {(Yr(t),Zr(t))} be the Markov chain corresponding to the reversed line.
It is easy to see that the stochastic process {(B + 2 — Yg(t), Zr(t))} has the same
transition rates as the stochastic process {(Y'(t), Z(t))}. Hence these two processes
are stochastically equivalent. Consequently, the long-run average profit of the forward
line under policy 7 is equal to the long-run average profit of the reversed line under
policy mg (because the departures from one system correspond to departures from
the first station of the other system, and the buffer size between the stations is finite),

and the result follows. O

5.4 Systems with Generalist Servers

In this section we consider a tandem line with two stations and two generalist servers.
In other words, we assume that the service rate of a server at a station can be repre-
sented as the product of the server’s speed and a constant related to the complexity
level of the task at the station. Hence, we have p;; = p;7; for 4,5 € {1,2}. Service
rates of this form can be used to model situations where each server is equally skilled
at all tasks. Furthermore, we assume that ¢;(1,2) = ¢;(2,1) = ¢ > 0 for i € {1, 2}.
This is a reasonable assumption if the setup costs are due to the movement of the
servers or if every machine requires similar setup procedures. Our state space S is as
given in (17).

We first study the system where the service rates depend only on the station in
Section 5.4.1. Then we consider systems where the service rates depend only on the
server in Section 5.4.2. Finally we provide some results about systems where the

services depend both on the server and the station in Section 5.4.3.
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5.4.1 Service Rate Depends on the Station

In this section, we specify the optimal server assignment policy for small systems
where the service rates depend only on the station (so that u; = 1 for i € {1,2}).
We start with a system that has a buffer of size zero between the stations. The proof
of the following theorem is provided in Appendix C. Note that the interval for ¢ in
part (ii) of Theorem 5.4.1 is non-empty when v, > 75, and the interval in part (iii)

of Theorem 5.4.1 is non-empty when v; < 7s.

Theorem 5.4.1 For a Markovian tandem line with two stations, two flexible servers,
and buffer of size zero between the stations, if p;; = v; for i,j € {1,2}, then the

optimal server assignment policy 7 = (d*)*° is as follows:

(i) If0 < c <min{g 2, 25}, then

ap; if x = (0, 21, 22) for all (z1,2) € Sz,
d'(r) = app ifz= (1,21, 29) for all (z1,22) € Sz,
age if = (2,21, 29) for all (z1,22) € Sz,

and the recurrent states are (0,1,2),(1,1,1),(1,2,2), and (2,1,2).

'7
(ll) ]f’Yl > Yo and o +4’Y <c< W, then

ars if x = (0, 21, 20) for all (z1,22) € Sz or
d*(z) = x = (1, 21,29) for all (z1,22) € Sz \ {(2,2)},
asy if ¥ = (2, 21, 29) for all (z1,22) € Sz or x = (1,2,2),

and the recurrent states are (0,1,2),(0,2,2),(1,1,2),(1,2,2), and (2,1, 2).

'72
(iii) If 1 < 72 and 471+272 <c< PRENE SR then

ajr if = (0,21, 20) for all (z1,20) € Sz or x = (1,1,1),
d'(r) = app ifz= (1,21, 29) for all (z1,22) € Sz \ {(1,1)} or
x = (2,21,29) for all (z1,22) € Sz,

and the recurrent states are (0,1,2),(1,1,1),(1,1,2),(2,1,1), and (2,1,2).
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. 2 2 B
(iv) If ¢ > max{ P e g 27%27127%273}, then d*(x) = a2 for all x € S and the

recurrent states are (0,1,2),(1,1,2), and (2,1,2).

In the case without setups, we say that a server has a primary assignment at a
station if (s)he works at this station as long as it is operating (i.e., neither blocked
nor starved). However, in the presence of positive setup costs, servers may have
a preferred station, but not a primary assignment, because they may work at a
less preferred station even if their preferred station is operating, to avoid multiple
switchovers. We see that in our case both servers have a preferred station, but
not a primary assignment. More specifically, we say that server 1 has a preferred
assignment at station 1 and server 2 has a preferred assignment at station 2 when
the state ([,1,2) is recurrent for some [ € {0,...,B + 2} and the state ([,2,1) is
transient for all [ € {0,...,B + 2}. Note that since we have identical servers, the
policy described in Theorem 5.4.1 is not unique. For every different type of policy,
there is an alternative optimal policy where server 1 has a preferred assignment at
station 2 and server 2 has a preferred assignment at station 1.

Theorem 5.4.1 also shows that the optimal policy is of one of the following three

types :
e Neither server switches (Type 0);
e Only one server switches (Type 1);
e Both servers switch (Type 2).

We observe that for small values of ¢, each server works at the station to which (s)he
is primarily assigned as long as this station is operating, and works at the other
station otherwise; hence the optimal policy is of Type 2. We also see that this policy
is optimal for systems with ¢ = 0. This is not surprising because any non-idling

policy is known to be optimal for systems with ¢ = 0 and generalist servers, see
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Andradéttir, Ayhan, and Down [10]. In our case the optimal assignment policy is
more complicated because we also need to consider policies that involuntarily idle
the servers. For intermediate values of ¢, we observe that one server stops switching
to the other station (i.e., the optimal policy is of Type 1), and for large values of
¢, neither server switches to the other station (i.e., the optimal policy is of Type 0).
Furthermore, if the policy is of Type 1, the switching server is the one that has a
preferred assignment at the faster station. Note that idling occurs under both Type
1 and Type 0 policies. An examination of the bounds on ¢ in Theorem 5.4.1 shows
that the optimal policy is not of Type 2 for any value of ¢ > %, and the optimal policy
is of Type 0 for all values of ¢ > % The recurrent states together with the actions in
these states under the optimal policy of Theorem 5.4.1 are depicted in Figures 1(a),
1(b), 1(c), and 1(d) (assuming that server 1 is the switching server in Figure 1(b) and

server 2 is the switching server in Figure 1(c)).
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Figure 1: Recurrent States and Optimal Actions in Theorem 5.4.1
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Theorem 5.4.1 also introduces the notion of “multiple threshold” policies. In other
words, servers move between the stations when the number of jobs that are in service
or waiting for service at station 2 reaches a threshold. Furthermore, the value of this
threshold may depend on the locations of both servers prior to the most recent service
completion in the network as well as on the station to which they are moving. We use
the notation ¢;(z) to denote the threshold for server i € {1,..., M} to switch from
station z; to the other station 3 — z; when the previous locations of the servers are
represented in the vector z € S;. We use the convention that server ¢ is assigned to
station 3 — z; when the system is in state (¢;(z), z). In Figure 1(a), server 1 switches
between stations in states (1,2),(2,2) with ¢;(1,2) = 2, #;(2,2) = 1; and server 2
switches between stations in states (1,1), (1,2) with ¢5(1,1) = 1, and #3(1,2) = 0. In
Figure 1(b), server 1 switches between stations in states (1,2), (2,2) with ¢;(1,2) = 2
and t1(2,2) = 0, but server 2 does not switch between stations at all in Figure 1(b).

Next, the following theorem provides the optimal server assignment policy for
a system with a buffer of size one between the stations. Its proof is provided in

Appendix C.

Theorem 5.4.2 For a Markovian tandem line with two stations, two flexible servers,
and buffer of size one between the stations, if p;; = v, fori,j € {1,2}, then the optimal

server assignment policy ™ = (d*)* is as follows:

(i) If0 < c <min{g 2=, 25—}, then

(

ap; if x = (0, 21, 29) for all (z1,22) € Sz orx = (1,1,1),

ap ifr=

(
d*(x) = (
= (
(

) (21, 22)

1,21, 29) for all (z1,22) € Sz \ {(1,1,1)} or
2, 29, 29) for all (z1,2) € Sz \ {(2,2,2)},

) (21, 22)

[ a2 if v = (3,21, 22) for all (z1,22) € Sz orx =(2,2,2),

and the recurrent states are (0,1,2), (1,1,1), (1,1,2), (1,2,2), (2,1,1), (2,1,2),

(2,2,2), and (3,1,2).
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(ll) _[f Y1 > Y2 and

2
< ¢ < min{ 57 +2,y Lt }, then

n +2'Y 57 2vi+4y172

a2 if x = (y, 21, 22) for ally € {0,1} and (z1,22) € Sz or
d*(z) = x = (2,21, 29) for all (z1,22) € Sz \ {(2,2)},

azy if ¥ = (3, 21, 29) for all (z1,22) € Sz or x = (2,2,2),
and the recurrent states are (0,1,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2), and
(3,1,2).

(iii) If 1 > 72, ¥ <2 +93, and ¢ > %, then d*(x) = aj9 for allx € S and
1 2

the recurrent states are (0,1,2), (1,1,2), (2,1,2), and (3,1,2).

. 2 2 27w2+v2 33+ =173
(V) oy 292, % > M7+ 92, ond gp 0 < ¢ S g n g then

)
ajs if v = (0,21, 22) for all (z1,2) € Sz or

(
= (y, 21, 22) for ally € {1,2} and (z1,2) € Sz \ {(2,2)},
= (
= (

9o y,2,2) forally € {1,2} or

\ 3, 21, 22) for all (z1,2) € Sz,

and the recurrent states are (0,1,2), (0,2,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2),
and (3,1,2).

33+
V) If 1 > 72, ¥8 > 1172 + 75 and ¢ > 4%&171;’;12473;31473, then d*(x) = ayy for all

x € S and the recurrent states are (0,1,2), (1,1,2), (2,1,2), and (3,1,2).

27172493
(vi) If 1 <2 and 271+272 < ¢ < min{ 57 +2ﬂ/§, 272+4%72} then

ap; if x = (0, 21, 22) for all (z1,2) € Sz or x = (1,1,1),
d'(r) = app ifz= (1,21, 29) for all (z1,22) € Sz \ {(1,1)} or
x = (y,21,2) for ally € {2,3} and (z1, z2) € Sz,
and the recurrent states are (0,1,2), (1,1,1), (1,1,2), (2,1,1), (2,1,2), and
(3,1,2).
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(vii) If y1 <72, V3 <2 + 72, and ¢ > W’ then d*(x) = ay2 for allx € S and
the recurrent states are (0,1,2), (1,1,2), (2,1,2), and (3,1,2).

2 2 2 2'71’72+’71 < 3’Y2+'Yl'72 7172
(Vlll) ]f 71 < Y2, V2 > Y172 + 715 and 27247172 <c=s A3 A2y + Ay 243 7 then

(
ap; if x = (0, 21, 22) for all (z1,22) € Sz or

(

= (y,1,1) for all y € {1,2},
ars if = (y, 21, 22) for ally € {1,2} and (21, 22) € Sz \ {(1,1)} or
(

x = (3, 21,29) for all (z1,22) € Sz ,

\
and the recurrent states are (0,1,2), (1,1,1), (1,1,2), (2,1,1), (2,1,2), (3,1,1),

and (3,1,2).

. 373+ .
(ix) If y1 < Y2, 72 > mye + 7%, and ¢ > 471+127132112471771;-2%475’ then d*(x) = ayy for all

x € S and the recurrent states are (0,1,2), (1,1,2), (2,1,2), and (3,1,2).

Note that the interval for ¢ in part (ii) of Theorem 5.4.2 is non-empty when
71 > 79, and the interval in part (iv) of Theorem 5.4.2 is non-empty when v; > 79
and v? > 172 + 3. Similarly, the interval in part (vi) of Theorem 5.4.2 is non-empty
when v, > 7, and the interval in part (viii) of Theorem 5.4.2 is non-empty when
M =72 and 7 > 71792 + 75

We now depict the recurrent states and the optimal actions in Theorem 5.4.2.
More specifically, Figure 2(a) shows the optimal policy of Type 2 corresponding to
part (i) of Theorem 5.4.2. Figures 2(b) and 2(c) show the optimal policies of Type
1 (with different thresholds) where server 1 is the switching server corresponding to
parts (ii) and (iv) of Theorem 5.4.2, respectively. Finally, Figure 2(c) shows the
optimal policy of Type 0, corresponding to parts (iii), (v), (vii), and (ix) of Theorem
5.4.2.

We see that server 1 has a preferred assignment at station 1 and server 2 has a

preferred assignment at station 2 for all values of ¢. However, note that this policy is
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Figure 2: Recurrent States and Optimal Actions in Theorem 5.4.2

not the unique optimal policy. Since the servers are identical, we can relabel them and
obtain alternative optimal policies where the preferred assignments of the servers are
switched. Furthermore, we see that as c increases, all the systems go through the same
set of optimal policies for B = 0 (although the cutoffs on the value of ¢ depend on
the service rates). However, this is no longer correct when B = 1. More specifically,
when B = 1, we observe three or four different optimal policies for different values of
the setup cost. If the first station is faster and the service rates satisfy the condition
2 < 172 + 73, then we observe three different optimal policies for different values of
the setup cost. If the first station is faster and the service rates satisfy the condition
Y2 > 172 +73, then we observe four different optimal policies, depending on the value
of the setup cost (in particular, as the setup increases the first server completes more
jobs at station 2 before switching back to station 1). Also note that the transition
from one policy to another follows a similar pattern when B = 0 or B = 1. In both

cases, for small values of ¢ both servers switch and the optimal policy is of Type 2,
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for intermediate values of ¢ only one server switches (server 1 is the switching server
when ~; > 75 and server 2 is the switching server when v; < 73) and the optimal
policy is of Type 1, and for large values of ¢ neither server switches and the optimal
policy is of Type 0. Moreover, when the optimal policy is of Type 1, we observe that
the switching server is the one that has a preferred assignment at the faster station.
Finally, we see that the optimal policy is not of Type 2 when ¢ > %1 and is of Type 0

when ¢ > %.
5.4.2 Service Rate Depends on the Server

In this section we study systems with small buffer sizes where the service rate depends
only on the server (so that 7; =1 for j € {1,2}). Without loss of generality, assume
that 3y > po because we can relabel the servers otherwise. We first identify the
optimal server assignment policy for the system with buffer of size zero between the
stations. We provide the proof of the following theorem in Appendix C. Note that

the interval in part (ii) of Theorem 5.4.3 is non-empty when pqy > po.

Theorem 5.4.3 For a Markovian tandem line with two stations, two flexible servers,
and buffer of size zero between the stations, if u;; = i for 1,5 € {1,2}, then the

optimal server assignment policy 7 = (d*)*° is as follows:

(i) If0<c< 50, then

ap; if x = (0, 21, 22) for all (z1,2) € Sz,
d'(z) =4 ay ifx=(1,2,2) for al (2, z) € Sz,

age if x = (2,21, 22) for all (z1,2) € Sz,

and the recurrent states are (0,1,2),(1,1,1),(1,2,2), and (2,1,2).
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2
ss 2 2p1 —p1p2
(ll) [f Ap+2p2 <cs 205 +2p1 pa+2u3 7 then

a2 if x = (y, 21, 22) for ally € {0,1} and (z1,22) € Sz or
d*(z) = x = (2, 21,29) for all (z1,22) € Sz \ {(2,2)},
agy if ¥ = (3, 21, 29) for all (z1,22) € Sz or x = (2,2,2),

and the recurrent states are (0,1,2),(0,2,2),(1,1,2),(1,2,2), and (2,1, 2).

208 —p1 2 . _
(iii) If ¢ > S oo then d*(x) = aya for all x € S and the recurrent states are

(0,1,2),(1,1,2), and (2,1,2).

We see that the optimal server assignment policy in Theorem 5.4.3 is similar to the
optimal policy provided in Theorem 5.4.1 for the case where the service rate depends
only on the station, and has one of forms shown in Figure 1. More specifically, both
servers have preferred assignments. For small values of ¢ they both switch to the
other station when their own station is not operating. For intermediate values of c,
the optimal policy becomes a multiple threshold policy with one switching server, and
for large values of ¢, the optimal policy does not allow the servers to switch (in the
recurrent states). However, we should note that the optimal policy is not unique in
this case either. Lemma 5.3.2 shows that there is another optimal policy that assigns
the faster server to the second station. In this case the preferred assignments of the
servers will be switched and for intermediate values of ¢, there is an optimal Type 1
policy similar to the Type 1 policy of the system where the service rate depends on
the station and v; < 7,.

We also see that the policy is not of Type 2 when ¢ > %, and the policy is of
Type 0 when ¢ > 1. Note that the switching is possible for a larger range of setup
costs compared to Theorem 5.4.1. For example when p; = 10 and py = 1, switching
policies are optimal when ¢ < 0.856. However, we saw in Section 5.4.1 that when

the service rates depend only on the server, no switching policy is optimal for ¢ > %
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When a server is extremely fast compared to the other server, it may be advantageous
to move this server, even for high values of the setup cost, to benefit from this high
service rate. However, the same logic does not follow when a station is extremely
fast compared to the other station because all the jobs have to be processed at both
stations. In other words, we take advantage of the faster station not by assigning
servers there, but by assigning servers disproportionally to the slower station.

Next, we provide the optimal assignment policy when the buffer size between the

stations is equal to one. The proof of the following theorem is is provided in Appendix

C.

Theorem 5.4.4 For a Markovian tandem line with two stations, two flexible servers,
and buffer of size one between the stations, if p;; = p; for i,5 € {1,2}, then the

optimal server assignment policy m = (d)* is as follows:

. 4p3 po+5p1 p3+343
< < 1 2 2
(i) If0<c< 12032002 pra 12411 24443 then

(
aj; if x = (0,21, 22) for all (z1,22) € Sz or x = (1,1,1),

ap ifx € {(1, 1, 2), (1, 2, 2), (2, 1, 2)},
an if r € {(la 2, 1)7 (Qa L, 1)7 (27 2, 1)}a

azy if ¥ = (3, 21, 29) for all (z1,22) € Sy or x = (2,2,2),

\
and the recurrent states are (0,1,2), (0,2,1), (1,1,1), (1,1,2), (1,2,1), (1,2,2),
(2,1,1), (2,1,2), (2,2,1), (2,2,2), (3,1,2), and (3,2,1).

. Apd po+5p1 p3+3u3 < f 2 2uf+2u8 potp3pd—papd
(i) If 12520 o+ 12 3+ 43 = © < min{ 21 2u?+4u?u2+4u?u§+4mu§+2u‘2‘}’

ajs if x = (y, 21, 22) for ally € {0,1} and (z1,22) € Sz or
d*(z) = x = (2,21, 29) for all (z1,22) € Sz \ {(2,2)},

asy if ¥ = (3, 21, 20) for all (z1,22) € Sy or x = (2,2,2),
and the recurrent states are (0,1,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2), and
(3,1,2).
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5 4 3,,2 2,3 4 5 3ut+2udpo—2p1 13
(lll) [f2M1+M1M2 = M1M2+3M1M2+2M1'M2+M2 andQMTQI <cs 2#1+4N1L2+4;1N2+4N123+2N%7

(
ajs if v = (0, 21, 22) for all (z1,22) € Sz or

(
= (y,21,22) for ally € {1,2} and (21, 22) € 52\ {(2,2)},
a9 = (y,2,2) for ally € {1,2} or

= (

3,21, 22) for all (z1,2) € Sy,

\
and the recurrent states are (0,1,2), (0,2,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2),

and (3,1,2).

Bpi+2u o —2pm 113
2t +4p3 po+4p3 p3+4p p3+2p3

then d*(x) = ai for all x € S and the recurrent states are (0,1,2), (1,1,2),

(iv) If 208 + pipa > pidps + 3pind + 2paps + ps and ¢ >

(2,1,2), and (3,1,2).

20} +2u3 patp3 3 —p pd
(V) If 205+ puipa < s 4343 g 2 i+ 13 and ¢ > 5 +Z;1M§ﬁ;1 ,‘j;iiuf Wiy then

d*(z) = aia for all x € S and the recurrent states are (0,1,2), (1,1,2), (2,1,2),

and (3,1,2).

Note that the interval in part (ii) of Theorem 5.4.2 is non-empty when g1 > o, and

the interval in part (iii) of Theorem 5.4.2 is non-empty when p1 > po and 23+ e >

3,,2 3 2,3 2 4 5 ote f 2 208203 po+p? pd —p pd
s s + + + u3. N urther that £% when
12 Hik2 Hiky T [ 2u1 — Qul+4u1u2+4u1u2+4u1u2+2y‘2‘

2013 + pipe > s+ 3uTps A 240 i + .

When B = 1, we see that for small values of ¢, there is no preferred assignment
of the servers. More specifically, both servers are at the same station when the
other station is not operating. When the number of jobs in the buffer reaches a
certain threshold and both stations are operating, the faster server switches to the
other station, and we thus cannot talk about a preferred station for each server.
Furthermore, the slower server also switches between the stations for small values
of ¢, because the increase in the throughput resulting from not idling this server

dominates the setup cost associated with moving him/her. More specifically, we see
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that t1(1,1) =2, t;(1,2) = 3, t1(2,1) =0, t1(2,2) = 1, t2(1,2) = 3, and t5(2,1) = 0.
We have four different thresholds for the first server that depend on the previous
locations of both servers, the station from which (s)he is moving, and the station to
which (s)he is moving.

Note that this optimal policy is not unique. The policy where the faster server has
a preferred assignment at station 2 is optimal as well (as a result of Lemma 5.3.2).
However, in this case the optimal server assignment policy of Type 1 would be similar
to the Type 1 policy of Theorem 5.4.2 with v, < 7.

As c increases, the optimal policy follows a similar pattern to the optimal policy
given in Theorem 5.4.2 for the systems with B = 1 and station-dependent service
rates. More specifically, for small values of ¢, the optimal policy is of Type 2 (however
without any preferred assignments this time), for intermediate and high values of ¢,
the optimal policy is of Type 1 and Type 0, respectively. The recurrent states and
optimal actions for the optimal policy of Type 2 is depicted in Figure 3(a). The other
cases are omitted because they are same as the ones shown in Figures 2(b), 2(c), and
2(d). We also see that the optimal policy is not of Type 2 when ¢ > }L and is of Type
0 when ¢ > % When we let 3 = 10 and po = 1, then we see that the optimal Policy
is of Type 0 when ¢ > 1.309. Hence, the switching policies are optimal for a larger
range of setup cost when B = 1 and the service rates depend only on the server, as
compared to Theorem 5.4.2 where the service rates depend only on the station. This

conclusion is similar to the one we made regarding the case with B = 0.
5.4.3 Service Rate Depends on Both the Server and the Station

We observed in Theorems 5.4.1 and 5.4.3 that the policy 7 is optimal in systems with
B = 0 when c is positive but small and the service rates depend either on the station
or on the server. However, when B > 0, the optimal policy provided in Theorems

5.4.2 and 5.4.4 is different from my even for small values of ¢. Hence, the servers
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(a) Both Servers Switch (Type 2)

Figure 3: Recurrent States and Optimal Actions in Theorem 5.4.4

have a primary assignment when B = 0, but this is not correct when B > 0. In this
section we consider systems with generalist servers whose service rates depend both
on the server and the station. The following proposition shows that the policy mg is

not optimal when B > 0 and ¢ > 0.

Proposition 5.4.1 In a tandem line with two stations, two generalist servers, and

buffer of size B > 0 between the stations, my is not optimal for the system with ¢ > 0.

Proof: First, assume that p; > puo and v, > v, where at least one of the inequalities

is strict. Let my = (dy)™ be as described in Example 5.2.1. It is not difficult to show

that

(41 + p2)1172 2c(p1 + p2)M1y2(171 — H272) ((M171)3+1 + (M2’72)B+1)>
Lt (71 + 72)((;“71)3*2 - (um)B”) '

Now define the policy m; = (d')* such that d*(1,1,1) = ay; and d'(z) = dy(x) for

7m0 — O™ =

x € S\{(1,1,1)}. In other words, 7; is a multiple threshold policy that assigns both
servers to station 1 if there are no jobs in the buffer and the servers are already at
station 1. One can show that

(p1 + p2)7172
Y1+ Y2

2¢(p1 + p2)y1ye (v — pay2) ((um)B“ + w2 ((um)B + (p2v2)? ))

(M +72) ((M171)3+2 + pay2(pay) B — 2(#272)B+2>

7™ 0™ =
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Some algebra shows that (I™ — C™) — (T™ — C™) = £ where

e1 = 2c(p + p2) vy — pey2) (p2y2) PP ((Ml’Yl)B - (H272)B),
€ = (m+ 72)((#171)B+2 - (M272)B+2) [((M171)B+2 - (M272)B+2)

+ 1272 ((M1’71)B+1 - (M272)B+1)]

Then, it is easy to see that £ > 0 and m is a better policy than mo. If 1 < o, then
we can relabel the servers. If 7; < 79, then define d' such that d'(B + 1,2,2) = ag
and d'(z) = d(x) for x € S\ {(B + 1,2,2)}, and Lemma 5.3.2 implies that m; is a

better policy than my. When p; = s and v = 75, we can show that

Ml'Vl(Q + B — 40) T _ O™ — ,U1’71(3 + 2B — 66)

Tm _ (7m0 —
¢ 2+ B 3+ 2B

Then (IT™ — C™) — (T™ — C™) = Gi—%%, and this quantity is strictly positive for
B > 0. Consequently, when ¢ > 0, policy 7y is never optimal. O

Proposition 5.4.1 also shows that, unlike the case with ¢ = 0, it is not true that all
nonidling policies are optimal in the presence of small positive setup costs. Note that
in the papers that study the case with ¢ = 0 (e.g., Andradéttir, Ayhan, and Down [7]),
Markovian stationary deterministic policies are employed, so that the same action is
used each time the number of jobs Yj() processed by station 1 but not by station 2
reaches the same level. However, in our case it is possible to employ different actions
in states with equal Y;(t) values, depending on the locations of the servers. More
specifically, when there are jobs at each station and the buffer is empty, the policy m;
considered in the proof of Proposition 5.4.1 sometimes assigns both servers to station
1, and sometimes assigns server 1 to station 1 and server 2 to station 2. Similarly,
the optimal server assignment policies for small systems do not immediately move
the servers back to their preferred stations for ¢ > 0, as shown in Theorems 5.4.2 and
5.4.2 (when preferred assignments exist).

We conclude this section by pointing out that Proposition 5.4.1 does not neces-

sarily hold for systems with specialist servers. In particular, we will show in Section
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5.5.3 that the policy my may be optimal if the servers are specialists.

5.5 Numerical Results

In this section, we perform numerical experiments and provide our observations about
the form of the optimal policy for systems with generalist servers and larger buffers,
or specialist servers. We consider systems with common setup costs at any station
for both servers as in Section 5.4. In Section 5.5.1 we consider systems with an
intermediate buffer of size B > 1 and servers whose service rates depend on either
the station or the server. In Section 5.5.2 we consider systems with specialist servers
and B = 0. Finally, in Section 5.5.3, we consider systems with specialist servers and

an intermediate buffer of arbitrary size.

5.5.1 Systems with B > 1 and Service Rate Depending Either on the
Station or the Server

In this section we provide our observations about the form of the optimal policy
when the service rates depend on either the station or the server. Theorems 5.4.1
through 5.4.4 provide the optimal server assignment policy for these systems when
the buffer size between the stations is zero or one. Consequently, in this section, we
study systems with buffer sizes larger than one.

First we consider systems where the service rates depend only on the station. We
randomly generate 50,000 systems with the service rate at each station independently
drawn from a uniform distribution with range [0.5,2.5] and the setup cost drawn from a
uniform distribution with range (0,0.5) (we have also tried a larger range for the setup
cost and observed that most of the optimal policies ended up being of Type 0 with
no switching). Furthermore, the buffer size B between the stations is drawn from a
discrete uniform distribution with range {2, 3,4,5}. We determine the optimal server
assignment policy using the policy iteration algorithm for communicating Markov

chains.
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Our numerical results for systems with service rates depending only on the station
suggest that the optimal server assignment policy is similar to that of systems with
an intermediate buffer of size one, see Theorem 5.4.2. Both servers have a preferred
assignment and the optimal policy is a multiple threshold policy. Furthermore, some
properties of the thresholds can also be determined. For example, consider a system
where servers 1 and 2 have preferred assignments at stations 1 and 2, respectively
and assume that the policy types 0, 1, 2 are as defined in Section 5.4.1. If the optimal
policy is of Type 2, we observe that t1(1,2) = B + 2, t1(2,2) = [, to(1,1) = [ + 1,
and t5(1,2) = 0 for some [ € {1,...,B} (note that [ = 1 in the policy of Figure
2(a)). If the optimal policy is of Type 1 and server 1 is the switching server, then
t1(1,2) = B+2 and t1(2,2) = [ for some 0 € {1, ..., B} (note that [ = 1 in the policy
of Figure 2(b) and [ = 0 in the policy of Figure 2(c)). Similarly, if the optimal policy
is of Type 1 and server 2 is the switching server, then t5(1,1) = [ and t5(1,2) = 0 for
some [ € {2,...,B +2}.

Next, we study systems where the service rates depend only on the server. We
randomly generate 50,000 systems with the service rate of each server independently
drawn from a uniform distribution with range [0.5,2.5] and the parameters B and ¢
chosen as before. We observe that the optimal policy is of multiple threshold type
for any ¢ > 0 and servers do not have preferred assignments for small values of c,
as in Theorem 5.4.4. Furthermore, we are able to make some conclusions regarding
the threshold values as well. For simplicity, we only provide our observations for the
case where server 1 is the faster server. If the optimal policy is of Type 2, we observe
that ¢1(1,2) = B+ 2, t1(2,1) = 0, to(1,1) = [, t5(1,2) = 0, t2(2,1) = B + 2, and
t2(2,2) <[ for some | € {2,...,B + 1} (note that | = 2 and ¢2(2,2) =1 <[ in the
policy of Figure 3(a)). In other words, the thresholds for switching to station 1 is
never greater than the thresholds for switching to station 2 for the first server. If the

optimal policy is of Type 1, we see that ¢;(1,2) = B + 2 and ¢;(2,2) = [, for some
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l€{0,...,B}.

We conclude that if the service rates depend only on either the station or the
server, then the form of the optimal policy is robust to the buffer size, and the
thresholds still have a certain dependency on each other for systems with B > 1.
However, the thresholds can take values in a broader range and can not be calculated

as easily as in Section 5.4.
5.5.2 Systems with B = 0 and Specialist Servers

Theorems 5.4.1 and 5.4.3 provide the optimal server assignment policy when B = 0
and the service rate depends on either the server or the station. More specifically,
they show that the optimal policy is one of the multiple threshold type policies shown
in Figure 1. In this section we provide our observations about the form of the optimal
policy and the values of the thresholds if the servers are specialists; i.e., the service
rates are not necessarily the products of two terms representing server skill and task
difficulty. We randomly generate 100,000 systems with the service rates independently
drawn from a uniform distribution with range [0.5, 2.5] and the setup cost drawn from
a uniform distribution with range (0,0.5).

We observe that both servers have preferred assignments in each experiment and
the optimal policy is a multiple threshold policy. We now demonstrate these policies in
more detail for a system where servers 1 and 2 have preferred assignments at stations
1 and 2, respectively. If the optimal policy is of Type 2, then we have t;(1,2) = 2,
t1(2,2) = 1, t2(1,1) = 1, and t5(1,2) = 0, as in Figure 1(a). If the optimal policy is
of Type 1 and server 1 is the switching server, then we have ¢((1,2),1,2) = 2 and
t1((2,2),1) € {0,1}, as in Figures 1(b) and 4(a). If the optimal policy is of Type 1
and server 2 is the switching server, we have t5(1,2) = 0 and (1,1) € {1,2}, as in
Figures 1(c) and 4(b). Finally, if the setup cost is big, the optimal policy is of Type 0,

as in Figure 1(d). To summarize, the recurrent states under possible optimal policies
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for systems with B = 0 and specialist servers are as in Figures 1(a), 1(b), 1(c), 1(d),
4(a), and 4(b).
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(a) Only Server 1 Switches (Type 1) (b) Only Server 2 Switches (Type 1)

Figure 4: Recurrent States and Optimal Actions in Section 5.5.2

Note that policies of Type 0, 1, or 2 were also observed for systems where the
service rate depends on either the server or the station and B = 0, as shown in
Section 5.4. However, for these systems, if the optimal policy is of Type 1 and the
switching server is server ¢ € {1,2}, then t;(2,2) or ¢;(1,1) is never equal to one; i.e.,
the policies shown in Figures 4(a) and 4(b) are never optimal. Hence, we conclude that
the form of the policy is robust to the service rates, but the values of the thresholds

can take values in a broader range in systems with specialist servers.
5.5.3 Systems with B > 0 and Specialist Servers

In this section, we study systems with specialist servers and B > 0. More specifically,
we randomly generate 50,000 systems with the service rates and the setup cost chosen
as in Section 5.5.2, and the buffer size drawn from a discrete uniform distribution with
range {1,2,3,4,5}.

In all the experiments with specialist servers and B > 0 we observe that the
optimal policy is of multiple threshold type. More specifically, the optimal policies are
more general versions of the policies observed in Section 5.5.1. For example, consider
the case where the optimal policy is of Type 2 with servers 1 and 2 having preferred

assignments at stations 1 and 2, respectively. Then, we observe that ¢;(1,2) = B+ 2,
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t1(2,2) = k, t2(1,1) = [, and t5(1,2) = 0, where k,l € {1,...,B + 1}. Unlike in
the case where the service rate depends only on the station or the server, we do not
observe any simple relation between the thresholds k£ and [. Note that we observed
some cases where [ = 1 and kK = B + 1 in the optimal policy (i.e., myp was optimal).
Hence, in the presence of specialist servers, the policy that has primary assignments
(so that the servers switch back to their primary stations as soon as possible) can
be optimal, unlike in the case with generalist servers considered in Proposition 5.4.1.
Similar conclusions follow when the optimal policy is of Type 2 and the servers do
not have preferred assignments (as in the case where service rate depends only on
the servers). In this case, we observe that ¢1(1,2) = B+ 2, t1(2,1) = 0, t5(1,1) = k,
t2(1,2) = 0, t2(2,1) = B + 2, and t2(2,2) = [, where k,l € {1,...,B+ 1}. When
the optimal policy is of Type 1, we observe similar patterns in the thresholds. For
example, if server 1 is the switching server and (s)he has a preferred assignment at
station 1, we see that ¢1(1,2) = B + 2 and ¢;(2,2) = k, where k € {1,..., B+ 1}.
From these results, we conclude that the form of the optimal policy remains the
same even when the buffer size is increased and the servers have different skills at
different stations. However, the thresholds can take values in a bigger set, and we do

not see simple dependencies between the thresholds as in Section 5.5.1.

5.6 Conclusion

In this work, we have studied the dynamic server assignment problem in the presence
of setup costs. More specifically, we have determined the optimal server assignment
policy for tandem systems with two stations, two servers, and small buffer sizes when
the service rates depend only on either the station or the server. We have shown
that the optimal policy is of “multiple threshold” type (i.e., servers move between
stations when the number of jobs in the system reaches certain thresholds that may

depend on the current locations of both servers). As the value of the setup cost
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increases, the optimal server assignment policy reduces the number of servers that
move between the stations, and when there is only one switching server in the system,
we have seen that the faster server or the server that is assigned to the faster station
is the switching server. Moreover, the servers generally have preferred assignments
(the only exception is the case when the service rates depend only on the server and
the value of the setup cost is small). Finally, we have shown that server movements
are more limited when the service rates depend only on the station than when the
service rates depend only on the server.

For systems with larger buffer sizes and/or specialist servers (whose rates can not
be described as products of two terms), we have performed numerical experiments
that suggest that the form of the optimal policy also has a multiple threshold structure
in this setting, and have provided our observations about the values of the thresholds.
Consequently, the form of the optimal policy appears to be quite robust with respect
to the service rates and the buffer sizes, but the thresholds can take more values in

systems with larger buffer sizes and/or specialist servers.
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CHAPTER VI

CONTRIBUTIONS AND FUTURE RESEARCH
DIRECTIONS

6.1 Contributions

We have studied effective cross-training and dynamic server assignment strategies
for tandem lines with finite buffers. First, we considered non-Markovian tandem
lines. We provided analytical results for tandem systems with two stations and two
or three flexible servers. More specifically, we have identified the optimal server
assignment policy for systems with deterministic service times and an intermediate
buffer of arbitrary size, and also for systems with general service time distributions
and an intermediate buffer of zero size. We have observed that the form of the
optimal policy is the same as for the corresponding Markovian system. For larger
systems, we presented and compared several heuristic server assignment policies that
performed well for various service time distributions. Systems with non exponential
service times and finite buffers are very common in real life, however most of the time
they are analytically intractable. Our research supports the conjecture that effective
dynamic server assignment policies for flexible servers are robust to the service time
distributions, and suggests that the analysis of Markovian lines can also provide
insights for non-Markovian lines.

In this thesis, we have also studied understaffed tandem lines with fully or par-
tially flexible servers. We have shown that, when the objective is to maximize the
throughput, most of the benefits of full flexibility can be obtained even with partial
flexibility. More specifically, for systems with three stations, two servers, and de-

terministic service times, we have determined the optimal server assignment policy
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when the intermediate buffers are of arbitrary size. Furthermore, we have identified
the critical skills that are necessary to attain the benefits of full flexibility in systems
with limited flexibility, and observed that these skills can be found by analyzing the
corresponding system with infinite buffers. We have also studied Markovian systems
with three stations and two servers under the partial flexibility structures that were
optimal in deterministic systems. We have determined the optimal server assignment
policies for such systems when the intermediate buffers are small and have developed
near-optimal heuristic server assignment policies for systems with larger intermediate
buffers. Finally, we have considered longer Markovian lines and provided numerical
examples showing that the partial flexibility structures known to be optimal for sys-
tems with infinite buffers performed well in our system as well. Most of the time,
tandem lines with more than two stations and finite buffers are very difficult to analyze
exactly. However, our research suggests that analyzing systems with infinite buffers is
effective with respect to identifying good flexibility structures for the corresponding
finite-buffered systems.

Finally, we have incorporated setup costs into the dynamic server assignment
problem. This problem had not been studied before in tandem systems with finite
buffers. We have considered systems with two stations and two flexible servers. For
systems with small buffer sizes and service times that depend on either the server
or the station, we have shown that the form of the optimal policy is of multiple
threshold type (i.e., there are different thresholds for the servers to switch to the
other station depending on the locations of all servers in the system). Furthermore,
we have determined the values of the thresholds and observed that server movements
were more limited in systems with identical servers as compared to systems with
identical stations. In the process, we observed that as the magnitude of the setup
cost grows, the number of servers who switch between the stations becomes smaller

in the optimal server assignment policy (i.e., first both servers switch, then only one,
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and finally none). For systems with larger buffer sizes and/or specialist servers, we
have provided numerical evidence supporting the conjecture that the optimal server
assignment policy is of multiple threshold type. However, the values of the thresholds
become more unpredictable when the servers are specialists and/or the intermediate

buffer size is large.

6.2 Future Research Directions

Our research in the area of performance improvements in tandem lines has provided
us with valuable insights on how to analyze systems with finite buffers. The allocation
LP (which is devised for infinite-buffered systems) has provided an attainable upper
bound on the throughput of the deterministic systems we have considered. Hence, our
first research direction is to generalize some of our results to systems with more servers
and more stations. More specifically, the first problem of interest is studying non-
Markovian tandem lines with two stations and more than two servers (this problem
has been studied for Markovian systems in Andradéttir and Ayhan [6]). We believe
that systems with general service time distributions are not analytically tractable
for systems with positive buffer sizes, however our initial results suggest that the
optimal server assignment policy can be determined for deterministic systems with
an intermediate buffer of arbitrary size and also for systems with general service time
distributions and an intermediate buffer of zero size. The second problem of interest is
identifying an optimal server assignment policy for systems with two servers and more
than three stations. The solution of the allocation LP is still analytically tractable in
this case, and we believe that the maximal capacity found from the allocation LP is
also attainable in deterministic systems with finite buffers.

Another future research direction is the analysis of finite parallel queueing systems.
The dynamic server assignment problem has been studied in this setting as well,

but mostly for systems with infinite buffers and under heavy traffic. These models
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have provided good insights for the analysis of certain call centers and computer
systems. However, the analysis of more general service systems may require finite
buffers (e.g., when an emergency room has reached its capacity, new patients may
not be accepted unless their health condition does not allow them to be transported
to another facility). The only work we are aware of that studies finite-buffered parallel
systems is Ahn, Duenyas, and Zhang [2] and they study a clearing system with no
arrivals. By contrast, we plan to study systems with multiple customer classes and
outside arrivals. We also believe that other problems of interest, like admission control
and dynamic pricing, can be considered in combination with the dynamic server
assignment problem. Our first goal is to determine the optimal server assignment
policy for simpler systems with finite buffers where every customer is allowed to enter
the system as long as the buffers are not full. Then, we plan to add admission control

or pricing mechanisms to our model.
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APPENDIX A

SUPPLEMENTARY MATERIAL FOR CHAPTER 3

A.1
3.3.2

Throughout this section, we will use the following notation.

Lemmas Used in the Proofs of Theorems 3.3.1 and

c (u1 uz) _ Ui 12 Ug C’g(ul u2) _ U1 422 U2
’ par(pag + plo2)  pa + oo’ 7 po1(pag + flo2)  pa + oo’
Uq U 21 Uy U 11
Cs(ug,ug) = , Cylur,ug) = ,
a1, 2) par + por - proo(fan + for) i, 12) pan + por paz(pan + por)
Cs (un, u2) = =2
Uy, Up) = .
A M1+ fo1 M2t oo

Lemma A.1.1 The mazimal capacity of a tandem queueing network with two sta-

tions and two flexible servers is equal to

A=

1 foUl u2
of 2 < M2
C1(u1,u2) fﬂu — p22’
1 foul u2
1 — —.
C3(u1,uz2) f 11 > H22

(19)

Proof: It is clear that it suffices to show that equation (19) provides the optimal value

of A in the allocation LP (see the proof of Theorem 3.3.1). We start by transforming

this LP to the standard form as follows:

min

s.t.

—A

/\—511@—521&4‘31: )
U Uy

A — 512/2 — 522@ + 82 =0,
(%) ()

011 + 012 = 1,

91 + 022 = 1,

(Sij > 0, for all Z,] € {1,2},81,82 > 0.
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Note that there are no slack variables in equations (20) and (21), because it is always
possible to satisfy these constraints as equalities without worsening the objective
function value. Since there are four constraints (not including the nonnegativity
constraints), every feasible basis will have four elements.

Let D be a basis for the above LP, c¢p be the vector of coefficients of the elements
of D in the objective function, B be the coefficients of the elements of D in the
constraint matrix, and b be the right-hand side of the constraints. Also, let V' denote
the coefficients of the non-basic variables in the constraint matrix, and cyp denote the
vector of coefficients of the non-basic variables in the objective function. We let ¢p and
cn g be row vectors, and b be a column vector. Then the following conditions guarantee

that the basis D is optimal (see, e.g., Theorem 3.1 of Bertsimas and Tsitsiklis [25]):

B~'b >0, (22)

CNB — CBB_IV Z 0. (23)

First, consider the basis D = {\, d11, 012,022 }. Some algebra shows that

pan (fag + pioa)/ (urpne + uafinr)
B-1p — wy (pag + pro2)/(wi a2 + uapin)
(ugpiny — ugpioz) /(Ui pia + Uzpinn)

1

(M11M22 - #12#21)/(“1#12 + U2,u11)

~1
cnp —cpBTV = s ft1a/ (ur 12 + uaptan)

uaftr1 /(s 12 + uaptrn)

Since our assumptions on the service rates imply that pqqpge — p1o21 > 0, we can

conclude that D = {\, d11,d12,092} is an optimal basis when ﬁ < % The first

1
C1(u1,u2)

element in the matrix B7'b is the value of ) in the optimal basis, hence \* =

in this case.
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Now consider the basis D = {\, 011, d21, 922 }. Similar calculations show that

oo (a1 + fior)/ (s pios + uafior)

1
B b=

(wipioo — uapiny) /(Ui pioo + Uz pior)

ug (11 + po1)/ (wpioe + uspior)

(M11M22 - #12#21)/(“1#22 + U2,u21)

~1
cnp —cpBTV = Uy oo/ (U oo + Uafion)

Uaft11 /(U o + Uafion)

Hence, we can conclude that D = {\, d11, 021, 022} is an optimal basis when ﬁ > ﬁ

The first element in the matrix B7'b is the value of A in the optimal basis, hence

N =

in this case, which provides the desired result. O
Cs(u1,u2)

Lemma A.1.2 Consider the policy m = (d)*>°, where d(0) = a1, d(B+2) = ag, and

d(s) = ajp for 1 < s < B+1, for a system with N = M = 2. If % < %, then the

long-run average throughput under the policy 7 is equal to

1
Cr(u1,u2)”

Proof: Suppose that - < -2 and that the process {X(t)} is in state s when the
first service completion at station 1 takes place. At that time, the process {X(¢)}
goes to state s+ 1. If s+ 1 < B+ 2, then a new job starts being processed at station
1, and the job being processed at station 2 has remaining service time 7o < us. The
process {X(t)} will reach either state s or state s 4+ 2 next depending on whether
-2 < i or not. If the process {X (¢)} returns to state s, the remaining service time
at station 1 is no longer than u;. Consequently, the job at station 1 is completed
first, and the process {X(¢)} goes next to state s 4+ 1, at which time the remaining
service time at station 2 is

Uy — 21y u
rél) = Uy — [lgg <$> =179+ (UQ — —1,u22> € (7”27U2)
H11 Hu
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because ﬁ < % and /% < ;‘—111 In this case, it is possible to have several (s + 1) —
s — (s + 1) cycles, but each time the process {X(¢)} reaches state s + 1 from state
s, a new job starts being processed at station 1 and the remaining service time at
station 2 is longer than the previous time (by a constant margin). Hence, there will
come a time when the job at station 1 will be finished before the job at station 2 in
state s+ 1, and the process { X (¢)} will reach state s+ 2. Therefore, we can conclude
that the process { X (t)} never reaches state s — 1 after the first service completion at
station 1 in state s, and instead it eventually reaches state B + 2.

