Performance in Flexible Distributed
File Systems

Alexander Siegel
Ph.D Thesis

TR 92-1266
February 1992

Department of Computer Science
Cornell University
Ithaca, NY 14853-7501

Performance in Flexible Distributed File Systems

A Dissertation
Presented to the Faculty of the Graduate School
of Cornell University
in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy

by
Alexander Siegel
May 1992

(© Alexander Siegel 1992

ALL RIGHTS RESERVED

Performance in Flexible Distributed File Systems

Alexander Siegel, Ph.D.

Cornell University 1992

There are many existing distributed file systems. Each file system provides a dif-
ferent degree of performance and safety. In this context, performance is the time
required to satisfy individual requests, and safety is the set of guarantees that the
file system provides to users. In this thesis, we characterize many of the trade-offs
between performance and safety. We include numerical relationships whenever pos-
sible. As a corollary, it is shown that a flexible file system — one that provides a
wide range of possible safety properties — can also have very good performance.

This thesis uses two main approaches, practical and theoretical. The practical
approach centers around the Deceit File System. Deceit supports file replication,
file migration, and a sophisticated update control protocol. Deceit can behave
like a plain Sun Network File System (NFS) server and can be used by any NFS
client without modifying any client software. Deceit servers are interchangeable and
collectively provide the illusion of a single large server machine to its clients.

The theoretical approach presents several results that are applicable to all dis-
tributed file systems. A careful analysis of many systems yielded insights into the
behavior of successful file systems. We formalize the relationships between safety
conditions exposed by this analysis. We also determine the cost of reading and

writing a file given different sets of safety conditions.

In conclusion, we find that Deceit does not totally meet the goal of being efficient
under all possible sets of requirements. Deceit is highly efficient for cases that require
a high degree of replication and safety, but it is inefficient in cases where very specific
optimizations are possible. However, the flexibility that Deceit provides is still very
useful. For example, we show that writing to a file with three replicas costs a
factor of 5 more messages more than writing to a file with one replica. Allowing
asynchronous disk writes instead of synchronous writes can decrease latency by
a factor of more than 30. Since Deceit allows the user to choose among these

possibilities, dramatic performance gains can be achieved in many cases.

Biographical Sketch

Alexander Siegel was born in Lafeyette, Indiana on November 25, 1966. He spent the
majority of his childhood in Albuquerque, New Mexico where he attended Highland
High School. During this time, he also attended several courses at the University
of New Mexico in Albuquerque. In the Fall of 1983, he enrolled at Rice University
in Houston, Texas. In the Spring of 1987, he graduated Magna Cum Laude with a
Bachelor of Science degree in Electrical Engineering. He also received a Bachelor of
Arts degree in Computer Science and Mathematics at that time. In the Spring of
1987, he enrolled at Cornell University in Ithaca, New York as a graduate student

in Computer Science. He continues to study at Cornell as of May, 1991.

1

Acknowledgements

I would like to thank my advisor Keith Marzullo. He kept me going whenever 1
was happy to stop. I would also like to thank Ken Birman. Without his generous

support and insight, this work would have been impossible.

iv

Table of Contents

Introduction

1.1 Survey Method
File System Survey

2.1 Definitions e e
2.2 Andrew e
2.3 NFS . . . e e
2.4 RNFS . . . e
25 Echo
2.6 HA-NFS e
2.7 Locus
2.8 Ficus o e e e
2.9 Coda e
2.10 Summary Tables o oL oL
2.11 Connectlons o o v e e e e e e e e e e e

Deceit Architecture

3.1 General Architecture L L e
3.2 Name Service e e
3.3 Segment Service
3.4 Partition Failures
3.5 File Parameter Summary
3.6 Optimizations L
3.7 NFSEnvelope
3.8 Timed Benchmarks
3.9 Deceit Summary e
3.10 Future Deceit Enhancements

Comparative Analysis

4.1 Deceit Analysis
42 Formal Model
4,3 Maximum Availability o000
4.4 Performance Bounds, .
4.5 Design Trade-offs Lo

5 Conclusion

5.1 File System Properties

5.2 File Parameters and Flexibility

....................

5.3 Future Direction in File Systems

A NFS Protocol

Bibliography

vi

136
137
140
147

150

155

List of Tables

1.1 Failure Probabilities for System Components 3
1.2 Maximum Availability, 9
1.3 Minimum Availability 10
2.1 RNFS Operation Cost 23
2.2 RNFS Availability L 23
2.3 Operation Cost in'Locus 31
2.4 Operation Cost in Ficus 34
2.5 Operation Cost in Andrew 37
2.6 File System Replication Summary 38
2.7 File System Safety Summary 39
3.1 Andrew Benchmark Times (seconds) 86
3.2 NFS Benchmark Times (milliseconds per operation) 88
3.3 NFS Benchmark Times without Disk Access. 89
3.4 Local vs. Remote WRITE Time (milliseconds) 91
3.5 WRITEs per Second with Token Contention 92
3.6 Effects of Write Safety Level 92
3.7 WRITE Time with Multiple Clients 94
3.8 Reduction in Disk Performance for WRITE 95
4.1 Read Operation Component Cost 105
4.2 Write Operation Component Cost 107
4.3 Create Operation Component Cost 109
4.4 Delete Operation Component Cost 110
4.5 Deceit Read Availability, ... 113
4.6 Deceit Write Availability (Percentage) 114
4.7 Deceit Write Reliability (Hours) 114
4.8 Maximum Availability Safety Properties 117
4.9 Message Cost Comparison, 123
5.1 Worst-case Write Operation Cost by Degree of Replication 140
5.2 Expected Time for the Fastest sout of r Disks 143

Vil

List of Figures

1.1
1.2
1.3
1.4

2.1
2.2
2.3
24

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3

5.1
5.2

Network Model 3
Example Network Cost 6
Availability and Reliability Plots 11
Ficus Update Example 13
RNFS File State Transitions 22
Echo Wiring Diagram 25
HA-NFS Communication 27
Ficus Layers 32
File System Components 45
NFS Client Architecture 47
Deceit Client Architecture 48
Update Propagation in the Name Service 57
Recovery in the Name Service 58
Group Join Protocol oo 67
Network Partition 76
Combined Write-token Request and Group Join Request 104
Data Consistency Scenario 119
Optimal Write Protocols 126
Availability and Reliability by Quorum 146
Scenarios for Replica Inconsistency 147

Vil

Chapter 1

Introduction

There are two properties of distributed file systems that clearly conflict: the perfor-
mance of the system and the safety it provides in the face of failures[Her85,Her87].
Furthermore, as the field of distributed file systems has matured, the emphasis has
been to increase the performance at a cost of safety. Our thesis is to better un-
derstand in practical terms the nature of this trade-off. Additionally, we explore
the notion of allowing the trade-off to be made a parameter of each file, thereby
allowing the user to explicitly choose the degree of safety required.

This thesis uses two main approaches. The first approach is a detailed survey of
the most important existing distributed file systems. This survey provides several
examples of different combinations of performance and safety. It also establishes
what types of safety are recognized by the research community as desirable. We
also describe Deceit[SBM89,SBM90a,SBM90b], a uniquely flexible distributed file
system. With Deceit, the core protocols can be controlled by users through a set of
file parameters. Using this flexibility, we explore performance and safety trade-offs
that normally would be too exotic to implement.

This survey into the behavior of real distributed file systems provides many

informal insights that reveal themselves as recurring patterns of behavior. In our

second approach, after formalizing these insights and presenting a reasonable system
model, we derive several technical results as performance/safety trade-offs. Given
these results, it is possible for file system designers to intelligently decide which
safety properties are worth the cost.

The rest of this chapter describes the methodology we use in the file system
survey. Chapter 2 surveys existing file system efforts excluding Deceit. Chapter 3
provides a detailed description of the Deceit file system. Chapter 4 provides a tech-
nical analysis of Deceit and of performance/safety trade-offs in general. Chapter 5

summarizes and concludes the thesis.

1.1 Survey Method

The first question usually asked about a new file system is “how fast is it?” This
is similar to comparing CPUs by clock rate only. Many other factors influence the
usefulness of a file system, and in general a system that can handle a wide variety
of requirements with reasonable efficiency is more useful than a system that solves
one particular problem very well. Also, a file system with strong safety properties
may be more widely applicable than an unsafe one. By assuming a single focused
set of requirements, a system may be ineflicient or unusable under slightly different
conditions.

A substantial amount of analysis is required to thoroughly compare two dis-
tributed file systems. Furthermore, since implementations vary widely in the envi-
ronment in which they run and the usage made of them, it is difficult to directly
compare one against another. In our survey, each file system is distilled down to
a small set of attributes that depend only on the system design and not on imple-
mentation details. In particular, absolute performance figures will not be presented,

since these values are strongly dependent on the processors and disks used.

Network and Failure Model

To strengthen the comparison, a common network and failure model is applied to
all file systems. Some file systems require unusual network hardware, and corre-
sponding adjustments to the model are made for these systems. The network model
is very simplistic in order to keep the comparison manageable. We assume that all
servers are attached to a linear network as shown in Figure 1.1. Each server has a
single disk subsystem. A network segment is a portion of the network between two

adjacent servers. One client is attached to one end of the network, and other clients

may be attached elsewhere.

Client Network
Segment
r~A—\

Network 1
Server
Disk

Figure 1.1: Network Model

Table 1.1: Failure Probabilities for System Components

Component MTTF! MTTR? | Availability
network segment || 10 months (7200 hours) | 6 hours 99.9 %
server host 16.6 days (398 hours) | 18.2 hours 95.6 %
disk/media 4 years (35064 hours) 4 hours 99.989 %

'Mean time to failure
2Mean time to recovery

We use the failure times shown in Table 1.1. Component failures are assumed
to be independent of each other. The server host times were taken from [LCP90]
assuming a Sun 3/280 workstation. This type of workstation is used commonly
for file servers, and it is well represented in the sample. The other figures are
from [Gra85,Gra90], and are based on the assumption that replacement hardware
is readily available. Clearly, these failure times may not apply to all environments,
but they will illustrate general features of availability and reliability.

On course, it would be very useful to have a more detailed set of statistics,
but in general it is very difficult to collect reliability statistics about computer
system components. Failures can come from an alarming variety of sources and
are notoriously bursty. Additionally, the independent failure assumption is very
unrealistic. For example, a software upgrade can render an entire local area network
unreliable for several days. Computer hardware is extremely reliable until the first
electrical storm or fire. A virus can slowly destroy every computer on a network.
We have little alternative but to be satisfied with imprecise models and results.

We assume that client caching is used, since this facility is a key component of
a practical file system. We model a cache using a fixed probability of a client cache
miss v where 0 < 4 < 1. Cache design and cache consistency are specific to the
client /server communication protocol in a file system. This thesis will not emphasize
this protocol; instead, it will emphasize the server itself. In particular, we emphasize
the problem of coordinating file access and updates in a file system that provides
fault tolerance. Is possible to provide fault tolerance using any reasonable client
protocol: a fault tolerant file server can emulate a normal file server. Therefore, we

will not study this protocol in detail.

Performance Comparison

The first comparison measure is performance. Since few of the file systems are avail-
able on identical hardware in an identical environment, a direct timing comparison
is usually impossible. Even small details (e.g. data placement on disk) can have
a dramatic effect on total performance. Fortunately, the efficiency of a file system
can be partially described by the amount of network traffic and the number of disk
operations required for an operation. We assume that the software execution time
is negligible, and network message size does not significantly influence the total
transmission time. This is currently a good assumption: the cost in transmitting
a message is dominated by the overhead of preparing the message for transmis-
sion and delivering the message to the process at the destination [SB89]. These
assumptions will become more valid as networks and CPUs increase in speed.

More specifically, the cost of running a protocol will be broken into four cate-
gories. A network phase is the time required to transmit a packet from one server
to another. For example, we have measured a network phase at 2 milliseconds on a
10 megabit /second Ethernet under UNIX3. A network phase can be classified into
one of 2 categories: synchronous network phases (SNPs) and asynchronous network
phases (ANPs), where a SNP must be completed before the client can continue,
and an ANP merely must be completed eventually. For example, assume that a
write operation is issued to a file with three replicas, and an additional round of
garbage collection is required among the servers after the client has received its
reply. This example is illustrated in Figure 1.2. The initial broadcast and reply
are synchronous since the client must wait for them to complete, and the garbage
collection afterwords is asynchronous since it can be delayed without delaying the
client, so the total cost is 2 SNPs, 2 ANPs, and 10 messages.

The other two categories are synchronous disk accesses (SDAs) and asynchronous

3UNIX is a registered trademark of AT&T.

Client Server Server Server

Figure 1.2: Example Network Cost

disk accesses (ADAs). On a medium speed hard disk, we have measured a SDA
takes at 50 milliseconds. As with network phases, an SDA must be completed
before the client can continue, and an ADA need only be completed eventually.
ADA operations are uncommon in file system specifications due to the possibility
of server failure causing the operation to be aborted without client notification.
Ironically, ADAs are much more common than SDAs is real file systems since SDAs

are very expensive.

We will compute the number of SNPs, ANPs, SDAs, ADAs, and total number

of messages for the following base file operations:

e create” - create a normal file

e createdir” - create a directory

o delete* - delete a normal file

e deletedir” - delete a directory

e open - prepare a file for reading or writing
e read - read file data

e write* - write file data

e close - discontinue access to a file

e readdir - list the contents of a directory

Operations which are marked with a x are referred to as update operations since
they modify the disk data. These operations are not a complete list of all file system
operations, but they do characterize the core functionality in a file system.

An additional measure of cost is the total number of network messages required
for an operation. This cost is particularly important under heavily loaded con-
ditions. For read and write operations, the total number of messages will be

computed.

Availability Comparison

Avwailability is the expected percentage of time such that an operation can be com-
pleted. Reliability? is the expected amount of time that the system remains available
if it is currently available. There are different values of availability and reliability
corresponding to each of the different file operations and their inherent tolerance to
failures. For this analysis only read availability and write availability is considered.
Also, availability is computed assuming only one client; if there are multiple clients,
then availability for all clients will be lower since the system must be available to
all clients.

In the analysis, the availability and reliability for read and write operations
are explicitly computed using the times from Table 1.1. The analysis methods are
described in [BP75]. We assume component failure distributions are exponentially
distributed. In other words, system components have a uniform probability of failure
regardless of age. To compute availability, we sum the probabilities associated with
each available system state. To compute reliability, we sum the conditioned decay
components associated with each system failure transition. Due to the large number

of formulas involved, we do not show the detailed computations involved in deriving

4This value is also called the “mean time to failure” or MTTF.

these values.

To demonstrate the analysis, and to motivate replication for availability, we now
present an example. Assume that there are three file servers and three file replicas
(the variable n will be used to denote the number of replicas). Further, assume that
a failure of any single component disables the entire system. Under these conditions,
the availability of the system is 86.72%, and the reliability is 126.6 hours (5.3 days).
Now, assume that it is sufficient for only two servers® to be accessible to the client.
Under these conditions, the availability of the system is 99.299%, and the reliability
is 1,259 hours (52 days). These values are a factor of 19 less unavailability and a
factor of 10 more reliability than a single server.

The two extremes of availability and reliability are as follows: a system has
minimum availability if the loss of any single component causes the entire system
to become unavailable, and a system has mazimum availability if operations can
complete when any server is accessible to the client. Table 1.2 and Table 1.3 show
the availability for the two extremes assuming the component failures rates from
Table 1.1. Figure 1.3 shows the same data in graphical form. Note that maximum
availability has an asymptotic value for large n because network failures tend to
eliminate the value of adding new servers.

The availability of 4 or more servers with maximum availability suggests an
incredibly reliable server, but this reliability is unachievable in practice. Many
events affect every server at a site and will tend to cause all servers to fail. For
example, power lines have about a mean time between failures of 6 months and a
mean time to recovery of 2.5 hours [Gra90]. Administrative activities (e.g. software
upgrades) are particularly notorious in this respect. For large n, the independent

failure assumption is insupportable.

5A server is a combined host machine and disk.

Table 1.2: Maximum Availability

n || Availability Reliability
1 95.42% 393.5 hours (16 days)
2 99.786% 4,335 hours (6 months)
3 99.986% 41,508 hours (4.7 years)
4 99.9956% | 101,895 hours (11.6 years)
5 99.9960% | 111,873 hours (12.8 years)
6| 99.9960% | 112,505 hours (12.8 years)
7 99.9960% | 112,540 hours (12.8 years)
8 99.9960% | 112,542 hours (12.8 years)

Safety Comparison

These are a variety of safety properties that a file system can provide to a client.
These properties allow users and applications to depend on the file system to behave
predictably. Often, the correctness of an application will depend on these proper-
ties. Unfortunately, optimizations for high performance usually requires sacrifices
to safety. Each file system designer must make a trade-oft between safety properties
and performance.

We have chosen five safety properties for the comparison which we describe

below. Informally, the properties are:

o Client cache consistency describes the ability of the file system to maintain

valid client caches. A stale client cache can lead to confusion between clients

about file contents.

o Data consistency extends the issue of cache consistency to include all file

replicas. If file replicas are inconsistent, then the result of a read can be

10

Table 1.3: Minimum Availability

n || Availability | Reliability

1 95.42% | 393.5 hours
2 90.97% | 191.5 hours
3 86.72% | 126.6 hours
4 82.68% | 94.51 hours
5 78.82% | 75.41 hours
6 75.15% | 62.73 hours
7 71.64% | 53.70 hours
8 68.30% | 46.95 hours

unpredictable.

o One-copy serializability® is another method of describing safe replication. A

file system satisfies one-copy serializability if replication is invisible to clients.

e Update stability is a form of consistency over time. Update stability is satisfied

if a file never loses completed updates.

o Atomicity describes consistency in the face of crashes. Atomicity is satisfied
if the file system remains in a consistent state after recovering from a failure

(i.e. no operation had a partial effect).
Client Cache Consistency

Client caches must be kept up to date with respect to server data, but file systems
vary with their approach to this problem. Client cache consistency will be described
using values that are determined by when the client cache data is refreshed. For this

property, we assume that there are no failures. If client cache consistency is false

6This term is actually a misnomer in this thesis. Originally, one-copy serializability was a well
defined database term, but the file system community grabbed it, and the meaning has drifted.

11

99.996.--"-"‘E"--“-.i--;:--"—-_-_-l:ﬁ_a-i-i?ﬁ_l;n';‘20000-""-"‘E"-"-“E-:::;:-;-i-.r-f?-a-xui'f-ﬁam

T R R T 171 N S S

99.961------- T A : IR ; E E

Y H : : L. ; ' '

W E i i 62504------- AR SRS d-mnmee domsenes :

4 ' . :)]) : ; i

99.6 ----;4:--- Jreeeesieeeee R : RE E 5 E :

P S e I R S R e

‘ i : . .] o : : , : :

YRR LR L— — ; O : ; ; :

S N R A T 1 o R R et

: . : mlnlmum ; . : [n

60 — — 50 S . T —

i 2 3 4 5 6 i 2 3 4 5 6
Availability (percentage) Reliability (hours)

Figure 1.3: Availability and Reliability Plots

then client cache data can remain invalid indefinitely; there is no guarantee about
when the data is refreshed. A value of true means that all client caches are refreshed
during every write before it returns to the client. A value of timeout means that
cache data is refreshed periodically while the file is being accessed. A value of on
open means that cache data for a client is refreshed when the file is opened at the
client. A value of on close means that all client caches are refreshed when the file is
closed. Values can be combined to describe a combination of approaches to cache
consistency. For example, on open can be combined with timeout to describe a file

system that refreshes the cache both when the file is opened and periodically.

Data Consistency

Failures can prevent updates from being delivered to all replicas of a file. As a result,
it is possible for replica contents to diverge from each other. If a client is reading
from one replica and switches to a different divergent replica (e.g. in response to a
failure), then confusion can result. Different file systems provide different guarantees

about consistency between replicas during or after a failure. At one extreme, a file

12

system can guarantee that all updates are applied to all replicas. If a server is down,
then the update is aborted or blocked. At this extreme, data consistency will have
a value of true. At the other extreme, there are no guarantees, and data consistency
will have a value of false. If data consistency is eventual then replica consistency will
be eventually achieved, provided that there are no updates for a sufficiently long
period of time, and failures do not permanently block communication. A value of
user means the same as false, except inconsistency is always detected and brought
to the attention of the user for resolution. A value of non-directory means the same

as user, except directory inconsistency is automatically resolved in some way.
One-copy Serializability

It is a valuable simplification for the client to be able to assume that there is only
one copy of file data. Replication can be exposed when read and write operations
are allows to interact without global ordering. For example, in the Ficus file system
(Section 2.8), it is possible for writes to two different files to cross over each other,
as shown in Figure 1.4. As a result, a read on one client will show the order of
updates to be different than a read on another client. There is no global order of
reads and writes that can account for the results. For this property, we assume
that there are no crashes and the client cache has perfect consistency. If one-
copy serializability has a value of false then it is possible to detect the underlying
replication, and client software must be prepared for strange results. A value of

true means that it appears that there is only one copy of all data.
Update Stability

Normal file system semantics assume that a completed update has been commit-
ted to stable storage, and any overwritten data is lost. If a file system does not

synchronously update to stable storage, then an ill-timed crash can cause data to

Client Server Server Client

write (x) write(y) :
read (x) read (x) E

read (y) / read(y) E Time
|

Figure 1.4: Ficus Update Example

be lost. Also, if a file system uses replication and fail-over’, a failure can cause a
client to switch to a server with obsolete file data. If update stability has a value
of true, then update stability is guaranteed after the client has received the reply
to a write. After that time, obsolete data will never be returned from a read. A
value of false means that data may regress at any time. A value of {imeout means
that data becomes stable after a known period after the write has returned, but a
crash can cause the data to be lost until that time. A value of on close means that
data is stable only after the file has been closed.

Update stability is weaker than one-copy serializability (1CS). A file system that
satisfies 1CS will have the property that read operations are consistent with previ-
ous write operatio'ns since they must be serialized in that order. Data consistency
is independent of update stability and 1CS since a file system can nearly decouple
the state of replicas from the view that a client sees. For example, a file system that
only allowed the client to see one particular replica would satisfy 1CS trivially, and
the state of the other replicas would be irrelevent. In practice, there is a relationship

since the client can see those replicas during a failure.

“Fail-over occurs when a client switches servers in response to a server crash.

14

Atomicity

Failures of system components can cause partially completed operations to be
stopped without completing or being cleanly aborted. A system has the prop-
erty of atomicity if all operations are eventually completed or have no effect. In
other words, each file system operation is an atomic transaction. If atomicity has a

value of true then the system has atomicity. A value of false means otherwise.

Chapter 2

File System Survey

Distributed file system surveys are common in the literature: [Hac85] and [Sat90a]
are two recent examples. Such surveys usually focus on a narrow aspect of the sys-
tems (e.g. client caching) since a survey on all of the aspects of existing file systems
would be huge. In our survey, we focus on the performance and the safety provided
by each type of file server, following the methodology described in Section 1.1.

The total number of existing file systems is enormous, and our survey covers
only eight of them. We included file system that have distributed capabilities and
are well-known. If the reader is interested, then the bibliography contains many
references to other file systems that are not discussed in this chapter.

Section 2.1 presents the terminology used in the description of each file system.
Each of the remaining sections is devoted to a specific file system and provides
a brief summary of the architecture followed by an analysis. These sections are
separated into three categories. In the first category, Andrew (Section 2.2) and
NFS (Section 2.3) are two file systems that do not provide replication and will
not necessarily contribute to the main thesis. However, many later file systems
heavily depend on the development of Andrew and NFS, and the presentations

are correspondingly dependent. In the second category, RNFS (Section 2.4), Echo

15

16

(Section 2.5), and HA-NFS (Section 2.6) provide replication based on large objects
(e.g. whole disks). The designs of these systems are simplified by this coarseness,
and they have many design similarities. In the third category, Locus (Section 2.7),
Ficus (Section 2.8), Coda (Section 2.9), and Deceit (Chapter 3) provide replication
based on small objects (e.g. files). We summarize all file system characteristics in
tabular form in Section 2.10. We conclude the chapter with a summary of our
observations in Section 2.11.

Most of the material describing individual file systems was copied directly from
the referenced documents, with some editing for terminology and conciseness. Due
to the editing, the copied text is not explicitly quoted; instead, we note here that

such text has been taken from the referenced sources.

2.1 Definitions

We present the following glossary of terms:

atomic action - an action (e.g. a write) that is guaranteed to execute at either

all involved sites or at no site.

atomic broadcast, abcast - a multicast operation in which all messages are re-

ceived atomically and in the same total order.

capability - a unique identifier that is very difficult to duplicate or manufacture
without access to privileged information. Holding a capability authorizes the

holder to perform some action.

client - a computer or a program that issues requests to a server and receives
requests from a user. Clients can also be servers to other clients. See user

and server.

directory - a list of pairs associating names with file system objects such as a file

or directory. See name space.

17

distributed - a system that runs concurrently on multiple processors. We assume
that the communication between processors is inherently unreliable or asyn-

chronous.

dual-ported disk, twin-tailed disk - a disk drive that can be controlled from
two separate hosts. Special hardware is required to handle the situation where

both hosts try to simultaneously use the disk.

file handle - a unique identifier referring to a file or directory. See unique identi-
fier.

hint - cached information that can be wrong, but its correctness is easily deter-

mined at the time of usage.

logical volume - a volume that appears to be a single block of files to the client.
A volume can be physically replicated or distributed across multiple servers.

See volume.

meta-data - information that describes naming, ownership, protection, locking,
page location, etc. for files. Meta-data does not refer to the actual contents

of files.

name space - the function that maps textual file names to physical or logical
data segments. For example, “/usr/bin/sh —< server=odin, disk=sd1h, in-

0de=14985 >" might be an element of a name space.

partition - a loss of communication between two components of a distributed sys-

tem in which the separate components continue to function.

process group - a set of cooperating processes or machines that work on the same

task or data object.

RAM disk, silicon disk - a large memory buffer designed to emulate a very fast

disk. It often used conjunction with an uninterruptible power supply. See

18

uninterruptible power supply.

remote procedure call (RPC) - a message exchange between one process and
another that emulates a normal procedure call, i.e., is synchronous. The
process that initiates the exchange is often called the client process and the

other process is often called the server process.

scalability - the ability of a system to grow to a very large size. In a distributed
file system, scalability can refer to the number of clients per server, the total

number of servers, or the total number of files.

serializable - a system behavior that is consistent with some serial ordering of

operations.

file server - a computer with a non-volatile storage system which forms a perma-
nent file repository. Occasionally, a file server is a service which is composed

of several computers.
server disk - the non-volatile storage system of a file server.
server host - the computer component of a file server.
site - a single computer or a small set of tightly coupled computers.

unique identifier (UID), handle - a name which maps to at most one physical
or logical object in a system. Unique identifiers can be capabilities, but there

is no necessary relationship.

upcall, call-back - a RPC that is issued in the reverse direction than the direction
used in typical operations. The difference between an upcall and a normal RPC
is often just a matter of convention. An upcall also reverses the communication

synchronization and can be used as an interrupt to the client process. See

RPC.

user - a human being or program that initiates operations.

19

volume, partition - a large block of files that can be manipulated (e.g. backed

up) as a unit.

2.2 Andrew

Andrew is a distributed workstation environment that has been under development
at Carnegie Mellon University since 1983. The primary data-sharing mechanism is a
distributed file system [HKM*88,Sat89a,MSC*86,5590a] spanning all the worksta-
tions. Using a set of trusted servers, collectively called Vice, the Andrew file system
presents a homogeneous, location-transparent file name space to workstations.

Scalability is the dominant design consideration in Andrew. Many design deci-
sions in Andrew are influenced by its anticipated final size of 5000 to 10,000 clients.
Careful design is necessary to provide good performance at large scale and to facil-
itate system administration. Scale also renders security a serious concern, since it
has to be enforced rather than left to the good will of the user community.

The shared name space is partitioned into disjoint subtrees, and each such sub-
tree is assigned to a single server, called its custodian. Each server contains a copy
of a fully replicated location database that maps files to custodians. This database
is relatively small because custodianship is on subtrees, rather than on individual
files. These databases are treated as hints.

Files in the shared name space are cached on demand on the local disks of
workstations. A cache manager, call Venus, runs on each workstation. When a
file is opened, and if a local copy is not available, an up-to-date copy is fetched
from the custodian. Read and write operations on an open file are directed to the
cached copy. If a cached file is modified, it is copied back to the custodian when
the file is closed. Cache consistency is maintained by a callback mechanism. When
a file is cached from a server, the latter makes a note of this fact and promises to

inform the client if the file is updated by someone else. The use of callback, rather

20

than checking with the custodian on each open, substantially reduces client-server
interactions. Andrew caches large chunks of files (64 kilobytes) to exploit bulk data
transfer.

Older versions of Andrew cached whole files. Coda (Section 2.9) still uses this
approach. Doing so provides better fault tolerance and consistency. Unfortunately,
it also prevents access to extremely large files. Also, if a large database file is only
slightly modified, then it would be inefficient to load and store the entire file. The
choice of 64 kilobytes is a compromise solution.

Since Andrew does not provide replication, there will be no technical analysis.

