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Performance Limitations for Linear Feedback
Systems in the Presence of Plant Uncertainty

Graham C. Goodwin, Mario E. Salgado, and Juan I. Yuz

Abstract—The goal of this paper is to contribute to the under-
standing of fundamental performance limits for feedback control
systems. In the literature to date on this topic, all available results
assume that the designer has an exact model of the plant. Heuris-
tically, however, one would expect that plant uncertainty should
play a significant role in determining the best achievable perfor-
mance. The goal of this paper is to investigate performance limita-
tions for linear feedback control systems in the presence of plant
uncertainty. We formulate the problem by utilizing stochastic em-
bedding of the uncertainty. The results allow one to evaluate the
best average performance in the presence of uncertainty. They also
allow one to judge whether uncertainty or other properties, e.g.,
nonminimum phase behavior, are dominant limiting factors.

Index Terms—Performance limitations, stochastic embedding,
uncertainty.

I. INTRODUCTION

FUNDAMENTAL limitations on the performance of feed-
back control loops have been a topic of interest since the

seminal work of Bode during the 1940s related to feedback am-
plifier design [1]. There are several well-known examples where
one can readily appreciate the link between structure and the as-
sociated limits on control-loop performance; see, for example,
the discussion of the inverted pendulum [2] or the flight con-
troller for the X-29 aircraft [3].

The tools for analyzing limits of performance for systems
without uncertainty include logarithmic sensitivity integrals,
limiting quadratic optimal control and entropy measures. Early
work focused on linear feedback systems; see, for example,
[1]–[12]. There has also been growing interest in performance
limitations for nonlinear feedback systems; see, for example,
[13]–[15].

To give a flavor of the results achieved to date, we note
that one can distinguish two types of performance constraints,
namely:

i) those that hold forall designs, independent of the criterion
used to design the controller;

ii) those that hold for abestdesign, based upon some given
optimality criterion.

Examples of fundamental limitations of type i) are the
Bode–Poisson integral formulas for a control loop as in Fig. 1,
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Fig. 1. Feedback control loop.

where the plant and the controller are linear. For example, in
the single-input–single-output (SISO) case, the achieved com-
plementary sensitivity is known to satisfy an integral constraint
depending on open right-half plane (ORHP) zeros and time
delays. Similar, the achieved sensitivity function is known to
satisfy an integral constraint depending on ORHP poles.

Well known examples of the type ii) limitations arebest
cheap control. These give the minimum achievable integral
square output error due to unit step output disturbances and/or
impulsive measurement noise.

These bounds can be established via frequency domain argu-
ments [16], [2], [10], and can be extended to plants which are
both nonminimum phase or unstable [6]. There also exist in-
teresting connections between the cheap control results and the
Bode–Poisson integral equations [17].

A key point here is that results of type i) hold for all stabi-
lizing controllers, whereas bounds of type ii) require that a very
specific control law be used and they are thus sensitive to the
fidelity of the model used for design purposes. Based on this
observation, the goal of the current paper is to quantify the im-
pact of model uncertainty on the best achievable performance
of a control loop. Our analysis is in the spirit of the questions
posed in [18] in a general nonlinear setting. Here, we consider a
simple linear feedback system so as to maximally benefit from
insight and so as to retain the spirit of the usual performance
limits when the plant model is known [2], [6]. We consider SISO
control loops for open-loop stable plants and focus on best
performance with step disturbance rejection.

II. PERFORMANCELIMITS WITH NO MODEL UNCERTAINTY

As a precursor to the subsequent work on limits with plant
uncertainty, we will first present the corresponding results when
the plant model is known exactly.

We consider an open-loop stable linear model and an
output disturbance , i.e., a unit step. We assume
that can be written as

(1)
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where

We do not restrict ourselves tolinear feedback control. In-
stead, we consider any input , (no matter how
generated) satisfying the following two conditions.

i) is such that its Laplace transform, , is well de-
fined, and is such that is analytic in the right-half
plane (RHP).

ii) has a constant component which asymptotically
compensates the disturbance, i.e., takes .

We then have the following result (which extends the results
in [5] and [6] to cover general inputs and plants having pure time
delays).

Theorem 1: Given a perfectly known stable linear SISO plant
having transfer function as in (1) and any input satisfying con-
ditions i) and ii), then, for a unit step output disturbance, the
minimum norm of the output satisfies

(2)

where is the pure time delay, and are the ORHP
zeros of the plant.

