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Abstract 
 

In this paper, the trends from the last 10 years of inertial micro-generator literature are investigated and it is shown that, 
although current generator designs are still operating well below their maximum power, there has been significant 
improvement with time.  Whilst no clear conclusions could be drawn from reported fabricated devices with respect to 
preferred transducer technology, this paper presents operating charts for inertial micro-generators which identify optimal 
operating modes for different frequencies and normalized generator sizes, and allows comparison of the different transduction 
mechanisms as these parameters vary.  It is shown that piezoelectric generators have a wider operating range at low frequency 
than electromagnetic generators, but as generator dimensions increase, the frequency to which piezoelectric transducers 
outperform electromagnetic transducers decreases.  
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1 - INTRODUCTION 

Motion and vibration are attractive sources for micro-
engineered energy scavenging generators [1, 2]. The most 
universal motion scavengers are of the inertial type, i.e. 
having a proof mass suspended within a frame, and energy 
extracted by a transducer that damps the motion of the proof 
mass within the frame. These devices have the advantage that 
they can function simply by being attached to a source of 
motion at a single point, rather than relying on the relative 
motion of different parts of the “host” structure. Thus they 
are also well suited to miniaturisation.  

 
 

 
The basic operating principle of inertial micro-generators 

is illustrated in Fig. 1. The fundamental parameters limiting 
the generator output are its proof mass m and maximum 
internal displacement Zl, and the source motion amplitude Y0 

and frequency ω [3]. From these we can derive the maximum 
power from basic principles. If we assume harmonic source 

motion, the maximum acceleration amax is ω2Y0. The 

maximum damping force by which energy can be extracted is 
equal to the inertial force on the proof mass, mamax (if greater, 
the mass will not move relative to the frame). If energy is 
extracted in both directions, and the internal motion 
amplitude Zo = Zl, (giving the maximum travel range of 2Zl) 

we derive a total energy per cycle of 4Zlmamax = 4Zlm ω2Y0. 
To convert this to power we simply divide by the excitation 

period 2π/ω, giving: 

  (1) πω= /2 3

0 mZYP lmax

We can then define a normalised power Pn = P/Pmax as a 
measure of how close the performance of a specific device 
comes to the optimum level. We have calculated Pn for 
measurements on inertial energy scavengers reported in the 
literature [1, 4-27] and the resulting values are plotted in 
Fig. 2 as a function of year of publication. An upwards trend 
can clearly be seen, although the best values are still below 
20% of the optimum. Although Pn should not drop with 
volume, since it is normalised to device size, the same data 
plotted against device volume (Fig. 3) show that typically the 
best Pn values have been achieved for larger devices. This is 
likely an indication of the technological difficulties 
encountered at smaller size scales, for example the greater 
difficulty in achieving high magnetic flux gradients. Finally, 
we plot the normalised power vs. frequency (Fig. 4), and a 
downwards trend is clearly seen.  

Figure 1 - Schematic construction of inertial generators.

Several transduction mechanisms can be used for inertial 
micro-generators, namely electromagnetic [14], electrostatic 
[28] and piezoelectric [29]. The transduction type is also 
indicated in Figs. 2 – 4, but no clear trends can be seen 
regarding their relative merits. To obtain some general 
guidance on the practical limitations of specific transduction 
methods, we have examined the key issue of the damping 

 



 

 

levels that can be achieved. We consider only mechanically 

resonant devices operating at the resonant frequency ωn, as 
this covers most reported examples. 
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Figure 2 - Normalised measured power Pn vs. year of 
publication. Numbers show which reference the data was 
taken from 
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Figure 3 - Normalized measured power Pn vs. device 
volume. 
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Figure 4 - Normalised measured power Pn vs. operating 
frequency. 
 

2 - SCALING ANALYSIS OF TRANSDUCER TYPES 

In an ideal case, the parasitic damping would be zero, and 
maximum power is then obtained by setting the electrical 

damping factor ζe to the level that allows the mass to move 
over the entire internal range, but without hitting the end-
stops, i.e. Z0=Zl [3].  However, in some cases the maximum 
damping force of the transducer is insufficient to achieve this, 
and thus the device cannot operate in a resonant mode. In 

cases where the parasitic damping factor ζp is not negligible, 
maximum power will inevitably be reduced, but the optimum 

ζe will still be that which gives Z0=Zl, unless this requires 

ζe<ζp, in which case ζe = ζp should be chosen if possible. 
 

 
 
Figure 5 - Prototype MEMS inertial scavengers: 
piezoelectric (left) and electrostatic (right). 
 