2.3 NFS

The Sun Network File System[Sun86d,Sun86b,SM89,Sun90] was developed at Sun
Microsystems. It provides transparent remote access to shared file systems over local
area networks. The NFS protocol is designed to be machine, operating system,
network architecture, and transport protocol independent. This independence is
achieved through the use of RPC primitives built on top of a standardized External
Data Representation (XDR). NFS has become a de facto industry standard, and
almost all operating system venders now support at least NFS client capability.

NF'S uses a nearly stateless protocol. That is, a server does not need to maintain
much state information about any of its clients in order to function correctly. The
only necessary client state is a cache of recent replies. Some RPCs are not idem-
potent, and retransmission can cause trouble. The reply cache allows the server
to resend the original reply rather than retrying the operation. A summary of the
NFS protocol can be found in Appendix A.

NFS does not support replication, and NFS servers are independent of each
other. As a result, if a server crashes, its data becomes unavailable. NFS deals with

this problem by forcing clients to block until the server recovers. The operation is

21

retried periodically until it succeeds.

Since NFS does not provide replication, we include no technical analysis.

2.4 RNFS

RNFS[MS87] is a distant progenitor of Deceit which was developed at Cornell a
few years before Deceit. RNFS implements a network file service that is tolerant
to crash failures and can be run on top of NFS (Section 2.3). The fault-tolerance
is completely transparent, so the resulting file system can support the same set of
workstations and applications as NFS. NFS was chosen because it is available and
easily used, and its simple stateless protocol made the task of replication easier.

RNFS achieves fault-tolerance by replicating the server and using an atomic
broadcast protocol for communication. Transparency is achieved by directing all of
the client requests to an intermediary (called an agent) that in turn broadcasts to
the servers. The agent uses virtual file handles to identify each file or directory that
it manages. The agent maintains a replicated file list for mapping virtual handles
to real NFS handles and vice versa.

The agent performs a write by forwarding the request to each server with the
virtual file handles replaced by real handles. The agent replies to the client when
all of the writes are completed. This ensures that the NFS write-through semantics
are preserved. The agent performs a read by forwarding the request to one of the
servers.

When a server fails, the agent marks all file replicas on that server as down.
When a write is done to a file with a replica on a failed server, the agent marks the
unavailable replica as invalid in its replicated file list and updates all of the available
replicas. When a server recovers, the agent changes the state of all replicas on that
server to up. Each replica that was marked invalid is brought up to date. Recovery is

accomplished by transferring contents from valid replicas to invalid replicas. These

22

transitions are shown in a state diagram in Figure 2.1. Partition failures are handled

by ISIS.

transfer

recovery

update

Figure 2.1: RNFS File State Transitions

In order to protect against agent failure, the agent maintains a stable version of
the replicated file list in stable storage. At a minimum, the stable list must contain
the file handle mapping and whether each file replica is valid or invalid. The stable
list is itself replicated on all the servers in a special file. Changes to this file are
only necessary when a file is created, deleted, or changes state.

The agent is replicated for fault tolerance, and it uses ISIS for communication.
Because clients do not broadcast their requests to all agents, some other mechanism
is needed to order updates to a file. Agents mutually exclude each other when
writing to a file with a write-token. An agent must acquire a write-token before
it is allowed to update any replica of the corresponding file. Information about
the current token holder is replicated at every agent. Should the holder of the
token crash, another agent is chosen arbitrarily to inherit the token. Since write
operations tend to come in bursts from a single source, the cost of acquiring the

token is amortized over a large number of write operations.
Performance Comparison

RNFS simply replicates update operations over all servers. Token acquisition may

be required for the first update in a sequence. Read operations can be handled by

23

any server, but they have to go through a level of indirection. Let n be the degree
of server replication, and let m be the degree of agent replication. Table 2.1 shows

the cost of each type of operations.

Table 2.1: RNFS Operation Cost

Operation type SNP | ANP | SDA | ADA | Total Messages
Update (with token) 4 0 1 0 2n 42
Update (without token) 6 0 1 0 2n +2m
Non-update 4 0 1 0 4

Availability Comparison

RNFS provides maximum availability, but a least one agent has to be available in
addition to a server. Table 2.2 shows the availability of RNFS assuming that there
are n servers and m agents. Note that a system with 1 server and 2 agents is as

available as a system with 2 servers and 1 agent.

Table 2.2: RNFS Availability

n,m || Availability | Reliability

1,1 91.05% | 196.7 hours
1,2 | 95.22% | 360.8 hours
1,3 | 95.43% | 389.8 hours
2,2 || 99.572% | 2,168 hours
2,3 1| 99.772% | 3,925 hours

3,3 99.972% 20,754 hours

24

Safety Comparison
RNFS has the following values for each safety property:

e client cache consistency = timeout
Client cache data is maintained with a 30 second timeout according to the

NFS protocol.

o data consistency = false
RNFS can not tolerate partitions. If updates are issued on both sides of a
partition, undetected inconsistency will result.

e one-copy serializability = false
Read requests are not synchronized with updates if they go through a different

agent.

e update stability = true
RNFS uses a protocol to determine the last process to fail{Ske85]. Therefore,

it is guaranteed to recover from the latest file data.

o atomicity = false
RNFS to careful to maintain atomicity, but a crash in the middle of an oper-

ation can leave the underlying NFS servers in an inconsistent state.

2.5 Echo

In Echo[HBJ*90,HBM 89, MHS89], disks are multi-ported and connected to several
server computers. I'igure 2.2 illustrates the Echo architecture. Each such disk has a
multi-port arbiter which recognizes at most one connected server host as its owner
at a time. Ownership is subject to timeout. Echo can also make use of single-ported
disks; in this case, software on the single physically-connected server simulates the

multi-port arbiter, and other logically-connected servers access the disk via this

25

server over the network. We will assume that Echo uses real multi-ported disks in

the analysis.

multi-port
rbi .o
arbiter A

Figure 2.2: Echo Wiring Diagram

The server hosts are organized in a primary-secondary scheme. Servers commu-
nicate amongst themselves to choose a primary. A primary must be able to claim
ownership of a majority of the disks. Because disk ownership is subject to timeout,
the current owner must refresh its ownership periodically. After a failure, a sec-
ondary must wait for the disk ownership timeouts to expire before it can become
the new primary. The waiting is required in order to guarantee that there is never
more than one primary. All client operations are sent to the primary, and this
requirement guarantees one-copy serializability.

Echo employs a distributed caching algorithm between clients and servers. Serv-
ers keep track of which clients have cached what files and directories. This caching
information is replicated in the main memories of the server computers. The caches
use delayed write-back instead of immediately sending new data to the servers. A
token is used to provide cache consistency during concurrent access. A callback is
used when clients caches need to be purged so that a token can be moved.

In Echo, replication is based on disk blocks. The granularity of replication

26

is an array of disk blocks. A replica, called an EchoDiskRep, is configured from
one or more physical disks. Two or more EchoDiskReps are combined to form an
EchoDisk, which provides an array of highly available logical blocks to the next
layer up. Echo volumes (subtrees of files and directories) are layered on top of the
EchoDisk interface. Multiple Echo volumes may be stored in a single EchoDisk.

Users control file semantics by placing files in a volume with the desired properties.
Performance Comparison

Since a single server can access all disks, all operations can be handled by a single
server without network communication. All operations take 2 SNPs and 1 SDA; the
total message count is 2 (request and reply). Due to the unusually connectivity, it
may be fair to consider that the server/disk connections form a secondary network.
Using this assumption, all operations take 4 SNPs and 1 SDA; the total message

count is 2n + 2.
Availability Comparison

Echo requires that a primary be able to own a majority of the disks. It is sufficient
for a single host to be available to the client, and a majority of the disks to be
functional. If the desired level of replication is even (e.g. 2 or 4), then an extra server
can act as a witness[P86] to provide a useful majority. For the usual component
availability values, an Echo system with 3 servers has an availability of 99.986%

and a reliability of 41,475 hours (4.73 years).
Safety Comparison
Echo safety is as follows:

e client cache consistency = true

Tokens and callbacks are used to maintain cache consistency.

27
e data consistency = eventual
A majority of disks is required for any operation.

e one-copy serializability = true

A majority of disks is required for any operation.

update stability = true

Each operation is forced to every disk. This task is accomplished in parallel.

atomicity = true

Echo uses a replicated log to insure atomic updates.

2.6 HA-NFS

HA-NFS[BEM90,BEM91] servers implement the standard NFS protocol (Section
2.3) and offer applications transparent recovery from server failures. Disks are
dual-ported and can be accessed by both hosts as shown in Figure 2.3. Each HA-
NFS server host is assigned a backup host that can access the server’s disks if the
latter fails. The backup impersonates the failed server on the network. The backup
maintains no information about the server’s state during normal operation, and is

itself a file server for a different set of disks.

Client

Network

Server

Disk

Figure 2.3: HA-NFS Communication

HA-NFS forces updates synchronously to disk as required by NFS semantics.

28

Servers record changes to file system meta-data in a disk log, ensuring the atomicity
of file data. Disk logging also improves the performance of operations by obviating
the need to synchronously force meta-data to their home locations on disk, thereby
minimizing disk seek time. If a failure occurs, the backup uses the log to restore
the file system structure to a consistent state. The log allows the backup host to be
completely unloaded during normal operation. Integrating a recovering server into
the system only requires regenerating the server state from the log.

HA-NFS uses AIXv3’s logical volumes' to tolerate media failures. A logical
volume 1s composed of equal-sized disk partitions that give the abstraction of a
logical disk. To tolerate media failures, a logical volume can have up to three
replicas. Replicated logical volumes are controlled by a single file server, reducing
the cost of maintaining consistency. No message overhead is required beyond what

normal NFS operations incur.
Performance Comparison

Since HA-NFS can update replicated volumes in parallel using the dual-ported
disks, no network communication is needed. Therefore, all operations cost 2 SNPs

and 1 SDA.
Availability Comparison

HA-NFS is limited to at most two servers. However, due to the cross connected
disks, HA-NF'S can tolerate the loss of the host of one server and the disk of the
other server. With intelligent disk control hardware, even a loss of the network
segment can be tolerated if the primary server host is still up. Using the usual com-
ponent availability values, the configuration in Figure 2.3 produces an availability
of 99.805% and a reliability of 4,583 hours (6.4 months). Note that this availability

is slightly higher than the normal 2 server maximum availability.

'Logical volumes are an IBM software product for use with AIX.

29

Safety Comparison

HA-NFS safety is limited by the NFS protocol. However, HA-NFS does work hard
to provide as much safety as possible. The values for each safety property are as

follows:

e client cache consistency = timeout
Client cache data is maintained with a 30 second timeout according to the

NFS protocol.

e data consistency = false
If one disk fails, and another recovers, inconsistent data will be stored. HA-
NFS does not have a mechanism for determining the last process to fail, so it

can not always recover from the latest version.
e one-copy serializability = true

All operations go through a single coordinating server.
o update stability = false

If one disk fails, and another recovers, obsolete data will be exposed.
e atomicity = {rue

All operations are logged to insure atomicity.

If only one disk is used instead of two, then data consistency will be true and
update stability will be true. Only a slight loss of availability will result since disk

failure is very uncommon.

2.7 Locus

The LOCUS file system[WPE*83] presents a single tree structured name space to

users and applications. The single tree structure covers all objects in the file system

30

on all machines. It is not possible from the name of a resource to discern its location
in the network.

Files in LOCUS can be replicated to varying degrees. A given file belonging to
a file group X may be stored at any subset of the sites where there exist physical
containers for X. The number and placement of replicas is chosen for each file
when it is created. LOCUS keeps all copies up to date and assures that requests
are served by the most recent available version. In the case where not all sites are
communicating, not all the copies of the file are necessarily up to date.

For any file, sites are divided into three logical categories. A client issues requests
for the file. A storage site stores the data for the file. The current synchronization
site (CSS) enforces global access synchronization and selects storage sites for each
request. There is only one CSS for any file group.

In LOCUS, as long as there is a copy of the file available, it can be used. If there
are multiple copies, the most efficient one to access is selected. The CSS keeps track
of the status of each replica, only the latest version of a file is visible to clients. The
CSS maintains file state information in memory for all open files.

The basic approach in LOCUS is to maintain strict synchronization among
copies within a partition. However, each partition operates independently. Upon
merge conflicts are reliably detected. The appropriate application or user is respon-

sible for reconciling inconsistencies.
Performance Comparison

All operations are required to go through the CSS before reaching a storage site.
There are two cases depending on whether the CSS is a storage site with the most
recent version. Table 2.3 show the cost of Locus for these two cases assuming that

n is the degree of replication.

31

Table 2.3: Operation Cost in Locus

CSS is a storage site | CSS is not a storage site
Network phases 2 SNPs 4 SNPs
Disk access 1 SDA 1 SDA
Messages for a read 2 4
Messages for a write 2n 2n 42

Availability Comparison

Locus provides maximum availability: files can be read or written whenever any
replica is available. Table 1.2 on page 9 shows the availability of a file for different

levels of replication. The read and write availability are the same.
Safety Comparison
Locus has the following values for each safety property:

e client cache consistency = true

e data consistency = user
A write gets sent to any available storage site regardless of consistency, but

the user is notified if inconsistency results.

e one-copy serializability = true
The CSS enforces one-copy serializability by acting as funnel for all operations

related to a file.

e update stability = false

A client can fail-over to an obsolete replica.

e atomicity = true

Updates are atomic due to the shadow-page transaction mechanism.

32

2.8 Ficus

The Ficus file system[PGJH90,GHM*90,GP90,JPGH90] is an indirect descendent
of the Locus file system presented in Section 2.7. A main focus of Ficus is stackable
layers. Each file system layer contributes a small component to the overall func-
tionality. By structuring the file system as a stack of modules, each with the same
interface, modules which augment existing services can be added transparently.
The Ficus layered file system model comprises two separate layers constructed
using the UNIX wvnode interface as shown in Figure 2.4. The Ficus logical layer
presents its clients with the abstraction that each file has only a single copy. The
logical layer performs concurrency control and implements a replica selection algo-
rithm. The physical layer implements the concept of a file replica. NF'S (Section 2.3)
is employed as a transport mechanism between the two layers, and can also be used
as a means for non-Ficus hosts to access Ficus file systems. Using the vnode in-
terface allows Ficus to utilize the UNIX file system as the underlying storage layer

below the physical layer.

5 Server i
Client : NFS Server
System Calls : [
} : Ficus Physical Layer
Ficus Logical Layer : |
] : Unix File System
NES Client :
‘ ARE>

Figure 2.4: Ficus Layers

33

Each file and directory in Ficus may be replicated, with the replicas placed at
any set of Ficus servers. The number and placement of file replicas is unbounded.
A client may change the location and quantity of file replicas whenever a file replica
is available.

Ficus has an algorithm for automatically reconciling directories after recovery.
This algorithm determines which directory entries have been added to or deleted
from remote replicas, and applies appropriate operations to the local replica. Direc-
tory update propagation is provided by the same algorithm. The execution proceeds
concurrently with respect to normal file activity, so that client service is not blocked.

Ficus uses volumes as a basic structuring tool for managing disjoint portions
of the file system. Ficus volume replicas are dynamically located and mounted as
needed. The tables used for locating volume replicas are replicated objects similar
to directories, and are managed by the same reconciliation algorithms used for
directory replicas.

Update propagation is slightly unusual in Ficus. Only a single replica is syn-
chronously updated, and this replica is chosen by examining all replicas. While a
file is open, only this replica receives updates. When a file is closed, updates are

asynchronously propagated to other replicas by transferring whole file contents.
Performance Comparison

Assume that an average of [, messages are required to transfer a file over the
network, and an average of l; I/Os are required to write a file. Table 2.4 describes

operation cost in Ficus.
Availability Comparison

Ficus provides maximum availability: files can be read or written whenever any
replica is available. Table 1.2 on page 9 shows the availability of a file for different

levels of replication. The read and write availability are the same.

34

Table 2.4: Operation Cost in Ficus

Operation SNP | ANP | SDA | ADA | Total Messages
open 2 0 1 0 2n
close 2 h+1 0 ly 24+ (ln+1)(n—-1)
read, write, readdir 2 0 1 0 2
create, createdir,
2 2 1 1 2n
delete, deletedir

Safety Comparison
Ficus has the following values for each safety property:

e client cache consistency = timeout
Client cache data is maintained with a 30 second timeout according to the

NFS protocol.

e data consistency = non-directory

Data conflicts are left to the user to resolve, but there is automatic reconcili-

ation for directories.

e one-copy serializability = false
If there is concurrent activity on more than one file, then there is no mecha-

nism for atomically ordering reads with respect to writes.

e update stability = false
A client can switch to an obsolete replica due to a crash. This 1s a serious

problem due to the lazy update propagation to replicas.

e atomicity = true
The directory update propagation algorithm insures the integrity of meta-

data.

35

2.9 Coda

The Coda file system[Sat90b,SKK*90,5at89b,SKS90], a descendant of the Andrew
file system (Section 2.2), is substantially more resilient to server and network failures
than Andrew is. Coda provides users with the benefits of a shared data repository
but allows them to rely entirely on local resources when that repository is not
available. Coda provides maximum availability regardless of failures in the system.

Clients cache entire files on their local disks as in early versions of Andrew.
Whole-file transfer offers a degree of intrinsic resiliency. Once a file is cached and
open at a client, it is immune to server and network failures. Cache coherence
is maintained by the use of callbacks. When the server is lost, clients resort to
disconnected operation, a mode of execution in which the client relies solely on
cached data.

Coda uses server replication to provide a highly available shared storage repos-
itory. The unit of replication is a volume, and these are very similar to Ficus
volumes (Section 2.8). A replicated volume consists of several physical volumes that
are managed as one logical volume. Individual replicas are not normally visible to
users. The degree of replication and the identity of the replication sites are specified
staticly when a volume is created.

Coda integrates server replication with caching, using a variant of the read-
one, write-all strategy. When servicing a cache miss, the client obtains data from
one replica known as the preferred server. Although data is transferred only from
one server, the client contacts all other replicas to collect their versions and other
status information. The client uses this information to check whether the accessible
replicas are equivalent and to insure one-copy serializability.

When a file is closed after modification, it is transferred to all replicas of the

volume. This approach maximizes the probability that every replication site has

36

current data, and all sites have the same data. Server CPU load is minimized
because the burden of data propagation is on the client rather than the servers.
Operations that update directories are also written through to all replicas.

Because its replication scheme is optimistic, it is possible to produce conflicting
versions of a file. The update protocol guarantees eventual detection of conflicts
when the file is read. A server performs no explicit remote actions upon recovery
from a crash. Rather, it depends on clients to notify it in case of stale or conflicting
data.

Coda checks for version conflicts on each server operation. When a conflict is
detected, Coda first attempts to resolve it automatically. If automated resolution is
not possible, Coda marks all accessible replicas of the inconsistent object and moves
them to their respective covolumes. Covolumes are special storage areas associated
with each volume similar to “lost+found” directories in UNIX. Coda provides a
repair tool to assist users in manually resolving conflicts. It uses a special interface
to the server so that requests from the tool are distinguishable from normal file

system requests.
Performance Comparison

Most file activity takes place on the local cached copies of files, and a result is
that most network traffic is avoided. Coda pays for this efficiency with expensive
open and close operations. The file must be transferred to the client on open if
there is a cache miss, and the file must be transferred back to the server on close
if it has been modified. This transfer uses a bulk transfer protocol that can be
modeled as a stream of asynchronous operations followed by a single synchronous
operation. Assume that an average of [,, messages are required to transfer a file over
the network, and an average of I; 1/Os are required to read or write a file to disk.

For the sake of consistency with other performance computations, we will assume

37

that the cache always misses. Let w be the ratio of write operations to read and
write operations. Table 2.5 shows the latency of each operation as well as the cost

in total messages.

Table 2.5: Operation Cost in Andrew

Operation SNP ANP SDA| ADA | Total Messages
open 3 -1 1 lj—1 lp + 2n
read,write,readdir 0 0 1 0 0
close w lw(lp—=1)| w |w(lg—1) w(n * Ip)
other operations 2 0 1 0 2

Availability Comparison

Coda provides maximum availability: files can be read or written whenever any
replica is available. Table 1.2 on page 9 shows the availability of a file for different
levels of replication. The read and write availability are the same. Coda avail-
ability 1s complicated by the fact that Coda clients can operate even if no server is
available. The actual availability is even better than normal maximum availability,

but that analysis is not directly relevant to this discussion.
Safety Comparison

Coda pays for high availability with lost safety. Assuming that replication is used,

the safety values are as follows:

e client cache consistency = on close
Data is flushed back when the file is closed, and client callbacks are used to

notify other clients of the change.

38

e data consistency = non-directory
Data conflicts are left to the user to resolve, but there is automatic reconcili-

ation for directories.

e one-copy serializability = true

All replica versions are checked when a file is opened.

e update stability = false

A client can switch to an obsolete replica due to a crash.

e atomicity = true

Coda uses a built in atomic transaction mechanism.

It is valuable to compare these safety values with Andrew’s safety values.

2.10 Summary Tables

Table 2.6 summarizes type of replication offered for each file system in this survey.

Table 2.6: File System Replication Summary

degrees of
File System availability
replication
Andrew 1 maximum
NFS 1 maximum
RNFS any almost maximum
Echo any majority quorum
HA-NF'S 1,2 maximum
Locus any maximum
Ficus any maximum
Coda any maximum

39

Table 2.7 summarizes the safety properties for each file system in this survey.

Table 2.7: File System Safety Summary

cache data one-copy update
File System o atomicity
consistency | consistency | serializability| stability
Andrew true true true true true
NFS timeout true true true false
RNFS timeout false false true false
Echo true eventual true true true
HA-NFS timeout false true false true
Locus true user true false true
Ficus timeout | non-directory false false true
Coda on close | non-directory true false true

2.11 Connections

The file system survey produced insights into the past, present, and future direction
of file system projects. Section 2.11.1 describes these general observations about
distributed file systems. It includes observations derived from file systems that were
not presented in this survey. Section 2.11.2 is specific to file systems that replicate
based on large objects (e.g. whole disks). Section 2.11.3 is specific to file systems

that replicate based on small objects (e.g. files).

2.11.1 General Observations

In the early efforts, such as DFS[SMI80], the designers attempted to provide strong
guarantees of consistency since the users were accustomed to working on a single
mainframe. Users wanted to have deterministic, atomic operations in the file system.

Database techniques and terminology were heavily used since database consistency

40

was a well defined property. As a result, heavy transaction mechanisms were used
and the performance was poor. Two-phase protocols were used to commit updates,
and mandatory locks were used to insure serializability.

In the later efforts, such as Andrew, the designers felt that they had more
latitude. Users had become more sophisticated and comfortable with the network
environment. Also, most applications were still not written to generate commits
and tolerate aborts, so older experimental file systems did not work. Andrew is
an example of a later file system that is simpler and has much better performance
than its predecessors. NF'S has been simplified to the point where commitment and
locks have been totally abandoned. This trend towards simplicity and performance
appears to be continuing. Future file systems will depend on the application or user
to solve many of the problems associated with distributed systems. It is interesting
that the more “sophisticated” file systems are actually simpler.

Another early motivation in these file systems was the economics of disk storage.
By using large file servers, the total cost of the system would be reduced because
clients would not need individual disks. In more recent times, disk technology has
become very cheap, and essentially every workstation has at least 100 Mbytes of
local storage. Ironically, the original economic motivation is still valid, but the cost
has shifted. Centralized storage reduces the cost of administration. Managing a
few large disks is much cheaper than managing many small, scattered disks.

All of the file systems were developed in an academic or research environment.
The primary activity of researchers is editing and compiling. Therefore, the file
systems are tuned to perform those applications well. Other applications, such as
large database processing, have been ignored. Since the author has little experience
with these other applications, it is difficult to speculate on what changes to the file
system would be necessary. However, it is clear that some changes are necessary.

The business community has been very slow to accept new types of file systems,

41

and the narrow scope of these file systems is partly to blame.

In reality, nearly all file systems support replication in the form of caching.
Most designers consider caching to be easier and simpler than “real replication.”
The assumption is that the cache can be dumped if it is obsolete or full, but a
replica must be repaired. Also, a stale cache can be tolerated for a short period of
time. This assumption is wrong in file systems such as Andrew where the cache is
the primary store for new data. The cache in Andrew really serves as a temporary
replica with a delayed update propagation strategy. In NFS, the cache can become
stale for as long as 33 seconds, and this behavior can cause many problems in

applications.

2.11.2 Static Replication

The second category consists of file systems replicate large objects, and these file
systems are FEcho, RNFS, and HA-NFS. A large unit of data, either a disk or a
volume, is completely replicated onto one or more backup disks. All changes are
immediately sent to both disks. If the primary host fails, then a backup host can
connect to both disks. In Echo and HA-NFS, special disk controller hardware can
be used to allow a single host to control all of the disks. High availability and
simplicity are the main thrusts.

In these systems, the designers tried to provide high availability with no cost in
performance or consistency in comparison to a normal server. They made the small-
est possible step from a normal server to a highly available server. The client/server
relationship was not addressed as a research issue. Indeed, in HA-NFS and RNFS,
the normal NFS communication protocol is used. This approach was first popular-
ized by Tandem Corporation in their proprietary systems. It will continue to be

viable in environments where failure is very costly.

42

2.11.3 Dynamic Replication

The last category consists of file systems that use fine grained replication, and these
file systems are LOCUS, Coda, Ficus, and Deceit. They try to use the power of
replication to increase the fundamental functionality of the system beyond high
availability. Replication can be used on objects as small as individual files.

To a large extent, Coda, Ficus and Deceit are spiritual descendents of LOCUS.
The basic LOCUS philosophy is maximum availability: a read or write must be
satisfied unless it is totally impossible. It is only necessary that a single replica
is available. The result is that it is possible to produce inconsistent replicas and
disjoint file system behavior. Coda takes this concept a step further. In Coda, a
read or write will succeed even if only a cached copy is available. Deceit backs
off slightly from the LOCUS extreme. In Deceit, users have the option of trading
availability for consistency guarantees.

All of these file systems have sophisticated mechanisms for tracking the status
of replicas. LOCUS, Coda, and Ficus use version vectors. Version vectors are
variable length arrays of counters that summarize the history of updates for a
given replica. Deceit uses a more convenient, but less precise, approach involving
explicit file versions. In all cases, it is necessary to be able to quickly determine the
relationship between two replicas of a file. For example, when a server recovers, it
is necessary to check every replica stored on that server against replicas elsewhere.

The problem of inconsistency is particularly acute in directories. Concurrent
updates to a single directory are common. Coda, Ficus, and Deceit use automatic
directory reconciliation protocols (ADRs) to resolve this situation. Originally, it
was intended that LOCUS have an ADR, but that effort was not successful. An
ADR uses the semantics of directories to reconstruct a globally consistent directory
structure after a partition. In theory, these semantics are well understood, and the

solution is apparent. In practice, it is extraordinarily difficult to handle every case

43

correctly. Applications often do perverse sequences of file system operations, such
as writing to a file and then immediately deleting it. All of the existing ADRs leave
minor gaps and can break applications.

Update propagation strategies differ between the file systems. LOCUS main-
tains strict synchronization among copies. A write operation will not return until
all replicas have been updated. This strategy provides highly predictable and safe
behavior, but it is unnecessarily expensive for most application since the perfor-
mance of a write is bounded by the slowest server. It is typical of early file system
design decisions. Coda synchronizes all replicas after a file has been closed, but
changes are locally cached until that time. This strategy is more efficient in general
than LOCUS, since communication with servers is less frequent. However, incom-
plete work can be lost due to a single failure, and shared file access between clients is
expensive. Ficus synchronously updates only a single replica, and the other replicas
are asynchronously updated by transferring the entire file. This strategy allows the
file system to perform as fast as the fastest server, but there is a period of vulner-
ability after any write when the loss of a single server can cause the loss of new
data. Also, a small write to a large file will produce unnecessary transfer traflic.
Deceit allows a range of behavior from the style of LOCUS all the way to fully
asynchronous update propagation. The benefit is that the file system can be tuned

to an application, but there is an administrative cost in setting the parameters.

Chapter 3

Deceit Architecture

The Deceit File [BEMS91,SBM89,SBM90a, SBM90b] was designed to allow the
semantics of files to be expressed as file parameters rather than be assigned a priori.
Deceit has the most flexibility among the file systems compared in (Chapter 2). In
this chapter we describe the design principles and architecture of Deceit in detail.
We follow the description with a performance analysis and a critical discussion of
the system design.

The Deceit server program can be coarsely divided into three components as
shown in Figure 3.1. The first component is a name service that provides a shared
data space for storing immutable values by key. The second component is a segment
service that provides bulk data storage and replication. On top of both services is a
full NFS file service, called the NFS envelope, that uses the two underlying services
for storage and communication. The name service stores small blocks of immutable
data with very high availability. The segment service stores large blocks of mutable
data with a lower availability.

Deceit is a very large and complex program since it must implement many
possible file semantics. There are more than a dozen distributed protocols to control

different aspects of the system ranging from reliable broadcast to automatic name

44

45

NES Envelope

Decelt'-i'..,_. Segment Service

Name Service

H
i
kY
",
*,
J
e f

Figure 3.1: File System Components

service reconciliation.