Once the process {X (¢)} hits state B + 2, it comes back to state B 4 1 after the
service completion at station 2. New jobs start being processed at each station, the
job at station 1 is finished first under the assumptions of the lemma, and the process
{X(t)} hits state B + 2 again. Since one job leaves the system each time the process

{X(t)} reaches state B+ 1, the long-run average throughput is equal to # the

u1,uz)’
reciprocal of the time between transitions to state B + 1.
If ﬁ = % and the policy 7 is employed, then the process is either confined to

a single intermediate state, or to two adjacent intermediate states, and the long-run

average throughput is the reciprocal of ﬁ which is equal to # This completes

U1,u2)

the proof. O

Lemma A.1.3 Consider the policy m = (d)>°, where d(0) = a1y, d(B+2) = as, and
d(s) = ajp for 1 < s < B+1, for a system with N = M = 2. Ifﬁ > %, then the

long-run average throughput under the policy m is equal to m

Proof: Using an analysis similar to that of Lemma A.1.2, it can be shown that the
stochastic process {X(¢)} ends up being confined to states 0 and 1. Since one job
leaves the system each time the process { X (t)} reaches state 1, the long-run average

1

throughput is equal to Gt the reciprocal of the time between transitions to state

1. This completes the proof. O
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Lemma A.1.4 For all u;,us € R we have

maX{Cl(UbW), 03(U17U2)} < min{Cg(ul,uQ), 04(U17U2)7 05(U17 Uz)}

Proof: It is easy to see that C7(uy,us) < Co(ug,us), and Cs(uy, uz) < Cyluy, us).
Furthermore, for all uy, us € R* we have C(uy, us) < min{Cy(uy, us), Cs(uy, uz)} and
Cs3(uy, uz) < min{Cy(uy,us), Cs(uy, uz)} because
O (w1, us) — Calur, us) = (w1ptg + ugpiar) (fazpior — paifias) <0
paipiaz(pr + por)(faz + fi22)

U1(,LL12,U21 - N11,L622)
Ch(uy, ug) — Cs(uy, ug) = <0,
tur, uz) sl 12) par(par + por) (paz + feo2)
Cy(us, z) — Cs(un, up) — (u1pia2 + unpior) (paopizr — piaafhaz)
a1 fioo (pa1 + po1) (p1e + poo)

U2(M12M21 - M11M22)
Cs(uy, ug) — Cs(uy, ug) = < 0.
(11, 12) (s, o) oz (pir + pror) (faz + feo2)

Hence the result follows. O

A.2 Lemmas Used in the Proof of Theorem 3.4.1

For simplicity, we will use the following notation:

21 = pan + o1 + a1, 2o = pig + pog + 3o,
Aqp = H11 22 — Hi2fb21, Ay = M1 32 — H12/431, Agg = M1 32 — Moo ft31-

Note that we have assumed Ajs > 0,A13 > 0, Az > 0, 37 > 0, and Xy > 0. Also,

let v;(u1,uq) for j € {1,2,3} be defined as follows.

_ 11222 _ Hanfio + florflan + fo1 a2
’71(“1,“2) T '72(“1,712) = s
U 12 + U 11 U1 oo + Ug o1
3220
73(“1, Uz) =

U i3y + Uofizr

Lemma A.2.1 The maximal capacity of a tandem queueing network with two sta-

tions and three flexible servers is equal to

yi(ur,ug) if B < A

uz — p22+ps2’

* . 111 uy pritpon
A 72(U1au2) if Haa 32 < u2 = p3z <24>
v3(uy, ug) if Z—; > #11;_521—.
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Proof: It is clear that it suffices to show that equation (24) provides the optimal value
of A in the allocation LP (see the proof of Theorem 3.4.1). We start by transforming

this LP to the standard form as follows:

min -A

s.t. >\—511ﬂ—521&—531@+81207

Ul (75} Uq
A— 512& - 522@ - 532@ + 52 =10,

U9 (%) U9
011 + 012 = 1, (25)
521 + 522 = 1, (26)
031 + 032 = 1, (27)

52‘3‘ > O, for all 7 € {1,2,3},] € {1,2},51,52 > 0.

Note that there are no slack variables in equations (25), (26), and (27) because it is
always possible to satisfy these constraints as equalities without worsening the objec-
tive function value. Since there are five constraints (not including the nonnegativity
constraints), every feasible basis will have five elements.

We will use the notation defined in the proof of Lemma A.1.1. Our approach will
be to start with an initial basis and show that this basis is optimal by verifying the
conditions (22) and (23).

First, consider the basis D = {\, d11, 012, d22, d32}. Some algebra shows that

4! (Ul, Uz)
1o/ (1 fta2 + Uafirn)
B = (ugptar — wi(po2 + p32))/ (Ui pirz + uaptnr) | 5
1

1
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Aqo/(ugptya + uspiry)

exg — cnBV = Aqs/(urpia + uapiar)

g pta2/ (ur a2 + uspinr)

i Upfiry /(U1 pir2 + Uafiin) |
Hence, we conclude that D = {\,d11, 12, 020,032} is an optimal basis when o<
ootz Lhe first element in the matrix B~'b is the value of \ in the optimal basis,

hence A* = v;(u1, ug) in this case.

Next, consider the basis D = {\, 11, d21, 092, d32}. Similar calculations show that

’72(U1, Uz)
1
(Ul (N22 + ,U32) - U2H11)/(U1M22 + U2M21) )

(ug(pi11 + f21) — uipisa)/ (upios + uafior)
1

Ava/(ugpton + uzpior)

np— BV — Aoz /(ug g + uzpior)

U fhoa/ (U1 fiog + Uafior)

i Usafior /(U1 oz + Usfior) |

Hence, we conclude that D = {\, 011, da1, 22, 032} is an optimal basis when m <

Z—; < % The first element in the matrix B™'b is the value of A in the optimal

basis, hence A\* = ~v5(uy, us) in this case.
Y 9

Finally, consider the basis D = {\, d11, 021, 031, 032 }. Similar calculations show that

73(“1, UQ)
1

B'p= 1

(ugptze — ua (a1 + po1))/ (g pise + uspizy)

U1 /(U1 p32 + Uafisn)
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Ay /(urpiz2 + uafis)

e Aos/(u1pi32 + uafis)

Uy 32/ (U sz + uafizr)

i Uaftzr [ (U1 fts2 + uafizr) |

Hence, we can conclude that D = {\, 011, 021, d31, 032} is an optimal basis when Z—; >

Ki1+p21

e The first element in the matrix B™'b is the value of A in the optimal basis,

hence A* = ~3(u1, ug) in this case, and this gives the desired result. O

Lemma A.2.2 Consider the policy m = (d)*°, where d(0) = a1, d(B + 2) =

ag9o, and d(s) = ay for1 < s < B+ 1, for a system with M = 3,N = 2. If

Z—; < m;‘}FL&, then the long-run average throughput under the policy m is equal to

71 (uy,uz) when B > 0.

Proof: If 4 < —“2_using an analysis similar to that of Lemma A.1.2, it can be
H11 22+ 132

shown that the process {X(¢)} ends up being confined to states B + 1 and B + 2.

Since one job leaves the system each time the process { X ()} reaches state B+ 1, the

long-run average throughput is equal to the reciprocal of the time

wp U2 — (a2 + Msz)ﬁ

H11 2y

between transitions to state B + 1, which equals ~v; (u1, ug).
If Z—; = m and the policy 7 is employed, then the process is either confined
to a single intermediate state, or to two adjacent intermediate states, and the long-

run average throughput is the reciprocal of ﬁ which is equal to 7 (ui,us). This

completes the proof. O

Lemma A.2.3 Consider the policy m = (d)*°, where d(0) = a1, d(B + 2) =

ag92, d(s) = ayig for 1 < s < s*, and d(s) = ajg for s* < s < B+ 1, for a sys-

tem with M = 3,N = 2. [f 1 < w < sudiar qpepn the long-run average
H22+ 132 u2 ©32

throughput under the policy 7 is equal to ya(u1,us) when B > 0.
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Proof: First assume that M;ﬁrﬁ <a< % Then, proceeding as in the proof

of Lemma A.1.2, we can show that the process {X(¢)} eventually hits state s* — 1
regardless of whether the initial state s satisfies s < s* —1 or s > s* — 1. We will
show that the process {X(¢)} ends up being confined to the two intermediate states
s* — 1 and s* in the long-run, and compute the time between two consecutive visits
to state s* — 1.

If the remaining service time at station 2 is réo) upon hitting state s* — 1 from

(0)

state s* — 2, then the process either goes next to state s* — 2 (if 2= < —%—) or to
132 pi1+p21
state s* (1f > m) If the process next goes to state s* — 2, we can show (using

ideas in the proof of Lemma A.1.2) that eventually it will come back to state s* — 1

T2

with the remaining service times r; and ry at stations 1 and 2 satisfying m e

and then the process will hit state s* next. Similarly, when state s* — 1 is entered

from state s*, the job at station 1 will have a remaining service time smaller than u,

a new job will start service at station 2, and the assumption ;‘—22 guarantees

1 1+M21

that the process will go next to state s*. Similarly, when state s* is entered from
state s* — 1, the remaining service time at station 2 will be smaller than uy, and a

new job will start service at station 1. The assumption that m < ﬁ guarantees

that the job at station 2 will be finished first, and the process will come back to state
s* — 1. Hence, if T' denotes the first time {X ()} hits state s* — 1 from state s*, it is

clear that T' < oo and that {X(¢)} is confined to states s* — 1 and s* for all t > T

Suppose now that at time 7', the remaining service time at station 1 equals 7"50).

Then, the remaining service times at station 1 the next n times the process enters

state s* — 1 can be found using the following formula:

Tgn 1)

g 18 2) for all n > 1.
o2 + 32

n 'U/Q_
7“§)=U1—M11<
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A simple induction now yields

n—1
(n) 11 32 >k H11 ( 11 32 >k
= u ( —u
" ! Z (pea1 + po1) (2 + ps2) 2#22 + 32 kgo (p1 + pior) (po2 + fi32)
(0) ( M1 /432 >"
—+r
! (pa1 + por) (po + pso)

for all n > 1. Hence, the time that { X (¢)} spends in state s* — 1 before going to state
(n) _ "

p11tp21’
Similarly, the first time {X (¢)} enters state s* from state s* — 1 after time 7', the

0
remainin ice ti t station 2 Is 7)) = S
g service time at station 2 equals Iy = up — - —1——p13>.

s* for the n'* time is ¢;

Then, the remaining
service times at station 2 the next n times the process enters state s* can be found

using the following formula:
Hn=1)

_(n) U — M222+M32 Hi1
Ty :ug—u32< ) for all n > 1.
11+ p21

A simple induction now yields

n—1 n—1

fé") — uy ; (( 1132 ))k o 32 Z (( 1132 ))k

pian + pion ) (po2 + s pan + o S=0\ (pan + pion) (po2 + a2

_(0) H11 /32 "
+75 ( )
(11 + p21) (22 + H32)

for all n > 1. Hence, the time that {X(¢)} spends in state s* before going to state

_(n)
s* — 1 for the n'* time is c§"> =2
p22+p32

Consequently, in the limit, the time between two transitions to state s* — 1 is

lim ( (n) 4 C(n)) _ Uy flo2 + Uz fho1 ' (28)
n—00 M11fho2 + fotfioo + fh21 /432

Convergence in (28) follows since we have py; > 0, pse > 0, and pg; + pag > 0,

which in turn implies that 0 < 7 w’;l)‘(ﬁ; 5y < 1. Hence, the long-run average
throughput is equal to the reciprocal of this expression, which is v (uq, uz).
If Z—; = % and the policy 7 is employed, then the process is either confined to

a single intermediate state s, or to two adjacent intermediate states s and s+ 1, where

s€A{l,...,s" — 1} (and the same analysis as above will follow when s = s* —1). In
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either case, the long-run average throughput is the reciprocal o %, which is equal

to Yo (u1, us). This completes the proof. O

Lemma A.2.4 Consider the policy m1 = (d)*>°, where d(0) = a1, d(B + 2) =
ageo, and d(s) = aye for 1 < s < B+ 1, for a system with M = 3,N = 2. If
> ’%QM, then the long-run average throughput under the policy 7 s equal to

v3(u1, ugy) when B > 0.

Proof: Using an analysis similar to that of Lemma A.1.2, it can be shown that the
process {X(¢)} ends up being confined to states 0 and 1. Since one job leaves the
system each time the process { X (t)} reaches state 1, long-run average throughput is

equal to the reciprocal of the time

uy U — (g1 + M21)%

[432 2

between transitions to state 1, which equals 7y3(uy, uz). Hence, the result follows. O

A.3 Lemmas Used in the Proofs of Theorems 3.4.2 and
According to the values of the service rates 11, fi12, fio1, 22, [431, fi32, and the service
times u; and usp, we have twelve different cases depending on which server finishes

his/her JOb first in state 1 under the actions aiig, 122, 121, A211, 4212, and a9291, I'€Spec-

tively:
Case 1. —41— < 4z Case 2: —4— > 42
p11+p21 n32 p11+p21 ©32
Case 3: & < 2 Case 4: % > W2

M1l — Me2tus2’

Hi1 p22+u32’

Case b: —41— < %2 Case 6: —41— > %2
H11tp31 — pe2’ #11+Hp31 p22?
Case 7: —41— < 42, Case 8: —41— > 42
p21tp3r — pi2 21 +H31 12’
Case 9: % < 2 Case 10: - > %2
©21 Hi2+p32 H21 Hi2+H32
Case 11: o+ < —42 | Case 12: % > Y2
w31 pi12+p22 ©31 p12+p22
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Cases 1 and 2 occur under action a1z, Cases 3 and 4 occur under action a9y, Cases
5 and 6 occur under action ais1, Cases 7 and 8 occur under action a1, Cases 9 and
10 occur under action asq9, and Cases 11 and 12 occur under action aso;.

The following are the times between two transitions to state 1 for these twelve

cases:
=~ uy(po + pa2) | U =~ Up Uzl
Ci(ur,ug) = ——————=% + —=, Co(ur, ug) = — ,
1, v2) (pa1 + p21)Xe X 2(t, vz) X1 32X
-~ U112 Uo - Uq us (o1 + p31)
Cs(uy,ug) = + =, Cilup,ug) = — + —"—2
(11, 12) 1122 Mo 1, 2) Y1 (o + pse) X
~ ur(pa + pg2) | ug =~ Ul Uglol
Cs(uy, ug) = ————"5 + —, Ce(ur,uz) = = ;
sl u2) (11 + p31)22 X9 o, u2) 2 Hoadh
~ ur (o2 + p32) | ug -~ Up  Ugf1y
Cr(ug,ug) = ———"5 =, Cs(uy, ug) = — ,
(o) (p21 + ps1)X2 2o s, 12) Y1 pagdh
~ Uiflag U =~ ur | ug(pan + pgr)
Co(ur, ug) = — Cio(ur,ug) = — + ———7—F,
o1, 12) [o1Xe Mg to(u1, 12) Y1 (pa2+ ps2)Xy
~ U U ~ U U +
_ 1 _ 1
Note that ~;(ui,us) = T and v3(up,ug) = SNORSE where 7y (u1,us) and

v3(u1, uy) are defined in Appendix A.2.

Proof of Lemma 3.4.1: Lemma 3.2.1 shows that it is never optimal to idle the
servers in the end states. Hence it only remains to show that it is never optimal to
idle them in state 1. Note that we will not use the inequalities % > % > ;% in
the proof. Hence, it suffices to show that the actions aigg, @200, @110, @220, and aq99 can
never be optimal in state 1, because all other actions with idling can be converted to
these actions by relabeling the servers. The proof of Lemma 3.2.2 shows that action
ai11 is better than actions ajgp and aq19, and action as9o is better than actions asgyg
and aso9. Hence, it suffices to show that action aq99 is better than action a;9g in state
1 when actions a;1; and ag99 are used in states 0 and 2, respectively.

The expected time between two visits to state 1 under action a;9 was defined as

E195 in Section 3.4.2. The following is the expected time between two visits to state
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1 under actions ajaq:

UM

Ei9 —/ / " a13(Ul>U2)6”71(U1)61F2 Uz / /wn C14 u17u2)dF1(u1>dF2(u2>

where Fi, F5 denote the CDF’s of the service times at stations 1 and 2, respectively,

and

~ U + A~ u u +
013(U17UQ) = % + 2_2 014(u17u2) = E_ll + %

~ ~ ~

It is clear that ag(ul,UQ) < Chs(ug,ug) and Cy(ug, ug) < Cra(ug,ug) for all uy, usg

€ R* since pzp > 0. Also,

~ ~

Cy(ur,uz) < Ciz(ug,ug) © © = uy(pa2 + ps2)(paz + fa2) X1 + uopinr (poz + fisz) X4

—u iy (o + fa2)Xo — uapinr (21 + pi31)3 > 0.

< AL < M2 hecause in this case
75 +u32 K11 K22

But the last inequality holds when

© = wi(pa2 + ps2) (o2 + p32) (o1 + ps1) + Uzﬂfl(um + fi32) — wfir oo (o + pi32)

—ugpty1 1o (o1 + ps1)

> ugpinr (faz + pa2) (f21 + 1) + wapa oz (oo + fis2) — wifinn poo(foe + t32)
— g1 pa2( o1 + f31)
= ugpty1pisa(pior + ps1) > 0.
Hence,

U2H11

¥ —~
E12 —/ /#22 re Cia(ur, ug)dFy (uy)dFa(uz)

u2K11

/ /uljjl 013 ul,uQ)dFl(ul)ng ’lL2 / /@Hn 014(U1,U2)dF1(U1)dF2(U2)
k224132 K22
2 L
2 / /#22 ul,’LLQ)dFl U1 dF2 UQ / /“2#11 C4(U1,U2)dF1(U1)dF2(U2)
H22+132

+/ / 64(U1,U2)dF1(U1)dF2(U2)
0 U P11
H22

= Fioo.

130



This implies that action aj99 is better than action a9, and using Lemma 3.2.3 we
can conclude that the optimal policy should not allow servers to idle. O

Proof of Lemma 3.4.2: Lemma 3.2.1 shows that the optimal action in state 0 is
ai11, and the optimal action in state 2 is as0n. When we use action aq1; or asys in
state 1 and actions a;;; and ag99 in states 0 and 2, respectively, the expected time

between two visits to state 1 can be found as

Ein = Eagp = / / 615(“1,U2)dF1(U1)dF2(U2)7
0 0

where 615(’&1, UQ> = g—ll—f—;—z for all Uy, U € R+. It is clear that ag(ul, Ug) S 615<’LL1, UQ)
for all ui, us € RT because

~

Cs(ug,ug) < 615(“17“2) S 1221 < 11X & 0 < Agg + Ags.

Similarly, it is clear that 64(u1,uz) < 615(u1,u2) for all uy, us € R because

o~

Cy(ur,ug) < a15(U1, ug) < (21 + ps1)22 < (po2 + p32)X1 < 0 < Ay + Ays.

Then, with F99 being as defined in Section 3.4.2, F199 < Ej11 = Fas. Lemma 3.2.3
now yields that action aq99 is better than actions ay1; and ases in state 1, and hence

actions aj1; and ago cannot be optimal in this state. O

Lemma A.3.1 Let r be defined as in Section 3.4.1. Then, —E1— < p < ta1tian
p22+pu32 ©32

Proof: It is seen that

r< 11+ p21

p paalia < pioa(Ars + Aog) + 1132003
32

& 0 < Ay,

Similarly,

H11

————— <r & punoy < punAio+ po1(Age + Aqs)
Moz + 32

& 0L Algzl.

Hence, the result follows. O
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Lemma A.3.2 Consider the policy m = (d)*°, where d(0) = ai11, d(1) = a2, and
d(2) = agge, for a system with M = 3, N = 2, and B = 0. If % <t <, then

T is optimal.

Proof: Note that the assumption of the lemma implies that Case 4 holds (corre-
sponding to action ajsy), and Cases 2 and 3 do not hold (see Lemma A.3.1). The
other nine cases (corresponding to all other actions) may or may not hold depending
on the values of uy, us, and the service rates. By Lemmas 3.2.1 and 3.2.3, it suffices
to show that 64(u1, ug) is no larger than the cycle times of the other cases that may

hold for u; and us. We have:

~

o Cy(uy,ug) < 61<u1,U2) when Z—; < r because

- ~ A A A A
Bi(ur, uz) < Cofun,ug) o 282 T Ba) s B+ 8o) )
a2 + 32 M1+ 21 Us

e It is seen that

o~ -~ Ul(Al2 - Azs) Uz(—Am - A13)
Cy(uq, - C , = )
(o) s, t2) (11 + pa1)2128s  (po2 + p32) X120

Now we analyze the numerator of this expression.

uy (o2 + t32) A1g — uy (o2 + ta2)Dog — ua(pa1 + ts1) (D12 + Ags)

IN

uy (po2 + pt32) Ara — w1 (pio2 + fi32) Doz — urfioa A1 — U1 fioaAg3 (30)
= uipzalig — uy(po2 + f132) Aoz — uifizaAgs
= —ug(po2 + ps2) Doz + uy (f11 pozfize — Hazfiarfiz2 — fa1feaiize + Hi2o2fi31)
= —uy(pa2 + p32) Aoz — Ui 1293 < 0.

Here (30) follows since Case 5 holds. Thus, Cy(u,us) < Cs(ur,us) when u,

and us are such that Case 5 holds.

~

o Cy(uy,ug) < 66(u1,u2) for all u;, us € R* because

~

Ca(ur,uz) < Cgur, ug) < porpros + frosptsr < foipios + flo1ftze < 0 < Ao,
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~

o Cy(uy,ug) < 67(u1,u2) for all uy, us € R* because

Ul(_A12 - A13) UQ(_AIQ - A13) <0
(21 + p131)X180 (o2 + pg2) X152 —

~

C'4(u1,u2) -

)

7(“17U2) =

~

o Cy(uy,ug) < ag(ul,ug) for all u;, us € R* because

Cy(ur, ug) < Cg(ur, ug) € faofior + flaopisr < paiplor + paiptsz < 0 < Aqg + Aqg.
e It is seen that

=~ o~ U (—A1a + ANoz)  us(—Ajg — Ayy)
Cy(ur, ug) — Cy(uy, ug) = .
1, 2) o, u2) 21231 29 (2 + fr32)31 20

Now we analyze the numerator of this expression.

—uy (o + pi32)A1a + ug (o + f32)Dag — uspior (Ag2 + Ags)
< —uy(pog + p32)(Arg + Agz) + ugpg1 (Arg + Ags) (31)

= (Ap+ A13)( — (o + ps2) + Uzﬂn) < 0.

Here (31) follows from {1 < r and (29). The last inequality implies that

A A Hi11 U
Cy(uy,ug) < Co(uy, uz) when ot < <.

e It is seen that

~

Cy(ug,ug) < 610(U1>u2)
< 1Mot + figpar + fo1 32 + f31fi32 < fii1flee + 11 f432 + Moo fisr + 3132

& Aoy < Aqg + Ags. (32)

We will show that (32) holds whenever Cases 4 and 10 hold and #* <r. On the

contrary, suppose that (32) does not hold, so that Ags > Ay + Ay3. Equation
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(29) now gives:

uy (fla2 + p32) (Ars + Aog) < ua(pa1 + po1)Aos (33)
+

= (a2 + p32)(A1z + Ag3) < (%)(un + f121)Aags (34)
21

=

=

(po1pioe + po1pis2) A1z < (f11ft12 + paifise + fizpior — fo1fi22) A3
M1t 21 o232 — Hi2fi21 2231 + M11M21M§2 — H12f21 431 1432

< /~L11M21H§2 — 1122431 32 + M12M§1M32 — Hi12flo1 22431
(12 — p21p22)Ass

Hi1fe1 oo fb32 — ,U12,u§1/~b32 + oo 31 32 — 1221 31 32

< (parpta2 — piorfizz) Dos

(N21M32 + M31M32)A12 < (M11M12 - M21M22)A23- (35)

Here (34) follows since Case 10 holds. If (35) is false, then we have a contradic-

tion, and conclude that (32) is correct. If (35) holds, the term on the right-hand

side of the inequality should be positive since the term on the left-hand side is

nonnegative. Hence, we must have pyqp610 > fio1fioo.

Since Case 4 holds, we have uj (u22 + ps2) > usp11. Equation (33) now yields

p11 (A + Agz) < (pa1 + f21)Aos

=
=
=

Y

4

=

Here (36) and (37) follow from puy1p012 > 91 1122. But (38) contradicts % > K2l

N%1M32 — Mripiopzr < N§1M32 — 2122431
M32(M%1 - M%O < pz1(papaz — fo1piaz)
2 2

Hi1 — H2 < M1 (36)
H11f12 — H21 22 132

L TR )
Hi1ft12 — M1 22 22
po2 (i) — 1) < poa (panfing — pioafhaz) (37)
Ha1fos < pioflor- (38)

po2

Therefore, we conclude that (32) holds. In other words 64(u1, ug) < 610(u1, Us)
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when u; and uy are such that Cases 4 and 10 hold and Z—; <r.

~

o Cy(uy,ug) < éll(ul, ug) for all uy, us € R because

Ca(ur, uz) — Cra(ur, ug) = 1(= A3 23) 2(=Am 13)

< 0.
31251 29 (o + p32) 213

~

o Cy(uy,ug) < 512(u1, ug) for all uj, uy € Rt because

o~

Cy(ur, ug) < 612(U1,U2)

< Mi2Mo1 + figfar + fo1flee + floofizr < fhi1fbee T+ fi11fi32 + fo1ftoe + o132

<0< A12+A13+A23-

The above arguments show that 64(u1,u2) is not longer than the cycle times
corresponding to the other cases that may hold for the service times u; and us. This

completes the proof. O

Lemma A.3.3 Consider the policy m = (d)*°, where d(0) = a1, d(1) = ay12, and
d(2) = agge, for a system with M = 3, N =2, and B =0. Ifr < o< %, then

T 15 optimal.

Proof: Note that the assumption of the lemma implies that Case 1 holds (corre-
sponding to action aj1s), and Cases 2 and 3 do not hold (see Lemma A.3.1). The
other nine cases (corresponding to all other actions) may or may not hold depending
on the values of uq,us, and the service rates. By Lemmas 3.2.1 and 3.2.3, it suffices
to show that 61 (u1,uz) is no larger than the cycle times of the other cases that may

hold for u; and uy. We have:

~

o C(up,up) < 64(u1,u2) when 1 > r because

~ ~ A A A A
Gl ) < Oy, uy) & 22082 F 813 w(BustBa) g
Moo + (32 i1+ 21 Us
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e It is seen that

61(U1,U2) < 65(U1,U2)

S P + e + pigpiar + foofisr < piifbie + pafise + fiafior + po1 32

= Alg S A13 + Agg. (40)

We will show that (40) holds whenever Cases 1 and 5 hold and wr > 1. On the

contrary, suppose that (40) does not hold, so that A > A3 + Ass. Equation

(39) now gives:

U (pi11 + po1) (Ara + Ays) < ug (o + ps2) Ao (41)

=

=

=

11+ 31
—) (42)
H22

(p11fba2 + fo1fran) A1z < (f11fts2 + pooftar + fs1fis2 — fo1fie)A1s

(a1 + po1) (Agg + Agz) < (2 + pg2) Aga(

N%1M22M32 — Haifi2fhoo 31t pinfon o2 fhs2 — Hi2fi21 o231
< M%1M22M32 + M11M32M31 — M11fofe1 32 — M2 o1 22431
+( a1z — pa1pioz) Arz
H1tfi2f21 32 — HitHi2M22/431 + 1121 2232 — u11u§2u31
< (31132 — poa1fiz2) D1z

(M11M12 + M11M22)A23 < (M31,U32 - M21M22)A12- (43)

Here (42) follows since Case 5 holds. If (43) is false, then we have a contradic-

tion, and conclude that (40) is correct. If (43) holds, the term on the right-hand

side of the inequality should be positive since the term on the left-hand side is

nonnegative. Hence, we must have pg1ji30 > fpio1/100. Combining this together

with #2L >

H22

%, we obtain fuzo > fioo.
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Since Case 1 holds, we have us (11 + pi21) > uipse. Equation (41) now yields

paa(Arz + Aqz) < (fo2 + ps2)Ars
= M11M§2 — M12p31 32 < uupég — [b12f421 22

= Mll(ﬂ§2 - M§2) < pao(psi iz — o1 fi22)
M1 H31 432 — H21 22

= =< (44
12 M?m - N%z )
N H21 < M31M32 - M§1M22
22 U3 — Hag
= o1 (13 — 132) < praa(pa1ftas — fo1fias) (45)
= 2132 < Mh22fi31- (46)

Here (44) and (45) follow from pss > poe. But (46) contradicts % > ks

32’
~

Therefore, we conclude that (40) holds. In other words Ci(uy, us) < Cs(uy, us)

when u; and uy are such that Cases 1 and 5 hold and Z—; > 7.

e [t is seen that

~ ~ B ur(—A13 — Agg)  ux(Ag — Aygg)
Cl(ul’ u2) CG(Uh UQ) N (,uu + M21)2122 ,U222122 ‘

Now we analyze the numerator of this expression.

—ug oo (Ars + Agz) + ua (11 + pro1)(Agz — Agg)
< —ug(prn + pro1) (Agg + Aog) + ugpiza(Ags + Aog) (47)
= (A + A23)( — ug(pi11 + por) + U1M32> <0.

Here (47) follows from r < 72 and (39). Thus, 61(u1,u2) < 66(u1,u2) when

r < W H11+#21'
uz — 32

~

o C1(ug,ug) < 57(u17u2) for all u;, us € R* because

~

Ch(ur,ug) < 67(“17 us)

< Mi2M21 t figfa1 + fo1flee + floofizr < fhi1fbe2 + fl11 432 + fo1foe + o1 32

<0< A+ Az + Aos.
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~

o (1 (uy,uz) < ag(ul,m) for all uy, us € R* because

o~

01(U1>U2) -

Ul(_AB - A23) U2(—A12 - A13) <0
(pa1 + po1) 132 12251 29 -

)

8(U1,U2) =

~

o (1(uy,uz) < ag(ul,uQ) for all u;, us € R* because

~

Ci(ur,ug) < a9(“17“2) S fagftor + parftoe < paiftoe + poipiee & 0 < Ags.

e It is seen that

ur(—A13 — ANog)  ua(—Ago + Agg)

6 9 - a ? - '
1 (g, ug) 10(u1, u2) (p11 4 po1)X138  (pag + 32) 812

Now we analyze the numerator of this expression.

—uy (a2 + p32) (Arz + Aoz) — ug (a1 + po1) (Agg — Agg) (48)
< —Upping (A1 + Aa3) — ua(pa1 + po1) Arz + ua(pian + fi21)Ass
= —ugpo1Arz — uz(pn1 + pi21)Arz + uzpin1 Aoy
= —ug(pia1piorpiz — paafiar izt — Hanparfizz + panpazfiar) — Uz(pan + pa1)Agz

= —U221A12 S 0.

Here (48) follows since Case 10 holds. Thus, 51 (ug,ug) < alo(ul,ug) when u;

and ug are such that Case 10 holds.

~

o (1 (uy,uz) < all(ul, ug) for all uy, uy € R* because

o~

Ch(ur,ug) < 611(U1, Ug) < faapiz + fozpisr < paipise + poiptsz < 0 < Agg + Ao,

~

o (1 (uy,uz) < 612(u1, ug) for all uy, uy € R* because

Ci(ur, ug) — Cra(ur, uz) = (=8 2s) 2(— A 23)

< 0.
(11 + po1) 2180 (pa2 + po2) X130 —

The above arguments show that 61(”1,’&2) is not longer than the cycle times
corresponding to the other cases that may hold for the service times u; and u,. This

completes the proof. O
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~

Lemma A.3.4 For all u, us, € RT, we have 62(u1,u2) < Cj(u,ug), for j €

{7,8,10,11,12}.

Proof: Here are the comparisons of ég(ul, ug) with @ (uy,ug) for j € {7,8,10,11,12}.

~

o (s(uy,ug) < 57(u1,u2) for all u;, us € R* because

~

ur(—App — A us(—A3 — A
O, up) — 1(—=Aqp 13) 2(—Agg 23)

(f21 + f131) 2120 32201200

)

<0.

7(U17U2) =

~

o Cy(ug,ug) < ég(ul,ug) for all u;, us € R* because

~

Co(ur, ug) < as(ul,uz) &0 < Ay

~

o Cy(ug,ug) < alg(ul, ug) for all uy, uy € R* because

~

Cs(ur,ug) < élo(ul, Ug) < faapizr + fa1ftse < pi1pize + sz < 0 < Agg.

~

o Cy(ug,ug) < all(ul, ug) for all uy, uy € R* because

Ul(—Am - A23) 4 U2(—A13 - A23)

< 0.
31201202 32251209

Co(ur, ug) — Chy (ur, ug) =

~

o (s(uy,ug) < alg(ul, ug) for all uy, uy € R* because

~

Co(ur,ug) < Cra(ur, us) < pispizr + flooptsr < Hi1pis2 + fo1flse

& 0< A+ Ay O
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APPENDIX B

SUPPLEMENTARY MATERIAL FOR CHAPTER 4

B.1 Tables for Propositions 4.2.1, 4.2.2, and 4.2.3

In the last column of tables below, we use the convention that the service requirement

for a station is equal to one if this station is starved.

Table 9: Sample Path for the Understaffed System with g0 = p13 = 0, and pq; >

_M22i23
H22+H23
Case Time State Remaining Service
Requirement
o < T 1 gs?,sg)o (1, 11, 1)
T—i—@ (8(1) +01,82) (11— —pg, 1)
TTE : (81’32—51) (17171)
T+ -+ (s%,9) (1,1,1)
o> o T 1 O (s?,s%) (11, 1,1)
T+~ (s —1,s94+1) (1—->pr, 1, 1)
R
T+ -+ (s9,59) (1,1,1)
T 1 0 <0
S R
i e e LD
Moo 23 122 )’ 4
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Table 10: Sample Path for the Understaffed System with @2 = g3 =

0, and

Hi < %
Time State Remaining Service
Requirement
T CE) LLD
T+ - (s —1,89+1) (1= —p, 1, 1)
+Lg L (9~ 1,89) | (1 <@+ ,m)un?l»l)
T -t (s9,59) (1,1,1)
Gtz ) (L (5 52))

Table 11: Sample Path for the Understaffed System with p;; = g3 = 0, and
piz > £33 when assignment rule (a) is used
Case Time State Remaining Service
Requirement
< e T 1 0 (sg,sg) (1,1,1)
T"‘@ (S ; 1 S2+1) (1,1,1 E/,ng,)
T+ =+ (s9, 82) (1, 1, 1)
o > o T 1 (()32,52) (1,1,1)
T+E (31732_ 1) (1,1 Mgﬂmyl)
T—i-t (8(1)—1 82) (1— (/1_12_@)“21’1’1)
T T 0
T+E+E (s7,s ) (1,1,1)
T 1 0
e im T (1, 3) (1,1,1)
T+ - (59 —1,59) (1,1,1)
T+ t + 1;3 (3(1]732) (17171)
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Table 12: Sample Path for the Understaffed System with p;; = w3 = 0, and

piiz < LHEE- when assignment rule (a) is used
Time State Remaining Service
Requirement
T 3,50 LL1)
T+ﬁ (8(1)753 - (171 B ﬁﬁbl%l)
T4+ L4 L (1581 | (1= (G + 5 ), 1)
Tt (s9,59) (1,1,1)
() (e + )

Table 13: Sample Path for the Understaffed System with p;; = g3 = 0, and

Hi2 = % when assignment rule (b) is used
Case Time State Remaining Service
Requirement
L <L r LD (111
T"‘E (81_17S2+1) (1_I—EM21’171)
T+ (57,53 + 1) (1L,1,1)
T+ Mil + Mis (S(f?Sg) (1,1,1)
o > o T 1 (()32,53)0 (1, 11, 1)
T+~ (s]+1,59) (1’1_EM12’1)
T+ (s9,89+1) | (1,1,1— (ﬁ‘ﬁ)ﬂ%)
T ot (7, 59) 1,1,1)
=1 T 1 (()3(1’658) (1,1,1)
T+E (51,85 +1) (1,1,1)
1 1 0 .0
T+ p21 + P23 (81’ 32) (1> 1, 1)
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Table 14: Sample Path for the Understaffed System with p;; = @3 = 0, and

fo < % when assignment rule (b) is used
Time State Remaining Service
Requirement
T (57, 59) (1,1,1)
T+ - (s9+1,s9) (1,1 = =, 1)

1 1 0 0 1 1
T—i-lE E (Sl+1,82—1) (1,1—<E+E>M12,1)
Tt (s7,9) (1,1,1)

i

1
p12-+ (22

)6

1
23

1
H21 +

))

Table 15: Sample Path for the Understaffed System with p;; = g2 = 0, and

pug = DR
Case Time State Remaining Service
Requirement
| T GF. 5D (1D
T+@ (8(1)782—})) (1’1_EM22’1)
Jlr i (s - 1682) (1,1,1)
T4 tm (7, 59) (1,1,1)
s T i (8%5%) (1,1,11)
T+ - (89— 1,59 +1) (1,1,1— L)
T+ t (s? —1,59) (1— <;%15 — i)“ﬂ’ 1,1)
T+t | GLsY LD
] T G LY
Tt | (i- 1682) 1,1,1)
Tt tim (7. 59) 1, 1,1)
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Table 16: Sample Path for the Understaffed System with p;; = p2 = 0, and

Has < #2?14-5;2
Time State Remaining Service
Requirement
T 050 oL
T+$ (3(1]_178(2)+1) (17171_$M13)
1 1 0 .0 1 1
+H+E (5,82 +1) (1,1,1- <E+E>M13)
T+t (s, 55) (1,1,1)

i

1
p13+p23

><1—,u13 ﬁ-i—
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B.2 Tables for Propositions 4.2.4, 4.2.5, and 4.2.6

In the last column of tables below, we use the convention that the service requirement

for a station is equal to one if this station is starved.

Table 17: Sample Path for the Understaffed System with @3 = pee = 0, and

prig < AR
Time State Remaining Service
Requirement
T (7. 53) (LL1)
T+ - (59,89 —1) (1,1 — - —pi2, 1)
T -0 (1= (& + 5 )me )
T+ .- (s9, s9) (1,1,1)

Table 18: Sample Path for the Understaffed System with 3 = pee = 0, and

Moz < %
Time State Remaining Service
Requirement
T (sY,9) (1,1,1)
T+ .- (59— 1,85 +1) (11,1 — i)
Tl L] (S [ L1 (A4 L))
T+ - (59, 59) (1,1,1)

145



Table 19: Sample Path for the Understaffed System with g3 = p9e = 0, p12 >

o and gy > s
Case Time State Remaining Service
Requirement
s < I 0 <sg,3§) (1,1, 11>
T_I—E (s —1,s9+1 (1,1,1—Eu23)
T+ﬁ (8(1) 1,88) (1_ <ﬁ_ﬁ>ullal71)
T | () 1)
T T 0 <0
e > 13 T i 581682) (1, 11, 1)
T""E (57,85 — 1) (1’1_E”12’1)
T+ (0—1,59) |(1— <ﬁ_$>ﬂ2b171)
+ + 0 <0
T | () 1)
T T T 0 0
2 pa3 7;"‘@ : (Slglz)%) (1,1,1)
T+ /E + #11+H21 <81782) (1’171)
Table 20: Sample Path for the Understaffed System with g3 = pe; = 0, and
/zl/ll < H22 23
— M22+H23
Time State Remaining Service
Requirement
T L) 0L
T+,%3 (8(1)73(2)_1) (1_1%3/“17171)
1 1 0 0 1 1
T+ 22 + 23 (81 1,82) (1— <E+E>Mll’1’1)
T+ - (9, 59) (1,1,1)
Table 21: Sample Path for the Understaffed System with @3 = pe; = 0, and

<
Ha23 = p11+p12

H11p412

Time State Remaining Service
Requirement
T (s1, 52) (1,1,1)
T+ﬁ (sY+1,s9) (1,1,1— ﬁ,uzg)
T+t L[+ 1) | (L1 (5 + 2 ) m)
+ - (s9,59) (1,1,1)
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Table 22: Sample Path for the Understaffed System with w3 = g9 = 0, pyp >
H22 1423 and M23 > M11 412

po2+p23’ H11+p12
Case Time State Remaining Service
Requirement
t < ;%3 T (9, s9) (1,1,1)
T+ - (s9+1,59) (11,1 — T pugg)
T+ L (s9+ 1,59 — 1) (1,1—(%3—%),“2,1)
T B | (4] (N
o> o T (s9,59) (1,1,1)
T+ - (s1, 53— 1) (1— o —pn, 1, 1)
T+ (s9 41,53 —1) (1,1—(%—@)/“2,1)
i MG (881
=L T+ - (sY+1,59-1) (1,1,1)
T+t (59, 89) (1,1,1)

Table 23: Sample Path for the Understaffed System with g2 = p9; = 0, and
Mll S H22H23

p22+ 23
Time State Remaining Service
Requirement

a LD (1)

T+ (s —Lsy+1) (1— -, 11
1 1 0 0 1 1

T+E+E (57 —1,85) (1_<E+E>M11’171)
T+ﬁ (8(1]’88) <1a171)

Table 24: Sample Path for the Understaffed System with puo = po; = 0, and

prag < EHEES
Time State Remaining Service
Requirement
T (s1, 52) (1,1,1)
T—l—ﬁ (sY+1,s9) (1,1 — tﬂgz,l)
T =t | () + 1Ls)— 1) (171—<,ﬁ+ﬁ>“22>1>
T+ (s9, s9) (1,1,1)
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Table 25: Sample Path for the Understaffed System
and fioo >

122423

111413

with g9 = por = 0, py1 >

p22+p23” H11tp13
Case Time State Remaining Service
Requirement
o < e r gs?,sg)o (1, L 1)
T"’_E (s]+1,85) (1,1— E/@z?l)
T+ L (9,89 +1) | (1,1,1— (ﬁ—ﬁ)ulg)
T | () 010
> e I 0 (s‘i,sg) <11,1, 1)
+ o (s1—1s3+1) (1—-—p, 1, 1)
T+ L (9,89 +1) | (1,1,1— (ﬁ‘ﬁ)ﬂm)
T e | L (L)
T _ 1 T 0 .0
e = oo ];+E1 (51752‘(’)‘1) (1,1,1)
T+ pir + p13+p23 (81’ 82) (1’ 1, 1)
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B.3 Proof of Theorem 4.2.1

It suffices to show that the optimal value of A in the allocation LP in the presence of
fully flexible servers is equal to the throughput of the system with partially flexible

servers. First, we transform this LP to the standard form as follows:

min —A
s.t. A — O11pt11 — a1 fto1 + 51 =0,
A — d1aft12 — Ooapiga + 52 =0,
A — O13f113 — Oo3figa + 53 =0,
011 + 012 + 013 = 1, (49)
091 + 092 + 023 = 1, (50)

61']' > 0, for all 7 € {1,2,3},] S {1,2},81,82,83 > 0.

Note that no slack variables are needed in equations (49) and (50), because these
constraints can be satisfied as equalities without worsening the objective function
value. Every feasible basis will have five elements because there are five constraints
(not including the nonnegativity constraints) in the LP.

Let D be a basis for the above LP, ¢ be the vector of coefficients of the elements
of D in the objective function, B be the coefficients of the elements of D in the
constraint matrix, and b be the right-hand side of the constraints. Also, let V' denote
the coefficients of the non-basic variables in the constraint matrix, and cyp denote the
vector of coefficients of the non-basic variables in the objective function. We let cp
and cyp be row vectors, and b be a column vector. The following conditions guarantee

that the basis D is optimal (see, e.g., Theorem 3.1 of Bertsimas and Tsitsiklis [25]):

B'b>0, (51)

CNB — CBBilv Z 0. (52)
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Consider the basis D = {\, §11, 021, 022, do3}. Some algebra shows that

p22 23 (p11+p21)
p21 p22+ 121 23+ H22 123

p22p23—p11 (M2 +p23)
21 p22+ 21 H23 1122 423

B*lb — w23 (pi1+p21)
21 p22+p21 p23+p22 123

w22 (p11+p21)
P21 22+ 21 p23+p22 423

1

w23 (P11 22 —pH12421)
w21 p22+ 21 23 +p22 123

w22 (11 23 — 113 1421)
w21 p22+ 21 23 +p22 (123

CNB — cBBflV = H22 23
P21 p22+ 21 23 +p22 (123

214423
p21 p22+ 21 23 +p22 (123

121 422
| He1p22+po1 p23 o223

Hence we can conclude that D = {\, d11, 01, da2, 923} is an optimal basis if conditions

{1}, {3}, and {7} hold. The first element in the matrix B™'b is the value of A

p22p23 (11 +p21)

in this case. This result also
P21 p22+ 121 (231122 23

in the optimal basis, hence \* =

implies that cross-training the server 2 at all stations and server 1 at only station
1 corresponds to the best flexibility structure when case a holds. Furthermore, the
policy of Proposition 4.2.1 attains the maximal capacity in this case, hence it is the
optimal server assignment policy.

Relabeling the servers, we also see that D = {\,d11, 012,013,021} is the optimal
basis if conditions {2}, {4}, and {13} hold. Hence, the best flexibility structure is
the one where server 2 is dedicated to station 1 and server 1 is trained at all stations.
Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.1.
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Next, consider the basis D = {\, 12, 091, 022, d23}. Some algebra shows that

2123 (pH12+p22)
p21 p22+ 121 23+ H22 123

p23(p12+p22)
21 p22+ 21 H23 1122 423

B*lb — 21 p23—p12 (M1 +p23)
21 p22+p21 p23+p22 123

w21 (p12+p22)
P21 22+ 21 p23+p22 423

1

w23 (P12 21 — 111 H22)
w21 p22+ 21 23 +p22 123

p21 (ph12 423 — 113 422)
w21 p22+ 21 23 +p22 (123

CNB — cBBflV = H22 23
P21 p22+ 21 23 +p22 (123

214423
p21 p22+ 21 23 +p22 (123

121 422
| He1p22+po1 p23 o223

Hence we can conclude that D = {\, 812, 091, 022, d23} is an optimal basis when con-

ditions {2}, {5}, and {9} hold. The first element in the matrix B~'b is the value

21 p23(p12+p22)

in this case. This result
P21 22+ 21 f23+H22 (23

of A in the optimal basis, hence \* =

also implies that cross-training server 2 at all stations and server 1 at only station
2 corresponds to the best flexibility structure when case ¢ holds. Furthermore, the
policy of Proposition 4.2.2 attains the maximal capacity in this case, hence it is the
optimal server assignment policy.

Relabeling the servers, it follows that D = {\, 011, d12, 013, 022} is the optimal basis
if conditions {1}, {6}, and {15} hold. Hence, the best flexibility structure is the
one where server 2 is dedicated to station 2 and server 1 is trained at all stations.
Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.2.
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Now, consider the basis D = {\, d13, 921, 022, 023} Some algebra shows that

po1 p22 (pn13+p23)
p21 p22+ 121 23+ H22 123

w22 (p13+p23)
21 p22+ 21 H23 1122 423

Bflb — w21 (p13+p23)
21 p22+p21 p23+p22 123

po1p22—p13 (21 +po2)
P21 22+ 21 p23+p22 423

1

w22 (ph13 021 — 111 423)
w21 p22+ 21 23 +p22 123

p21 (P13 22 — 1121423 )
w21 p22+ 21 23 +p22 (123

CNB — cBBflV = H22 23
P21 p22+ 21 23 +p22 (123

214423
p21 p22+ 21 23 +p22 (123

121 422
| He1p22+po1 p23 o223

Hence we can conclude that D = {\, d13, da1, d22, 923} is an optimal basis if conditions

4}, {6}, and {11} hold. The first element in the matrix B~'b is the value of A
{

p21p22 (H13+123)

in this case. This result also
P21 p22+ 121 (231122 23

in the optimal basis, hence \* =

implies that cross-training server 2 at all stations and the server 1 at only station
3 corresponds to the best flexibility structure when case e holds. Furthermore, the
policy of Proposition 4.2.3 attains the maximal capacity in this case, hence it is the
optimal server assignment policy.

