
Performance Interactions Between
P-HTTP and TCP Implementations�

John Heidemann
USC / Information Sciences Institute

Abstract

This document describes several performance problems
resulting from interactions between implementations of
persistent-HTTP (P-HTTP) and TCP. Two of these
problems tie P-HTTP performance to TCP delayed-
acknowledgments, thus adding up to 200ms to each P-
HTTP transaction. A third results in multiple slow-starts
per TCP connection. Unresolved, these problems re-
sult in P-HTTP transactions which are 14 times slower
than standard HTTP and 20 times slower than potential
P-HTTP over a 10 Mb/s Ethernet. We describe each
problem and potential solutions. After implementing
our solutions to two of the problems, we observe that
P-HTTP performs better than HTTP on a local Ether-
net. Although we observed these problems in specific
implementations of HTTP and TCP (Apache-1.1b4 and
SunOS 4.1.3, respectively), we believe that these prob-
lems occur more widely.

1 Introduction

At ISI we are currently examining HTTP protocol per-
formance across various transport protocols [8, 20]. As
a part of this work we have examined the performance
of HTTP and persistent-HTTP (P-HTTP) in detail. We
have developed a model for HTTP performance based

�This research is supported by the Defense Advanced Research
Projects Agency (DARPA) through FBI contract J-FBI-95-185 enti-
tled “LSAM”. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily
representing the official policies, either expressed or implied, of the
Department of the Army, DARPA, or the U.S. Government.

The author can be contacted at 4676 Admiralty Way, Marina del
Rey, CA, 90292-6695, or by electronic mail tojohnh@isi.edu .
Other information about the LSAM project can be found at
http://www.isi.edu/lsam/ .

Copyright c 1996 by the USC/ISI. Permission to make digital or
hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that new copies bear this no-
tice and the full citation on the first page. Abstracting with credit is
permitted. To copy otherwise, to republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee.
Request permissions from the authors.

on a function of server and network characteristics [8].
To validate our HTTP performance model we com-

pared predicted performance to measured performance
in an actual web server. Our early experiments sug-
gested that P-HTTP performance was ten times slower
than the corresponding HTTP transactions in a simple
page-retrieval benchmark. This result is surprising since
P-HTTP is intended to improve performance by amor-
tizing costs of connection creation across multiple re-
quests [16, 13].

We found several interactions between P-HTTP and
TCP which explain the exceedingly poor P-HTTP per-
formance. These performance problems are not caused
by specific errors in our server (Apache, beta ver-
sion 1.1b4) or in our TCP implementation (SunOS
4.1.3), but they instead result from interactions be-
tween application-level P-HTTP behavior and existing
TCP algorithms. We resolved these interactions through
application-level implementation changes, providing an
HTTP implementation where P-HTTP is 40% faster
than simple HTTP over an Ethernet. With these im-
plementation changes, most P-HTTP overhead is accu-
rately accounted for by our analytic model [8].

Although the problems that we found are due to our
particular implementations of P-HTTP and TCP, we be-
lieve that there are several reasons broader understand-
ing of these issues is needed in the web community.
First, P-HTTP is a relatively new protocol and is only
now becoming standardized in HTTP/1.1 [6]. Although
P-HTTP is derived from HTTP, P-HTTP exhibits very
different network dynamics. To a first approximation,
simple HTTP is identical to the data channel of FTP:
a new connection is opened for each data object. FTP
behavior has been studied for many years. P-HTTP in-
volves multiple exchanges over a single TCP connec-
tion, thus it behaves much more like SMTP or NNTP
(the Internet’s standard e-mail and news transfer proto-
cols) than FTP. SMTP is a batch protocol and inter-
active use of NNTP is usually on a LAN, so it is not
surprising that TCP is not tuned for wide-area P-HTTP-
style traffic.

Second, we have observed these problems in widely
deployed implementations of HTTP and TCP. We have

also made an early draft of this work available to oth-
ers and been told that similar problems exist in at least
one other HTTP server [7]. Together, these observa-
tions suggest that the web development community is
not widely familiar with these problems.