Section 3.1 discusses the overall design of Deceit as well as the environment of the
Deceit implementation. Section 3.2 describes the internal name service. Section 3.3
describes the segment service control protocols. Section 3.4 describes mechanisms
for handling crashes and recovery in the segment service. Section 3.5 summarizes
the parameters that can be used to control several of the replication protocols.
Section 3.6 describes several optimizations used to improve the system performance.
Section 3.7 describes the NFS envelope. Section 3.8 evaluates Deceit performance
using several timed benchmarks. Section 3.9 summarizes Deceit functionality and

criticizes some design errors. Section 3.10 speculates on future work for Deceit.

3.1 General Architecture

The main goal of Deceit was to maximize functionality. We intended the file system
to provide a wide a range of behavior so that is would be appropriate for almost
all applications. One limitation with the current implementation of Deceit is its
inability to tolerate partition failures. This limitation is a result of being built

upon ISIS.

46

3.1.1 Design Methodology

Originally, Deceit was proposed as a pure learning experience. Unlike Andrew or
Sprite, Deceit was not intended to become a widely used file system. Instead, Deceit
was a laboratory for exploring different file system protocols and data structures. In
order to maximize the benefit of the experience, we tried to pack as much function-
ality as possible into Deceit. For many years, file system designers have explored
fault tolerance, file migration, flexibility, autonomy, load balancing, and other de-
sirable properties. In Deceit we tried to create an architecture which could capture
as many of these properties as possible.

The main result of this approach is complexity. Instead of a clean, simple file
system, Deceit has a bewildering variety of protocols and invariants. The value of
Deceit stems from the fact that these protocols actually work as a harmonious whole
rather than as a nest of conflicts. It was not easy to achieve this position. Deceit
has been designed, implemented, redesigned, and revised many times. During this
process, we often ran into hard problems or unmanageable explosions in protocol
complexity. Some traps were very subtle and depended on the implementation en-
vironment. There is no doubt that Deceit still contains design and implementation
errors.

Deceit does not tolerate partition failures because ISIS can not. Deceit can
tolerate a related failure, called a virtual partition[ASC85]. In a virtual partition,
two servers can not communicate because there is no period of time in which neither
have crashed, yet both servers run independently for some time. For example,
server A runs for a few minutes after server B has crashed, then A crashes, then B
recovers and runs while A is down. A virtual partition is similar to a real partition
since two hosts must act independently yet must not interfere with each other. A
virtual partition “goes away” when both servers are running simultaneously and

can effectively communicate with each other.

47

3.1.2 Contrast between NFS and Deceit

One way to understand the Deceit architecture is to contrast it to the NFS architec-
ture, described in Section 2.3 and Appendix A. In a normal NFS implementation,
each server machine maintains a set of files disjoint from the sets maintained by
all other servers. These sets are structured into directory trees, and each server
may provide more than one directory tree. The file name space! is built by linking
together the directory trees provided by the servers into a single tree. This linking
is done separately at each client. Figure 3.2 illustrates a typical NFS client archi-
tecture. Clients may communicate with any subset of the NFS servers, but servers
normally never communicate with each other. Of course, servers may act as normal

clients to each other.

«Client Mount

>

m—m —

- e e o o o e e e A,

Figure 3.2: NFS Client Architecture

Deceit and NFS use the same client/server communication protocol (i.e. the

same transport and RPC interface), so a Deceit server appears to a client to be a

IThe file name space for a file system is the mapping between full path names and logical or
physical files.

48

NFS file server. As a result, Deceit provides a normal NFS name tree. All NFS
operations are supported with no change to any client software.

A main difference between Deceit and NFS is that files are not statically bound
to any particular server; with Deceit, files may move freely between servers. If a
client request arrives for a file at a server which does not have that file, then the
request is automatically forwarded to a server that does have the file. The reply
is propagated backwards along the same path. All servers provide an identical
file service to clients so that clients have to explicitly connect to only one server in
order to access the entire Deceit service. Figure 3.3 illustrates a typical Deceit client
architecture. The intent of this architecture is to allow clients to switch between
servers when a server fails. Unfortunately, the standard Sun RPC implementation

does not support this feature.

: i A i
: ' :/\'
! : 'B C D,
] ;€ 1 /‘:
: E : G E.
; | /N
i H IF: A : 1 H IF:
---------- /\: T
B C D,

Figure 3.3: Deceit Client Architecture

49

A second difference between Deceit and NFS is that with Deceit, files may have
non-volatile replicas on any subset of the servers. It is important for disk and
communication efliciency that files are not always replicated on every server, since
such a high degree of replication is unnecessary for most applications. To this end,
the user has the option of specifying a desired amount of replication and can provide
explicit control over the placement of file replicas.

A third difference is that Deceit supports a file version control mechanism. A
user may explicitly create, edit, and delete specific versions of a file. This version
control mechanism is “blended” into NFS semantics, and it is accessed by using an
optional file name extension. The main purpose of the file version mechanism is to
allow the user to resolve conflicting replicas. These conflicts can occur when a file
is written concurrently on both sides of a network partition. This failure will be
discussed in more detail in Section 3.4.

Deceit provides a superset of NFS functionality. To allow the user to access this
functionality, Deceit has additional commands and file operations beyond normal
NFS operations. Clients access these features by using special RPCs and by reads
and writes to invisible control files. Special commands are provided to list all ver-
sions of a file, locate all replicas of a file, modify file parameters, reconcile versions,

and provide other functions.

3.1.3 ISIS

The Deceit software is not the only component in the Deceit server process. Deceit
uses the ISIS Distributed Programming Environment[Mul89,BJKS,BJ87a,BJ87b,
JB86) for several fundamental system components. Some features that ISIS pro-
vides are: several group broadcast protocols, atomic group membership change,
mechanisms for locating group members by group name, light-weight processes with

signals and semaphores, architecture independent communication, and process state

50

transfer. ISIS proved to be an excellent environment for prototyping Deceit. Several
months of implementation and debugging was avoided, and design changes required
far less time to implement. Since Deceit experienced at least a dozen major revisions
and countless minor fixes, we greatly appreciated the convenience of ISIS.

ISIS, however, did not provide uniformly positive results. ISIS is a very large,
experimental system which constantly evolved during the course of Deceit develop-
ment. As ISIS developed, Deceit had to be frequently adapted. The reverse was
also true: Deceit stressed ISIS in new ways and forced changes. Early versions
of ISIS had very poor performance and tended to crash, but recent versions have

improved greatly.

3.1.4 Design Assumptions

A list of assumptions about the environment where a system will be used is funda-
mental to any design. We will provide a short summary of our assumptions here.
The assumptions are grouped into three categories: network architecture, failure

model, and typical operational behavior.
Network Assumptions

The target environment is a network of computers used in a client/server fashion.
Some of the computers may be diskless, and some may be large dedicated file servers.
We believe that NFS offers an adequate file system interface for our purposes, and
NFS is widely accepted, hence all file requests from the clients are via the standard
NFS interface. Under normal conditions, all machines can communicate directly
with each other through an underlying network. Communication is symmetric: if a
can send a message to b, then b can send a message to a. Since all communication
between servers is through the ISIS, all of the ISIS communication assumptions are

present in Deceit.

51

Failure Assumptions

We assume that machines can crash without prior notification?, and messages can be
lost during transmission. Since ISIS does not tolerate long-term network partitions,
Deceit can not either. All machines have roughly independent failure probabilities,

as described in Section 1.1.
Operational Assumptions

Predictable file access patterns are central to the design and performance of Deceit.
Many of Deceit’s design decisions were based on results from studies which were
done in an academic environment|[LZCZ86,0CH*85,Flo86b,Flo86a,Sta88].
Deceit’s operational assumptions are as follows. Files tend to be written or
read in their entirety with a stream of operations. Nearly simultaneous writes by
two clients to the same file are very rare. Files experience long periods of total
inactivity punctuated by high activity where they may be rewritten several times
in a few minutes. File activity tends to cluster in a small number of directories.
The vast majority of NFS operations are GETATTR (get basic file attributes), LOOKUP
(find a file by name in a directory), READ, and WRITE. Most files are small, i.e. less

than 20 kilobytes.

3.1.5 Security

All of the assumptions in Section 3.1.4 skirted the issue of security. Deceit does not
directly address most security issues. It is assumed that communication between
instances of the server is secure (e.g. encrypted or physically secure). Also, the
local files used for storage by the server are inaccessible to unauthorized users.
Client/server communication is secured, and client authentication is provided, using

DES encryption in the NFS interface.

?For a more detailed discussion of machine and communication failure models, refer to [BJ87b].

52

Clearly, security is a critical facet of a practical file system. However, file sys-
tem security must be an integrated component of a comprehensive authentication
system, such as Kerberos|[SNS88|. Since Deceit was built in an environment which
lacks an effective authentication system, a decision was made early in the project
to provide only minimal security. NFS suffers from notorious security holes for the

salne reasors.

3.1.6 Implementation Detalils

Some of the high level architecture in Deceit was driven by very low level imple-
mentation details. Deceit is implemented as a user level server process, one process
per server machine. All data is stored in local UNIX?® files. It is implemented on
the Sun SPARC architecture under SunOS 4.1.1. It uses Sun RPC facilities for the
NFS protocol. It is written in standard ANSI C with full function prototypes. The
segment service is 4577 lines long, the name service is 2254 lines long, and the NFS

envelope is 4226 lines long as of January 29, 1992.

3.2 Name Service

Deceit contains a name service as a core component. In many ways this service is
the glue that holds the entire system together. The name service allows the other
components in the system to be much simpler and easier to comprehend. Deceit
uses its name service in three ways. First, the name service records a list of locations
describing each replica of each normal file: one name service entry for each replica.
Second, it stores the contents of each Deceit directory: one entry for each hard link.
Third, it stores security information for each file and directory (i.e. owner id, group
id, and protection): one entry for each file or directory. The only file system data

that is not stored in the name service is the data of the files themselves.

3UNIX is a registered trademark of AT&T.

33

The name service provides the illusion of a shared storage area for data. All
servers have a complete copy of the name service data and can independently access
it. The name server aggressively provides consistency of the entry data despite this
high degree of replication. Updates can originate from any server at any time
without preliminary locking or other order determination. These properties can
be provided without excessive cost because there are few ordering or exclusion
guarantees in the semantics.

The name service data space is divided into tables which are identified by an
integer value. Each table is an independent instance of the name service. The basic
function of the name service is to store a list of mappings, each mapping consisting
of a key and a value. Keys and values are simply variable length blocks of data.
Keys and values are totally non-exclusive, the same key or value can be used in
more than one mapping. Indeed, exactly the same key/value pair can appear more
than once. Internally, the name service identifies mappings with unique identifiers,
but these identifiers are not exposed by the interface.

There are six core interface routines to the name service:
init_name(table) - initialize and join the name service for a table.
createname(table, key, value) - create a key/value mapping in a name service
table.
delete name(table, key, value) - delete a key/value mapping in a name service
table.
lookup name(table, key) -> [key, value] list - return the list of values for
a given key in the form of [key, value] pairs.
prefix name(table, key) -> [key, value] list - return the list of values such
that the specified key is a prefix of the key in the mapping. This operation is similar
to lookup_name.

flush name(table) - atomically flush pending updates for a table. Create name

o4

and delete_name requests are buffered in memory until £lush name is called.

Flush_name can be used to form atomic actions. If several updates are flushed
together, then the name service joins them together into an indivisible unit. It is
impossible for only some of the actions in a unit to be applied at a name server. This
property can be used to provide consistency and atomicity for complex operations
despite failures in the name service. This guarantee is provided by logging all of
the updates atomically in a log file, and by broadcasting all of the updates with a
single message. Also, all name service updates are idempotent. Unique identifiers
(hidden within the name service) are used to detect duplicate instances of a single
creation or deletion.

The name service assumes that all updates are commutative; they may be re-
ordered arbitrarily without breaking the application. However, the order of updates
that are grouped together by flush name in maintained. For example, a RENAME
operation requires a hard link deletion and creation. If these two operations are
grouped together with a flush name, then the name service guarantees that they
are applied in order and atomically at all servers.

The name service is optimized for the following usage: keys and values are short
(i.e. less than 100 bytes), creation and deletion is infrequent, and lookup operations
are very frequent. The name service goes to some expense to reliably store data, so

it is inefficient to use it for short term or volatile storage.

3.2.1 Name Service Data Structures

All mappings are stored in memory in a single linked list*. Skip lists[Pug90] are
used to provide fast access. Skip lists provide O(logn) insertion, deletion, and
search with a simple auxiliary data structure. Since the mappings are stored in

dictionary order by key, the prefix name operation is also O(logn).

4This list can become very large and will limit scalability. A solution would be to page in/out
mappings as in a virtual memory system. We have not implemented this procedure at this time.

]3]

It is necessary that every name server of a table have a list of all replicas of that
table. This list is called the site list for that table, and it is similar to an ISIS group
membership list, except that it is not effected by failures. The site list only holds
server host addresses and not full ISIS process addresses. When a name server fails
and recovers, the site list will not be changed since the host address was already
present. The site list is used to determine when an update has been sent to all
servers, including servers that are currently down. The maintenance of the site list
is discussed more fully in Section 3.2.2.

Update propagation requires some form of stored knowledge about who has
seen each update. The name service explicitly represents this knowledge using a
bit vector for creation and another bit vector for deletion. For example, let a name
server s1 for table ¢ store a mapping m. Let name server sy be in position z in
the site list for table t. If bit ¢ be set in the creation bit vector of sy for m, then
s1 knows that s2 knows about the creation of m. Similarly, if bit ¢ be set in the
deletion bit vector, then s; knows that s knows about the deletion of m. If there
are n sites in the site list for table ¢, and the creation bit vector is equal to 2™ — 1,
then s; knows that everyone has seen m.

Servers need to be able to distinguish between multiple instances of a [key, value]
pair so that deletions can be consistently executed across many servers. Therefore,
two additional integers are stored with each mapping: a creation time stamp (in
seconds), and a 32-bit value chosen to be globally unique with very high probability.
Together, these two integers constitute a unique identifier since there is a very small
probability that two mappings will have the same table, key, value, and unique

identifier.

56

3.2.2 Name Service Update Propagation

The site lists mentioned in Section 3.2.1 need to be in identical order at all servers
since they are used to generate bit vectors. The name service depends on the ISIS
group membership protocol to accomplish this. An ISIS group is associated with
each name service table. When init_name is called, the server joins the correspond-
ing ISIS group. The ISIS state transfer mechanism allows the new member to receive
a correct copy of the site list that all other group members are using. The site list is
also logged to allow correct recovery from total failure. All members monitor group
membership and will add a new site to the site list when necessary. Since group
membership changes are guaranteed to be ordered in a globally consistent way in
ISIS, the site list will remain identically ordered at all servers that can mutually
communicate. This protocol is very sensitive to partition failures, therefore it is
important that there are no partitions when servers are initially installed in the file
system.

The primary method of update propagation uses the ISIS group associated with
each table. Refer to Figure 3.4 for an illustration. Let a creation or deletion for
mapping m originate at server s. In the first communication round, s broadcasts m
(with the operation type) to all members of the ISIS group and collects the replies.
Using the reply addresses, s can determine which knowledge bits for m can be
safely set. Under normal conditions, nearly all of the bits will be set. In the second
round, s asynchronously broadcasts m to all members and does not collect replies.
All members update their local knowledge bits from the bits that s generated. If
all name servers are up, then this protocol not only gets the update to all servers
quickly, but all servers know that all servers have seen the update. The cost is one
synchronous round and one asynchronous round of communication.

It is possible to greatly optimize this update protocol by making fuller use

of underlying ISIS guarantees (e.g. causality and failure agreement). It is only

37

Server
35002 3 4

1000}

knowledge vector

[51525354

1111 1111 1111

Figure 3.4: Update Propagation in the Name Service

necessary for s to asynchronously broadcast m and for all servers to do a periodic
(flush) broadcast. If server u receives a message from v after s has broadcast m
to u and v, then u can safely assume that v has received m by causality. Doing
do would eliminate the synchronous replies and asynchronous secondary broadcast.
Unfortunately, we did not observe this optimization until well after Deceit was built.

The second method of update propagation is invoked on server recovery. Refer
to Figure 3.5 for an illustration. When a server s; recovers, it requests a push_name
from some randomly chosen server s3. To perform a push_name, s; examines all
locally known mappings. If sz does not know that s; has seen the creation or
deletion of mapping m, then sg sends m to s;. The knowledge bit vectors make this
search simple. Then, s; asynchronously echos each received mapping to all group
members so that they will know that s; has seen the updates. This protocol insures
that a recovering server will quickly see all of the missed updates.

The third method of update propagation is similar to epidemic propagation
[DGH*87]. During recovery from total failure, it is possible that some updates are
not fully propagated by the previous protocols. To correct this problem, each server
performs a push_name to another randomly chosen server every two minutes. The

secondary echo to all servers is not used in this case. The number of servers that

38

0111 30111 30111

1111

b‘ {1111

Figure 3.5: Recovery in the Name Service

have seen an update will grow exponentially in time. This protocol is an efficient
way of insuring eventual consistency. It also insures that every server will eventually
know that every server has seen an update. However, this protocol is not suitable
as the primary method of update propagation because it costs O(n?) messages if
only one server has seen an update.

We acquired our experience with these protocol only during debugging and per-
formance evaluation. We believe that the performance will be satisfactory during
normal usage, but we can not establish this fact without using Deceit in a real set-
ting. We also believe that the bulk of updates will be propagated with the primary

protocol, which is the most efficient method.

3.2.3 Name Service Logging

In order to recover from failure, a name server must log information to stable
storage. If server s broadcasts that it has seen a mapping m, then other servers will
never be send m to s again. Therefore, before s can broadcast its knowledge of m,
s must log m into a file. To prevent unnecessary message traffic after recovery, it is

desirable to log m after every change in the knowledge bit vectors.

59

The policy is that a server s logs a mapping m with its knowledge bit vectors
whenever s receives m from another server. The first update propagation protocol
will typically lead to two log entries at every site. The first log entry will show only
local knowledge of the update, and the second log entry will show global knowledge.
A push_name will typically cause one log entry at all servers. The receiving server
will log the update upon reception, and the echo broadcast will cause all other
servers to log the mapping with new knowledge bits.

The knowledge bits are logged intact with each mapping. In order for these
bits to be sensible upon recovery, the original site list must also be recovered.
Whenever a server joins a name table for the first time, it is logged by all servers.
During recovery, the site lists are reconstructed in the order that they were originally
generated. The consistency guarantees provided by the site list generation protocol

carry over into the recovery protocol.

3.2.4 Garbage Collection

There are two important garbage collection problems in the name service: collecting
deleted mappings and compacting the log file. When a delete name operation is
executed, it only effects the deletion knowledge bits. A mapping which has non-
zero deletion knowledge bits becomes invisible to lookup name and prefix name
operations, so the deletion appears to occur immediately outside the name service
interface. Internally, the propagation of a deletion, and propagation of knowledge
of a deletion, can take a long time because of failures.

The policy of the name service is to free a mapping when the creation and
deletion knowledge bit vectors are full. More specifically, let server s; be a member
of a table with n members. If both knowledge bit vectors of mapping m are equal to
2" — 1, then s frees all memory associated with m. At this point, s; knows that all

servers have seen the creation and deletion of m. However, s; does not know that

60

all servers know that s; has seen it®. Therefore, it is possible that another server,
s2, will push m to s; later. As a result, s; will allocate and log a fresh copy of m.
Since sy knew that m was deleted, this stutter event will be invisible outside of the
name service interface, and the only problem will be a temporary consumption of
resources.

The other garbage collection problem is compacting the log file. The name ser-
vice keeps track of the number of log entries in the file and the number of mappings
in memory. When the log file is over two thirds garbage, a synthetic log file is gen-
erated containing only current mappings. The old log file is replaced with the new
one atomically using a UNIX rename system call. Using this policy, the amortized
cost of logging a mapping is O(1) including log garbage collection. Also, the size
of the log file is bounded to be a constant times the size of the name service data
base.

This method of garbage collecting the log file has the advantage of simplicity.
Generating a synthetic log file can be accomplished by scanning the linked list in
memory and using large file writes. Unfortunately, if there are a very large number
of mappings, then this process will become slow and expensive. The name service
must halt while the log file is being rewritten. A better method would be to use a
generational garbage collector. Mappings are automatically grouped into different
log files depending on their age. In this way, garbage collection can be fast and
efficient despite a huge number of mappings. This mechanism should be integrated

into the mechanism for paging out inactive mappings.

5The garbage collection problem in this protocol is identical to the garbage collection problem
is causal broadcast

61

3.3 Segment Service

The segment service is the largest component of Deceit and it contains several
interleaved replication protocols. Since it provides a simple, powerful function, it
is designed to be reusable in other applications without significant rewriting. It
complements and utilizes the name service presented in Section 3.2.

The segment service provides a reliable bulk data storage service. A segment is
a logical array of bytes that can be indexed by an offset. A segment is referenced
with a fixed length handle that is generated by the segment service. The segment
service does not implement hierarchal storage, user level security, or user naming.

There are six core interface routines to the segment service:
create_segment (mode) -> handle - create a segment and return its handle. The
initial protocol control parameters for the segment are encoded in mode.
delete_segment (handle) - locally delete all storage associated with a segment.
read_segment (handle, offset, size) -> data - read data from a segment.
write_segment (handle, offset, size, data) - write data to a segment.
truncate_segment (handle, size) - truncate a segment to the specified size.
setattr_segment (handle, access_time, modify_time, mode) - set the time
stamps and control parameters for a segment.

Segment behavior is controlled with several file control parameters which are
encoded in the mode parameter to create_segment and setattr_segment. These
parameters control the degree of replication, read and write availability, and load
balancing. These parameters are described below concurrently with the correspond-
ing protocols, and they are summarized in Section 3.5.

The segment service complements the name service since it is optimized for a
different style of data access which is important in the case of normal file contents.

Normal files tend to be written in large blocks, and they are frequently rewritten in

62

place, therefore the name service can be very inefficient in this case. In particular,
the name service provides a high degree of replication and an inability to update
data in place, which could lead to excessive disk traffic. As a result, the contents

of all normal files in Deceit are represented with a single segment.

3.3.1 Replica Generation

In the segment service, a logical segment is represented by a number of physical
replicas. We will represent the set of replicas associated with a file f with the
symbol G'¢. Under quiescent conditions, the replicas are symmetric: all replicas are
identical and available for reading. During an update this symmetry is temporarily
broken, as discussed in Section 3.3.4.

Associated with each segment f is a minimum replica level, r, as a control
parameter. The value of r is used to control the fault tolerance of f; replicas used
for caching are controlled by a different parameter. The segment service maintains
at least r valid replicas of f as long as enough servers are available. To do so, new
replicas may need to be generated. A new replica of f is placed on a server directly
handling a request for f or on the server with the most available storage. In general,
there are four ways that a replica can be generated. Method 1 and 2 provide fault

tolerance. Method 3 and 4 allow better performance using caching.

1. The number of correct replies is counted after every update broadcast. If the
number of replies rep drops below r, then the segment service creates r — rep

new replicas.
2. If r is increased, then a sufficient number of new replicas will be created.

3. A user may request the creation of a replica on a specific server with a special
command. Users also can inquire about the current location of all replicas of

a segment.

63

4. A server may generate a local replica in order to improve read performance.

Method 4 is simply read caching for performance, and it is controlled by a
separate file parameter, not r. Caching imposes a cost is storage space and write
performance, so it can be turned off by the user. Caching is triggered when a client
accesses segment f through a server s that does not have a replica of f. At first, the
operation is forwarded to another server that has a replica of f, and the operation
is immediately completed. As a background activity, a replica is generated on s to
speed future reads and help insure availability. In this manner, whole file caching
is achieved with the replication mechanism. Each client slowly gathers its working
set of files to the server to which it has connected.

Replicas are generated with a file transfer protocol from an existing replica.
A replica holder feeds a copy of the file to the site where the replica is being
generated through a steam of ISIS messages. Asynchronous I/O and careful buffer
management allow the connection to run at high efficiency. Updates are blocked
during replica generation to prevent inconsistency.

If read_segment is requested at a server that does not have a replica of the
segment, then the request is forwarded to another server. This server is chosen by
broadcasting the request to all servers with a replica. The first reply that is received
by the original server is used. The address of that server is cached as a hint, so that
a broadcast will not have to be used in the future. This method tends to choose
servers that are lightly loaded and physically close, and it is easy to implement.

The name service is used to announce the creation or deletion of replicas. When
a replica is created, a mapping from the handle to the location is created. When a
replica is deleted, this mapping is also deleted. Using the name service, any server
can conveniently find all of the replicas of a segment. This search does not require

any communication with other servers.

64

3.3.2 Write-tokens

To serialize updates to replicated segments, we use a write-token protocol. This
protocol is based on one presented in [Mul89,Sch88]. Exactly one write-token[LeL78,
LeL81] is associated with each segment. A write-token is similar to an exclusive
lock, except that it is held at all times by one server. Only a server that holds
the write-token is allowed to distribute updates to the corresponding segment. The
holder of a token only requires one communication round to update data, and the
update broadcasts can be streamed without waiting for acknowledgements. A write-
token protocol works well when update streams tend to originate from one source
for long periods of time as in a file system; under these conditions most updates
will require only one broadcast.

The ISIS atomic broadcast (abcast) is an alternative to a write-token protocol®.
Standard abcast is not suitable because it does not provide enough control over the
timing of updates. The write-token is a powerful tool for controlling concurrency
and recovery. Other protocols in Deceit depend on possession of the write-token for
mutual exclusion.

Let S be a server that intends to distribute an update for a file. First, S
must acquire the token, which requires one round if S does not already possess
the token. To acquire a token, a server broadcasts a token request with a causal
broadcast{BSS90] to all servers in Gy. The current token holder broadcasts a token
pass in response to change the token address.

After acquiring the token, S broadcasts the actual update to all servers in Gy
with a causal broadcast. The use of causal broadcast for token passing and update
distribution ensures that updates will arrive in identical order at all sites regardless
of token movement. S synchronously collects only the first s correct replies, where

s is the write safety level of the file. After these s replies have been collected,

®In fact, ISIS ABCAST was once implemented using a token passing protocol

65

the original client RPC that requested the update will return, and the remaining
replicas receive updates asynchronously. The semantics of ISIS causal broadcast
ensure that all members of GG will receive the update eventually if they do not fail.

If the write-token holder fails, then the write-token must be implicitly passed
to some other server so that write operations can continue. Thus, each segment
has a coordinator server that receives such implicit token passes. The token passing
protocol requires that no more than one server holds the token, and that server
must know that it holds the token. The coordinator is defined as the server that
has been up the longest of all the servers that have a replica of the segment. ISIS
provides consistent group membership, and the name service provides consistent
lists of replica locations, so any server can independently determine the coordinator

for any segment. This determination does not require any communication.

3.3.3 File Groups

The simple definition of Gy in Section 3.3.1 was not totally accurate. Gy, or the
file group of f, is the set of all servers that have a replica of f or have any cached
information about f (including just a timestamp of f). A server joins Gy before
performing any operation on f and leaves after discarding all information related to
f. Thus, in the steady-state the membership of G is exactly those servers which
need to be informed about changes to f.

The fundamental operation within a file group is update distribution. An update
to f originates from a client and is given to its server. This server then broadcasts
the update to all members of Gy. Other segment-related operations, such as to-
ken request messages, token pass messages, and other control broadcasts are also
restricted to the file group of f. The concept of a file group is fundamental and the
primary mechanism to support scalability.

A natural implementation would prefer a file group to be implemented with an

66

ISIS group, but ISIS process groups have a heavy overhead. Instead, an ISIS group
is used to represent each distinct subset of servers”. A file group is represented by
a specific ISIS group as long as the membership does not change. Thus, when a
server joins or leaves a file group, the segment service switches the segment to a
different ISIS group instead of changing the membership of the original ISIS group®
In this way, many segments can share a single ISIS group, and the total number
of ISIS groups is limited. Also, joining or leaving a file group can be accomplished
with a few causal broadcasts. Unused ISIS groups are slowly garbage collected.

Joining a file group results in obtaining state information about the segment, and
this information is specific to a particular point in a stream of updates. Therefore,
a join operation must be synchronized with update distribution so that all group
members will have a consistent view of the segment state. The only server that can
safely perform this operation is the current token holder.

Let s be a server that is to join a file group Gy. Server s sends a message to the
coordinator for f requesting the join. The coordinator is always a member of Gy,
so the coordinate will have recent knowledge about the location of the token holder
and can forward the request to the token holder. The token holder accomplishes
a membership change by broadcasting the address of the new ISIS group to all
members, including the new member. The current segment state is sent with this
broadcast, so that the new member can be immediately synchronized with the
other group members. The segment state is expressed in a small fixed-length block
of information, therefore this broadcast will not involve large messages. Refer to
Figure 3.6 for an illustration.

Since a group join request needs to reach the token holder, a write-token re-

It is possible to need O(2") ISIS groups, which can be very expensive for large n. A solution
would be to limit the total number of ISIS groups, but occasionally use groups that are too large.

8Groups are shared through the simple name service provided by the ISIS group join
mechanism.