Relabeling the servers, it is clear that D = {\, d11, 012, d13, 023} is the optimal basis
if conditions {3}, {5}, and {17} hold. Hence, the best flexibility structure is the
one where server 2 is dedicated to station 3 and server 1 is trained at all stations.
Furthermore, the maximal capacity can be attained by relabeling the servers and

employing the policy of Proposition 4.2.3.
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Consider the basis D = {\, §11, 012, 021, d23}. Some algebra shows that

pi12p23 (11 +p21)
p11p23+p12 4211120423

12 (po1+pos)—pa1 a3
p11p23+ 12421 +H120423

B*lb — w23 (pi1+p21)
pi1p23+p12p21HH12 423

po3(pi1+p12)—pi1 12
p11p23+p12p21 HH12 423

iz (pr1+p21)
| A11p23tpI2p21 12023

w12 (11423 —H131421)
p11p23+ 12421 +H120423

w23 (ph12 21 — 11 H22)
p11p23+p12 421 HpH120423

CNB — cBBflV = H12 23
p11p23+ 12421120423

P11p423
p11p23+ 12421 HH120423

124421
| pip2stpizp21+p12p23

Hence we can conclude that D = {\, d11, 012, 921, 923} is an optimal basis if conditions

21, {3}, {10}, and {18} hold. The first element in the matrix B~'b is the value of
{2}, {3}, {10}

w1223 (p11+p21)

in this case. This result also
B11p23+pH12421 412423

A in the optimal basis, hence \* =

implies that cross-training the first server at stations 1 and 2, and server 2 at stations
1 and 3 corresponds to the best flexibility structure when case g holds. Furthermore,
the policy of Proposition 4.2.4 attains the maximal capacity in this case, hence it is
the optimal server assignment policy.

Relabeling the servers, we also see that D = {\,d11, 013,021, 022} is the optimal
basis if conditions {1}, {4}, {12} and {16} hold. Hence, the best flexibility structure
is the one where server 1 is trained at stations 1 and 3, and server 2 is trained at
stations 1 and 2. Furthermore, the maximal capacity can be attained by relabeling

the servers and employing the policy of Proposition 4.2.4.
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Consider the basis D = {\, §11, 012, 022, do3}. Some algebra shows that

p11 23 (p12+p22)
p11p22+ 411 H23+H120423

p23(p12+p22)
pi1p22+p11 23 +p12 423

B 1= p11(po2+pos) —po2 o3
Bt p22+p11 23+ p12 423

po3(pi1+p12)—pi1 12
pi1p22+p11 p23+pH12 423

w11 (p12+p22)
| A1ip22tp1 p23tp12H23

w11 (p12p23 —pH131422)
P22+ 11 23 +p12p423

w23 (11 22 — 12 1421)
P11 22+ 11 23 t+p12p423

CNB — cBBflV = H12 23
P11 p22+ 11 23 +p120423

P11p423
P11 p22+ 11 23 t+p120423

114422
| pp22tpa g3tz p23

Hence we can conclude that D = {\, d11, 012, d22, 923} is an optimal basis if conditions

1}, {5}, {8} and {18} hold. The first element in the matrix B'b is the value of A in
{1}, {5}, {8}

p11pe3(p12+p22)

the optimal basis, hence \* =
pi1p22+ 11 23+ pH12 4423

in this case. This result also implies
that cross-training the first server at stations 1 and 2, and server 2 at stations 2 and
3 corresponds to the best flexibility structure when case ¢ holds. Furthermore, the
policy of Proposition 4.2.5 attains the maximal capacity in this case, hence it is the
optimal server assignment policy.

Relabeling the servers, we also see that D = {\,d19, 013,021, 022} is the optimal
basis if conditions {2}, {6}, {12} and {14} hold. Hence, the best flexibility structure
is the one where server 1 is trained at stations 2 and 3, and server 2 is trained at
stations 1 and 2. Furthermore, the maximal capacity can be attained by relabeling

the servers and employing the policy of Proposition 4.2.5.
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Finally, consider the basis D = {\, d11, 013, 022, d23}. Some algebra shows that

w11 p22(pn13+p23)
11 p22+p11 23 +HH13MU22

w22 (p13+p23)
p11 22+ 011 23+ 113122

B = w11 (po2+pe3)—po2 23
Bt p22+p11 23+ 113 422

w11 (p13+po3)
P11 p22+ 11 p23+ 013 22

po2 (11 +p13)—H11 413
| prip22tp g3t 22 |

w11 (p13 o2 —pH121423)
p11p22+ 11 23 t+p120423

p22 (11 423 — 113 1421)
P11 p22+ 11 23+ p120423

CNB — CBB_lv = K131422
pi1p22+p11 p23+H12 423

114423
pi1p22+ 11 p23+pH12423

H11 422
| H11p22 11 p23t+p12p23

Hence we can conclude that D = {\, 611, 013, d22, do3 } is an optimal basis if conditions

, ) , an old. e first element 1n the matrix B0 1s the value o
{3}, {6}, {8} d {16} hold. The fi 1 in th ix B7'b is th | f

p11p22 (13 +p23)
H11p22+ 011 P23+ 13 422

A in the optimal basis, hence \* = in this case. This result also
implies that cross-training the first server at stations 1 and 3, and server 2 at stations
2 and 3 corresponds to the best flexibility structure when case k holds. Furthermore,
the policy of Proposition 4.2.6 attains the maximal capacity in this case, hence it is
the optimal server assignment policy.

Relabeling the servers, we also see that D = {\,d12, 013,021, 023} is the optimal
basis when conditions {4}, {5}, {10} and {14} hold. Hence, the best flexibility
structure is the one where server 1 is trained at stations 2 and 3, and server 2 is
trained at stations 1 and 3. Furthermore, the maximal capacity can be attained by
relabeling the servers and employing the policy of Proposition 4.2.6.

Moreover, we already showed that there is an optimal basis for this LP with at
least two elements of the set {J;;} being equal to zero. There are (g) = 15 different

ways of selecting two elements that will be equal to zero out of six. When d;; = d9; = 0

for some j € {1,2,3}, the throughput is equal to zero. We can conclude that one of
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the twelve cases mentioned in the theorem will provide the optimal throughput since
the basis of each case above is one of the remaining twelve that are candidates for

the optimal basis (we also show this algebraically in Proposition 4.2.7). O

B.4 Proofs of Propositions 4.3.1, 4.3.2, and 4}.3.3

Proof of Proposition 4.3.1: When the service times are exponentially distributed,
it is easy to see that {X (¢)} is a continuous-time Markov chain (CTMC). As described
in Section 4.3.1, the state space of this CTMC is S = {(s1,s2) : s1 € {0,1,..., By +
2},80 €4{0,1,..., B3+ 2}, and s; + s9 < By 4+ B + 3}. Lemma 4.3.1 shows that it
suffices to consider the policies that are non idling (even if a server is idle at a station
(s)he is assigned to, for notational convenience we treat this differently than the case
where that server is not assigned to any station). Then, the set of allowable actions

in state s € S is

(

a1 for s = (0,0),
a2 for s = (By +2,0),
a3 for s = (By+1,B3 +2),
{a11, @12, an} for s = (4,0), where i € {1,..., By + 1},
As =9 {au, a3, as3} for s = (0,7) or s = (i, By + 2), where
ie{l,...,By}and je{l,..., By + 2},
{ai2, a13} for s = (By+2,j), where j € {1,..., B3 + 1},
{a11, @12, a13, asa, ass} for s = (i,7), where ¢ € {1,..., By + 1}
\ and j € {1,..., B3+ 1}.

Note that we used the fact that assigning a server to a station that is blocked or starved
is equivalent to idling this server. For example idling a server is equivalent to assigning
that server to station 1 in state (By+2,0). Furthermore, in the states where more than
one station is operating, it is necessary to consider the actions where both servers are

assigned to the same station (even if one server is not cross-trained at that station).
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Proof of Lemma 4.3.1 shows that assigning servers to the same station is better than
idling one of the servers but it does not compare policies where they are assigned to
the same station (even if this causes involuntary idling) with the policies that assign
them to different stations (in which case both of them might be working). Under our
assumptions on the service rates (3.0, uy; > 0 for j € {1,..., N} and p115 = 3 = 0),
it is clear that p9e > 0 and o3 > 0. Hence, we can conclude that the policy described
in the theorem corresponds to an irreducible Markov chain. Furthermore, {X(¢)} is
uniformizable with the uniformization constant ¢ = pu11 + o1 + o2 + 23 (see, Lippman
[53]). Consequently, we have a communicating Markov decision process. Thus, we can
use the policy iteration algorithm for communicating models as described in Section
9.5.1 of Puterman [58].

Note that m = (d)* for every policy 7 in II, if d is the corresponding decision rule
with d(s) € A, for all s € S. Similarly, let P; be the probability transition matrix
corresponding to the policy 7, and r4(s) denote the reward in state s when policy 7
is employed.

We start the policy iteration algorithm by choosing

0,0),

.
app for s =

(
ajp for s = (By+2,7), where j € {0,..., B3+ 1},
aj3 for s = (By + 1, By + 2),
ajp for s =(i,7), where i € {1,..., By + 1} and j € {0,..., B3 + 1},
(0,7

a;3 for s =(0,7) or s = (i, B3+ 2), where i € {1,..., By}

and j € {1,..., B3+ 2}.

\

Then we obtain

(

0 fors=(0,0)ors=(ij), where i € {1,..., By + 2}

(5) and j € {0,..., B3+ 1},
Tqg\S) =
pog for s =(0,j7) or s = (i, B3 +2), where i € {1,..., By + 1}

and j € {1,..., B3 + 2},
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and

p11+p21

H22+p23

<[E
=

K21+H23

Pdo (575’) — 21+ 22

22
q

p11+p21+p23
q

<
w

B21+ 122

<F
w

p11+p21+p22
\ q

for s = (0,0) and s = (1,0),

for s = s = (0,0),

for s = (i,7), s’ = (i+ 1,4), where i € {1,..., By + 1}
and j € {0,..., B3+ 1},

for s =s' = (i,7), where i € {1,..., By + 1}
and j € {0,..., B3+ 1},

for s = (i,7), ¥ = (i +1,j), where i =0
and j € {1,..., B3+ 1},

for s =" = (i,j), where 1 = 0
and j € {1,...,Bs + 1},

for s = (i,7), ¢ = (i +1,j), where i € {0,..., By}
and j = B3 + 2,

for s = s' = (i,7), where i € {0, ..., By}
and j = B3 + 2,

for s = (i,7), s = (i— 1,7+ 1), where ¢ € {1,..., By + 2}
and j € {0,..., B3 + 1},

for s = (i,7), s = (i — 1,7 + 1) where i = By + 2
and j € {0,..., By + 1},

for s = (4,4), s = (i,7 — 1), where i =0
and j € {1,..., B3+ 1},

for s = (i,j), s = (i,j — 1), where i =0
and j € {1,...,Bs + 1},

for s = (i,7), & = (i,7 — 1), where i € {0,..., By + 1}
and j = B3 + 2,

for s = = (By+ 1, By + 2).

For all s,¢' € S and a € A, we use r(s,a) to denote the immediate reward in
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state s when action a is taken and p(s’|s,a) to denote the one-step probability of
going from state s to state s’ when action a is chosen in state s. It is easy to see that
{X(t)} is an irreducible Markov chain, and hence we can solve the following set of

equations to find a scalar g and a vector h, letting h(0,0) = 0.
—ge+ (P, — I)h = 0.
Then, we use the policy iteration algorithm to find d(s), where
d / / }
()Eargiréa;s{{ s,a —l—Zp |s,a)h(s") ¢, Vs €S,
s'esS

and set d(s) = dy(s) whenever possible. If one can show d(s) = dy(s) for all s € S,
then the policy 7 is optimal. In particular, for all s € A, and a € A, we want to
show that the following inequality holds:

(75, dofs)) + > pls'ls, dof))(s') ) = (s.0) = > p(s'|s, a)h(s) =

s'esS s'es
In the calculations below, (s, Ba, Bs) for k € {1,...,11} and &(B,, B;) are
nonnegative constants that depend on the service rates, the state s = (i,j7) € S
under consideration, and the buffer sizes, and they are provided below. We assume
that By, B3 < 1 in the following calculations. First, consider the state s = (i,0),
where i € {1,..., By + 1}, and recall that dy(s) = a12. With some algebra we have,
for all i € {1,..., By + 1},

( i,0),a12) + Zp ), aro h(s')) - ), ai1) Zp ), ar)h(s)

s'es s'eS
_ 51((2'70)7B27B3) 2 O,
5(82733)
( i,0), a1z —l—Zp ),a2)h(s’)) — ), a22) Zp s'(7,0), agz)h(s")
s'es s'eS
_ §2((i70>aB27B3) Z 0.
5(32=B3>

Recall that dy(s) = a3 for s = (0, j), where j € {1,..., B3+ 2}. Then, we can show
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that, for all j € {1,..., B3+ 2},

< (0,5), a13) + Y _ p(s'[(0, 1), ass) (/)>— ),a11) = > p(s'1(0,5), a11)h(s)

s'eS s'eS
o 53((07j>7327B3)
- f(BzaBS) ="
( (0,7), a3) +ZP ), a13)h > ), as3) ZP ); azs)h(s')
s'es s'esS
£4((0, ), Ba, Bs)
BBy

Similarly, do(s) = a3 for s = (i, B3 + 2), where ¢ € {1,..., Bo}. We can show that,
forallie {1,..., By},

( (1, Bs +2),a13) + 3 p(s'|(i, By +2), alg)h(sl)> — (i, By + 2),an)

s'es

&5((4, By + 2), By, Bs)

—SZESp (i, B3 +2),a11)h(s") = £(By. By > 0,
( (1, By +2),a13) + > p(s'|(i, By +2), alg)h(s/)> —r((i, By + 2), ass)
s'esS
n o 56((27 B3 + 2)7 B27 B3)
—;p (i, B3 4 2), as3)h(s’) = ¢(Ba, Bs) > 0.

For s = (i,7), wherei € {1,...,Bo+1} and j € {1,..., Bs+1}, recall that do(s) = aso.

Some algebra shows that, for all i € {1,..., By + 1} and for all j € {1,..., B3 + 1},

< (1,7), a12 —i—Zp ), a12) (I)> - ), a11) ZP ), a11) (/)

s'eS s'es
_ 67((?:7.7)732783)
B 5(32,33> =0
< (4,7), a1z +ZP ),a12)h(s) ) — ), ag) ZP ), az)h(s")
s'eS s'eS
_ §8<(i7j)732733)
- £<Bz,Bg> =0
< i,J), a12) +ZP ), a12)h(s") ) — ), az3) ZP ), as3)h(s’)
s'es s'es
_ 59((i7j)7B2aB3)
B £(327B3) = 07
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(€03, 012) + D7 p(s'1 (i ), a12) () ) = (i, ), 035) = D b1 (0, ), axs ()

s'eS s'eS
_ 510((273)732,33) > 0.
5(827 B3)

Finally, dy(s) = a1 for s = (By + 2,7j), where j € {1,..., B3 + 1}. Some algebra

shows that, for all j € {1,..., B3 + 1},

(r((Ba +2,9). @i2) + Y- p(/|(Ba + 2. 5),a2)h(s))) = r((Ba +2,5).ax)

s'eS
/ . , By +2,9),By, B
= > p('|(Bs +2,j), arg)h(s') = Sul(B: + 2,J), By, Bo) > 0.
ses ¢(Bs, Bs)

When By = B; = 0, we obtain

£(0,0) = pur1 o fizahion + b fiyahay + 121 13y + 131 Mg + Hi1Haakas + Hioliay
i1 fio iz + 2411 a1 oo iy + BHT1 Hazfias + 1 a2 + [y flaafiss  fi21 fia2f5
F 2413 iy T 1 o BHRy o faafias (171 Hoa flag (131 oy + 2407 113
T 135 4 200 o g + a1 o 13

&1((1,0),0,0) = pua1pooptaz(par + po1) (W31 + paifias + 2411 i3 + 133),

£2((1,0),0,0) = pa1p30pu35( i1 + pizs),

£3((0,1),0,0) = 7y praoprog(par + par) (pa1 + paz + pias),

€5((0,2),0,0) = pua1pioapios(pnn + pro1) (15, + fa1pton + 2011 o3 + poopias),

€4((0,1),0,0) = pua1piooptis (31 + paifios + fia1pios + poopias),

£4((0,2),0,0) = g1 puaopizg(pia1 + fraz),

§7((1,1),0,0) = paypoopros(penn + pror) (pa1 + pr23) (pa1 =+ fo + pr2s),

&((1,1),0,0) = &((1,1),0,0) = p1 324133,

€10((1,1),0,0) = &11((2,1),0,0) = 0.

When By =1 and B3 = 0, we obtain

E(1,0) = p13y o pros + Btyy a1 pag + BTy oz fthy -+ 131 o1 fios + 351 3o /15

1 gy + O paoity ++ 1131 o fi5s + BHTy fhaafias + Hu o fias
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F2407) o1 [y + 2tz ooy + [y ot [l + B pa1 Ha 17 Haa a3
A4 o fios + B3y fa Haa iy  Hy Hazflay - 1171 a1 oy + 19 Haa + 241 o iz
1 o iy + [y [z + Haofis + () Mg + ) 23 + 317 f3y + By 5y
T i fia oz + 2051 13y + Haafior flaatlay + DYLy i flaafio + Gpia1 fio flaofiz
A4 pon oo o + 1Ty Han aa iy -+ 24011 Ha o Ly + Ha1Ha1 Haa L,

&1((1,0),1,0) = iy pioopios (pity + piypion + 20031 fiz2 + 3031 o + 24031 fion pro
F31T puo pras + 20071 13y + 207y paafias + Bp g + [y fin fisg + 24011 121 flaoflo
i g + B o g + pon fhdg),

£1((2,0),1,0) = i1 puoopios (151 + 3411 pras + 2401 oz + iy fhar + 3y fidg + 117113
2018 i oz + By o1 o + 2008 oo fios + 113y a1 13y + 105y 1Sy + BTy o i3
3051 a1 oo fhas + 2005, Moz fisg + [Ty Haaltas (11 Hi21 oo ftas + fi11 K21 Hag
+M11M22M§3 + 2M11M21M22N33 + M21M22M33)a

&((1,0),1,0) = i pigopizs (1851 + 13 fi22 + 2413, fizs + pua fraopios + i iy + Haafizy),

£2((2,0),1,0) = pa1 o pisg (piar + pios),

€3((0,1),1,0) = g}y proopras iy + 13 i1 + 200 o + 2407 o + 2pinn fia o
F2401 o oz + B fae + K1 Has + [i11 oo fos + fa1fas + [la1Hoakios + fa1fiay),

£3((0,2),1,0) = 7, puaafuios (1o figgfhas + Ha1fiar iy + fin1 fisofizs + Hiy oy + 1
+3p11 pi1 fazfios + BTy faapas + 20Ty pion oz + 2043y paz + 2011 21 fas + BHT o
F205 pi3 + 15 o1 + Bpdy o fras),

€4((0,1),1,0) = pur1prozpizg (2011 rozbios + Hiahtss + Hi1fay + Hi1y + 24871 poo
F201 fhoa + pT1 gy + Pa1azfiz  fa fisafis),

€4((0,2),1,0) = pa piaapizg (pn1 praapian + 2y pion + pi3y + Wtz + fi1 a3 + fa1 o),

&((1,2),1,0) = pua1 proopos (171 o + fia1 fior 3o fias + i1 fiaaltas + 1131 [1of23

1 oty + [ i1 [y + 1T paatias + BH3y i1 fasfias + 2411 o + 47y
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F 2411 i1 proafizy + 2005 pior frag + 20Ty paspiy + 3piy thas + 3y fig + BT pizn o
FH a1 T iy e s 3T o 3),

&6((1,2),1,0) = papi3aptng (a1 + pina),

& ((1,1),1,0) = iy puaopuas (s + 2085 proz + i3y par + 343 pras + 343, pran o
341+ M3 MGy + 2031 o1 oz + 3Ty pazpiog + Hn g ftas + B piz s
i g+ Bpia1 fior flaofos + Hatflasfiay + i fior fiag + o1 flys + fiz1 fiaafizy
i1 i f123)

&((1,1),1,0) = pua prozpuos (1671 o 3y ~+ Han fion Hyahas -+ H31 135 + Ho figabts + 117
1 o [ Mo ka3 - [ flazfin + SHYy faafias + 2401 faa + pia1 ooty
1151 o1 oz + 211 pa1 oo s + 2071 oo iss + BTy pa1 oo flas 1131 po1 fas
o fy - Uy o1 gy i a1 3T g Ry s + 314 fas),

Es((1,1),1,0) = puaa oz (13) + pazpios + parfios + finnfia),

((2,1),1,0) = /ﬁllﬂgz/le&

Eo((1,1),1,0) = pu1 piapizy (1) + praopios + paphos + pa1ftas),

£0((2,1),1,0) = pur1 o433,

510((17 1)> L, O) =0,

&10((2,1),1,0) =0,

£1((3,1),1,0) = 0.

When By =0 and B3 = 1, we obtain

£(0,1) = o1 pt3apts + 2011 g oy + 113y in fhas + Bty o fig + 31T o 3
T gy 111 1o ha3 + 41T Loty + DH taafias + 1Ty Ha oy  Hio1 sty
T i iz 2405 pazfig + DHy Haatas + 1Ty o gy + [ o fiss + 1T 1i3ak3s
AL oo pisg T ooy + 131 Ha1 g ttas + 241y 21 e + [i11 121 3o f23

24011 pon ozl + AT ot oo ftas + A0 ot faz ity + B ot faaftes + 1S fho3
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F51T 1 i1 ooz + THT pot fraafiiy + Dii oy flaafias + [Lofin -+ 115 fi22
HHL M3y + HT1 s 2 15y + K3 15y + BHY 13,

€1((1,0),0,1) = gy pioopio (p7y + 241 oo + piy fion + 33y pos + 24871 pion pro
34 pon fizs + Bty fiazbtas + p o  BH Has -+ BHT Hor fi3y + 1 a2k
+3117) fion fhazfios 4 P31 fion gy  [131 Mg + 11 oo lag + [ a1 fiag 4 Ho1fioa il
M11/~021M22N§3)

&((1,0),0,1) = gy (11 + 11311122 + 200 o + pia1piaspios + [ fis + faatidg),

€3((0,1),0,1) = g7 proopog (471 + 1y pror + 2001 o + 2443, phas + 2qi fion o
+ 2011 fa floo + Ha1 ey + 111 + 2411 Haofies + Mo flas + 2Ha1 flaafios + Haiflas ),

€3((0,2),0,1) = i, puaofuas(piz1 fi3ahi23 + 2011 o1 fig + farfaafiyy + 111 e + 111
ALy foy flaoflos + M flaoflay - Ha1fiaafios + 2045, Hag + f11 o e + [T 21
F2007 1y A 31 pos + Bpdy i fias) + 2007 ion phan + AT paspias),

€3((0,3),0,1) = gy pioopros (131 + 201 piz + iy rar + 34ty pras + 3443y fia pios
24031 fia1 pon + A4y piaaptos  H1 13y + 3T s + Bpty paa i + 131 H3akes
A4 fia poafizg - [ P [y + BTy Hon iy + [ fion g has + f11 ol
3411 a1 o2 33 + P21 li5akias ),

€4((0,1),0,1) = puy1froofizs (i + 2051 poo + 251 plos + [171 1155 + Hu1Haobios + (11 33
201 fiaa iy + By fiazpios + [iahts),

£4((0,2),0,1) = paypuoopug (113, + 2031 praz + 131 pas + pia1fize + 2finiaafias + Haakas),

£4((0,3),0,1) = pua1 piaoping (i) + 2122 + pia),

&7((1,1),0,1) = punaprozpuos (17y + 24031 p120 + pigyfion + payy fizg + 2403 fi21 o
3431 135+ A4 Hoafias + 17 o  BHT pa1 o 131 fizahas + 2403 faafis
1T g 1T o1 3y + ATy o flaafias + B0y i [l + fia1 fi2fin 2401 o1 oz ity

1 po o fos + (1121 [Las t fo1faaklys),
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E7((1,2),0,1) = piaypianprog(p3) + 2401y praz + piyy oy + 3y fhas + 247 piz iz
3 g + Ay fiaapias + 171 13y + BHTHor pay + T g fias + BUT Haojts
FUT 1113y + 1151 o iy + AT o pronfios + BT i 3y P fioltsy + pa fhanfisy
i1 fi1 fiofias  Bpa1 o1 flaa iy + Haafiarflog + fion flsafisy + fi1 fi22/i53),

E((1,1),0,1) = puna oy (1) + pra iz + panplo =+ piazftos),

&s((1,2),0,1) = paapdoptas(par + piaz),

E0((1,1),0,1) = paapuzopzs(p3) + paapias + 2p01fios + fiafias),

€0((1,2),0,1) = pir13opzg(pia1 + fraz),

10((1,1),0,1) = H%M%Mé:ﬂa

&10((1,1),0,1) =0,

£11((2,1),0,1) = pa1p3oping (b1 + praa),

£11((1,2),0,1) = 0.

When B, = B; = 1, we obtain

E(1,1) = 4p5 1135 + 445 g + 13ah53 + 31851 pio1 fraspisg + (151 pi21 Jlos + fiar f15o4153
T Hagtias + fia1 o1 oty + 1151 Jia1 oo + 445 phar iy + 151 133
AT i i+ A iy + Oy g + 41T g iay + Oty Lo fisg + B1T fiafing
3111 oy + A5 pa1 o + 81 iapi3y + AT 3ot + 1THS, pi3op2
+19N?1M§2N§3 + 13#%1#32#33 + 6#?1H21N§2 + 4NI1N21M32 + 11#%1#32#33
A4 oty + 18T pga s + 28143, 131155 + 23147 Haftys + [3) fiz1 o
198 paapiy + 18447, pragpig + Sy prazptos + 1117 fiofiny + 341 fiazfis
a1 fia g + AT gy + 1 fas A1 o oy + 11y e fisg + O iz i3
64 o + 1 oz + Han g fing F 1131 Haaby + 11 Han fig + SHan fla1 3o
51 g 1T o1 oty + 1OpT o oo iy + LT3 fion flio i -+ 1347 fion fi3a 115

F23 1 o [H3a s + Oy ot 13005 + BTy pon taaftns + 11T o1 pioo iz
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19413 pion pron iy + 184S, fion oz pizs + Sy o proofins + 2817, fioy i s
FThT o fiahas + A1 o fpa iy + 11T pion o iy + 1815, o1 o o
5117 fio1 faghing + 131 Moo tas + [i11 Haakias,

&1((1,0),1,1) = ) proopins (3pa1 pior i 35 + Opiny o1 o hing + 1043, pion fig s
1201 pon proo iy + L1y proa prazpios + THiy po1 ooty + 2411 fion fhooflag + 115 fion
111 o g+ A5 pan 13y 4 AT pon pas + 113y o1 piag + Opiy o pi3g + A4Sy pos
FAY gy O i + 1y 15115+ 31T o fias + Ho oo fias + Ha1 s fag
617 gty + 10T 3o oz 4 1151 3o hty + 11113 fraofiog + 12417, froafis + i) o
F 205 praaping + TS praoptizg + 44071 par oy + 4pi o + iy it + 1151 fi21 i
FApT pion praz + Ay paz + 631 13,),

§1((2,0),1,1) = pin1 praoptos (13 g i+ 45y 13s + At pras + 44y iy + 11 o
"‘3#?1#:232#33 + 6#%1#%2,“23 + 12#%1#%2#%3 + 13#?1#%2#23 + 6#?1#32#33
H 15413, praopizy + 12015 paapias + 104, prooptiyy + piaa piatiss + iy i + 6415, 13
F317 1 o fing + BT Waaking + KTy + [Ty Moo ttog + Ay i + O 3o + 44T fno
F314T 1 Ha oot Ja1 piar oot + OJT pio ot -+ GJT o i + pio1 [i3a g
31 fion iz + 12007 o oo iy + 1341 pon fiahtos + Bty pion f13 s
+12007 ) o prazfros + 1545, fio fiaafisg + 3pTy a1 prazias + 1013, fign fiaa iy
11 o figa o + 17 Hon gy + A4y e [y + BT o i - T o fiy + ALY o1 g
A0y o pon + A o1 f123),

E((1,0),1,1) = pua1 pi3aiti33 (Han iy + 1151 1aabtas + 41131 32055 + D131 fiofias + i1 oo
TS paapisy + Tt pazttas + 305 fazits + 3t fisofis + 1 s + 315 s
F3p1 135+ B4 130 + BT oz + 3y F i tiatisg),

2((2,0),1,1) = paapisopiss (131 1130 + 111300003 + [Hooitas + Bpiiy tazpas + 2043, fras

F2411 fhanftsy + H1y + 1 a5+ 2005 o),

166



€3((0,1),1,1) = piyy praopuo (113, + i3y s + 3p3y oz + Sty piaopio + 6y poafid
Fh i1 + i1 gy 1 11 + AT paafios + o fis + 3T pon pras + AT s
341 a1 s + Ay paz + Oy i3y + A i p3y + TH fiakos + pnn fi
2001 g oz + Tha1 o1 [i3afio3 + 2fian oo oz + a1y Hag + 24z fiaa [t
+24111 fioafig + Opia1fiot fioa s + ST fion frazfios 4 615 115y + 311 piaaliss ),

€3((0,2),1,1) = a7 puaopas (6111 pi3p + 13 piog + V1pay praspiigy + 4413 o + 4103 praafisg
T a1+ o1 3oy + i fiofin + A4 i + THT s tiog + fi1 sk
11 o ftas + [t faaftos -+ 120011 Haopios + 61T fiaahios + flo1 figabios + 13465, 3o fios
2005 gy A 2085 pio fy + By s -+ DHTy o iy + A4t par o + 15y + 4417 fhas
A o ooty + Tt pio1 o fiss + 11T a1 praa ity + 6pin1 fion 130 i + fi11 1121 gy
H 12015, pior praa i -+ 12017 pio ot + 44011 o flaa + 44T prar i + O 121 135,

€3((0,3),1,1) = ) puoopuos (445 pras + 4413 pian pros + (i fian frog + 13y a1 oy + 17,
+64171 s + Op1y i1 135 + ST Hon i + 3H1y s + 4113y fion o + O i f13
AT i1 pio + AT 5y + O gy + (131 o + 2003 ot + O piaafing
LB paafiog + fia1 fiaghas + L3 11301155 + fiar figafizs + OUTy tihofis + 1T HoofB53)
13401 ooz + 12017, paa s + 241 fi1 3ot + 641y o praoptyy + 154, o fioofiy
1345 101 3o s + Dpiny a1 fisaiag + Oy a1 figp oz + 1205, fioy prazfios + 151 iy
+13u‘;’1u21/1§2u23 + ﬂ11M21M32N23 + 4#?1@?)7

E4((0,1),1,1) = g proopiigg (i, + 1y gapios + 61171 1135 + 105 pio s + 8piiy fraofiz
8115 3oty + AT 1305y + B 3o k23 + VT fiazfias + 348 pas + 31T 13y
11y A4S oo + Bidy o2y + Bt st + A4 113y + Ha1H3o3s + [H30ki3
+N?1//212 + 4#%1/@2#33%

£4((0,2), 1,1) = puaapianpiag (1) + 251 pia3 + 3pinn friofizs + 441 i + 171 gy + 1171 fi22

F6411 1135 + ApT1 1155155 + /ézugzs + M11N32M23 + THS [i3a o3 + 3103 fiaafiss
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641 pranfios + AT faahtas +- 1111 853),

£4((0,3),1,1) = panpiaaping (1171 + fir1 oy + 44131 11y + 111 pio + Spinr fighios + B4ty 113
348 oo fios + [afias + Aty pas + ATy 3 pins),

E((1,3), 1,1) = pua1 praopos (1047, pion franfin + 4pinn i friofin + SHiy i fiafig + Hi7y
F 1501 o franfizy + STy o sty + L35 pion fio i3y + pia1 fhan sty + 1151 fi21 g
A4 o o+ BT o1 fy - o fipa g + 41Ty o -+ AT g - 17 pa3 + BpY 15
1111 g+ A5 o1 flaz 11 pa1 oy s 111 Hias + AUTy s + A4Sy a1 o
FAT pas + 2085 praoftay + 11 [iofing + Ay o fig + 81Ty oty -+ 10T o iy
+4M4111N21Mg3 + 6#?1/~L21N§2 + M?1H21N32 + M11N§2Mg3 + M%Wézﬂgs + 13#%1#32#33
F 15T paatiog + ST gty + Oty faahtas + 13071 fi3ah03 + 1131 figafias + Hi31 fidg
1205, puoapios + 12015 pion praopios + B4y piar flagpias + 13141, fion frofias
T o g g+ 2411 a1 faa sy )

E6((1,3),1,1) = puna uzoptny (1) + a1 iy + 343y fraz + pi33),

E((1,1),1,1) = i puoopuas (1071 pig + 151 g + 44011 gy + 44151 o + 613y pie + i1,
AT o o + Oty o oy + Ot i3y + A4S s + A4y + AT o fros
3403 a1 35 + A praa i + 64y i 1135 + VAT paapi + 1043, 130113
1313y o tias + 1051 Haaktas + 3151 130 ktas + 12017 piaaftas + Opis fidoft23
81111 aafing + 20151 [aa s + B o oty + 10T, oy fi3ahtsy + 13147, o fi3a 110
F 1201 o1 oo oz + 2011 o1 oz ias + LALE, por oo tiag + SUTy Hat fao i + 115 fia1
o1 ooy + [11 [aabay + 20151 flaflay + 1 i1 fiag + Han o fgafias + 1T a1 fias
24111 fion g iz + BT fio1 g fins ),

E((2,1), 1,1) = piaapuanpios (13 o tias ++ 1131 Moty + 44151 1135 + 41a1y fi23 + 4111 g
Fput pizn 1315 o1 3o s + Bpiaafior g oy + 12007 i fiaafins + BT piz fiazfing

15401 a1 fraopiyy + 104, o proofiyy + 3 oty + Bpiiy fiahtos + 13441, o fiz
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+13N?1M§2M23 + 7#?1#%2#%3 + 15#?1/122,“33 + 12#?1H22N23 + 10#%1#52#33
1o iz + [y g + O 135 + TET par oo iy + 13 pror o fios + p13y
BT i1 o iz  BUT Paabay + BHTy ooy + 2003y o ftys + 2fir1 fia1 ol
FOLT pia1 oo o + 11T Ha Han fhas - fa1 fat Han oy + 44151 gy A 61Ty i35 + 441y fhan
A 21 g+ A4y e pg + OUT o i3y + Ay fiaaptan a1 Ho iy + 1T 2 g
A4 i fras + O3y pio gy + A4 o f13),

E7((1,2), 1,1) = 5 prooptos (44 oy + 4415 pror o + O i35 + 1131 11 + 44171 o f1g
U5 o gy + O ot faz ity + 24011 Hat fazflay + D11 Hat aaflys + D11 Hot fasflas
FApT i + Ay oz + 115 gy + ATy o 135 + 113 a1 fiay + 617y 135 + AL po fioo
641y o fizy + 11y 3y phor + 1343, o1 3o i + o1 oo fig + for fiakng
i1 flgo iz  [11 o kg + Ha1fat Hagtas + 131131 o oo thas + 12017 fiaafios
AT prag A 1303 pi3ah03 + 1503 i proopiizy + 15703 praoftzy + Ot fraofing
F 134471 oty + O3 faa oz + D Hofizs + LT Haa kg + 2017 Haafin
1 Hag o [ faa by + A1 flpa iy + 12407, o flaofias + Opiy i fia o
6111 121 133)

&2((2,2), 1,1) = puas puoopos (6417 ron fiog -+ 44171 piaa iy + 4417, ras + 41t i
A4S, paapras + O 13y + Oy i fi3a o3 + 113y iz fizg + 415 1 + 6413y a1 i
o1 oo i + [y i1 + Aior fi3ahng + 151 oty + O 1130 + ATy pran + AT 15
H 1545 o fhoa iy + 131 gy + L2005 pio1 paapias + 1205 praaptas + 1575, praopt3
+ 130 oa ooz + 1315 o o isg + 1043 po1 prazfing + 15 fizn figa fias
F31T pa paa oy + 81T par iy + ST par ot + Bpia1 piar g tiay + 415
1310 o pta + Oputy fagptas + 1351 3o ks 4 1171 fia oz + 3143 faafin
F81T 3oy + BT Haa ks + A0 3ok + 31131 [iofing + [Ty Haalts  Ha1 sl
104y praa iy + 115y 21 o + A4Sy a1 s + 11 30t + At o1 o s

M11M21M§2M33)7
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Es((1,1),1,1) = i1 3o puing (547 praofios + 3131 1y + 3y paspig + 3pian fiafing + 117,
A4 o fiog + 1131 1y + 3L Has F [ial5y + [t Haatlas + 241y fas + Yy [153),

E((2,1), 1,1) = pua1 piaghtng (Hnttos + p11 35 + 2in1 flazfios + 13y fho -+ 171 + 2413 fi22)),

&s((1,2),1,1) = pa1pidopins (H3ahios + 313113y + i3y prazpios + fi11fiag + py + 3443y pas
1431 fo3 + 31 g /i),

€((2,2), 1,1) = paapisoping (1o + 241 pion + 413,

Eo((1,1), 1,1) = pua1 3oty (Haattng + a1 3o bty + 41051 132003 + fan fhiofias + 417y
F240 pa - 171 i35+ DHTy Haaftas ~+ ATy Ha iy 1T oy + 311y Mz 200 o)

E0((2,1),1,1) = pug1 g ing (Moo htos + 11 g + Spin1fhooflos + 2007 flog + p13
2015 pi22),

€9((1,2), 1, 1) = pan1 piohtin (Haofins + 313y 1135 + 33y paspios + J171 oz + pa1fia

F345y phas + p11y + 311 i5ak0s),

£9((2,2), 1,1) = pa1 o pisg (figg + 2pa1poz + p3),
§o((1,1),1,1) = M:{)MgQﬂgg»

€10((2,1), 1,1) = py iy s (pan + piza),
&0((1,2),1,1) =0,

10((2,2),1,1) =0,

£1((3,1),1,1) = paapigopidg (i) + 20102 + 1i3,).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy m = (dp)>°. O
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Proof of Proposition 4.3.2 : The set of allowable actions in state s € S is

(

as for s = (0,0),
a9 for s = (By + 2,0),
(93 for s = (By+1,B3 +2),
{a11,a21, a2} for s = (4,0), where i € {1,..., By + 1},
As = {aog1, ass} for s = (0,7) or s = (i, By + 2), where
ie{l,...,By} and j € {1,..., B3 + 2},
{ags, ass, ass} for s = (By+2,j), where j € {1,..., B3 + 1},
{a11, @01, ago, as3, ass} for s = (i,7), where ¢ € {1,..., By + 1}
\ and j € {1,..., B3+ 1}.

Under our assumptions on the service rates (30, py; > 0 for j € {1,..., N} and
w11 = pyz = 0), it is clear that pe; > 0 and pgg > 0. Hence, we can conclude that
the policy described in the theorem corresponds to an irreducible Markov chain, and
consequently we have a communicating Markov decision process. Thus, we can use
the policy iteration algorithm for communicating models as described in Section 9.5.1
of Puterman [58]. We use the uniformization constant ¢ = pi12 + o1 + fiog + fi23.

We start the policy iteration algorithm by choosing

(
as for s = (i,0) where i € {0,...,By+ 1},

aze for s = (By +2,0),

agss for s =(By+2,j) or s = (i,B3+2), where i € {1,..., By + 1},
do(s) = and j € {1,..., B3+ 1},

as; for s =(i,7), where i € {0,...,By+ 1} and j € {1,..., B3},

as for s =(i,Bs+ 1) or s = (0, B; + 2), where i € {0, 1},

[ a2 for s = (i, B3 + 1), where i € {2,..., By + 1}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below,

¢r(s, By, Bs) for k € {1,...,14} and ¢(Bs, Bs) are nonnegative constants that depend
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on the service rates, the state s = (i,

j) € S under consideration, and the buffer sizes,

and they are provided below. We assume that By, B3 < 1 in the following calculations.

First, consider the state s = (i,0), where i € {1,...,

do(s) = ag. Some algebra shows that, for all i € {1,...,

< Z 0 (121 +Zp agl h($/)>
s'es
$1((4,0), By, Bs)
o(Bs By) =
( ((2,0), as —l—Zp |(7,0), as1)h(s ))
s'eS
$2((7,0), By, B3)
(B By)

Recall that dy(s) = agy for s = (0, 7), where j € {1,...,

that, for all j € {1,..., B3 + 2},
< ((0,7),a21) +Zp ), ao1 h(s')> —
s'eS
_ ¢3(<O’j)aBQ7B3> > 0.
¢(BQ;B3)

Similarly, do(s) = ag3 for s = (i, B3 +2), where ¢ € {1,...,

foralli e {1,..., By},

By + 1}, and recall that

By + 1},
CL11 ZP a11 h(S/)
s'eS
G22 ZP 6122 h(S/)

s'esS

Bs + 2}. Then, we can show

), az3)h(s")

); a23) Z p(s

s'eS

By}. We can show that,

( (7, By +2),a3) + > p(s'|(6, By + 2), agg)h(s')) — (i, By + 2), as1)

s'eS

_Zp

s'eS
For s = (i,j), where i € {1,...,

recall that do(s) = as.

jG {1,...,33} or (’L,]): (1,B3—|—1),
< i,7), ao1 —l—Zp ), ag h(s’))
s'esS
_ ¢5((1, ), Ba, Bs)
T BBy
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7, Bg + 2 agl)h<$/) =

By +1} and j € {1,...

Some algebra shows that, for all ¢ € {1,...

¢4((i, B3 + 2), Bo, Bs)

> 0.
¢(Bs, Bs) -
>B3} or (Z>.7) = (1733 + 1)7
,By + 1} and
a11 ZP CL11 h(S/)

s'eS



< (1,7), ag —i—Zp ), a21) (/)) ), G22) ZP ), a22) (/)

s'eS s'eS
_ ¢6((i7j)782733>
B ¢(B2783) =0
< i,7), a2 +ZP )s a21)h( /)) ), G33) ZP ), as3)h(s /)
s'eS s'eS
o ¢7((i?j)7B27B3)
- ¢<32 By -
< (,7), an +ZP ), a21)h( /)> ), ass3) ZP ), azs)h(s)
s'eS s’'eS
_ ¢8<<i7j)aBQ;B3) >0
é > 0.