Finally, HTTP is becoming very widely deployed out-
side its original domain of hypertext exchange. HTTP
server implementations have been deployed for weather
sensor arrays, networked disk drives, network routers
and gateways, and implementations exist for nearly all
types of general-purpose computers. Although many of
these platforms will implement only a subset of HTTP
(and possibly not P-HTTP), the many potential P-HTTP
implementations suggest that a broader understanding
of its behavior is important.

This document summarizes two observed perfor-
mance problems and a third anticipated problem. In
each case we describe the problem and demonstrate it
with packet traces (where possible). We have imple-
mented solutions to the first two problems we describe
and show that, with these solutions, P-HTTP performs
better than HTTP. We outline a solution to the third
problem.

Problems similar to the first two problems we de-
scribe have been encountered in other contexts [14, 5].
We compare this work to ours in Section 3.

2 The Performance Problems

Of the three performance problems identified in our
work, two involve delayed acknowledgments, and the
third concerns congestion control. This section de-
scribes each problem and their solutions. Detailed fixes
for the problems are available from our web page at
http://www.isi.edu/lsam/tools/ .

2.1 Experimental Framework and Initial
Performance

Our experiments involved two hosts directly connected
by a 10 Mb/s Ethernet (RTT less than 1ms, measured
user-to-user bandwidth 8.7Mb/sec). These experiments
were performed between two Sun SPARC 20/71 com-
puters running SunOS 4.1.3 with some TCP modifica-
tions (multicast support, a 16KB default TCP window
size, and slow-start enabled for directly connected net-
works). Our HTTP server was Apache 1.1b4 and the
client was a custom program written in Perl. The client
made HTTP/1.0 requests; persistent connections were
indicated with a “Connection: Keep-Alive” header.

With this configuration we ran a workload consisting
of 100 web-page transactions. Each retrieval consists of
retrieval for three documents of 6,651, 3,883, and 1,866

bytes over a single P-HTTP connection. (These doc-
uments are the same size as the front page of Yahoo
(http://www.yahoo.com/) on May 1, 1996, and
represent a hypertext document with two embedded im-
ages.)

Initial transaction times for HTTP and P-HTTP are
summarized in the first two rows of Table 1. P-
HTTP performance is about 14 times worse than sim-
ple HTTP performance over Ethernet. The relative over-
head would be substantially less if these pages were ac-
cessed over wide-area networks with lower bandwidth
and higher latencies. Nonetheless, this high overhead
suggests that something is wrong with P-HTTP perfor-
mance for these implementations.

As of this writing the current release of Apache-1.1.1
is available (athttp://www.apache.org/). Al-
though we have not repeated our experiments with this
release, the code relevant to these problems does not ap-
pear to have changed. We have informed the Apache
developers of the problems and fixes we discuss below;
we expect that some of our patches will be part of a fu-
ture Apache release.

Pipelining requests across a P-HTTP connection is
necessary to maximize performance [15]. Our simple
client does not pipeline requests, but pipelining (by it-
self) would not eliminate any of the interactions we de-
scribe. (Pipelining may reduce the effect of the short-
initial-segment problem to one delayed-ACK stall de-
pending on the implementation.)

2.2 The Short-Initial-Segment Problem

The first problem we encountered was an interaction be-
tween Apache sending MIME headers as a separate seg-
ment and SunOS’s implementation of TCP’s slow-start
and delayed-acknowledgment algorithms.

Apache supports keep-alive connections, an early im-
plementation of P-HTTP. When handling a keep-alive
connection, Apache sends its headers as a separate seg-
ment. (It does so to work around a bug in a popular
browser.) TCP MSS (maximum segment size) is typi-
cally 1460B for Ethernet or 512B or 536B for wide-area
TCP connections. HTTP headers are much less than a
full segment, typically 200–300 bytes. TCP’s slow-start
algorithm specifies that the connection opens its conges-
tion window exponentially. For each segment acknowl-
edged the congestion window increases by a full-size
segment, allowing two segments to be introduced into
the network (one replacing the old segment and one new
segment).

