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Performance Limitations for Linear Feedback
Systems in the Presence of Plant Uncertainty

Graham C. Goodwin, Mario E. Salgado, and Juan I. Yuz

Abstract—The goal of this paper is to contribute to the under- do(t)
standing of fundamental performance limits for feedback control +
systems. In the literature to date on this topic, all available results + y(?)
assume that the designer has an exact model of the plant. Heuris- C(s) > G(s) >
tically, however, one would expect that plant uncertainty should -
play a significant role in determining the best achievable perfor-

mance. The goal of this paper is to investigate performance limita-

tions for linear feedback control systems in the presence of plant Fig. 1. Feedback control loop.
uncertainty. We formulate the problem by utilizing stochastic em-

bedding of the uncertainty. The results allow one to evaluate the

best average performance in the presence of uncertainty. They alsowhere the plant and the controller are linear. For example, in
allow one to judge whether uncertainty or other properties, €.g., the single-input—single-output (SISO) case, the achieved com-
nonminimum phase behavior, are dominant limiting factors. plementary sensitivity is known to satisfy an integral constraint
Index Terms—Performance limitations, stochastic embedding, depending on open right-half plane (ORHP) zeros and time
uncertainty. delays. Similar, the achieved sensitivity function is known to
satisfy an integral constraint depending on ORHP poles.
I. INTRODUCTION Well known examples of the type ii) limitations abestL,

UNDAMENTAL limitations on the performance of feed_cheap control. These give the minimum achievable integral
back control loops have been a topic of interest since tgguare output error due to unit step output disturbances and/or

seminal work of Bode during the 1940s related to feedback am}$EIS|vebmea§uremebnt notlssl._ hed via f q :
plifier design [1]. There are several well-known examples where €se bounds can be established via frequency domain argu-

one can readily appreciate the link between structure and the'ggt-ﬂts [16]’_ [_2]’ [10],hand can beteﬁtlen%ed_;ﬁ plantls Whlqhta_lre
sociated limits on control-loop performance; see, for examp oth nonminimum phase or unstable [6]. There also exist in-

the discussion of the inverted pendulum [2] or the flight COI,[éa’resting connections between the cheap control results and the
troller for the X-29 aircraft [3]. ode—Poisson integral equations [17].

The tools for analyzing limits of performance for systemF A key FiOI“t herer:s that lgesulgs off'iype !.) hold fortﬁlltstab|—
without uncertainty include logarithmic sensitivity integrals, 2 'd CONTOTIErs, whereas bounds of type i) require that a very

limiting quadratic optimal control and entropy measures. Ear} ecific control law be used and they are thus sensitive to the

work focused on linear feedback systems; see, for exam gelity of the model used for design purposes. Based on this

[1]-[12]. There has also been growing interest in performan8 servation, the goal qf the current paper IS to quantify the im-
limitations for nonlinear feedback systems: see, for examp act of model uncertainty on the best achievable performance
[13][15] ' ' of a control loop. Our analysis is in the spirit of the questions

To give a flavor of the results achieved to date, we noReosed in [18] in a general nonlinear setting. Here, we consider a

that one can distinguish two types of performance constrain?érnple linear feedback system S0 as to maximally benefit from
namely: insight and so as to retain the spirit of the usual performance
Y those that hold foall desi ind dentof the criteri limits when the plant model is known [2], [6]. We consider SISO
!) those tha oldtoall designs, Independent otthe Criterion, o loops for open-loop stable plants and focus on Best
used to design the controller;

. . ) erformance with step disturbance rejection.
i) those that hold for destdesign, based upon some glvelj? P )
optimality criterion.
Examples of fundamental limitations of type i) are the Il. PERFORMANCELIMITS WITH NO MODEL UNCERTAINTY
Bode—Poisson integral formulas for a control loop as in Fig. 1, - .
9 P 9 As a precursor to the subsequent work on limits with plant
uncertainty, we will first present the corresponding results when
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where i) Unmodeled delay and d.c. gain error
T, is the pure time delay of the plant G=(1+K,)eT"G,; Ga=(1+K,e T —1. (4)
Ne
-5+ ¢
Br(s)=]] o Re(ci) > 0 i) Unmodeled pole and d.c. gain error
i=1 ¢
A . . . 1 Ku 1 Ku
Go(s)~ is stable, rational, minimum phase, and = (1+ )Go; Ga = 1+ K.) 1 ®)
lin%) Go(s) =k #0. sTy +1 sTy +1

. . iii) Unmodeled zero and d.c. gain error
We do not restrict ourselves tmear feedback control. In- ) 9

stead, we consider any inputt),¢ € [0,00), (no matter how
generated) satisfying the following two conditions.

i) u(t) is such that its Laplace transforfi(s), is well de-
fined, and is such thatl/(s) is analytic in the right-half
plane (RHP).

i) u(t) has a constant component which asymptotical
compensates the disturbance, i.e., takes) — 0.