For s = (i, B3+ 1), where i € {2, ..., By + 1}, recall that do(s) = ag3. Some algebra

< 2] 93 +Zp a23 (/)> 0011 ZP all (,)

s'eS s'eS
~ ¢9((i,]), Ba, B3)
- ¢<32 By
< i,7), az3 +ZP ); a23) (I)) ); G22) ZP ), az)h(s’)
s'eS s'es
- ¢10((i7j)7B27B3)
B ¢(B% B3) 2 0’
< i,7), ass +ZP ); a23) (/)) ), G33) ZP ), as33) (/)
s'eS s'esS
. lel((iaj)aBQ?B:i)
B <Z5(Bz B3) =0
< (4,7), ass) +Zp ), a23) (/)> ), a21) ZP ), G21) (,)
s'es s'es
. gbl?((iaj)vBQ)B?))
= 6B By

Finally, do(s) = a3 for s = (By + 2,j), where j € {1,..., B3 + 1}. Some algebra

shows that, for all j € {1,..., Bs + 1},

(r((B> +2,7), 025) + 3 p(5|(Ba + 2. 5), ass)h(s) ) = 1((By + 2, ), a22)

s'es

¢13<(BQ + 27])7 B27 B3) > O,

~ > "ol |(Bs +2,5), an)h(s') = ¢(Ba, Bs) -

s'es
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(r((Ba+2,3), azs) + D pls/|(Ba +2.5), an)h(s)) = r((Ba +2,5), azs)

s'es

=3Bt 2.5), () = PPt 20 B D)

s'es

When By = B; = 0, we obtain

4(Ba, B) =0

$(0,0) = praafiy fios + fior fioofiz + [z fiaofias + 2fi1afior flaafas + Hiaflor + [Hiafio1 fi2o
F 20521 123 + pazpior iy + 2Haapiay oz + [afisy + iy fisy + [Takia2fi23 + Hiakos
Finopioafizy + ok,

¢1((1,0),0,0) = piapiz s,

$2((1,0),0,0) = paopiorpias(pazios + pi3y + frazfios + fazfias),

¢3((0,1),0,0) = pnapiz p133,

¢5((0,2),0,0) =0,

¢5((1,1),0,0) = paopior proz(paz + fi22),

06((1,1),0,0) = paopiorpios(pazias + 11y + fazkios + fiaplas + pazfiar + fia1fio2),

$7((1,1),0,0) = paopior pios(p3y + froapias + po1fizs + i3y + paofio),

¢s((1,1),0,0) =0,

$15((2,1),0,0) = piofior pios(fi1opton + 175 + potflaz + paapar),

¢14<<2a 1)» 0, 0) = M12M21M§3'

When B; =1 and B3y = 0, we obtain

O(1,0) = pSopi3s + 24iiofisy + (131155 + Higpar + 241935 + [iafizs + 124151 13
FUSo s+ Wy oo llas F 1ok fos + Bliiopay s + Ao tiar pos + ApTo 11, pas
FA4To hor [l + 2L fia1 Hay + [y Haaflys + 2Hnafi fay + [1ah5) oo + Hiatar fiz
4 4 4 2 3 2 + 2 3 4 4 2 2 4 2 2

1o M22 23 HiaH22 /453 Hi2foq 22423 o oq o2 fha3 + 4L o021 [ho2 o3
3 2 2 3 2 2 3 3
F2 9 oy o2 + [Taftoa iy + Spli2fta oo llzs + Aito o1 hooflaz + 211221 223,

$1((1,0),1,0) = pufoi3 o (H1ahion fhos + [iahion + fl1afiooplos + fiaklos + [iahian),
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$1((2,0),1,0) = o pia3(paapior + pifs + paapin),

$2((1,0),1,0) = paapiz, p33 (paapior i35 + [1ah01 fion + Haofion flaoftas + [1aho1 oz + iy
o1+ po1fiaaliy + Hiafas + fhiafioafisy + [iafizy -+ 21T la0fioz + 24iTafias),

$2((2,0),1,0) = iz pizg(pia2pi22 + pio1fioz + paspias + fiie + fiiafior + pa2fi23)

$3((0,1),1,0) = puaapis pi3,

¢3((0,2),1,0) =0,

$4((1,2),1,0) = papis; fi33,

$5((1,1),1,0) = paopi3; pros(2pa2pins + pazpiaz + paopiar + 2piazpios + [135),

¢6((1,1),1,0) = praopiz fioz(i3y + 20Tap23 + piakioz + fiofizr + 2prafiazfios + Haziizs
a2 fia1pon + Hoofl3s),

G7((1,1),1,0) = piopiz p3 (1 + 2niapin + paafios + pia1piaa),

¢s((1,1),1,0) =0,

$9((2,1),1,0) = paopisy pras(ply + paztiaz + 2pa2pi21 + fio1pia2),

$10((2,1),1,0) = paopior piag(113y + paofiozfios -+ 24 pto1 flaz + Wiafaz + Koy fo
Hitapias + a3y + 24apion),

$11((2,1),1,0) = paofiz fis (fioatias + 2H12fia2fi23 + fiafisy + [iafiza + Haziisy
+hi12/153)

$12((2,1),1,0) = piop3 s,

$15((3,1),1,0) = propior fiag (113, foapios + [l12hi5y oo + fl1afion oz flas + 2/t1akio1 o
o has + (Lo fiaafiaz + fiafiyy flas + Hiafay + fiTalo1 flas + 2fLiofio + Hiafias
1),

$14((3,1),1,0) = paopio1pi3s(paztizy + 12kiss + 2fio1 130 + Koy oz + [135),
When B; = 0 and B3 = 1, we obtain
G(0,1) = i, prg + 2o iz fioafis + [aha1 iz + Hiahaztias + Hiafiar + [1iafis,
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b + a2k oy + fopiz s + fia1 fazkys + fopiazkys + [t
F2iTo a1 fi3g + gk o2 + 2h12pia1 oo iyy + 24iofiny fas + [Tafisy as + 13y [ i3
(11245 [iaafas + 1245 [is,

¢1((1,0),0,1) = papis, 133,

$2((1,0),0,1) = prropio prog(pr2fi3s + 175 + Hasfiay + Hiaflas + [Liaftos + f124i224123),

$3((0,1),0,1) = puaapiz; pis(fr2 + ias),

¢3((0,2),0,1) = papiz, p133,

¢3((0,3),0,1) =0,

05((1,1),0,1) = paopiz pros (i + fhiafior + o fias + 13),

¢5((1,2),0,1) = pfopon piaz(frapiar + fia1pias + fa1fios + p3y + fazpias + fizfios
+,ng3 + f12p92),

06((1,1),0,1) = puropior pros(piaopior pioz + iapior + paafiyy + faatizy + [iiafios + 417
a2 fioapios + [iofta2),

$7((1,2),0,1) = paopiar pros(fiiapion + f1opior plos + fl1apion oo + Ho1poflas + Hipkos
ity + faizzpios + [tz + pnfizs + Hazitsg),

$7((1,1),0,1) = propis, s (pa2 + piaz),

$7((1,2),0,1) = pyopon piag(fazfios + o + foapios + Hiafios),

$s((1,1),0,1) = /ﬁgﬂ%m%g,

$s((1,2),0,1) = /ﬁzﬂglﬂg&

$13((2,1),0,1) = piopior fiag(ftiaior + azfionfios + flizfio1flos + flo1fiaafios + [iiahios
HiuTy + [ihas + f2ky + fr2pa o + Haafids),

$13((2,2),0,1) = prropion prog(Hioptor + f1ah01 prag + 3tiofion froz + 3ptiafian fis + Spiiatios
1o fior [l + 3finafion faa iy + Hon flaafing + (13 + Haaftys + Hiafia + 3iiafi1 ftasfias

34 ths + Biiiafiaofias + 24iahoy + 3pTatianfizs + 2nafiaaiiyy),
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$12((2,1),0,1) = paopior fizg(iahton + fazfiss + pot i3y + Ha2fa1fi23),

¢14<(27 2)7 07 1) = Hl?;ugllug&

When By = B; = 1, we obtain

G(1,1) = o fizafing + fr2fio1 fiohias + Hazkior B3atas + iiatiar fiag + 1o fids
F 120105 paa iy + 10 09 p5y + Opiiafion fi3y + 4iofin fi3y + THia tsofi3s
4417 o iy + Oiofiaatias + Hiiatoafiss + 3iiiofing + [13afio1 fas + 5ty
AT i1 + Aoty + OUSa3s + Anatisg iy + 2iialisaliss + 24045
311050 g + A1 01 Hay + iiafinafing + Atiafiaofing + Ao isofios + Histay
FApT o oo tls + BpiSapioning + Aptlapiaz + 164050 oo s + 3USopioatiag + 111543
‘1“12#?2#32#%3 + 6M12N21N§2N%3 + 4#%21121#%2#%3 + 11#?2/!21#22#%3 + 13:“(1521“32
+ 167 o i1 frzfizs + 1315 o 220135 + Biiiaftay fiazfias + 25147 i1 fiaafizs + [i1afiz2
2o tlyy + Ao p3s + [akios + 2000 ia1 pas + 1ok s + Aptiapior 113
F 9o i1 fiofias + 24ir2pio1 sy + Thaafior oo tlag + 12i1a i1 fisofios + 2412453
2001 o i3 + Hiafizahlay + (1201 oy + SHaatior fiazkiys,

G1((1,0),1,1) = pafopaon pios (117o /151 123 + 4trafior oo fins + Diafior Hanhlos + 115
F6T 5155 + Opiofizafiog + fafisofizy + 144 piaafins + 8iTapiaatiss + f12fla
F 24 15atas + Bpnaiza iy + Aiiafin fiaz + Atiafis + AuTatior sy + fi21fla
8113 a1 o + TiT oot aatins + AT aa i3y + 2in2piazily + (i1 + 2411yt
FApT o3 + 6o 135 + [112fss + 2124050 a3 + [21[3akiss + Hi2/izs
2015 o1 oy + B p3,),

$1((2,0), 1,1) = praopion pros (2o piafins -+ 3iattog + AiTapias + 241 iz + Hiah01
213y a1 oo fizg + Bhirafinaflag + 1Sy + [112i50ks T BHiiapas + Diiiai3y + Ao io
F3110h5a oy + AT hon Hoy A 10pTo 5155 4 A1iofi5at05 + Bpiiafiaafin,

+6p19/ 22413 + Aol + Hizbiaatiay + ()5 + Opia 3y + 12087 oo i3
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31150 ha3 + Ainafin iy A 1111l i5a 005 + Bpilafio fi3ahias + for figafias
ity + Aiiafiay oo + 3ot oy + Hinhian s + ApTapiz + 20T ti,),

$2((1,0), 1, 1) = priapizy pys (Hofig + [iafizzpios + [k + Bpiaptsafios + Haafizy
FAfinafinafizy + IpTapianfioz + iTaparfias + 2inatisy + [1iafios + piapias),

$2((2,0), 1, 1) = paofi, pig (faafing + pazitas + HWaahias -+ 2finafizatizs + 2Tako
113y + Hiatias + 20120133),

$3((0,1),1,1) = piopz pros(pis + (134135 + Biiiatias + 3pTahiay + [11afis + Haafids
+3pun2 121 fiog + 21iTo0 + THTap21 oz + A3y oo + THaziioflas + Hazfisy

3 2 2 2 2 3

+3 12 pi50 o3 + 2iny fay + fo1Hy fos + Higf21),

$3((0,2),1,1) = pifopuan pros (151130 + piaptas + Opinapioatisy + Afiiafins + 2fir2/i304123
243ty + 2uTaho1 135 + BYiiafisy + [iatiar oy + 2UToka1 fi23 + 17 + Afiiafizs
+ilatia1 + a1 aatias + [aaking + Afiiafise + Stiaaitiatias + Ha1 fisafios + [l1aiso iy
Ao o1 g + Haziay + 120000 oo ios 4 21Tap5atas + ITafisafins + Aptiatia1 13
+8M%2M21M22M23 + 8#12#21#%2#23 + 4#?2#21#22)7

$3((0,3), 1, 1) = pfppon prag(piapias + [13op21 i3 + Bptatiarfisg + a1 fizy + 13
_|_4ILL3M +44 +63 2+2 3+63 3+34

1o 421 422 Mo 22 H12foo H12fb22 o3 Mo fb22fho3 Mo 22

613ty + 20Tak21 1135 + BpiTalisatins + SuTatas + Oua2fiz fize + Afiio iz gy
F11 a5 p 03 + Opifypianpios + 2124121 fi3s + Opazpion fiaoptas + 6Lt fia1 piazfios
F12/010 421 30 023 + P2 pta fo2kios),

$a((1,3),1,1) = piapizy pag (135 + gt -+ 4iiiafisy + Siiiafizaftas + Afitapan iy
+3p105a g + 230 kas + Sliiafinafias + Oftiafios + 3iiatiog + AT i5a ko
T ot + Aiafinn + Paofiaaiiy + SHaafiaa oy + [hiafisalisy T [l fiss + [12451),

G5((1,1),1,1) = puaopiz piay(2piiatianfios + 3iiiattng + Aitatiantiay + [hiafizaiis + 113

F 2400 3o htos + 21tTaks + [inkas + Wagltss + 12k tas + [igkios + [iak3s),
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G5((2,1),1,1) = paopid piys(1i3ahtos + 212135 + 24t10pi00 oz + Hiopios + f3s + [Taf122),
65((1,2), 1, 1) = puaapiy fias (H3ahtes + 24Talt5y + 2413 ioptas + Bptraftyy + iy + [iah22
M?zﬂzzz + 2#12#32#23),
¢6((17 1)7 1, 1) = M%2M21M23<M?2:u33 + #?2#32 + 2#%2#%3 + 4#?2,“22 + 3#%2#%2 + N%
4 4 2 3 4 2 2 5
+ 1310 o223 + fla2pioa a3 + 22 fiaa los + Sliyatiaziias + Do gattos + fiTafi21
+442 3 4 Bga oo (12, + 2 2+ 7 2 los + 1142 2
HigH22fia3 + Sft12/22 23 K12 21 oo o3 1221 oo 23 My 21 oo fh23
31 o1 a2 + Opiiapion fihg + Atiop3s + 3uTapios + Aiatisy + Opidypior fioopios
+4 5 + 2 3 4 11 2 2 + 7 2 2 4 3 2
M1 fh21 1221 o2 hog Mo 21 22 fho3 12 g 22 o3 T oo o3
Ut 3oty + ooz lsg + SHiafor s + Hiofot iy + Hot faaflas + Hiofa1 [y
+ A pio1 [l ft23),
¢6((2> 1)7 1, 1) = N12M21M23(N%2N32/v‘23 + M%2N32M§3 + 2#%2#32 + 3#?2#23 + M?2N32
+ 13113922 pi23 + THS oMo tss + 15po inapiss + 12015 pras + 1015115,
1oty + piattys + 4pTo 115y 4 Bz i3y sy + L1 a1 3o pio + Aptiahion 113,
6 2 2 2 4 5 2 3
Fhifo o1 + 2o o1 oo llas t 212 fia1 fhozflay + 11 uTo o1 fla3 + 24T o1 flonflag
3T o1 11300055 + DiTo ooty + DTa oo ttas + Opiiapiaafios + 121135150 103 + f11
+3 12 p21 o tss + 21T o 00 lag + HTaio1 fiag + 20T o 50 l15s + 24i12/in1 113515
317 p o1 pas + Bpiyafion fiay),
06((1,2),1,1) = paofiog pros (20io 35 + Diotior fiog + 211395 + 2i3akis + Hippor fis
+3N112N32 + 2:“?2,“22 + M?2N§2 + 5#?2#21#33 + N%Q,umﬂgz + 3:“?2#32 + N?2H21M22
4 2 2 4 4 3 2 5
121 fggtas + Hi2aflag + 3H12 ka1 oo flos + AT a1 aaftos + 10UTo 122 o
FTHA 21 g+ Hiafizr + IiTapior fia by~ Hon fiahiay + Opior figahins -+ SHiafio s
+2 2 4 4 6 2 3 4 2 4 4 2 2 3 4 4 3 2
Mg fh21 o3 Hiolb21 422 o3 Hi2h21 22 os H12H421 oo fhos 12021 oo fhos
F LTy ot + O 3atas + S[iafina ity + 4tiafisofing + 4iiiatianfizs + 1s),

G7((1,1),1,1) = paapifoptig (21idopizs + tii2i3abtss + 3piatisatios + 2in2fiatas + 115
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Fiiahas + [1iafiss + Diiiatlaafios -+ 4Takastioy + [1Tahay + 2iiafine),

$7((2,1), 1, 1) = praopi, piy (2pidopios + 2inapizy + friafiaspios + Piapias + 13
+2/135 i2),

O7((1,2),1,1) = paopuz figs (o tias + 2uTak30 + 4iTofinafins + 2Hiigtias + H12it3
20122 + 13y + Bpaaptiatias),

¢8((17 1)7 L1)= N?zﬂgﬂig&

¢s((2,1),1,1) = piopz piy (b + pia2),

$s((1,2),1,1) =0,

$9((2,2), 1, 1) = paopiy 133(115y + paofios + 135),

$10((2,2), 1, 1) = paopion pio3 (21439 121 35 + pTokion fing + Aftiatins + Ditiatla
31121 gty + BpiTahar + 2iar fiafizg + Hiafiar finy + DHiating + 24 akias + 2fiafisg
F 11 o i1 fi2 )35 + Hiaklay + SHijafiar flaatias + DiSafioafios + 13170 pi2/15,
F 120 o 01 o fias + 131t i3ty + 101 s pion froopiy + Hiafiar fanfias + [hi2faa i,
8105 a3 + Optafiag oy 4 11 Lio 50155 + (1o ftaafios + SHiiaiaafizs + Gpiisfiaatis
+2M?2N§2#33 + 5#?2#%2#33 + 4#%2#32#33 + 4#%2#32#33 + M%Q“%“gi’; + 3ﬂ12N§2M§3
F 203 i1 gy + ApSapia1 115s + 2pi1apa1 a 1),

$11((2,2),1,1) = paopsy 135 (130 + friapiaz + 135),

$12((2,2),1,1) = 0,

D13((3,1),1,1) = paopion piag (11, + piatias + Apinapiafiss + 200301150 + 3puiapisy + p3ahiz0
FAp oo pis + AT l5alos + Hiaks),

$13((3,2),1,1) = paopion pios (2470 12 frazpting -+ Aftnafior oty + 4uTohion fiog oy + 115
A4 01 oy + BT fo1 fy - o figa g + Aitaftos -+ AuTato + [L1afio3 + Opils iy
F 2415 01 flaa iy + S Ta ko toafth -+ BTakior taalts + Haafior o lts ++ [Tako1 fag

FUlgtos + 210To oo s + Hialt5akss + AtTaia s + 8K 3o 15 + 10T oo 3
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¢14((3, 1), 1, 1)
$14((3,2

Hilahay + 2o i1 fiaz + faafio kg + Haftas + 2159k + AiSopio1 pios

FAT 2 g + Opigapia1 15y + [ lia1 sy + Haziiaallas + [iokiaskiss + 131015 1300055

+ 12085 panpias + 120751 poofios + Oplopion g fhos + 134i1o k01 fiaabios

FUTo o1 o 35 + A2 ia1 oo tlas),

= [afiyy g (1 + thiafizs + i35),

), 1, 1) = paopidy i35 (113s + dpia 3y + 2piopion + [133)-

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy m = (do)*™. O

Proof of Proposition 4.3.3 : The set of allowable actions in state s € S is

(

asy for s = (0,0),
aszs for s = (By +2,0),
ass for s = (By+1,B3+2),
{az1,ass} for s = (4,0), where ¢ € {1,..., By + 1},
As =19 {au, a3, as3} for s = (0,7) or s = (i, By + 2), where
ie{l,...,By}and j € {l,..., By + 2},
{age, az2, ass} for s = (By+2,j), where j € {1,..., B3 + 1},
{a11, G99, as1, aza, ass} for s = (i,7), where ¢ € {1,..., By + 1}
\ and j € {1,..., B3+ 1}.
Under our assumptions on the service rates (Zf\il pi; > 0 for j € {1,...,N} and

p11 = pie = 0), it is clear that us; > 0 and p9ey > 0. Hence, we can conclude that

the policy described in the theorem corresponds to an irreducible Markov chain, and

consequently we have a communicating Markov decision process. Thus, we can use

the policy iteration algorithm for communicating models as described in Section 9.5.1

of Puterman [58]. We use the uniformization constant ¢ = p13 + o1 + figo + fi23-
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We start the policy iteration algorithm by choosing

,0),

az; for s =

aszy for s = (By+2,7), where j € {0,..., B3+ 1},

do(S) =

(0
(
azz for s = (By+ 1, B3+ 2),
aszy for s =(i,7), where i € {1,..., By + 1} and j € {0,..., B3 + 1},
(

az; for s =(0,j) or s = (i, B3 +2), where i € {1,..., By}

and j € {1,..., B3+ 2}.

Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below,

i (s, Bg, B3) for k € {1,...,11} and ¢ (B, B3) are nonnegative constants that depend

on the service rates, the state s = (i, j) € S under consideration, and the buffer sizes,

and they are provided below. We assume that By, B3 < 1 in the following calculations.
First, consider the state s = (¢,0), where ¢ € {1,...,By + 1}, and recall that

do(s) = agy. Some algebra shows that, for all i € {1,..., By + 1},

( i,0), ase) + Zp ), as2)h(s /)> ), as1) ZP ), az1)h(s")

s'eS s'eS
. wl((% 0)7 BQa B3)
B 1?(32733) = 0

Recall that do(s) = agy for s = (0, j), where j € {1,..., B3+ 2}. Then, we can show,

for all j € {1,..., B3+ 2}, that

< ((0,7), as; —I—Zp ), a3 h(s')) —7r((0,7),a11) Zp ),a11)h(s")

s'es s'es
_ 12((0, 5), Ba, Bs) >0,
¢(BQ’B3)
( ((0,7),as —l—Zp ), asy h(s’)) —1((0,7), ass) Zp ), as3)h(s)
s'eS s'eS
_ ¢3<<0a])aBzaB3) > 0.
¢(BQ,B3)

Similarly, dy(s) = a3 for s = (i, B3 + 2), where i € {1,..., Bo}. We can show that,
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for all : € {1,..., By},

( (. By +2),as1) + > p(s'|(i, By +2), agl)h(sl)) —r((4, Bs + 2), any)

s'esS
n a((i, By +2), By, Bs)
_gp Z Bg + 2 an)h(S) = w(BZ’ B3) 2 O7
( (3, Bs +2),a31) + > p(s'](6, By + 2), agl)h(s')> — (i, By +2), az)
s'es

w5<(27 B3 + 2)7 827 BS) > 0.

" p(s(6, By + 2), asy)h(s') = (B, Bs) B

s'eS
For s = (i,7), wherei € {1,..., Bo+1}and j € {1,..., Bs+1}, recall that do(s) = ass.

Some algebra shows that, for all i € {1,..., By + 1} and for all j € {1,..., B3 + 1},

< zy aso +Zp agz (/)>—7” a11 ZP a11 (,)

s'eS s'eS
. wG((i’j)’B%Bi%)
- ¢<BQ,33> =
( i,7), ass +ZP ), as2)h( /)> —7( ), as) ZP ), a22)h(s ,)
s'eS s'eS
- V7((i,7), Ba, B3)
B ¢(BQ,B3) =0
< (4,7), as +ZP ), as2) (/)>—7" ), G33) ZP ), as33) (/)
s'eS s'eS
. ¢8<<i7j)7327B3)
B w(B%BnQ») = O’
( (4,7), asz +ZP ), G32) (/)>_7" ), a31) ZP ), az1)h(s)
s'eS s'eS
. ¢9((i’j)7327B3>
= BBy

Finally, dy(s) = agy for s = (By + 2,j), where j € {1,..., B3 + 1}. Some algebra

shows that, for all j € {1,..., B3 + 1},

(r((B2 + 2. 5),a2) + D p( (B2 + 2. 5), asa)h(s) ) = (B + 2, 5), az2)

s'es

wlo((B2 + 27j)7 BQa B3) > ()
¢(B2>B3) -

— Zp (Bs+2,7),a2)h(s") =

s'eS

183



(((B2 + 2. 5),a32) + D (/| (B + 2.5, asn) (s') ) = r(Ba +2.5), az)

=S (Bt 2. 5).aggi(sh) = Lt 2T B Bo)

s'eS

(Ba, By) =0

When B; = B3 = 0, we obtain

(0,0) = pishy + piashiar + 23005 a2z + Husky oy + 151105 + Hishzi s
+H%3/~L2IN§2 + M31M22/~L23 + 2#?3:“%1 + N%gﬂm + /~LZ113M22 + 3#?3,“21#22 + M%Z’)N%l
a1 fas + (10003 + 2iiafis fasfias + 2L fiTaios + Histisafios + H31Haofias
L0134y fag + fiafian Haatlas + SHia o1 flaaflos

¥1((1,0),0,0) = HBM%M%%

¥((0,1),0,0) = 113415, 139,

19((0,2),0,0) = p1y3p45, oo (przhian + fiorplog + 1175 + pazkiar),

¥3((0,1),0,0) = praspor pioo (13 fios + pistias + 2f13po1 fios + po1 fiaaflas + fizhiozfios
4y s iy, + 2031+ [l fas + (s ]ia2),

¥3((0,2),0,0) = pagpior piaz(pils + fashion + paspas + pazfios + fia1fios + faspiar),

De((1,1),0,0) = purgpiz o (1175 + fispias + 2firzpior + pioi pras),

P7((1,1),0,0) = paspz pio(pas + o),

Vs((1,1),0,0) = fay3pin proo( 5y foz + f13piaatios + 2013fi01 flog + Higfias + H13iia;
s + ez + 24i5h1),

Po((1,1),0,0) = lﬁsﬁbglﬂ%%

$10((2,1),0,0) = pagpiar piay (13, fio2 + [i1afizifiaz + Highiaz + 135 + 2i5aio + f1stiay),

¥11((2,1),0,0) = pragpion fioa (13aioaptas + fashior fiaaflas + [ighioofios + Has iz Ho3
1y + 20t flas + Hiztas + frsiia as - [l fag + s fien + Hi3H5)

+245 101),
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When B; =1 and B3y = 0, we obtain

U(1,0) = iy fiofins + 2432455 + 2413451 3y + Hastoy oy 1 3fiia iy fiso
Ty pias + BTah5 pas + Diighiar iy + 23ty thaa + [17sfiofio  [1T5Hi50 003
44133 Ho + DHs a1 o + TH 151 oo + 41T 5 o + His a1 o + Hisfiz Hao
HH3 i1 fog + Ha Hahtas + [ty Maskas Mot Haafizg + 3pi3ty f3akas
F AT 5, profios + 4T3 51 Haatas + Diiistior flaatias + 2fiiafip flaafio + [1S3Hi21
5101 fi3a k0TI, astias + (13, + [y 1o + [ty + Hisfias
+2N?3N§2 + 3:“113,“31 + 3#?3#31 + 3#?3#%1,1!227

$1((1,0),1,0) = puaspig i35 (s + p22),

U1((2,0),1,0) = paapiny oo (15 + pasptas + 2piafiz + po1fian),

U((0,1),1,0) = puaspio o (fi13 + fas),

U((0,2),1,0) = puagpiay pras(pa1 i3y + Higttar + 2finafion fias + f1s ++ 24ahio0 + pspizs),

¥3((0,1),1,0) = pragporpron (175 + fiyghios + 3pispiar + 2iyghon + 2055 oo fing + pis1i3
F31Ta g3, + AT pio1 fios + BiTaharias + SHuiztin fiaa + Aiisfion fiaafins + [0 023
o iy + (T35, + 3Tyt fas + Hafia g + [irsty fas + Hasfia fas
i3 fia g fhas + BHaskia oz fios + i) fiaatias + [y Hazkas),

3((0,2),1,0) = pisparpiaa(3uispar + tistias + 2iisfins + 245z piz + 2075015
+ 310315y + 3puTzpia1 oz + 24 afinafios + fhastior iy + 2413431 fi22 + flaafisafizs
s + Apiaspion flaafios + [y faafias + fia1 fisafias),

$a((1,2),1,0) = sz proo(2pinapiz fios + i3 1a, + firspion i3y + 20fia1 + Hisfizy
2#?3 + 2/1?3,“22 + NglﬁLgQ + 2#?3/121#22)7

¥s5((1,2),1,0) = pigparpiaa (i3 pras + piztiar + 2o iaaios + 2finafiz: fios + 173
F 2413401 oz + 2piighon + 2U30to3 + 2fi13h0opias + Hisiay + 2Tsftas + islie3),

¢6((1» 1)7 1, 0) = M13/~031M32<N%3 + pispioe + Ho1flos + 2#13#21),
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Ye((2,1),1,0) = N13N§1M32(N4113 + 3#?3#21 + 2#?3#22 + 3#?3#31 + 4#%3#21/122
F11T3h50 + Basfiny oz + 1skia1 sy + Moy [3),

Yr((1,1),1,0) = puagpigy 3o (115 + ashios + poipiaz + pasfio),

U7((2,1),1,0) = paspia oo (4pnapis, + paapan + paspior plas + 2fiapior + iz + fishias),

Ys((1,1),1,0) = puagpior praz(ishioatas + i fioapios + 24035 oz ias + 3UTslis Ho3
3 o1 P o3 + 3#?3#21#23 + 2413143 oo pos + 4#?3#21/122}!23 + Ha3ps, pos
Fhits iz + 3Ty + Mty + 3pitghar + 2Mshias + (135, + Ml oy il
i3ty fiaz + 21505 oo + ATyhion fiaz),

Us((1,2),1,0) = pagpior iz (s a3 + Spigtiar + 24iahias + 3piispir praz + 3piis i,
His + 25 anpias + i ooz + (13 Hy + 3ispar o fizg + (T3 pan + Hishy
i3 i thos + 3HT3ia Has + fasfis flaafizs + Hasfiay oz + Hasfis fio3 T [iisfizatizs),

bo((1,1),1,0) = pispin pids,

Uo((1,2),1,0) = pypiny oo (135 + prspias + 2tz iz + pa1fian),

$10((3,1),1,0) = paspion pros (130108 + Hasfiay s -+ 2003531 o + 243451 Haoftos
‘|’H%3#§1M23 + M?sﬂ% + H%3M31N§2 + #13U%1M32M23 + 3#%3N31N22M23 + 3#?3#%1
3 fiza + Bl Has + [T oo tias + (111 3y + Ao iz + 3 iz
A4S frazfios 4 Biisio1flas + [ishisy 1 Hiskisattas + 2iighiazfios + 2fiigia2
153 + 132,

$10((3,1),1,0) = puagpion i (133 + 3piahion + 2413 p00 + 3piatin, + i1 fiz fra

F U130 4 Kis iyt BT oo + [igHon e + 21z isy oo + 1151 Mo + [l13i51 Hao ),

When B; = 0 and B3 = 1, we obtain

W(0,1) = OuTstisopls + Hisl3aios + 2t ghon oz + 13k + Bpi1shta, + 2015545

U [15a 05 + Has iy [y + BULTai fas + Hisfiay Hos + His iy + 2015 30 kis
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b3 + T3 h02003 + Hastay oy + Moyt + [iiafin flo + BTakizy + pi3h01
i3s3 + [laty astias + [13H02 + DLty Har fasfing + AT iz g iz
A5 i3 Hoafig + A10T3 5, fi3aHos + DHL a1 aafizg + 243ty fasfios  Hisfinn
i1 fia a3 + OS5 paztas + BHiiatia taatias + At iar fisy + B1ializ 113
it fas + st 15y + Biialisy fras + Pastis H3atias + 3113 oz + 21Tl fihe
+3 475 iy e flag + 2fh13 Ly fhaa 23,

$1((1,0),0,1) = pirapin fizs,

¥2((0,1),0,1) = M13M§1Mg2,

1((0,2),0,1) = puaspiay oo (1135 + paspar + fhiafizs + o1 fia),

$2((0,3),0,1) = a3 proo(1iaiiz + prispiar iz + 2053121 + a3y + 24spion + iy
i3 i3y F Hasia oo + 20 3 01 fas),

¥3((0,1),0,1) = puagpiorpraa (B3 5o ttas + Histiartisg + [13sfise + 131 fiahia3 + Hasiia 3
s o o hos + Ml iz + Bz i flo + 23 anfias + 245 oo + (173 iz fios
31T i1 fiaofios + 2413451 Pasfias + 2Hiiztias + 3fiiatisy + 3piiafiar + fishios
F11ishiny + BUTalisy pas + fashin fas + Jys + Biisia1pes),

¥5((0,2),0,1) = pispion oz (133 tis + 2aispias + Bpistiz + 2fiishon + Sitisfizn pos
iy + 2 aafio + 3o fios + 3pTahy + pnsfiz pas + SHsfiz pas + i
Faapan + 3fiiafio fasfias + [hiafio oy + fsfisofios  Hayflas + [l fazfias
+[121 fi5o 123))

¥3((0,3),0,1) = pigparpian (i3 + 20izpian + 2paiatior + [13sfios + 2ftr34iz1 1o
Fpasfisy + [i1shion iz + f1sisy + 2fi1siiooflas + Hagfias + [a1fioofias + (31 f23),

U6((1,1),0,1) = paapiny o (35 + 2pt13p01 + fhiafizs + pa1fian),

U6((1,2),0,1) = paspia oo (1afizr fig + 4itistion fio + Diiztion fias -+ 4173415, oo

F3M13 /05, 130 + L5y iy + (135151 + 201 sion + 15 + Bplsfion + a3y + [115H5,),
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U7((1,1),0,1) = puaspio oo (p13 + o),

Dr((1,2),0,1) = piapia iy sy + Hishior + stz + pi35 + payfiza + pusfio p2),

¥s((1,1),0,1) = M13M21M22(M?3 + 2#?3#22 + 3#%3#21 + /111113,u23 + 2#?3#22#23 + M§3M§2
3 1u3gpa1 foo + BpiTghiar fios 4 BHTakisy + SHTghar oo fins + BHTalisy oz + Hisfion gy
i3y 20005 oo + (173 o ka3 + Hnsfian fraahias + Hafia fiaz + 2fis iz Haafizy
134 a3 + 115, f122043),

Ps((1,2),0,1) = pisparpiaa(3uizpar + 2uistion + (1isfins + 241 pi2pios + 3pTapz
+3 1 gho1 i3 + Hishay + 213 tia1 lazfios + Haskiaafios + SHaskia fias + Hig + fasfis,
3 a3),

¥o((1,1),0,1) = M%z&ﬂ%ﬂgz,

¥9((1,2),0,1) = N?3M§1M?2)27

$10((2,1),0,1) = paspiorpiaa(iiz + taspizy + 2fipior + piapion + paspiorpioz + H1fiaz),

$10((2,2),0,1) = pirgpion fizy(Hay fizz + 3pir3piay fizy + 313 pay piaa + 113H5, + Hasfiz Hay
44051 oy + SHisfi51 Hoa + SHisiay + 15k fizy + 5pspr i3y + THTsHa1 fizs
+3pu3gha1 + [isisy + Biiafisg + BuTshion + 11fs),

U11((1,2),0,1) = prapio pian(3ptspyy + (ki i3y + pisfizy oy + 3itsHantias + His
FUTsi5a ko3 + BlTsiaalias + [1]shos + Biighior tias -+ SUTsiay Hos + His e fios
133 o lias 4 BUTaiar + Optighior fios 4 DTaiia fion + 2075403 fros + Bhiafio 15y
6153421 a2 fio3 4 DiTafis pazfios + Biiia a1 fiaalins + B[iisiay + 3fi7ghio2
1 fiopias + 331 + 2Hsii flaafias + (1 fts),

11((2,2),0,1) = pifypon pioa(Hay fizphos + itz fiog -+ Hisfizy oz + SHisfiz oz + Hiis
34130 + Mtz + Hislisaizs + 3Ll3H5a ks + i3 Has + His ez + SHys iafizy
s fi [ hias + DT s azkias + 2Hsii flaafies + Ot fion fiaafios + B{iafiz fiz2
34321 gy + Optisfian o + 213515 oo + BLhion fioahtay + i3t 3y + 1131

sl [3s + BHTs o1 + BLtislis),
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When By = Bs = 1, we obtain

(1, 1) = pigtide + 4Saping + Hoofisy + T3k, tiaafios + [33Ha1fias + fi21 3ok
+ 3M13N§12N23 + 4#?3M21N§2 + 4#?3#31#32 + 4#%3#32#33 + 17#?3#321123
19435 11035 + 13131051 o + Opfs i1 1135 + ApiTah01 o + V1115050005
AT ooy + 1L 50 a3 4 2153150055 4 TH i1 3y + s/t fla
H 12075 50123 + 241134021 139l + Hizha1 Hagtas + 4iistioy taafias + (175115,
+3pla a1 i35 + AiSapizy + Opilass + 3pTatiaatiss + Opiistisalizs + 51shiaatiss
F 12003 pan iy + A5 Has + 2o kios + Bia i fag + 3HHis L, fioo
s idohay + M lidy + [has + A iar fag + Histio s + 2485 a1 15
A4 o + Hiatian  Hofiaofiy + (1331 oo + [izkan i3 + 2Ha i1 Hastios
a0  [Tah01 ooty + 1643 01 oo fiog 4 LT 1135 i1 fio i + T34 13
F 2403 1 [y + A3 01 Lo iy + S{iThion oo iy + 11t h01 oo i
F 1T g o1 razping + 120155001 oz fiys + Optisfion oo fias -+ THTs /451 oo thos,

P1((1,0), 1, 1) = prigparpron(2pigpior o fins + OuTapidy ioottas + 20035 a1 30 h03
s fizn o fing + 4T i3 pas + BHTg ka1 ias + [istio oy + 2fia it fiss + 2453423
241355 + Opia iy + piy + (11t + 203 ot  Ho1 Hao oy  H13HasHas
51 i1 fia2 )i  Dithiar fiazkias + DHTs i Hazfias + 3tiisfigy iaafizs + [15sfiz1
011331431 13y + BHiisaakios + sk Moy + IuTshiaztios 4+ 120 500 i3y + 1354150
FApTs o1 fog + 215500 + 21175455),

U1((2,0),1,1) = prgpon proa (16550 s + 20135435 + it fins + Bpiiaisy + Mol
11 s a5 + OpuSspianiios + Biigpaztiay + H1stisatizs + [iiafiss + 61Sspi3s
+2N§3M22N§3 + 2#?3#31#%2 + M§3 + ﬂ%gﬂgwg?, + 3#?3#33 + 3#?3#32 + 4MI3M22
F31153 5o + pitalaatias + iy + iisfisofios + Biiisisafis

6473 o fizpoz + 15413 01 oo fty + 2401 foafis + 10151001 oot
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01 Hao o - [3H01 Hay + Afitation Hay 4 Ofiafior iy A (1 i1 fiy + Aitis i fis
313 o1 g gy + 1DT s o1 fibo iy + Aptistiar p13abias + OpTapion 1o fids ),

$2((0,1),1,1) = pagpzy paa(pis + Histiartizy + Opiiafisy + 2430 pi23 + Biuiaity pa
st + 483 pi00 + Biizpaating + 3piasivafisy + Aiiafing + f13ializs + Hagkla
F AT 50 55 + 2073151 13y + SHiTz o ttas + 12113 phaafias + 2fi5afins + Tai5
+2N%3N§2N§3) )

©2((0,2),1, 1) = paspay proo (135 + 207sfi01 + 201305, 15y + 4iafidg + 2075050 + (135422
F31ua k5 + A1y + Haalisy + Pastiaatios + THSaiaatias + 3 tiaziiny
+6pi1g 220103 + Apiishiaghios + [H13H3s),

$((0,3),1,1) = purapio o (1175 + 2firaping + Aitshizy + 3iahias + 2pnistisafin + [Hisfi3
31153 a1 fioa + figahiaz + At fias + 2075k 1ids),

P3((0,1),1,1) = puygporprao(fi7s + [13sfi5s + Spingtas + 4uTspiar fiog + 3(iis i) oz
34311 fas + At hias + Opitpion oy -+ dinsfio fiay + THT3H5s s + Mty
it ion + pa1fisy + Hisias + 2Mistiaatios + 2ia o i + Oplpion pros + BuTsis
F2113 450 03 + Di1siiar s ias + 2421 [l oz + Hia1 [i5) Mg + 24z fiaaflas),

U3((0,2),1,1) = pigpuon ian (Aia iy + 2873k + Siiiztianfiz + 2fiapias + 411 faspiiy
311300 155 + [113H21 fiay + Diiista1fios 4 2455 i5o a3 + 2Ho1 figaptas + L1pTspin 13
FhT i1+ [y o ias + iafia g + ALt as + THT3 M + Ho1 il
20135 155 4 2U1Tgha1 s + Diiiafisg + Diis iz fas + dTahiar fios + [ + Ais ins
+2113 401 fooflyg + 2413005, Haghas + DlLis ey oz fios + BHashion [y fas + H13/io1 gy
3115301 fraafias -+ S Tahiar oo fias + 2 aha1 flaa + AiTation oy 4 Ot 113,),

¥3((0,3),1,1) = N%3M21M23(2M?3M21 + 4#?3#21#23 + 2#?3/131#23 + N%gﬂm/lez + NI3
+4M?3#21#22 + 4#%3#%2 + 6#?3#%2 + M?3N32 + 2#?3#%2#%3 + 6#?3M22M§’3

FOuTspioa 3y + 2iaziiofios + 131Tsi30 iss + pion tiaakiss + BHTsidapas + 11]5Ha0 23
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+13p1yg 50 03 4 12055 u0o 103 + 24131101 faa s + Ofiigfior praofiss 4 1505505, roafias
24351y + Op i3 fos + 2435 o + SHis iy, + Apiisfion foy + puizhion (i
FAL i1 fi30 123 + A1iT31122))

$a((1,3),1,1) = paspioy o (11 + paspizy + 3pifapian + fisy),

U5((1,3),1,1) = pagporpras (2554051 pazpias + 4tnstis, toafias + 2(43s i fisafiz + 1153
F 24451 pias + 2173101 [y + ar ooy + Atiatian + Aiafisofiz,  [1ahas + 6piTzH5,
F 240390 + A1 i1 fias + s fio o hiay + [Hifias + 4T3t + ApSation piag + (15415
F 1L i praapisy + Spistia fisaas + 10055 o3y + firsfior o fis + s i1 fiay
+4NI3N23 + 2#?3#22#%3 + M%z&ﬂ%zﬂgs + 4#%3#%2#%3 + 8#?3#32#33 + 10#%3#22#33
A4 i fiy + 101 foy + 173101 s + M3 finallay + [iskiaatihs -+ 13H15 1150015
AT 5 fi2 + DTG oy + Ofiiztioafias + 21 thofios + [1131i0}123),

Do((1,1),1,1) = paspio oo (2t + Hastigy [t -+ 253 01 o + fasfiar oy + 173
FApis o + [ty D iasias + AptsiG fas + sty + Hizta + SHistih),

P6((2,1),1,1) = paspian oy (pa1 i3y + Hastize + 3piasfio fias + [i3afiz + 173
2/} 122),

U6((1,2),1,1) = paspian g (i fig + pTzting + 3ptapiaspias + [1iaior + pasidy
FSsion + [11s + 2p13H211430),

U6((2,2),1,1) = paspiog ot + 2ptaspias + 24173),

Gr((1,1),1,1) = paspsdy i (5piapion praz + 3piiapisy + 2u35pi5 oo + Bpaspay oy + 1175
+211T5 o1 oy + Hig iy + Biiatiaon + i Moy + H1skiar i + Hisliay),

$r((2,1),1,1) = prrgpion trig (fi3ah0s + frsity + 2pt1spiantios + Hisfizs + s + 203 1102),

Ur((1,2),1,1) = paspio oo (211 fiy + Sptitiny + 2073 h01 flag + prsitay + s + 3i3p0
L3321 + s i3,),

¥7((2,2), 1, 1) = prigpd, oo (U35 + 2pa3fias + 24435),
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PYg((1,1),1,1) = N%3N21M23(H?3H31 + N:{)3M§2 + 2#%3#31 + 4#?3,“22 + 2#?3#32 + NI3
343 a1 fiy + AL 01 Ho + Optiztar iy + DLtz pas + Ty fiy + Op13s i3,
+6pt15 421 oo iz + 241300, faafas + L4135 115 poofins + 2UT545 fiaafias + [Salion
T o 23 + [ishiaafios + Bl liaabing + 120075 iaapias + OuTspidy oz + 4115/t
4T3 a1 o + Optafiz pas + 4iSapinr + Aiijatior fios + OpTapio oo fins + o Hifias
81T 2 pn + 217350155 + BHastiay fanfias + Ot fis: fioofios + Tiilafia fiafio3
i3 fia b + 20T 22 kay + Hiztiar oy + [i1afio) figafios + [1T3hi21 1133,

Us((2,1),1,1) = paspianpios (2321 f13g + [ty fizg + 4331t + 44730001 + (113005
F 130151051 oo oz + BLSsisy oo fias + BLiaisy oy + Optlsior fids + Apis 3 115
Fugs i ATy i hos + SHafio o iy + 12073 a1 fiaafios + Siiisfian oo finy
a3 p0 ks + Hiskag + OSsiss + T o tioaftss + 130tz o pias + 1
F 20 i1 fiso iz + [ Tah01 Haghias + SHastiay Hagtlas + 41ty + OiSafisy + Afi7apiz0
T3 o1 [y + AL o Hay + O3 pion iy + 24T inafios + fio1 Has oy + 13t fid
+ 2018301 o + Ol piar i3y + Ao 113),

Us((1,2),1,1) = pifypuon pros(piahiay + 4puispon s + Opispizy + 3piispiag + 3pispion i,
A4ty + il fing + [tz + Apiiaio fay + fihion g + 61 iy + Api3s iz o
+u§3/f§1u23 + 6#%3,161#22#23 + 2#13#31,@2#23 + 2#13#%1#32#23 + 5#13#21#32#%3
24021 g+ B+ Hisin + 135 i 5 iy + ot st + Stz 5 iy
FAp15 103 + 13U 5130 pas + 15403501 oo ptng + 1511 stan 15, + Optls iozfis,
i3 g o3 + Hastiaats + 4insfinafisy + 120415 21 fazfias + OpTa i [roo ins
+61i13421133),

Us((2,2),1,1) = paspionpras (20734051 fas + 4tz tion thas + 2(iiafior + fasfinafing + 115
o1 a1 Ha + 2fiTahio1 + Sty fhofias + Hiztan fiay -+ Opa ks 4 Afiapinn + Aiistis,

F 4S5 101 fiog + Oy + O shion (1o hios + fs a1 flag + 2750055 + 2117501 3
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2415021 o iz + B3 o fi3a s + 104 hio tlaoftsy + T3 Han fiastias + Hishiaatas
311301 ooy + STy o Waa iy + BTtk + Btk Baatiys + Sisin
11135 o023 + B haattos -+ 1345 i l5s + [17540a0 03 + 3473 o2 fin
+ 4#?3#31#32 + 5#?3#%2#%3 + 4#%3#32#33 + 3#%3#32#33 + 6#%3#31#22 + M?3N21M%2Mg3
AT i1 f135 + Hasiaaklay + astiar flag oy + st o fizs),

Po((1,1),1,1) = M?3/~Lglug27

Yo((2,1),1,1) =0,

bo((1,2), 1, 1) = pispd iy (puas + paa),

¥9((2,2),1,1) =0,

P10((3,1), 1, 1) = pagpiny g (135 + 2pspioz + 2fids)-

Y10((3,1),1,1) = M13N31N327

Y1i((3,1),1,1) = ﬂ13N31M32(2M32#§1 + N%3M21N32 + 3#%3#31#%2 + M§3M21M32 + M?3M§2
241353 Hoa + THAs 21 o + 244354051 oo + Stiiafiaatiys + [ty + 3pizpior + 205
31113kt + Biistiaz + [113151 Moy + 241515,

U11((3,2), 1, 1) = paspisy g (iztize + tasfisafios + fisofiss -+ fitspiaafios + 241734120

F2413 a2 ftsy + [y + [isHas + 2405 23).

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality

of the policy ™ = (dp)>. O

193



B.5 Proofs of Propositions 4.3.4, 4.3.5, and 4.3.6

Proof of Proposition 4.3.4 : The set of allowable actions in state s € S is

(

ar for s = (0,0),
a3 for s = (2,0),
a3 for s = (1, 2),
As = {a11,a21, a2} for s = (1,0),
{an, a3, azs} for s € {(0,1),(0,2)},
{age, as3, ass} for s = (2,1),
{a11, a13, as1, aso, ao3, azz} for s = (1,1).

\

Under our assumptions on the service rates (30, py; > 0 for j € {1,..., N} and
t1s = poo = 0), it is clear that 12 > 0 and pe3 > 0. Hence, we can conclude that
the policy described in the theorem corresponds to an irreducible Markov chain, and
consequently we have a communicating Markov decision process. Thus, we can use
the policy iteration algorithm for communicating models as described in Section 9.5.1
of Puterman [58]. We use the uniformization constant ¢ = p11 + 12 + i1 + fios-
First assume that pq1p12 > po1pies and start the policy iteration algorithm by

choosing

a;; for s =(0,0),
a1z for s € {(Oa 1)a (072)}7

asy for s =(1,0),

| sz for s € {(1,1),(1,2),(2,0),(2,1)}.
Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, ay
for k € {1,...,13} and « are nonnegative constants when pyip19 > fo1pi23. They
depend on the service rates and the state under consideration, and they are provided

below.