In general, the damping factor is related to the resonant 

quality factor Q by Q=1/2ζ. Since the damping will have 

parasitic and electrical (transducer) components, we 

introduce the quantities Qp = 1/2ζp and Qe = 1/2ζe. Note that 

the combined Q is given by 1/Q = 1/Qp + 1/Qe. Furthermore, 

for a resonant system in which the damping force is 

proportional to the relative mass-frame velocity, i.e. 

F=−Ddz/dt, D = 2mωnζ. To perfectly damp the system we 

require Q = Zl/Y0, so that D = mωn/(Zl/Yo).  

 

2.1 - Electromagnetic Damping 

 

An electromagnetic damper can be implemented as a coil 

moving across the boundary of a region of magnetic flux 

density B. If we assume that the induced voltage is limited 

mainly by the resistive load R, rather than the coil’s 

inductance, then in this case the electrical damping 

coefficient is given by De = (NBl)2/R [3], where N is the 

number of coil turns and l is the length of the border of the 

flux region cutting across the coil. The load R will consist of 

the coil resistance Ri (which is a parasitic component) and the 

energy extracting load RL in series. The former determines 

the maximum De, and thus the minimum Qe; however, unless 

RL is substantially greater than Ri most of the electrical power 

will be wasted. Instead we assume that a useful device has at 

least RL = 10Ri. This sets the minimum achievable Qe as: 

 ( ) n
i

e
NBl

mR
Q ω

2)(

10
min =  (2) 

If this quantity is greater than Zl/Y0, it will not be possible to 
achieve harmonic motion by electrical damping alone, 
although it may be possible if significant parasitic mechanical 
damping is present. A key implication of (2) is that the range 
of achievable Qe is reducing with increasing frequency. 

 



 

 

 

2.2 - Piezoelectric Damping 

 
A similar quantity can be derived for the piezoelectric 

case. We start with the constituent equations for the 
piezoelectric cell [30]: 

 

VzKF PEp α+=   (3) 

VCzI &&
0−= α    (4) 

 
Here Fp is the force produced by the piezoelectric material, V 
is the voltage between the terminals, I is the current through 
the terminals, KPE is the short circuit stiffness, z the relative 
displacement, C0 is the capacitance of the piezoelectric 

element and α = e33A/t, with A and t the cross-sectional area 
and thickness of the piezo element, and e33 the piezoelectric 
coefficient.  Note that e33 applies to the case where the 
voltage and strain are colinear; many implementations, such 
as thin piezo films on cantilevers, have strain and electric 
field on orthogonal axes, and an off-diagonal element of the 
piezoelectric tensor then applies in place of e33. The force 
developed by the piezoelectric cell with a resistive load R 
connected can be found from these equations, in the Laplace 
domain, as: 
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The force developed by the piezoelectric material is therefore 
a constant spring force plus a force which acts as a first order 

high pass filter.  The frequency response, FHP(jω),  of the 
high pass filter term is: 
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which can be written as: 
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These terms are therefore a frequency dependent damping 

term (proportional to jωZ(jω)) and a frequency dependent 

spring constant term (proportional to Z(jω)).  The resistance 
can be altered to maximise the available damping force, 

FD(jω), i.e. when: 
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Which is when: 
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Thus, 
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Figure 6  Piezoelectric film on cantilever beam 

 
In practice, since piezo elements can only achieve very 

small direct displacements, devices must incorporate some 
leverage mechanism (of ratio r).  A typical example is the 
cantilever structure shown in Fig. 6. If we approximate this as 
a thin film of piezoelectric material on a structural cantilever 
of thickness h, then it is straightforward to show that the 

proof mass motion Δz is greater than the piezo film extension 
(or compression) by a factor L/h. 

 
The leverage will transform the damping coefficient (i.e. 

the force to velocity ratio) by a factor of r2, in a manner 
equivalent to an electrical transformer of turns ratio r.  Thus 
we obtain: 
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Since the other parameters in this expression have little or no 
frequency dependence, the minimum Qe is proportional to 
frequency squared. Thus the operating range for which 
optimum power can be achieved becomes rapidly diminished 
with increasing frequency; more rapidly so than in the 
electromagnetic case considered above. 