We then have the following result (which extends the results
in [5] and [6] to cover general inputs and plants having pure timﬁhereﬂ — T, for cases i) and g = (1 + K.)T, in case iii),

delays). !
. . anda = K, in each of the cases.
Theorem 1: Given a perfectly known stable linear SISO plant For the previous examples, we have a common bound on the

h.a_""‘g ?ransfe_r_ function as in (1.) and any input_satisfying COI’rlﬁagnitude ofGa(jw)|, which is a constant plus a term which
d'?'o.”s ) aﬁnd ), th?r:hfor at ur;|t stt_eg output disturbance, t rows linearly with frequency. We will capture these features
minimum 4> norm of the output satishes of modeling errors using the idea stiochastic embeddirid9],

o N, [20]. The core idea is to think of the given modeling error as a
min {/ y2(t) dt} =7, +2 Z 1 2 Jeort 2) particular realizationof a stochastic procesm the frequency
0 Ce

G=(014+K,)(sTu+1)Go; Gar=(14+K,)Tys+ K,.
(6)

In each case, it is readily seen that the relative model error
|<§/an be bounded as follows:

[Ga(jw)| < laf + |wf] ()

- domain. Thus, we write
wherer, isthe pure time delay, anfd;, . . ., ¢y, } are the ORHP Ga(s) = G + sGX 8)
zeros of the plant.
Proof: See Appendix A. B whereGY andG, are independemandom variablessuch that

Remark 1: The above result is well known in the perfor-gg0} = 0, E{GL} = 0, and
mance limitation literature. However, a key point in this paper is

that the bound on the right-hand side of (2) requires that the op-p (G , (jw)} = E{GQ + jwGL} =0 Q)
timal input be expressed as a function of thee system model ) ) 1 W?

[2], [6]. The performance of controllers designed to achieve the{|G a (jw)|*} = E {|G°A| } + w2E{|G1A| } =S5+t
limiting performance (2) is well known to be very sensitive to @ (10)

the fidelity of the plant model (see Section VI-B). Indeed, the
linear feedback form of the result is rendered unstable by arbi-rpa torm of these results implies that the mean square
trarily small undermodeling. We are thus motivated to examing, qe|ing error corresponds to the magnitude of the frequency
the impact of undermodeling on the achievable performangggnonse of a single zero, as shown in Fig. 2. For illustrative
This topic will be addressed in Section IV. As a prelude, in tr}?urposes, we have reparametrized (10), in terms of the d.c.
following ;ectip_n, we will introduce the class ofundermodelin%ode“ng error) < d < 1 (more than 100% would be intol-
that we will utilize. erable) and the parameter defined as the frequency where
E{|GA(jw)|?} = 1. Note thatd = o andu = b\/1 — a2,
I1l. DESCRIPTION OF ACLASS OF MODEL ERRORS In the light of (4)—(7), the mean square result given in (10)

In view of the comments made at the end of the previot®ay be considered as representative of typically encountered

section, we proceed to consider the impact of modeling erropfidermodeling scenarios.

In particular, we assume that We next give a physical interpretation to the constant
specifically, it is the frequency at which the mean square
Ge(5) = G(s) — Go(8) = Go(5)GAal(s) (3) relative uncertainty has reached 1. Thus, we will ealthe

model certainty bandwidth (i.e., the range of frequencies
where G.(s) and Ga(s) are theadditive and relative model until the relative model error reaches 100%).
error, respectively. In the next section, we design a fixed control law that min-
Typically the fidelity of the nominal model used to represerimizes thebest average performanceor this class of model
a plant will deteriorate at higher frequencies. To illustrate thesrors. This result will then be used as to quantify élpected
we analyze three typical examples. true performance in the presence of model errors.
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In the same spirit as the userefative model errorén (3), we
will find it convenient to utilizerelativechanges irf)(s). Thus,
we write the redesigne@(s) parameter in terms @p, (s) using