When a server replies to an HTTP request the conges-
tion window begins at two segments1; thus the Apache

1The HTTP-reply congestion window starts at two segments in
most BSD-derived TCP implementations because the ACK of connec-

server retrieval time
HTTP 1.1b4 43ms (4.0ms, 94%,�8.0ms)
P-HTTP 1.1b4 605ms (10ms, 16%,�19.7ms)
P-HTTP 1.1b4 (w/first fix) 195ms (1.9ms, 1%,�0.38ms)
P-HTTP 1.1b4 (w/both fixes) 26ms (8.8ms, 33%,�1.7ms)

Table 1: Retrieval time (for HTML and images) for different protocol and software versions.Each measurement
is the average of 100 samples. Values in parentheses give standard deviation, percent relative standard deviation, and
95% confidence intervals.

server will send one small segment with the HTTP head-
ers followed by a second segment of size MSS. It then
waits for an ACK before continuing.

The client reads both of these segments. TCP’s
delayed-acknowledgment algorithm specifies that
ACKs should be delayed in hopes of piggybacking
the ACK on return traffic. The host requirements
RFC adds that at least every other full segment must
be acknowledged [1]. Unfortunately, the client has
received only one full segment and one partial segment.
The client therefore delays ACKing the data until the
delayed ACK timer expires, which can take up to
200ms on BSD-derived TCPs or 500ms according to
the specification [1].

A packet trace illustrating this problem can be seen
in Figure 1. Details of the packet exchanges are listed
in Figure 2. Although this trace represents a single re-
sponse, time between the second and third data seg-
ments is consistently 170–190ms in our experiments.
After the first exchange, the client actually becomes syn-
chronized with the server’s slow-start clock.

A solution to this problem is to insure that the HTTP
server does not send the HTTP headers in a partial
segment. Apache sent the headers with an explicit
application-level flush; removing this flush causes the
headers to be sent with the initial data. This flush was
explicitly added to Apache for persistent connections to
work around a bug in a popular browser; we discuss this
problem in Section 2.6.

Resolution of this problem improves P-HTTP perfor-
mance substantially. The third row of Table 1 shows
Apache performance with this fix. While P-HTTP per-
formance reduced to a third of unmodified Apache’s P-
HTTP (the second row), it is still substantially worse
than simple HTTP performance.

We believe that this problem is an example of a
broader problem in using TCP for request–response traf-
fic. TCP delays acknowledgments with the goals of
piggy-backing them on return traffic and of reducing
ACK frequency. For request–response usage (such as
HTTP), piggy-backing is rarely successful since data
traffic is almost completely unidirectional. This same

tion setup has already opened the congestion window by one segment.

problem occurs in FTP data traffic; the initial window
size is 1 MSS, so each FTP data exchange stalls for up
to the delayed-ACK time-out period when it begins.

With primarily unidirectional traffic, segments are
usually sent back-to-back. A better approach for such
traffic would be to delay ACKs by slightly more than
the back-to-back segment interarrival time and then im-
mediately send an ACK, thus consolidating every other
ACK without unnecessarily delay.

2.3 The Odd/Short-Final-Segment
Problem

The second problem we encountered involved odd num-
bers of segments interacting with the silly-window-
syndrome (SWS) avoidance algorithm [4]. The prob-
lem occurs when the Nagle algorithm is enabled and a
response requires an odd number of full segments fol-
lowed by a short final segment. The Nagle algorithm
was designed for terminal I/O traffic and so is not ap-
propriate for HTTP traffic, but it is enabled by default
and has not been a problem with simple (non-persistent
connection) HTTP traffic.

Odd numbers of segments arise when Apache sends
data over a TCP connection with a large MSS. TCP
connections between Ethernet-connected hosts typically
have an MSS of 1460B, as might wide-area connections
where the hosts implement MTU-discovery [12]. (With-
out MTU-discovery wide-area connections typically see
a 512B or 536B MSS.)