First, consider the state s = (1,0), and recall that dy(s) = ag;. Some algebra
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shows that,

< ((1,0), as +Zp ), as1) (')) )sai) ZP ), a11) (/)

s'es s'es
_on
o
< ((1,0), an +ZP 1(1,0), as) (’)) ), a22) ZP ), ag2)h(s")
s'es s'eS
_a
o

s'es N s'eS
= 53 >0
(70, 1), a13) + 3= p(s/1(0, 1), ass)h(s)) ) = (0, 1), as) = > p(/](0, 1), ass) (s
s'es ) % . s'es
(r((0.2),035) + 37 p(s'1(0,2), aa)h(s)) = r(0,2),10) = 3 p(s'1(0,2), ax)h(s)
s'eS ) % . s'eS
(((0,2), a13) + 3 p(s'1(0,2), a13)h(s) ) = 7((0,2), azs) = 2o p(s1(0,2), as)h(s)
s'eS ) % . s'eS

s'eS N s'eS
23720
(7((1,1), as3) + 3 p(/1(1, 1), az)h(s)) ) = (1, 1), a22) = D p(s/|(1, 1), aza) (s
s'es :%20 s'eS
( (L, 1),a0) + 3 p('|(1,1), azs) (s)) —r((1,1), ass) —Zp(s (1, 1), ags)h(s")
s'es :%ZO s'eS
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< ((1,1), ags +ZP ), G23 h(S/)) ), a13) ZP ), a13)h(s")

s'eS s'esS
=205
a — 7
( ((1.1),a25) + > p(s'|(1,1), azg h(s’)) Joaz) = 3 p(s'|(1,1), az )h(s)
s'eS s'eS
~ 2>y
2

Finally, do(s) = ag3 for s = (2,1). Some algebra shows that

( (2,1),as3) —I—Zp ), as3) h(s')) ), aga) Zp ), as)h(s’)

s'eS s'eS
=42y 0,
«
< ((2,1), ass +ZP ), ass h(S,)> ), ass) ZP ), as3)h(s")
s'es s'es
_ Qi > 0.
«

Next, assume that pii1p012 < po1ptes and start the policy iteration algorithm by

choosing
.

a;; for s € {(0,0),(0,1)},

a1z for s = (0,2),
ds) =1 o
ay; for s =(1,0),

| as for s € {(1,1),(1,2),(2,0),(2,1)}.
Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, o
for k € {1,...,13} and o are nonnegative constants when py1p10 < pio1fte3. They
depend on the service rates and the state under consideration, and they are provided
below.

First, consider the state s = (1,0), and recall that dj(s) = ag;. Some algebra
shows that

< ((1,0), an +ZP ); @ h(3,)> ), a11) ZP ), a11)h(s")

s'es s'es

/
Q;

:_/207
(0
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< ((1,0),a21) + Y p(s'[(1,0), az:) (’)) ), az) — > p(s|

s'eS s'esS

Recall that d(s) = ajy for s = (0,1). Then, we can show that

( ((0,1), a1, +Zp ), a11) (/)) ), ai3) ZP

s'eS s'eS
/
:%20
o
< ((0,1), a1, +ZP 1(0,1), a11) (S,)> ), ass) ZP
s'eS s'es
/
_ Y5
o T

Recall that dj(s) = a3 for s = (0,2). Then, we can show that

( ((0,2), a3 +Zp ), a13) (’)) ), a11) ZP

s'es s'esS
/
:%20
Ct
< ((0,2), a3 +Zp 1(0,2), a13) (/)) ), as3) Zp
s'eS s'eS
/
=% >
a/

For s = (1, 1), recall that dj(s) = ag3. Some algebra shows that

( ((1,1),a2) + > p(s](1, 1), az3) (’)) )ai1) — »_ p(s|

s'eS s'eS
/
ot
o T
< ((1,1), ass +Zp [(1,1), ass) (’)) ), a22) ZP
s'es s'es
!
:%207
o
< ((1,1), ass +Zp |(1,1), ass) (/)) ), ass) Zp
s'eS s'eS
!
=205
o T
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a13

a33

Cl11

033

a11

Cl22

Cl33

)h(s')

h(s')

)h(s)

)h(s')

)h(s')

)h(s)

)h(s')

)h(s')



(r((1,1), azs) + 3 ps'1(1,1), a2)A(s) ) = 7((1, 1), a1s)

s'eS
o =
< 1 1 CL23 + Zp ( CL23)h(S/)) a21
s'eS
a’y
e > 0.

Finally, dj(s) = ag3 for s = (2,1). Some algebra shows that

(7((2.1), a29) + D (12, 1), am)A(s) ) = 7((2,1), a2)

s'eS
_ sy
o
< 2 1 &23 +Zp ( &Qg)h(s,)) CL33
s'eS
g
= 20

) p(s|

s'esS

alg)h<81)

ZP (s'[(1,1), az )h(s")

s'eS

= (s

s'es

— ) p(s|

s'eS

agg)h(8/>

CZ33)h<$/)

= 203y puar iy + 15 1Yy + 15 s 200 (1005 Has + pa1 it fas + 11545

F U oty T a1 S o io1 a1 e htss + [T e ks + 21 0 5 [

T4 o pior s + AH o a1 as + BHGy aatar as + 2001 a2t s+ 115 s

T3y oo as + 20Ty 12kt + 2003 Wialiss + Y1 2 tas + BT a1 s t Ko tlas

£ 24011 [y s 4 H o flag + Haofan flay + Ha1fiizlay + SHi1Wia ey + BHiakion fas

F 24015y fs + [y fay 111 2y s  SHTy [T aa s  Hia i M3,

a1 = paaptas (a1 + pon ) (131 a1 pos + 71 13 + BT hazfiar + a1 fi1opion fos + fio1 iy

2001 o1 35+ Ha2pa1 [H33),

Qo = N%2N21M§3(M%1 + paifhaz + 2013 + i plor + pagpios + M%g + fo1fi23),

= pioptos(pa1 + po1) (a1 pae — po1fres) (fa1 iz + foaaflor + a1 fo3),

Qy = M11M12M§3(M%1M21 + M%LUZl + 2411 o1 flo3 + Mllﬂgl + Mllﬂ% + 20011 fa2fto1

+2p11 1223 + 2pt124421 o3 + M21/~b§3 + i3 fla3 + M12/~L§3 + piahizs),
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a5 = paopas (a1 + por ) (31 fhaotos + 131 o1 fos + (171 13 + 171 iaokion + [l11f1]aH03
+2011 f112 021 23 + M11M12N§3 + M11M21M§3 - M%W%g),

Qg = ,un,ulzﬂgz(,un,um + f1if12 + M%Q + o1 flog + 2pt12 01 + M%l + ft124423),

Hi12t23
oy = —————
pi1 + pes

+2M%1M12N21M23 + 2#11#21#33 + 2#11#%2#21#23 + 2#11#12#21#33 + Mnuletgg

(pan + pion ) (1 131 o 4 15 101+ 2085, (15023 + 131 1170 + o flgg

a1 g a3 — Haofia 35 + Ha2pa1fhys),
2 3 3 2 2 2 2
Qg = fyofto3 (1 fhor + 1 a2+ T aapior + 207y o1 o3 HT1 ooz + faafior Has
FUT 5y F B oo flag -+ 2001 iy ez + 2401 po s+ Hoifag + 21451 [i5s),
Qg = M12M§3(M?1M21 + ,u:fpuu + 2#?1M12M23 + M%1M12M21 + M%W% + 2#?1,“21#23
2 2 2 2 2 2
Fp1 o o3  2p011 o ftor o3 + Hi1fliafiyy + pa1for s - 24001 oy o3 T [ Ha3),
. 2 2 2 2 2 3
1o = faoplag(fan + por) (f11 Mot fhos 4 (71 1T + 111 H12pio1  fi1fhaafior flo3  fo1 Mg

+2(001 i gy + Hazkar3s),

3o /i3 (
M1+ ph23

+2p011 1221 f23 + M11M12M§3 + Mnﬂmﬁbgg - Mghu;s),

an = pan o) (1 aptos + (131 foa fiog + 171130 + (1T Haafior + pan 7o tias

Qg = o pias (15 paafior + 151 1Ty + B3y paafias + (1 o fhas + 1051 o i1 + 1T pa2fon
341 2k fizs + 240y pon fis + [T P tas + 240y pnafizs + [T H3 fas + 5
i oo flas + a1 pTali3s  panfinafiss + 1 fiar oy + 2401 fn2/i5 o3
200113 1135 + A fzpio f13g  paafion s + 2irafisy 13y + Moo fi3s),

Qg = fiaaflyg (31 pazfior -+ 151 [13 + (131 fazfhas + 131 Ha1 fios + 151 o fiar + U1 Haziis
31Ty papion flas -+ 2007 Hor oy + pT s bas 4 205 frofty - 111 [ fas + iyt
i oo flas + a1 o fiss + Ha1pazfiss 4 fa1par fs + 2011 Ha2 /i) s
2411 131 g + Apia1papior fios + [1akion s + 2012151 s + Hiolo1 [s)-

' = i o fis + p1fiatisy + HTaHG1 Has + iy fay + pafiafior + 2401 s fis

F 1 o1 [y + T o a1 F pa1 5 fg 2050 a2 t5s T a2 fia1 [iyy - Ha1f12fis Hos

199



T apian flas + 24011 oo fhas + 24011 fiafion fihs -+ Haofay oy [T Haafias
1 s + U1 T ks o fafiy S+ e Has - okt ats),

) = paafior fraz(fian + pon) (pan + pros) (pag + piar),

ly = Wioftor fiog(fi11 fr + fh11fios + fazfios + H33),

0y = paafios(forfias — panpiaz) (Hanpie + panpior + fianfias),

o = panfazpios (a1 flaattor + Mll/ﬁz + pa1peo1 fles + a1 faofes + M§2M23 + /121#%3
112t + Hazforfas),

g = pa1phazftas(fian + pon) (pa2 + po1) (pag + fis),

= 11 paftas (fiapior + o fos + (e + fiakiaz),

af = paapas(pa1 + pion) (11 3y + pa1pazion + fianfio fias + o1 fig),

Ol = ooz (105 a2 + 1131 pa1 + fianpaafion + pan fia1flos + P11, + Ha1fiss + Ky fis
a2 fio1 Ha3),

ol = fazpiss (15 a1 + BTy a2 + 115y + panfiazios + pinpazien + 11, + Koy s
11 21 Ha3),

o = paatian fida(fan + par) (an + pias),

ahy = paa ooz (pan + par) (o + par),

o = papias (P pi1 + 1Ty a2 + paapiay + panfiaafios + [ fliafior + fianfio fios
1131 ps + pazfioiflas),

g = paofi (15 o1 + 1T e + paafiay + fahaafies + [l fliafior + fafio fos

+M%1,u23 + piafior fa3)-

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality
of the policy m = (do)® when py112 > porfio3 and the optimality of the policy

T = (dy)™ when gy pt12 < pig1pioz. O
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Proof of Proposition 4.3.5 : The set of allowable actions in state s € S is

(

ap for s = (0,0),
o3 for s = (2,0),
ay3 for s = (1, 2),
As =4 {ai,a12, a0} for s = (1,0),
{ai1, ar3, azs} for s € {(0,1),(0,2)},
{ag, a3, ass} for s = (2,1),
{a11, a1, ais, ass, a3, azz} for s = (1,1).

\

Under our assumptions on the service rates (300, py; > 0 for j € {1,..., N} and
t1s = p21 = 0), it is clear that uy; > 0 and poe3 > 0. Hence, we can conclude that
the policy described in the theorem corresponds to an irreducible Markov chain, and
consequently we have a communicating Markov decision process. Thus, we can use
the policy iteration algorithm for communicating models as described in Section 9.5.1
of Puterman [58]. We use the uniformization constant ¢ = p11 + 12 + fioe + fi2s-
First assume that p3uly < pooptas(f11ft1a + piiplos + fiajies + 35) and start the

policy iteration algorithm by choosing

(

ajp for s € {(0,0),(1,0)},

dols) = a3 for s € {(0,1),(0,2),(1,1)},
as for s =(2,0),

ags for s € {(1,2),(2,1)}.

\
Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, [
for k € {1,...,13} and § are nonnegative constants when #%1#%2 < poopios(p11 12 +
H11 o3 + [iafles + u%3). They depend on the service rates and the state under consid-

eration, and they are provided below.

First, consider the state s = (1,0), and recall that dy(s) = ag1. Some algebra
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shows that

< ((1,0), a2 +Zp ), a12) (/)) ), a11) ZP ), a11) (/)

s'eS s'eS
_ Dy,
5 =
< 1 O &12 +Zp ( @12 ( ,)) a22 Zp a22 ( I)
s'eS s'es
:%20

Recall that dy(s) = a3 for s € {(0,1),(0,2)}. Then, we can show that

( ((0,1), a3 +Zp ), a13) (,)) ), air) ZP ), a11) (l)

s'es s'esS
:%20
( ((0,1),a13) + 3 p(s'1(0, 1), arg)h(s )) —r((0,1), a53) — 3 p(s](0, 1), aga)h(s)
s’'eS s'esS
:%20
(((0,2), a13) + 3 p('1(0,2), aiz)h(s)) ) = (0, 2), a1) = D p(/1(0,2), an)(s)
s'esS s'es
= % > 07
(ozam+2p (0,2), asa)h(s)) = 7((0,2), azs) = 3 p(s'1(0,2), as) ()
s'eS s'eS
:%20

For s = (1,1), recall that dy(s) = aj3. Some algebra shows that

< ((1,1),a13 +Zp ), a13) (’)) ), @) ZP ), a11) (I)

s'eS s'esS
_Pey
5 =
< ((1,1), a13 +Zp 1(1,1), a13) (')> ), a22) ZP ), azz)h(s")
s'eS s'eS
:%20
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< ((1,1),a13 +ZP ), 13 h(S/)) ), as33) ZP ), ass)h(s")

s'eS s'eS
_ By,
5 =
< 1 1 CL13 —sz ( CL13 (S,)> a12 Zp a12 h(S/)
s'eS s'es
_Posy
ﬁ =
( ((1,1),a13 +ZP (1,1), a13) (,)) ), @23) ZP s'|(1,1), ags)h(s)
s'es s'eS
:%zo.

Finally, do(s) = ag3 for s = (2,1). Some algebra shows that

< ((2,1), a9 +ZP ), @23 h(S’)) ), G22) ZP ), azz)h(s")

s'es s'es
:@>0
< ((2,1), as3) +ZP ), azs)h(s ,)> ), ass) Zp ), ass)h(s")
s'eS s'es
:@ZO
B

Next, assume that p?,u2y > poopiog(f11 12 + p1flos + fiafies + pa3) and start the

policy iteration algorithm by choosing

;

a;2 for s =(0,0),

& (s) = a;3 for s € {(0,1),(0,2)},
azy for s € {(1’0)7 (270)}7

ags for s € {(1,1),(1,2),(2,1)}.

0
Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, 3,
for k € {1,...,13} and (' are nonnegative constants when u2, 3y > faofiaz(fi11 12 +
U123 + fiaftes + ugg). They depend on the service rates and the state under consid-
eration, and they are provided below.

First, consider the state s = (1,0), and recall that dj(s) = ag. Some algebra
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shows that

< ((1,0), age +Zp ), a22) (/))—7’ ), a11) ZP ), a11) (/)

s'eS s'eS
/
:%20
< ((1,0), ase +ZP ), a22) (’)) ), a12) ZP ), a12)h(s")
s'es s'esS
/
:%20

< ((0,1), a3 +Zp ), a13) (/)) ), ai1) ZP ), a11) (/)

s'eS s'esS
- g— >0
(r((0,1), @13) + 3 p('1(0, 1), a13)h(s)) ) = (0, 1), ass) = > p(/](0, 1), ass) (s
s'eS s'eS
= % > 07
< 0 2 a13 + Zp CL13 ( )) — T’((O,2) CLH) — Zp(S/KO 2) au)h(sf)
s'eS s'esS
_ g_ >0
(7((0,2), a13) + - p('1(0,2), ars)h(s)) ) = r((0,2), ass) = > p(/](0,2), asa) (s
s'eS s'esS
_ g_ >0

For s = (1, 1), recall that dj(s) = ag3. Some algebra shows that

(7((1.1), a29) + D" P11, 1), 020) () ) = (1, 1),011) = Y p('1(1, 1), @i )h(s)

s'eS s'esS
_ &
— ﬁ’ >0
(r((1,1), az3) + 3 p('1(1, 1), az)h(s) ) = (1, 1), a22) = D p(/|(1, 1), az2) (s
s'eS s'esS
_ B
0,
“p
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(7((1,1), a23) + 3 p(s/1(1,1), a2)A(s) ) = (1, 1), ass) = > pls'

Clgg)h(é’l)

alg)h(8/>

s’'eS s'eS
Py
— ﬁ 2 07
< 1 1 (l23 +Zp agg)h( ,)> alg Zp
s'eS s'eS
_ B
>0,
ﬁ/
(7((1,1), az3) + 3 p(1(1, 1), az)h(s) ) = (1, 1), axs) = D p(/I(1, 1), ara)(s)
s'es s'eS
_ B
> 0.
5/

Finally, dj(s) = ag3 for s = (2,1). Some algebra shows that

<M@JL@Q+§:Mﬂ@JL@9Mﬂ> )oaz) — > p(s|

agg)h(8/>

s'eS s'es
_ b
>0
g
(r((21),as3) + 3 p('1(2, 1), ax)h(s)) = ((2,1), ass) = D p(/](2. 1), asa) (s
s'eS s'eS
_Bis
0.
e

B = 1131 1opion + Ji11 paafios + [ aapas + 15 Waattas 4 B0 Hiatas + 21471 [iakias

o anflyy + Haoflazflas + [ azfioz + 11 [iaallas (112l + (111 /22 kls

1 pafiys [ iy + [l s -+ HTy iz [ Ha2kes + 2007 Haafis

U ooz oz + (1T fliofiao ey + 2151 [Las + Ha1[iTatan ks + [L11 /12450 Hag

F2465) o fiaa oz + B a2 fion Bas + 2 o fion s + BTy o fiyg + 111K

U1 s + BTy oo ki3s + K51 as + Haalis,

By = 1131 paapos (a1 o + 2pin1 fiapios + [ pa + flanfliapion + fliaflss + [171 fio3

+20111 155 + Mg + Ha1poapos),

By = pa1pias(piaa + poo) (11112 ptontios + fiaflontias + Haoilas + fi11Haokiss
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B3 = H?1N23<M11,U/%2 + M%QMQQ + [1oftoo oz + fh11fb12f402 + LL12M§2 + 112223
Fpaafizy + [i3aho3),
Bi = pipas (a1 fiapiaz + a1 fiiapios + 2031 B3o + iataziios + 207y o pias + H31 112
Fpaapioofiys + 2013 pazioe + paifiiaias + Haziiafias + 2011 a2 ioafas + [i11H2 /s,
2 2 2 2 2
+Uog s + 1T Hazftes + 1 floalas + Hi1faakia3),
Bs = i pas (3 piaftas + K31 1Ty + 2Han s oz pias + Hun Mo s + 101 Hiaktan + Hanliss
2 2 2 2 3 2 2
+ Yoo oy F [T 2oy F Haaflozflas + 2011 a2 fiaa e + 41T iz oz fios
3 3 3 2 3 2 2 2 2 2
T2y T Uy 1222 T+ Ol 1222 lag Tt i1 12423 Tt [hi2flg oz Tt 21T 1253
T 3o pia3 24011 305y + BTy Haatiy + 131 faaties + 2fin fiaaftsy),
B6 = pa1 i (2671135 + pa1pTakion + fn1[iiafias + Higtaztios + 151 pn2 + 2005 [i1afias
+u12u22u§3 + 20011 pag iz oz + M11N12N§2 + 2#?1#12#22 + M11M12M§3 + M12M§2M23
F 11 g ka3 + [ogltas K5y s + Ha1ioofiss),
Br = piiypas(1iaioapas + panfiiapas + puifiiaftas + 151 [y + Ha1p2fisy 4 171 a2 fioo
+ 2011 o fioofios + Hizflagtos + 2o iaztias + 20011 flaaflay + faaflas + Hagllas

+M%M22M23 + MllﬂgQUQB)a

B = H11 23
g = 029
Mi1 + fo3

+M1111/~L12 + 2#11#12#22#33 + lubi’l,um,um + M%1I~L12M22,u23 + M11M22N33),

(112 + poo) (— Ty (o tas + 2051 faofias 4[] Haaktsg + Haafioolas + [a2/lss

By = piaptas (111 fiatas + i1 1Ts + 1111 oo flas + pa1fi1akiss + Haafazfiys + [5akias
+2,u%1,u12/ﬁ23 + M%1M12/~b23 + M12M§2M23 + M?lmz + fi11 faafiaafias),

Bro = iyl 2as (i + pron) (1) + 2003, pras + 1151 pi22 + pa1 iy + paafaspias + faatisg),

2
H11 o3
B = ——
H M1 + M23(

Bia = pr1pil 203 (f12 + pog) (1) + 20631 faz + 13y fag + fi11 55 + Haifaoflos + Hazflas),

fa2 + po2) (fi11 ooz tias + Haapiazfiss + Hoallys + Ha1faa sy — Hiyila),

Brs = paapul 2055 (13, + 2031 pros + 1T pia2 + pia1 fiss + i1 fiaafias + Hazitag),

B = pa1iiaping + (131 1 + 1151 12 ki3 + Sa1fiizfiyg + 13 fazfios + (111 [1]oki23
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F2007 pan iy + 1171 aapas 4 20871 froftas + 2t flaafizy + fn fig + Haskay + [Liafiny
4 2 2 3 32 4+ 202 1l
FH12k93 + Hy Hi2H2223 + Hi1fa2floz o + a2fa2 ey T 1 Mo Tt 2001 Has,
By = i pas (a1 ftle + fa1ftiafion + fia1flaatios + flaaftss),
By = b pias (111135 — panpazpioziios — Hizfiaafig — [ia2flsg = Ji11f22/ls),
ﬁ; = ﬂ%lﬂ%(ullui + [11 12422 + M22M§3 + ,Ull,u22ﬂ23)a
;o 2 2 2 2 2 2
By = papas(Haipi + Wiapes + flizfiazfios + Haakls + 205 e + pa1fazflas + flazfis
+2p411 f12flog + u11M22,u23),
B = 13y pos(panfily + i5aios + [ioftas + [i1apiazfios + pa1firaplas + 112 io
—|—2,u22,u§3 + pa1fi2afia3),
/ 3 2
B = itz (1yy + paipine + fliapios + pazpias + tazfios),
B7 = i1 paa(iattas + pipidy + (st + Hisfizabtos + 2H01 fakas + pan fiahan

ooty 4 2fi1aioo s + i1t fl1akiaa o + f11Hoafas),

r_ H11 423
® M1z + H23

By = 1 fiiopiag (ofias + 2401 a3 + Hooflas + fias + H11),

(112 + fra2) (11 fha2pios + W3 Has — Hazfias),

Bro = “11M23(N%1N§2 + M%IN%QH'Q? + 2#%1#?2#23 + M%1#12N22M23 + Nllﬂ??ﬂ?i’,
111 g  H [ ahion ias — [i11Ha2flss — Hioliazkiss — Ha2fiagilas — [aakins
—M12M22M33 - M22M§3)7

Mllﬂgs ) 2 3 2
511 = —(Mnﬂqz — H11fti2fb22 23 — Hi12M22M93 — H22/iog — M11,u22#23),
H12 + o3
By = a1t 2p05(pra + pro2) (165 pos + 131 pu2 + faakisy + 1155 + pa1 iz fias + 2001 433),

By = a1l 2055 (135 + paofiss + iy faz + K5y fas + pa1paopes + 211 15s),

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy m = (do)™ when 3, p7y < pioapios(pia1firz + fi11fias + fazfios + pi35) and the

optimality of the policy m = (dj))>™ when p3,u2y > poopios(f11 12 + f11ftes + Hiafies +

M%:s)' U
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Proof of Proposition 4.3.6 : The set of allowable actions in state s € S is

;

ap for s = (0,0),
a12 for s = (2,0),
ass for s = (1,2),
As =19 {ai1, a1z, a2} for s = (1,0),
{a11, a13, a3} for s € {(0,1),(0,2)},
{ags, asa, ass} for s = (2,1),
{a11, @12, a13, a2, ase, azz} for s = (1,1).

0
Under our assumptions on the service rates (Y10, py; > 0 for j € {1,..., N} and
f12 = p21 = 0), it is clear that u; > 0 and poy > 0. Hence, we can conclude that
the policy described in the theorem corresponds to an irreducible Markov chain, and
consequently we have a communicating Markov decision process. Thus, we can use
the policy iteration algorithm for communicating models as described in Section 9.5.1
of Puterman [58]. We use the uniformization constant ¢ = p11 + 13 + pioo + fi23-

We start the policy iteration algorithm by choosing

(

a2 for s € {(0,0),(1,0),(1,1),(2,0)},
ais for s € {(O, 1), (0,2)},

azy for s =(2,1),

| ass fors=(1,2).
Then, we proceed as in the proof of Proposition 4.3.1. In the calculations below, yx
for k € {1,...,13} and x are nonnegative constants. They depend on the service
rates and the state under consideration. They are provided below.

First, consider the state s = (1,0), and recall that dy(s) = ag;. Some algebra
shows that

(7((1,0),a12) + >~ p(s/1(1,0), anz)h(s))) = 7((1,0), anr) = D p(s/I(1,0), ar)h(s)

s'eS s'eS
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< ((1,0), a2 —O—Zp ), a12) (/)) ), 22) ZP ) @22) (I)

s'eS s'esS

s'eS s'esS
_ X4
X
(r((0,1), @13) + 3 p(1(0, 1), aiz)h(s)) ) = (0, 1), ass) = D p(/](0, 1), ass) (s
s'eS s'es
X5
X
(((0,2), a13) + - p(s'1(0,2), ars)h(s)) ) = r((0,2), a1) = D p(/1(0,2), @ )(s)
s'es s'esS
— X5
X
< ((0,2),a13) + Y p(s'[(0,2), ar)h(s ))—7“((0,2)’@33)—ZP(SII(QQ),%S)}L(S)
s'eS s'eS
_Xe o
X

< ((1,1), a2 +Zp ), a12) (/)) ), a11) ZP ), a11) (/)

s'eS s'eS
oy,
X
< ((1,1), a12 +ZP |(1,1), a12) (’)) ), a22) ZP ), ag2)h(s")
s'es s'es
— X859
X
( ((1,1), a12 +ZP |(1,1), a12) (/)) ), ass) ZP ), ass)h(s")
s'eS s'eS
oy,
X
< ((1,1), a12 +Zp 1(1,1), a12) (’)) ), a13) ZP ), a13)h(s")
s’'eS s'eS
:@ZO
X
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(r((11),@12) + - p(1(1, 1), an)h(s) ) = (1, 1), a2) = D p(/|(1, 1), ase) (s

s'eS s'esS

X11>O
X

Finally, dy(s) = as for s = (2,1). Some algebra shows that

<r((2, 1),az) + > p(s)(2,1), a32)h(s’)) Joaz) — 3 p(s'|(2,1), az)h(s)

s'eS s'esS
_ X1z > ),
X
<r((2, 1),az) + > p(s)(2,1), agg)h(s’)) )oazg) = 3 p(s'1(2,1), asg)h(s)
s'eS s'eS
_ X8 > ()
X

X = KMy + B3y H1sHe2 4 51 HTskas + BT laakies + 20001 Waaltss + AT 1o o3

3T otz + 151 paspias + HT1Haatas + 20T taaftsg + 1171 flaafin + A4t [i3ahto3
AT 3oy + 20 pa2it3s 4 At aspiaziias + A1 sz iys 4 O psp3atas
F51T st ting + 2071 paspiaatisy -+ BTy Hastive + 15 paspibe + 2065 1755,
F2pin1 fir3 otz + AT asiiaatios + BTy iz o ias + 20 [Ls isaliss + [iaafing
31 fiaafinaliz  Hasiiaaiiy + Hi1 sk + 2001 s tias + [1) o lias + 11711053
+M11M32/~Lg3 + 2#311,“%2 + N?IM;LS + 2#?1#%3/122 + 3#?1#%3,“22#23 + 2#?1#?3:“23

F 20 [ 23 + 20T T a2iay + BT sty [T st + 111 (s ins + [Tahi005

a3 iaa kg + Ha1 a3 iaakos,

X1 = W5y o2 (2005 Wis oz + dpn1fs fanfios + Bt shoo s + K1 fistas + K3 T

U5 s ta2 + B3 s taz ez + [y s fias + 21 s ez iys + Wiy asfias + Haallas
2 2 3 2 2 3 2 2 2
+2071 taspias + pasfioa o + 1113y T Hanfastiys T 2001 a3 e /a3 + H13 g ka3

15 oo fios 2005 pao i3y + pa1paatas + 203 Mg tas + 2001 [aliss + [11 224433,

Xo = fi11 1o (135 tazkisg + [031 Wisflon + [i11 1035 azfios + fin1 W5 tes -+ 2031 f1]5H23

F U T+ s+ paspeo s 4 2001 s eo s + K s ez + Ky a3
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+2017 fazfiantios + Hastiaoflas + (131 fl13 a3 + 2[1T1 fl13las + H11H3Haokos + Hastlas
F T ooy + Ha1 3ok + H oz fiys),

X3 = pantaz (L3 3oty + Haslidallas + [13H30ltss + 201 tastioatlys + 21431 a3 fisy
i1y pasfion + fy skl + BT HGs 5y + 21051 s ton + paaliss + [Ty 175 111 s fios
F 2111130k + BHT1 T ton o3 + Ha1 s isatas + 200 figtaziiss + 41Ty Hasfion iz

3 2 2 3 2 2 2 3
1 paspiaaios + i s iaatas + 3y tspioatios + S s aatios + Ky Ha2 s
1 oty + [T sty 200 sty + 200 [ fias + [T st + 2007 ot
111 Haf33),

Xa = parpioa(pa1 + po2) (pa1 + pos) (pas + M23)(#%1M23 + p11 oo o3 + 114131423
+M§2H23 + fasfioafias),

X5 = pantaz (L3 30kt + Haslidollas + 13H30ltss + 211 tastioatiys + 20431 s fisy
i1y pasfion + [y skl 1 BT Mgy + 20051 s ion + paoliss + [Ty 1Ts 111 s liss
F 2401 o iy + 31151 3 aatias + Ha [ liaatias + 2401 s iaofy + 24T pisthaafiz

3 2 2 3 2 2 2 3
11 13 e 23 T 2111 13 5o a3 + STy 13 oz fto3 + STy 13 oo ta3 T[] 1 22 a3
13y s isg + 2003 pTsios + BT s 33),

X6 = Ha1ftaafios(pnn + poo) (pas + M23)(/ﬁ1u13 + f11 oo fte3 + (114131423 T M§2M23
+ 113 pa2/i23),

X7 = M1 e (35 ta2hiss + (L1110 3Ha os + 21171 [ ghios + [151 135 + [i11 /03355 + [111 113
1131 s o2 15 H1skisy F Hasisgiias -+ BHT1 Hastiaziios + 201113 a2 kiss + Haally
F240 s oz 4 Hasponflys 4 Han s iaaiios a1zt 20T s fiag + 2005 s ez
+M11M22Mg3)>
2 3 3 2 2 2 2

Xs = Mgtz (171 ho2 + 17103 + 111 s oz + 20471 floofhag + 411 a3 fias + [13fiazflss
03 g+ 11 fastiaziias + 2001 fisofias + 211 fhazitas + Haziiss + 2fisolis),

_ 3 2 2 2

Xo = fa1piaa(fa1 + o) (as + tos) (11013 + 2071 Haspies + (a1 fastiss + f3kioafiss

+N§2/~‘§3):
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X10 = f51 paspian(pas + pos) (Ha2pis + pa1 iy + 2071 flas + i fiaafias + 15y + p5122)),

X11 = 11 o ptas (s + paz) (H51 f13 + a1 foaflas + pa1fiastios + Hagfas + Hasfiazkios),

X12 = Hanfina iy (231 fa3 + 201 faa iy 4 107 s + 30T pazpiog + Hn g fias + 13511
Jﬁu%lﬂ%z + 2#?1#22 + M%l)?

X13 = fianfhaspiaz(pa1 + fi22) (fias + phas) (1651 piaz + fiaafisy + piaapiy + 207, plas + 17,

+ 4011 flo2flo3)-

These results together with Theorem 9.5.1 of Puterman [58] proves the optimality of

the policy 7 = (dp)>®. O
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APPENDIX C

PROOFS FOR CHAPTER 5

Proof of Theorem 5.4.1: Lemma 5.3.1 shows that servers should not be voluntarily
idle when station 1 is blocked or station 2 is starved (even though a server will not be
working when (s)he is assigned to a station that is blocked or starved). Furthermore,
when both stations are operating, if a server is at station j € {1, 2} before the previous
server completion, any action that idles this server and assigns the other server to
station 7 cannot be optimal. For example, actions ag; and asy cannot be optimal at
a state ([,1,2) where 1 <[ < B + 1 since they are strictly dominated by actions ay;
and age, respectively. The states (0,1,1) and (B + 2,2,2) are transient under any
policy 7 € 1I and the actions at these states do not affect the long-run average profit.
Hence, they are omitted in the proof since any feasible action can be chosen in these

states. Hence, we can use the following action space:

.

{alh a2, a21} fOI' T e { 07 17 2)7 <07 27 1)7 (07 27 2)}7

{aog,all,alz,&zo,azl,CZQQ} fOI" T &€ { l, 1, 1) where 1 S l S B + 1},

{a01,all,a12,a20,a21,a22} for x € { l,2, 1) where 1 < ) < B+ 1},

{ao1, aro, ar1, ar2, ag, aze}  for x € {(1,2,2) where 1 <1 < B + 1},

(
((,1,1)
{aoa, @10, a11, @12, a21, a9} for x € {(1,1,2) where 1 <1 < B+ 1},
(,2,1)
(
(

\ {alg,agl,QQQ} for x c { B + 2, 1, ].), (B + 2, 1,2), (B + 2,2, 1)}

Since the action space and the state space are finite, Theorem 9.1.8 of Puterman
[58] shows the existence of an optimal Markovian stationary deterministic policy.
Furthermore, under our assumptions on the service rates, we must have vy, v > 0.
Hence, the policies described in the theorem correspond to an irreducible Markov

chain and we can use the Linear Program (LP) approach for communicating Markov
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decision processes as in Sections 8.8.2 and 9.5.2 of Puterman [58].

Consider the following LP:

max ZxGS ZG,EA1C T'(LU, a)w(x, CL)
st D aea, W@, a) =Y cq D aen, P |z, a)w(z, a) =0, for all 2’ € S,
Ezes ZaeAm UJ(ZL‘, a) = 17

w(xz,a) >0, for all z € S,a € A,

J
where, for all z € S and a € A,, r(z,a) is the immediate reward of choosing action
a in state x and p(z'|z,a) is the one-step transition probability from state x to 2’
if action a is chosen in state x. Then, in every basic feasible solution corresponding
to a policy described in the theorem, we can conclude that for each z € S there
exists at most a single action a, € A, such that w(z,a,) > 0 as a result of Corollary
8.8.7 of Puterman [58] (which can be applied since the policies we consider in the
description of the theorem result in a single recurrent class). Furthermore, for every
basic feasible optimal solution z* if we define Sy« = {z € S : )] ., w*(x,a) > 0},

then the optimal decision rule is as follows:

a ifw*(xz,a) >0 for x € Sy,
dy+ () =
a' for some a’ such that 37 ¢ p(y[z,a’) >0 for z € S\ Sy

We first prove the optimality of the policy for 0 < ¢ < min{ 271f4vz’ 4%2272}.

Consider the decision rule d, where d(x) is defined as follows for all x € S:

(

an if z € {(0,1,2),(0,2,1),(0,2,2)},
ap itz e {(1,1,1),(1,1,2),(1,2,2)},
(1,2,1)
(2,1,1)

asy leL’E{ 1,2,1

H
27 ]-7 1 ) (27 ]-7 2)7 (27 27 1)}7

a929 leEE{

\
Now, let D be a basis for the LP (54), cg be the vector of coefficients of the elements of
D in the objective function, B be the coefficients of the elements of D in the constraint

matrix, and b be the right-hand side of the constraints. More specifically, consider
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the basic solution w corresponding to the policy m = (d)* with the basis

D - {w((071’2>7<]‘7 1))7w((072’1)?(17 1)),&]((0,2,2)7(171)),
w((1,1,1),(1,2)),w((1,1,2), (1,2), w((L, 2, 1), (2, 1)), w((1, 2,2), (1, 2)),

w((2,1,1),(2,2),w((2,1,2),(2,2), w((2,2,1),(2,2)) }

Consequently, we have

cg = {—2cy1, —2cv, —4deyr, 2 — (v 72) Y2s Ve Y2 — (1 + 72),

272(1 = 2¢), 272(1 = ¢), 272(1 — )},

[ on/g 0 (R 0 0
0 271 /q 0 0 0 0
0 0 271/q 0 0 0
=2m/q¢ —2m/q —2m/q (m+72)/q 0 0
N 0 0 0 0 0 0 |
0 0 0 0 0 0
0 0 0 0 o 2% /q —2v2/q
0 0 0 0 0 0
0 0 0 0 272/q 0
1 1 1 1 o1 I

where ¢ is the uniformization constant. Note that the equation corresponding to one
of the states is redundant, and hence the equation corresponding to state (2,2,1) is
eliminated. Furthermore, it is easy to see that w is also a stationary distribution
for the Markov Chain X, (since it has finite state space and one recurrent class,
stationary distribution exists). Moreover, Corollary 8.8.7 of Puterman [58] implies
that w is a basic feasible solution. Then, in order to show the optimality of this basic

feasible solution, we need only to show that
cgB v, —¢, >0 (55)
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for each nonbasic variable y, where v, is the column in the constraint matrix of LP
(54), and ¢, is the coefficient corresponding to y in the objective function. For states

(0,1,2),(0,2,1), and (0,2,2), we have :

CBB_IUw((O,1,2),a12) — Cw((0,1,2),a12) — CBB_lvw((O,Q,l),am) — Cw((0,2,1),a21)

= CBB_lvw((O,Q,Q),alg) — Cw((0,2,2),a12) — CBB_lvw((O,Z?),agl) — Cw((0,2,2),a21)

. (72 — 2c71 — 4ey)

Y1+ e
—1 -1
BT 0u((0,1,2),a21) — Cw((0,1,2),a21) = BB Uw((0.2,1),a12) — Cw((0,2,1),a12)
_ Y17y2(1 — 2¢)
NnAv
It is clear that these quantities are nonnegative when 0 < ¢ < min{ 271f472’ 47111272}.

For state (1,1,1) we have :

CBB_lvw((l,l,l),aog) - C'LU((17171)70402) = CBB_lvw((lle)’G‘QO) - Cw((l’l’l)’a20)

_ el —2¢)
"+ 72

CBB_lvw((lJvl)’all) - Cw((l,l,l),all) = CBB_I'Uw((l,Ll)’an) - C’w((l,l,l),azl) = O’

CBB_lvw((1,1,1),a22) — Cw((1,1,1),a22) — 4cys,

for state (1,1,2) we obtain :

CBB_lvw((l,l,Q),aog) - Cw((1,1,2),ao2) = CBB_lvw((17172)’a10) - Cw((1,1,2),a10)

_ 1172(1 — 2c)
Y1+ Y2

CBB_lvw((l,l,Q),au) — Cu((1,1,2),a11) = 4c71,
CBB_lvw((1,1,2>,a21) = Cu((1,1,2),a21) = 2¢(71 + 72),

BB T 0u((1,1.2),a22) — Con((1,1,2),025) = 472,

for state (1,2,1) we obtain :

CBB—lvw((17271)7a01) — Cw((1,2,1),a01) — CBBilvw((l,Ll),azo) ~ Cw((1,2,1),a20)

_ Y172(1 — 2¢)
Y1+ Y2
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CBB_lvw((l,Q,l),au) — Cw((1,2,1),a11) — dey,
CBBilvw((lvll)valQ) - Cw((172v1)7a12) = 20(71 + 72)7

BB T u((1.2,1).a22) — Coo((12,1),025) = 4C o,

and for state (1,2,2) we have :

CBBilvw((1,2,2),ao1) — Cuw((1,2,2),a01) — CBBilvw((1,272),a1o) — Cw((1,2,2),a10)

_ ’}/1’}/2(1 — 2C>
71+ 2

CBB_lvw((m,Q),an) — Cw((1,2,2),a11) — dey,

BB 0u((1,2,2).021) = Cun(12.2),a21) = BB Vus((1,2.2) a22) — Cu(1,2,2).022) = O-
Finally, for states (2,1,1),(2,1,2) and (2,2,1) we have

CBB_lvw((2,1,1),a12) - Cw((2,171)7a12) = CBB_lvw((27172)’a12) - Cw((2,1,2),a12)

= 5B M Uu(2,1,1),001) — Cu(@1,1),021) = CBB T Uu((2,2.1),091) — Cur(2:2,1),91)

_ ey —den — 2c7)

B 71+ 2
CBB_lvw((Q,l,Q),agl) — Cw((2,1,2),a21) — CBB_lvw((Z?,l),am) — Cw((2,2,1),a12)

_ el —2¢)

oty

Y

These quantities are also nonnegative when c¢,v;, and 7, satisfy the assumptions
above. Hence we have shown that the inequality (55) is satisfied for all nonbasic

variables. We can conclude that D is an optimal basis for LP (54), and consequently

7 = (d)™ is an optimal policy when 0 < ¢ < min{g }. We see that the

72 04

+dv2 7 414272
recurrent states are (0,1,2), (1,1,1), (1,2,2), and (2,1,2) under this policy. In the
transient states (i.e., states in S\ Sy,+) we can select an action that will take the

process to one of the recurrent states and this shows that the policy 7* described in

the theorem is optimal when 0 < ¢ < min{ 271? ot 4%11272 }
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2
> 72 < ’yl . .« .
Next, let 74 > 2 and i, < €< G SR . and consider the decision rule

d, where d(z) is defined as follows for all x € S:

ar itz € {(0,1,2),(0,2,2),(1,1,1),(1,1,2)},
d(ﬂf) = a21 if z € {(0727 1)7 (1727 1)}7

an ifxe€{(1,2,2),(2,1,1),(2,1,2),(2,2,1)},

Then, the basic solution w corresponding to the policy m = (d)*> has the basis

D = {w((0,1,2),(1,2)),w((0,2,1), (2,1)),((0,2,2), (1,2)),
(L, 1,1, (1,2)),w((1,1,2), (1,2)), (1.2, 1), (2, 1)), w((1,2,2), (2.2)),
W((2,1,1),(2,2)),((2,1,2), (2,2)),0((2.2,1), (2,2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0, 2,2), we have :

- -1
cgB 1Uw((0,1,2),a11) — Cw((0,1,2),a11) — cpB Vw((0,2,1),a11) — Cw((0,2,1),a11)

Y1 (271 4+ Y2)(4eye + 2¢71 — Y2)
(71 + 72)?

8B 00((01,2).091) — Con((0,1.2),21) = BB Vw((02,1),012) — Coo((0,2,1),01) = 2C 71,4

= 5B M0 ((0.2.2),011) — Cw((0.22),011) =

9

CBBilvw((O,Z,Q),agl) — Cw((0,2,2),a21) = 0-

These quantities are nonnegative because ¢ > 2711?472. For state (1,1, 1) we have :
BT Uu((1,1,1),002) — Cu((1,1,1),002) = CBB T Vu((1,1,1),050) — Cun((1,1,1),00)
_ me(l —2¢)
 mtm
Y172(2e71 + 4eye — 72)
(71 +72)?

8B w11, ,a11) — Co((11,1),011) =

I

CBB_lvw((l,l,l),a21) — Cu((1,1,1),a21) = 0,

Y2(2e7; + 4evs + denye + 1172)

BB Wu((1,1,1),a2) — Coo((1,1,1),090) =

O 77 |
for state (1, 1,2) we obtain :
_ Y172(1 — 2c¢)
BB Uu((1,1,2),a00) = Co((1,1,2),a02) = Tt
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Y172(2¢72 + 1)
(71 +72)?
Y1 (4eri + 8evs 4+ 10cy172 — 73)
(11 +72)?
CBB_lvw((l,l,Q),a21) — Cu((1,1,2),021) = 2¢(71 + 72),
Y2(2e7; + 4evs + denye + 11v2)
(71 +72)?

-1
cgB Vw((1,1,2),a10) — Cw((1,1,2),a10) =

8B Wu((1,1.2),a11) — Cu((1,1,2),011) =

Y

BB 0u((1,1.2),a2) — Coo((1,1,2),090) =

for state (1,2,1) we obtain :

_ + 2c
CBB 1Uw((172’1)’a01) - Cw((1»2:1)7a01) = 7172(71 72)

(71 + 72)?
) N2l — 2¢)
cgB 1Uw((l,l,l),cmo) ~ Cw(@21),020) = W
) (473 + 8613 + 10c317 — 23)
cgB 1"011)((1,2,1)@11) ~ Cw((12,0),011) = 1 (7124_ 72)2 2 ’

BT 0w 2,1)a12) — Col(2,1),a2) = 26(01 +72),
12(2677 + 4e73 + 4erina + 5)
(1 +72)?

)

BB T U0 ((1,2,1),022) — Coo((1,.2,1),029) =

and for state (1,2,2) we have :

CBB_lvw((LQ,z),am) — Cw((1,2,2),a01) — CBB_lvw((l,ZQ),alo) — Cw((1,2,2),a10)
_ Y2277 + 4cys + denye + 1%3)
(71 +72)?

Y1 (6¢y1 + 8¢ya — 2)
(71 + 72)?
CBB_lvw((l,Q,Q),alg) - Cw((1,272)7012) = CBB_lvw((l’ZQ)’an) o Cw((1,2,2),a21)
_ y1(2¢y1 + deyy — 2)
2(y1 +72) ‘

BB u((1,2.2)011) — Co((122),011) =

2
72 < i
iz S S 2yi 271724273

These quantities are nonnegative because Finally, for

states (2,1,1),(2,1,2) and (2,2,1) we have

BB w211 a12) — Co(21,1),012) = CBB T Vun((2,1,2) 1) — Cun(2,1,2).012)

= 5B M Uu(2,1,1),001) — Cu(@1,1),021) = CBB T Uu((2,2,1),091) — Cur(2:2,1),21)
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_ 12(1F — 2697 — 2093 — 2c717)
(71 +72)?
cBBflvfw((gvm)’am) — Cw((2,1,2),a21) = CBBilvw((2,271)7a12) — Cw((2,2,1),a12)
_ m722ep+m)
(71 + 72)?