Q1(s) = Qo(s)(1 + Qals))- (16)

Note thatQ A (s) must be zero at d.c. to preserve integral ac-

s (VETGAGOY)

0logiod | | __— P tion. Thus, in the sequel, we will assume tliak (s) has the
form
Qa(s) = sQ4(s). 17)
L Substituting into (15), we have
’ So(s) = To(5)Qa(s)
Fig. 2. Modeling error bound. Si(s) = 1+ T,(s)(1 + Qa(s))Ga(s). (18)
IV. ROBUST REDESIGN Since we are considering a class of random modeling er-

rors with properties as in (9)—(10), we replace the deterministic

In the case of open-loop stable plants with exactly knowgy; function (11) by the average performance over the assumed
model, we found that the results in Section Il hold for gensass of model errors. Thus. we consider

eral inputs and are thus not restricted to linear feedback control. -
However, this will certainly not be the case in the presence of J=E {/ y(t)? dt} (19)
modeling errors since the nature of the feedback plays an im- 0

portant role in the achievable performance. Thus, we will here the expectation is over the (stochastic) class of model

strict ourselves to linear feedback control laws which stabiliz&rors Thus. for each realization of the model error. we have
the nominal plant. (This being the minimal requirement to ol -, ' ’ ’

tain a meaningful performance bound).

Thus consider the linear feedback control loop shown in Y(s) = S1(s) (20)
Fig. 1. As before, we are interested in the minimum value for S

oo 1 o where Si(s) is a random variable as in (18) aéh(s) is a
J = / y>(t) dt = —/ Y (jw)|* dw = ||Y (jw)|I5- particular realization of the undermodeling drawn from a dis-
0 2 J_ oo o
(11) tnbuuo_n sat_|sfy|ng (9)—(10).
Again, using (20) and Parseval’s theorem, the average perfor-

Since the plant is assumed to be open-loop stable, the Yollgnce over the assumed class of model errors is
parametrization of all stabilizing controllefsr the nominal _ 1|81 (jw)|?
plant can be written in the form [16] J=E {_/ 72‘1“’}

21 J_ w
_ Q(s) _ L= E{|Si(w)P}
C(s) = T(S)Q(S) (12) =5 /_Oo wa (21)

whereQ(s) is a proper, stable transfer function. Based on thigshere we assume sufficient regularity to interchange the integral
parametrization, the nominal sensitivity functions are given bgnd expectation operators.
Our aim in the next section will be determine a fix@d (s)
To(s) = Go(5)Q(s) (13)  that optimizes (21). With this redesigned control law, we will
So(8) =1—=T,(s) =1—G,(s)Q(s). (14) then evaluate the associatedpected performance over the
) ] ) ) ] _given model error class.
Notice that the result of Section Il is obtained with the partic- We note that the right-hand side of (18) is a nonlinear func-
ular linear feedback control la@(s) = —sU(s), With U(s) @S {ion of () (s) and Ga(s). This would render any attempt to
in (50) andU(s) = 0. . ___carry out an optimization of expected performance intractable.
Of course, with modeling errors, the nominal Sens't'v'“eﬁowever, closed-loop stability requires tHét + Q)G | be

given in (13) and (14) will not be realized. Instead, the achievggss than 1. Thus. we make a Taylor’s series expansiéh i
(i.e., true) sensitivity function will be given by [16, p. 410] Qa)Ga as follow’s:

1- GO(S)Ql(S)

S = 15 Sy &[S, —T,QAl[l — To(1+ QA)G
1(8) T+ Go(3) 01 (5)Ga(s) (15) 1~ Qall (1+Qa)Gal
. . . =80 = ToQa — SoTo(1 + Qa)Ga
yvhereGA(s) is therelative model error as in 3 an(f_gl(s) L T2(1 4+ Qa)QaGa. (22)
is some new value for the parameter in (12). In particular, our
goal will be to redesign the optimal nominal controll€x,(s), The last term in the previous expression depends in the

so as to best cope, in an average sense, with the assumed gasduct of(1+ QA ), @A, andGa. At those frequencies where
of model errors. |G a|is small, therf@ A | will also be small (i.e., there is no need
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to change the nominal controller). At those frequencies where Proof: We follow the procedure outlined, for example, in
|Ga| approaches 1, then to preserve stability, it is necessgty, p. 467]. Specifically, we rewritd as
that @, go to zero, i.e.(1 + Q) should approach zero. We