67

coordinator

token-polder new member

old membership <

join request /
membership change/ /
segment state

new membership

J\

Figure 3.6: Group Join Protocol

quest can be included as an optimization. This action is appropriate when a server
wants to join a group and then immediately write to the segment. By using this
optimization, extra SNPs and messages can be avoided. Unfortunately, for reasons
explained in Section 3.3.4, a server S must determine that all group members have
seen the write-token request before S can broadcast updates using that write-token.
Therefore, all servers must reply to S after having received a request from the orig-
inal token holder. Such a form of redirected reply is difficult to accomplish in ISIS,

and so we did not implement this optimization.

3.3.4 One-copy Serializability

Since the segment service can return from a write_segment before all replicas have
been updated, it is easy to devise scenarios where clients see updates appear and
unexpectedly disappear. Further, even if the client that initiated the write blocks
until the write completes at all servers, other clients that are reading from the

segment can read inconsistent intermediate segment states. For example, assume

63

that segments f; and f are initially empty. Client ¢; appends to f; and then
appends to f2, and ¢z reads fi and then reads fi. If ¢z uses a different set of
replicas than ¢, then it is possible for ¢; to read the new version of fy and the old
version of fj.

The above scenario is a violation of the safety property one-copy serializability’.
One-copy serializability asserts that to all clients, it should appear that there is
only one replica of any file. An update appears totally completed before replying to
a write_segment operation. This property simplifies client software by elimination
of a dangerous source of uncertainty.

Deceit provides one-copy serializability with a simple mechanism called stability
monitoring. It works by only allowing the clients to use the coordinator’s replica if
there are concurrent write requests. The main benefit of stability monitoring is that
updates become visible to all clients simultaneously. By default, Deceit uses stability
monitoring, but since there is a small overhead from the extra token requests and
the forwarded read_segment requests, the user can turn stability monitoring off.
Note that stability monitoring does not guarantee one-copy serializability in the
presence of failures. A crash can force a client to switch to another replica, and the
other replica can be in an earlier state.

The stability monitoring protocol is as follows. A server holding the token
must broadcast a token request before updating a segment if it has seen no token
request for more than 10 seconds, and all replies are synchronously collected for
this broadcast. This policy insures that all servers will be warned before a segment
is modified. If a server s sees a token request for segment f, then s knows that its
cached state of f can be inconsistent for the next 10 seconds. More importantly,

if s has not seen a token request for 10 seconds, then s knows that all replicas are

°In file systems one-copy serializability is usually defined assuming all interprocess communi-
cation is through files.

69

identical. Of course, there is a little bit of uncertainty in these times because update
propagation is not instantaneous. The policy is that all read_segment requests are
forwarded to the coordinator for 15 seconds after a token request. After that time,
read_segment requests are sent to any convenient replica.

The use of a 10 and 15 second time-out is a somewhat arbitrary design choice.
The protocol is not particularly sensitive to this value except in the extreme cases.
We chose 10 because it is longer than most update bursts which reduces write
overhead, and it is shorter than the write/read cycle for most users which reduces
read overhead. Although it could be expressed as a file parameter, we believe that
arriving at a more appropriate value is too subtle for most users to understand.

An earlier version of Deceit used an explicit round of communication to ter-
minate stability monitoring. The token holder would broadcast a message after
a sufficient period of inactivity. Unfortunately, this method led to a complexity
explosion in the recovery protocols. On recovery, a server had to determine which
servers were forwarding read_segment requests and when the last update occurred
in order to bring the group back to a consistent state. Often, this process involved
blocking read and write operations temporarily which in turn led to more fault
tolerance problems. A time-out protocol has the nice property that it will always

recover to a consistent state without any global operations.

3.4 Partition Failures

During a partition, it is possible that there are two active write-tokens. Even if there
is no actual partition, ill timed crashes and recovery can produce the same effect on
replicas. Under these conditions, replicas can become badly inconsistent. This prob-
lem is thematic in file systems that support replication[WPE*83,SKK*89], and it
is the version splitting problem. Deceit handles this problem with two mechanisms:

write quorums [VRTSS,PQQ,P@G] and history descriptors (described in Section 3.4.2).

70

This use of write quorums is similar to the traditional use of read/write quorums
to assure update atomicity, but they should not be confused. Deceit does not use a

read quorum, and updates are always applied to all available replicas.

3.4.1 Write Quorums

Let af be the number of available replicas for segment f with file group Gy. Before
f g g f
broadcasting a file update, a server verifies that ay is at least as large as the write
quorum size, q; otherwise, write_segment and truncate_segment requests are re-
jected, and replica generation is disabled. Whenever there is a failure or recovery

10 Using a

in Gy, ISIS reports the change to Deceit, and Deceit recomputes af
large value for ¢ reduces the probability of version splitting at a cost of reducing
the availability of f for writing.

In order to positively prevent inconsistent replicas, another file parameter, the
mazimum replica level, m, is used. Replica generation is inhibited if there are at
least m replicas, including replicas on failed servers. If m < 2gq, then it is impossible
to have more than one effective write-token under any circumstance. Note that a
small m limits the read performance and flexibility.

After a failure, there is a short period of time before ISIS detects it and reports
it to Deceit. During this time, it is possible to have multiple active write-tokens
despite a large value for ¢q. This scenario is exceptionally unlikely since it requires
two concurrent updates immediately after a network partition on either side of the
partition. One completely safe solution is to use a two-phase commit with every
update. We decided that this solution was too expensive as any rare inconsistency
that results would be handled by the history descriptors, described below.

Traditionally, the version splitting problem is handled by blocking servers in the

minority partition, since each server is either fully operational or fully blocked. The

10This computation actually occurs the next time there is an update for f.

71

Deceit solution has the advantage of much higher expected availability when files
tend to be close to the clients that write them. Since the majority is computed
on a per file basis, it is likely that a minority partition will have a majority of the
replicas of a needed file. If a user is in the minority partition, then he will be able

to access most of his important files.

3.4.2 Version Splitting

Two replicas are considered to be comparable if one has received a prefix of the up-
dates that the other has received. Version splitting is easily handled if all replicas
are comparable; since obsolete replicas can be discarded. It is a fact that it is im-
possible to produce incomparable replicas unless new write-tokens are generated!!.
Deceit uses a mechanism to track exactly which updates have been applied to which
replicas, and it is closely tied to write-tokens. This information is then used to de-

tect and resolve inconsistency during recovery.
History Descriptors

Associated implicitly with each replica of file f is its update history H. H of f is a
sequence of all updates to f starting from an empty file. H' < H if H' is a prefix of
H. < is a partial order and can be represented as a tree of versions rooted at the
initial, empty f. We call this tree the history tree of f.

Deceit frequently has to determine the relationship between two replicas to de-
termine if one replica should be discarded or separated from the others (e.g. during
recovery). The history tree contains the information needed, but Deceit does not
explicitly store the full history tree since it would consume an unbounded amount
of storage. Instead, Deceit records the state of a replica using three values: the
version number, the token signature, and the update counter. These values together

are called the history descriptor for a replica, and they are stored with the replica.

1Reverting a write-token to the coordinator for a segment is a form of token generation.

72

e The version number of a replica is a high level description of the history
tree branch of a replica. Replicas with different version numbers are logically
separate segments each with its own file group. The version number for a
segment is encoded in the handle for that segment, and the client specifies

different segment versions by using different handles.

o The token signature of a replica denotes the owner of the write-token when the
last update was sent to that replica. Whenever a write-token is passed, the
new token holder chooses a random 32-bit value to use as the token signature.

The signature is sent in each update, and replicas are marked accordingly.

e The update counter is a simple serial counter for updates. Whenever a server
receives an update for a replica, then the update counter on the replica is

incremented.

The history descriptor provides a very eflicient way of determining if two replicas
are different or comparable. Two replicas with the same update history will have the
same history descriptors, and two replicas with different history descriptors must
have diverged at some point. If two replicas have the same version number and token
signature but different update counters, then they are comparable. However, the
converse is not true, so it is possible to identify comparable replicas as incomparable.

A history descriptor is also stored with each write-token, and it reflects all
updates that have been delivered through that token. These history descriptors
are used to restore a segment to a consistent state during recovery. Assume that a
recovering server s has a replica of segment f, and so rejoins the file group for f.
During the join, s will learn the history descriptor of the write-token as part of the
state transfer in the join protocol. If s has a replica with the same history descriptor
as the write-token, then the replica is consistent with the other replicas in the file

group; otherwise, the inconsistency must be resolved. If the token signature agree,

73

but the update counter of s’s copy of f is too small, then the replica is simply
obsolete and can be deleted. Otherwise, a new version is generated (described
below), which effectively turns s’s replica into a separate file. After the appropriate
recovery action, s joins the group as if s had no replica of f.

Some file systems (i.e. the Coda File System) use vector timestamps to perform
the same function as history descriptors. Vector timestamps have the property that
they will always exactly identify the relationship between two replicas. History
descriptors will sometimes identify comparable replicas as incomparable, resulting in
extra versions. However, virtual timestamps are larger than history descriptors and
have variable length, so the there is an increase in storage and system complexity.

For this reason, we elected to use history descriptors.
Version Control System

Generating a new version from a replica is very similar to creating a new segment.
One difference is that the new version is initially non-empty. It uses the incompa-
rable replica from the old version as the first replica of the new version. The other
difference is that the segment handle for the new version is nearly identical to the
segment handle for the old version. A globally unique version number is chosen for
the new version and this number is embedded in the new segment handle in the
place of the old version number.

It falls on the user to reduce multiple versions for a file to a single version.
By allowing the user to resolve incomparable versions, the semantics of the file
may be used for resolution[Bre83, WPE*83, HPRS88]. The facility by which users
resolve conflicts can also be accessed directly at the user level as a normal file
versioning system, such as in a source code management system. Deceit uses a
simple mechanism: file names can be qualified with version numbers using a special

syntax. For example, version 3 of “foo” can be referred to as “f00;3.” Deceit

74

captures the file name extension and transforms segment handles appropriately. By
using this form of file name, specific versions can be modified and deleted. By
using an unqualified filename, the user automatically requests version 0, which is
the initial version. The system behaves similarly to the VAX/VMS!?[Dig84] version
control system, except that VMS produces a new version on every file update, while

Deceit produces new versions only during partitions or when explicitly requested.

3.4.3 Recovery Scenarios

In order to clarify the usage of the crash resilience mechanisms, several detailed

scenarios are presented.
Replica Recovery

Let s be a server with a replica of segment f. Assume that s crashes and recovers.
Upon recovery s will attempt to join the file group for f. If no other replicas are
available, then s becomes the coordinator for f, and s can produce a new write-token
for f using the history descriptor of its replica.

If s is not the coordinator for f, then the file group and a write-token already
exist for f. Server s sends a join request to the coordinator for f. The join request
is forwarded within the file group until it reaches the current token holder, t. Server
t generates an ISIS group containing the old membership plus s, and ¢ broadcasts
this group address to the new group along with the current history descriptor for
f. When s receives this message, s can determine if the state of its replica matches
the state of the rest of the replicas. If there is a match, s is recovered.

If s finds that its replica is inconsistent, then s can either delete the replica or
turn it into a new version of f. The replica is deleted only if the update counter for
s’s replica is too small, but the rest of the history descriptor is correct. Otherwise,

a new version is generated, and it is the responsibility of the user to reconcile the

12yAX/VMS is a Trademark of Digital Equipment Corporation

75

two versions. If this occurs, an entry in a special log file is created so that the user
can detect the event. The user can use the version control system and normal file

editing to reduce the segment back to a single version.
Orphaned File Groups

Let G be a file group for segment f. If all the servers in Gy that have replicas of
f fail, then there may remain servers that have lost contact with f. When a server
with a replica eventually recovers, it will be the coordinator for f, and it will start
a new file group G’f. Meanwhile, the members of GGy will not receive new updates
for f and are therefore isolated.

This condition is corrected in two ways. First, if a member s of Gy attempts to
read or write f, s will receive no replies. At this point s can unilaterally leave G
and return an error to the client. The next time s tries to access f, it will rejoin
the group for f and thus will eventually become a member of G'f. Second, there
is a time-out on group membership for servers that do not have a replica of f and
are not the token holder. After 30 seconds, s will unilaterally leave Gf. A later
access to f will cause s to rejoin G’f as before. The time-out is also convenient for

reducing the size of inactive file groups.
Partition

Now consider the scenario where there is a persistent network partition as shown in
Figure 3.7'3. Recall that the write-token reverts to the coordinator if a token holder
crashes. A new write-token will be generated in partition B, since it will appear to
B that all servers in A failed. Access continues normally in both partitions since it
is difficult to distinguish between this scenario and the case where the other replicas
simply crashed. When the partition terminates, the servers in one group must rejoin

the other group. Assume that the servers in partition B are forced to rejoin the

13[SIS does not support recovery from partitions, and so this scenario is speculative.

76

file group in partition A. Since the replicas in B are possibly inconsistent with the

replicas in A, new versions can be generated at this time.

Partition A Partition B

Figure 3.7: Network Partition

The write quorum size can be used to control updates during a partition. If
the write quorum size is at least half of the maximum replica level, then reconcil-
ing versions after a partition is easy, since all versions will be an ancestor of the
most recent version. It is common in network environments for a single server to
be temporarily separated from the network due to congestion or failure in the net-
work interface[Cri91]. Therefore, a write quorum size of 2 should handle nearly all

practical situations.

3.5 File Parameter Summary

Several file parameters were mentioned in previous sections. These parameters are

associated with each segment. Below we summarize the file parameters:

o Minimum Replica Level () - the minimum number of valid replicas that must
be maintained. For example, a minimum replica level of 3 forces Deceit to
maintain a valid replica on at least 3 separate servers. This parameter was

discussed in Section 3.3.1. By default, the value is 1.

e Write Safety Level (s) - the number of replica servers that must reply to an
update before a write_segment returns. A value of 0 produces asynchronous

and unsafe writes; a value greater than or equal to the number of available

7

replicas produces slow or fully synchronous writes. This parameter was dis-

cussed in Section 3.3.2. By default, the value is 1.

e Stability Monitoring - specifies whether stability monitoring is to be used. It
reduces the probability of non-one-copy serializable behavior, but there is a
small performance cost. This parameter was discussed in Section 3.3.4. The

default is to use stability monitoring.

¢ File Migration - denotes whether Deceit automatically attempts to create a
replica of file f on a server that receives a request for f. For some applications,
it may be bad to automatically generate local replicas. For example, a single
reference to a very large data file, may unnecessarily consume excessive disk
space. This parameter was discussed in Section 3.3.1. The default is that file

migration is not used!4.

o Write Quorum Size (¢) - the minimum number of available replicas required
for updating a segment. A value of 1 produces no restriction of writing. This

parameter was discussed in Section 3.4.1. By default, the value is 1.

e Maximum Replica Level (m) - the maximum number of replicas. This param-
eter is used in combination with the write quorum size to prevent multiple
file versions. If m < 2¢, then it is impossible to produce incomparable file
versions. This parameter was discussed in Section 3.4.1. By default, the value

is 5 since this will allow generous, but bounded read caching.

3.6 Optimizations

Several optimizations are used to improve the segment service performance. The

first optimization reflects the fact that Deceit runs as a single server process, and

14 Another approach would be to implement sophisticated heuristics to determine when to mi-
grate a file. For example, some combination of file size and number of read operations from a
particular client could be used as the determining factor. We have not implemented this idea.

78

normal file reads or writes block the entire process. SunOS 4.1.1 provides true
asynchronous read and write capability. The segment server uses this facility in
combination with the ISIS light weight tasks to provide concurrent file access for
concurrent NFS requests. A read or write will block a single thread until it com-
pletes, but it will not block the entire process.

Deceit prefetches data after a read in order to take advantage of normal read
sequentiality. For example, a read at position p of length [will cause another read
at position p+ [of length [to be started asynchronously. If a request for this data
arrives later, the request will block until the asynchronous read has completed, and
the request will use that data. Under lightly loaded conditions this method signifi-
cantly improves the observed performance of the server, as discussed in Section 3.8.
This rendezvous requires a data structure to store temporary read results as well
as garbage collection for unreferenced reads.

A large in-memory data structure is used to store meta-data about segments.
Updates to this data structure needs to be stored on disk for safety. In order to
simplify this process, this data structure is mapped into virtual memory directly
from a backing store file. The operating system automatically propagates changes to
the backing store, and no explicit kernel calls are required. On recovery, the backing
store is mapped back into memory, and the data structure is checked for consistency.
Unfortunately, there is a possibility of inconsistency between the files used to store
segments and the descriptions of the segments in the meta-data backing file; we

currently do not implement a solution to this problem.

3.7 NFS Envelope

The NFS envelope provides the full NFS service using the name service and the
segment service. While the NFS envelope is not nearly as complex as the other

components, it 1s a large part of the server program. In this section, we will sum-

79
marize the details of the NFS envelope.

3.7.1 Usage of Other Components

The NF'S envelope uses the name service in two ways. One name table is used to
record the directory structure. Mappings in this table take the form <directory
handle, “d”, name>=><child handle>. The “d” signifies that the entry is a normal
“down-link.” Thus, listing a directory involves listing all mappings with the prefix
<directory handle, “d”>. For each down-link, there is a matching “up-link” of the
form <child handle, “u”, “..” >=<directory handle>. Thus, counting the number
of links to a file involves counting all mappings with the prefix <child handle, “u”>.
The up-links are used to quickly determine when all down-links to a file or directory
have been deleted, and storage for the file can be freed.

The NFS envelope uses another name table to store owner and security infor-
mation for each file or directory. Mappings in this table take the form
<handle>=<UNIX mode, user id, group id>. All file access checks are made using
this information. The security information is changed by deleting the old mapping
and creating a new one. In order to insure safety, if no security mapping can be
found for a file, then all access is denied.

Often there will be several name service changes for a single NFS request. As
an optimization, the NF'S envelope groups all name service changes for a table into
a single name service update by using a single flush name. If there are updates to
multiple tables, then parallel flush name calls are issued. Performance for several
updates is essentially the cost of a single update plus a small amount of CPU time.

The NFS envelope uses the segment service to store the contents of normal
files and and the link data for soft links. Each normal file is associated with a
segment using its handle. READ and WRITE requests for a file are translated into

read_segment and write_segment calls for the associated segment. READLINK and

80

SYMLINK requests receive similar treatment.

3.7.2 Details of the NFS Envelope

In order to fully describe the NFS envelope, we will summarize the action required
for each type of NFS request. This information will be used in Chapter 4 in the per-
formance analysis of Deceit. Refer to Appendix A for a description of the meaning

of each NFS request type.
LOOKUP Operation

The execute permission is checked on the directory using the security name table.
The child file handle is determined using the directory name table. The result file

attributes are computed.
WRITE Operation

If the file handle is for a control file (version number -1), the write is actually a
special command. The ISIS message library has routines providing an architecture
independent data format, which is used to parse the arguments of the special com-
mand. The only special command currently supported is setting the Deceit mode
bits for a file. This command is executed by calling setattr_segment.

If the file handle is for a normal file, then the write permission is checked for the
file using the security name table. The corresponding segment is determined from

the file handle, and a write_segment call is issued.
REMOVE Operation

The write permission is checked for the directory using the security name table. The
child file handle is determined using the directory name table. The down-link and
the matching up-link are deleted. If the number of up-links is now zero, the security

information is also deleted. A callback is used on the directory name table so that

81

each server can monitor deletion of up-links on files. When the number of up-
links becomes zero at a server, that server deletes all versions of the corresponding
segment locally with a delete_segment call. In this way, disk storage is reliably
freed at all servers when a file is deleted.

All name service operations are logged to disk for stability. Further, careful use of
flush_name insures that a complex operation (e.g. RENAME) is executed atomically.
If there is a crash and recovery, the operation will either have completed totally or

have had no effect.
RMDIR Operation

This operation is nearly identical to the REMOVE operation, except no segment dele-

tion is required.
LINK Operation

The write permission is checked for the target directory using the security name

table. A new down-link and up-link are created for the file.
RENAME Operation

The write permission is checked for the target directory using the security name
table. If a file already exists at the target location, it is deleted as in the REMOVE
operation. Then, the old down-link is deleted for the file being moved, and the
new down-link is created. Finally, the old up-link is deleted, and the new up-link
is created. These name service changes are grouped into a single update by using a
single flush name.

A problem with directories is that it is possible to produce a closed loop by
moving a directory into its own descendent. This possibility is checked using the
directory name table before the directory is moved. This solution is not completely

safe because two concurrent directory movements can jointly produce a loop.

82

STATFS Operation

The file system statistics are determine using a normal UNIX statfs call on the

local segment storage directory.
GETATTR Operation

The file attributes are determined using the method described in Section 3.7.1.
Note that the name service caches entries in memory, and the segment service
caches segment meta-data in memory. Therefore, this operation usually will not

require disk access.
SETATTR Operation

Owner user id, group id, and UNIX mode bits are changed by deleting the old
security name mapping and creating a new security mapping. Time stamps are
changed by using the setattr_segment call. The file size is changed using the
truncate_segment call. Once the appropriate changes are made, the result file

attributes are computed.
READ Operation

If the file handle is for a control file (version number -1), a description of all ver-
sions of the corresponding segment is computed. The result is passed by using the
ISIS message library which provides an architecture independent data format. By
reading the control file, the user can determine all Deceit specific information about
a file.

If the file handle is for a normal file, then the read and execute permission of the
file is checked. It is possible to read a file that has only execute permission, since
the NFS server can not determine if a file is being used as an executable. The file
data is read using a read_segment call. If the result of a previous read_segment

corresponding to the same data is cached, that result is used instead. The result

83

file attributes are computed. The RPC reply is then sent to the client, but the NFS
envelope continues working. The next block of data is read and cached to allow

better concurrency when a file is being read sequentially.
READLINK Operation

The link data is read using a read_segment call.
READDIR Operation

The read permission is checked for the directory. The directory entries are computed
by calling prefix name using <directory handle, “d”> as the key on the directory

[

name table. The entry is computed using <directory handle, “u”, “..”> as the

key.
CREATE Operation

The write permission is checked on the directory. If a file already exists at the
specified name, it is truncated to zero length using truncate_segment. Otherwise,
a new segment handle is generated. A new security name table mapping is created.
A new down-link and up-link are created. A new segment is created using a call to

create_segment. The result file attributes are computed.
MKDIR Operation

The write permission is checked on the parent directory. A new segment handle is
generated (this handle does not refer to a real segment, but the same format is used
for convenience). A new security name table mapping is created. A new down-link

and up-link are created. The result directory attributes are computed.
SYMLINK Operation

The write permission is checked on the directory. A new segment handle is gener-

ated. A new security name table mapping is created. A new down-link and up-link

84

are created. A new segment is created using a call to create_segment. The sym-
bolic link data is written to the segment using a call to write_segment. The result

file attributes are computed.

3.8 Timed Benchmarks

In this section, we present a detailed analysis of Deceit performance using different
client and server configurations. The natural way to analyze a file system is to
determine the cost associated with each type of operation. There are two aspects to
this cost: the minimum time to complete the operation and the resources consumed
while the operation is in progress, where resources can be CPU time, disk access,
and network traffic. An operation that that executes very quickly but consumes all
available resources will be unacceptable in an environment with heavy concurrent
load. Similarly, a very slow operation will be unacceptable even if it consumes few
resources.

The analysis of Deceit is made more complex by the ability to change file system
behavior through the use of file parameters. The focus of the analysis will be on
the relative performance of Deceit using different file parameters settings, instead
of the absolute performance. Deceit was never heavily tuned (as opposed to NFS),

so absolute performance is not very instructive.

3.8.1 Experimental Setup

The benchmarks were performed using the following environment. The NFS clients
were Sparcstation IPCs, and the servers were Sparcstation 2’s with 48 megabytes of
physical memory. All machines were running version 4.1.1 of the Sun operating sys-
tem. All hosts were connected with a single Ethernet network having a bandwidth of
1.25 megabytes/second. The disks were Maxtor model LXT213SY with an average

seek time of 15 milliseconds and a maximum bandwidth of 3 megabytes/second.

85

The software was built using version 3.0.4 of ISIS which was last installed on
November 11, 1991. Deceit was compiled with the GNU C compiler version 1.40
from the Free Software Foundation, and normal compiler optimization was used.
Three versions of Deceit were used in the benchmarks. In addition to the normal
version, a special version of Deceit was written which eliminated all disk access.
This version was used to separate the network and CPU cost from the disk access.
Also, a version was written which increased the cost of a disk operations by a
random amount (chosen uniformly between 0 and 50 milliseconds). This version
was used to explore the effect of random background load on Deceit performance.

The test machines were part of the general Cornell Computer Science depart-
ment environment, but the benchmarks were performed at a time when there was
very little activity. In addition, before each benchmark, the clients and servers were
checked to insure that no extraneous processes were executing. Except for the An-
drew Benchmark!®, each benchmark was executed many times in order to produce
a statistically valid mean. The resulting values are given with a 95% confidence

interval using the techniques described in [WW90].

3.8.2 Andrew Benchmark

The first benchmark is a measure of overall file system performance using the An-
drew Benchmark!®. The Andrew Benchmark contains a mix of file system oper-
ations that are meant to emulate normal usage. The benchmark builds a tree of
source files, scans each directory and file, and then compiles all of the files. This
benchmark executed the file systems operations by making user level UNIX file
system calls on an NFS client. The client software added uncertainty to the times,

particularly since a Sun NFS client caches data and delays operations.

15The Andrew Benchmark was very time consuming to execute. We decided that the value of
collecting a statistically meaningful sample was not justified by the effort required.

18This benchmark is based on the distribution from June 14, 1985. It was provided by M.
Satyanarayanan, the Information Technology Center, and Carnegie-Mellon University.

86

The times for the Andrew Benchmark are shown in Table 3.1. Deceit was
tested three times using a default of one, two, and three replicas for a file. For
example, Deceit(2) indicates that two replicas are created whenever a new file is
created. The write quorum size and the write safety level were the same as the
number of replicas, file migration was disabled, and stability monitoring was used.
This choice of settings provided similar semantics between NFS and Deceit (except
for availability). The timing resolution is measured only in seconds. For Phase I

(creating directories), the times are very short and resolution is inadequate, so those

results are not shown.

Table 3.1: Andrew Benchmark Times (seconds)

Phase NFS || Deceit(1) | Deceit(2) | Deceit(3)

Phase II (Copying files) 18 29 57 71
Phase 11T (Directory stats) 19 17 18 19
Phase IV (Scanning each file) 25 26 25 28
Phase V (Compilation) 86 92 104 113
Total 151 166 210 243

For the total Andrew Benchmark, Deceit(1) is 9.9% slower than NFS. The largest
performance difference is in Phase II which is dominated by heavy WRITE activity.
Since Deceit does not run in the kernel, it is not capable of scheduling the disk
as efficiently as NFS, hence the poorer performance. Also, a user level process re-
quires more memory copying than a kernel process because data must move between
virtual memory spaces. Phase V suffers from a similar effect to a lesser degree.

Replication adds a significant overhead: for the total benchmark, Deceit(2) is
26% slower than Deceit(1) and Deceit(3) is 46% slower. Phase II and Phase V

are characterized by a large amount of writing, so the cost of replication is most

87

prominent in those phases. Replication has the most effect in Phase II: Deceit(3) is
145% slows than Deceit(1). The reason is that Phase Il involves many file creations,
which in turn invoke a CREATE and a SETATTR NF'S call. Table 3.2 in the next section

shows that both of these calls are strongly effected by replication.

3.8.3 Overall Operation Cost

The results in Table 3.2 are a measure of straight NFS performance. A special
test program executed each NFS RPC type repeatedly and averaged the execution
times. The calls were made by directly sending network messages containing the
RPC data rather than going through the normal client software. The results are
much more consistent and precise than those in Table 3.1. A percentage is included
in the table that indicates the ratio between the number of times each call was
invoked to the total number of calls in the Andrew Benchmark. As with Table 3.1,
Deceit was measured using one, two, and three replicas as the default for each file.

Table 3.3 shows the same benchmark, but the normal version of Deceit has been
replaced by the version that does not actually access a disk. Therefore, the times
in Table 3.3 indicate the CPU and network transmission time required for each
operation.

The most prominent time differences between NFS and Deceit(1) are in CREATE,
REMOVE, and SETATTR. In the case of CREATE, Deceit is not able to efficiently schedule
disk access. Deceit must execute two disk operations: appending the name service
log and creating a storage file. If both of these disk accesses were executed in
parallel, then the time would be cut to nearly half, but Deceit does not do this. In
the case of REMOVE and SETATTR, the NFS implementation violates its own safety
properties and does not execute the operations synchronously. Consequently, NFS
is much faster than Deceit for these RPC types.