Y

it

Th ntities are nonn ivi < 52—
ese quantities are nonnegative because ¢ < R

Hence, the policy m =
(d)* is an optimal policy and the recurrent states under this policy are (0,1,2),
0,2,2), (1,1,2), (1,2,2), and (2,1, 2). In the transient states (i.e., states in S\ Sy~)

we can select an action that will take the process to one of the recurrent states and

this shows that the policy 7* described in the theorem is optimal when ~; > 7, and

2
2 < i
ity <~ O 2921724275
2
,-Yl < ’)/2 . . .
A Lo = 5 2 9 e LON2
When ~v; < 7, and Pirzs < €S 5Tt and consider the decision rule d,

where d(z) is defined as follows for all x € S:

a;; if z € {(0,1,2),(0,2,1),(0,2,2), (1,1,1)},
dz) =19 ap ifze€{(1,1,2),(1,2,2),(2,1,1),(2,1,2)},
an if z € {(1,2,1),(2,2,1)},

Lemma 5.3.2 and the previous result (for the case where 3 > v and 2’7;1?472 <c<

2
i
273 +27172+272

policy are (0,1,2), (1,1,1), (1,1,2), (2,1,1) and (2, 1,2); and in the transient states

) show that the policy m = (d)* optimal. The recurrent states under this

we can select the actions that take the process to one of the recurrent states. Hence,

the policy 7 described in the theorem is optimal when v, < 9 and 47111272 <c<

2
2
29 +27172+273

Next, let v1 > v and ¢ > 5, and consider the decision rule d, where

2
71
292 +2v172+273

d(x) is defined as follows for all z € S:

a1p if £ € {(0,1,2),(0,2,2),(1,1,1),(1,1,2),(2,1,1),(2,1,2)},
d(z) =<¢ ay if z € {(0,2,1),(1,2,1)},
axp if z € {(1,2,2),(2,2,1)},
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The basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1),(2,1)),w((0,2,2),(1,2)),
w((1,1,1),(1,2)),w((1,1,2), (1,2)),w((1,2,1), (2,1)),w((1, 2,2), (2, 2)),
w((2,1,1),(1,2)),w((2,1,2), (1,2)), w((2,2,1),(2,2)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

cBB’lvw((o,LQ),au) — Cu((0,1,2),a11) = CBBil'Uw((O,Z,Q),au) — Cw((0,2,2),a11)
_ nerd +4eys +deny — nye — 1)
Y2+ My + 32

?

Y1(4ey; + devys + ey, —77)
Y4+ mve + 73
(71 —72) (271 + 72)
Y+ + 73
B okt
4 2mye +92

B om0y — JUEC 269+ 2N )
’LU(( 45 )70’21) w(( 34y )7“21) 712 _{_,}/172 _{_,y%

CBB_lvw((o,1,2),a21) — Cw((0,1,2),a01) =

Y

-1
cpB Vw((0,2,1),a11) — Cw((0,2,1),a11) —

Y

CBB_lvw((O,QJ)@lz) — Cw((0,2,1),a12)

Vi

P2 s B For state

These quantities are nonnegative because v; > v, and ¢ >

(1,1,1) we have :

71722
Yi+nve+73
CBB_lvw((l LD am0) — Col(LiDam) = Y1 (2e7f + 203% + 2c7172 ‘2|— Y2 — Vi)
T T Y+ 72 T2
7172(71 - 72)
B4+mr+73
(11 +72) (2697 + 2695 + 2en192 — 77

BB w11, 1),am1) — Co((1,1,1)021) = 2 £ 02 ,

BB U0 ((1.1.1).002) = Coo((1.1.1)sa00) =

)

-1
CBB Uw((lvlﬂl)vall) - Cw((l,l,l),an) =

B e — e a2 e + deny £ — i)
w(( ) )70‘22) w(( 3Ly )70'22) ,-Y% + ,yl,yz + 722 ’

for state (1,1,2) we obtain :

71722
V2 + 27172 + 72

-1
cpB Vw((1,1,2),a02) — Cw((1,1,2),a02) —
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Y1(4erf + 4evs + deyys + 112 — 297)
Y2+ 1Y + 72

Y1 (4ey; + devs +denve + 112 — 73)
Y+ N+

(71 + 72) (4er? + devs + denye — i)
Y+ + 9%

Yo (4ey? + 4cy2 + deyiya + v2 — V3)

8B u((1,1.2).a10) — Co((1,1,2),a10) =

Y

8B u((1.1.2)a11) — Co((1.1,2)011) =

Y

BB u((1.1.2).am1) — Coo((1,1,2)a21) =

?

CBB_IUw((I,LQ),aQQ) — Cw((1,1,2),a02) =

(71 +72)? 7
for state (1,2,1) we obtain :
BB 0u((12,1).001) — Cun((12,1),001) = e
wihaban) = Re@a1e) T 0y i + 427
N7

CBBilvw((l,l,l)yazo) ~ Cw((1,2,1),020) = 7% + 72 + 722’

_ Y1 (71 + 7227 — 1))

cgpB lvw((l,Z,l),au) — Cw((1,2,1),a11) — ’Y% T 17 + 722
V(i +72)

i+ e+

Y1Y2(71 + 72)

i+ + 5

bl

8B Wu((1.2,1).a12) — Cu((1,2.1),.010) =

BB Wu((1.2,1),a2) — Con((1,2,1),020) =

and for state (1,2,2) we have :

Y1(8¢7} + 8¢75 + 8cyiya + M2 — 307)
(71 +72)?
Yo(4er? +4eys 4+ deyye + 12 — 1)
Y+ 1Y + 72
Yi(4erf 4 4evs +4enye 97 — 73)
114+ mve +73
71(71 = 72) (11 +2)
291 4+ 2172 + 275
(71 + 72)(4eyf +4evs +4enye — me — )
27} + 27172 + 293

CBB_lvw((1,2,2),a01) — Cuw((1,2,2),a01) =

Y

8B Wu((1.2.2).a10) — Cu((1,2,2).a10) =

9

8B u((1.2.2),a11) — Cu((12.2).a11) = ,

BT Uu((1.2.2).a1) — Cu((1,2.2).012) =

BT Uu((1.2.2).a21) — Coo((1,2.2).021) =

7

——1+——_ Finally, for
27 4+27172+273 ally, 1o

These quantities are nonnegative because vy, > v, and ¢ >

states (2,1,1),(2,1,2) and (2,2,1) we have

Y2(207F + 2¢73 + 2e172 — 73)
Y4+ 1172 + V2

CBB_lvw((le),agl) — Cw((2,1,1),a21) =

)
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CBB_lUw((2,1,1),a22) T Gwl@11)022) T CBB_lUw((Q:L?),am) — Cw((2,1,2),a22)
_ 272(2¢v2 4 2¢72 + 2cy1y2 — 2)
Y+ e + 93

i

CBB_LUw((2 1,2),a21) — Cw((2 1,2),a21) — 72(46’7% _'2_ 46722 ki 46717; - 712) s
T T 291 + 22 + 273

VY2
Y4+ 1172 + V2

BB u(2.2,1),a21) — Cw((22,1),a01) = 0.

BB u((2.2.1).012) = Co((2.2.1).a19) =

7

These quantities are nonnegati > n ————.
q gative because 73 > v, and ¢ > P N

Hence,
the policy m = (d)* is an optimal policy and the recurrent states under this policy
are (0,1,2), (1,1,2), and (2,1,2). In the transient states (i.e., states in S\ Sy+) we

can select an action that will take the process to one of the recurrent classes and

this shows that the policy 7* described in the theorem is optimal when v; > v and

2
71
c> .
27 +27172+273
2
. 72 . . o . .
Finally, let 74 < 72 and ¢ > DR N - and consider the following decision rule:

a;n if x € {(0,2,1),(1,1,1)},
d(x) = a;y ifx e {(O,1,2),(0,2,2),(1,1,2),(1,2,2),(2,1,1),(2,1,2)},
as ifx e {(1,2,1),(2,2,1)},

Vi )

Lemma 5.3.2 and the previous result (for the case where 7, > v and ¢ > v
1 2

show that this policy is optimal. Under the policy m = (d)*°, the recurrent states
are (0,1,2), (1,1,1), (1,1,2), (2,1,1) and (2, 1,2); and in the transient states we can

select the actions that take the process to one of the recurrent states. Hence, the

3

policy 7 described in the theorem is optimal when v, < 7, and ¢ > PR —s—
1 2

Hence the proof is complete. O
Proof of Theorem 5.4.2: We will use the LP approach for communicating

Markov decision processes using the notation in the proof of Theorem 5.4.1.
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Here, we prove the result when v, > <9 because the result for the other case
follows from the reversibility of two station tandem lines, as shown in Lemma 5.3.2.

We first prove the optimality of the policy for 0 < ¢ < . Consider the decision

2+2

rule d, where d(x) is defined as follows for all = € S:

(

ay if z € {(0,1,2),(0,2,1),(0,2,2),(1,1,1)},
PR K if € {(1,1,2),(1,2,2),(2,1,1), (2,1,2)},

asy if x e {(1,2,1),(2,2,1)},

as iz €{(2,2,2),(3,1,1),(3,1,2),(3,2, 1)},

\

More specifically, consider the basic solution w corresponding to the policy m = (d)*

with the basis

D = {w((0,1,2),(1,1)),w((0,2,1), (1,1)),w((0,2,2), (1, 1)),
w((1,1,1), (1, 1)),w((1,1,2), (1, 2)),w((1, 2,1), (2,1)),w((1, 2,2), (1, 2)),
w((2,1,1),(1,2),w((2,1,2), (1,2)), w((2,2,1), (2, 1)), w((2,2,2), (2, 2)),
w((3,1,1),(2,2),w((3,1,2),(2,2),w((3,2,1),(2,2)) }

For states (0,1,2),(0,2,1), and (0,2, 2), we have :

CBB_lvw((0,1,2),a12) - Cw((0,1,2)7012) = CBB_lvw((07271)’a21) - Cw((0,2,1),a21)

-1 -1
= cpB Vw((0,2,2),a12) — Cw((0,2,2),a12) — cgB Vw((0,2,2),a21) — Cw((0,2,2),a21)

_ (2 = 2em = 2e)

)

Mt 2
CBB_lvw((o,l,z),am) — Cw((0,1,2),a21) = CBB_lvw((o,zn,m) — Cw((0,2,1),a12)
_ N
Mt 72
It is clear that these quantities are nonnegative when 0 < ¢ < —2—. For state

271+272
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(1,1,1) we have :

CBBfl’Uw((Ll,l),am) — Cw((1,1,1),a02) — CBBilvw((l,Ll),aQo) ~ Cw((1,1,1),a20)
_ Y1y2(71 + em)
71t Y2

CBBiler((l,l,l),alg) — Cw((1,1,1),a12) — CBBilvw((l,l,l),azl) — Cw((1,1,1),a21) — €72,

BT Wu((1,1,1).a2) — Cuo((1,1,1),020) = 672,

for state (1,1,2) we obtain :

B w110 — Cw((1,1,2 -
'LU(( 1, ),(l02) ’UJ(( s Ly )1a02) 71 _|_ 72’
) 172(1 = 2¢)
cgpB 1’Uw((l,1,2),a1o) ~ Cu((1,12),a10) T W
) 2c71(27v1 + 72)
cpB 1Uw((l,l,2),an) ~ Cw((1.2)01) T Y1+ 72

CBBil’Uw((Ll’Q)’an) - Cw((1,172)7a21) = 20(71 + 72)7
2¢72(21 + 12)

BB Uu((1,1.2).a2) — Coo((1,1,2).020) =

Y1+ 2
for state (1,2,1) we obtain :

_ 7172(1 — 20)
cpB v, ao1) — Cuw ) = ——~— =%
B ((17271)7 01) ((17211)1 01) ,yl +,y2

- Y172
cgB 1'Uw((1,1,1),a20) — Cw((1,2,1),a20) = it

- 2c71(271 + 72)
cgB 1vw((1,2,1),a11) — Cuw((1,2,1),a11) — RTINS

BB Vu((1,2,1)a12) — Cu((1L2,1)a12) = 2¢(11 +72),
2¢72(271 + 72)
Y1+ 2

BT Uu((1.2,1),a2) — Coo((1,2.1),020) =

and for state (1,2,2) we have :

cBB_lvw((Lg,z),am) — Cw((1,2,2),a01) — CBB_IUw((1,2,2),a10) — Cw((1,2,2),a10)
_ Y172(1 = 2¢)

Y1+ )2

— 2en (271 + 72
BB u((1.2.2)a11) — Co((122).a11) = ( )

Y1+ 2
CBBilvw((l,Q,Q),azl) — Cw((1,2,2),a21) = 0,
- 2em7e
cgB 1Uw((1,2,2),a22) — Cw((1,2,2),a02) = - +72~
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For state (2,1, 1) we have :

CBB_IUw((2,1,1),a02) — Cw((2,1,1),a02) — CBB_IUW((Q,LI),MO) — Cw((2,1,1),a20)

_ ne(—2)
Y1+ )2
) 2c7172
B 1vw((2,1,1),a11) — Cw((2,1,1),a11) = ]
CBB_lvw((Q,l,l)»am) ~ Cw(@LD.an) = 0
B QC’}/Q
CBB 1Uw((2,1,1),(122) — Cw((271,1),a22) = mv
for state (2,1,2) we obtain :
) (1 —20)
cgB 1Uw((2,1,2),a02) ~ Cw((21,2)802) T W
ot M2
CBD  Uw((2,1,2),a10) — Cw((2,1,2),a10) = M+
. 201127 + 392)
B Vu(@1.2,00) T Cul@12)em) = T T

CBB_lvw((271’2)»a21) - Cw((2,1,2),a21) = 26(’71 + 72)7

~1 2¢72(271 + 272)
BB Uu((2,1,2),a20) — Co((2,1,2),a20) =

71+ 2
for state (2,2,1) we obtain :
- 172
B Vu(2,2,1).a00) = Cu(22,1),a0) = T
_ My2(1 — 20)
cgB 1?Jw((2,1,1),ago) — Cw((2,2,1),a20) = W
B0 . _ 20 (271 +37)
B w((2,2,1),a11) w((2,2,1),a11) - +,_)/2

CBB_lvw((ZZl)»alQ) - Cw((2’271)7a12) = 26(’71 + 72)7

B! _ 207227 + 2792)
(6324 Vw((2,2,1),a22) — Cw((2,2,1),a22) = PIDY

and for state (2,2,2) we have :

CBBilvw((Z,Q,Q),am) — Cw((2,2,2),a01) — CBBilvw((Q,Z,Q),alo) — Cw((2,2,2),a10)

_ (2 +em)
Y1+ Ve

8B 0u(2.2.2).a11) — Cu((2,2,2).011) = 6C71,

BT Uu((2.2.2).a12) — Cu((22.2).012) = BB Vu((1.2.2).a31) — Cor((22,2)a21) = 2C7V1-
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Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

CBB_IUw((37171)’a12) — Cuw((3,1,1),a12) — CBB_lvw((3,1,2),a12) — Cw((3,1,2),a12)

-1 —1
=cpB Vw((3,1,1),a21) — Cw((3,1,1),a21) — cgB Vw((3,2,1),a21) — Cw((3,2,1),a21)

_ (i = 20 — 2em)
M+ Y2

)

CBB_lvw((?),l,Q),agl) - Cw((3,1,2)7a21) = CBB_lvw((37271)’a12) - Cw((3,2,1),a12)

_ Y172
"+

These quantities are also nonnegative when c¢,7;, and 7, satisfy the assumptions
above. Hence we have shown that the inequality (55) is satisfied for all nonbasic

variables. We can conclude that D is an optimal basis for LP (54), and consequently

7 = (d)™ is an optimal policy when 0 < ¢ < . We see that the recurrent states

271 +2
are (0,1,2), (1,1,1), (1,1,2), (1,2,2), (2,1,1), (2,1,2), (2,2,2) and (3,1,2) under
this policy. In the transient states (i.e., states in S\ S,+) we can select an action that

will take the process to one of the recurrent states and this shows that the policy 7*

described in the theorem is optlmal when 0 < ¢ <

2m1 +272

2v172+73
? 292 +4y172

Next, let < ¢ < min ) , and consider the decision rule d,
27f +27
2

27y +2’y
where d(x) is defined as follows for all x € S:

(o it e {(1,1,1)},

a2 if x € {(0,1,2),(0,2,2),(1,1,2),(1,2,2),(2,1,1),(2,1,2)},
(0,2,1)
( )

(
,(1,2,1),(2,2, 1)},
2,2,2),(3,1,1),(3,1,2),(3,2,1)},

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1),(2,1)),w((0,2,2),(1,2)),
w((1,1,1), (1, 1)), w((1,1,2), (1,2), w((L, 2, 1), (2, 1)), w((1, 2,2), (1, 2)),
w((2,1,1),(1,2),w((2,1,2), (1,2)), w((2,2,1), (2, 1)), w((2,2,2), (2, 2)),
w((3,1,1),(2,2)),w((3,1,2),(2,2)),w((3,2,1),(2,2))}.
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Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

cBB’lvw((o,lg)ﬂn) — Cw((0,1,2),a11) = CBBilvw((O,Zl),au) — Cw((0,2,1),a11)

— ¢.B! 2+ 72) (2 + 2092 — 72)
=CB Uw((0’272)7a11) - Cw((072,2),a11) - ,}/% + 7172 + fy%

BB 00 ((0,1,2),a31) — Co((0,1,2),031) = BB Vu((0.2,1),012) — Coo((0.2,1),015) = 2€71,

?

BB 00 ((0,2.2).021) — Cu((0.2,2),a21) = O-

These quantities are nonnegative because ¢ > 27112272. For state (1,1,1) we have :
BT 0w((1,1,1),002) — Ca((1,1,1),002) = BB Vu((1,1,1),020) — Cun((1,1,1),050)
_ (297 +4ire + 43 + 95 — 4erd — 6erfre — denyi)
2(m +72) (7 + 1172 +13)
BB 0w ((1,1.1),012) = Co((1.1,1),012) = BB Vu((1,1,1),031) — Cu((1,1,1),21)
_ Y2(75 + 27172 — 2¢9% — 4ena)
20 + 2 +73)

Y

Y

Y2 (V2 + 29172 + 2¢7? + deyrys)
Y4+ e + V2

BB T 0 ((1,1,1),a22) — Coo((1,1,1)029) =

b

for state (1, 1,2) we obtain :

CBB_lvw((1,1,2),a02) — Cu((L12)a0y) = 7172571 + Y2 — 2271)
YTV T,
Yiv2(77 + 2¢79)
(m +72)(7F + v +93)
T (27 +72) (2077 + deyye + 4eys — 73)
T T (7 +72) (7 + 172 +3)

CBB_lvw((17172)7a21) - Cw((1,1,2),a21) = 20(71 + ’}/2)’

’

BB u((1.1.2).a10) — Co((1.1,2).a10) =

)

CBB_lvw((1,1,2),a22) — Cuw((1,1,2),a22)
_ 229872 + 7173 + 2097 + 29372 + 8 + 40y3)
(71 +72) ¥ +172 +732)

9

for state (1,2,1) we obtain :

Y12 (7E + 2¢72)
(M +72)(0F + 12 +93)

B-! e+ — 2em)
CB Uw((l,l,l),am) - Cw((1,2,1),a20) - 712 + 71/}/2 + ’y22

8B u((1.2.1).001) — Coo((12.1).a01) =

Y
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1271 + 72) (277 4+ deyiye + 4eys — 73)
(M +72)(7F + M2 +93)
CBB_lvw((lvzrl)vaIQ) - Cw((17271)7a12) = 20(71 + 72)’

~1
BT 0w(1,2,1),a11) — Cw((1,2,1),a11) =

)

BT Uu((12,1),052) — Ca((1,2,1),022) =
_ (29 + 193+ 2097 + 209y + 8emd + 4evs)
a (M +72)(F + 172 +93)
and for state (1,2,2) we have :

9

CBB_lvw((1’272)’a,01) - Cw((1,2,2),a01) = CBB_lvw((1,272)7a10) o Cw((172>2)7a10)7

_ yine(n +207)
7+ ts

11271 + 72) (2e72 + deyiye + 4eyE — 93)
(m +72)(0F + 1172 + )

8B 0 ((1.2.2).a11) — Co((122),011) =

)

CBB_lvw((l,Q,Q),agl) — Cu((1,2,2),a21) = 0,

Bl B _ 22702 +93 — 2097 — denys)
T ame TN T o S G e +08)

For state (2,1, 1) we have :

CBB_lvw((Q,l,l),aog) - Cw((2,1,1),a02) = CBB_lvw((2’171)7a20) B Cw((2,1,1),a20)
_ 7172(1 — 2¢)
Y1+ Y2

Bl _ (2098 + deyiys + 4oy —93)
e N CT IR TG AEE)

?

CBBflUw((2,1,1),a21) — Cu((2,1,1),a21) = 0,
Y2 (1173 + 2075 + 4eviye + deyiys + 4eyd)
(7 +72) (7 + 172 +13)

BB u((2,1,1),a22) — Cun((2,1,1),020) =

Y

for state (2, 1,2) we obtain :

Y172(1 — 2¢)
" 4—272

—1 1MY2(77 + 2¢72)

cpB Uw((2,1,2),a10) ~ Cw((2,1,2),a10) = 712 Ty + 7; )

5B 21 210m0) — Co(o1 21y — Y1 (4ey} 4 1069772 + 1267175 + 8cys — 73)

e o (M 4+ 72)(9F + M2 +3)

CBBilvw((Z,l,Q),le) — Cw((2,1,2),a01) = 2¢(71 + 72),

Y2 (1173 + 2673 + 4yt + dems + 4eyd)
(M +72)(7F + 772 +95)

BT 0u((2,1.2),000) — Cuo((2,1,2).000) =

Y

BT Uu((2,1.2).a2) — Coo((2,1,2).020) =

Y
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for state (2,2,1) we obtain :

) ’71’72(1 — 20)
csB 1vw((2,2,1),a01) — Cw((2,2,1),a01) — W

) M72(7F + 2¢72)
BB V0 ((2,1,1),20) — Cun(2.2,1),020) = i+ 71172 +93

%B”ﬂmmm@n—anmMQZ7ﬂ%ﬁ+1%ﬁ%tl%%ﬁ+§m€_ﬁ)
(1 + )T+ +3)
CBB_I'Uw((2,2,1),a12) — Cu((22,1),a12) = 2¢(71 + 72),5
Yo(117s + 267} + deyive + denys + devys)
(1 +72) (77 + 12 +73)

Y

-1
cgB Vw((2,2,1),a22) — Cw((2,2,1),a22) =

)

and for state (2,2,2) we have :

BB Wu((2.2,2),001) — Cu((2.22),001) = BB Vu((2,22).010) — Cu(2.22),010);
(297272 + 112 + 2078 + 2092y, 4 8eninE + ded)
- (1 +22) (0 + 2 + %)
CBB_lvw((Z?»?):an) — Cw((2,2,2),a11) = 71(6ent _2807172 + 862’)/3 — )
YTV T
CBBilvw((2’2’2)’a12) — Cw((2,2,2),a12) = CBB?lUw((ZZ,Q),azl) — Cw((2,2,2),a21)
(209 +deyiye + 4z —3)
R 2(9F + 72 +13)

Y

Y

2 2
iti i Y2 < mi g 27172475 .
These quantities are nonnegative because e, < C min{ 5574377 22 g }. Fi

nally, for states (3,1,1),(3,1,2) and (3,2,1) we have

CBBilvw((gle),alz) — Cw((3,1,1),a12) — CBBilvw(({%,l,Q),alg) — Cw((3,1,2),a12)

= 5B 0u(3.1,1),091) — Cu((3.1,1).01) = BB T Vw((3.2,1).031) — Cun((3.2,1),21)
_ 200 = 2097 — 2¢93)
A+ + %
BT 0u((3,1.2).a21) — Cu((3.1.2),021) = CBB T Vu((3:2,1),a1) — Con((3:2.1),012)
~ m72(2ev2 +m)
e +g

)

7

T Hence, the policy m = (d)>

These quantities are nonnegative because ¢ <
is an optimal policy and the recurrent states under this policy are (0,1,2), (1,1,2),
(1,2,2), (2,1,2), (2,2,2), and (3,1,2). In the transient states (i.e., states in S\ Sy« )

we can select an action that will take the process to one of the recurrent states and
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this shows that the policy 7* described in the theorem is optimal when ;—2— < ¢ <

2914272 —
2 2
s Y1 271724‘72
mln{ 27§ +273 7 293 +4m1v2 } )
2
Now, let v < 172 + 73 and ¢ > 2727#72, and consider the decision rule d, where
1 2

d(x) is defined as follows for all x € S:

;

a1 1f33 < {(1, 1, 1)},

an if 2 € {(0,1,2),(0,2,2),(1,1,2),(1,2,2),(2,1,1),(2,1,2),
(

asy if z € {(0,2,1),(1,2,1),(2,2,1)},

ass if z € {(2,2,2),(3,2,1

\

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1),(2,1)),w((0,2,2), (1, 2)),
w((1,1,1), (1, 1)), w((1,1,2), (1,2), w((1, 2, 1), (2, 1)), w((1, 2,2), (1,2)),
w((2,1,1),(1,2)),w((2,1,2), (1,2)),w((2,2,1), (2,1)),w((2, 2, 2), (2, 2)),

w((3,1,1),(1,2)),w((3,1,2), (1,2), w((3,2,1),(2,2)) }-

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0, 2,2), we have :

_ -1
cpB 1Uw((0,1,2),a11) — Cw((0,1,2),a11) — cpB Vw((0,2,2),a11) — Cw((0,2,2),a11)

_ 27%1(2097 + 2095 — 73)

"+ 3 ’
CBB_IUw((0,1,2),a21) — Cy((0,1,2),a21) = %(4671;_7_1212% — 7%)7
CBB_IUw((O,Zl),au) — Cw((0,2,1),a11) = 2n(n ;%z?,(ygl ha %),
B-! _ _ N
CB Vw((0,2,1),a12) — Cw((0,2,1),a12) = 7% n 7227
CBB_lvw((OQ,Q)yagl) — Cw((0,2,2),a01) — 71(2073;3?; — 7%).
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2
These quantities are nonnegative because ¢ > 27%275 For state (1,1,1) we have :
1 2
2(n2 2
_ (1 + 3172 +73)
csB v, ane) — C ane) =
7 ({1 02) 7 Bl = 900 4 30) (7 + 13)

CBBilvw((l,l,l),ago) — Cu((1,1,1),a20)
_ 7e(dey) +deriye +4emys +4ey; — 297 — 9872 + 373 + 73)
(M +72) (7% +3)

B-1 (¥ e =)
CB Vw((1,1,1),a12) — Cw((1,1,1),a12) = 2(7% T 722)

Y

Y

BB u((1,1,1),a21) — Con((1,1,1),021)

A+ ey +Aenys + 40 — 293 — 3+ + 8

- 2 2 )
Y1+ 2

4 (% +mve —F ey} +4evd)
CBB Uw((17111)7a22) - Cw((17171)7a22) - 2 2
Y1+

)

for state (1,1,2) we obtain :

7173
i+
Y2
(m+72)(F +3)

BB 0 ((1,1.2).002) = Coo((1.1,2),000) =

CBB_lvw((l,l,Q),alo) — Cw((1,1,2),a10) =

BB u((1,1.2),a11) — Cu((1,1,2),.011)
= 1082 = mB — 7+ 4y H4eyiye +4ens +4ey)
a (71 +12) (V2 +%)
Y1 (4eyt + 4eys — 1)
7+

Y

CBB_lvw((1,1,2),a21) — Cu((1,1,2),a21) =

)

CBBil’Uw((LLQ),aQQ) — Cw((1,1,2),a22)
_ 7 (7%72 + 71722 - 7{’ + 4675’ + 4071272 + 4071’)’22 + 4073)
(11 +72)(7F +13)

Y

for state (1,2,1) we obtain :

3
B_1 B _ Y172
CB ’U’u}((l,Q,l),CLOl) cw((l,Z,l),(IOl) - (71 + 72)<7]? + 722) 9
2
_ Y172
csB 1Uw az) — Cw a = 5 9>
B ((17171)1 20) ((11271)7 20) ,y% +,y22

Bl = 2y +7)(0F e — %)
CB Vw((1,2,1),a11) — Cw((1,2,1),a11) = (71 i 72)(7% T 722)

2
_ (1 +72)
BB 0u((1.2,1).a1) = Co((12.1)012) = 17% + 2

B-! ~ome(F + 3 +73)
CB Uw((1,2,1),a22) — Cw((1,2,1),a22) = (’71 n 72)(,}/% I 722)

)

Y

Y
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and for state (1,2,2) we have :

(2693 + 207290 + 2072 + 2073 — A7)

—1
CBB Uw((1’292):a01) - Cw((1,2,2),a01) = (71 + 72)(7% + ,)/22>

Y12
(m+72)(F +3)

—1
BB Vu((1,2,2),a10) — Cw((1,2,2),a10) =

8B Wu((1.2.2).a11) — Cu((1,2.2),.011)
_ (e — 173 — 9 + 4o + 4oyt + dend + 40%3)
(M +72)(F +73)
(71 + 72) (4eyf + devs —9f)

cBBflvw((lz,z),am) — Cw((1,2,2),021) = 7+ ’

?

CBB_IUU,((LQ,Q),@Q) — Cw((1,2,2),a22)
_ Yo (V172 — Vive — VP + 4oy + deyiye + deyiyE + derys)
(11 +72)(F +73)

For state (2,1, 1) we have :

’71’75’
Y1 +72)(F+3)

BT Uu(@1,1).a00) — Coo((2,1,1),000) = (

8B Wu((2.1.1).a20) — Coo((2,1,1),090)
2y 4 2098y + 2075 + 2093 + 13 — 92 — )
B (71 +12) (2 +%)
M2 (0 + 12 —75)
(M +72)(F +73)
(11 +72)(2e97 + 2¢75 —77)
7+

bl

B w11y .a11) — Co((21.1).011) = ;

8B 0u(@1,1),021) — Con((2,1,1),091) =

Y

CBBil'Uw((g’lJ),am) — Cw((2,1,1),a22)
_ (0 =9 — 97 + et + 4erie +demng + 40%3)
(71 +72) (77 +3)

Y

for state (2,1,2) we obtain :

3
Bfl o - 7172
CB Vw((2,1,2),a02) — Cw((2,1,2),a02) = (%4_72)(7%_{_7%)7
2
_ Y172
cgB™ v —c = ,
B w((2,1,2),a10) w((2,1,2),a10) '7%""7%

8B Wu(2,1.2),011) — Cu((2,1,2).011)
_ (73 + 9172 — 93 + 4ot + 4oty + 4end + 40%3)
(1 +72)(F +73)
(71 +72)(4er? +devs —77)
7+

Y

-1
cgB Vw((2,1,2),a21) — Cw((2,1,2),a21) =

Y
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CBB_lwa((zLQ),aQQ) - Cw((2,172)7a22)
_ (103 = the — 1P+ derd + derdys + 4ennd + den)
(M +72) (% +13)

)

for state (2,2,1) we obtain :

Y2
v+
7173
(m +72) (7 +3)
B! _ nlém V1V2 T2 — 2
CB 'Uw((2,2,1),a11) - Cw((2,2,1),a11) - (")/]_ + "YQ)("}/% + ’_)/22)

2
~ 7i (71 4 72)
BB u((2.2.1).a12) = Co((22.1).a12) = —7% 2

-1 Y2 (7 + e +73)
B i) = Cotsaa = T N )

8B u(2.2.1).001) — Co((22.1)a01) =

-1
cgB Vw((2,1,1),a20) — Cw((2,2,1),a20) =

)

Y

)

and for state (2,2,2) we have :

8B u((2.2.2).001) — Cu((2,2,2).001)
_ (3 + 989 — 9 +4erf + deriye + 4ernys + 4evi)
(m +72) (77 +13)
2 2 2
_ Y12(7% + 7172 +73)
cgB 1Uw 2,2,2),a10) — Cw((2,2,2),a10) — )
(( ),a10) (( ),a10) (’71 + '72)<'7% T 722)

B-1 _ n(F e =98+ deyf + den)
CB Vw((2,2,2),a11) — Cw((2,2,2),a11) — 7% I ’Y%

(V¥ + 7y2 —73)
2(7% +13)

Y

Y

BB 0u((2.2.2).a12) = Co((2.22).a12) =

Y

CBBilfU’w((Q,Q,Q)ﬁ«Ql) - cw((27272)7a21)
—V2 — Py — 3 4 4oy 4 deyiys + deyy2 + derys
_ TN N2 N 1 Y172 Y172 Y2
207 +13)

Y

77

m . Flnally,

These quantities are nonnegative because 7 < v,7, + 72 and ¢ >

for states (3,1,1),(3,1,2) and (3,2,1) we have

Y2(2e7f + 2¢v5 — 1)
i+ 73

BB u((3,1,1),012) — Co((3.1,1)021) =

)l
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—1 -1
cpB Vw((3,1,1),a22) — Cw((3,1,1),a22) — cgB Vw((3,1,2),a22) — Cw((3,1,2),a22)

_ 292(209F + 2095 — 1)

"1 +3 ’ i o
BT 0u((3,1.2).021) = Cu((3.1,2),001) = 72(4672;;1?222 — %)7
8B u((3.2.1).010) — Cw((3,2,1),a12)%
8B 0u((3.2,1).001) — Cu((3,2,1),a01) = 0
These quantities are nonnegative because ¢ > ﬁ Hence, the policy m = (d)>

is an optimal policy and the recurrent states under this policy are (0,1,2), (1,1,2),
(2,1,2), and (3,1,2). In the transient states (i.e., states in S\ S,+) we can select an
action that will take the process to one of the recurrent states and this shows that the

policy 7* described in the theorem is optimal when 7? < y;95 + 73 and ¢ > #
1 2

27172473 <c< 3 +vire—n7s

Next, let v2 > 2 and
’ MM T 297 +4m172 = Ay et s 43

and consider the

decision rule d, where d(z) is defined as follows for all x € S:

a if 2 €{(0,1,2),(0,2,2),(1,1,1),(1,1,2),(2,1,1),(2,1,2)},
d(l’> = 21 lfﬂf € {(Oa27 1)7 (1727 1)7 (2727 1)}7

ass ifz€{(1,2,2),(2,2,2),(3,1,1),(3,1,2), (3,2, 1)},

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1.2)),w((0,2,1), (2,1)),((0.2,2), (1,2)),
((L,1,1), (1,2)),w((1,1,2), (1,2)), (1,2, 1), (2, 1)), w((1,2,2), (2.2)),
(21,1, (1,2)),w((2,1,2), (1,2)),((2.2, 1), (2, 1)), w((2,2,2), (2.2)),

w((3,1,1),(2,2),w((3,1,2),(2,2),w((3,2,1),(2,2)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic
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variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

-1 -1
cgB Vw((0,1,2),a11) — Cw((0,1,2),a11) — cpB Vw((0,2,1),a11) — Cw((0,2,1),a11)

= 5B 0w ((0,2.2)011) — Cu((0.2,2),011)
—27173 — 37772 — 75 + 6¢y] + 14eyiye + 8enys + 4072
3’71 + 6’71 Y2 + 47172 + 272

BB 00 ((0,1,2).a31) — Co((0,1,2),091) = BB Vu((0.2,1),012) — Coo((02,1),015) = 2671,

BB 00 ((0.2.2).021) — Cu((0.2,2),a21) = O-

+
These quantities are nonnegative because ¢ > % For state (1,1,1) we have :

CBB Vw((1,1,1),a02) — Cw((1,1,1),a02) = CBB Vw((1,1,1),a20) — Cw((1,1,1),a20)
~ 72+ 4y + 295 — deri —den)
N 37} + 67372 + 47172 + 273
27172(—27172 — V3 + 2697 + dene)
37} 4 6712 + 413 + 293

I

BT w11, .a11) — Co((111)011) =

CBB_lvw((l,l,l),am) — Cu((1,1,1),a21) = 0,

CBBflvw((Lu),an) — Cu((1,1,1),a22)
_ 2%(29172 + 95 + 4097 + 8eyine + 8eyi + 4eni)
373 + 673v2 + 4nvs + 293

Y

for state (1,1,2) we obtain :

Y72(37F + diye + 273 — 4yt — denye)
373 + 67372 + 47172 + 273
V(371 + 4eya)
37} + 6772 + 473 + 293

CBB_l’Uw((1,1,2),a02) — Cuw((1,1,2),a02) =

Y

B 0u((1,1.2),a10) — Co((1,1,2),010) =

BT Uu((1,1,2).011) — Cu((1,1,2),010)
~ 2m(=2m173 — 75 + 6c} + 1deyine + 12em75 + 4eyd)
- 373 + 69372 + 42 + 273

BT Wu((1,1.2),a21) — Cun((1,1,2),.021) = 2¢(11 + 72),

Y

CBB_lvw((1,1,2),a22) — Cu((1,1,2),a22)
_ 29029172 + 75 + 4097 + 8eyine + 8emis + 4ev;)
378 + 69272 + 417z + 293

Y
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for state (1,2,1) we obtain :

_ 1123 + 4eye)

377 + 67172 + 47175 + 2793
B! _ 71720398 + 47172 + 295 — 4erf — deyie)
T Tl Dea) TG0 a) 37¢ + 6772 + 47175 + 273

CBB_lvw((LQJ),aOl) — Cw((1,2,1),a01)

Y

CBB_I'Uw((LQJ),aH) — Cw((1,2,1),a11)
_2n(=2n73 — 18 + 607} + 1eriye + 12693 + 4en3)
378 + 67872 + 4nE + 203
CBB?l/Uw((LQvl)valQ) - Cw((17271)7a12) = 20(71 + 72)’

Y

CBB_IUw((l,Q,l),agg) — Cu((1,2,1),a22)
_ 29029172 + 95 £ 409t + 8eyine + 8emis + 4ev;)
378 + 69272 + 47z + 273

Y

and for state (1,2,2) we have :

cBB_lvw((l,g,z),am) — Cw((1,2,2),a01) — CBB_lvw((l,Q,Z),alo) — Cuw((1,2,2),a10)>

_ i — 73 + 2097 + ey + 4ey)
37} + 6777 + 47173 + 273

Y

CBBilvw((l,Z?),an) — Cuw((1,2,2),a11)

_ (=292 — 3193 — 23 + 8e9 + 18chiye + 12¢7193 + 4e3d)
3P + 677 + 43 + 298

Y

_ -1
cgB 1Uw((1,2,2),a12) — Cw((1,2,2),a12) — cpB Vw((1,2,2),a21) — Cw((1,2,2),a21)

_ 0 +72)(=2m72 = 75 + 209 + den )
377 + 67872 + 493 + 293

9

For state (2,1, 1) we have :

CBB_lvw((Q,l,l),aog) — Cu((2,1,1),a02) = CBB_I%((ZI,l),azo) ~ Cw((2,1,1),a20)
72037 + e + 293 — 4evf — denys — 4ev3)
N 373 + 67272 + 473 + 293
2m172(NY2 = 15 + 2697 + 4oy + 4e93)
37; 4 6712 + 4173 + 293

)

8B w110 ,a11) — Cu((21,1),011) =

CBB_IUw((Q,I,l),agl) — Cw((2,1,1),a21) = 0,

CBB_lwa((Q’l’l)?aQQ) - cw((2,1,1),a22)

_ 2100172 + 2095 + 2097 + deyie + demin + 4eri)
3¢ + 69872 + 4 + 273

Y
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for state (2, 1,2) we obtain :

7237 + e + 293 — 4t — denye — 4ev3)

—1
eoB (21200 T Cul(212a02) = 373 + 6727, + A2 + 203

_ (1 +92) (397 + 4o
377 + 6772 + g + 293

8B Wu((2,1.2).010) — Cu((2,1,2),010)

-1
cgB Vw((2,1,2),a11) — Cw((2,1,2),a11)

_ 291093 — 73 + 60yt + 1deriyn + 1209193 + 8ey3)
377 + 67772 + 4 + 293

CBB_IU“’((2’172)7CL21) - Cw((271’2)7a21) = 20(71 + 72)’

9

1
BT 0w((2,1,2),a22) — Cw((2,1,2),a20)

_ 200072 + 2175 + 2697 + deyine + 4oy + 4er3)
391 + 6917 + 4N + 293

Y

for state (2,2,1) we obtain :

cgB™ —c _ Y1721 + %)(37% + 4cye)
B w((2,2,1),a01) w((2,2,1),a01) 37% I 6’)/%”}/2 n 47173 n 273,

T172(37F — M2 — 273 + 4eyd + denye + 4evi)

_1 .
BB Uu((2,2,1),a20) — Cw((2:2,1),a20) = 3v3 + 6722 + 4z + 293

8B w22, ,011) — Cu((2.21),011) =

_ 291073 — 73 + 60yt + 1deriye + 1200193 + 8ey3)
37} + 67772 + 43 + 273

BT Wu(22),a12) — Cu(22.1),012) = 26(1 +2),

Y

CBBilvw((gg,l),aﬂ) — Cw((2,2,1),a22)

_ 290972 + 295 + 2097 + deriye + 4oy + 4ev;)
377 + 69772 + 4ns + 293

Y

and for state (2,2,2) we have :

BB (2,200 ~ Cul@2.2,a00) = BB T Vu(2,22)010) — Cul(2,22),a10)+

_ 72<2’Y%’72 + ’717% + 4C’yf + 86712’}/2 + 807173 + 4073)
373 4+ 67372 + 4yivs + 273

Y

8B u((2.2.2).a11) — Co((22.2).a11)
_ 2=y — 3 — 93 + 1009 + 229795 + 167193 + 8e3)
37 4+ 6vive + 4175 + 273
CBB_lvw((2,2,2),a12) - cw((2,2,2)7(112) = CBB_lvw((Q,ZQ)’an) o Cw((2,2,2),a21)

_Mn (71 +72) (=772 — 2792 + 4ey? + 8cyiye + 493)
37} + 69270 + divz + 293

bl

)
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" : 27172473 i ire—ms
These quantities are nonnegative because —y——2 < - chh 2
q & S€ i < €S BTt anai g

. Finally,
for states (3,1,1),(3,1,2) and (3,2,1) we have

CBB_lvw((?;,l,l),alg) - Cw((3,171)7012) - CBB_lvw((37172)’a12) - Cw((3,1,2),a12)

-1 -1
= cpB Vw((3,1,1),a21) — Cw((3,1,1),a21) — cgB Vw((3,2,1),a21) — Cw((3,2,1),a21)

Y2(37 +¥ive — M3 + 4eyd + deyiye 4+ Anvs + 4evs)
373 + 67372 + 4y1vs + 27 ’

CBB_lvw((3,1,2),a21) - CU}((3,172)7CL21) = CBB_lvw((37271)’a12) - Cw((3,2,1),a12)

_ 1172697 + 172 — 93 + 2697 + 8emye + 493)
397 + 6992 + 47173 + 293

)

27172 +75

oy . 2 2
These quantities are nonnegative because vy > 172 + 75 and ¢ > 27 s

. Hence,
the policy m = (d)* is an optimal policy and the recurrent states under this policy
are (0,1,2), (0,2,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2), and (3,1,2). In the transient
states (i.e., states in S\ S,«) we can select an action that will take the process to one

of the recurrent states and this shows that the policy 7* described in the theorem is

27172473

372 =113
<c < 1 1 2
297 +4v172

= A+ Ay ve+Ayiva+4v3
3+ r—ns
Ay +aviva+4yva+4v3 )

optimal when

Finally, let v > 172 + 75 and ¢ > and consider the decision

rule d, where d(z) is defined as follows for all z € S:

(

as if 2 €{(0,1,2),(0,2,2),(1,1,1),(1,1,2),(2,1,1),(2,1,2),

L a99 if x € {
Then, the basic solution w corresponding to the policy m = (d)* has the basis
D = {w((0,1,2),(1,2)),w((0,2,1),(2,1)),w((0,2,2), (1,2)),
w((1,1,1),(1,2)),w((1,1,2),(1,2)),w((1,2,1),(2,1)),w((1,2,2),(2,2)),
w((27 L, 1)7 (17 2))7"‘)((27 L, 2): (1’ 2))7w((27 2, 1)) (27 1))7 w<<27 2, 2)7 (27 2))7

w((3,1,1),(1,2)),w((3,1,2),(1,2)),w((3,2,1),(2,2)) }.
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Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

CBB_lvw((O,l,Q),all) — Cw((0,1,2),a11) — cBB—lvw((o,m),au) — Cw((0,2,2),a11)
_ (=9 — s — 1+ A0t + 4 + 4ng + dey)
(71 +12)(F +3)
CBB_l,Uw((O’LZ)’an) - C’LU((O,LQ),GQI)
a3 .2 2 3 2 2 3
_ 11(=37 — 772 + 71175 + 8¢v; + 8cyive + 8¢y1ys + 8¢s)
2(n +72)(0F +13)

B! = —12) (39 + 3 +99)
CB Vw((0,2,1),a11) — Cw((0,2,1),a11) = (71 T 72)(7% T ’y%)

2 2 2

_ M (3'71 + 712 — 72)

cgB lvw 0,2,1),a12) — Cw((0,2,1),a12) — )
(( ),a12) ((0,2,1),a12) 2(% T 72)(7% T 722)

Y

)

I

CBB_lvw((o,Q,z),agl) — Cw((0,2,2),a21)
(=373 — Y299 + 1192 + 4eyd + deyiys + deyys + 4evd)
_ T Y1 T Y12 T2 1 Y172 Y172 20
2(m +72)(7F +15)

iy : 3 +vir—ms
These quantities are nonnegative because ¢ > Lol 2. For state (1,1.1
! & Ay +avive i +4v3 (1,1,1)

bl

we have :

B o e 108+ 3m0e +93)
rb e DA 50+ 92) (0 + 1)

CBBilvw((l,l,l),azo) — Cuw((1,1,1),a20)
_ 7e(eri +4eriye +4ennd +deys — 297 — 982 + 37178 +93)
(1 +72) (7 +3)

-1 117277 — M2 — 7))
CBB Uw((lel)vall) - Cw((lvlvl)yall) = 2(/}/1 + 72)(712 + 722) )

Y

CBBilvw((l,l,l),azl) — Cuw((1,1,1),a21)
_ =37} — Y2 + N7 + 4eyi + deviye + denys + 4oy
2(7f +13)
CBB_lvw((Ll,l)ﬂm) - Cw((l,l,l),azg)
(=3 4+ 7272 + 1112 + 4y + deyPys + 4oy + 4eyd)
_ T T2 TN M1 Y172 Y172 Yo
(m +72)(F +73)

Y

Y

for state (1,1,2) we obtain :

71’722
43
Ve
(m+72)00F +13)

BT U0 ((1,1.2).002) — Coo((1,1,2),00) =

BT 0 ((1,1.2).010) = Co((1.1,2).a10) =
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CBB_lvw((Lm),an) — Cw((1,1,2),a11)
~ (e = s — 5 4o Fderine + denns + 4eyd)
a (71 +72) (7 +13)

8B Wu((1.1.2).a21) — Cu((1,1,2).021)
_ =30 — i+ s 4 8ert + 8y + 8enns + 8evi
a 2(v +3)

CBB_lvw((m,z),m) — Cuy((1,1,2),a22)
~ (=1 e+t deyd 4 derie + dens 4 4evd)
a (71 +72)(F +15)

Y

)

Y

for state (1,2,1) we obtain :

3
BB u((12.1).001) = Co((12.1).001) = e
w 34,1 ),a w »4,1),a01 )
o Y+ )(E+2)
2
_ Y172
cgB lvw a — Cy a = 5 95
B ((1,1,1),a20) (20020 = 223
_ 13 — e — s
BB 0u((12.1).011) = Co((12.1)011) = ( 172 t A2 2>>
1 2

71(3712 —M172 — 7%)
2(7f +13)
27772
i+

Y

CBB_lvw((1,2,1),a12) — Cu((1,2,1),a12) =

BT Wu((1.2,1),a2) — Coo((1,2,1),020) =

and for state (1,2,2) we have :

1(2¢73 + 2¢7iye + 26173 + 2¢v;

— 3

—1
CBB Uw((172a2)7a01) - Cw((17272)>a01) - (,yl + /72)(,}/% + ,)/22>

2
(M +72)F+73)

8B Wu((1.2.2).a10) — Cun((1,2,2),010) =

8B u((1.2.2).a11) — Cu((1,2.2).011)

_ nOf = e =95 + 4097 + demn + 4ev3)
¥4+ 3

)

(1 4+ 72)(267% 4+ 2675 — 77)
i+ 3

8B 0u((1.2.2),a12) — Cun((1,2,2),.012) =

)

CBB_IUw((1,2,2),a21) — Cu((1,2,2),a21)
_ 72(172 =732 — 98 4ot +4eriye +4ens + dey)
(M +72)(0F +3)
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For state (2,1, 1) we have :

7173
(1 +72)(F+3)

1
cBB™ Vu((2,1,1),a00) — Co((2,1,1),a02) =

CBBilvw((Q,l,l),ago) — Cu((2,1,1),a20)
_ (209 + 20972 + 207193 + 2095 + 1173 — 912 — 1)
(m +72)(f +3)

. Y2 (= Ny +73)
esBUu@inm) = CuzLm) = (M +7%)(F +13)

Y

Y

CBB_IUw((Q’Ll),aQI) — Cw((2,1,1),a21)
-3 3 A2-2 2 4 3 4 2 4 2 4 3
_ Y1~ ViV2 T e +4cy] +Aeyiye + 4cyiyy + 4c),
2(7% +13)
27v2(=7E + M2 + 2¢77 + 2¢73)

Y

BB u((2,1,1),a22) — Con((2,1,1),030) =

7+ % ’
for state (2,1,2) we obtain :
1 ’7173
e ) = @100 T S T
2
_ Y172
cpB 1Uw a — Cy a = "5 9>
B ((27172)= 10) ((2=172)7 10) 712 _|_ 722

CBBilvw((g’LQ),aH) — Cw((2,1,2),a11)
M (V2v2 + 1172 — 3 + 4ey + 4oy + denyE + 4eyd)
(M +72)(F +73)

BB Vu((2,1.2).021) — Cun((21.2).021)

Y

_ =39 — 995 + 1173 + 809 +8caiye + 8emng + 8ey)
2(7% +13)

- 295(=1 + 1172 + 2078 + 2093
cpB 1vw((2,1,2),a22) — Cw((2,1,2),a22) — 2( : — : 2)

Y

7+ ’
for state (2,2,1) we obtain :
1 ”Y%’Yz
cgB™ U a — Cy a = 5 9
B ((2,2,1),a01) ((2,2,1),a01) '}/% +'}’§
’71’75’

1
cgB Vw((2,1,1),a20) — Cw((2,2,1),a20) = (’Yl + ,)/2)(,}/% T 73)7

1 Y1377 + 29572 — 73)
cgB Vuw((2,2,1),a11) — Cw((2,2,1),a11) = ('Yl +'72)<’Y% +722> )
71 (37 + Mv2 —3)

2(7% +13)

—1 Y12V + M2 +73)
cpB Vuw((2,2,1),a22) — Cw((2,2,1),a22) = (% T 72)(,7% +’V§)

8B Wu(@2,1),a1) — Cu((2,2.1),010) =

?