. . . _ 1 Ne'o) F . 2
may thus argue that the combination of factors in the last terfn_ _/ ‘Q'A(jw)H(jw) n (Jw)

previously shown ensures that this term should be small relative 27 ./_ H(—jw)
to the others. Thus, we further approximate (22) by A(b? + |jw + %|2) F(jw) 2
Phwtcr | H—joy| @ (30)
S1 & (So = ToQa) = SeTo(1+ Qa)Ga.  (23) e J

o o ) ... whereH (jw) andF(jw) are obtained from (27). In particular,
Substituting the approximation (23) into (21) and uuhzmqq(jw) is obtained by spectral factorization.

(9)-(10) we obtain Note that the minimum of (30) depends only on the first term

1 [®S, =T, 2 and is achieved by making the choice
J =~ —/ 7| 2QA| .
27 ) oo w Q4 (s) 1 —2b%(s 4 ¢) — 4s(—s? + )3
§) = —
ISP+ Qal? (W +5) . HE) | PE2+AHE)
+ 2 2 dw = J'. (24) part
bw (31)

Equation (24) will be the basis of the analysis present%\%ich gives (28), establishing i). Note that the redesigned

below. We will return to the approximations involved in ; : . i
o . . controller is easily obtained from (16) and (17). Result ii) is
deriving (24) in Section VI. y (16) (17) )

obtained by substituting the optimal value®@f, (s) into (27),

and evaluating the integral via residues. [ |
Remark 2: It is important to note that when uncertainty is
For clarity of exposition, we begin with the case of one norpegligible, i.e., both parametessandb grow to infinity, i.e.,

minimum phase zero in the nominal model. We will later exterifiere is no uncertainty in the d.c. gain— 0 and the certainty

V. LIMITING AVERAGE PERFORMANCE

this to multiple nonminimum phase zeros and/or delays. bandwidthu satisfiesu — oo, the performance bound obtained
in Theorem 2 reduces to the one given in Theorem 1.
A. Single Nonminimum Phase Zero in the Nominal Plant Remark 3: We can always scale the result bysince this

Suppose that the nominal model of the plant has one nonm]¢1j1r"_nply amounts to redefining the units of time. Fig. 3 shows the

imum phase zero and no pure time delay. We can then write C(_)rresp_ondlng scaleql value of the bound (29) as_afuncnon ofthe
dimensionless quantityand the (scaled) uncertainty parameter

—s+c ~ ~ c/u.
Gols) = P Go(s) = Br(s) Go(s) (25) /Remark 4: 1t is difficult to treat exactly a pure time delay
N within the given framework since this requires the spectral
wherec > 0 andG,(s) is rational and minimum phase. factorization of a transcendental function. However, a guide
The optimalnominaldesign is given by to the achieved robust performance with a pure time delay
. . in the nominal model can be obtained by use of a first-order
Qo(5) = [Go(s)] " (26)  pade approximation [16]
SubstitutingT, (s) = T (s) = Br(s) andS,(s) = S¥(s) = Cer, L
1 — Br(s) into (24) and making use of (17), we see thiat ¢ ~ 1+ 22’ (32)
becomes/, where
We then obtain the result as in Theorem 2 witk 2/7, or
F_o 1 [Tt )QL I specifically
27 J oo ljw + [ 7} 3
. . 2 T _ To
+4|1+ij'A|2|jw—|—%| . (27) Jopt = To + 2 ( 1+1/1+a2+b7_0>- (33)

b?|jw + cf? . . . .
Again, we notice that this reduces to the result in Theorem 1
Theorem 2: We then have the following results. when the parametersandb grow to infinity.

i) The average cost functiah is minimized by the choice )
B. More General Nominal Plants

— (23 +by/1+ (14—.2 + % — b) The same basic procedure as exemplified in Section V-A can

Q.. (5) = . (28) be used for general nominal plants. One can always obtain nu-

252 4+ by /1 + %+ Fs+be merical bounds using this methodology. However, in the spirit

of Theorem 2, itis also desirable to obtain analytical expressions

i) The resulting best average performance is givenby  sjnce these give additional insight into the impact of the various

factors on the performance limit. The expressions become more

= 2 1 4 4c : o —
Jopt = —+— [ -1+ /1 T (29) complex as th_e nominal mo_del complexity increases. 'I_'o_ illus
c c a b trate the principle, we consider the case of two nonminimum
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Fig. 3. Bound for one nonminimum phase zerosc/«).