Deceit is slightly faster than NFS for LOOKUP, GETATTR, READ, and STATFS. The

88

Table 3.2: NFS Benchmark Times (milliseconds per operation)

RPC Type | Usage NFS Deceit(1) Deceit(2) Deceit(3)
LOOKUP 37% 4.6 £ 0.2 43 +0.3 4.1 £0.2 41+0.3
GETATTR 36% 3.7+£0.2 3.2 +£0.2 3.2 + 0.3 3.0 £ 0.1
READDIR 15% 136 £ 14| 123 + 1.3 128 £ 1.3 12.0 £ 1.2

WRITE (8 Kb) | 8% 129.3 £22 (1383 £ 1.6 | 148.7 £2.9| 162.0 + 3.0
CREATE 3% 99.0 £ 54| 1246 £ 7.1 2199 £ 7.6 | 226.7 £ 7.6
READ (8 Kb) | 0.7% 206 £ 0.8 184 £ 0.6 18.8 £ 0.7 19.1 £ 0.8
MKDIR 0.5% | 116.5 £ 5.8 | 78.9 4+ 8.3 | 2357 £ 9.3 | 278.0 £ 174
REMOVE 0.2% 147 £ 0.8 | 141.3 £ 8.0 | 422.4 4+ 10.6 | 532.6 £ 17.7
RENAME 0.1% 64.2 £ 04| 53.5+89|164.3 £104 | 168.1 £ 6.0
STATFS 0.03% 3.7+ 0.2 3.4+04 3.3 £0.3 3.2+ 03
NULL 0% 2.5 £ 0.2 2.5 £ 0.1 2.6 £ 0.1 2.4 +£0.1
SETATTR 0% 3.6 £ 02| 85.7+54| 471.3 £ 4.4 |639.3 & 13.9
RMDIR 0% 61.6 £ 29| 659+ 20| 214.2 &£ 15.0 | 218.4 £+ 10.8

reason is that Deceit is more aggressive about keeping information in memory. The
entire directory structure is in the name service which is held in memory, and this
fact explains the fast LOOKUP and GETATTR. Deceit caches the result of a STATFS
for several seconds so that repeated calls will be very quick. Deceit prefetches data
in the READ operation, and that optimization provides slightly better performance
than the simple caching the NFS uses.

Table 3.2 shows that a WRITE using three replicas is 17% slower than when using
one replica. However, the disk access time is approximately 116 milliseconds in all
three cases. This fact indicates that Deceit is doing a good job of performing the

disk access in parallel on all servers. Since the disk access consumes 70% to 87%

89

Table 3.3: NFS Benchmark Times without Disk Access

RPC Type Deceit(1) | Deceit(2) Deceit(3)
LOOKUP 42+02(4240.2 4.3 + 0.3
GETATTR 32+01| 33+£01 3.2 £0.1
READDIR 126 £ 1.3 [125+ 1.5 128 £ 1.7

WRITE (8 Kb) || 18.3 £ 0.5 | 38.1 + 1.0 | 49.5 + 1.8
CREATE 123 £29 382 £ 3.7 51.7T+4.8
READ (8 Kb) | 17.9 £ 0.6 | 17.9 + 0.5 | 17.7 + 0.7
MKDIR 99+£07(309 11| 51.3£386
REMOVE 104 £06 | 478 £29 | 79.2 + 3.6
RENAME 94 +14 (215 £33| 261 +2.3
STATFS 32+0.1| 3.240.1 34 £0.2
NULL 25011 25+£0.1 25 +03
SETATTR 85+03|89.8 +4.7|169.3 + 4.7
RMDIR 73+£02]|248+ 1.6 37.7+£25

of the time, it is valuable to accomplish them in parallel. When disk access is
eliminated, two replicas are 108% slower than one, indicating that it is roughly as
expensive to send the WRITE request from one server to another as it is to deliver it
initially with NFS.

Replication has a high relative cost in operations that require name service
access. In particular, SETATTR, MKDIR, and RMDIR are pure name service operations,
and replication has a dramatic effect on their time. The biggest jump occurs between
one replica and two replicas. If there is only one replica, then the name service can
shortcut past all of the ISIS communications protocols, but two replicas trigger the

full communications overhead.

90

SETATTR is unusual in that replication increases the time required for disk access.
The reason is that several name service updates are performed. In the single server
case, the server can synchronously flush all updates with one file operation, but when
there is more than one server, each update is written and synchronized separately
to disk. This behavior is an artifact of a poorly tuned implementation. Fortunately,
SETATTR is a very uncommon operation: essentially, it is only used when a UNIX
chmod command is used. Note that going from two to three replicas does not

increase the disk access cost component.

3.8.4 Variation in Client/Server Configuration

For this set of benchmarks, we focus on the cost of using different client and server
configurations. In particular, we vary the communication infrastructure and the
location of the file replicas. This type of analysis helps to determine the cost of
small parts of file system operations.

The following test measures the cost of remote file access by using four different
server configurations. In the first server configuration (1 local), there is only one
server, and the client directly mounts it. In the second server configuration (1
remote), there are two servers with one replica of the file, and the replica is on
the server that the client does not mount. In the third configuration (1 local + 1
remote), there are two servers with two replicas of the file, and the client mounts a
server with a replica. In the last configuration (2 remote), there are three servers
and two replicas, and the clients mounts a server without a replica. We tested
all four configurations using the normal Deceit server and using the Deceit server
without disk access. Table 3.4 lists the time of each operation for 8 Kb WRITEs.

The difference in time between “1 local” and “1 remote” is about 18 millisec-
onds for both server types, which is the time to forward a WRITE from one server to

another. This time is consistent with the time required to execute an NFS WRITE

91

Table 3.4: Local vs. Remote WRITE Time (milliseconds)

Server 1 local 1 remote | 1 local 4+ 1 remote 2 remote
Normal || 130.5 £ 4.2 | 1476 + 3.9 153.5 + 3.6 | 184.6 &+ 2.8
No disk 175+ 04| 36.3 £0.7 3854051 465+ 1.0

without disk access (i.e. the time required for an RPC with 8 Kb of data). The
difference between “1 local + 1 remote” and “2 remote” is due to the time re-
quired to send the message containing the WRITE to the seconds remote server. In
the “no disk” case, the difference is 8 milliseconds, which is less than 18 because
there is some concurrency in the message transmission. However, in the “normal”
case, the difference is 39 milliseconds, which is too large and an artifact of a poor
implementation!”.

The write token produces a transient bottleneck when there are concurrent
WRITEs to one file. The next test measures the cost of contention for the write
token. In this test, there is one file with r replicas written by r clients. The im-
portant variable is whether all clients mount the same server or different servers.
When all clients mount the same server, there is no token contention since the token
can stay at that server. When all clients mount different servers, the token must
move around rapidly among the servers. Table 3.5 shows the total number of WRITE
operations per second (of all clients) for several different configurations.

It 1s difficult to interpret the results of Table 3.5 because of the many variables
involved. It is not clear how frequently a token acquisition was required, nor how

the client configuration effected load balancing. Regardless, it is clear that token

contention has a strong effect on performance.

1"The broadcast protocol did not produce adequate concurrency, and the first WRITE became
partially serialized with the second WRITE.

92

Table 3.5: WRITEs per Second with Token Contention

Server | Replication || Without Contention With Contention
Normal 2 11.03 £ 0.26 | 7.96 + 0.16 (28% less)
Normal 3 9.91 £0.20 | 6.64 + 0.15 (33% less)
No disk 2 43.01 £ 0.85 | 28.29 + 0.45 (34% less)
No disk 3 36.45 £ 0.43 | 20.45 £ 0.74 (44% less)

3.8.5 Variation in File Parameter Settings

In this set of benchmarks, we focus more closely on the cost of using different file
parameter settings. The cost of varying the number of replicas is demonstrated in

Table 3.2. The other relevant file parameters are the write safety level, the use of

file migration, and stability monitoring.

The next test measures the performance gain achieved by varying the write
safety level. Table 3.6 shows the time for 8 Kb WRITE operations to a file with three
replicas. Three different versions of Deceit were tested: the normal version, the

version without disk access, and the version with a randomly chosen extra delay in

each write.

Table 3.6: Effects of Write Safety Level

Server s=0 s=1 s=2 s=13
Normal 46.6 £ 23.2 | 158.9 £ 3.3 | 171.7 £ 4.1 | 174.4 £ 4.1
No disk 369+ 1.1 378+ 1.6 46.1 £1.7| 46.5 + 1.4
Random Extra || 42.3 + 15.3 [175.5 &+ 2.6 | 192.3 + 4.3 | 206.5 + 3.6

The biggest jump is time is between s = 0 and s = 1 because s = 0 implies that

no synchronous disk access is necessary. In the “normal” case, there is little differ-

93

ence after that: waiting for three disks is only 9.8% more expensive than waiting
for one. In the “random extra” case, we randomly added up to 50 milliseconds of
time to each disk operations to simulate background load from other clients. Yet
there is still only 17.6% growth is time between s = 1 and s = 3. The conclusion is
that s should just be equal to the number of replicas, unless a particular server is
known to be very slow.

The value of file migration was demonstrated in Table 3.4. In that table, we
showed that an 8 Kb WRITE required 18 more milliseconds when it needed to be
transferred between servers. File migration will eliminate this extra time in most
cases for typical file system usage. The penalty for file migration is the expense of
an occasional file transfer. We measured the time required to transfer a file for two
different file sizes!®. For a 1 Kb file, the time was 128 + 10 milliseconds. For a 100
Kb file, the time was 1931 + 100 milliseconds. Using a linear interpolation between
the two values, we find that the transfer rate is approximately 55 Kb per second
plus 148 milliseconds of overhead. Considering the bandwidth of the network (1.25
Mb/sec) and the disk (3 Mb/sec), this transfer rate seems very slow. The slow rate
indicates that the Deceit file transfer protocol needs to be debugged and tuned.

Stability monitoring is difficult to evaluate since it is only important under very
unusual conditions: one client must read a file at a server where there is a replica
immediately after another client writes the same file at a different server. Under
those conditions, a READ operation will be forwarded between servers instead of
using a local replica. The difference in time between a local READ and a remote
READ was measured as 14.0 + 1.7 milliseconds, which can be relatively significant
under some conditions. In general however, the performance impact of stability

monitoring is negligible.

18The file transfer protocol is triggered asynchronously after a READ operation has completed
and a reply has been sent to the client. The file transfer protocol is executed in a separate thread
by Deceit, and no client is blocked by it.

94

3.8.6 Resource Consumption

The previous performance tests focused on operation execution time. In this section,
we emphasize the resource consumption of a WRITE operation. In the next test,
between one and three clients issued concurrent writes to separate files on one
server. Individually, each client executed WRITE operations serially: it waited for
one to finish before starting the next one. Up to two other servers held replicas of

those files. Table 3.7 shows the average time required for each WRITE operation.

Table 3.7: WRITE Time with Multiple Clients

Server | Number of Clients Deceit(1) Deceit(2) Deceit(3)
Normal 1 134.0 £ 3.5 [152.2 £ 44| 195.5 + 4.1
Normal 2 1729 £ 2.6 | 179.2 + 5.0 | 243.6 £ 114
Normal 3 241.7 £ 3.6 | 2619 &£ 5.3 | 316.8 £ 5.4
No disk 1 241 £05) 43.1+0.9 58.6 £ 1.2
No disk 2 212 £ 1.0 527+ 2.0 77.7 £ 5.0
No disk 3 3L.7 £ 1.7| 663 £ 2.6 97.6 + 4.9

This data suggests that since concurrency causes a the normal server to slow
down more than a diskless server, disk access is the main concurrency bottleneck for
a normal server. Table 3.8 shows the percentage reduction in disk performance for a
normal server. These results were computed by subtracting the non-disk component

from the normal server times and then computing a ratio.

3.9 Deceit Summary

3.9.1 General Conclusions

Deceit demonstrates that it is possible to allow users to dynamically control key

aspects of the replication and control protocols. As a result, a wide range of per-

95

Table 3.8: Reduction in Disk Performance for WRITE

Number of Clients || Deceit(1) | Deceit(2) | Deceit(3)

2 35% 25% 35%
3 98% 101% 88%

formance, safety, and availability properties are made available. Also, “exotic”
features such as file migration and disk load balancing are feasible. At the same
time Deceit provides a clean and intuitive interface to clients. Deceit simplifies the
administration of a collection of NFS servers by effectively unifying them into one
server.

Deceit, however, is far from an ideal file system. The largest problem is that
the server program is too complex. Thorough debugging is a nearly impossible task
due to the distributed, multi-threaded, and highly non-deterministic nature of the
server. In particular, race conditions continue to be a nagging problem. Powerful
software tools such as a distributed debugger and automatic tester would help.

Conformance to the NFS protocol has crippled Deceit performance and func-
tionality. NI'S had seemed an obvious choice for a client/server protocol due to
its simplicity and widespread availability. Unfortunately, it lacks client fail-over,
consistent client caching, bulk data transfer, and explicit update synchronization.
Also, some important details of the semantics are undocumented; they appear only
in the primary implementation from Sun Microsystems. These failings limit the
effectiveness of any filesystem supporting NFS and have forced some unpleasant

design decisions on Deceit.

96

3.9.2 Performance Results

Section 3.8.2 demonstrated that using two or three replicas instead of one reduced
server performance by 26% or 46% respectively. Some part of that figure can be
attributed to poor server optimization, particularly in disk synchronization. Still,
it is not clear if 46% is a “lot” or a “little”: that decision is application dependent.
Section 3.8.3 refined this result by breaking down server performance into individual
operations. We found that the name service scales poorly, so certain operations (e.g.
MKDIR) become very slow when replication is used. The name service design needs
to be reconsidered to correct this problem.

Section 3.8.4 demonstrated that Deceit is relatively insensitive to the actual lo-
cation of replicas. An extra communication hop only adds 13% to the time required
to accomplish a WRITE. Considering the slow rate of file transfer (55 Kb/sec plus
148 msecs of overhead), file migration is not recommended in general. Even if file
migration were very fast (1 Mb/sec), it would still be difficult to justify because of
the extra disk traffic required.

If clients spray WRITE operations to more than one server for the same file at
the same time, then token contention is a result and Deceit performs poorly. In
Table 3.5, we demonstrated a performance degradation of 49% for three replicas
under these conditions. The conclusion is that it is much less important which server
clients use then ensuring clients use the same server for all access to a particular
file.

In all of the benchmarks, disk access time dominated performance. When there
was only one replica, fully 87% of the time require to execute a WRITE was spent
in disk access. Even when three replicas were used (with corresponding higher
communications overhead), disk access still consumed 69% of the time. These values
are generally consistent with the other operations types. Table 3.7 (Section 3.8.6)

showed that disk access is the primary bottleneck when there is concurrent server

97

access. It is possible to saturate the disk drive with only two concurrent WRITE

operations.

3.9.3 ISIS

ISIS greatly accelerated the implementation of Deceit. ISIS provides many prim-
itives which are well suited to a distributed service. It was possible to explore
many protocols and configurations in a relatively short period of time. On the
other hand, ISIS performance and complexity are problematic. Some operations
(e.g. group creation) are very expensive and, it was necessary to use awkward

mechanisms to provide sufficient efficiency.

3.10 Future Deceit Enhancements

Many useful enhancements could be made to Deceit to make it a more useful system.
A few possible enhancements are presented here. Other, more broadly defined,

future work is presented at the end of this thesis.

3.10.1 Client Enhancement

The standard NFS client software does not effectively utilize Deceit since NFS can
not switch between servers on a per-file basis. Unfortunately, any client enhance-
ment would require a fundamental change to the NFS protocol. Assuming that
an improved client/server protocol is available, a better client would have the fol-
lowing features. The client will use server call-backs to cache more effectively and
efficiently. If a server fails, then the client would fail-over to another equivalent
server!®. Also, the client would switch between servers depending on replica loca-

tions to avoid server indirection.

19This can be implemented by using network impersonation without modifying client software.

98

The Andrew File System[SHN*85 HKM*88] and the Sprite File System[NWOS§]
are examples of file systems that have very carefully designed clients and client /server
protocols. The Coda File System[SKK*89] and the Ficus File System[GHM*90,
PGJH90] go further and have clients that can act as temporary servers. None of
these client protocols are incompatible with the design of Deceit. It would be a
straightforward (but time consuming) exercise to implement the necessary inter-

faces.

3.10.2 Cells

In the above discussion, it was assumed that all clients could directly access any
Deceit server, but from a security perspective this property is not necessarily desir-
able. Sets of Deceit servers would be subdivided into cells to prevent Deceit from
being non-secure (and inefficient) in a very large implementation. Each cell would
be an independent instance of Deceit with distinct files and processes. Each cell
would maintain its own name space, and replication will be contained within a cell.
A cell would provide security and administrative boundaries.

Access between cells would be provided through a logical directory. called the
global root directory. This scheme is similar to the ideas presented in [Neu89] and
[TCW89]. It would be impossible to list, as it implicitly would contain the full host
names of every accessible Deceit server. Instead, it would be used indirectly as a
subdirectory of a normal directory. For example, if a user is in the Cornell computer
science cell and wants to access files in the MIT computer science cell, he picks a
machine “foo.cs.mit.edu” at MIT where a Deceit server is running. By executing
the command “cd /priv/global/foo.cs.mit.edu,” a user can access the MIT cell with
normal file operations. In this case, the global root directory is “/priv/global.”
Mount and access restrictions would be applied to the Cornell cell as with any

client.

99

3.10.3 Fast Local Storage

Deceit performance is badly encumbered by the fact that all local storage is done
in normal UNIX files. The problem is that UNIX provides directories, time stamps,
and hard link reference counts, which is redundant with service that Deceit im-
plements. Creating a Deceit file will modify the segment meta-data file, the name
service log file, the segment storage file, and the UNIX directory where the storage
file is placed. Including i-node and data writes, up to eight disk writes can be re-
quired to create a Deceit file. Also, Deceit is not able to efficiently schedule disk
access. In a future version, Deceit would directly access the disk device. For addi-
tional performance gains, a log-structured file system[R090,0D89,D089] would be
used.

An alternative to rebuilding the base file system from the bottom up is to use
stackable layersfGHM™90,R0s90] in the file server. Splitting a file system into
several layers greatly increases the reusability of the code and can improve overall
efficiency. Each layer is optimized for a specific function, and layers can be shuffled

around to provide different file system properties.

3.10.4 New File Parameters

The existing file parameters are not ideal. Perhaps with different parameters, the
design could be simplified, the range of behavior could be increased, and the ef-
ficiency could be improved. For example, one new parameter could be the Read
Quorum Size. When a file is read, this number of replicas is read. If there are
not enough replicas, then the operation is aborted. Otherwise, the result with the
latest timestamp is used. A read quorum can be used to provide consistency and
stability. In fact, with read quorums the entire stability monitoring protocol would
become obsolete, although a read operation would have to be executed on several

servers instead of one.

100

Another new parameter could be the binary parameter Immutable. If Inmutable
is true, then the file contents are fixed. If the file system knows that a file is
immutable, then caching and replication become much simpler. This optimization
was used in LOCUS[WPE"83] as the normal mode of operation. Most of the
protocols in the segment service could be circumvented yielding better performance

and availability.

Chapter 4

Comparative Analysis

4.1 Deceit Analysis

In order to complete the file system survey begun in Chapter 2, the Deceit file
system presented in Chapter 3 will be analyzed. This analysis will be expressed
using the file parameters presented in Section 3.5 on page 76. The following is a

brief summary of those parameters:
e Minimum Replica Level (r) - the minimum number of valid replicas that must
be maintained.

o Write Safety Level (s) - the number of replica servers that must reply to an

update before a write returns to the client.

o Write Quorum Size (¢q) - the minimum number of available replicas required

for updating a file.

¢ Maximum Replica Level (m) - the maximum number of replicas. This param-
eter is used in combination with the write quorum size to prevent multiple

file versions.

The analysis will result in a time computation for each operation as a function

of SDAs, ADAs, SNPs, and ANPs. This allows us to directly compare Deceit with

101

102

the earlier file systems described in Chapter 2. However, such a comparison is
simplistic and potentially misleading. We will illustrate this fact by computing
an expected operation time from our model and comparing the results with our

benchmark times.

4.1.1 Performance Comparison

For the performance comparison, assume that there exists n servers and one file f
with exactly r < n replicas. Let S be a file server.

Using the results from Table 3.2 on page 88, it is possible to compute the actual
time required for a typical SNP or SDA by computing the time differences between
operations. We will start by computing the time for a SNP. A NULL operation
requires 2.5 milliseconds, and it consists of a simple exchange of short messages.
Therefore, a SNP for a short message is 2.5/2 = 1.2 milliseconds. A READ operation
(without disk) requires 17.9 milliseconds, and it consists of a short messages and
an 8 Kb message. Therefore, a SNP for an 8 Kb message is 17.9 — 1.2 = 16.7
milliseconds. Interpolating the two SNP times give an approximate formula of
1.2 + 1.9/ milliseconds for a SNP where [is the message length in Kb. When
an SNP consists of a broadcast to multiple destinations, it is longer because ISIS
uses a sequence of messages to individual destinations to emulate a broadcast.
The difference between 2 and 3 servers for an 8 Kb WRITE is 138.7 — 138.3 =
10.4 milliseconds. Subtracting the reply yields 10.4 — 1.2 = 9.2 milliseconds per
additional destination for an 8 Kb message.

Next, we will compute the time required for a SDA. An 8 Kb WRITE operation
without disk requires 18.3 milliseconds, and with disk it requires 129.3 milliseconds.
Therefore, a SDA for an 8 Kb write is 129.3 — 18.3 = 111 milliseconds. A RENAME
operation involves a name service update which has a small synchronous disk write.

Therefore, a SDA for a small write is 53.5 — 9.4 = 44.1 milliseconds. The two SDA

103

times give an approximate formula of 44.1 4 8.4/ milliseconds for a write where [is
the data length.

We can also approximate the time for a read. A synchronous write requires
that data blocks and the i-node block are written. For a small write, there is only
one block of each type, so the time to write an isolated block is 44.1/2 = 22.0
milliseconds (this value is consistent with the 15 msecs seek time for the disk). For
8 Kb of related data blocks, the time is 111 — 22 = 89 msecs. Assuming that
reading data off a disk is as expensive as writing data on a disk, we assert that
a read requires 22 msecs for a single disk block and 89 msecs for 8 Kb of related
blocks. The two times give an approximate formula of 22 + 8.4/ msecs for a read

where [is the data length.
Common Components

Three sub-operations are used repeatedly in Deceit. They are file name service
update (Section 3.2.2), write-token acquisition (Section 3.3.2), and group join (Sec-
tion 3.3.3). We will analyze them first as separate components, and then we will
analyze entire file system operations in Section 4.1.2.

A normal name service update requires a synchronous broadcast with replies
at all servers followed by another asynchronous broadcast. An entry to the name
service log file is written at all sites upon receipt of both broadcasts. Therefore,
a name service update requires 2 SNPs, 1 ANP, 1 SDA, and 1 ADA for a total of
3n — 3 messages. If an operation requires multiple service updates to be performed,
they can be combined into a single update by using a single flush_name call. For
example, a RENAME operations requires two name service updates: the old hard
link must be deleted, and the new hard link must be created. By combining both
updates into a single message and log file update, the two updates are essentially

as expensive as one.

104

Group join occurs whenever a server accesses a file which has no local replica
and has not been accessed for 30 seconds. Let S be a server that needs to join file
group Gy of segment f. To do so, server S sends a join request to the coordinator
for f, and the coordinator forwards this request to the token holder. The token
holder then broadcasts the new group membership to all members of G including
S. Assuming that a join request is forwarded k times, this operation costs k + 2
SNPs for a total of r+ &k + 1 messages. It is very unusual to for k£ to be larger than 1
because the coordinator is a member of Gy and will have very accurate knowledge
about the location of the token holder.

Write-token acquisition occurs whenever a server attempts to write to a file
that was written previously by another server. Assuming stability monitoring, this
requires one broadcast to request the token and one broadcast to pass the token.
The total cost is 2 SNPs for a total of 2r — 2 messages. The write-token request can
be combined with the group join request as shown in Figure 4.1 (as mentioned in
Section 3.3.3). The total cost of joining Gy and acquiring the write token is k + 3
SNPs for a total of 2r + k£ + 2 messages. This is a savings of 1 SNP and r — 1

messages on performing the operations separately.

b oo oot o e e e o o o

All servers send reply to
the new token holder.

Requestis sentto iToken holder sends group
the token holder. * change/token pass to all.

Figure 4.1: Combined Write-token Request and Group Join Request

105

If stability monitoring is not in use, then it is not necessary for all servers to
reply to a token request. In this case, write-token acquisition still requires 2 SNPs
but only for a total of r messages. When combined with the group join, the total

cost is k + 2 SNPs for a total of r + k + 2 messages; a savings of 1 SNP.

4.1.2 Individual Operation Performance

In this section, we analyze the cost of each complete file system operation. Each
operation can involve several stages, where some stages are optional. To clarify
the analysis, the cost of each stage will presented in a table. The best, expected,
and worst case cost for the whole operation will be given with some supplementary
analysis. We will also compute the operation time from the cost model assuming
that there are three servers with a replica at each server. This time will be compared

with the experimental results (Section 3.8).
Read Performance

Table 4.1 shows the costs of each component in a read operation. The experimental

time for each component in milliseconds is also provided.

Table 4.1: Read Operation Component Cost

Operation Component || SNPs | ANPs | SDAs | ADAs | messages time
Client RPC 2 0 0 0 2 2.5-17.9
Group join k+2 0 0 0 r+k+1| 225

Relay to replica 2 0 0 0 2 2.5-17.9
Read from disk 0 0 1 0 0 22-89

In this table, “Client RPC” refers to the NFS RPC between the client and its

preferred server S, which is always necessary. “Group join” refers to .S joining G i

which is necessary if S lacks a replica of f and has not joined G within the last 30

106

seconds. “Relay to replica” refers to forwarding a READ request from S to another
server S’ that has a usable replica. As well as being necessary when S has no local
replica, this component occurs when stability monitoring is in use, S is not the
coordinator for the file, and an update has been sent within the last 10 seconds.
Note that the reply to a forwarded READ request must go through S to reach the
client. “Read from disk” refers to the actual disk transfer which is always necessary.

The worst read performance is achieved when S does not have a replica and
has not accessed the file recently. Under these conditions, the cost is £+ 6 SNPs, 1
SDA, and r + k + 5 messages. The best (and typical) read performance is achieved
when S has a replica, and the file has not been updated recently. This case is
typical because Deceit will create or cache a replica of the file on a server where it is
being accessed, and client read caching tends to eliminate reads immediately after
writes. In this case, the cost is 2 SNPs, 1 SDA, and 2 messages. File migration
increases the probability that S will have a replica, at a cost of increased disk usage
and background network traffic. If stability monitoring is disabled, then S can
always read from its own replica, but one-copy serializability may be violated more
frequently.

Table 3.2 provided a benchmark time of 19.1 milliseconds for a READ when r = 3.
In this benchmark, there was always a local copy of the file, so only 2 SNPs and
1 SDA were used (i.e. the “typical” case). The first SNP is a small data request
and should take 1.2 milliseconds. The second SNP is a large reply and should take
16.7 msecs. Finally, the SDA is a large data read and should take 89 msecs. The
total is 1.2 4+ 16.7 + 89 = 106.9 msecs. Since this number is much larger than 18
msecs, we can deduce the server caching (in the kernel) captured nearly every read
request. Since the benchmark only required a few minutes, and the servers had a
large amount of physical memory, it is reasonable that the server kept the entire

working set of data in memory.

107

Write Performance

We will now consider the performance of the write operation. Table 4.2 shows the
cost of the different operation components in a write operation. The experimental
time in milliseconds for each operation component is provided. Here, we assume
that there are no competing write operations from other clients (Section 3.8.4
demonstrated that such interference is costly). Let S be the server that receives the
write request from a NFS client, and let f be the file that is being written with a

write safety level of s.

Table 4.2: Write Operation Component Cost

Operation Component || SNPs | ANPs | SDAs | ADAs | messages time
Client RPC 2 0 0 0 2 2.5-17.9
Group join || k42 0 0 0 r+k+1| >25
Token acquisition 2 0 0 0 2r — 2 2.5
Write to disk (s > 0) 0 0 1 0 0 44.1-111
Write to disk (s = 0) 0 0 0 1 0 0
(Assuming S has no replica of f)
Update Delivery (s > 0) || 2 0 0 0 o 2.5-17.9
Update Delivery (s = 0) 0 2 0 0 2r 0
(Assuming S has a replica of f and r > 1)
Update Delivery (s > 0) 2 0 0 0 2r—-2 | 2.5-17.9
Update Delivery (s = 0) 0 2 0 0 2r — 2 0

The worst write performance is achieved if S does not have a replica of f, S has

not accessed f in a long time, s > r, and stability monitoring is specified. Under

108

these conditions the total cost is k47 SNPs, 1 SDA, and 4r + k + 4 messages (recall
that group join and token acquisition can be combined.). The worst case cost is
k+6 SNPs, 1 SDA, and 3r + k + 4 messages if stability monitoring is not specified.
The typical performance occurs if S has a replica of f (due to file migration), S
has written to f recently (since files are usually entirely rewritten), and s = r (for
fully synchronous writes). The total cost is 4 SNPs, 1 SDA, and 2r messages. The
best performance occurs if S has the only replica of f, S has written to f recently,
and s = 0. in which case the total cost is 2 SNPs, 1 ADA, and 2 messages. Write
performance can be optimized by setting » = 1, by using file migration, and by
disabling stability monitoring.

Deceit with » = 3 required 162.0 £+ 3.0 milliseconds for a WRITE operation in
the “typical” case. The model predicts a similar time. Of the 4 SNPs, 3 are small
messages requiring 1.2 msecs each, and 1 is a large message requiring 16.7 msecs.
The SDA is a large write and required 111 msecs. Therefore, the model predicts a
total time of (3 x 1.2) 4+ 16.7+ 111 = 131.3 msecs. ISIS uses a sequence of messages
to emulate a broadcast, and each additional message requires 9.2 msecs. Given
that extra cost, the expected time is 131.3 + (2 x 9.2) = 149.7 msecs. We do not
understand where the remaining 162.0 — 149.7 = 12.3 msecs is spent.