Proof: See Appendix A.
Remark 1: The above result is well known in the perfor-

mance limitation literature. However, a key point in this paper is
that the bound on the right-hand side of (2) requires that the op-
timal input be expressed as a function of thetrue system model
[2], [6]. The performance of controllers designed to achieve the
limiting performance (2) is well known to be very sensitive to
the fidelity of the plant model (see Section VI-B). Indeed, the
linear feedback form of the result is rendered unstable by arbi-
trarily small undermodeling. We are thus motivated to examine
the impact of undermodeling on the achievable performance.
This topic will be addressed in Section IV. As a prelude, in the
following section, we will introduce the class of undermodeling
that we will utilize.

III. D ESCRIPTION OF ACLASS OFMODEL ERRORS

In view of the comments made at the end of the previous
section, we proceed to consider the impact of modeling errors.
In particular, we assume that

(3)

where and are theadditive and relative model
error, respectively.

Typically the fidelity of the nominal model used to represent
a plant will deteriorate at higher frequencies. To illustrate this
we analyze three typical examples.

i) Unmodeled delay and d.c. gain error

(4)

ii) Unmodeled pole and d.c. gain error

(5)

iii) Unmodeled zero and d.c. gain error

(6)

In each case, it is readily seen that the relative model error
can be bounded as follows:

(7)

where for cases i) and ii), in case iii),
and in each of the cases.

For the previous examples, we have a common bound on the
magnitude of , which is a constant plus a term which
grows linearly with frequency. We will capture these features
of modeling errors using the idea ofstochastic embedding[19],
[20]. The core idea is to think of the given modeling error as a
particular realizationof a stochastic processin the frequency
domain. Thus, we write

(8)

where and are independentrandom variablessuch that
, and

(9)

(10)

The form of these results implies that the mean square
modeling error corresponds to the magnitude of the frequency
response of a single zero, as shown in Fig. 2. For illustrative
purposes, we have reparametrized (10), in terms of the d.c.
modeling error (more than 100% would be intol-
erable) and the parameter, defined as the frequency where

. Note that and .
In the light of (4)–(7), the mean square result given in (10)

may be considered as representative of typically encountered
undermodeling scenarios.

We next give a physical interpretation to the constant;
specifically, it is the frequency at which the mean square
relative uncertainty has reached 1. Thus, we will callthe
model certainty bandwidth (i.e., the range of frequencies
until the relative model error reaches 100%).

In the next section, we design a fixed control law that min-
imizes thebest average performancefor this class of model
errors. This result will then be used as to quantify theexpected
true performance in the presence of model errors.
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Fig. 2. Modeling error bound.

IV. ROBUST REDESIGN

In the case of open-loop stable plants with exactly known
model, we found that the results in Section II hold for gen-
eral inputs and are thus not restricted to linear feedback control.
However, this will certainly not be the case in the presence of
modeling errors since the nature of the feedback plays an im-
portant role in the achievable performance. Thus, we will re-
strict ourselves to linear feedback control laws which stabilize
the nominal plant. (This being the minimal requirement to ob-
tain a meaningful performance bound).

Thus consider the linear feedback control loop shown in
Fig. 1. As before, we are interested in the minimum value for

(11)

Since the plant is assumed to be open-loop stable, the Youla
parametrization of all stabilizing controllersfor the nominal
plant can be written in the form [16]

(12)

where is a proper, stable transfer function. Based on this
parametrization, the nominal sensitivity functions are given by

(13)

(14)

Notice that the result of Section II is obtained with the partic-
ular linear feedback control law , with as
in (50) and .

Of course, with modeling errors, the nominal sensitivities
given in (13) and (14) will not be realized. Instead, the achieved
(i.e., true) sensitivity function will be given by [16, p. 410]

(15)

where is therelative model error as in (3) and
is some new value for the parameter in (12). In particular, our
goal will be to redesign the optimal nominal controller, ,
so as to best cope, in an average sense, with the assumed class
of model errors.

In the same spirit as the use ofrelative model errorsin (3), we
will find it convenient to utilizerelativechanges in . Thus,
we write the redesigned parameter in terms of using

(16)

Note that must be zero at d.c. to preserve integral ac-
tion. Thus, in the sequel, we will assume that has the
form

(17)

Substituting into (15), we have

(18)

Since we are considering a class of random modeling er-
rors with properties as in (9)–(10), we replace the deterministic
cost function (11) by the average performance over the assumed
class of model errors. Thus, we consider

(19)

where the expectation is over the (stochastic) class of model
errors. Thus, for each realization of the model error, we have
that

(20)

where is a random variable as in (18) and is a
particular realization of the undermodeling drawn from a dis-
tribution satisfying (9)–(10).

Again, using (20) and Parseval’s theorem, the average perfor-
mance over the assumed class of model errors is

(21)

where we assume sufficient regularity to interchange the integral
and expectation operators.

Our aim in the next section will be determine a fixed
that optimizes (21). With this redesigned control law, we will
then evaluate the associatedexpectedperformance over the
given model error class.