phase zeros;, andcs in the nominal plant [or, equivalent, one
nonminimum phase zero and a pure time delay approximated as Go(s) =

in (32)]. We then have the following theorem.
Theorem 3: (Subject to the previous conditions).

i) The cost function/’ is minimized by the choice

(s4+c2)A+(s+c1)B

U (5) = al(s + 21)(5 + 22) (34)
where
m:1+ﬂ%¥£ (35)
A= 4cq (Cl + C2>2<C% + b2) (36)

aa?b?(c1 + z1)(e1 + 2z2)(—c1 + ¢2)

B = . 2—462(61 + CQ)Q(C% + bg) (37)
aa?b?(ca + z1)(c2 + 22)(—c1 + ¢2)

_ N <\/1 + 4(c1 + c2)? 2acyco

+
o a?(cf+¢3)  (cf+c3)

(
N \/1 N d(cr +e2)? 2ac162)> (38)

a?(ct +¢3)  (cf+c3

_ Ve + C—% (\/1 + 4(cy + c2)? + 2acyco

a a*(cf +c3)  (cf +c3)
4(cy + e2)? 20ci e
— /1 — . 39
V N Ry 9

i) The resulting average performance is given by

- 1 1 -
Jopt = 2 <— + —) + J(c1,c2,a,b) (40)

C1 C2

where.J(cy, ¢z, a,b) is a function such that

lim J(cy,c2,a,b) = 0.

b— oo
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Proof: The proof follows exactly the same steps in
Theorem 2. Note that we have not spelled out the form of
J(c1, ¢2,a,b) due to its complexity. The result is available from
the authors on request. ]

Remark 5: Again we note that (40), agrees with Theorem 1
when the uncertainty ismall i.e., whena andb go to infinity.

Specifically, we have that
1) the result obtained agrees with (2), consideting non
minimum phase zeros amgb nominal time delay(r, =
0);
2) it also agrees with the same result, considering onky
non minimum phase zero at= ¢; and a pure time delay
To, @pproximated by, = (2)/(7,).

VI. SIMULATION RESULTS
To further illustrate the results, we will consider a stable, first-
order plant having a pure time delay and nominal model given
by

675

. 41
s+1 (41)

The optimal nominal controller, using (26), is
Qo(s) = ,[;s—:—ll’ where 3 — 0. (42)

If there is no uncertainty in the plant model, the best achiev-
able performance (when a unit step output disturbance is in-
jected in the control loop) is given by Theorem 1, ilBet = 1.

Next, we will suppose that there is uncertainty in the nominal
plant (41) and that thue model takes the form

o e—s(l—f—Tu) 3
=1+ K,)—.
()= (14 K) (43)
We suppose thak(, andT, are uniformly distributed and
independent random variables in the intefvap, +p], i.e., the
true delay and thérue d.c. gain of the plant go frorfl — p) to
(14 p). Thus, we see that the variance of the random variables
K, andT, are given by

E{K? _ L pKQdK—p—Q—E T2 44
{“}_2]7 u U_3_ {u}' ( )
—Pp

Based on (4) and (10), we take

1

— — — 4
== % = 0.58p. (45)

Fig. 4 shows the achieved mean valué®@h (jw)|?, consid-
eringp = 0.5 and100 different values of<,, andT’,, compared
with the expression (10). In fact, we can see that this is a very
good prediction of the achieved expected uncertainty at least in
the frequency range whef€'A (jw)| is less than 100%.

A. Optimal Aveage Rerformance

Theredesigned controlleraccounting for plant uncertainty
is given by Theorem 2, where we use a Padé approximation for
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— Achieved E{|G,%} : Co »
— - Bound used for E(IGAIZ) : : s : [ PR

Fig. 4. Modeling error compared with the bound used.

the time delay. Substituting = 2 and the variances given in
(45) into (28), we obtain

s+ 1 s+ 2
Qom(s) - Bs+1 2 ’ Fig. 5. Achieved performance
1.16ps?+sy/1+ & +4.64p+2 g > P :

(46)
TABLE |

. . . DIFFERENT COMBINATIONS FOR THE PLANT AND CONTROLLER
Fig. 5 shows the actual achieved performance (obtained by

simulation and numerical integration of the output from 0 to
50) for differentdeterministicvalues ofK,, andT, in the range
—p to p (100 different values for each variable), wjih= 0.5.