Write performance can also be optimized by setting s to 0, but doing so is dan-
gerous since most errors will not be reported to the user. We evaluated Deceit
performance when s = 0 in Table 3.6, Section 3.8.5. The NFS protocol does not al-
low truly asynchronous operation, so setting s = 0 in Deceit does not eliminate the 2
SNPs from the operation cost. Also, in the benchmark Deceit became overwhelmed
with requests, so the server was not able to respond to new requests rapidly. The
result was that a write to three replicas required 46.6 milliseconds (rather than the

18 milliseconds required for pure communication).

109

Create Performance

Table 4.3 shows the cost of different operation components in a create operation.

The experimental time in milliseconds for each operation component is also shown.

Table 4.3: Create Operation Component Cost

Operation Component || SNPs | ANPs | SDAs | ADAs | messages time
Client RPC 2 0 0 0 2 2.5

Name service update 2 1 1 1 In—3 | 51-165.6
Replica creation 2 0 1 0 2r — 2 70.7

“Replica creation” refers to the broadcast required to create r — 1 blank replicas
on servers other than the client’s preferred server. This component does not require
communication if r = 1. The total cost of a create is 6 SNPs (4 if r = 1), 1 ANP,
2 SDAs, 1 ADA, and 2r + 3n messages.

Deceit with three servers required 226.7 £ 7.6 milliseconds for a CREATE opera-
tion, and 226.7 — 51.7 = 175 msecs were spent on disk access. The predicted time
is much lower. The 4 SNPs corresponded to 6 small messages and should require
(6 x 1.2) = 7.2 msecs. One SDA is a small write and should require 44.1 msecs.
The other SDA is a file create and should require 68.2 milliseconds. Therefore, the
expected time for a CREATE on three servers is 7.2 4+ 44.1 + 68.2 = 119.5 msecs.

The discrepancy between 226.7 and 119.5 was due to several reasons. First, the
SDA required three synchronous disk accesses instead of one due to a performance
bug in the name service. Second, the name server broadcast was emulated by using
three messages to individual destinations instead of a real broadcast, although one
of those messages required trivial delivery. With these two considerations, the
expected time rises to (6 x 2 x 1.2) + (3 x 44.1) + 68.2 = 214.9 msecs. This value

is close to 226.7, and the difference can be justified by CPU usage.

110

Delete Performance

Deceit implements the delete operation by deleting the directory entry in the
name service. A replica at server S’ is deleted when S’ receives the deletion of the
name service entry for the last hard link to f. Table 4.4 shows the cost of each
operation component. The experimental time in milliseconds for each component

is also shown.

Table 4.4: Delete Operation Component Cost

Operation Component | SNPs | ANPs | SDAs | ADAs | messages time
Client RPC 2 0 0 0 2 2.5
Name service update 2 1 1 1 3n—3 | 51-165.6
Replica deletion 0 0 1 0 2r — 2 75.4

The total cost is 4 SNPs, 1 ANP, 2 SDAs, 1 ADA, and 3n — 1 messages. It is
very similar to the create operation.

Deceit with three servers required 532.6 + 17.7 msecs for a REMOVE operation,
and 532.6 -79.2 = 453.4 msecs were spent on disk access. The 4 SNPs corresponded
to 4 small messages and should require 4 x 1.2 = 4.8 msecs. One SDA is a small
write and should require 44.1 msecs. The other SDA is a file remove and should
require 75.4 milliseconds. Therefore, the expected time for a REMOVE on three servers
is 4.8 +44.1 4 75.4 = 124.3 msecs. This value is low for the same reasons that the
CREATE operation prediction was low, but 532.6 is still very high even with this
consideration. Clearly, a REMOVE operation must include a performance bug that

has not been detected yet.

111

Creatdir and Deletedir Performance

These operations are accomplished with a client RPC and a single name service
update. The cost is 4 SNPs, 1 ANP, 1 SDA, 1 ADA, and 3n — 1 messages.

Deceit with three servers required 278.0 & 17.4 msecs for a MKDIR and 218.4
+ 10.8 msecs for a RMDIR. MKDIR was slower than RMDIR because of the associated
memory allocation and sanity checking. Also, the RMDIR code was slightly better
at managing updates to the name service.

The operation time predicted by the model for RMDIR was smaller than the
observed time. The 4 SNPs corresponded to 4 small messages and should require
4x1.2 = 4.8 msecs. The SDA is a small write and should take 44.1 msecs. Therefore,
the expected time for a RMDIR on three servers is 4.8 + 44.1 = 48.9 msecs. The
discrepancy between 218.4 and 48.8 was the same as the discrepancy in the CREATE
operation. Using the same correction, the expected time rises to (4 x 2 x 1.2) + (3 x
44.1) = 146.7. We must conclude that the RMDIR operation must suffer from the
same performance bug that REMOVE does since there is still a significant difference
between 146.7 and 218.4. This conclusion is sensible since both operations use

nearly the same code.
Readdir and Open Performance

It is difficult to analyze the open operation on Deceit since NFS does not directly
implement open. In the SunOS implementation of open, an open is usually trans-
lated to a NF'S LOOKUP RPC, and we will assume this case. A LOOKUP and READDIR
RPC require a name service lookup and no interserver communication. The name
service fully replicates all data and keeps it in memory. The cost for either operation
i1s 2 SNPs and 2 messages.

The LOOKUP operation required 4.3 £ 0.3 msecs in Deceit. Both SNPs in a

LOOKUP are short messages and should require 1.2 msecs each. Therefore, the model

112

predicts the time for LOOKUP as (2 x 1.2) = 2.4 msecs. The remaining 4.3—2.4 = 1.9
msecs can be explained as the time required for the server to search the name service
data structure. The READDIR operations required 12.3 + 1.3 msecs in Deceit. The
first SNP was a short request messages. The second SNP was a reply containing the
directory contents, and its length was variable. The model predicts the minimum
total as 1.2 + 1.2 = 2.4 msecs and the maximum total as 1.2 + 16.7 = 18.9 msecs.

The actual time falls within this range and indicates a reply size of 4.2 Kb.

4.1.3 Availability Comparison

Deceit has maximum read availability. This availability is summarized in Table 4.5,
which is a duplicate of Table 1.2 on page 9. The biggest jump in availability is
achieved by increasing n from 1 to 2. The amount of time that a server is not
available is reduced by a factor of 21 and reliability is increased by a factor of 11.
As n tends to infinity, availability reaches an asymptote due to network failures:
distant servers produce little increase in availability since they must communicate
to the client through an unreliable network.

Write availability is governed by the write quorum size (¢) and the minimum
number of replicas (). Computed availability and reliability are shown in Tables 4.6
and 4.7 for different values of » and ¢. The analysis methods are described in [BP75].
The failure times from Table 1.1 on page 3 are used. The value corresponding to
q > 5 (providing data consistency) are shown in boldface.

As expected, ¢ can have a profound impact on availability and reliability. Using
q = 2 instead of ¢ = 1 increases the time that the server is not available by a factor
of 23 to 54. Using ¢ = 2 also decreases reliability by a factor of 18 to 24. In order
to prevent multiple file versions, it is necessary that ¢ > 5. For r > 2, ¢ >
increases the time that the server is not available by a factor of 54 to 68. Reliability

is decreased by a factor of 35 to 51. On the other hand, using ¢ > 5 forr >3is

113

Table 4.5: Deceit Read Availability

Reliability

r || Availability
1 95.42%
2 99.786%
3 99.986%
4| 99.9956%
5[99.9960%
61 99.9960%
71 99.9960%
8| 99.9960%

393.5 hours (16 days)
4,335 hours (6 months)
41,508 hours (4.7 years)

101,895 hours (11.6 years)
111,873 hours (12.8 years)
112,505 hours (12.8 years)
112,540 hours (12.8 years)

()

112,542 hours (12.8 years

more reliable that » = 1.

4.1.4 Safety Comparison

The safety properties exhibited by a Deceit file are dependent on the file parameter

settings. They are summarized in the following list:

o client cache consistency = timeout

Client cache data is maintained with a 30 second timeout according to the

NF'S protocol.

o if ¢ > 77, then data consistency = eventual

else data consistency = non-directory

If the quorum level is greater then half of the maximum number of replicas
then one file version will always dominate after a partition or crash recovers.

Otherwise, the user is responsible for reconciling the contents of normal files.

The name service automatically reconciles directories.

114

Table 4.6: Deceit Write Availability (Percentage)

r g=1 qg=2 qg=3 g=4 |¢q=5|q=6
1] 95.42 - - - - -
2| 99.786 | 90.97 - - - -
31 99.986 | 99.299 | 86.72 - - -
411 99.9956 | 99.872 | 98.641 | 82.68 - -
5 11 99.9960 | 99.907 | 99.732 | 97.83 | 78.82 -
6 || 99.9960 | 99.909 | 99.815 | 99.562 | 96.88 | 75.15
Table 4.7: Deceit Write Reliability (Hours)
rll g=1 { ¢g=2|q=3|q=41q¢q=5|q¢=6
1| 393.5 - - - - -
2| 4335 {1915 - i]]
3 41,508 | 1,259 | 126.6 - - -
4| 101,895 | 4,657 | 654.5 | 9451 | - i
5| 111,873 | 6,207 | 2,257 | 414.5 | 75.41 -
6 || 112,505 | 6,371 | 3,153 | 1,395 | 291.5 | 62.73

o if stability monitoring is used, then one-copy serializability = true
else one-copy serializability = false
Stability monitoring insures that only one replica is visible while there are
active updates.

¢ update stability = false

If all replica servers fail, and an obsolete replica recovers, then updates will

disappear. However, if the write quorum is equal to the maximum number of

115

replicas, then it is very unlikely that any replica will become obsolete.

e atomicity = true
Deceit is careful to execute operations in a resilient way. Recall that the name

service logs updates atomically.

4.2 Formal Model

The remainder of the chapter consists of a discussion about file system safety and
performance. Our goal is to understand the efficiency of Deceit and the utility of
flexible semantics. This discussion is motivated by the survey in Chapter 2 and by
experience and experimentation with Deceit (Chapter 3). As part of this effort, we
try to uncover unspecified safety properties about file systems. File system designers
usually have a very intuitive understanding about the properties of a “correct”
file system and frequently make choices concerning application compatibility, client
interface simplicity, and file system performance. In this chapter, we present several
properties that by observation seem to be paramount to file system designers.

Unfortunately, the file system literature contains very little material on the
formal properties of each file system and its environment. This fact is particularly
true for large, complex file systems, and it reflects the sharp split between theory
and practice in Compute Science. Therefore, it is difficult to verify these results
without extensive (and occasionally heated) discussion with the primary authors of
each file system.

Assume that there is an oracular service called the failure detector that notifies
all machines of every process crash and recovery[SS83,Sch84]. Notifications can be
delayed, but all machines are eventually notified, if they do not fail first. Failure
1s immediately detected during synchronous communication: if A sends a message
to B and then waits for a reply, and B had previously crashed, then the reply will

return immediately with the information that B has failed.

116

Communication is reliable and FIFO per channel. Partitions are not allowed,
however, virtual partitions| ASC85] are possible, as discussed in Section 3.1.1. In a
virtual partition, two disjoint sets of machines are alternately alive; there is no time
in which the two sets are both alive and can communicate. For example, server A
runs for a few minutes after server B has crashed, then A crashes, then B recovers
and runs while A is down. A virtual partition is similar to a real partition since two
hosts can not communicate, yet they must independently preserve file system se-
mantics. A virtual partition recovers when both servers are running simultaneously
and can effectively communicate with each other.

Some of the safety properties in this chapter use the term available. For example,
“a client can read a file if any replica is available.” Our definition of available is
that A is available to B if A can perform synchronous communication with B (i.e.
request and reply). For example, if client C' wishes to send a file update u to server
S, then § is available to C' if S can receive u, process u, and then reply to C. C
learns that S was available when C receives a reply from S without being notified
that S had failed. According to this definition, it is not possible to know which
machines are available for an operation until after it has completed.

Some of the results in this chapter are lower bounds of operation cost. Since the
focus of this thesis is replication and fault tolerance, we will restrict our attention to
file systems that maintain at least three replicas of every file with each replica on a
different server (it will also be shown that maintaining two replicas is disportionately
faster than maintaining three replicas). The following 2 properties specifies what

we consider to be minimally correct behavior for such a system.

1. If all replicas are identical and available to a client C', then any updates issued

by C will be applied to all replicas.

2. A final reply must be sent to the client after an update has been written to

the disk for every available replica (i.e. the file system is fully synchronous).

117

Property 2 implies that an update requires at least 2 SNPs and 1 SDA: the update

request, the disk write, and the update reply.

4.3 Maximum Availability

Maximum availability is provided by Locus, Coda, Ficus, and Deceit (with certain

file parameter settings). Table 4.8 shows the safety properties for these four systems.

Table 4.8: Maximum Availability Safety Properties

Locus Coda Ficus Deceit
client cache consistency || true on close timeout timeout
data consistency || user | non-directory | non-directory | non-directory
one-copy serializability || true true true true
update stability || false false false false

The important observation is that none of the systems provide data consistency
or update stability. In fact, it can be shown that these properties cannot be provided
when maximum availability is provided.

We first show that maximum availability precludes update stability. Let two
servers 51 and Sy each have a replica of a file f. Consider the following sequence

of events:

1. S5 crashes.

2. A client C issues a write for file f. Since the servers provide maximum write

availability, the update will be applied to the replica at Sj.
3. S; crashes, and then S5 recovers.

4. C issues a read for f. Due to maximum read availability, S; will respond to

the request.

118

The result of the read will correspond to the contents of f before the write was
applied. In effect, the write was lost, and update stability is violated. S; was never
able to communicate with S since there was not a time when both were up. Note
that one-copy serializability implies update stability, and so maximum availability
also precludes one-copy serializability.

Since update stability (or 1CS) can be more important than maximum availabil-
ity for some applications, it is useful to provide this kind of flexibility. For example,
if servers always recover using the last process to fail[Ske85], then update stability
can be provided. Another solution would be to require that a majority of the servers

respond to every operation.

4.3.1 Data Consistency

None of the maximum availability file systems provide data consistency for reasons
more subtle than those for update stability. Consider the following protocols that

do supply data consistency.

Protocol 1 (First Data Consistency Protocol) Let a file f be replicated at
servers S1, S2, ... Sp. All available servers apply all updates, and periodic state ez-
change is used to insure that all updates are applied to all replicas eventually despite
failure. Version vectors are used to check for inconsistency, and if inconsistency is

detected, then one version is chosen to replace all others.

This protocol has a serious problem. Assume that f has replicas at S; and
Sa, and a partition (either real or virtual) separates S; and S2. Let update u; be
issued to S yielding file f*1, and update uy be issued to Sy yielding file f*2. This
scenarios is illustrated in Figure 4.2. When the partition disappears, is it correct to
apply up to f*2 or to apply uz to f¥1?7 Which result should be chosen as the final
one? Update u; was produced using f, not f*2, and it may not be correct to apply

it to f*2. This condition can be expressed more formally as a safety property.

119

Client Server1 Server2 Client
*
&
| S)
u u
£l 52
S
29 29

Figure 4.2: Data Consistency Scenario

Definition: Let < be a partial order on some finite set of elements. y is an
immediate predecessor of z iff y < & and there does not exist z such that y < z < z.
The relation < is a tree order iff every element except L has a unique immediate
predecessor. A path is a list of elements zg, z1, ..., 2, such that L is the immediate
predecessor of z¢, and x; is the immediate predecessor of x; + 1. It can be shown
that for every element = in a tree order, there is a unique path starting at L and
ending in 2. Also, every y such that y < 2 is on the path ending in z.

Definition: Let f be a replicated file in a file system. The file system satisfies
update monotonicily if a tree order can be formed on the set of write operations to
each file. This order must respect the order in which clients issue writes. Let “<”
be this order relation. The result of each read must be consistent with some path
in the tree of writes.

The definition of update monotonicity is motivated by the need for a file system
to be as close to one-copy serializable as possible while still having maximum avail-
ability. One-copy serializability is considered to be an important property in most
data systems, and it can not be ignored. Update monotonicity is a weakening of
1CS that can be provided simultaneously with maximum availability. 1CS implies

update monotonicity because 1CS forces a linear order which is trivially a tree or-

120

der. The intuition is that update monotonicity allows a file to diverge into multiple
versions, but each version respects 1CS. Since the file system can allow replicas to
diverge is a controlled way, updates can still continue during a partition.
Returning to the scenario from Figure 4.2, applying uw; to f*2 or applying us
to f% is a violation of update monotonicity. Assume that clients read f*! and f*2
before recovery from the partition. If u; < ug, then the act of reading f*2? violates
update monotonicity. Similarly, if ug < uj, then the act of reading f*! violates
update monotonicity. Finally, the act of applying either update on top of the other
forces one of the orders. To summarize, the first data consistency protocol violates
update monotonicity regardless of the strategy for converging on a single version.

Here is another protocol that provides data consistency.

Protocol 2 (Second Data Consistency Protocol) Let a file f be replicated at
servers Sy, Sa, ... Sp. All updates are applied to all available replicas, but updates
are not stored and applied later to recovering replicas. If a file version conflict arises
during recovery from a crash or partition, then one particular version is chosen and

all other versions are discarded.

The problem with this protocol is more obvious. For the explanation the fol-
lowing definition is necessary:

Definition: A file system satisfies update persistence if an update that is ac-
cepted by at least one server is eventually visible to all clients.

Update persistence captures a fundamental property of file systems: data is not
discarded without authorization from a client. Every file system mentioned in this
paper satisfies update persistence. The file system community seems to have come
to the consensus that update persistence is more valuable that data consistency. The
second data consistency protocol violates update persistence by discarding versions,

and the updates that produced them, before every client can access them.

121

Finally, we can show that the combination of maximum availability, update
monotonicity, and update persistence preclude data consistency. Assume that f
has replicas at S7 and S2, and a partition separates S; and S;. Let update u;
be issued to S and update uy be issued to S3. Due to maximum availability, uj
will be applied at S; yielding file f*1, and uy will be applied at S, yielding file
f*¥2. This scenario is illustrated in Figure 4.2. From the above argument, u; can
not be applied to f*2, and us can not be applied to f*' without violating update
monotonicity. Further, both f*! and f*2 must be eventually available to the clients
to satisfy update persistence. Therefore, data consistency is violated.

Several methods are available for providing data consistency at some cost in
availability. Deceit can be made to provide data consistency by setting the write

quorum size to be more than half of the maximum replica level.

4.3.2 Safety Gaps Revisited

In the context of the previous section, the safety property gaps in Table 4.8 are
reasonable. However, the values for data consistency are not false, but instead are
user and non-directory. First, consider the value of user. Users reconcile file versions
by applying updates to some versions and deleting others until a single version is
left. Since the updates are freshly produced and applied to specific versions, update
monotonicity is not violated by the process of manual reconciliation. Additionally,
the user specifically requests the version deletions, after presumably examining all
versions, and so update persistence is not violated. By forcing the user to explicitly
request unsafe operations, the core safety properties are satisfied.

Using automatic directory reconciliation (ADR) is a more questionable design
choice. ADR is used because concurrent updates to a directory are far more common
than concurrent updates to a file, and so most inconsistency is expected to occur

in directories. Also the semantics of directories are well understood, making an

122

ADR protocol feasible. Unfortunately, some applications depend on strict one-copy
serializability in directories, and it is inevitable that an ADR implementation is
“not quite right.” An example follows.

Consider a program that uses two files to store data. Assume that this program
must satisfy the safety condition that files a and b are mutually exclusive; if one
exists, then the other must not exist. In order to insure this, the program executes

the following algorithm whenever it wants to create a or b:

1. Create file x. If this fails, try again.

[A]

. If file a or b already exist, then abort.
3. Create a or b.
4. Read the directory to verify the creation of a or b.

5. Delete x.

File x is used to provide mutual exclusion in the critical section. In UNIX file
systems, file creation can be used as a mutex since a file can not be created on top
of another file of the same name.

Now consider a scenario where client ¢; tries to create a, and ¢y tries to create b,
but they are in different network partitions. Assuming maximum availability, both
clients will be able to create x and hence both enter the critical section. Afterwords,
a will be created in one partition, and b will be created in the other.

The Coda, Ficus, and Deceit ADR protocols will resolve the above situation
similarly. The creations and deletions of x do not conflict since they referred to two
different instances of x. The creations of a and b do not conflict since the files have

different names. Hence, the reconciled directory will contain a and b.

123

4.4 Performance Bounds

In this section, we analyze the cost of read and write operations in order to un-

derstand the efficiency of these operations in Deceit.

4.4.1 Write Lower Bounds

Consider the comparison among several file servers in Table 4.9.

Table 4.9: Message Cost Comparison

File System || Worst Case Write SNPs
Locus 4
Ficus > 4 (amortized from close)
Deceit > 4
Coda 2 (amortized from close)

While this is a small data sample, is does appear that Coda has an unusually
efficient write operation. Coda pays for this performance with a loss of update
monotonicity. This trade-off will be demonstrated below.

First, consider the case of a file server S that is not permitted to communicate
with other servers, and let S receive update u. Since there is no communication,
S can not determine a global ordering for u or the status of other replicas. In
Section 4.2 we argued that S must apply u under these conditions, otherwise S
would be degenerate. If there is a collection of non-communicating servers, then
each must independently apply its updates in the order that they are received.

Now, we will show that update monotonicity implies that more than 2 SNPs are
necessary in the worst case. Assume that all writes use only 2 SNPs in all cases.
Also assume that all servers are initially up, and all replicas are identical. By the

assumptions in Section 4.2, an update must be delivered to all servers. The update

124

delivery and reply consume both SNPs for each update, and server will not be able

to communicate among themselves. Consider the following scenario:

1. Client C, issues update uy, and client C issues update us for file f.

2. Server S7 receives uj, and server Sy receives uz. S1 and S must apply these

updates by the above argument.

3. Server Sp receives ug, and server Sy receives uj. Now 51 and Sy have applied

u1 and us in different orders.
4. Client Cy issues update usg, and client Cy issues update uy.
5. Server Si receives us3, and server Sy receives u4.

6. All servers crash and recover. Updates us and us were not delivered to any

other server.

By update persistence, ug and u4 must become visible to all clients. Exposing
uz implies that u; < wuy. Exposing u4 implies that up < uj. Therefore, update
monotonicity is violated. Note that it is only necessary for a write to require more
than 2 SNPs in the worst case.

The Coda file system does indeed violate update monotonicity: it is possible to
apply the same set of updates in a different order at different servers. Coda detects
this condition, and handles it with the same mechanism that it uses for normal
version splitting. A result is that Coda can execute a write with 2 SNPs in all
cases. On the other handle, the user will be asked to resolve inconsistency more
frequently.

It is possible to optimize a file system so that only 2 SNPs are necessary in most
cases. Bursts of operations are typical, so we would like to optimize for bursts from
a single client. This type of efliciency is expressed in the following definition:

Definition: An update stream is a sequences of file updates from a single client

for a single file that does not contend with concurrent updates from other clients

125

for the same file. A file system is stream efficient if all but the first update in an
update stream require only 2 SNPs.

Given this definition, we can derive the following conclusion: if a stream efficient
file system uses 3 SNPs in the worst case for a write operation, then O(r?) messages
are required. To see this fact, consider the following scenario: client C' has been
streaming updates to a file system for a long time. At some point C' ceases updating,
and another client C' issues an update u. By the definition of stream efliciency,
servers must apply updates from C and reply to C immediately after receiving
an update. Since message delivery can be delayed, servers can become arbitrarily
inconsistent during a stream. Consider a server S that has received update u. Before
S can apply u, S must determine a consistent order for u relative to updates from
C. The constraint is that update u must be after all of the updates that have been
completed at any server, since updates can not be retroactively removed. Therefore,
S needs knowledge from all servers before S can apply u. This knowledge exchange
requires 1 SNP and r? — 2 messages. If the client request and reply is added, then
the total cost is 3 SNPs and O(r?) messages.

If it possible to reduce the number of messages by allowing 4 SNPs in the worst
case. The knowledge exchange can be accomplished by sending all information to
a single server, then broadcasting that information to all servers. In this case, 2
SNPs and 2r — 2 messages are used for this exchange. The total cost is 4 SNPs and
O(r) messages.

In many file systems, including Deceit, the client can communicate with only
one server. This restriction increases the cost of a write by 2 SNPs because the
primary server must disperse the request and collect the replies on behalf of the
client. Figure 4.3 illustrates the optimal communication pattern for a worst case
write which is stream efficient, satisfies update monotonicity, and is sent to only

one server. It can be shown by using a simple knowledge based argument that

126

Figure 4.3 is minimal. A total 5 SNPs and O(r?) messages, or 6 SNPs and O(r)

messages are required.

Client Server Server Server Server

—

/

/
5 SNPs

Client Server Server Server Server

\

\>
é/>

6 SNPs

—

Figure 4.3: Optimal Write Protocols

In the special case of only two replicas, it is possible to use fewer SNPs because
knowledge does not have to travel as far. Let C send u to Sy, and let Sy and S
be the servers that store a replica of the file. After S; forwards u to S2, S2 can
independently determine the global order for u. In this way, exactly 4 SNPs and 4

messages are used.

127

4.4.2 Write Upper Bounds

Section 4.4.1 provides lower bounds for write cost. This section provides comple-
mentary upper bounds. To start, Protocol 3 demonstrates that it is sufficient to

use 3 SNPs and 2r messages for a write in all cases.

Protocol 3 . Let client C issue update u.

1. C sends u to a previously designated server S.
2. S broadcasts u to all servers. S provides a global ordering an all updates.
3. All servers apply u when it is received from S.

4. All servers reply to C after u has been applied.

To summarize, Protocol 3 showed that 3 SNPs are sufficient in all cases, but
Section 4.4.1 showed that 2 SNPs are not sufficient for the worst case. There remains
a range of protocols that use 2 SNPs for some operations and 3 SNPs for others.
Protocol 6 is an example of such a protocol, and it is more efficient than Protocol 3.
Protocol 6 is difficult to describe, so Protocols 4 and 5 are given as intermediate
steps. In the process of developing Protocol 6, we prove that it is correct (a fact
that may not be obvious at first glance).

Protocol 4 is the first step in developing Protocol 6. It is similar to an ABCAST
developed by Dale Skeen[BJ87b]. To understand Protocol 4, the following definition
is necessary:

Definition: Let client C, broadcast update u, and client C,, broadcast v. These
updates are concurrent if u is received before v at some servers, and u is received
after v at others. We will write concurrent updates v and v as u||v. If v and v are
not concurrent, then there is a well defined order between them: the reception order

at all servers. If u was received before v at all servers, then we will write v ~» v.

Protocol 4 Let a client C generate an update u. Consider the following protocol:

128

1. C broadcasts u to all servers (FIFO ordering).

2. Immediately after receiving u, each server broadcasts u again to all servers (a
descriptor of u can be used instead of u itself).

3. Each server waits for all secondary broadcasts of u.

4. Fach server applies u in a consistent order.

5. FEach server replies to C'.
The global order in step 4 remains to be described. This ordering is as follows:

1. If u~> v, then u is applied before v.
2. If ul||v, then any deterministic ordering between w and v will be correct. For

example, the client addresses can be compared.
Our next Lemma shows that rule 2 in step 4 produces a consistent order.

Lemma 1 In Protocol 4, if server S has progressed to step 4, then S will know

about all updates that are concurrent with u.

Proof: Let v be an update, and ulfv. By the definition of concurrency, v will
be received from the client at some server S’ before u. Step 2 will be executed at
S’ for v before it is executed for u. Since message delivery preserves sender order,
S will receive v from S’ before S receives u from S’. Since S will wait in step 3 for
all secondary broadcasts of u, .S will receive v before progressing to step 4. O

Protocol 4 uses 3 SNPs and r?42r messages, so it is less efficient than Protocol 3,

but the flexibility in the second ordering rule will be very useful for Protocol 6.

Protocol 5 We now present a modification of Protocol j that reduces contention.

A local variable last_client is initialized to null.

1. C broadcasts u to all servers.
2. At each server, if last_client equals C, then mark u with fast_flag; else

set last_client to null.

FEach server broadcasts u again.
Each server waits for all secondary broadcasts of u.

Each server applies u in a consistent order.

S & s

At each server, if there is no pending update from a client other than C, then
last_client is set to C.

7. Fach server replies to C.
The ordering is step 5 is defined as follows:

1. If u~» v, then u is before v.

2. If ul|lv, u was marked with fast_flag by any server, and v was not marked,
then u is before v.

3. If the previous two rules do not apply, than any deterministic ordering can be

used.
Our next Lemma shows that rule 2 in step 5 produces a consistent order.

Lemma 2 In Protocol 5, let u||v be concurrent updates, and let u be marked with
fast_flag at S'. A server S will know that w was marked with fast_flag before S

reaches step § for v.