We note that the right-hand side of (18) is a nonlinear func-
tion of and . This would render any attempt to
carry out an optimization of expected performance intractable.
However, closed-loop stability requires that be
less than 1. Thus, we make a Taylor’s series expansion in

as follows:

(22)

The last term in the previous expression depends in the
product of , and . At those frequencies where

is small, then will also be small (i.e., there is no need



GOODWIN et al.: PERFORMANCE LIMITATIONS FOR LINEAR FEEDBACK SYSTEMS 1315

to change the nominal controller). At those frequencies where
approaches 1, then to preserve stability, it is necessary

that go to zero, i.e., should approach zero. We
may thus argue that the combination of factors in the last term
previously shown ensures that this term should be small relative
to the others. Thus, we further approximate (22) by

(23)

Substituting the approximation (23) into (21) and utilizing
(9)–(10) we obtain

(24)

Equation (24) will be the basis of the analysis presented
below. We will return to the approximations involved in
deriving (24) in Section VI.

V. LIMITING AVERAGE PERFORMANCE

For clarity of exposition, we begin with the case of one non-
minimum phase zero in the nominal model. We will later extend
this to multiple nonminimum phase zeros and/or delays.

A. Single Nonminimum Phase Zero in the Nominal Plant

Suppose that the nominal model of the plant has one nonmin-
imum phase zero and no pure time delay. We can then write

(25)

where and is rational and minimum phase.
The optimalnominaldesign is given by

(26)

Substituting and
into (24) and making use of (17), we see that

becomes , where

(27)

Theorem 2: We then have the following results.

i) The average cost function is minimized by the choice

(28)

ii) The resulting best average performance is given by

(29)

Proof: We follow the procedure outlined, for example, in
[16, p. 467]. Specifically, we rewrite as

(30)

where and are obtained from (27). In particular,
is obtained by spectral factorization.

Note that the minimum of (30) depends only on the first term
and is achieved by making the choice

(31)

which gives (28), establishing i). Note that the redesigned
controller is easily obtained from (16) and (17). Result ii) is
obtained by substituting the optimal value of into (27),
and evaluating the integral via residues.

Remark 2: It is important to note that when uncertainty is
negligible, i.e., both parametersand grow to infinity, i.e.,
there is no uncertainty in the d.c. gain and the certainty
bandwidth satisfies , the performance bound obtained
in Theorem 2 reduces to the one given in Theorem 1.

Remark 3: We can always scale the result bysince this
simply amounts to redefining the units of time. Fig. 3 shows the
corresponding scaled value of the bound (29) as a function of the
dimensionless quantityand the (scaled) uncertainty parameter

.
Remark 4: It is difficult to treat exactly a pure time delay

within the given framework since this requires the spectral
factorization of a transcendental function. However, a guide
to the achieved robust performance with a pure time delay
in the nominal model can be obtained by use of a first-order
Padé approximation [16]

(32)

We then obtain the result as in Theorem 2 with or
specifically

(33)

Again, we notice that this reduces to the result in Theorem 1
when the parametersand grow to infinity.

B. More General Nominal Plants

The same basic procedure as exemplified in Section V-A can
be used for general nominal plants. One can always obtain nu-
merical bounds using this methodology. However, in the spirit
of Theorem 2, it is also desirable to obtain analytical expressions
since these give additional insight into the impact of the various
factors on the performance limit. The expressions become more
complex as the nominal model complexity increases. To illus-
trate the principle, we consider the case of two nonminimum
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Fig. 3. Bound for one nonminimum phase zero v/s(d; c=u).

phase zeros and in the nominal plant [or, equivalent, one
nonminimum phase zero and a pure time delay approximated as
in (32)]. We then have the following theorem.

Theorem 3: (Subject to the previous conditions).

i) The cost function is minimized by the choice

(34)

where

(35)

(36)

(37)

(38)

(39)

ii) The resulting average performance is given by

(40)

where is a function such that

Proof: The proof follows exactly the same steps in
Theorem 2. Note that we have not spelled out the form of

due to its complexity. The result is available from
the authors on request.

Remark 5: Again we note that (40), agrees with Theorem 1
when the uncertainty issmall, i.e., when and go to infinity.
Specifically, we have that

1) the result obtained agrees with (2), consideringtwo non
minimum phase zeros andno nominal time delay

;
2) it also agrees with the same result, considering onlyone

non minimum phase zero at and a pure time delay
, approximated by .

VI. SIMULATION RESULTS

To further illustrate the results, we will consider a stable, first-
order plant having a pure time delay and nominal model given
by

(41)

The optimal nominal controller, using (26), is

(42)

If there is no uncertainty in the plant model, the best achiev-
able performance (when a unit step output disturbance is in-
jected in the control loop) is given by Theorem 1, i.e., .