The mean valueof the achieved performance obtained from
the simulations is 1.5363, and tkepecteperformance bound  Nominal
as predicted by Theorem 2 [in particular, given by (33)] is Plant:
1.4543. We see in the figure that there is range of values fa "_=0
(K., T.) where the achieved performance is better (less) tha ~* — I I
the expected performance, and there is another range where t
performance is worse (greater). Specific

The average of the achieved performances is only slightly Plant with
bigger than the average cost predicted by Theorem 2. This | ‘;{',‘“fa(;n% Unstable !
quite remarkable given the various approximations used to de Tuu=_0.59 .
velop the result. This vindicates (at least by example)thevariou___ || | = ===
approximations used in the derivation of the result.

Output Nominal controller Redesigned controller

y(t) Qo (with $=10.1) | Q1 =Qo(1+Qa)

B. lllustrative Time Responses law has been used with the restriction that this feedback control

We next illustrate the kind of time response obtained wiljl"i‘W must _stabilizg the nomina_ll system. This does nqt imply tha.‘t
the nominal controller and the redesigned controller. We Co_l_lplants in the given uncertainty class will necessarily be stabi-

sider the same nominal model as in Subsection VI-A save t '§Ffd' Thus, the Le_sultzlgﬁresedtl)?/er goun(il otr;]the e|>|<;|)(ected
now we consider gingle realizationof the uncertainty, where performance achieva € results reduce fo the well-known

K, = T, = 0.29. We use the redesigned controller as in (46fesults for the best achievable performance wheaertainty
e 1 ehowe fhe > pegligible. The result shows that the average performance in

Table | shows the time responses of the closed loop systems fo . S
the nominal and perturbed plant and for the redesigned con\&f presence of model uncertainty can depart significantly from
e

law. Notice that there is a price paid in terms of the nominal pet- St achlle\;]able perLorlr_nange; without model urll_cirtam_t()j/. -It-hltﬁ '
formance to achieve robust performance, and, as we expect, results here are believed lo give a more realistic guide to the

optimal nominal controller has poor robustness because it V\paegformance one would expect to achieve in practice.

designed to achieve the limiting performance in the absence of
uncertainty. APPENDIX A

In this Appendix, we prove Theorem 1. We will make use of
VII. CONCLUSION the following preliminary resuilt.

This paper has been concerned with the problem of optimalLemma 1: Consider the transfer function
Lo performance for a linear control loop in the presence of a o nely
step output disturbance. A distinctive feature of the analysis pre-;; 5) = bn—15"""+ -+ bis + bo _ 2ig s’ .
sented here is that the impact of a (stochastic) class of model "t ap_ 18" 4 rag [0 (s —pi)m
uncertainty has been included. A fixed linear feedback control 47
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If H(s) is expanded in its partial fraction decomposition

1 2 n
H(s) = ) 12 ‘e A
(s—=p1)  (s—p1)? (s —p1)™
(1) (2) ()
Tn Tn n
+— Lt > (48)
(s pnp) (s pnp) (s — pnp) e
then
Z%” = (49)

Proof: We expandH (s) in powers ofs~!, i.e., H(s) =
hi s~ 4+ ---. We can see that, if we divide numerator and
nominator polynomials in (47), we will obtaity, = b,,—1.

We now also expand the partial fraction expression (48),
viding ever;/ term, where we can see that the coefficient of
is> 2, W Hence, (49) is obtained. u

Next, we present the proof of Theorem 1.

Proof of Theorem 1:Subject to conditions i) and ii), w

can express, without loss of generality, the Laplace transform

of the plant input as

IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 48, NO. 8, AUGUST 2003

Substituting into (53), and using the Cauchy Integral The-
orem [21]

N
minJ =7 — Y Res{Br(s)Br(—s)} (55)
=1 :
where{sy, ..., sy} are the poles aBr(s)Br(—s) lying in the
RHP.