Proof: Since ul||v are concurrent, they must be from different clients. First,
assume that v was received before u at S’. In step 2, last_client would be set to
null when v was received at S’. Since the condition in step 6 would not be satisfied
until after v was applied, last_client would not change until after u was received
at S'. It would be impossible for u to be marked with fast_flag. Therefore, v was
received after u at S’

Message delivery preserves sender order. Therefore, v will be received after u at
S from S’ in step 4. Since u was marked with fast_flag at S’, then S will know it
before S can finish step 4 for v. O

This protocol has another important property:

130

Lemma 3 In Protocol 5, if two updates are concurrent, then at most one update

can be marked with fast_flag.

Proof: (by contradiction) Let us and vy be concurrent updates. Assume that
both updates were marked with fast_flag at servers S, and S, respectively in
step 2. There must have been a previous update u; such that u; was issued from
the same client as ug, and «; caused fast_flag to be set in step 6. A similar relation
holds between v, and a previous update v;. Assume without loss of generality that
uy was applied before vy.

Case 1: (ujl|v; or ugllv;) Due to Lemma 1, S, knew about u; or up when S,
applied vi. The condition in step 6 could not satisfied for S,. This fact contradicts
the assumption that last_client was not null when S, received vs. Therefore,
the complement of the case assumption must be true. This value is —({u1||v1) V
(uz]|v1)) = (v1 ~ uy Vug ~ v1) A (v1 ~ ug V ug ~ v1).

Case 2: (v; ~ uj) This contradicts the assumption that u; was applied before
vi.

Case 3: (uz ~ v1) Since v; and vy were issued from the same client, vy ~ vs.
By transitivity, us ~ v2 which contradicts the assumption that us||ve.

Case 4: (u; ~ v; and v; ~ uy) In this case, v; would have been received
at S, after u; but before ua. If v; was received at S, after u; was applied, then
last_client would be set to null in step 2 for vy. If v; was received at S, before
uy was applied, then the condition in step 6 could not satisfied for S,. These
implications contradict the assumption that last_client was not null when S,
received uy. O

Protocol 5 can be optimized using Lemma 3. When a server marks an update
with fast_flag, then that update can be executed immediately since it is guaran-
teed to be before any other concurrent updates. This optimization is expressed in

Protocol 6.

131

Protocol 6 A local variable last_client is initialized to null.

. C broadcasts u to all servers.

~

2. At each server, if last_client is equal to C, then execute the following:

(a) If there are no other pending updates, then apply u immediately, and

reply to C'.
(b) Mark u with fast _flag.

Else, set 1last_client to null.
FEach server broadcasts u again.

Fach server waits for all secondary broadcasts of u.

SO A

At each server, if u was not applied in step 2a, then apply u in a consistent
order. The ordering is the same as in Protocol 5.

7. At each server, if there is no pending update from a client other than C, then
last_client is set to C.

8. At each server, reply to C if this was not done in step 2a.

This protocol is essentially identical to Protocol 5, except for the shortcut in
step 2a. This shortcut allows most of the work to be accomplished asynchronously.
The broadcast in step 4 can be delayed without blocking the client until the condi-
tion in step 2a is violated. At that point descriptors for all of the previous updates
are sent with the next broadcast. Protocol 6 is stream efficient because a stream
of updates from client C' will cause last_client to be set to C for the duration of
the stream. The shortcut in step 2a will be used for all updates but the first in a
stream.

It is possible to reduce the total number of messages in Protocol 6 by adding 1
SNP. The change is that a designated server collects and distributes the secondary

broadcasts in step 4. Thus, 1 SNP and n? messages are traded for 2 SNPs and

132

2r — 2 messages. A total of 4 SNPs and 4r — 2 messages are necessary in the worst
case.

Deceit uses 4 SNPs and 4r — 2 messages to acquire a write-token and broadcast
an update from a server. We demonstrated in Section 4.4.1 that this is the optimal
cost. However, Deceit does not use Protocol 6. The reason is that Protocol 6 is too
complex. A token protocol is easier to understand and debug. It serves to prove a
point, but it is impractical for implementation.

Since Deceit does not use Protocol 6, it is reasonable to suspect that there is a
cost in performance. This cost appears as a race condition during token passing in
Deceit. If server Sy is passing the write-token to server Sy, and server S3 requests
the token at the same time, it is possible for S3 to “miss” the token at both servers.
The S3’s request could be received at Sy after it has released the token, and the
request could be received at S2 before it has acquired the token. Afterwords, S3
must try again with a new token request. Therefore, the worst case cost in Deceit

is larger than 4 SNPs, but this case is very rare.

4.4.3 Total Write Cost in Deceit

Deceit takes 7 SNPs in the worst case write operation: 2 SNPs for the NFS RPC,
3 SNPs for write-token acquisition/file group join (Section 3.3.2), and 2 SNPs to
synchronously broadcast the update. From the result in Section 4.4.1, it would
seem that only 6 SNPs are necessary. However, we will argue that the extra SNP
is required.

1 Theoretically, it is not necessary to

The extra SNP is in the file group join
join the file group in order to accomplish a write operation. The server could
simply broadcast the update to all servers. However, a server must know the group

membership to be able to broadcast a write to only the group members. In ISIS,

!This is the difference between the cost of a group join with token request and a plain token
request.

133

there is no reliable way to determine the group membership without actually being

a member of the group. Therefore, the group join is necessary in Deceit.

4.5 Design Trade-offs

There are a variety of conclusions that can be drawn from the results in this chapter.
These conclusions take the form of design trade-offs. In this section, we discuss
the trade-offs associated with file availability, stream efficiency, and special disk

controller hardware.
File Availability

File availability is a clear design trade-off. It was illustrated in Table 4.6 on page 114
that there is more than an order a magnitude loss of availability by requiring a quo-
rum of two servers instead of one. In other words, it is a very big step from maximum
availability to the next level. If availability or reliability are very important to an
application, then it is necessary to provide maximum availability, or to have a large
number of replicas (i.e. at least 4).

Unfortunately, maximum availability conflicts with important safety properties.
For example, maximum availability prevents update stability. Update stability
captures the idea that the file system does not forget updates. Maximum availability
also prevents one-copy serializability (1CS). 1CS captures the idea that replication
is hidden from the client. Finally, maximum availability prevents prevents data
consistency. Data consistency captures the idea that all replicas converge to a
single value.

Automatic directory reconciliation (ADR) is an example of an attempt to pro-
vide data consistency with maximum availability. Unfortunately, ADR protocols
tend to underestimate the semantic requirements on directories. All of the existing

ADR implementations reconstruct directories by simply merging the list of direc-

134

tory updates. Only obvious conflicts, such as two files with the same name, are
brought to the attention of the user. Some applications use directories as a form a

structured file, and they are easily disrupted by ADR protocols.
Stream Efficiency

Another design trade-off is stream efficiency. A stream efficient file system has
poorer worst-case performance, but better typical-case performance, than a general
file system. In the worst case, an extra SNP or two are required. This cost intuitively
corresponds to setting up the servers for a stream from a client. It is similar to
passing a token in a token based protocol. Once the token is passed, a client has a
fast, exclusive channel for broadcasting updates. In a general file system, there is
no cost associated with setting up a fast channel.

Protocol 6 is an example of a stream eflicient protocol. It is similar to a token-
based protocol, except the knowledge of the token location is distributed over all
of the servers. In effect, client C' gets the “token” when any server sets the value
of its variable last_client to the address of C'. The protocol insures that at
most one client will have the token at any time. By distributing the token location
knowledge, token acquisition can be overlapped with update propagation. Also, the
problem of starvation due to token contention is eliminated. If there are competing
updates, then no client gets the token, and all operations require more than 2 SNPs.
Unfortunately, Protocol 6 is difficult to implement, particularly in an environment

where crashes are common. Therefore, it is inappropriate for most applications.
Disk Controller Hardware

There is a design trade-off in the use of special disk controller hardware. The prob-
lems of consistency and update propagation vanish if multi-ported disk controllers
are used. If all server hosts can communicate with all disks, and this communication

channel can not be broken, then replication becomes almost trivial. A single server

135

can accomplish any operation by directly accessing all of the disks. The software is
vastly simplified, and data consistency is easy. The disadvantages of this approach
are that unusual hardware is required, and replication is limited by physical con-
straints. All replicas will need to be within a short physical distance from each

other. Therefore, the file system will still be vulnerable to site disasters.

Chapter 5

Conclusion

This thesis had three main goals. The first goal was to characterize the semantics
and performance of a wide range of file systems. We accomplished this goal with
the file system survey in Chapter 2. A simplified model was used so that the
selected file systems could be compared on the basis of safety and a simple model
of performance.

The second goal was to build a file system that allowed many possible combi-
nations of safety and performance. The product of this goal was the Deceit File
System described in Chapter 3. This file system was used to explore exotic combi-
nations of safety and performance thereby broadening the survey from Chapter 2.
The flexible design allowed us to isolate particular safety properties for a detailed
analysis. A second reason for building a flexible file system was that we believed
such a file system could produce general performance benefits by allowing the user
to tune the file system separately for each file.

The third goal was to explore the relationship between semantics and perfor-
mance. The bulk of our work is found in Chapter 4. The survey from Chapter 2
provided examples of performance trade-offs from which general conclusions were

suggested. Also, the development of Deceit led to an intuitive understanding of

136

137

these trade-offs. The implicit assumption was that if it seemed impossible to meet
a particular performance level, then some safety property could be shown to be the
culprit. In the process of determining property relationships, several new properties

were defined.

5.1 File System Properties
5.1.1 Safety Properties

There are two categories of file system properties that were presented in this thesis:

traditional properties and new properties. The traditional properties are as follows:
1. Client cache consistency indicates that the file data caches on the clients are
changed synchronously whenever the underlying file data is changed.

2. Data consistency indicates that all file replicas eventually converge on a single

value.

3. One-copy serializability indicates that file system behavior is insulated from
any underlying replication.

4. Update stability indicates that completed operations are stable with respect

to failure.

5. Atomicity indicates that failure will not cause the file system to enter an

inconsistent state.

6. Mazimum avatlability indicates that a read or write to a file will always

succeed if any replica of the file is available.
The new properties are as follows:

1. Update monotonicity indicates that files are allowed to diverge into separate

versions, but this divergence is well behaved.

138

2. Update persistence indicates that all file data must become available to all

clients eventually.

3. Stream efficient indicates that the file system is fully optimized for long

streams of updates for a particular file from a single source.

Most surveyed file systems that supported replication also provided maximum
availability!. We found that maximum availability prevented several other desirable
safety properties. First, we determined that maximum availability precluded update
stability. Put simply, a file system that provides maximum availability may be
forced to switch to a server with stale data and thereby temporarily lose updates.
It followed that one-copy serializability (1CS) was also incompatible with maximum
availability since update stability is a consequence of 1CS.

One-copy serializability (1CS) is a very useful property since it insures that
software which is written for a traditional file system will continue to run correctly
on a file system with replication. Since 1CS was not compatible with maximum
availability, it was necessary to determine a property that was near 1CS and was
also compatible with maximum availability. In effect, we attempted to formalize
the statement “file system X provides 1CS most of the time.” Update monotonic-
ity satisfied that goal, and it seemed to be intuitively correct since nearly all file
systems actually provided update monotonicity. Similarly, update stability had to
be weakened, and the result was update persistence. Update stability states that
the result of an update will be immediately available, and update persistence says
only that it will be eventually available. Together, update monotonicity and up-
date stability formed a powerful combination for proving performance and safety
properties.

Using these two new properties, we showed that maximum availability precluded

data consistency. This result was strongly indicated because none of the file systems

IThese file systems were RNFS, HA-NFS, Locus, Ficus, Coda, and Deceit.

139

with replication provide data consistency except for the one that does not provide
maximum availability (i.e. Echo). Some file systems with maximum availability
attempted to provide data consistency in the directory structure by using automatic
directory reconciliation (ADR). Directories tend to be a target of inconsistency,
and their semantics are understood, so they are a natural candidate for automatic
reconciliation. We demonstrated the ADR is a fundamentally flawed concept for
general purpose file systems because ADR violates directory semantics that some

applications depend on.

5.1.2 Performance

Following the discussion of safety properties, some performance bounds for the
write operation were presented. Update monotonicity and update stability were
used for all of these results. The basic lower bound was that 2 SNPs are insufficient
in the worst case. Coda helped to demonstrate this point since it violated update
monotonicity and only used 2 SNPs in every write. To complement this conclusion,
Protocol 3 on page 127 showed that 3 SNPs and 2r messages are sufficient in all
cases. Between these two bounds, there was room for a protocol that used 2 SNPs
in most cases but 3 SNPs occasionally.

The desired protocol should use 2 SNPs in the common case, and we formalized
this property with the definition of stream efficient. A typical file system experiences
updates from a single source for any one file, and stream efficiency states that
only 2 SNPs are used under these conditions. We demonstrated that a stream
efficient file system would required more messages in the worse case to offset its
good performance in the typical case. In the worst case, a stream efficient file
system needs 3 SNPs and O(r?) messages. Finally, we presented Protocol 6 on

page 131, a stream efficient update protocol that meets this bound.

140

5.2 File Parameters and Flexibility

The file parameters in Deceit can have a dramatic effect on performance and safety.
For example, Table 5.1 describes the cost of different degrees of replication. Writing
to a file with three replicas costs a factor of 5 more messages more than writing to
a file with one replica (Section 4.1.1). Also, three rounds of communication can be
required rather than one round. In the Deceit implementation, using three replicas

is 46% slower than one replica for the Andrew Benchmark (Section 3.8.2).

Table 5.1: Worst-case Write Operation Cost by Degree of Replication

Theoretical Minimum Deceit
r || SNPs messages | SNPs | messages
1 2 2 2 2
2 4 4 6 6
3 5 10 6 10
4 5/6 17/12 6 14
5 5/6 26/16 6 18
6 5/6 37/20 6 22

If the file parameters had a large granularity (e.g. a set of parameters per
directory), then many files would be unnecessarily safe. For example, it is reasonable
to have 2 or 3 replicas of an important program source file, but it is not reasonable
to replicate a core dump because it happens to be in the same directory. The
ability to tune the replication level of each file allows the user to maximize safety
for important files and to maximize performance for others. A result is that overall
efficiency is improved.

This form of flexibility has several costs. There is the administrative cost of

setting the file parameters for each file. It is almost impossible for an unsophisticated

141

user to understand, much less set, an appropriate value for “stability monitoring.”
Heuristics based on file name matching or directories could be used to reduce this
problem. In addition to the administrative cost, there is a cost in server size and
complexity. The server program must be prepared for every possible combination
of parameters settings. In effect, the server must be as complex as necessary for the
most demanding possible setting, instead of the typical setting. Each file can be
manipulated independently, so every file represents an instance of the entire set of
control protocols, which can greatly increase the storage requirements for each file.

The Deceit file system is an attempt to provide this form of flexibility. The
options that Deceit provides are listed in Section 3.5 on page 76. Below is a summary
of the effects of each file parameter on safety and performance. We analyze each

file parameter using the results from Section 3.8 and Section 4.1.

5.2.1 Minimum Replica Level

The most pervasive control option is the minimum replica level (r). The value of
r effects the total amount of storage for the file, the availability of the file, and
the cost of most file operations. The file availability is effected in a complex way
depending on the policy for reading and writing during a failure. Maximum and
minimum availability (Tables 1.2 and 1.3 on page 9) mark the extremes.

Read performance can be improved by using a large value for r. The reason is
that a large value raises the probability that a read operation will not have to be
forwarded. If the client picks a server without a replica, then 3 SNPs are necessary.
Deceit will use 4 SNPs and 4 messages in this case. Otherwise Deceit uses 2 SNPs
and 2 messages, which is minimal. In the actual implementation, we measured the
time required to forward a read operations at 18 milliseconds which is small in

comparison to disk access times.

142

Write performance is also effected strongly by the replication level. If there is no
replication, then the minimum cost is 2 SNPs and 2 messages. If there is replication,
then the results in Sections 4.4.1 and 4.4.2 apply. A detailed description of Deceit
performance in this case is provided in Section 4.1.2. Table 5.1 summarizes the
results for worst case cost of a write operation. This table assumes that the client
communicates with only one server, the server has a replica of the file, and the file
system is stream eflicient. Table 5.1 illustrates that Deceit performs optimally for
r = 1 and nearly optimally » > 3. For r = 2 or r = 3, Deceit is less efficient.

The Andrew Benchmark (Section 3.8.2) illustrated the cost of replication in the
implementation. For the overall benchmark, Deceit with r = 2 was 26% slower than
r = 1, and Deceit with r = 3 was 46% slower. Further analysis revealed the WRITE
operation was only 17% slower for r = 3, but the CREATE operation was fully 81%
slower. A CREATE operation involves several name service operations, and the name
service scaled poorly as replication was increased. A redesign of the name service

would partially alleviate the problem.

5.2.2 Write Safety Level

The write safety level (s) is a subtle control option. There are three interesting
value ranges: s = 0, 0 < s < m, and s = m (where m is the maximum replica
level).

If s = 0, then write operations are asynchronous. No SNPs are required; all
communication can be in the form of ANPs. Update stability and update persis-
tence are impossible: if a server fails before completing a write, then the client
would not know that the write failed. In general, Deceit does not provide update
stability, but it is much less likely to be violated if s > 0.

If 0 < s < m, then there are stronger guarantees about the success of the

write. When the RPC returns to the client, the client knows that the write

143

has been recorded on at least one disk. Therefore update persistence is provided,
although update stability is still impossible. With this setting, 2 SNPs and 1 SDA
are required for each write.

If s = m, then the safety guarantees depend on other file parameters. When the
RPC returns to the client, the client knows that the write has been recorded on the
disks at all available replicas, but necessarily at all replicas. Deceit still does not
provide update stability in this case, but the scenario that violates it is extremely
unlikely.

As s is increased from 1 to m, the expected time to completion also increases
since a write completes as quickly as the s fastest disks. Table 5.2 illustrates this
rise in expected completion time using a normal distributed for disk access times.
In Table 5.2, it is assumed that a disk drive completes a write in an average of 1
unit of time with a standard deviation of 0.2. The table shows the expected time

for the fastest s out of r drives to finish.

Table 5.2: Expected Time for the Fastest s out of r Disks

o)

0.889 | 1.114 - - - -
3 0.832 1 1.000 { 1.170 - - -
4 11 0.793 | 0.942 | 1.059 | 1.205 - -
3 || 0.767 | 0.901 | 1.000 | 1.100 | 1.232 -
6 || 0.747 | 0.872 | 0.961 | 1.039 | 1.129 | 1.254

We measured the write times for different values for s in the Deceit implemen-
tation. These results are shown in Section 3.8.5. The main conclusion was that

server performance was not strongly effected by s for values s > 1. When s was

144

changed from 1 to 3, the performance degradation was only 9.8%. Even when large
random delays (uniformly chosen between 0 and 50 milliseconds) were added to disk
access times, the performance degradation was only 17.6%. The conclusion is that
s is not a well chosen file parameter. It would be better to simply be able to switch
the server between “asynchronous mode” and “synchronous mode.”

The measured times for s = 0 were discouraging. The NFS protocol does not al-
low truly asynchronous operation, so setting s = 0 in Deceit does not eliminate the 2
SNPs from the operation cost. Also, in the benchmark Deceit became overwhelmed
with requests, so the server was not able to respond to new requests rapidly. The
result was that a write to three replicas required 46.6 milliseconds (rather than
the 18 milliseconds required for pure communication). The conclusion is that set-
ting s = 0 is a bad choice unless the server is lightly loaded, and the user is very

confident that the write will succeed (or the data is unimportant).

5.2.3 Stability Monitoring

Stability monitoring has relatively little cost and effect. The cost is that on occasion
reads cost 4 SNPs instead of 2 SNPs. In the implementation of Deceit, the extra
2 SNPs would cost 18 milliseconds for an 8 Kb READ.

The benefit of stability monitoring is to help provide one-copy serializability.
Stability monitoring is significant only when one client is writing to a replicated file,
and another client is concurrently reading the file at a different server. In any other
case, the other protocols and ISIS message ordering provide one-copy serializability
without assistance. Regardless of stability monitoring, one-copy serializability can
be violated if a server crashes.

Stability monitoring added substantially to the complexity of the server, and it
was aesthetically unpleasant. Each server had to maintain extra status information

about each segment, and it was difficult to recover to a consistent state after a

145

crash. The conclusion is that the stability monitoring protocol is unsatisfactory. A
better approach would be to use a real distributed locking protocol. Perhaps this

protocol also could be used to replace write-tokens.

5.2.4 File Migration

File migration is difficult to analyze due to its heuristic nature. The benefit is that
a read costs less if the file is logically closer to the client that issues the read.
Also availability will be increased if the data is physically closer to the client. The
cost of file migration is that the data needs to be read, transmitted, and rewritten.
Migration is most effective on small files that tend to be accessed by a single client
for long periods (e.g. private source files in a user directory). In this case, there is
a low overhead with a high payoff.

The success of file migration depends critically on the policy describing when
to migrate files. In Deceit the policy comes in two parts. First, users must enable
migration on files using a file parameter. Second, a file is migrated asynchronously
after it is read at a server that does not have a replica of the file. In this way, a
server collects the working set of files that it needs. This policy is a form of caching.

We measured two key values in the implementation: the file transfer rate and
the cost of forwarding a read. The file transfer rate was 55 Kb per second plus
148 milliseconds of overhead. This rate is very slow compared to the raw network
bandwidth (1.25 Mb/sec) and disk bandwidth (3 Mb/sec). The main reason for the
slow rate was that Deceit was not able to efficiently schedule access to the disk. A
large collection of write could not be adequately processed in parallel. The cost of
forwarding a 8§ Kb read was 18 milliseconds, which is small in comparison to disk
access time. The conclusion is that file migration is not valuable in general. A user
will want to migrate a file only under unusual conditions, and a user level utility

command would solve the problem more cleanly than a file parameter.

146

5.2.5 Write Quorum Size

The write quorum size (q) controls the trade-off between write availability and
data consistency. A low value for g increases write availability and the risk of
inconsistency between replicas. Tables 4.6 and 4.7 on page 114 provide a numerical
description of availability for different values of r and ¢. Figure 5.1 summarizes the
same results in graphical form. It is clear that there is a large availability penalty
incurred by increasing ¢. This jump is most dramatic between ¢ = 1 and ¢ = 2; it

is more than a factor of 10.

99.996 y-------y--mm oo 120000--------:'--------------: ----- . :Q=1
31250 echeree]
99.96 -------t-- i e oo ' ; 5 : i
) '__‘,:3;3 6250 fr----o-iff oo e ---:Q=§
99.6 1 R P il SEEL L EEEEE 1q=4 ; :: Ry i ’qi..----";q:4
s i e e S A
oL iq=5 BRSBTS
961 " ';'}' 1 :‘":;;'; 2504------- '.,'.--._.;-...‘c'.‘-.E_..}l_'.i---__'_.,glq=5
' o :l‘ 14 : . R P et
L7 T 7 g=6 b r W e
60 O T T 50 — H—
1 2 3 4 5 6 1 2 3 4 5 6
Availability (percentage) Reliability (hours)

Figure 5.1: Availability and Reliability by Quorum

It is more difficult to quantify the risk of inconsistency between replicas. For
this to occur, it is necessary that two clients concurrently write to a file on either
side of a partition. Alternatively, crashes and recoveries can cause a client to switch
from one set of replicas to another during a stream of updates. These possibilities
are shown in Figure 5.2, and they are highly dependent on the expected usage
and environment. In typical environments, it is very unusual for two clients to
concurrently write to the same file. It is also unusual for network partition to occur

(except for very brief ones).

147

Client Server Server Client Client Server Sex:ver
'0 . \
[] H
“ H
\ % / Crash
\ . R / Vigover
\ |‘ / ;
0' H
Real Partition Virtual Partition

Figure 5.2: Scenarios for Replica Inconsistency
5.2.6 Maximum Replica Level

The last file parameter is the maximum replica level (m). This parameter limits
the amount of replication. A low value for m imposes a cost in availability and
expected read performance. A high value for m allows heavy consumption of disk
space and increases the risk of data inconsistency.

The primary use for m is to prevent data inconsistency. If ¢ > %, then it
is theoretically impossible to create incomparable versions of the file. However, in
Deceit there is a very improbable race condition that can produce data inconsistency
despite using a large ¢. The essential problem is that Deceit may not know whether
the write quorum is satisfied until after the write has completed. In conclusion,
maximum replica level is a very valuable file parameter in Deceit since it is the only

way to constrain resource consumption and to provide data consistency.

5.3 Future Direction in File Systems

Most file systems that support replication also violate basic file system properties
such as one-copy serializability and update stability, which is not surprising since
traditional semantics were defined on single processor time-shared systems. In order

to fully realize the value of replication, the basic file system paradigm must be

148

updated. A key problem with replication is maintaining the ordering of updates
since one update can overwrite a previous one. If the semantics of a file could be
changed so that updates were commutative, then a distributed file system could be
simpler and more efficient. Servers could broadcast updates immediately without
establishing a global order. Resolving inconsistent replicas would be simple and
automatic: it only would be a matter of copying updates from one replica to the
other.

One limited step in updating file semantics is the use of versions. Deceit, Locus,
Ficus, and Coda allow replicas to become inconsistent during a partition, but after
recovery there are multiple versions of the same data. Having multiple versions can
create havoc with traditional applications, and the user must intervene to correct
the situation. Also, one-copy serializability and update stability are impossible.
Update persistence and update monotonicity were an effort to define safety in such
an environment.

Traditional directory semantics hinder replication for the same reasons that tra-
ditional file semantics do. Deceit attempts to provide traditional directory semantics
by replicating the entire image of the file system at all servers. This decision will
inevitably create a scaling bottleneck: either all servers must retrieve directory data
from some small set of directory servers, or the directory data must be replicated
everywhere. Other systems have solized this problem by using user centered nam-
ing{CW88]. In this approach, each user has an encapsulated view of the file system
that can be sent from server to server as the user moves around. Most directory
changes take place in the user’s private space and only affect the servers that store
the user’s view. In effect, user centered naming distributes the load by breaking the
directory structure up into small, natural units.

New file systems that support replication and distribution are much more com-

plex the older file systems. As a result, modularity is becoming vital in the imple-

149

mentation of these new systems. A distributed system is inherently very difficult to
understand, so it is essential that it be built and tested in small pieces. Modularity
serves to clarify the design, to isolate bugs (e.g. race conditions and memory leaks),
and to provide a convenient entry point for regression testing. For example, Deceit
is divided into 3 major pieces, with several subdivisions. This level of modularity
was not enough: Deceit could be improved by further refinement into very simple,
layered protocols.

Finally, it should be noted that specialized hardware can reduce server com-
plexity. For example, HA-NFS uses dual-ported disks that eliminate nearly all
communication directly between the servers. One CPU can write both disks in
parallel without synchronization with the other CPU. Some researchers have used
the RAID approach[SS90b] which is an elaboration of the some concept. The main
limitation of specialized hardware is that servers usually must be physically close
together. Also, it is not likely that such hardware will be generally available as the

use of distributed file systems becomes more widespread.

Appendix A

NFS Protocol

The following material was taken from [Sun86b] and heavily edited. It is not original
to this author. As such, it is not perfectly accurate or consistent. In particular,
NFS servers are not truly stateless, and all the RPC types are not idempotent.

The Sun Network Filesystem (NFS) protocol provides transparent remote ac-
cess to shared filesystems over local area networks. The NFS protocol is designed
to be machine, operating system, network architecture, and transport protocol in-
dependent. This independence is achieved through the use of Remote Procedure
Call[Sun86¢,Sun86d] (RPC) primitives built on top of an External Data Representa-
tion[Sun86a] (XDR). RPC prevides a clean, procedure-oriented interface to remote
services. XDR provides a common way of representing data types over a network.

The NFS protocol is stateless. That is, a server does not need to maintain
state about any of its clients in order to function correctly. Stateless servers have
a distinct advantage over stateful servers in the event of a crash. With stateless
servers, a client need only retry a request until the server responds. The client of a
stateful server needs to detect a server crash and rebuild the server’s state when it
comes back up.

All file operations are done using file handles to refer to a file or directory.

150

151

The file handle can contain whatever information the server needs to distinguish
an individual file. In the current implementation, the file handle also acts as a
capability. A random 32-bit value is encoded into the handle, and this value is
checked against a value in the i-node when the file is accessed.

Each RPC type will be described using the following notation:

o TYPE (arguments) returns (results)

description

where “TYPE” is the type of RPC, “arguments” is the list of argument values,
“results” is the list of result values, and “description” is a textual description of the

RPC. The NFS RPC types are the following:

e NULL () returns ()
This procedure does no work. It is made available to allow server response testing

and timing.

e GETATTR (file handle) returns (file attributes)
This procedure reads the attributes associated with a file or directory. These at-

tributes include size, owner, security, and timestamps.

¢ SETATTR (file handle, file attributes) returns ()

This procedure sets the attributes associated with a file or directory.

o LOOKUP (directory handle, name) returns (child handle, attributes)
This procedure determines the handle for an entry in a directory. When traversing
a path, each path component requires a separate LOOKUP call. The attributes for

the child are returned as in the GETATTR operation.

152

e READLINK (file handle) returns (string)

This procedure reads the contents of a symbolic link. A symbolic link is created

using SYMLINK.

¢ READ (file handle, offset, size) returns (data, attributes)
This procedure reads a contiguous block of data from a normal file. A normal file
is created using CREATE. NF'S limits size to 8 Kbytes. The attributes for the file are

returned as in the GETATTR operation.