Apache writes data at the application-layer in 4KB
chunks. TCP breaks this data into three segments of
lengths 1460, 1460, and 1175. The client will acknowl-
edge the first two segments immediately upon receipt
(recall that according to the host requirements RFC, ev-
ery two full segments must be acknowledged [1]). The
client will delay acknowledgment of the third segment
according to the TCP delayed acknowledgment algo-
rithm.

Next assume that the server has only a small amount
of data to send to complete the current response (small
here means less than half of the client’s maximum ad-
vertised window). Apache will immediately write this
data. TCP, however will refuse to send it because of

0

1000

2000

3000

4000

5000

6000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

se
qu

en
ce

 n
um

be
r

(in
 b

yt
es

)

time since first SYN (in seconds)

request

data

ACK

short inital
segment

delayed ACK stall

ACK

Figure 1: A sequence-number plot illustrating the short-initial-segment problem.The segment through byte 227
is short. It is followed by a long segment (through 1687B) and then stalls until the delayed ACK at 0.189201.

0.000000 client.3199 > server.8080: S 676352001:676352001(0) win 16384 <mss 1460>
0.000251 server.8080 > client.3199: S 1807168001:1807168001(0) ack 676352002 win 16384 <mss 1460>
0.000460 client.3199 > server.8080: . ack 1 win 16384
request
client_think_time: 0.650ms
0.001110 client.3199 > server.8080: P 1:53(52) ack 1 win 16384
response
server_think_time: 2.175ms
first segment: headers
0.003285 server.8080 > client.3199: P 1:227(226) ack 53 win 16384
second segment: data
delta_time: 1.626ms
0.004911 server.8080 > client.3199: . 227:1687(1460) ack 53 win 16384
server delays for ACK before sending next segment
0.189201 client.3199 > server.8080: . ack 1687 win 16384
additional data
delta_time: 185.736ms
0.190647 server.8080 > client.3199: . 1687:3147(1460) ack 53 win 16384
0.191879 server.8080 > client.3199: . 3147:4607(1460) ack 53 win 16384

Figure 2: Packet trace demonstrating the short-initial-segment problem.The segment through byte 227 is short.
It is followed by a long segment and then stalls waiting on the delayed ACK.

sender-side SWS avoidance [3]. According to Stevens’
summary of the BSD TCP algorithms [17] (paraphrased
from page 326), the server won’t send data until: (a) a
full-size segment can be sent, (b) we can send half of the
client’s advertised window, (c) we can send everything
we have and either are not expecting an ACK or the Na-
gle algorithm is disabled. Cases (a) and (b) can never be
true for the transaction because we’re sending the last
few bytes of the response. Case (c) is not true because
we have outstanding unacknowledged data (the odd seg-
ment) and Nagle is enabled by default. The server there-
fore waits for the client to ACK this segment before re-
sponding. Delaying acknowledgments means that the
client will not do so for up to 200ms.

This problem is illustrated graphically in Figure 3.
The detailed packet trace of a portion of the plot is listed
in Figure 4. Again, although this trace represents a sin-
gle run, the time between the second and third data seg-
ments is consistently 170–190ms.

This problem occurs because Nagle’s algorithm is
intended for small-packet, interactive traffic while P-
HTTP uses TCP for a series of requests and responses.
This problem does not occur with non-persistent HTTP
requests because closing the TCP connection also im-
mediately sends any data waiting for transmission. We
solve this problem by disabling Nagle’s algorithm for
P-HTTP connections, thus disabling the aspect of SWS
avoidance which interferes with performance.

Resolution of this second problem brings P-HTTP
performance in line with what we expect (see the final
line of Table 1); P-HTTP performs better than simple
HTTP by avoiding connection setup costs. With this
fix we observe actual P-HTTP performance over wide-
area connections that is with 5% of that predicted by our
model of TCP connection setup behavior [8].

2.4 The Slow-Start Re-Start Problem

A final potential problem we are aware of involves con-
servative assumptions made in some TCP implementa-
tions about congestion control. These assumptions orig-
inated in later versions of BSD TCP [11] and do not
occur in many BSD-derived systems (such as SunOS).
The interaction between these assumptions and P-HTTP
was originally observed in other work on P-HTTP per-
formance [20].