We can separate the residues in (55) as follows:

> Res{ Br(s)Br(-s)} = Y Res {1__35()}
+ZReS{1__—§2(_s)}. (56)

de- Now, the first term on the right hand side is analytical in
he open RHP and hence the residues are zero. Thus we can
ompute the residues from the residues of the polefd of
Br(—s)]/s* in the ORHP. Now, (57) shown at the bottom of
the page holds, where

e

Ne N .
Lz (58)
C

. Also, we note thafl — Br(—s)]/[—s%] has onlyonepole at
U(S) — ~_1 _ {J(S) (50) s = 0. Thus
sGo(s)  Gol(s) 1— Br(—s) [L+ (=1)Ne]sNe=l .o 4 20(—1)Ne~!
N . _ g2 - Ne
whereU (s) is analytic in theRHPandlim;_,o, U(s) =0 5 —s[[iZi(s —ci)
The Laplace transform of the plant output is then given by (59)
1 — B e—57 ~ Hence
Y =Dy +GU=-""T%  _Bre=70. (51 o
s Res {Br(s)Br(~s))
We also writeBy(s) = 1 + sBr(s), whereBy(s) is stable Re{si}>0
and strictly proper. Then, from (51), we have that the Fourier  _ Res {1 — BT }
transform of the output satisfies Re{s;}>0
1— e dor o . —ZRes{ 2( )} Res {I_BTZ,( )}.
Y=|——)—-¢?(Br+(1+jwBr)U). (52) -5 5=0 -5
e (60)
We note that the first and second terms on the right-hand S*ﬁﬁen the residue at= 0 is
are orthogonal. Then, using (11), we have
Res{l — BT(—S)} 200(—1)Ne—1 20
: 2 > = =
1 _ gmiwr ) Al e N
=|Y|5 = H— +Br + BrU|2 (53) ~(D)¥ [ e
Jw 2 Ne
Hence, using [16, Lemma 16.2] yields =2 ; c (61)
Arg min J = Uypy = — {B;l[BT]} . where (58) was used. _
*part Applying Lemma 1, withn, = N, + 1
Br -1
_ 1 T _ 1-B
N {BT |: S :| }stable =0 (54) Z RGS{ —78; ) } =0. (62)
T S+c; Ne s + ¢
1-Bp(—s)=1-]]| —F=1- (- ]| —
== == e I
(0¥ {4 D s e as + T )
she =3y st (DN tas + (DN [T ¢
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Hence [20] G. Goodwin, J. Braslavsky, and M. Serén, “Non-stationary stochastic
embedding for transfer function estimatioritomatica vol. 38, pp.
N. 1 47-62, 2002.
> R_(_ — _ - [21] R. Churchill and J. BrownComplex Variable and Applications New
;R=essl {BT(S)BT( S)} 2 Z (63) York: McGraw-Hill, 1984.
Re{s;}>0 (=1
Finally, replacing in (55), the result is obtained. [ |

Graham C. Goodwin received the B.Sc. degree in
physics, the B.E. degree in electrical engineering, and
the Ph.D. degree from the University of New South
Wales, New South Wales, Australia, in 1965, 1967,
and 1971, respectively.

From 1970 to 1974, he was a Lecturer in the De-
partment of Computing and Control, Imperial Col-
lege, London, U.K. Since 1974, he has been with the
Department of Electrical and Computer Engineering,
The University of Newcastle, Newcastle, NSW, Aus-

REFERENCES

H. W. Bode,Network Analysis and Feedback Amplifier DesigiNew
York: Van Nostrand, 1945.

M. M. Serén, J. Braslavsky, and G. Goodwiyndamental Limitations
in Filtering and Control New York: Springer-Verlag, 1997.

K. J. Astrém, “Fundamental limitations of control system performance
in Communication, Computation, Control and Signal Processing
Tribute to Thomas KailathA. Paulraj, V. Roychowdhury, and C. D. tralia. He is the coauthor of seven monographs, four

Schaper, Eds.  Boston, MA: Kluwer, 1997, pp. 355-363. edited volumes, and several hundred technical papers. He is currently Professor
J. Freudenberg and D. Looze, “Right half plane poles and zeros agglE|ectrical Engineering and Associate Director of the Centre for Integrated
design tradeoffs in feedback system&EE Trans. Automat. Confrol. Dynamics and Control at the University of Newcastle.