¢ WRITE (file handle, offset, size, data) returns ()

This procedure writes a contiguous block of data to a normal file. NFS limits size

to 8 Kbytes.

e CREATE (directory handle, name, attributes) returns (file handle, attributes)
This procedure creates a normal file in the specified directory with the specified
name and attributes. If a normal file is already there, then it is truncated to zero

length.

e REMOVE (directory handle, name) returns ()
This procedure deletes one hard link to a file or symbolic link. If this link is the

last, then the disk space for the file is deallocated.

@ RENAME (original directory handle, original name, new directory handle, new name)
returns ()
This procedure replaces a hard link for a file, directory, or symbolic link. This

operation 1s atomic on the server, it cannot be interrupted in the middle.

153

e LINK (file handle, new directory handle, new name) returns ()

This procedure creates a new hard link to a normal file. A hard link has the property
that if a change is made through either of the links, then the change is reflected
through both links.

e SYMLINK (directory handle, name, string, attributes) returns ()

This procedure creates a symbolic link. A symbolic link is a pointer to another
file using “string” as a relative path name. The client interprets “string” when the
symbolic link is traversed. There is no guarantee that the target of the link will

exist or be consistent between clients.

e MKDIR (directory handle, name, attributes) returns (new directory handle, at-

tributes)

This procedure creates a directory in the specified location. The creation will fail

if another file or directory already occupies the location.

e RMDIR (directory handle, name) returns ()

This procedure deletes the specified directory. The deletion will fail if the directory

i1s not empty.

e READDIR (directory handle, offset, size) returns ([handle, name, offset] list)

This procedure reads the contents of a directory. The contents are returned as a list
of tuples where each tuple contains the file handle, file name, and current directory
offset. The offset can be used in later READDIR operations to skip initial directory

entries. At most “size” bytes of data are returned. NFS limits size to 8 Kbytes.

154

e STATFS (file handle) returns (file system attributes)
This procedures returned the attributes associated with a file system. The file
handle specifies which file system to check. These attributes include total disk

space, free space, and disk block size.

NFS has very limited security. A client must include the user id number, the
group id number, and the client name with each RPC. This information is included
in clear text with each RPC, and it is trivial to forge. Any process on a valid client
has unlimited access to any exported files. The only substantial security feature is
that most NFS servers verify the name of the client against the internet address
included in the RPC. This address is important because it is used to send back
the reply to the client. In order for an invalid client to access an NFS server, it is
necessary to temporarily modify the network routing so that an RPC call with an

authenticated return address can get back to the invalid client.

Bibliography

[ASCS5]

[BEM90]

[BEM91]

[BEMS91]

[BJ87a]

[BJSTH]

[BJKS]

[BP75]

A. El Abbadi, Dale Skeen, and F. Cristian. An Efficient Fault-
Tolerant Algorithm for Replicated Data Management. In The Fourth
ACM Symposium on Principles of Database Systems, Portland, OR,
March 1985. ACM.

Anupam Bhide, Elmootazbellah N. Elnozahy, and Stephen P. Morgan.
Implicit Replication in a Network File Server. In The Workshop on
Management of Replicated Data, pages 83-90, Houston, TX, Novem-
ber 1990. IEEE. Also in Technical Committee on Operating Systems
and Application Environments (Newsletter), 4(3), Fall 1990.

Anupam Bhide, Elmootazbellah Elnozahy, and Stephen Morgan. A
Highly Available Network File Server. In Winter 1991 USENIX Con-
ference. USENIX Association, January 1991.

Anupam Bhide, Elmootazbellah N. Elnozahy, Stephen P. Morgan, and
Alex Siegel. A Comparison of Two Approaches to Build Reliable Dis-
tributed File Servers. In The 11th International Conference on Dis-
tributed Computing Systems, Arlington, TX, May 1991. IEEE.

Kenneth Birman and Thomas Joseph. Exploiting Virtual Synchrony
in Distributed Systems. In The Eleventh ACM Symposium on Oper-
ating Systems Principles, pages 123-138. ACM, November 1987.

Kenneth Birman and Thomas Joseph. Reliable Communication in the
Presence of Failures. ACM Transactions of Computer Systems, 5(1),
February 1987.

Kenneth Birman, Thomas Joseph, Kenneth Kane, and Frank
Schmuck. ISIS - A Distributed Programming Environment - User’s
Guide and Reference Manual. Cornell University Computer Science
Department, Ithaca, New York.

Richard E. Barlow and Frank Proschan. Statistical Theory of Reli-
ability and Life Testing (Probability Models). International Series in
Decision Processes, and Series in Quantitative Methods for Decision
Making. Holt, Rinehart and Winston, Inc., 1975.

155

[Bre83]

[BSS90]

[Cri91]

[CW87]

[CWSsS]

[DGH*87]

[Dig84]

[Dio80]

[DO8Y)

[Flo86a]
[Flo86b]

[GHM+90]

[GNSSS]

156

Pearl Brereton. Detection and Resolution of Inconsistencies Among
Distributed Replication of Files. Operating Systems Review, 17(1):10-
15, January 1983.

Kenneth Birman, Andre Schiper, and Pat Stephenson. Fast Causal
Multicast. Technical Report TR90-1105, Cornell University Computer
Science Department, Ithaca, NY, April 1990. Submitted to ACM

Transactions on Computer Systems.

Flaviu Cristian. Understanding Fault-Tolerant Distributed Systems.
Communications of the ACM, 34(2):56-78, February 1991.

Luis Felipe Cabrera and Jim Wyllie. QuickSilver Distributed File -
Services: An Architecture for Horizontal Growth. Research Report RJ
5578 (56697), IBM Almaden Research Center, San Jose, CA (USA),
April 1987.

Luis Felipe Cabrera and Jim Wyllie. QuickSilver Distributed File
Services: An Architecture for Horizontal Growth. In 1988 IEEFE 2nd
Conference On Computer Workstations, pages 23-37. IEEE, March
1988.

Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John Larson, Scott
Shenker, Howard Sturgis, Dan Swinehart, and Doug Terry. Epidemic
Algorithms for Replicated Database Maintenance. In The Sizth An-
nual ACM Symposium on Principles of Distributed Computing, pages
1-12. ACM, August 1987.

Digital Equipment Corportion, Maynard, Massachusetts.
VAX/VMS - Introduction to VAX/VMS, VAX/VMS Version 4.0 edi-
tion, September 1984.

Jeremy Dion. The Cambridge File Server. Operating Systems Review,
14(4):26-35, October 1980.

Fred Douglis and John Ousterhout. Log-Structured File Systems.
In COMPCON Spring 89, Digest of Papers, pages 124-129. IEEE,
February 1989.

Rick Floyd. Directory Reference Patterns in a UNIX Environment.
Technical Report 179, University of Rochester, August 1986.

Rick Floyd. Short-Term File Reference Patterns in a UNIX Environ-
ment. Technical Report 177, University of Rochester, March 1986.

Richard Guy, John Heidemann, Wai Mak, Thomas Page Jr., and Ger-
ald Popek. Implementation of the Ficus Replicated File System. In
Summer 1990 USENIX Conference, pages 63-71, Anaheim, CA, June
1990. USENIX Association.

David Gifford, Roger Needham, and Michael Schroeder. The Cedar
File System. Communications of the ACM, 31(3):288-298, March
1988.

[GP90]

[Gra85]

[Gra90]

[Hac85]

[Hag87]

[HBJ*90]

[HBM*89)]

[Her85]

[Her87]

[HKM+88]

[HMSCSS]

[HPRSS)]

157

Richard Guy and Gerald Popek. Reconciling Partially Replicated
Name Spaces. Technical Report CSD-900010, Department of Com-
puter Science at the University of California Los Angeles, April 1990.

Jim Gray. Why Do Computers Stop and What Can Be Done About
It? Technical Report 85.7, Tandem Computers Inc., Cupertino, CA,
June 1985.

Jim Gray. A Census of Tandem System Availability Between 1985
and 1990. Technical Report 90.1 (Part no. 33579), Tandem Computers
Inc., Cupertino, CA, January 1990.

Anna Hac. Distributed File Systems - A Survey. Operating Systems
Review, 10(1):15-18, January 1985.

Robert Hagmann. Reimplementing the Cedar File System Using Log-
ging and Group Commit. In The Eleventh ACM Symposium on Op-
erating Systems Principles, pages 155-162. ACM, November 1987.

Andy Hisgen, Andrew Birrell, Chuck Jerian, Timothy Mann, Michael
Schroeder, and Garret Swart. Granularity and Semantic Level of
Replication in the Echo Distributed File System. In The Workshop on
Management of Replicated Data, pages 2-4, Houston, TX, November
1990. IEEE. Also in Technical Committee on Operating Systems and
Application Environments (Newsletter), 4(3), Fall 1990.

Andy Hisgen, Andrew Birrell, Timothy Mann, Michael Schroeder, and
Garret Swart. Availability and Consistency Tradeoffs in the Echo Dis-
tributed File System. In The 2nd Workshop of Workstation Operating
Systems, pages 49-54, Pacific Grove, CA, September 1989. IEEE.

Maurice Herlihy. Comparing How Atomicity Mechanisms Support
Replication. In The Fourth Annual ACM Symposium on Principles
of Distributed Computing, pages 102-110. ACM, August 1985.

Maurice Herlihy. Concurrency Versus Availability: Atomicity Mecha-
nisms for Replicated Data. ACM Transactions on Computer Systems,
5(3):249-274, August 1987.

John Howard, Michael Kazar, Sherri Menees, David Nichols, Mahadev
Satyanarayanan, Robert Sidebotham, and Michael West. Scale and
Performance in a Distributed File System. ACM Transactions of Com-
puter Systems, 6(1):51-81, February 1988.

Roger Haskin, Yoni Malachi, Wayne Sawdon, and Gregory Chan. Re-
covery Management in QuickSilver. ACM Transactions on Computer
Systems, 6(1):82-108, February 1988.

Susan Horwitz, Jan Prins, and Thomas Reps. Integrating Non-
Interfering Versions of Programs. In Fifteenth Annual ACM Sympo-

sium on Principles of Programming Languages, pages 133-145. ACM,
January 1988.

[JBS6]

[JPGHY0]

[LCPYO]

[LeL78]

[LeL81]

[LZCZ36]

[MHS89]

[MS87]

[MSC*386]

[MTS84]

[Mul89]

[Neu89]

[NO8S]

158

Thomas Joseph and Kenneth Birman. Low Cost Management of
Replicated Data in Fault-Tolerant Distributed Systems. ACM Trans-
actions of Computer Systems, 4(1), February 1986.

Thomas Page Jr., Gerald Popek, Richard Guy, and John Heidemann.
The Ficus Distributed File System: Replication via Stackable Layers.
Technical Report CSD-900009, Department of Computer Science at
the University of California Los Angeles, April 1990.

Darrell Long, John Carroll, and C. J. Park. A Study of the Reliability
of Internet Sites. Technical Report UCSC-CRL-90-46, Department of
Computer and Information Sciences at University of California Santa

Cruz, Santa Cruz, CA, 1990.

Gerard LeLann. Algorithms for Distributed Data Sharing Systems
which use Tickets. In Third Berkeley Workshop, pages 259-272, Au-
gust 1978.

Gerard LeLann. Distributed Systems - Architecture and Implementa-
tion, An Advanced Course, volume 105 of Lecture Notes in Computer
Science, chapter 12, pages 278-282. Springer-Verlag, 1981.

Edward Lazowska, John Zahorjan, David Cheriton, and Willy
Zwaenepoel. File Access Performance of Diskless Workstations. ACM
Transactions on Computer Systems, 4(3):238-268, August 1986.

Timothy Mann, Andy Hisgen, and Garret Swart. An Algorithm for
Data Replication. Technical Report 46, Digital Equipment Corpora-
tion Systems Research Center, June 1989.

Keith Marzullo and Frank Schmuck. Supplying High Availability with
a Standard Network File System. Technical Report 87-888, Depart-
ment of Computer Science at Cornell University, December 1987.

James Morris, Mahadev Satyanarayanan, Michael Conner, John
Howard, David Rosenthal, and F. Donelson Smith. Andrew: A Dis-
tributed Personal Computing Environment. Communications of the

ACM, 29(3):184-201, March 1986.

Sape Mullender and Andrew Tanenbaum. Protection and Resource
Control in Distributed Operating Systems. Computer Networks,
8(5,6):421-432, October 1984.

Sape Mullender, editor. Distributed Systems, chapter 13-14. Addison-
Wesley, 19809.

B. Clifford Neuman. Workstations and the Virtual System Model.
Technical Report 89-10-10, Department of Computer Science and En-
gineering at University of Washington, October 1989.

Michael Nelson and John Ousterhout. Copy-on-Write for Sprite. In

Summer 1988 USENIX Conference, pages 187-201, San Francisco,
CA, June 1988. USENIX Association.

[NWOS8S]

[OCD*88]

[OCH™*85]

[ODS8Y]

[P&6]

[P89)

[PGJH90]

[Pug90]

[RO90]

[Ros90]

[Sat89a]

[Sat89b]

159

Michael Nelson, Brent Welch, and John Qusterhout. Caching in the
Sprite Network File System. ACM Transactions of Computer Systems,
6(1), February 1988.

John Ousterhout, A. Cherenson, Fred Douglis, Michael Nelson, and
Brent Welch. The Sprite Network Operating System. I[IEEE Com-
puter, 21(2):23-36, February 1988.

John Ousterhout, Herve Da Costa, David Harrison, John Kunze, Mike
Kupfer, and James Thompson. A Trace-Driven Analysis of the UNIX
4.2 BSD File System. In The Tenth ACM Symposium on Operating
Systems Principles, pages 15-24. ACM, December 1985.

John Ousterhout and Fred Douglis. Beating the I/O Bottleneck: A
Case for Log-Structured File Systems. Operating Systems Review,
23(1):11-28, January 1989.

Jehan-Francois Paris. Voting with Witnesses: A Consistency Scheme
for Replicated Files. In The 6th International Conference on Dis-
tributed Computer Systems, pages 606-612, Cambridge, MA, May
1986. IEEE.

Jehan-Francois Paris. Voting with Bystanders. In The 9th Interna-
tional Conference on Distributed Computing Systems, pages 394-401,
Newport Beach, CA, June 1989. IEEE.

Gerald Popek, Richard Guy, Thomas Page Jr., and John Heidemann.
Replication in Ficus Distributed File Systems. In The Workshop on
Management of Replicated Data, pages 5-10, Houston, TX, November
1990. IEEE. Also in Technical Committee on Operating Systems and
Application Environments (Newsletter), 4(3), Fall 1990.

William Pugh. Skip Lists: A Probabilistic Alternative to Balanced
Trees. Communications of the ACM, 33(6):668-676, June 1990.

Mendel Rosenblum and John Ousterhout. The LFS storage manager.
In Summer 1990 USENIX Conference, pages 315-324, Anaheim, CA,
June 1990. USENIX Association.

David Rosenthal. Evolving the Vnode Interface. In Summer 1990
USENIX Conference, pages 107-117, Anaheim, CA, June 1990.
USENIX Association.

Mahadev Satyanarayanan. Integrating Security in a Large Distributed
System. ACM Transactions on Computer Systems, 7(3):247-280, Au-
gust 1989.

Mahadev Satyanarayanan. Scalable, Secure and Highly Available File
Access in a Distributed Workstation Environment. Technical report,
Department of Computer Science at Carnegie Mellon University, Oc-
tober 1989.

[Sat90a)
[Sat90b]

[SBSY]

[SBMS8Y]

[SBM90a]

[SBM90b]

[Sch84]

[Sch88]

[SGN85]

[SHN+85]

[Ske85]

[SKK+89)

160

Mahadev Satyanarayanan. A Survey of Distributed File Systems.
Annu. Rev. Comput. Sci., 4:73-104, 1990.

Mahadev Satyanarayanan. Scalable, Secure, and Highly Available Dis-
tributed File Access. Computer, 23(5):9-21, May 1990.

Michael D. Schroeder and Michael Burrows. Performance of Firefly
RPC. In The Twelfth ACM Symposium on Operating Systems Prin-
ciples, pages 83-90. ACM, December 1989.

Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: A Flexible
Distributed File System. Technical Report TR 89-1042, Department
of Computer Science at Cornell University, Ithaca, NY, November
1989.

Alex Siegel, Kenneth Birman, and Keith Marzullo. Deceit: A Flexible
Distributed File System. In Summer 1990 USENIX Conference, pages
51-61, Anaheim, CA, June 1990. USENIX Association.

Alex Siegel, Kenneth Birman, and Keith Marzullo. Position Paper
for Deceit: A Flexible Distributed File System. In The Workshop on
Management of Replicated Data, pages 15-17, Houston, TX, Novem-
ber 1990. IEEE. Also in Technical Committee on Operating Systems
and Application Environments (Newsletter), 4(3), Fall 1990.

Fred Schneider. Byzantine Generals in Action: Implementing Fail-
Stop Processors. ACM Transactions on Computer Systems, 2(2):145-
154, May 1984.

Frank Schmuck. The Use of Efficient Broadcast Protocols in Asyn-
chronous Distributed Systems. Ph.D. dissertation, Cornell University,
August 1988.

Michael Schroeder, David Gifford, and Roger Needham. A Caching
File System For a Programmer’s Workstation. In The Tenth ACM
Symposium on Operating Systems Principles, pages 25-34. ACM, De-
cember 1985.

Mahadev Satyanarayanan, John Howard, David Nicols, Robert Side-
botham, Alfred Spector, and Michael West. The ITC Distributed File
System: Principles and Design. In The Tenth ACM Symposium on
Operating Systems Principles, pages 35-50. ACM, December 1985.

Dale Skeen. Determining the Last Process to Fail. ACM Transactions
on Computer Systems, 3(1):15-30, February 1985.

Mahadev Satyanarayanan, James Kistler, Puneet Kumar, Maria
Okasaki, Ellen Siegel, and David Steere. Coda: A Highly Avail-
able File System for a Distributed Workstation Environment. Tech-
nical Report CMU-CS-89-165, Department of Computer Science at
Carnegie Mellon University, November 1989.

[SKK+90]

[SKS90]

[SM89)]

[SMIS0]

[SNSSS]

[SS83]

[SS90a]

[SS90b)

[Sta88]

[Sun86a]
[Sun86b)
[Sun86c]
[Sun86d]

[Sun90]

161

Mahadev Satyanarayanan, James Kistler, Puneet Kumar, Maria
Okasaki, Ellen Siegel, and David Steere. Coda: A Highly Available
File System for a Distributed Workstation Environment. IFEE Trans-
actions on Computers, 39(4):447-459, April 1990.

David Steere, James Kistler, and Mahadev Satyanarayanan. Efficient
User-Level File Cache Management on the Sun Vnode Interface. In
Summer 1990 USENIX Conference, pages 325-331, Anaheim, CA,
June 1990. USENIX Association.

V. Srinivasan and Jeffrey Mogul. Spritely NFS: Experiments with
Cache-Consistency Protocols. In The Twelfth ACM Symposium on
Operating Systems Principles, pages 45-57. ACM, December 1989.

Howard Sturgis, James Mitchell, and J. Israel. Issues in the Design
and Use of a Distributed File System. Operating Systems Review,
14(3):55-69, July 1980.

J. G. Steiner, B. Clifford Neuman, and J. I. Schiller. Kerberos: An
Authentication Service for Open Network Systems. In Winter 1988
USENIX Conference, Dallas, TX, 1988. USENIX Association.

Richard Schlichting and Fred Schneider. Fail-Stop Processors: an Ap-
proach to Designing Fault-Tolerant Computing Systems. ACM Trans-
actions on Computer Systems, 1(3):222-238, August 1983.

Mahadev Satyanarayanan and Ellen Siegel. Parallel Communication

in a Large Distributed Environment. I[FEE Transactions of Comput-
ers, 39:328-348, March 1990.

Michael Stonebraker and Gerhard Schloss. Distributed RAID — A New
Multiple Copy Algorithm. In Proceedings of the Sizth Conference on
Data Engineering. IEEE, February 1990.

Carl Staelin. File Access Patterns. Technical Report CS-TR-179-88,
Department of Computer Science at Princeton University, September

1988.

Sun Microsystems, Inc., Mountain View, CA. FEzxternal Data Repre-
sentation Protocol Specification, February 1986.

Sun Microsystems, Inc., Mountain View, CA. Network File System
Protocol Specification, February 1986.

Sun Microsystems, Inc., Mountain View, CA. Remote Procedure Call
Programming Guide, February 1986.

Sun Microsystems, Inc., Mountain View, CA. Remote Procedure Call
Protocol Specification, February 1986.

Sun Microsystems, Inc., Mountain View, CA. Network Programming

Guide, March 1990. Part No. 800-3850-10.

[Svo80]

[Svo8l]

[TCW89]

[TMS1]

[TMvRS6]

[TvRvS+90]

[VRT88]

[Wel90]

[WOS6)

[WOSsS]

[WO89]

[WPE*83]

162

Liba Svobodova. Management of Object Histories in the Swallow
Repository. Technical Report MIT/LCS/TR-243, Laboratory for
Computer Science at Massachusetts Institute of Technology, July 1980.

Liba Svobodova. A Reliable Object-Oriented Data Repository for a
Distributed Computer System. In The Eighth Symposium on Operat-
ing Systems Principles, pages 47-58. ACM, December 1981.

Marvin Theimer, Luis-Felipe Cabrera, and Jim Wyllie. QuickSilver
Support for Access to Data in Large, Geographically Dispersed Sys-
tems. In The 9th International Conference on Distributed Computing
Systems, pages 28-35, Newport Beach, CA, June 1989. IEEE.

Andrew Tanenbaum and Sape Mullender. An Overview of the Amoeba
Distributed Operating System. Operating Systems Review, 15(3):51-
64, July 1981.

Andrew Tanenbaum, Sape Mullender, and Robbert van Renesse. Us-
ing Sparse Capabilities in a Distributed Operating System. In The 6th
International Conference on Distributed Computing Systems, pages

558-563. IEEE, May 1986.

Andrew Tanenbaum, Robbert van Renesse, Hans van Staveren, Gre-
gory Sharp, Sape Mullender, Jack Jansen, and Guido van Rossum.
Experiences with the Amoeba Distributed Operating System. Com-
munications of the ACM, 33(12):46-63, December 1990.

Robbert van Renesse and Andrew Tanenbaum. Voting with Ghosts.
In The 8th International Conference on Distributed Computing Sys-
tems, pages 456-462. IEEE, June 1988.

Brent Welch. Naming, State Management, and User-Level Extensions
in the Sprite Distributed File System. Ph.D. dissertation, University
of California, Berkeley, CA 94720, February 1990. Technical Report
UCB/CSD 90/567.

Brent Welch and John Ousterhout. Prefix Tables: A Simple Mecha-
nism for Locating Files in a Distributed System. In The 6th Interna-
tional Conference on Distributed Computing Systems, pages 184-189.
IEEE, May 1986.

Brent Welch and John Ousterhout. Pseudo Devices: User-Level Ex-
tensions to the Sprite File System. In Summer 1988 USENIX Con-
ference, pages 37-49, San Francisco, CA, June 1988. USENIX Associ-

ation.

Brent Welch and John Ousterhout. Pseudo-File-Systems. Technical
Report UCB/CSD 89/499, Computer Science Division (EECS), Uni-
versity of California, Berkeley, CA 94720, April 1989.

Bruce Walker, Gerald Popek, Robert English, Charles Kline, and
Greg Thiel. The LOCUS Distributed Operating System. In The

163

Ninth ACM Symposium on Operating Systems Principles, pages 49—
70. ACM, October 1983.

[WW90] Thomas H. Wonnacott and Ronald J. Wonnacott. Introductory Statis-
tics. John Wiley and Sons, fifth edition, 1990.

	pdftemp/0001.tif
	pdftemp/0002.tif
	pdftemp/0003.tif
	pdftemp/0004.tif
	pdftemp/0005.tif
	pdftemp/0006.tif
	pdftemp/0007.tif
	pdftemp/0008.tif
	pdftemp/0009.tif
	pdftemp/0010.tif
	pdftemp/0011.tif
	pdftemp/0012.tif
	pdftemp/0013.tif
	pdftemp/0014.tif
	pdftemp/0015.tif
	pdftemp/0016.tif
	pdftemp/0017.tif
	pdftemp/0018.tif
	pdftemp/0019.tif
	pdftemp/0020.tif
	pdftemp/0021.tif
	pdftemp/0022.tif
	pdftemp/0023.tif
	pdftemp/0024.tif
	pdftemp/0025.tif
	pdftemp/0026.tif
	pdftemp/0027.tif
	pdftemp/0028.tif
	pdftemp/0029.tif
	pdftemp/0030.tif
	pdftemp/0031.tif
	pdftemp/0032.tif
	pdftemp/0033.tif
	pdftemp/0034.tif
	pdftemp/0035.tif
	pdftemp/0036.tif
	pdftemp/0037.tif
	pdftemp/0038.tif
	pdftemp/0039.tif
	pdftemp/0040.tif
	pdftemp/0041.tif
	pdftemp/0042.tif
	pdftemp/0043.tif
	pdftemp/0044.tif
	pdftemp/0045.tif
	pdftemp/0046.tif
	pdftemp/0047.tif
	pdftemp/0048.tif
	pdftemp/0049.tif
	pdftemp/0050.tif
	pdftemp/0051.tif
	pdftemp/0052.tif
	pdftemp/0053.tif
	pdftemp/0054.tif
	pdftemp/0055.tif
	pdftemp/0056.tif
	pdftemp/0057.tif
	pdftemp/0058.tif
	pdftemp/0059.tif
	pdftemp/0060.tif
	pdftemp/0061.tif
	pdftemp/0062.tif
	pdftemp/0063.tif
	pdftemp/0064.tif
	pdftemp/0065.tif
	pdftemp/0066.tif
	pdftemp/0067.tif
	pdftemp/0068.tif
	pdftemp/0069.tif
	pdftemp/0070.tif
	pdftemp/0071.tif
	pdftemp/0072.tif
	pdftemp/0073.tif
	pdftemp/0074.tif
	pdftemp/0075.tif
	pdftemp/0076.tif
	pdftemp/0077.tif
	pdftemp/0078.tif
	pdftemp/0079.tif
	pdftemp/0080.tif
	pdftemp/0081.tif
	pdftemp/0082.tif
	pdftemp/0083.tif
	pdftemp/0084.tif
	pdftemp/0085.tif
	pdftemp/0086.tif
	pdftemp/0087.tif
	pdftemp/0088.tif
	pdftemp/0089.tif
	pdftemp/0090.tif
	pdftemp/0091.tif
	pdftemp/0092.tif
	pdftemp/0093.tif
	pdftemp/0094.tif
	pdftemp/0095.tif
	pdftemp/0096.tif
	pdftemp/0097.tif
	pdftemp/0098.tif
	pdftemp/0099.tif
	pdftemp/0100.tif
	pdftemp/0101.tif
	pdftemp/0102.tif
	pdftemp/0103.tif
	pdftemp/0104.tif
	pdftemp/0105.tif
	pdftemp/0106.tif
	pdftemp/0107.tif
	pdftemp/0108.tif
	pdftemp/0109.tif
	pdftemp/0110.tif
	pdftemp/0111.tif
	pdftemp/0112.tif
	pdftemp/0113.tif
	pdftemp/0114.tif
	pdftemp/0115.tif
	pdftemp/0116.tif
	pdftemp/0117.tif
	pdftemp/0118.tif
	pdftemp/0119.tif
	pdftemp/0120.tif
	pdftemp/0121.tif
	pdftemp/0122.tif
	pdftemp/0123.tif
	pdftemp/0124.tif
	pdftemp/0125.tif
	pdftemp/0126.tif
	pdftemp/0127.tif
	pdftemp/0128.tif
	pdftemp/0129.tif
	pdftemp/0130.tif
	pdftemp/0131.tif
	pdftemp/0132.tif
	pdftemp/0133.tif
	pdftemp/0134.tif
	pdftemp/0135.tif
	pdftemp/0136.tif
	pdftemp/0137.tif
	pdftemp/0138.tif
	pdftemp/0139.tif
	pdftemp/0140.tif
	pdftemp/0141.tif
	pdftemp/0142.tif
	pdftemp/0143.tif
	pdftemp/0144.tif
	pdftemp/0145.tif
	pdftemp/0146.tif
	pdftemp/0147.tif
	pdftemp/0148.tif
	pdftemp/0149.tif
	pdftemp/0150.tif
	pdftemp/0151.tif
	pdftemp/0152.tif
	pdftemp/0153.tif
	pdftemp/0154.tif
	pdftemp/0155.tif
	pdftemp/0156.tif
	pdftemp/0157.tif
	pdftemp/0158.tif
	pdftemp/0159.tif
	pdftemp/0160.tif
	pdftemp/0161.tif
	pdftemp/0162.tif
	pdftemp/0163.tif
	pdftemp/0164.tif
	pdftemp/0165.tif
	pdftemp/0166.tif
	pdftemp/0167.tif
	pdftemp/0168.tif
	pdftemp/0169.tif
	pdftemp/0170.tif
	pdftemp/0171.tif
	pdftemp/0172.tif
	pdftemp/0173.tif
	pdftemp/0174.tif
	pdftemp/0175.tif