BSD TCP makes a very conservative assumption
about the congestion window. If at any time all data sent
has been acknowledged and nothing has been sent for
one retransmission time-out period, then it reinitializes
the congestion window to 1 segment, forcing a slow-
start. The motivation for this algorithm was the obser-
vation that some applications such as SMTP and NNTP
typically have a negotiation phase followed by a data

transfer phase [11]. The negotiation phase can artifi-
cially open the congestion window; data transfer will
then result in a burst of packets which can move the net-
work out of equilibrium, potentially resulting in conges-
tion or packet loss.

A result of reinitializing the congestion window is
that, even without packet loss, P-HTTP connections will
frequently slow-start “mid-stream”. In fact, since users
nearly always spend more than the retransmission time-
out browsing a given page, P-HTTP will nearly always
slow-start when the user follows a link. The primary
goal of P-HTTP is to avoid the cost of multiple connec-
tion setup and slow-starts; this interaction defeats much
of the purpose of P-HTTP’s optimization. Web pages to-
day typically require a “cluster” of HTTP requests, one
for the HTML document and one for each embedded im-
age. While P-HTTP’s optimizations will be successful
across a cluster, they will not be between clusters, thus
limiting P-HTTP performance [8].

We have not yet experimentally verified that this
behavior occurs. We have, however, examined the
source code of several existing Unix implementations.
SunOS 4.x does not reduce the congestion window ex-
cept due to packet loss. 4.4BSD, FreeBSD 2.1, and
Linux 2.0 will reset the congestion window. Stevens
describes this behavior (Section 26.2, [18]), although he
states that the idle time is one round-trip time rather than
the retransmission time-out interval.

Several solutions exist to unify the goals of the TCP
layer (congestion avoidance via packet conservation)
and P-HTTP (maximum throughput). First, one could
omit the code to reset the congestion window (as in
SunOS 4.1.3) or significantly increase the time before
the window is closed. This approach improves P-HTTP
performance by avoiding additional slow-starts, but will
send a burst of up to a full window of packets. In an in-
ternetwork, bursty traffic can result in packet loss due to
router queue overflow, possibly resulting in poorer per-
formance overall (both for the P-HTTP connection and
for other traffic).

The other extreme is to insure that all TCP imple-
mentations reset the congestion window after an idle pe-
riod. Ideally the window would be closed in the kernel
as is done 4.4BSD and Linux. In addition, application-
level protocols could implement this algorithm by clos-
ing connections after the appropriate length of time. Un-
fortunately, adjusting this time to network behavior re-
quires information (the round-trip estimate) not easily
available to the application. This approach also limits
the performance advantage of persistent connections.

We believe that an intermediate approach is prefer-
able to the alternatives. One intermediate approach
would be to decay the congestion window over time
rather than reset it to one. This approach improves P-

0

2000

4000

6000

8000

10000

12000

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

se
qu

en
ce

 n
um

be
r

(in
 b

yt
es

)

time since first SYN (in seconds)

delayed ACK stall
odd
segment

ACK and short
segment

request

ACK

data

Figure 3: A sequence-number plot illustrating the odd/short-final-segment problem.The segment at 10772B is
an odd segment, a short segment at 10785B is available for transmission but cannot be sent until the ACK arrives at
0.189262ms.

(connection setup and first P-HTTP request omitted)

% base time 9:44:07.871221 +10598
request
0.010598 client.1029 > server.8080: P 53:111(58) ack 6676 win 16384
0.011122 server.8080 > client.1029: . ack 111 win 16326
reply
0.019869 server.8080 > client.1029: . 6676:8136(1460) ack 111 win 16384
0.021099 server.8080 > client.1029: . 8136:9596(1460) ack 111 win 16384
0.022103 server.8080 > client.1029: P 9596:10772(1176) ack 111 win 16384
ACK first two packets
(ack was queued at client pending transmission of third packet)
0.022835 client.1029 > server.8080: . ack 9596 win 16384
ACK is delayed 166ms
0.189262 client.1029 > server.8080: . ack 10772 win 16384
final packet immediately follows ack
0.189479 server.8080 > client.1029: P 10772:10785(13) ack 111 win 16384

Figure 4: Portion of a packet trace demonstrating the odd/short-final-segment problem.