Next, we will suppose that there is uncertainty in the nominal
plant (41) and that thetrue model takes the form

(43)

We suppose that and are uniformly distributed and
independent random variables in the interval , i.e., the
truedelay and thetrued.c. gain of the plant go from to

. Thus, we see that the variance of the random variables
and are given by

(44)

Based on (4) and (10), we take

(45)

Fig. 4 shows the achieved mean value of , consid-
ering and different values of and , compared
with the expression (10). In fact, we can see that this is a very
good prediction of the achieved expected uncertainty at least in
the frequency range where is less than 100%.

A. Optimal Average Performance

The redesigned controlleraccounting for plant uncertainty
is given by Theorem 2, where we use a Padé approximation for
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Fig. 4. Modeling error compared with the bound used.

the time delay. Substituting and the variances given in
(45) into (28), we obtain

(46)

Fig. 5 shows the actual achieved performance (obtained by
simulation and numerical integration of the output from to

) for differentdeterministicvalues of and in the range
to (100 different values for each variable), with .

Themean valueof the achieved performance obtained from
the simulations is 1.5363, and theexpectedperformance bound
as predicted by Theorem 2 [in particular, given by (33)] is
1.4543. We see in the figure that there is range of values for

where the achieved performance is better (less) than
the expected performance, and there is another range where the
performance is worse (greater).

The average of the achieved performances is only slightly
bigger than the average cost predicted by Theorem 2. This is
quite remarkable given the various approximations used to de-
velop the result. This vindicates (at least by example) the various
approximations used in the derivation of the result.

B. Illustrative Time Responses

We next illustrate the kind of time response obtained with
the nominal controller and the redesigned controller. We con-
sider the same nominal model as in Subsection VI-A save that
now we consider asingle realizationof the uncertainty, where

. We use the redesigned controller as in (46).
Table I shows the time responses of the closed loop systems for
the nominal and perturbed plant and for the redesigned control
law. Notice that there is a price paid in terms of the nominal per-
formance to achieve robust performance, and, as we expect, the
optimal nominal controller has poor robustness because it was
designed to achieve the limiting performance in the absence of
uncertainty.

VII. CONCLUSION

This paper has been concerned with the problem of optimal
performance for a linear control loop in the presence of a

step output disturbance. A distinctive feature of the analysis pre-
sented here is that the impact of a (stochastic) class of model
uncertainty has been included. A fixed linear feedback control

Fig. 5. Achieved performance.

TABLE I
DIFFERENTCOMBINATIONS FOR THEPLANT AND CONTROLLER

law has been used with the restriction that this feedback control
law must stabilize the nominal system. This does not imply that
all plants in the given uncertainty class will necessarily be stabi-
lized. Thus, the results represent alower bound on the expected
performance achievable. The results reduce to the well-known
results for the best achievable performance whenuncertainty
is negligible. The result shows that the average performance in
the presence of model uncertainty can depart significantly from
best achievable performance without model uncertainty. Thus,
the results here are believed to give a more realistic guide to the
performance one would expect to achieve in practice.

APPENDIX A

In this Appendix, we prove Theorem 1. We will make use of
the following preliminary result.

Lemma 1: Consider the transfer function

(47)
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If is expanded in its partial fraction decomposition

(48)

then

(49)

Proof: We expand in powers of , i.e.,
. We can see that, if we divide numerator and de-

nominator polynomials in (47), we will obtain .
We now also expand the partial fraction expression (48), di-

viding every term, where we can see that the coefficient of
is . Hence, (49) is obtained.

Next, we present the proof of Theorem 1.
Proof of Theorem 1:Subject to conditions i) and ii), we

can express, without loss of generality, the Laplace transform
of the plant input as

(50)

where is analytic in theRHPand
The Laplace transform of the plant output is then given by

(51)

We also write , where is stable
and strictly proper. Then, from (51), we have that the Fourier
transform of the output satisfies

(52)

We note that the first and second terms on the right-hand side
are orthogonal. Then, using (11), we have

(53)

Hence, using [16, Lemma 16.2] yields

(54)

Substituting into (53), and using the Cauchy Integral The-
orem [21]

(55)

where are the poles of lying in the
RHP.

We can separate the residues in (55) as follows:

(56)

Now, the first term on the right hand side is analytical in
the open RHP and hence the residues are zero. Thus we can
compute the residues from the residues of the poles of

in the ORHP. Now, (57) shown at the bottom of
the page holds, where

(58)

Also, we note that has onlyonepole at
. Thus

(59)

Hence

(60)

Then, the residue at is

(61)

where (58) was used.
Applying Lemma 1, with

(62)

(57)
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Hence

(63)

Finally, replacing in (55), the result is obtained.
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