2.3 - Electrostatic Damping 

For the case of the electrostatic damper, the damping is 
non-linear but a closed form solution to the minimum 
available Q factor exists.  This is given in [3] as: 
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where: 
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There are two different methods of operating an 

electrostatic transducer to achieve Coulomb (fixed force) 
damping, which are gap-closing constant charge operation, 
and sliding plate constant voltage operation. The most 
common type on the microscale is the latter, in the form of a 
comb drive variable capacitor on a folded suspension.  For 
this type of transducer the parasitic damping force can be 
approximated as [31]: 
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Here Ng is the number of gaps in the comb drive, t is the 

thickness of the structure, μair is the viscosity of air, g is the 
gap width, xo is the initial gap overlap, and z is the overlap 
movement. The electrical damping force is given by: 
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where Qc is the initial charge on the capacitor, and Co is the 
capacitance per given length as given by : 
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It can be seen that the electrical damping force is not 
proportional to velocity, as is required for harmonic 
oscillation. Thus the  motion will be inherently nonlinear. 
Furthermore, it is a property of Coulomb damped resonators 
that when operated at the resonant frequency, in the absence 
of parasitic damping and physical stops, the motion 
amplitude rises without limit unless the damping force 
satisfies a stability criterion [32]: 
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2.4 - Example Operating Chart 

If we define Zl/Y0 and ωn as our general operating 
parameters, then we can plot equations (2) and (11) as limits 
of operation for electromagnetic and piezoelectric devices. 
By adding the Qp of the device, and the combined Q, we can 
indicate regions of operation as a function of operating point. 

 
 

Figure 7 - Operating limits on electrical damping and 
parasitic Q factor. 

 
This is done in Fig. 7 schematically, for an 

electromagnetic generator with parasitic damping present.  
The parasitic damping factor (and hence the Qp) has been 
assumed to be constant with frequency for simplicity, but any 
actual frequency dependence could easily be substituted. For 
example, the parasitic damping force for a comb-drive as 
given by equation (14) is equivalent to a frequency 
independent damping coefficent D, and thus a Qe linearly 
proportional to frequency. 

 
With reference to Fig. 7, The operating regions are as 

follows: 
 

1. Harmonic motion is not possible. The maximum 
combined damping factor (which is (1/Qp + 1/Qe)) is 
less than required for oscillation within the limit of Zl .  
The line marked ‘Minimum Qtotal’ indicates the 
minimum value of Z0/Y0 achievable.  If the operating 
point is below this line, harmonic motion is not possible 
and the mass will strike the end-stops.  

2. Optimal operation occurs when the electrical damping 
and parasitic damping are equal, assuming that this 
results in  Z0<Zl. In this operating region, if the parasitic 
and electrical damping terms were set equal, i.e. Qe=Qp, 
the mass would hit the end stops because the overall 
damping would not be large enough.  Therefore, for 
optimal operation, the electrical damping should be set 
so that Z0=Zl, i.e. Qe>Qp.   

 



 

 

3. In this region of the figure, the parasitic and electrical 
damping terms should be set equal, i.e. Qe=Qp. The 
device will then operate within its displacement limit.  
This will give Z0/Y0 = Qparasitic/2. 

4. In this region it is not possible to make the electrical 
damping and parasitic damping equal, because the 
electrical damping force cannot be made large enough 
i.e. Qe>Qp.  The electrical damping should therefore be 
set to the maximum that can be achieved.  The generator 
can operate within the displacement constraint, but a 
different transducer could in principle extract more 
power if it could generate a higher damping force. 

 
Figure 8 - Comparison of minimum Q factors with 
electromagnetic and piezoelectric cube devices of volume 1cc 

 

Figure 9 - Comparison of minimum Q factors with 
electromagnetic and piezoelectric cube devices of volume 
0.1cc. 

 
 
Figures 8 and 9 show two specific examples of the 

minimum Q-factor achievable from electromagnetic, and 
piezoelectric generators.  In each case we assume a cubic 
device of length L and the mass, of relative density 8.9 (Ni), 
is taken to occupy half the device volume.  The 
electromagnetic device is assumed to have a flux density of 1 
T and a copper coil occupying 2% of the device volume, for 
which a fixed  N2/Ri is obtained.  The active coil length l is 
assumed to be L/2.  For the piezoelectric device, we assume 

εr = 1000, area L2, thickness L/10 and e33 = 0.15 C/m2.  A 

leverage factor of 500 was chosen.  Because the Qmin for 

electromagnetic and piezoelectric devices scale as ω and ω2 
respectively, there will always be a frequency above which 
electromagnetic devices can achieve higher damping.  As can 
be seen in Figure 8 and Figure 9, the cross-over frequency 
increases as device size decreases.  It can also be observed 
that the increasing Q with frequency (for both transducer 
types) could explain the decreasing performance trend seen in 
Fig. 4. 

 

3 - CONCLUSIONS 

Obtaining maximum power from inertial energy 
scavengers is often limited by the maximum damping force 
achievable in the transduction mechanism, and this problem 
increases with increasing frequency. Piezoelectric generators 
can outperform electromagnetic generators at low frequency, 
but  with increasing frequency, the internal capacitance of the 
piezoelectric reduces the amount of real power that can be 
obtained.  This suggests that piezoelectric devices might be 
better suited to human body powered applications and 
electromagnetic devices to high frequency applications. 
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