HTTP performance but can still result in packet bursts
unless the window is capped at some value. Determin-
ing parameters for this approach is difficult.

A preferable intermediate approach would be to keep
the window open but to pace outgoing packets, limiting
the rate of packet introduction to avoid burstiness. Upon
receipt of the first ACK of a rate-based packet we would
resume TCP’s normal ACK-clocked flow-control. Al-
though rate-based flow-control is difficult to use for new
TCP connections because network conditions are un-
known, TCP connections could collect congestion con-
trol information and apply it to limit data flow when
restarting transmission after the connection goes idle.
The TCP implementation might estimate packet rate by
counting packets sent in a given packet’s round trip. If
n packets were sent in timet, packets after an idle con-
nection would be sent out one everyn=t seconds.

A rate-based algorithm for mid-stream re-starts pro-
vides a good balance between the desires for good
HTTP performance and steady packet traffic. Solu-
tions like this one can be deployed incrementally since
for HTTP traffic only the server’s TCP implementation
need change. We have implemented this approach using
TCP-Vegas mechanisms [2] to measure the transfer rate
and are currently examining its performance through ex-
periment and simulation.

Finally, the question of how to initialize or reset TCP
status information over time and space arises not only
when a connection goes idle, but also when initiating
new connections in parallel or serial. For a more de-
tailed discussion of the alternatives, see [19].

2.5 Other problems

In addition to interactions between P-HTTP and TCP we
have observed two performance problems not specific to
P-HTTP. These problems and their solutions have been
widely explored; we describe them here briefly in the
context of Apache.

First, many web servers employ standard I/O pack-
ages (for example, C’s stdio library). The buffering used
in these packages allows the application to do small I/Os
efficiently (by merging several small, application writes
into a single system-level write) but result in several ex-
tra data copies for bulk data transfer. For example, us-
ing stdio for both input and output requires up to six
data copies (disk, file-system cache, input-stream stdio
buffer, user buffer, output stdio buffer, network buffers,
network device). The common solution to this problem
is memory-mapping the input file, reducing data copies
to three (disk, file-system cache, network buffers, net-
work device). With memory-mapping all data copying
can happen directly in the kernel.

Both Apache 1.0.5 and NCSA 1.5 use the C standard

I/O library; Apache 1.1 replaces stdio with a custom li-
brary with a similar buffering scheme. We have mod-
ified Apache to use stdio for header output and switch
to memory-mapped files for bulk-data transfer. To avoid
the short-initial-segment problem we also write enough
of the initial data to insure a steady return of ACKs.
Since there is a fixed overhead in setting up memory-
mapping we enable it only for files larger than 8KB.

The second general problem we encountered was
socket buffers too small to support steady segment flow
for wide-area connections. TCP’s sliding-window is
limited by socket buffer size; if this window is smaller
than the bandwidth-delay product between the client and
the server, the server will be unable to send enough data
to keep the pipe full and performance will be less than
optimal. The default size of a TCP socket buffer is
system dependent, ranging from 2–16KB. A common
value is 4KB. Although this may be sufficient for con-
nections with a low bandwidth-delay product (such as
modems and ISDN), well connected hosts will find it
insufficient when browsing distant web pages. For ex-
ample, well-connected hosts crossing the United States
benefit from a 12KB or larger buffer (1Mb/sec band-
width at 90ms latency). A default buffer size of 16KB
is not unreasonable, larger buffers are recommended for
particularly well-connected hosts.

Neither Apache nor NCSA set the socket send-buffer
size. We have modified Apache to support a config-
urable send buffer.

2.6 Current Status

We have modified Apache to solve or work around each
of these problems except for the slow-start re-start prob-
lem. We are currently exploring options and plan to
modify TCP to address that problem shortly. The ef-
fects of our modifications are seen in Table 1. With the
fixes, P-HTTP performance is better than non-persistent
HTTP.