Y
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and for state (2,2,2) we have :

CBB_lvw((2,2,2),a01) — Cw((2,2,2),a01)
_ (193 + 9872 — 91+ Ay +deriye + deyis + 4ev3)
(7 +72) (7 +13)

2 2 2
1 i+ e +73)
8B Vu(z22mo) T Cul(222),0) = (M +72)(7 +13)’

9

CBBil'Uw((Z,Q,Q),aH) — Cu((2,2,2),a11)
_ (297 9198 — s — s +Aen) + ey + Aen + 4ev3)
2(7 +13)

_ Y1(71 = 72) (1 + M)
8B Wu((2.2.2).a12) — Cu((2.2.2).012) = 2

Y

Y

CBBilvw((zg,z),an) - Cw((2,272),a21)
_ TN =92 — 90 Aot £ deyine +denag + 4y
2(7f +3)

Y

3 +tr2—m3
A+ v2+anvi+4v3

These quantities are nonnegative because v2 > ;72 + 75 and ¢ >

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

BT 0w((3,1,1).091) — Cu((3,1,1),091)
_ (73 — iy — 397 +4ey +derine + deni +4er3)
2(n +72)(0F +12)
CBB_lvw((371,1)7a22) — Cw((3,1,1),a22) = CBB_lvw((3,1,2),a22) — Cw((3,1,2),a22)
_ (178 — iy — 397 +4eyd +derine + denyd + 4ev3)
(71 +72) (77 +3)
8B 0w((3.1.2)001) — Con((3,1,2).001)
_ Y2 (1173 — Vive — 373 + 8¢y3 + 8cyEye + 8cyiya + 8¢yd)
2(m +72) (7 +13)

1 172(37F + 1172 — 73)
cpB Uw((3,2,1),a12) — Cw((3,2,1),a12) = (’Yl T 72)(7% T 7%)

?

I

Y

CBB_lvw((3,2,1),a21) — Cu((3,2,1),a21) = 0.

3 +9ire—m3
A3 +ayZve+aniv3+4v3

These quantities are nonnegative because ¢ > . Hence, the policy
m = (d)* is an optimal policy and the recurrent states under this policy are (0, 1,2),
(1,1,2), (2,1,2), and (3,1,2). In the transient states (i.e., states in S\ S,+) we can

select an action that will take the process to one of the recurrent states and this
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shows that the policy 7* described in the theorem is optimal when 7% > ~;v, + 2

397 +9iv2 =173
I+ n B +43

and ¢ > Hence the proof is complete. O

Proof of Theorem 5.4.3: We will use the LP approach for communicating
Markov decision processes using the notation in the proof of Theorem 5.4.1.

Recall that we assumed that gy > po since the servers can be relabeled otherwise.
We first prove the optimality of the policy for 0 < ¢ < 4_;11%/12' Consider the decision

rule d, where d(x) is defined as follows for all = € S:

0,1,2),(0,2,1),(0,2,2)},

)
1,1,1),(1,1,2),(1,2,2)},
)
)

,(2,1,2),(2,2,1)},

More specifically, consider the basic solution w corresponding to the policy m = (d)>

with the basis

D = {w((ov L, 2)? (17 1))> w((oa 2, 1)7 (17 1))7 w((o’ 2, 2)7 (17 1))a
w((1,1,1),(1,2)),w((1,1,2),(1,2)),w((1,2,1),(2,1)),w((1,2,2),(1,2)),
(2 1,1),(2,2),0((2,1,2), (2,2)), w((2,2,1), (2,2)}

For states (0,1,2),(0,2,1), and (0,2, 2), we have :

BB u((0,1,2)a12) — Cu((0,12)012) = BB Vu((0,22).013) — Cur(0.22),012)

1
= 2 — 2CH1 — Cllg,

2
_ 1
CBB lvw((07172)7a21) - Cw((0,1,2)7a21) - 5”’1(1 - 26)7
_ 1
cgB 1Uw((0,2,1),a12) — Cw((0,2,1),a12) = 5/@(1 — 20),

CBBilvw((O,Q,l),G«Zl) - Cw((072:1):a21) = CBBilvw((Ovzz)anl) - Cw((072,2),a21)

1
= 5#1 — Cfi1 — 2¢pia.

K2

Tt For state

It is clear that these quantities are nonnegative when 0 < ¢ <
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(1,1,1) we have :

CBB_lvw((1,1,1),a02) — Cw((1,1,1),a02) — 5#1(1 - 20);

CBB_lvw((l,l,l),ago) — Cw((1,1,1),a20) = 5#2(1 — 2c¢),
cBB_lvw((l,Ll)@n) — Cw((1,1,1),a11) — CBB_lvw((l,l,l),agl) — Cu((1,1,1),a21) = 0,

BB T U0 ((1,1,1),a22) — Co((1,1,1),020) = 2¢(pt1 + p12),

for state (1,1,2) we obtain :

CBB_lvw((l,l,Q),aog) — Cuw((1,1,2),a02) — 5#1(1 - 20)7

BT 0u((1,1,2),.010) — Cu(1,12),010) = 5#2(1 —2c),
CBB_IU’UJ((LLQ),G,U) - cw((1,172)7a11) = CBB_l'Uw((l’LQ)’an) - Cw((1’1’2)’a21)

= CBBflvw((l,lg),an) — Cw((1,1,2),a22) — 20(#1 + /~L2),

for state (1,2,1) we obtain :

CBB_lvw((l,Zl),am) — Cw((1,2,1),a01) = 5#1(1 —2¢),

BB 0 ((1.2,1),a20) — Coo((1,.2,1),020) = 5#2(1 —2c),
CBB_lvw((l,Q,l),all) - Cw((1,2,1)7(111) = CBB_lvw((LQvl)val?) o C’w((l,Q,l),a12)

= BT u((1,2,1),092) — Coo((1,2,12),00) = 2¢(pt1 + fia),
and for state (1,2,2) we have :
CBB_IUw((1,2,2),a01) — Cw((1,2,2),a01) = 5#1(1 — 2¢),
8B 0u((1.2.2),010) — Cu((1,2,2),010) = 5#1(1 — 2c),

8B Uu((1.2.2).a11) — Cu((12.2).011) = 2¢(p1 + fi2),

CBB_lvw((1,2,2),a21) — Cw((1,2,2),a21) — CBB_lvw((l,Q,Q),@z) — Cw((1,2,2),a22) = 0.
Finally, for states (2,1,1),(2,1,2) and (2,2,1) we have
CBBilvw((Q,l,l),O«IQ) - Cw((271:1):a12) = CBBil’Uw((Q,LQ)’alQ) - Cw((2,1,2),a12)
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1
= 5#1 — Cfiy — 2¢fia,
cBB’lvw((g,Ll),am) — Cw((2,1,1),a21) = CBBil,Uw((Q,Z,l),am) — Cw((2,2,1),a21)
1
= 5#2 — 2cpy — clig,

_ 1
8B 0u((2,1,2) 001) — Cun(2,1,2),01) = 5#2(1 — 2¢),

CBB_lUw((27211)1a12) - Cw((21271)7a12) = 5/’1’1(1 - 26)

These quantities are also nonnegative when 0 < ¢ < 4u1ﬁ—22u2' Hence we have shown

that the inequality (55) is satisfied for all nonbasic variables. We can conclude that D

is an optimal basis for LP (54), and consequently m = (d)* is an optimal policy when

0<c< 4#1‘3_22#2. We see that the recurrent states are (0,1,2), (1,1,1), (1,2,2), and

(2,1,2) under this policy. In the transient states (i.e., states in S\ S,+) we can select
an action that will take the process to one of the recurrent states and this shows that

B2
dpr+2p2 °

the policy 7 described in the theorem is optimal when 0 < ¢ <

2
L2 < e - -
Next, let Tnizm < CS St nd and consider the decision rule d, where d(x)

is defined as follows for all z € S:

/

\

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1), (1,1)),w((0,2,2), (1, 2)),
w((1,1,1),(1,2)),w((1,1,2), (1,2), w((1,2,1), (2, 1)), w((1, 2,2), (2, 2)),

w((2,1,1),(2,1)),w((2,1,2),(2,2)),w((2,2,1),(2,2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic
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variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

8B u((0.1.2).a11) — Cu((0.1,2).011)

= 5B (02,2 011) — Cu((0.2.2).011)

— Jiz)

_ (pa + p2) (201 + pio) (depn + 2cp
4p3 + B pie + 15

CBBilvw((o,LQ),an) — Cw((0,1,2),a21)

20+ pdp — Bpapl —

Y

py — 2cpf + 120#1#2 + 10cp1 13 + 20#2

4p3 + 3 po 4 i3

CBB_lvw((O,Q,l),aw) -

BB 0 ((0.2.1).am1) — Coo((0.2.1)a21) =

8B u((0,2.2).am) — Cu((02,

_ 20} + pdpe — Bpapl —

Cw((0,2,1),a12) —

2),a21)

115 — 2cpi + depfus + 40#1#2

2010 + po — 2¢pn

ApT + g g + p3

203 — pipg — 204} — 2cpapg — 2cp3
4p3 + 3 pio + 15

Y

ApT + 3 pio + 15

These quantities are nonnegative because

(1,1,1) we have :

BT Uu((1,1,1),a02) — Coo((11,1),000) =
BT Wu((1,1,1),a20) — Coo((1,1,1),a30) =

B Wu((11,1),a11) — Co((11,1),011) =

cBB_lvw((LLl),am) -

BT 0u((1,1,1),a2) — Coo((1,1,1),090) =

for state (1,1,2) we obtain :

CBB_lvw((1,1,2),a02) — Cuw((1,1,2),a02) =

CBB_lvw((Ll,Q),alO) — Cy((1,1
CBBilvw((Ll,z),au) — Cw((1,1,2),a11)

CBB_lvw((l,l,Q),am)

CBB Vw((1,1,2),a22) — Cw((1,1,2),a22) =

Cw((1,1,1),a21) —

72)7a10) =

— Cw((1,1,2),a21) —

p2 c 203 — 1 pia

< s+——=—. For
Ap+2p0 < S S22t or state

203 + pipe + p + 2cuf — deppip — 2%
Apt + 3papig + 15
fapte + 43 + dpa o + 243
43 + 3pa g + 113
pa(pr + pi2) (depn + 2cpy
4p3 + 3 pg 4 415

— fi2)

Y

0,

fpte + depd + depn pip + 2cq3
Ap + Bppg + 115

I

203 + pipe + 3 +cpi — 46#1#2 - 2%
4p3 + B pe + 15
pa(pn + po — 3cpn — cpo)
A + 3papg + 113

= 2c(p1 + p2),

12¢3 + 8cpiypia + 2cp3 — i fin
43 + B po + i3

fuapte + depd + deppip + 2¢p43
4p3 + Bpape + 15

Y

Y
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for state (1,2,1) we obtain :

203 + pipg + p5 — 2cuf — Aeppip — 26,“2
Ap3 + 3papio + 15
2p (i + cpn + cpa)
ApT + 3 pig + 15
BT 0 20,a1) ~ Co(@21)a1) = BB Vw2 0,a12) ~ Cul(12,1)012)
 Haps + depd + depn g + 2cp43
B A + By o + 13

8B u((1.2,1).001) — Co((12,1),a01) =

BB 0w ((1,1,1).a20) — Coo((12,1)020) =

I

2u2(p + pr2) (1 + cpin + cpia)
A + Bpapg + pi3

BB u((1.2,1),a22) — Coo((12,1),025) =

and for state (1,2,2) we have :

fiapie + 205 + depii — depapa — 2c4i
4#? + 3papia + 3
207 — pipg — 2cpi — 2cp g — 2cu2
43 + 3 po + i3
(11 + p2) (12¢p1y + Scpupg + 2cp3 — pafia)
4p3 + 3 pio + 15

8B u((1.2.2).001) — Cu((1,2,2).001) = ,

BB u((1.2.2).a10) — Coo((1.22).a10) ==

8B u((1.2.2).a11) — Co((122).a11) =

Y

CBBill)w((l 2,2),a12) — Cw((1,2,2),a12) = CBBilvw((lﬂ,Z),agl) — Cw((1,2,2),a21)

2#1(#1 + pa) (depy + 2cpn — MQ)
ApT + 3 pio + 15

.. . 22— 1142 .
Th ntities ar £2 i o
ese quantities are nonnegative because Tio, < C= ESTT Finally, for

states (2,1,1),(2,1,2) and (2,2,1) we have

201} + pipe — gy — s — 2cp3 — depdps
ApT + 3 po + 15

8B w2110 .a12) — Cu((2,1,1),012) = ;

-1 -1
cgB Vw((2,1,1),a21) — Cw((2,1,1),a21) = cgB Vw((2,2,1),a22) — Cw((2,2,1),a22)

_ pa(p + po) (dep + 2cp10 — pia)
43 + 3 o + 113

)

207 — papig — 2c; — 2cppry — QCMQ
A3 + 3 po + i3
115 + 8cpi + 2cp
43 + Bpapig + p3

BB Wu((2,1.2).a12) — Cu((2,1,2).012) =

8B Wu((2,1.2).a21) — Cu((2,1,2).021) =

8B ((2,2.1),012) — Cun((2.2,1),a1)
24+ iR — s — g3 — 2008 + 4cu1u2 + Gepnpig + 2cp;
4p3 + 3 pg + 415

- . 203 — i1 po
Th ntiti re nonn 1 B2 < - hmhre
ese quantities are nonnegative because e, <c< ST Hence, the

policy m = (d)* is an optimal policy and the recurrent states under this policy are
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(0,1,2), (0,2,2), (1,1,2), (1,2,2), and (2,1,2). In the transient states (i.e., states in
S\ Su+) we can select an action that will take the process to one of the recurrent

states and this shows that the policy 7* described in the theorem is optimal when

2 <c< 2pF —pa o
4p+2p2 = 2uf+2u1pe+2u3”

243 —pa iz < 203 —pi3 - L
520 152 S 599, 02 1 1
Next, let o td <~ C S oo and consider the decision rule d, where

d(x) is defined as follows for all z € S:

The basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1), (1,1)),((0.2,2), (1,2)),
(L, 1,1, (1,2)),w((1,1,2), (1,2)), (1.2, 1), (2, 1)), w((1,2,2), (2.2)),

w((2,1,1),(2,1)),w((2,1,2), (1,2)), w((2,2,1),(2,2)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0, 2,2), we have :

CBB_lvw((07172)7a11) — Cw((0,1,2),a11) — CBB_IUw((O,Q,Q),au) — Cuw((0,2,2),a11)
(k1 + p2) (2cp3 + 2cp pia + 2cp5 — i3)
VT

Y

pa (e + depipg + dep3 — pij
3 A p o+ i3)
fa i
i+ pape 4 3
B 0u((0,2,1).a21) = Cu(02,1),a21) = 0,
pa(2epf + 2cpi s + 2015 — pi3)
13 4 papie + 5

BB 00 ((0,1.2).am1) — Coo((0.1,2)021) = ;

CBB_lvw((0,2,1),a12) — Cw((0,2,1),a12) =

BB 00 ((0.2.2).a31) — Coo((0.22)a21) =

. . 202 — 1 po
These quantities are nonnegative because ¢ > S 2t 2l For state (1,1,1) we
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have :

[
pF A papn + p3
CBB_lvw((1,1,1),a20) — Cuw((1,1,1),a20) — A (QCM% —ZQCM%'[Q - 202/13 — M%)
pT + paphe + p5
(b1 + pi2) (e + 2cpf g + 2ep3 — 207 + ppia)
13+ papo + 113
(b1 + pa2) (2 + 2cpi s + 2c3 — pif)
1+ g + 13
(1 + pio) (2 + 2cpipg + 203 — P + puapie)
P34 pa e + i

BT u((1.1.1).a02) — Coo((11,1),000) =

Y

1
BB Vu((1,1,1),a11) — Co((1,1,1),011) =

)

8B Wu((1,1,1),a21) — Con((1,1,1),091) =

Y

BB Wu((1,1,1),a2) — Coo((1,1,1),020) =

for state (1,1,2) we obtain :

[143

i+ e+ p3’

pa (Aepd + depfpin + deps — 4pt + papis + 203)
13 A prapin + 5

(11 + pro) (depid + depdpn + dopd — 203 + [ ps)
13 paps + 5

(k1 + pao) (depii + Aepipg + deps — 17)

13+ papie + g3

(1 + pi2) (e + 2cufpn + 23 — pf + puapio)

13+ papie + p3

BT u((1,1.2),a02) — Coo((1,1,2),000) =

8B u((1,1.2).a10) — Cu((1,1,2),010) =

Y

8B u((1.1.2).a11) — Cu((11,2).011) =

Y

BB u((1.1.2).a21) — Cor((1,1,2).021) =

Y

.
BB Vu((1,1,2),a20) — Cw((1,1,2),022) =

Y

for state (1,2,1) we obtain :

fi 13
p3 A g + p3
B [y
1+ s+ 3
(b1 + pa) 2cpd + 2cpipg + 2cps — pf + pupia)
pE A+ pa e+ i

-1
cgB Vw((1,2,1),a01) — Cw((1,2,1),a01) —

CBBil'Uw((Ll,l),azo) - Cw((l,?,l),azo)

8B w12, .a11) — Co((121),011) =

b

13 (i + pi2)
pF A p g + p3
pa o (i + fiz)
3 A p g + p3

8B Wu((1.2,1),a12) — Con((1,2,1),012) =

BB Wu((1.2,1),a22) — Con((1,2,1),020) =

and for state (1,2,2) we have :

8B 0w((12,2).001) — Cun((1,2.2),a01) = 2C1L2,
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pir (degi? + depdpg + depd — 33 + 23)
13+ pafpie + 13
(b1 + po) (depi + depdps + deps — pf)
p3 + papis + 43
i (pan + po) (pn — pa)
13 + i + i3
(b1 + po) (2cp + 2cpipig + 2c3 — pajia)
13+ papio + 3

)

-1
cpB Uw((1,2,2),a10) — Cw((1,2,2),a10) —

8B u((1.2.2)011) — Cow((122),011) =

)

BB 0u((1,2.2),012) — Co((1.22),19) =

BB 00 ((1,2.2),091) — Coo((1,22)021) =

208 —p1p2

These quantities are nonnegative because ¢ > ST

Finally, for states
(2,1,1),(2,1,2) and (2,2,1) we have

pa (203 — pi5 — 2cuf — 2cppip — 2cpi3)
13+ papie + 5
cBBflvw((z,m)’am) — Cuw((2,1,1),a22) — CBBflvw((Q,Zl),azz) — Cw((2,2,1),a22)
_ o+ o) (i — o)
P34 papie + i

BB Uu((2.1.1).012) = Co((21.1)019) =

Y

Y

g (e + depid i + Acpd — 203 + p3)
13 4 prapie + 5

BB u((2,1.2)am) — Coo((2.1,2)a21) = ;

1
BB 0w((2,1,2),a22) = Cw((2,1,2),a29)

_ (pa+ ) epd + 2cppp + 203 — 2083 + papio)
13+ pupe + p

9

pa (23 — pi3)
VT

BB u((2.2.1),012) — Co((2.2.1)019) =

22_ 22_2
Hi—H1p42 s < cC < HT—H5

These quantities are nonnegative because —1—"2 — 2
q ) 2242411 pr2+ 2112 = 222 o+ 203

. Hence,
the policy m = (d)* is an optimal policy and the recurrent states under this policy
are (0,1,2), (1,1,2), and (2,1,2). In the transient states (i.e., states in S\ S,+) we

can select an action that will take the process to one of the recurrent states and this

. % . . . . 2#%*#1#2
shows that the policy 7m* described in the theorem is optimal when TSy S

2p3—p3
c< -1+ 12
= 203421 pa+23

202 —u? . . . .
P2 and consider the decision rule d, where d(x) is

Flnally, let ¢ > m
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defined as follows for all z € S:

(

\

The basic solution w corresponding to the policy m = (d)* has the basis

D = {w((0,1,2),(1,2)),w((0,2,1), (1,1)),((0,2,2), (1,2)),
(11,1, (1,2)),w((1,1,2), (1,2)), (1.2, 1), (2, 1)), w((1,2,2), (2.2)),
(21,1, (1,2)),w((2,1,2), (1,2)), (2.2, 1), (2,2))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2),(0,2,1), and (0, 2,2), we have :

—1 -1
cpB Vw((0,1,2),a11) — Cw((0,1,2),a11) — cgB Vw((0,2,2),a11) — Cw((0,2,2),a11)

(bt o) (20pF + 2cpi g + 2cp13 — 113)
G VT ’

pa(depd + depdps + Aol — p3)
{3+ i po + fi5)
fa i
i+ pape 4 s
B 0u((0,2,1).a21) = Cu((02,1),a21) = 0,
pa(2epf + 2cpi s + 2cp15 — pi3)
13+ papie + 5 '

BB U0 ((0,1.2).a31) — Coo((0.1,2)021) = ,

-1
cpB Vw((0,2,1),a12) — Cw((0,2,1),a12) —

BB 00 ((0.2.2).a31) — Co((0.22)a21) =

‘s . 203 —p1p2
These quantities are nonnegative because ¢ > S 2t BE For state (1,1,1) we

have :

pa i
13 A pa i + 3]
cBBflvw(u 1,1),a20) — Cw((1,1,1),a20) = pu(Zep + 26}2&#2 + 2eit g it H1H2),
S T P pa o + s
pra(pn + i) (p1 — i)

pE A+ pa e+ i

—1
BB 0w((1,1,1),a02) — Cw((1,1,1),a02) =

BB w11, 1),011) — Co((1,1,1)011) =
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(1 + p2) (2 + 2cpips + 2cu3 — 1)
B3+ pape + p3
(1 + pi2) (e + 2cufpn + 2ep3 — pf + puapio)
i+ g + 113

CBB_lvw((l,l,l),agl) — Cuw((L,1,1),a21) =

Y

CBB_lvw((1,1,1),a22) — Cu((1,1,1),a20) =

for state (1,1,2) we obtain :

[143

i+ e+ p3’

pa (Aepd + depipin + depd — 4pt + papis + 203)
13 A prapis + 5

(1 + poo) (depii + depdpg + dep3 + ppe — p3)
13+ pape + 3

(k1 + o) (depd + depfps + deps — if)

B3+ pape + g3

(1 + pi2) (2cpf + 2cufpn + 2ep3 — pf + puapio)

pf + papig + p3

CBBilvw((Ll,Q)’aog) — Cw((1,1,2),a02) —

BT u((1.1.2).a10) — Cu((1,1,2),010) =

9

8B u((11.2).a11) — Cu((11.2).011) =

Y

BB u((1.1.2).a21) — Cor((1,1,2).021) =

Y

CBB_lvw((1,1,2),a22) — Cu((1,1,2),a20) =

Y

for state (1,2,1) we obtain :

[ i
i+ pa e+ p
143 112
i A+ p e+ gy
1 (1 + o) (13 + pa i — 113)
csB Vw((1,2,1),a11) — Cw((1,2,1),a11) = N% Tl + ,ug )
13 (p + o)
i+ pa e+ py
papa (i + pa)
3 4 papo + py

BB u((1.2,1),001) — Co((1.21)001) =

BB T U0 ((1,1.1),a20) — Coo((1.2,1),020) =

BB U0 ((1.2.1).012) = Co((12.1).a12) =

CBB_lvw((1,2,1),a22) — Cu((1,2,1),a22) =

and for state (1,2,2) we have :

BT 0u((1.2,2).001) — Cu((1,22),001) = 2CH2,
cBB_lvw(u 2,2),a10) — Cw((1,2,2),a10) = ,u1(4cu% - 46/;@2 - 4CM% ; 31& i 2#%)
HT + papie + p5
(1 + p2) (27 + 2cpFpn + 2cu3 + pd — i3)
13+ papie + 15
pa (pn + pi2) (p1 — i)
13+ e + p3
(b1 + o) (2cuf + 2cpFpin + 2cpi3 — pajiz)
13+ papie + 13

Y

BB u((1.2.2).a11) — Co((122).a11) =

Y

BB u((1.2.2).a12) — Coo((122).a15) =

Y

CBB_lvw((1,2,2),a21) — Cw((1,2,2),a21) =
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208 —p o

M TSTmE Finally, for states

These quantities are nonnegative because ¢ >

(2,1,1),(2,1,2) and (2,2,1) we have

pi(2e3 + 2ci3 i + 203 — 243 + i)
13 4 papie + 5
CBB_lvw((Q,l,l),agg) — Cu((2,1,1),a22) = CBB_lvw((Q,LQ),agQ) — Cw((2,1,2),a22)
(11 4 p2) (2cp + 2cp3 pin + 203 — 207 + puajio)
B 12 + pps + p
pir (Aepd + depid s + Aepd — 243 + )
B3 4 pafie + 5
po (213 — 13)
3 A+ p g+ py
pa(pn + o) (p1 — pr2)
13+ papin + 43

BT Wu(@1.1).a21) — Co((2,1,1),021) =

Y

I

BT Uu(2,1.2).a21) — Cun((2,1,2).091) =

Y

BT Uu(@2.1).a1) — Cu((2.2.1).010) =

BT Uu(2.2.1).a2) — Cor((2.2.1).090) =

23— 2

2t O Hence, the policy m =

These quantities are nonnegative because ¢ >
(d)* is an optimal policy and the recurrent states under this policy are (0,1,2),
(1,1,2), and (2,1,2). In the transient states (i.e., states in S\ S,+) we can select an
action that will take the process to one of the recurrent states and this shows that
the policy 7 described in the theorem is optimal when ¢ > %;ﬁ% Hence the
proof is complete. O

Proof of Theorem 5.4.4: We will use the LP approach for communicating

Markov decision processes using the notation in the proof of Theorem 5.4.1.

Here, we prove the result when py > psy since the servers can be relabeled other-

443 pa 51 p3+3u3
12u3 42002 po+12p1 p2+4pu3

wise. We first prove the optimality of the policy for 0 < ¢ <

Consider the decision rule d, where d(x) is defined as follows for all x € S:

More specifically, consider the basic solution w corresponding to the policy m = (d)>
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with the basis

D = {w((0,1,2),(1,1)),w((0,2,1), (1,1)),((0,2,2), (1, 1)),
(L 1,1, (1, 1),w((1,1,2), (1,2)),w((1.2, 1), (2, 1)), w((1,2,2), (1,2)),
(21,1, (2,1),w((2,1,2), (1,2)), (2.2, 1), (2, 1)), w((2,2,2), (2.2)),

w((3,1,1),(2,2),w((3,1,2),(2,2),w((3,2,1),(2,2)) }.

For states (0,1,2),(0,2,1), and (0,2, 2), we have :

CBB_lvw((O,l,Q),alz) - cw((0,1,2);a12) = CBB_lvw((07272)7a12) - C’w((072,2),a12)
_ Apdps 4 Spapd + 3p3 — 12045 — 20cpip — 12¢pm 13 — depi
2(443 + Spupag + 3p3) 7
pua (43 + Spapug + 3z — depd + depu )
2(4417 + Spa g + 3p13) 7
o Bl iy A+ A s + S ps + Aol — depd
B w((0,2,1),a12) w((0,2,1),a12) — 2(4/}/% + 5:“1;“2 + BM%) )
CBBilvw((O,QJ),azl) — Cw((0,2,1),a21) — CBBilvw((O,ZQ),azl) — Cuw((0,2,2),a21)
_Apd + 5 + 33 — Ay — 12cpips — 20cp 3 — 12413
2(4p7 + Spuapig + 3p3)

BB 00 ((0,1.2).am1) — Coo((0.1,2),021) =

. .. . Ap2 po+5u1 p3+3u3
< < 1 2 2 .
It is clear that these quantities are nonnegative when 0 < ¢ T2+ 2012 pat 13yea 2 ¥ 478

For state (1,1,1) we have :

BB 00 ((11,1) a0) — Co((11,1) a02)
A+ Spi g + Bpaps — Aepd + depfug 4 Scpnps + deps
a 2(4p7 + 5puapig + 343) 7
Apdp + Spn i + 3p3 + Scpd + Scptpg + Aoy
2(443 + Spa g + 3413) 7
2c(pn + po) (13 + papo + 113)
43 + Sy i + 343
-1 2cp1 (p + p2) (2001 + pio)
BT Uw((1,1,1),a21) — Cw((1,1,1),021) = 107 1 Bingia + 3122
Ae(p + po) (Bt + g iz + 2413)
4p3 + g pio + 3p3

1
BB Vu((1,1,1),a20) = Co((1,1,1),020) =

8B w11, 1),a12) — Co((1,1,1),012) =

)

Y

BT u((11.1),a2) — Con((1,1,1),020) = ;
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for state (1,1,2) we obtain :

AT + Spapig + 3pz — depd + depis
2(443 + Sz + 3443)

1 _ 4pd o+ Sppe + 33 — 8cpi — 12cppip — depis

BB Uuw((1,1,2),a10) — Cw((1,1,2),010) = 2(4M% ¥ Buips + 3#3)

2c(p1 + po) (B + 4 i + 2443)
ApT + S pig + 33

2¢(p1 + p2) (5pf + B + 243)
4pT + Sppie + 33

2¢(p1 + po) (5pf + Thapo + 343)
4p3 + g pio + 33

BT Uu((1,1.2).000) — Coo((1,1,2).000) =

Y

Y

B Wu((1,1.2),a11) — Co((11,2).011) =

Y

BT Uu((1,1.2).a21) — Coo((1,1,2).091) =

Y

BT Uu((1,1.2).a2) — Coo((1,1,2).020) =

Y

for state (1,2,1) we obtain :

f1 (4463 + S pig + 35 — Aepd + 4epis)
2(4pF + Spa iz + 3443)

8B Wu((1.2,1),a01) — Con((1,2,1),001) =

I

BT Wu((1,1,1),a20) — Coo((1,2,1),00)
_ pa(4p + Spapn + 33 — depd — 12cp1p1p — 8y
2(443 + Spupag + 3p3)

5B (101 ans) — Col(1t)an) = 2c(p + MQZ)(2H% + 4#1#22+ 31i5)
Apy + Spapg + 3

2c(p1 + p2) (BpT + S o + 4p13)
4p3 + g pro + 33

2c(p1 + po) (443 + Thapo + 4p13)
Apd + g pro + 313

Y

)

BT Wu((1.2,1).a12) — Con((1,2.1),012) = ;

BT Wu((1.2,1),a2) — Coo((1,2.1),020) =

Y

and for state (1,2,2) we have :

8B 0u((1.2.2).001) — Cun((1,2,2),001)
A4S+ Sppg + Bpaps — Aepd — Sepfpg — Scpapi — Ao
a 2(4p7 + Spua i + 3p3)
CBB_lvw((l,Q,Q),alo) — Cw((1,2,2),a10)
 pra(4p + Spaps + 3p3 — depd — 12cpaps — 8cpi)
B 2(443 + Spapz + 3413)
5B (153 — Col(152n) — 2c(p1 + p12) (B} + dp i + 243)
o o 4p3 + Spapg + 343

_ 2¢(p1 — p2) (p1 + p2)?
csB 1Uw((1,2,2),a21) T Cw((12,2),a21) = 4/1% + dpypro + 3#%

B! _ 2cpu(p A+ pr2) (1 + 2p0)
CB Uw((1,2,2),a22) — Cw((1,2,2),a22) = 4/@ ¥ Bina + 3#3

Y

9

?

Y
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For state (2,1, 1) we have :

8B 0u((2,1,1),002) — Cuo((2,1,1).a09)
A4S+ 53 pg 4 3 ps — depd — Scpfpg — Scpypz — deps
a 2(4413 + Spape + 3413)

BT Wu(211).a20) — Cuo((2,1,1),090)
 po(4pd + Spapis + 3u3 — depi — 12cpape — 8cpi)
B 2(443 + Spupag + 3p3)

2cp1 (1 + p2) (1 + 2p2)
43 + S g + 33

2¢(pn — pia) (1 + p2)?

43 + Sy i + 343

Bl _ 2c(pn + p2) (B3 + A + 2413)
CB /Uw((27171)7a22) - Cw((2,1,1),a22) - 4/1/% + 5,U1,U2 + 3,”%

I

Y

8B w1, 1),a11) — Co((21,1),011) =

)

8B Wu(@1,1).a1) — Co((2,1,1),010) =

Y

for state (2,1,2) we obtain :

po (4T 4 Spapio + 3p3 + dept — depd)
2(443 + B pa + 3443)

BT Uu((2,1.2).000) — Cu((2.1.2).000) =

Y

8B Wu((2,1.2),010) — Cun((2,1,2),010)
a4y} 4 B + 33 — depd — 12cpn g — 8cps)
B 2(443 + Sz + 3u3)
2c(pn + po) (4 + Tra i + 4p13)
4p3 + Sppe + 3p3
2c(pn + p2) (Bt + S + 4u3)
Apt + g pig + 313
2c(pn + p2) (Bt + 4 + 243)
AT + Sp i + 3p3

Y

-1
cgB Vw((2,1,2),a11) — Cw((2,1,2),a11) —

)

8B 0u((2,1.2),021) — Con((2,1,2),091) =

)

)

BB Wu((2,1.2),a2) — Cun((2,1,2),090) =

for state (2,2,1) we obtain :

pio (47 + Spapig + 3z — depd + depis)
2(4pF + Spapig + 3p3)

8B Wu(@2.1).001) — Cu((2.2.1).001) =

?

BT (2,11 .a20) — Cu(2,2,1),a20)
_ fro (4453 + S pig + 35 — 8epi — 12¢p 19 — depss)
2(443 + S g + 3u3)

5B buaamm) — Col(ootan) — 2¢(p + u22)(5u? + 7u1u22+ 3yi3)
4py + S o + 35

2¢(p1 + po) (5pF + S o + 243)
4p3 + Spape + 33

2c(pn + po) (Bt + 4 + 203)
4p3 + Spaps + 343

9

Y

BT Wu(22.1).a12) — Cu((2.2.1).010) =

Y

-1
cgB Vw((2,2,1),a22) — Cw((2,2,1),a22) =

)
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and for state (2,2,2) we have :

Apipe + Spups + 33 + 8cpd — 8cuiug — ey
2(443 + Spupo + 3443)

)

—1
BB Vu((2,2,.2),a00) — Cw((2,2,2),001) =

BB u((22.2).a10) — Cun((22.2).010)

_ Apd + Bpdps + 3 — depd + depidp + 8cpn g + ey
2(443 + Spu g + 3u3)

Bl 2c(p + p2) (3uF + Apnps + 243)

CB Vw((2,2,2),a11) — Cw((2,2,2),a11) = 4#% ¥ Bipis + 3#%

B-! _ 2ep(p + p2) (2001 + pio)
CB Vw((2,2,2),a12) — Cw((2,2,2),a12) = 4#% ¥ Binpis + 3#%

2c(pn + po) (13 + papo + 113)
43 + Sy pig + 343

?

)

)

8B 0u((1.2.2).a21) — Cun((2,2,2),091) =

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

CBB_lvw((3,1,1),a12) — Cw((3,1,1),a12) = CBB_lvw((B»,l,?),am) — Cw((3,1,2),a12)
At 4 5t + 3pn s — depd — 12ep3 g — 20cp pz — 12cp5
- 2(4417 + g pig + 3p3)
8B 0u((3.1.1).a31) — Co((31,1)a21) = BB Vu((3.2,1),031) — Cu(3.2,1),21)
_ Apips + 5pa 3 + 3ps — 12¢pf — 20cp3pp — 12¢p 13 — depss
B 2(443 + Spupa + 3443) ’
5B (513101 — Col(312)0m0) — Api o + B3 + 33 + depd — deps
o o 2(4p3 + Spu i + 3413)
fu1 (4403 o + Spap3 + 3p3 — depi + depnpig)
2(4p3 + Spu iz + 3443)

)

9

BT u((3.2,1).a12) — Cu((3.2.1).010) =

A2 pa 51 p3 433
120342007 po+1201 p3+443

These quantities are also nonnegative when 0 < ¢ < Hence

we have shown that the inequality (55) is satisfied for all nonbasic variables. We can

conclude that D is an optimal basis for LP (54), and consequently 7 = (d)* is an

A3 po+5p1 p3+33
120342002 o121 p3+4u3

are (0,1,2), (0,2,1), (1,1,1), (1,1,2), (1,2,1), (1,2,2), (2,1,1), (2,1,2), (2,2,1),

. We see that the recurrent states

optimal policy when 0 < ¢ <

(2,2,2), (3,1,2) and (3,2, 1) under this policy. In the transient states (i.e., states in
S\ Syu+) we can select an action that will take the process to one of the recurrent

states and this shows that the policy 7* described in the theorem is optimal when

4412 po 50 pa+3u3
< < 1 2 2 i
U<es 120342002 i +1201 3+ 473
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443 pa+5p1 p3+3u3 < B2 i 151
Next, let R0 et adiad = € < Smtoum and consider the decision rule d,

where d(z) is defined as follows for all x € S:

a;n if x € {(0,2,1),(1,1,1)},

d(z) = a2 if x € {(0,1,2),(0,2,2),(1,1,2),(1,2,2),(2,1,2)},
ag ifz e {(1,2,1),(2,1,1),(2,2,1)},
axp ifr€{(2,2,2),(3,1,1),(3,1,2),(3,2,1)},

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D= {w((0,1,2),(1,2)),w((0,2,1), (1,1)),0((0,2,2),(1,2)),
w((17 L, 1)7 (17 1))’(")((17 L, 2>a (1’ 2))7w((17 2, 1>’ (27 1))7 w((lv 2, 2)7 (17 2))7
w((2,1,1),(2,1)),w((2,1,2),(1,2)),w((2,2,1), (2,1)),w((2,2,2), (2,2)),

w((3,1,1),(2,2),w((3,1,2),(2,2),w((3,2,1),(2,2)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

CBB_IUw((o,Lz),an) — Cw((0,1,2),a11) = CBB_lvw((0,272),a11) — Cw((0,2,2),a11)
_ —4pips — Spnps — 3ps + 12¢pi 4+ 20cpt g + 12cp 415 + deps
- (2001 + p2) (20 + gz + p13) ’
BT 0u((0,1,2).001) — Cu((0,1,2),021) = CBB T Vu((0.2,1),012) — Cun((0.2,1),012)
20+ 20t + R — g — 2cpy — deppg — depips — depnpl — 2cpi;
a (201 + p2) (203 + pa iz + 13) 7
BT 0w ((0.2,1).091) — Cu((0.2,1),091)
(1 + pro) (=4pfpg — Spapg — 3p3 + 12¢p3 + 20cp3 g + 12cp 43 + depis)
(21 + p2) (203 + papi + p13) ’
BT 0u((0.2,2),051) — Cu(0.2,2),021) =
(b1 + p2) (2 = B — 33 — 2e + 10cqii g + Gep i3 + 2c413)
(201 + p2) (201 + papz + 13)
. For state (1,1,1) we have :

CBBilvw((l,l,l),aoz) — Cw((1,1,1),a02) = CBBilvw((l,l,l),azo) — Cw((1,1,1),a20)
_ P22 +Apdpe + A g + p3 — Acpi — Gepri i — depu i)
(201 + p2) (2 + papia + p13) ’
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CBB_lvw((l,LU,alg) — Cw((1,1,1),a12)
(A o) 2 g + Bpa gy + 205 — Aep — 10cpi g — Gepn pi — 2%)
- (2p1 + p2) (23 + pappz + p13)
g (g + o) (depi + depapn + 2ep3 — pi3)
(201 + p2) (23 + pa o + 113)
242 (p1 + p12) 203 + 2pap2 + i — 2cpi)
(201 + p2) (243 + pa i + p13)

BB w1110 .am1) — Coo((1.1,1)a21) = ;

BB 00 ((1,1,1),a22) — Coo((1,1,1)025) =

I

for state (1,1,2) we obtain :

prapa(pn + po — 2cp11)
(201 + p2) (208 + papz + 13)’
(o (pF + 2cp1s)
(201 + p2) (1f + papz + i3)’

BB U0 ((1,1.2).002) = Coo((1,1,2)000) =

CBB_lvw((LLQ),am) — Cw((1,1,2),a10) —

CBB’lvw((LLg),au) — Cuw((1,1,2),a11)
(A ) (=2pF g — Bpap3 — 2u3 + 12ep8 + 18cpiipig + 12cp 43 + depis)
B (201 + p2) (201 + papz + 13)

BB 00 ((1,1.2),001) — Co((1,1,2),001) = 2¢(pt1 + p12)
2(p + po) (—pipe — 2pa s — 3 4 8cpd + 1lepipg + Tepnpis + 2%)
a (201 + p2) (2013 + papoz + 1)

(b1 + p12) (2cuf + 2cp1 i + 2c3 + papta)

203 4 papi + pi3

Y

CBB_lvw((1,1,2),a22) — Cuw((1,1,2),a22) =

Y

for state (1,2,1) we obtain :

pEpa (1 + 2cp)
(201 + o) (23 + papia + pi3)’
papa(pn + p — 2cp1)
20F 4 pa i + pi3

BB u((1,2,1),01) — Cu((121).001) =

BT Wu((1.1,1),a20) — Coo((1,2,1),020) =

B u((1.2,1).011) — Cu((12,1),a11)
_2(p A+ po) (i + dep + depiug + depn il + deps)
a (201 + p2) (23 + pajuz + 13)
2(p1 + pa)(—3cp] — cpapin + py + 2 o + 413)
(201 + p2) (208 + pa o + 13)

Y

8B u((1.2,1).a12) — Co((1,2.1).012) = ;

8B Wu((1.2,1),a2) — Con((1,2,1),090)
_ (bt o) (A e + Spu 3 + 2405 — Acprt — 8cpipig — 2cp13)
(201 + p2) (23 + papio + 113)

Y
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and for state (1,2,2) we have :

8B u((1,2.2)001) = Cw((1.22),a00) = BB Vuw((1.22),a10) — Cu((1,2,2).a10)

_ HEpa(p + 2cp)
203 + pafpio 4 pi3’

BT 0u((1.2,2).011) — Cu((1,22).011)
(A o) (=203 — Bpa g — 2p3 + 12¢3 + 18cqiipa + 12cp1 43 + 4%)
B (201 + p2) (20 + papaz + p13)

BT 0u((1,.2,2).001) — Cu((1,22),091)
2 pro)* (=g — piy + 4epd + Beppg + cpi)
a (201 + p2) (2403 + pa iz + 13)

pa (py + pa) (po — QCM)
203 4 papn + 13

’

CBB_lvw((1,2,2),a22) — Cw((1,2,2),a22) =

For state (2,1, 1) we have :

CB]—3’71@10((2,1,1),6602) = Cw((2,1,1),a02) — CBB?lUw((Q,lyl)ﬂQO) — Cuw((2,1,1),a20)
_ Hapa(l —20)
203 + paie 4 p13”

pa(pn + p2) (2 — 2ci)
203 4 gy + i
(1 + o) (p2 — 2cp1 — 2cpin)
(201 + p2) (203 + papz + 13)
pa(pn + pi2) 203 + 2pa 2 + i — 2cpi)
(201 + p2) (20 + papeo + p13)

B w2110 .011) — Co((@11)a11) = ;

BB U0 ((2.1.1),012) = Co((21.1)019) =

BB 02,1, 1),a22) — Co((21,1)025) =

)

for state (2,1,2) we obtain :

papz(1 — 2c)

2010 + iz
pafia (B + 2cpis)
203 + papi + p3’

BT Uu(2,1.2).000) — Cu((2,1,2).000) =

CBB_lvw((2,1,2),a10) — Cw((2,1,2),a10) =

8B w((2,1.2)011) — Cu(2,1,2).011)
(A ) Bepsd + 12¢uf g + 10cpuy 3 + depsl — pif)
- (211 + p) (247 + puapoz + 13)
(1 + p2)(—p2 + 6cpy + dep)
(201 + p2) (243 + papio + p13)

?

