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Abstract – Track-to-track fusion is an important
part in distributed multisensor-multitarget tracking.
The centralized and distributed tracking configurations
were studied in [6] using simulated air-to-air scenar-
ios, and in [5] with analytical results based on α-β fil-
ters. The current work generalizes the results in [5]
to the cases with more than 2 sensors. As the num-
ber of sensors increases, the performance of the dis-
tributed tracker is shown to degrade compared to the
centralized estimation even when the optimal track-to-
track fusion is used. An approximation technique for
track-to-track fusion is also compared with the optimal
approach with performance curves for various numbers
of sensors. These performance curves can be used in
designing a fusion system where certain trade-offs need
to be considered.

Keywords: Track-to-track fusion, distributed infor-
mation processing, centralized information processing,
α-β filter, target tracking.

1 Introduction

In a distributed multisensor environment where each
sensor processes its own measurement and keeps tracks
separately, an important question is to decide whether
two tracks coming from different sensors represent the
same target. If so, the next problem is how to combine
(fuse) the two track estimates together.
To determine whether two tracks represent the same

target, and if yes, how to fuse them, the informa-
tion from the latest track estimates is not sufficient.
The covariance between the two track estimates (the
“cross-covariance”) from different sensors has to be
computed as in [2]. The optimal track-to-track fusion
formula derived in [2] to combine the local estimates is
a maximum likelihood (ML) estimator [5], and it has a
larger error than the optimal method with centralized
configuration. In [5] the authors point out that the
performance degradation using track-to-track fusion is
about 7% for the mean square error (MSE). Perfor-
mance curves are also shown in [5] for various target
maneuvering indices. However, these results are only
for the fusion of the tracks from two sensors. In this
work we derive the algorithm and present performance
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curves for fusing N tracks for the second order motion
model (white noise acceleration — WNA — for which
the steady state estimator is the α-β filter) using an
exact approach.1 We show that as the number of sen-
sors increases, the performance of distributed track-
ing keeps degrading in comparison with the central-
ized one.2 The results are based on steady state filter
variance and they also provide the bound to compare
the centralized and distributed tracking configurations
through simulations as in [6].
Section 2 presents the general algorithm for fusing N

tracks. The evaluation and comparison with the cen-
tralized estimator are presented in Section 3. An ap-
proximation of the cross-covariance in track-to-track
fusion, presented in Section 4, can be easily imple-
mented in real tracking systems. The performance
is compared with the optimal track-to-track fusion in
terms of mean square error of the fused state estimate.
The comparison of a distributed estimator with 4 plat-
forms vs. a centralized one for a realistic air-to-air en-
counter scenario is presented in Section 5. Conclusions
are given in Section 6.

2 Track-to-Track Fusion with N
Sensors

Assume we have N sensors and the state estimates at
time k from sensor si and sensor sj are the n-vectors
x̂si(k|k) and x̂sj (k|k), respectively. For steady state
analysis, the time index is dropped in the sequel. With-
out loss of generality, we denote the state estimates as
x̂si and x̂sj , with covariances P sisi , P sjsj and cross-
covariance P sisj , respectively. Denote the true state
of the target as x and assume the estimates from all
sensors are purely target originated. As discussed in
[5], under Gaussian assumption, the (negative) log-
likelihood function is

L(x) = −ln p(x̂s1 , ..., x̂sN |x)
= c+ 1

2

([
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x̂s2
· · ·

x̂sN

]
−

[
I
I

· · ·
I

]
x

)′
P−1([

x̂s1
x̂s2
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x̂sN

]
−

[
I
I

· · ·
I

]
x

) (1)

1The fusion equations are not restricted to any particular mo-
tion model, but the results are believed to be most meaningfully
illustrated on the WNA motion model.

2With more sensor platforms from which tracks are available
for fusion, this is becoming a practical situation of interest.



where c is a constant, I is the n × n identity matrix
and P is the Nn×Nn covariance matrix with blocks
as follows

P =



P s1s1 P s1s2 · · · P s1sN

P s2s1 P s2s2 · · · P s2sN

· · · . . . · · ·
P sN s1 P sN s2 · · · P sN sN


 (2)

Denoting I = [I I ... I]′, an Nn× n matrix, and X̂ =
[x̂s1 x̂s2 ... x̂sN ]′, the ML estimator of x is given by

x̂ML = (I′P−1I)−1I′P−1X̂ (3)

which is the general formula for track-to-track fusion
from N sensors. This is a generalization of the result
from [5]. The covariance corresponding to (3) is

P dis = (I′P−1I)−1 (4)

where the superscript indicates that this pertains to
the distributed tracker using optimal track-to-track fu-
sion. The fused ML estimate (3) of the state is also the
weighted least squares (LS) estimate where P−1 is the
weighting matrix. This follows from the equivalence of
LS and ML in the Gaussian case [1].
To simplify the problem and obtain results from

which system design (information processing architec-
ture) recommendations can be made, we assume that
the N sensors are synchronized and each local tracker
uses the same target kinematic model with the same
measurement noise statistics. Thus we can denote the
steady state covariance matrix P sisi of each “local”
tracker as P and the cross-covariance matrix between
any two trackers as P×.
In the sequel, we will present the solution for the

distributed configuration of α-β filters for tracking an
object whose acceleration is modeled as white noise.
The state and measurement equations are

x(k + 1) = Fx(k) + v(k)