Our patches to Apache are available from our web
page at http://www.isi.edu/lsam/tools/ .
We have discussed the problems we have observed with
the Apache developers; our fixes to the odd/short-final-
segment problem and the send-buffer-size problem will
be in the next release.

Incorporation of our short-initial-segment fix has
been discussed by the Apache developers. Code to flush
headers (and thus send them as a separate segment) was
added to Apache specifically to work around a bug. In a
widespread implementation of persistent connections in
HTTP/1.0, data sent in the same segment as the HTTP
headers is ignored. Until it bug is resolved, it may be
necessary to disable persistent connections for clients
with such problems.

3 Related Work

Problems similar to the short-initial-segment problem
and the odd/short-final-segment problem have been en-
countered by Moldeklev and Gunningberg [14] and
Crowcroft, Wakeman, Wang, and Strovica [5].

Moldeklev and Gunningberg describe how MTU af-
fects TCP transfer efficiency [14]. They find that inter-
actions between sender and receiver window sizes, Na-
gle’s algorithm, delayed acknowledgements, and BSD
socket buffering code can result in a number of con-
ditions where TCP data transfer is tied to delayed ac-
knowledgements (a “throughput deadlock” in their ter-
minology). Their observations focus on a large-MTU
networks (such as ATM) where in some circumstances
all data transfer becomes deadlocked. This problem
is similar to our short-initial-segment problem, how-
ever in our case the problem occurred due to applica-
tion level behavior (flushing outgoing data) rather than
due to MTU and buffer size interactions. Most cur-
rent HTTP systems have combinations of buffering and
MTU values which avoid the deadlocks observed Mold-
eklev and Gunningberg, however these problems could
arise as MTU-discovery and large-MTU networks be-
come more widely deployed [12].

Crowcroft, Wakeman, Wang, and Strovica experi-
mented with SunRPC traffic over TCP. SunRPC calls
have very similar behavior with HTTP requests and re-
sponses in P-HTTP. They found that mismatches be-
tween user- and TCP-level buffering caused a problem
similar to the odd/short-final-segment problem we de-
scribe. Their conclusion is that more integrated ap-
proaches must be taken to multi-layer processing to
avoid these kinds of performance problems. To this
statement we would add that, when the actual imple-
mentations of different layers cannot be integrated, care-
ful documentation and understanding of the buffering
strategies at each layer is very important.

Finally, while the problems described in Section 2.5
(avoiding data copies and tuning socket buffers to the
network bandwidth-delay) are well known, we are not
aware that others have encountered the slow-start re-
start problem described in Section 2.4. Hoe has ad-
dressed the problem of excessive packet loss due to
aggressive slow-start rates by limiting the aggressive
phase of slow-start [10]. This work is complementary
to our approach where we pace packets instead of slow-
starting after an idle connection. Hoe also has suggested
(independent of our work) rate-based pacing as a po-
tential future alternative to slow-start [9]. We are cur-
rently examining the effects of augmenting slow-start
with rate-based pacing during re-starts; we expect to
have a performance evaluation of our implementation
shortly.

4 Conclusions

We have identified three performance problems that oc-
cur due to interactions between specific implementa-
tions of TCP and P-HTTP. We have demonstrated that
two of these interactions can result in P-HTTP perfor-
mance 20 times slower than possible for hosts on a di-
rectly connected, 10 Mb/s Ethernet, and that the third
can substantially reduce the performance benefits of P-
HTTP.

Although our observations of these interactions are
specific to BSD-derived TCPs and the first two are spe-
cific to the Apache HTTP server, these implementations
are widely used. To avoid similar situations in other
implementations, developers must be aware of these
interactions. We have suggested solutions to each of
the problems, and implemented solutions to the first
two problems, demonstrating that these solutions bring
Apache P-HTTP performance in line with expectations.

Acknowledgments

I would like to thank Katia Obraczka, Joe Touch, and
Ted Faber for their discussions about these performance
problems. I would also like to thank Rod van Meter,
Joe Bannister, Jon Postel, and Vikram Visweswaraiah
for suggestions about this paper. Vikram Visweswaraiah
and Ashish Savla implemented our version rate-based
pacing. Finally, I would like to thank the members of
the Apache developers mailing list, particularly Randy
Terbush, for their comments upon this work and these
patches.