AC-30, pp. 555-565, June 1985. o o Dr. Goodwin was the recipient of several international prizes including the
L. Qiu and E. Davidson, “Performance limitations of nonminimumysa Control Systems Society 1999 Hendrik Bode Lecture Prize, a Best Paper
phase systems in the servomechanism problexatomatica vol. 29,  award by the IEEE RANSACTIONS ONAUTOMATIC CONTROL, and a Best Paper

no. 2, pp. 337-349, 1993. o ) . Award by theAsian Journal of ControlHe was also the recipient of an ARC

J. Chen, L. Qiu, and O. Toker, “Limitations in maximal tracking accUederation Fellowship, and he is an Honorary Fellow of the Institute of Engi-
racy,”|IEEE Trans. Automat. Confivol. 45, pp. 326-331, Feb. 2000. peers, Australia, a Fellow of the Australian Academy of Science, a Fellow of the
J. Chen, “Logarithmic integrals, interpolation bounds and performanggsiralian Academy of Technology, Science, and Engineering, a Member of the

(1]

(2]

(3]

(4]

(5]

(6]
(71

(8]
[9]

(20]

(11]

limitations in MIMO feedback systems|EEE Trans. Automat. Contr.
vol. 45, pp. 1098-1115, June 2000.

J. Chen and C. Nett, “Sensitivity integrals for multivariable discrete time
systems,’Automaticavol. 31, no. 8, pp. 1113-1124, Aug. 1995.

G. Gomez and G. Goodwin, “Integral constraints on sensitivity vec
tors for multivariable linear systemsAutomatica vol. 32, no. 4, pp.
499-518, 1996.

R. Middleton, “Trade-offs in linear control systems desighiitomatica

vol. 27, no. 2, pp. 281-292, 1991.

V. Sule and V. Athani, “Directional sensitivity trade-offs in multivariable
feedback systemsfAutomaticavol. 27, no. 5, pp. 869-872, 1991.

International Statistical Institute, and a Fellow of the Royal Society, London.

Mario E. Salgado received the professional title
of Ingeniero Civil Electrénico from Universidad
Técnica Federico Santa Maria, Valparaiso, Chile,
in 1974, the M.Sc. degree from Imperial College,
London, U.K.,in 1979, and Ph.D. degree in electrical
engineering from The University of Newcastle,
Newcastle, NSW, Australia, in 1989.

[12] H.Sungand S. Hara, “Properties of sensitivity and complementary se He is currently an Academic with the Department
sitivity functions in single-input single-output digital control systems,’ of Electronic Engineering, Universidad Técnica Fed-
Int. J. Contro| vol. 48, no. 6, pp. 2429-2439, 1998. erico Santa Maria, where he lectures on linear and
[13] M. Serdn and G. Goodwin, “Sensitivity limitations in nonlinear feed- control systems at the undergraduate and postgrad-
back control,"Syst. Control Letf.vol. 27, pp. 249-254, 1996. uate levels. His research areas include control system design and system identi-
[14] J. Shamma, “Performance limitations in sensitivity reduction for norfication. He coauthored (with G. C. Goodwin and S. F. Graghlmtrol System

[15]

linear plants,"Syst. Control Lett.vol. 17, pp. 43—-47, 1991.
P. Iglesias, “An analogue of Bode's integral for stable nonlinear systems:
Relations to entropy,Proc. of the 40th IEEE Conf. Decision Control
vol. 4, pp. 3419-3420, 2001.

Design(Upper Saddle River, NJ: Prentice-Hall, 2001).

[16] G. Goodwin, S. Graebe, and M. Salgad@pntrol System De- Juan |. Yuz was born in 1975. He received the
sign  Upper Saddle River, NJ: Prentice-Hall, 2001. professional title of Ingeniero Civil Electrénico
[17] R. Middleton and J. Braslavsky, “On the relationship between log and the M.S. degree in electronics engineering
rithmic sensitivity integrals and optimal control problemBybc. 39th from Universidad Técnica Federico Santa Maria,
IEEE Conf. Decision Controlol. 5, pp. 4990-4995, 2000. Valparaiso, Chile, in 2001. He is currently working
[18] L. Xie and L. Guo, “How much uncertainty can be dealt with by feed toward the Ph.D. degree in electrical engineering
back,”|EEE Trans. Automat. Conttvol. 45, pp. 2203-2217, Dec. 2000. at The University of Newcastle, Newcastle, NSW,
[19] G. Goodwin and M. Salgado, “A stochastic embedding approach f: Australia.

guantifying uncertainty in the estimation of restricted complexit
models,”Int. J. Adapt. Control Signal Processingpl. 3, pp. 333-356, ‘
1989.

His research areas include performance lim-
itations, control with constraints, and system
identification.