CBB_lvw((2,1,2),a21) — Cw((2,1,2),a21) =

BT Uu((2,1.2),a2) — Cun((2,1,2),090)
(A po) (e + depifpes + depupl + 23 + paps3)
(201 + p2) (23 + papio + 113)

Y
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for state (2,2,1) we obtain :

o (fo + 2¢p1 + 4epig)
201 + o
-1 pa iz (113 + 2cps)
BB Vw2 1,1).020) ~ Cu(22.1)020) = 5 24 g+ 2
(1 + p2) (23 + 2cppig + 2cpi5 + 1 pi2)
(201 + p2) (207 + pa o + 113)
(1 + o) (2c1 + piz)
2000 + po 7
pro iy + pio) (27 + 2p1 g + 15 — 2cpa1pi2)
(201 + p2) (201 + papz + 113)

CBB_lvw((z,Q,l),am) — Cw((2,2,1),a01) =

8B a2 2.1).a11) — Co((22.1).011) = ;

CBB_lvw((Q,Q,l),alg) — Cw((2,2,1),a12) =

BT Uu(2.2,1).a2) — Coo((2,2.1).020) = ;

and for state (2,2,2) we have :

BT (22,2 .001) — Cu((22.2)001) = CBB T Uu((2.2.2).010) — Cun((2:2,2),010)
i + gl + 20p + 2cuipg + 8cpn i + deps)
B (201 + o) (207 + papz + p13)
8B Uu((2.2,2).011) — Cu(2:2.2)011)
(p1 + pro) (—paps — i + 12¢p3 4 16cuT g + 12cp1 415 + 4ep)
(2001 + p12) (23 + papo + p13) ’
(11 4 p2) (et + depnpig + 2cp5 — i)

c B_lvw a12) — Cw aiz) — s
B ez = Coleien) = o 00+ i+ 1)

Y

CBB_lvw((2,2,2),a21) — Cw((2,2,2),a21)

(1 + p2) (=247 — 2 p3 — i3 + 8cpt + 10cuipg + 6epn i + 2cp3)
(201 + p2) (203 + papz + 13) ’

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

BB 0u(3,1,1).012) — Cu((3,1,1),012) = BT 0u(3,1,2),012) — Cul(31,2),012)
_2u + 2p3pn + pips — paps — 20py — depipin — depdpl — Aepps — 2cp
(21 + pa2) (21 + papu + p13) ’

CBBflvw((a,m),am) — Cw((3,1,1),a21) = CBBflvw((sm),am) — Cu((321).a21) = 0,

8B T 0w((3.1.2)001) — Con((3,1.2),21) = 2C1L1,

CBB_lvw((s,Q,l),m) — Cw((3,2,1),a12)
203+ 2 s + paps — p3 — 20083 + depipn + depupl + 20
(21 + p2) (23 + papio + 113)

4p3 po+5p1 p3 4343 < 2 H
. 11
27+ 20 3 pa+ 123+ 48 = €S Zptagg - LHENCS

Y

These quantities are nonnegative because

the policy m = (d)* is an optimal policy and the recurrent states under this policy
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are (0,1,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2), and (3,1,2). In the transient states
(i.e., states in S\ S,+) we can select an action that will take the process to one of the

recurrent states and this shows that the policy 7* described in the theorem is optimal

403 po+5p1 p3 4343 <
when o3+ 20:2 22 il = € < 2u1+2u2
2l 4203 o+
Next, let < ¢ < min{£2 Dl G T +}, and consider the de-
211 +2,u 21

P 2utHApS po+4pT p3 A pi+2u3

cision rule d, where d(x) is defined as follows for all x € S:

;

2

0,2,2),(1,1,2),(1,2,2),(2,1,1),(2,1,2)},

(0,2,1),(1,1,1)
(0,1,2),(0,2,2),(

an if z € {(1,2,1),(2,2,1),(3,1,1),(3,2,1)},
(2,2,2),(3,1,2)},

Then, the basic solution w corresponding to the policy m = (d)* has the basis

N
[\
=
8
m
——
™o
™
)
w
\.H
N

\

D = {w((0,1,2),(1,2)),w((0,2,1),(1,1)),w((0,2,2),(1,2)),
w((1,1,1), (1, 1)), w((1,1,2), (1,2), w((L, 2, 1), (2, 1)), w((1, 2,2), (1, 2)),
w((2,1,1),(1,2),w((2,1,2), (1,2)), w((2,2,1), (2, 1)), w((2,2,2), (2, 2)),
w((3,1,1),(2,1)),w((3,1,2),(2,2)),w((3,2,1),(2,1)) }

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0, 2,2), we have :

CBB_IUw((O,l,Q),aH) — Cu((0,1,2),a11) = CBB_IUw((O,ZQ),an) ~ Cw((0,2,2),a11)
2(p o) (et 4 Bepipg + p3 — pape — p3)
B (201 + p2) (13 + pa iz + p13)

BB 0u((0,1,2).021) — Cun((0,1.2),a21) = BB Vus((0,2,1),a12) — Cur(0.2,1),01)
2u + 20y — s — By — 245 + 12¢pt g + 18cpd il + 10cpn 3 + 2cp1;
- (2001 + po) (13 + papiz + 113) ’

piapa(pF + 2p g + 3 — 3epi — cpuapia)

(201 + p2) (1 + papa + i3)

)

CBB Vw((0,2,1),a21) — Cw((0,2,1),a21) =

Y

8B 0u((0.2.2).a21) — Cu((0,2,2),091) =
_ (it 1) (24 + 24t — Sy pi — 2003 + 10¢ptpip + depnpig + 2cp3)
(201 + p2) (1] + papz + 143)
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. For state (1,1,1) we have :

CBB_lvw((l,l,l),aog) - Cw((1,1,1)7f102) = CBB_lvw((LLl)va?O) o Cw((l,l,l),azo)

pa(pin + p2) (2cp + po)
(201 + p2) (3 + pape + p3)’

(41 + o) (p2 — 2cp11)
13 A puapin + 5
p (g + o) (depi + depapg + 2ep3 — pi3)

BB 0 ((1,1,1),a12) — Co((1,1,1),019) =

Y

BB 011, 1).am1) — Coo((1,1,1)021) = 12 gt + 12

(f1 4 p2) (2cp + 2cp3 + poapia + 13)
13 paps + 5

BB T U0 ((11.1).a92) — Coo((1,1,1)029) =

Y

for state (1,1,2) we obtain :

pa(pf — papin + 2cq12)
i1 + p2) (U3 + papiz + p3)’
pipa (pf + 2cp0)
201 + p2) (B3 + papia + p3)’
(k1 + po) (depii + depnpia + 2 — pi3)
13+ pape + p

BT Wu((1,1.2).a00) — Cuo((1,1,2).000) = (

CBB_lvw((1,1,2),a10) — Cuw((1,1,2),a10) = (

8B Wu((1,1.2),a11) — Cu((11,2).011) =

Y

BB 0u((1,1.2)a21) — Cu(1,1.2),a21)
(b1 + p12) (B + pao) (depif + depn i + 2cp13 — pi3)
(2001 + p2) (13 + papa + p13)
(k1 + p2) (2 + 2c3 + pajio + i3)
13+ puapie + 5

I

BT Uu((1,1.2).a2) — Coo((1,1,2),020) = ;

for state (1,2,1) we obtain :

_ [11443
i+ pd
papiz(p + pi2)
pF A g + p3

8B Wu((1.2,1).001) — Cun((1,2,1),001)

BT Wu((1,1,1),a20) — Cuo((1,2,1),020) =

cB M Uu((1.2,1),.011) — Cu((1.2.1),011)
(11 + po) (depsd + depd o + depn ps + 203 + pap3)
(201 + p2) (pd + papz + 113)
BT 0u((1.2,1),012) — Cu((1,2.1),012)
(o po) (Aep + 2cp pi3 + 2cp3 + 3p 3 + p13)
B (201 + pro) (11 + prapo + p13)
BT 0u((1.2,1),052) — Cu((1,2,1),022)
e+ po)(=2ep + 2epa iy + 203 + 203 + Apaps + p3)
a (201 + p2) (1 + prapa + p13)

b

)

?
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and for state (1,2,2) we have :

1 _
8B u((1.2.2).a01) — Co((122).001) = BB Vu((1,2,2).010) — Cu((1,2,2),10)

_ pafia(piy + o)
(3 + ppe + g3’

(k1 + pao) (depii + depn pia + 2cpi — pi3)
13 4 pafie + 5

Y

8B Wu((1.2.2).a11) — Cu((12.2).011) =

CBB_lvw((1,2,2),a12) — Cu((1,2,2),a12) =
(b1 + o) (depsd + 8cp2 s + depnpis — 3pnpd — p3)
(201 + p2) (13 + papz + p3)
fa(p1 + p2) (2 — 2cqi1)
VT

9

BT Wu((1.2.2).a21) — Cuo((1,2,2).021) =

For state (2,1, 1) we have :

CBB_lvw((Zl,l),aog) — Cw((2,1,1),a02) — CBB_lvw((2,1,1),a20) — Cuw((2,1,1),a20)
(1 + pio) (dep + depdn + 2cpn i + papi3)
(201 + p2) (13 + papz + p13)

- pa (g + po) (p2 — 2cq11)
CBB 1vw((27171)’a11) - Cw((2’171)7a11) = ,LL% + L1 [ho + Iu%

9

CBB_lvw((ZJ,l),agl) — Cu((2,1,1),a21) = 0,

CBBilvw((Q,Ll),aQQ) — Cw((2,1,1),a22)
(1 + po) (e + depd i + dep pid + 2cp3 + pnpd)
(201 + pa2) (13 + papa + p13)

Y

for state (2, 1,2) we obtain :

(11 4 p2) (depd + e pin + 203 + pajio)
13+ pape + p
- f o (13 + 2cpiz)
& B 1Uw a — Cy a = ,
B ((27172)» 10) ((2v172)7 10) ,U/% + ,u/]_,u/2 +ILL%
(11 + p2) (42cpF + 2cp pig + 2003 + piapio)
13+ papie + 5

BB 00 ((2,1.2),002) — Co((2,1,2),00) =

I

BB (2,12 011) — Co((2.1,2)a11) =

CBB_lvw((Q,l,Q),agl) — Cw((2,1,2),a21) — 26(#1 + /~L2),

BB T 0u((2,1.2),a22) — Coo((2,1,2),029)
(1 + po) (deps? + depd s + Ao i3 + 2cp3 + pnpd)
(21 + p2) (13 + papiz + 113)

Y
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for state (2,2,1) we obtain :

fpia (13 + 2cp13)

pf A+ g+ py

(p + o) (e + deppig + 2cpi5 + pap2)
13+ papie + 5

(11 + 1) (e} + 2cpuapag + 2cpi + puapin)
13+ papie + 13

8B Uu(@2.1).001) — Cu((2.2.1).001) =

BT w2110 .a20) — Coo((2.2.1),030) = ;

CBB_lvw((Q,Q,l),an) — Cuw((2,2,1),a11) =

CBBilvw((ZQ,l),au) — Cu((22,1),a12) = 2¢(p1 + f2),

BT Wu(2.2,1).a2) — Cun((2,2,1),020)
(1 + po) (depd + depfpg + depn pig + 2003 + pp3)
(201 + p2) (1 + papa + i3)
and for state (2,2,2) we have :

)

BB u((2,2.2)001) = Cu((2:22),a0) = BB Vuw((2.22),a10) — Cu((2:2,2).a10)
_ (g — s+ epidpn + depu s + 2ep3)
B (201 + o) (1 + papaz + p13)

8B u((2.2.2).a11) — Cu((22,2).011)
(A po) (depd + Sepd i + depn il + e + (i ps)
- (2001 + pio) (17 + piapaz + 13)

CBB_lvw((Z,Q,Q),alg) — Cw((2,2,2),a12) = CBB_lvw((Q,Q,Q),agl) — Cw((2,2,2),a21)
(A o) (et + depnpig + depy — pi3)
B (201 + pi2) (1 + pajoz + 13) '

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

Y

’

(1 = po) (g + pa2) (201 + 2 a0 + 3 — 217)
(201 + p2) (1 + papa + 13)
CBBilvw((?),l,l),agl) — Cuw((3,1,1),a01) — CBBilvw((&?,l),am) ~ Cw((3,2,1),a22)
(1 + ) (2cp + 2¢p10 — fi2)
2010 + pi2

-1
3BT 0uw((3,1,1),a12) — Cw((3,1,1),a10) =

Y

Y

. pu1(2cpi1 + p12)
BB 0w((3,1,2),a12) = Cw((3,1,2),a10) = ot
8B Wu((3.1.2).a21) — Cu((3.1,2).021)
_2u + 2pipn + pipd — paps — 2ep5 — Aepipin — depipl — depn s — 2cp
(201 + p2) (1] + papa + 143) ’
8B w32, ,a12) — Cu((3,2,1),012)
2u + 2y — g — 25 + 2cpy + 8cpuf g + 10cpi s + 6 il + 2cpi;
a (241 4 p2) (U3 + papa + p13)
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C . . . . 2044203 o+ u2u2 — 3
These quantities are nonnegative if 5 -5%5— < ¢ < min{42, 5 +’ZL?N‘; ﬁjﬁ - %liiuf ;gizug }.
Hence, the policy m = (d)* is an optimal policy and the recurrent states under this
policy are (0,1,2), (1,1,2), (1,2,2), (2,1,2), (2,2,2), and (3,1,2). In the transient

states (i.e., states in S\ S,«) we can select an action that will take the process to one

of the recurrent states and this shows that the policy 7* described in the theorem is

. . 2ut +2p3 pa+p3 p3 —p p
imal when 5—£2 < min{£2 T L Bt :
optimal when 57550 <c < {2M1’ 2#%+4M?uz+4ufu§+4u1u§+2u3}

3utt2udpo—2p1 13
Let 2p8+puipe > pdp24-3p2 s +2p pa+ s and £2 < ¢ < 1T 2h) 2
P 2 U] O iy 20 g+l 2u1 = 2 A A o+ A2 2 A 3+ 2pd

and consider the decision rule d, where d(z) is defined as follows for all x € S:

Then, the basic solution w corresponding to the policy m = (d)* has the basis

D = {w((ov L, 2)? (17 2))7 w((oa 2, 1)7 (17 1))7 w((o’ 2, 2)7 (17 2))a
w((1,1,1),(1,2),w((1,1,2),(1,2)),w((1,2,1),(2,1)),w((1,2,2),(2,2)),
(21,1, 2, 1), (2 1,2), (1,2),0((2,2,1), (2, 1)), 0((2,2,2), (2,2)),

w((3,1,1), (1, 1)),w((3,1,2),(2,2)), w((3,2,1), (2, 1)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0, 2,2), we have :

CBB_lvw((07172)7a11) — Cw((0,1,2),a11) — CBB_lvw((o,2,2),a11) — Cw((0,2,2),a11)
=2 — 2pups — p3 4 120 4+ 120 pg + e i + 20
B (201 + p2) (33 + papoz + p13)
CBB_IUw((0,1,2),a21) — Cw((0,1,2),a21) = CBB_IUw((O,Zl),am) — Cw((0,2,1),a12)
3+ 20 — 3pips — Apnpy — 2cpt + 20ep g 4 18cuipg + Sepn il 4 2cqi;
- (2010 + o) (B + puapaz + p13) ’

B oo e P 2 g — 20p)
wl(©2 ) 7 ful(02 4,020 (201 4 p2) (Bp3 + pa i + p13)

9
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CBB_lvw((O,Q,Q),agl) — Cw((0,2,2),a21) =

_ (it i) (=3psi gt — 2pn i — giy + 12¢p + 12¢pips + Gcpupy + 2413)
(201 + p2) (313 + papiz + p13)

. For state (1,1, 1) we have :

CBB_lvw((l,l,l),aog) = Cw((1,1,1),a02) = CBB_lvw((l,Ll),am) — Cuw((1,1,1),a20)
_ 1220 + 5 + 4 — Aopii + cpipn + deppi3)
(2p1 + p2) (Bpf + papia + p3)

CBB_lvw((l,l,l),au) — Cu((1,1,1),a11) = 0,

Y

BB 0u((1.11).021) = Cun((1,1,1),021)
) (8cpd + Bepapa + 243 — puypre — 243)
- (201 + p2) (33 + papoa + p13)

(11 A+ pao) (dep + 2cp i + 2cu2 e

bl

-1
CBB Uw((17171)’a22) - Cw((1’171)70422) - 3,“]_ + ,LLLLLQ _'_ ,u/2

for state (1, 1,2) we obtain :

pa (] + pa i + 203 — cn)

(2001 + p2) (Bt + papo + p13)”
(3 (1 + 2cp12)

(201 + p2) (3t + papz + i3)’

CBB_lvw((l,l,Q)@u) — Cu((1,1,2),a1) = 2¢(pe1 + pi2)

BB 00 ((1,1.2),002) — Co((1,1,2),000) =

BB 0 ((1,1.2).010) = Coo((1,1,2),a10) =

BB u((1,1.2).a21) — Con((1,1,2),021)
(o p) (= pipe — 213 + 20cp + 16¢qii pg + e i3 + 2%)
B (211 + po) (33 + puapoz + 13)
(b1 + pio) (e + 2cp i + 2cpi5 + faps.

CBB_lvw((l,l,Q),agg) — Cu((1,1,2),a22) = 307+ s + 12

for state (1,2,1) we obtain :

PR (13 + 2cps)
(201 + p2) (313 + papiz + p3)’
papra(pn + o + 2cpt1)
3uF + pape + 3

BT 0w ((1.2.1).001) — Co((1.2.1)01) =

BB T U0 ((11.1).a20) — Coo((1.2.1)a20) =
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BT Uu((12.1),011) — Cu((121),011) = BB T Vu((1.2,1),012) — Cun((1,2,1),012)
(a1 + po) (pipe + 2pnp3 + depd + depd g 4 depn s + 2cp3)
(201 + p12) (3T + papra + pi3)
pa(pin + /~02)2(3M1 + 2cuy + 2cpz)
(201 + p2)(3uf + papz + 13)

)

BT Uu((1.2,1).a2) — Coo((1,2.1).020) =

and for state (1,2,2) we have :

CBBilvw((l,ZQ),aol) — Cw((1,2,2),a01) = CBB*IUw((l,z,z),aw) ~ Cw((1,2,2),a10)>

_ 1Epa(p + 2cp)
3u3 + pape 4 p3

(11 + p2) (8cpf + deppig + 2cpi5 — papi)
3t 4 papa + i3
pa(pn + pi2) (2cp1 — pa)
(201 + p2) (203 + papz + 13)’

BB u((1.2.2).a11) — Co((122).a11) =

Y

BB u((1.2.2).a12) — Coo((1.22).a12) =

BB u((12.2).021) — Cu((12.2).021)

_ alp + p2) (12ep + Scpapia + 2ep15 — 3ppiz — 3443)
3t 4 papa + i3

For state (2,1, 1) we have :

CBB_lvw((Zl,l),aog) — Cuw((2,1,1),a02) = CBB_lvw((2,1,1),a20) — Cw((2,1,1),a20)
A+ o) (Aepd + Bep s + il + 24 p12)
a 3t 4 papa + i
CBB_lvw((2,1,1),a12) — Cw((2,1,1),a12) = CBB_IUw((ZLl),am) — Cw((2,1,1),a21)
(o) (2¢p — o)
2013 + pa i + 13
CBB_lvw((Z,Ll),agg) — Cu((2,1,1),a22)
(11 + ) (10c3 + 13cpi3 i + Oepa i + 3cpil + 13y — 13)
(21 + p2) (B3 + papz + p13)

)

Y

Y

for state (2, 1,2) we obtain :

pa(pn + pi2)(2cp1 + pa)
3t 4 papa + pi3

pa pha (13 + 2cpi2)

3uf + pape 4 p3

BT Uu((2,1.2),000) — Cuo((2,1,2),000) =

Y

8B Wu(2,1.2).a10) — Cu((2,1,2).a10) =
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(11 + p2) (3epf — cpapir + cp3 + 13)
3ut 4 paps + pi3
(b1 + pro) (8cpi + 2cppig + 2cu3 — pajia)
313 + pafin + 413

-1
cpB Uw((2,1,2),a11) — Cw((2,1,2),a11) —

)

BB u((2,1.2)am1) — Co((2,1,2)021) =

)

BB T 0u((2,1.2).a22) — Cur((2,1,2),022)
(p1 + po)(10cu3 + epd iy + Tepypa + 3cps + 213 s + 2p1 43)
(21 + p2) (343 + papia + p13)

)

for state (2,2,1) we obtain :

pa(pi1 + pi2)(2cp1 + pa)
3uT 4 papa + i3

e (pF A+ 2cpn)
3pd A g + 3

(p1 + pio) (cp] + cpapin + cpi + prapin)

3ut + papg + pi3
(11 + pio) (depd + depn o + 203 + prapin — 113)
3ut 4 paps + p3

8B Wu(@2,1).001) — Cu((2,2.1).001) =

9

CBB_IUU,((Q’LU,QQO) — Cw((2,2,1),a20)

8B w2210 .a11) — Cu((221).011) =

Y

8B u(2.2.1).a10) — Co((2.2.1)010) =

Y

8B Wu((2.2,1),a22) — Cun((2,2,1),099)
(p1 + pi2) (6cpd + Llepdpo + eppid + 3epd + 3pdps + pupl — 1)
(201 + p2) (Bt + papio + 13)

Y

and for state (2,2,2) we have :

BT (2,22 001) — Cun(2.2.2).01) = BB T Vu((2,2.2) .010) — Cun((2,2.2),a10)
(2 s A cpip + doppd + o)
a (2p1 + p2) (Bpf + papia + p3)
8B (2,22 011) — Cun((2.2.2).11)
(b1 + p2) (6cpi? + 1epf g + 9ep iy + 3epd + 3pius + paps — 13)
(2001 + p12) (Bt + papo + p13)
cBB_lvw((z,z,Q),m) — Cuy((2,2,2),a12)
(o) (8epd + Geppig + 203 — pupis — 245)
B (201 + p2) (B3 + puapaz + p13)
8B 0w((2,2.2) 051) — Cu((2,2,2).a21)
(b1 + pr2) (pua iy — 3 + A + 6epii g + Gep pi3 + 2cp13)
(201 + p2) (3t + papz + 13)

9

)

)

Y
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Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

CBB_lvw((3,1,1),a12) — Cuw((3,1,1),a12) = CBB_lUw((3 2),a12) — Cw((3,1,2),a12)
= 2cpi — Aeppg — depdps — depn iy — 2cps + 3pt + Sepipg — 2cu1u2
- (201 + p12) (B + papa + pi3)

CBB_IUw((3,1,1),a21) — Cw((3,1,1),a01) = CBB Vw((3,2,1),a21) — Cw((3,2,1),a21)
i (12epF + 2epd i + pa g3 + 2p3)
(2w ) (B pap + p13)

BT 0u((3,1,2).001) — Cu(3,1,2),091)
3+ 20 e — gy — 25 + 2cp1y + Scpdpg + 1depn il + 2cqi;
B (201 + p2) (B + puapaz + p13)

8cu? + 6y fio + 2cp3 — 241 iy — 2443

(201 + p2) (Bpf + pa o + p13)

)

Y

I

8B Wu((3.2,1),a12) — Cun((3.2.1),012) =

These quantities are nonnegative because 215 + s > pdud + 3uud + 2u1ps + us

3ud 423 o — 2u1u% . 00 ¢ .
and £2 < ¢ < L= - . Hence, the policy m = (d)*° is an optimal
21 = 2pitApd po+4pdpd+4p pd+2ud ) 1% Y ( ) P

policy and the recurrent states under this policy are (0, 1,2), (0,2,2), (1,1, 2), (1,2,2),

(2,1,2), (2,2,2), and (3,1,2). In the transient states (i.e., states in S\ S,+) we can

select an action that will take the process to one of the recurrent states and this

shows that the policy 7* described in the theorem is optimal when 2u3 + pips >

3.“41 +2H1 H2—2pu1 Nz
i -H4pd po+4pd g+ p3+2u3

3ut+2udpo—2p1 13

fips + 3uips + 2y + p3 and g2 < c < g

Now, let 247+ iy p2 > M?M%+3M?u§’+2mu2 +p3 and ¢ >
and consider the decision rule d, where d(z) is defined as follows for all x € S:

¢

a;p ifz e ),(2,1,1)},

,1,2),(0,2,2),(1,1,1) (1, 1,2),(2,1,2),(3,1,1),(3,1,2)},
), ( ), (
), ( )

as; if z € {(1,2,1), ,(3,2,1)},

(
ajp if z € {(
(
(

99 lfJTG{ 1,2,2),(2,

N
[\

2

\
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Then, the basic solution w corresponding to the policy m = (d)*> has the basis

D= {w((0,1,2),(1,2)),w((0,2,1), (1,1)),((0,2,2), (1,2))
W(1,1,1), (1,2)),w((1, 1,2), (1,2)),((1,2,1), (2, 1)), w((1,2,2), (2,2)),
((2,1,1), (1,1),((2,1,2), (1,2)),0((2,2,1), (2, 1)) w((2,2.2), (2,2)),
W((3,1,1), (1,2)),((3,1,2), (1,2)),((3,2,1), (2, 1))}.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

CBB_lvw((0,1,2)7a11) — Cw((0,1,2),a11) = CBB_IUW((OQQ)vall) ~ Cw((0,2,2),a11)
12ep} + 12ep3 pp + G pd + 208 — Bpdpn — 2un il — 13
- (21 + p2) (343 + papsa + p13)
cBBflvw((o,lg),am) — Cw((0,1,2),a21)
_ B+ 2 — Apngi — g — 2ep + 200y, + 18y + Sepnpy + 2ty
= (201 + p2) (33 + papo + p13)
ppia (313 + 2p1 pto + 113 — 2cp)
(2011 + p12) (3 + prapaa + p13)
13 (3 + prapg — )
(201 + p2) (3t + papz + i3)

Y

-1
cpB Vw((0,2,1),a11) — Cw((0,2,1),a11) —

BB 0 ((0.2,1),a12) — Cow((0.2,1),a19) =

CBB_IUw((O,QQ),an) — Cw((0,2,2),a21)

_ 3+ 20 — gl — py — 2cpy + Sepipn + 8cpdpl + 203 + 2%
(201 + p12) (3T + papia + pi3)

For state (1,1, 1) we have :

p2 (13 + pipe + 1)
(21 + p2) (Bt + papio + 13)

BT u((1.1.1).a02) — Con((1,1,1),000) =

CBB_lvw((1,1,1),a20) — Cw((1,1,1),a20)
(20 + 2epF g 4 depups + Ao + 20} — pips 4 3pps + )
- (201 + p12) (B + papz + pi3)

BT 0u((1,1,1)011) — Cu((1,1,1),011)
(1 = o) (a4 i) (B + 5pF g + S i3 + 2p5 — 2cp? — 6epd g — 2cp1p13)
a pa (201 + p12) (Bt + papa + p13)

b

)

(56)
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BB u((1,1,1),21) ~ Cul(,11,a21)
A pe) (= pa e — p3 + 8cpi + beppig + 2cp3)
- (201 + p12) (313 + papoz + p13)
(11 + p2) (Aepd 4 2cpnpag + 2cpi + puapiz)
3ut 4 pa i + pi3

b

BT Wu((1,1.1),a2) — Coo((1,1,1),020) = ;

for state (1,1,2) we obtain :

papie(2cp1 + pg)
3u3 + papin + p3
fupia(pf + 2cp13)
(201 + p2) (3f + papz + i3)’

CBB_IUw((1,1,2),a02) — Cw((1,1,2),a02) =

~1
BT 0w((1,1,2),a10) — Cw((1,1,2),a10) =

8B u((1,1.2).a11) — Cu((1,1,2),.011)
3#1 + 24} g — 3y — 245 — 2cp + 8cppn + 1depi s + 8cuipi + 20#2
(21 + p2) (313 + pap + p13)
BB u((1,1.2),a21) — Con((1,1,2),091)
_ e — 2p s + 200pF + 16cpipn + 8cpnyil + 2%
2013 + 113)
(b1 + po) (depi + 2cppig + 2013 + pajia)
3u3 + pape + 113

-1
cgB Uw((1,1,2),a22) — Cw((1,1,2),a22) —

)

for state (1,2,1) we obtain :

3
Bfl . _ K2
CB Vw((1,2,1),a01) — Cw((1,2,1),a01) = (M +ﬂ2)(ﬂ% +#3)7
2
- Ko
cpB lvw a — Cyw a i S— )
B ((1,1,1),a20) ((1,2,1),a20) M% T N%

CBB_lvw((l,Q,l),an) — Cuw((1,2,1),a11)
3+ 2ui e — papd — 2005 — 2y + Sepipb + Gepp + 2cp
(21 + p2) (B3 + papio + p13)
CBB_IUw((l,Z,l),alg) — Cu((1,2,1),a12)
_ MR+ 23 + deps + Aopi s + deppd + 2cp13
(201 + p2) (B3 + papa + p13)
pra(pn + pi2)* (2cp1 + 2cq19 + 3pn)
(201 4 p2) (Bpt + p iz + p13)

)

Y

BT Wu((1.2,1),a2) — Coo((1,2.1),020) = ,

and for state (1,2,2) we have :

pi (e + depP s + dep i + 213 + p2 o)
(2p1 + p2) (Bpf + papia + p3)

BT Wu((1.2.2).001) — Cu((1,2.2).001) = ;
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For

115
(2p1 + p2) Bt + papie + p3)’

CBB_lvw((l,Q,Q),alo) — Cuw((1,2,2),a10) =

8B u((1.2.2).a11) — Cu((1,2,2),.011)
3t 208y — 2pi 3 — dpn i — 2cpt + 12cp3 pg + 16cuip3 + Scp i + 2%
B (201 + p2) (3t + papz + i3)

fia(pn + i) (201 — pi3)
3pd + papio + 13

8B 0u((1.2.2),a12) — Cun((1,2,2),012) =

Y

8B u((1.2.2).a21) — Cun((1,2,2),021)
_ pap + po) (=3ppte = 3pa — g + 12¢pt + Bepnji + 2¢p13)
(201 + p2) (3 + papz + i3)

state (2,1,1) we have :

[ it
(1 + p2) (13 + p3)’

BT Wu(@1,1),a00) — Coo((2,1,1),000) =

BT Uu(2,1,1),050) — Cu(2,1,1),a20)
i (2epd + 2R g + 20 py + 2003 + pups — s — 417)
- (ki + p2) (i + p13) ’
cBB’lvw((z,u),m) — Cu((2,1,1),a12)
(4 p2) (=3pt — 2pd e — pagid + p3 + 2cp + depdpn)
a (2010 + p2) (B3 + papaz + p13)
BT u(2,1,1),021) — Cu(2,1,1),021)
_3N1 — 20 pg — 203 i + 2 iy + 2415 + 2epi 4 Scpufpg — 2cuipg — 26#1#2
(201 + p12) (BpT + papz + p13)
20 (=13 + papia + 2e3 + 2c4i3)
3u3 + pape + 13

Y

CBB_lvw((2,1,1),a22) — Cu((2,1,1),a22) =

)

for state (2,1,2) we obtain :

[
3pd + papio + 43
143 112
(201 + p2) (3t + papz + u%)’
(1 + p12) (Bepd — cpapin + cpi + u2)
3ut 4 paps + 113
(b1 + p12) (8cpf + 2cu3 — pape + i3)

—1
cgB Vw((2,1,2),a21) — Cw((2,1,2),a21) = 3#% ¥ figis + 'u% )

BB u((2,1.2).002) — Coo((2,1,2)000) =

BB u((2,1.2).a10) — Co((2.1,2)a10) =

CBB_lvw((Q,LQ),aH) — Cw((2,1,2),a11) =
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CBB_lvw((2 1,2),a20) — Cw((2,1,2),a22)
_ 3+ 2 + i — 2405 — 2epy + Gepipin + 13cpdp3 + Yepn i + 3%
(201 + p2) (313 + papi + p13)

for state (2,2,1) we obtain :

13 1o
3u3 + papiy + p3’
G
(201 + p2) (3t + papa + 13)
(p1 + pio) (cpi + cpapia + i + puajia)
3pd + pa i + 13
(p1 + pio) (depd + depn i + 203 + prapin — 13)
3ut 4 papa + pi3

8B Wu(22,1).001) — Cu((2.2.1).001) =

BB Wu((2.1.1).a20) — Cur((2.2.1),020) =

8B Wu(@2,1),a11) — Cu((221),011) =

Y

8B w22, ,a12) — Cun((2,21),012) =

9

BT 0((2,2.1),092) — Cun((2,2,1),02)
3+ 2ufpe + BpRps — 3uy — 2cu + 2cpips + 15cpi s + Ve ps + 3%
(2001 + p12) (Bt + papo + p13)

and for state (2,2,2) we have :

B (22,9 01) ~ Cul(2:2.2).a01)
(s + R — pd o 20pF + Aepf g + Ao + 2c3)
B (2010 + p2) (33 + papaz + p13)
113 (13 + 20 19 + 13)
(2001 + p12) (Bt + papo + p13)’

?

8B Wu((2.2.2).010) — Cu((2,2,2),010) =

8B u((2.2.2).a11) — Cu((2,2.2).011)
_ a(2p8 + ey — s — g5+ 2cp + depdpn + dopn il + 2cu3)
B 2(17 + p13)
(b1 + pr2) (8cp? + 6cpin + 203 — pajin — 13)
3uT + pape + pis

Y

8B 0u((2.2.2).a12) — Cu((2,2,2).012) =

)

8B 0w((2,2.2) 031) — Cun((2,2,2),021)
_ 3pd + Bpipe + 2u 3 — 3p — 2ep3 + 2cpi e + 1dcpipd + eyl + 3%
(201 + p2) (3pF + papz + i3)

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

BB u((3,1,1),a21) — Con((3,.1,1),021)
_ P2 + 203 g — 3163 + depd + depRus + depupd + Acpsy)
(201 + p2) (3t + papa + 13)

Y
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= BT 0u((3.1,1),092) — Cuo(3.1,1),023) = CBB T 0((3.1,2).092) — Cuo((3,1,2),02)
(=g — 3+ 6epd + 13epdus + 9cpnpz + 3cps)
(2001 + p12) (B + papz + p13)
BB 0u((3.1.2).a31) — Cu((3.1,2).021)
3+ 203 e — 2 p + 2cp 4 Apdpe + 4pdpd + Al + 2u3)
a (201 + o) (B + puapaz + p13)
papio (3 + papis — 13)
(201 + p12) (3T + papra + pi3)

9

Y

BB u((3.2.1),012) = Co((3.2.1),a12) =

-1
cgB Vw((3,2,1),a21) — Cw((3,2,1),a21)

_ pa(p + p2)(—ppiz — p3 + 8epd + G g + 2cp13)
(201 + o) (B + papz + pi3)

These quantities are nonnegative because 245 + s > pdud + 3upd + 2u1ps + us

But +20 o~ 24
201 +H4pS poHApT s +Ap p3+2p5

and the recurrent states under this policy are (0,1,2), (1,1,2), (2,1,2), and (3,1, 2).

and ¢ >

Hence, the policy 7 = (d)* is an optimal policy

In the transient states (i.e., states in S\ S,+) we can select an action that will
take the process to one of the recurrent states and this shows that the policy 7*

described in the theorem is optimal when 245 + pips > pdps + 3pps + 2uyps + ps

3ut+2udpo—2p1 13
2uf +HApS po+-4pd ps+4p p3+2p5

and ¢ >

2ut+2pd po+pdpd—pa pd
2ut+ap3 po+4pdus+4p pa+2u5 0

Finally, let 2u3 -+ pie < i} p5 343 3 +240 pr3+p13 and ¢ >

and consider the decision rule d, where d(z) is defined as follows for all x € S:

(

a1 1f$ S {(0727 1)7 (17 17 1)}7
aiz if z € {(0,1,2),(0,2,2),(1,1,2),(1,2,2),(2,1,1),(2,1,2),
(

asy if v € {(1,2,1
(

22 1f$€{2,2,2 },
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Then, the basic solution w corresponding to the policy m = (d)*> has the basis

D = {w((0,1,2),(1,2)),w((0,2,1), (1,1)),((0.2,2), (1,2)),
(L 1,1, (1, 1),w((1,1,2), (1,2)),w((1.2, 1), (2, 1)), w((1,2,2), (1,2)),
(21,1, (1, 1)),w((2,1,2), (1,2)), (2.2, 1), (2, 1)), w((2,2,2), (2.2)),

w((3,1,1),(1,2)),w((3,1,2), (1,2), w((3,2,1),(2,1)) }.

Proceeding as before, we will show that inequality (55) holds for every nonbasic

variable. More specifically, for states (0, 1,2), (0,2, 1), and (0,2,2), we have :

CBB_IUw((O,l,Q),aH) — Cw((0,1,2),a11) = CBB_IUw((O,M),au) — Cw((0,2,2),a11)

 2cpi 4 depidpg + depFug + depn i + 208 + g — piug — 2p 3 — 2u;

B (p1 + p2) (13 + p13) ’
8B 0u((0,1.2),a21) — Cuo((0,1,2),091)

 podept 4 8cp g 4 8cuipg 4 Scpapd + deps + pips — pipe — 2pp8 — 2p5)

N (p1 =+ p2)? (13 + p13) 7
papa (13 i + 2 113 + 203 — pif)

(201 + p2) (3 + papz + i3)

CBB_lvw((O,Q,l),am) — Cw((0,2,1),a12) =
8B u((0.2,1).a21) — Co((02,1),021) = 0,

BB Wu((0.2.2).a21) — Cu((0,2,2).021)
_ pa(2ept + depipn + Aopiipin + depaps + 2005 + pipe — pripie — 2p1p3 — 2013)
(i + p2)(pf + p13) ’

For state (1,1, 1) we have :

3 2 3
_ P+ 2 e + 20
CBB lvw((l’Ll):aOQ) o cw((17171)7a02) - : ,U/% :— /j/% 2

CBB_IUw((171,1),a20) — Cuw((1,1,1),a20)
_ #2(2epi + 2013 ps + Acpnpd + Aopss + 207 — pips + 3paps + )
(1 + p2) (13 + p3) ’

3 2 3
~1 pro(—pi + S + i)
CBB Uw((l’lfl)vall) - Cw((lvl’l),all) = (Ml + Iu2)<lu% + ,U%)

’

CBB_lvw((1,1,1),a21) — Cu((1,1,1),a21)
_ ML — e — R + 20p] + depdis + depdp + Aopn s + 2
(p1 4 p2) (13 + p13) ’
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BT Uu((1,1,1),a2) — Coo((1,1,1),090)
_Nl + a3+ ps 2CN1 + 46Nl/vbz + 2cppi + 20%‘2
Ml + Nz

for state (1,1,2) we obtain :

f3 + s — 245 + 2cp3 + 2 i3 + 2%
pi + 3

p13 + paps + s+ cpd + depnp + 30#1#2
pi 3

~1
BT 0w((1,1,2),a0) — Cw((1,1,2),a00) =

8B Wu((1,1.2),a10) — Cun((1,1,2),010) =

8B u((1.1.2).a11) — Cu((1,1,2),.011)
Mt — paps — gy + 20py + depipn + depipd + depups + 2%
(1 + p2) (i + 113)
8B u((1,1.2).a21) — Cun((1,1,2),021)
i — s — s — s Aepd 4 8cpd g 4 8cuips + Scpaps + 4%
B (11 + p2) (13 + p13)
BB Vu((1,1,2)a22) — Cun((1,1,2)022)
_,U1 + piH3 4 s A 20 + deppg + depd s + depn s + 20#2
(1 + p2) (pf + p13)

for state (1,2,1) we obtain :

2
_ M2
cpB 1Uw a — Cy a = "5 95
B ((1,2,1),a01) ((1,2,1),a01) M% n ,u%
2
_ M1l
CBB 1vw((17171)7a20) - Cw((17271)7a20) = #% + MZ’

(13 + g + p13)
(Ml + M2)(M1 +p3)’
fi + pies + s+ s
(b1 + o) (17 + p13)
115 (203 + 2pipe + i3)
(1 + p2) (13 + p3)

8B Wu(12,),011) — Co((12.1),011) =

BT Wu((1.2,1).a1) — Cu((1,2.1),.012) = :

8B 0u((1.2,1),a2) — Coo((1,2,1),090) =

)

and for state (1,2,2) we have :

[ (2613 + cpipis + 2ep1 pd + 213 + 1i2)
(b1 + p2) (pf + p13)
13 o
(1 + p2) (pf + p13)’

8B u((1.2.2).001) — Coo((122)a01) = ;

CBB_lvw((l,Q,Q),alo) — Cuw((1,2,2),a10) =
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8B u((1.2.2),a11) — Cu((1,2,2),.011)
_ [ e — papy — 3 + 2cp + depdpg 4 dopipd 4 dopaps + QCﬂz
- (11 + pi2) (13 + 1)
BB 0u((122).021) — Cu((1,2,2),21)
i — s — s — iy 2epi 4 deptpn 4 dopipd + depps + 2%
B (b1 + pi2) (13 + p13)
pia (=463 + 5o + p13)
(1 + o) (17 + 113)

BB Wu((1.2.2).a2) — Cuo((1,2.2).020) =

For state (2,1, 1) we have :

[ pis
(1 + p2) (pf + p3)’

BB 02,1, 1),002) — Co((21,1),00) =

BB u((2,1.1),a20) — Co((2,1,1),020)
(20 + 2epd g + 20 py + 203 + pupy — pips — 417)
a (1 + p2) (1 + p13)

pro (13 + pips — 1)

(p1 + pro) (pF + p3)

Y

BB w21, 1).011) — Co(@1,1)011) =

BB u((2.1.1).a01) — Co((2.1,1),021)
2 — 2 — R + gy + 20p1 + depipn + depipd + depap + 2%
(1 + o) (pf + p13)

BB u((2,1,1),a22) — Con((2,1,1),029)
_ — 1} — W A g3 + 2epi + depipg + depipd + depn s + 20,“2
(p1 + pa2) (03 + 113)

for state (2,1,2) we obtain :

fafr2 (201 + cpa)
R
pa (p1 + 2p2)
(1 + p2) (1f + 13)”

BT Uu((2,1.2).000) — Coo((2,1,2).000) =

8B Wu(2,1.2).a10) — Cu((2,1,2),.a10) =

8B u(2.1.2).a11) — Cu((2.1,2).011)
Mg s — g 4 20 + Ao + depdps 4 depn s + 2%
a (b1 + o) (1] + p13)
BT Wu((2,1.2).a01) — Cu((2,1,2),021)
=2u) — 28y — pR s+ g+ Aepd 4 Scufpg + Scpuips + Scpnpi + 4%
a (p1 + p2) (17 + 113)
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BB T 0u((2,1.2),a22) — Con((2,1,2),029)
_ — 1} — s A g3 + 2epi + depidpg + depipd + depn s + 20,“2
(p1 + pa2) (03 + 113)

for state (2,2,1) we obtain :

3 1o

(i + s
f i

(1 + p2) (13 + p13)’

20t + 3 s + 20303 — papd — 1
(p1 + o) (17 + 113)

. pa (28 + 203 s + gl — 13)

BB Uu((2.2,1),a12) — Cw((22,1),a12) = :

o o (pr 4 p2) (13 4 p13)
13 (13 + papio + p13)
(1 + p2) (13 + p13)”

8B u(2.2,1).001) — Co((221)001) =

BB T U0 ((2,1.1),a20) — Coo((2.2,1)020) =

BB 022,10 .011) — Co((22.1)a11) =

)

BB T 0 ((2.2,1).a22) — Coo((2.2.1)029) =

and for state (2,2,2) we have :

B! i (2papd A g+ depd + depdug + 2cp3)
CB Vw((2,2,2),a01) — Cw((2,2,2),a01) — (Ml T MZ)(M% T M%) )
T
(1 + p2) (] + p3)’

BB 0 ((2,2.2).010) = Co((2.2.2),a10) =

CBB_lvw((2,2,2),a11) — Cuw((2,2,2),a11)
3 2, .3 3 2 2 3
205 + pipe — py + 2ep + 2epipe + 20 15 + 2ep)
- 2 2
MY+ [y

9

pa (i + pipe — p3)
(1 + p2) (03 + p3)

BB U0 ((2,2.2),012) — C((2.22),12) =

CBB_LU/LU((Q’Q’Q),Q21) — Cw((2,2,2),a21)

_ M — Pk — 5 + 2epy + Aopips + depdps + Ao + 2%
(b1 + p2) (pf + p13)

Finally, for states (3,1,1),(3,1,2) and (3,2,1) we have

BB u((3.1.1).a21) — Co((3.1,1),021)
_ —3un — i — g3 + 2pup + 2001 + depipis + depipd + depapd + 2%
(p1 + Mz)(ﬁh + 13)
BB 0u((3,1,1).02) — Cun(3.1,1),a22) = BB T Vus((3,1,2),a0) — Cur(3.1,2).0)
2 — 2uip — g3+ gy + dep + 8epipin + 8cpitpd + 8cpapl + depiy
(p1 + pr2) (pF 4 113)
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8B 0w((3.1.2)091) — Cuo((3,1.2).021)
 =3pd = 3y — pi s 4 2ua 3 + Aept + e + 8cuipg + Sepn il 4 depis
(1 + p2) (13 + p3)
5B 52110y — Col(a0) 010y — 3pt + 3t g + 2uip3 — 3pap — s
(b1 + o) (17 + 113)
(1 = p2) (13 + papa + p13)
i+ ps

9

Y

BB u((3.2,1),a01) — Con((3.2,1)091) =

These quantities are nonnegative because 245 + pipus < pdu + 3uud + 2u1ps + us

2208 o+ p2 g —pa
201+t poHApT s +Ap p3+2p5 0

and ¢ > Hence, the policy m = (d)* is an optimal policy
and the recurrent states under this policy are (0,1,2), (1,1,2), (2,1,2), and (3,1, 2).
In the transient states (i.e., states in S\ S,+) we can select an action that will

take the process to one of the recurrent states and this shows that the policy 7*

described in the theorem is optimal when 25 + puips < p3pu3 + 3p2p3 + 2u1 s + 15

2ut+2ud potpd pd—pa p3

and ¢ >
2ut+4p3 po+Apdus+4p pa+2u3

. Hence the proof is complete. O
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