References

[1] R. Braden. Requirements for Internet hosts—
communication layers. RFC 1122, Internet Re-
quest For Comments, October 1989.

[2] L. Brakmo and L. Peterson. TCP Vegas: End
to end congestion avoidance on a global internet.
IEEE Journal of Selected Areas in Communica-
tion, 13(8):1465–1480, October 1995.

[3] David D. Clark. Modularity and efficiency in pro-
tocol implementation. RFC 817, Internet Request
For Comments, July 1982.

[4] David D. Clark. Window and acknowlegement
strategy in TCP. RFC 813, Internet Request For
Comments, July 1982.

[5] Jon Crowcroft, Ian Wakeman, Zheng Wang, and
Dejan Strovica. Is layering harmful?IEEE Net-
work Magazine, 6(xxx):20–24, January 1992.

[6] R. Fielding, H. Frystyk, T. Berners-Lee, J. Get-
tys, and J. Mogul. Hypertext transfer protocol—
HTTP/1.1. RFC draft-ietf-http-v11-spec-04.txt,
Internet Request For Comments, June 1996.

[7] John Franks. Change log for WN. WN distri-
bution,http://hopf.math.nwu.edu/ , Au-
gust 1995.

[8] John Heidemann, Katia Obraczka, and Joe Touch.
Modeling the performance of HTTP over sev-
eral transport protocols. Submitted to IEEE/ACM
Transactions on Networking, November 1996.

[9] Janey C. Hoe. Start-up dynamics of TCP’s con-
gestion control and avoidance schemes. Master’s
thesis, Massachusetts Institute of Technology, May
1995.

[10] Janey C. Hoe. Improving the start-up behavior of
a congestion control scheme for tcp. InProceed-
ings of the ACM SIGCOMM ’96, pages 270–280,
Stanford, CA, August 1996. ACM.

[11] Van Jacobson and Mike Karels. Congestion avoid-
ance and control.ACM Computer Communication
Review, 18(4):314–329, August 1990. Revised
version of his SIGCOMM ’88 paper.

[12] J.C. Mogul and S.E. Deering. Path MTU discov-
ery. RFC 1191, Internet Request For Comments,
November 1990.

[13] Jeffrey C. Mogul. The case for persistent-
connection HTTP. InProceedings of the SIG-
COMM ’95, pages 299–313. ACM, August 1995.

[14] Kjersti Moldeklev and Per Gunningberg. How a
large ATM MTU causes deadlocks in TCP data
transfers.ACM/IEEE Transactions on Networking,
3(4):409–422, August 1995.

[15] Henrik Frystyk Nielsen, Jim Gettys, Anselm
Baird-Smith, Eric Prud’hommeaux, H˚akon Wium
Lie, and Chris Lilley. Network perfor-
mance effects of HTTP/1.1, CSS1, and
PNG. NOTE-pipelining-970207, availble as
web page http://www.w3.org/pub/-
WWW/Protocols/HTTP/Performance/-
Pipeline.html , 7 February 1997.

[16] Venkata N. Padmanabhan and Jeffrey C. Mogul.
Improving HTTP latency. InProceedings of the
Second International World Wide Web Conference,
October 1994.

[17] W. Richard Stevens.TCP/IP Illustrated, volume 1.
Addison-Wesley, 1994.

[18] W. Richard Stevens.TCP/IP Illustrated, volume 2.
Addison-Wesley, 1995.

[19] Joe Touch. TCP control block interdependence.
Work in progress (Internet draft draft-touch-tcp-
interdep-00.txt, expires 11 December 1996), June
1996.

[20] Joe Touch, John Heidemann, and Katia Obraczka.
Analysis of HTTP performance. Released as
web page http://www.isi.edu/lsam-
/publications/http-perf/ , Currently
submitted for publication to IEEE Communica-
tions Magazine, June 1996.