=
[
1 T
0 1

]
+

[
T 2

2
T

]
v(k) (5)

z(k) = Hx(k) + w(k) = [1 0]x(k) + w(k) (6)

Denote the variance of process noise as σ2
v , the mea-

surement noise variance as σ2
w. The target maneuver-

ing index is defined as

λ =
σvT

2

σw
(7)

Then the steady state filter gain is

W =
[
α
β

T

]′
(8)

where

α = −1
8

(
λ2 + 8λ− (λ+ 4)

√
λ2 + 8λ

)
(9)

β =
1
4

(
λ2 + 4λ− λ

√
λ2 + 8λ

)
(10)

The steady state filter covariance is

P =
[
p11 p12
p12 p22

]
=

[
α β

T
β
T

β(α−β/2)
(1−α)T 2

]
σ2

w (11)

The steady state cross-covariance matrix [2] is deter-
mined by

P× = [I −WH ][FP×F ′ +Q][I −WH ]′ (12)

where

Q =

[
T 4

4
T 3

2
T 3

2 T 2

]
σ2

v (13)

The above Lyapunov matrix equation (12) can be
solved numerically for any given target maneuvering
index. This is done for the results to be presented
next.
For the WNA motion model used in [1], when the

local trackers have equal measurement noise variance,
the measurement noise varaince of the centralized filter
is σ2

w/N . The centralized filter is the same as a local
tracker but with target maneuvering index changing
from λ to

λc =
√
Nλ (14)

The steady state filter covariance follows (11).

3 Performance

Evaluation: Equal Measure-
ment Noise Case

The covariance (4) of the distributed estimate from
track-to-track fusion is obtained using (2) whose di-
agonal blocks follow from (11) and off-diagonal blocks
from (12). The covariance P c of the centralized esti-
mate follows from (11) using the “centralized” maneu-
vering index (14).
To compare the steady state filter variances be-

tween the centralized and distributed tracker, we use
the above to illustrate our methodology and evaluate
the relative performance as the number of sensors in-
creases. Assuming a sampling interval T=2s, we com-
pute each component of the covariance matrices P dis

and P c and plot the relative differences between the
centralized and distributed tracker in Figs. 1–3. An im-
portant observation is that the percentage difference of
the mean square error (MSE) between the centralized
and distributed tracker increases as the number of sen-
sors increases. This quantifies the performance limits
of the distributed estimation with trak-to-track fusion
vs. centralized estimation.3 The difference of the posi-
tion variance is over 15% for N=4 when the target ma-
neuvering index λ < 1. The difference of the velocity

3See [2] p. 589 for the explanation of the reason that the
optimal track-to-track fusion is inferior to optimal centralized
estimation.



variance is around 20–25% for N=4. From the perfor-
mance curves, during uniform target motion period we
expect that the distributed tracker should yield about
2.5% (11%) larger RMS position error and about 2%
(10%) larger RMS velocity error than the centralized
one for N=2 (N=4) sensors. As the target maneuvers,
the performance degradation of the distributed tracker
becomes smaller in terms of RMS position error while
slightly larger in terms of RMS velocity error.
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Figure 1: Percentage of the position variance differ-
ence between the distributed and the centralized track-
ers versus number of sensors [(pdis

11 − pc11)/pc11].
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Figure 2: Percentage of the position-velocity co-
variance difference between the distributed and the
centralized trackers versus number of sensors [(pdis

12 −
pc12)/p

c
12].

4 An Approximation Technique

for Track-to-Track Fusion

4.1 Case 1: Equal Measurement Noise

For a real distributed tracking system, the calculation
of the cross-covariance using (12) is not practical. The
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Figure 3: Percentage of the velocity variance differ-
ence between the distributed and the centralized track-
ers versus number of sensors [(pdis

22 − pc22)/pc22].

following approximation is considered. From (11) and
(12), denoting the ratios between the cross-covariance
and the covariance terms as

ρij = p×ij/
√
piipjj i = 1, 2, j = 1, 2 (15)

For target with uniform motion, we use ρ11 = 0.20,
ρ12 = 0.30, ρ22 = 0.73 to approximate the cross-
covariance matrix. If the target maneuvering index
is known (or can be estimated from the track history),
we have the following quadratic approximations

ρ11 = 0.0058λ2 − 0.0567λ+ 0.1724 (16)

ρ12 = 0.0070λ2 − 0.0730λ+ 0.2698 (17)

ρ22 = 0.0037λ2 − 0.0418λ+ 0.7102 (18)

valid for λ ∈ [0.1, 6]. Notice that ρ11 and ρ12 are much
smaller than ρ22.
In order to know the performance of the approxi-

mation technique, we calculate the exact mean square
error (MSE) of the track-to-track fusion obtained with
the approximate cross-covariancematrix based on (15).
Denote

P̄ =



P s1s1 P̄ s1s2 · · · P̄ s1sN

P̄ s2s1 P s2s2 · · · P̄ s2sN

· · · . . . · · ·
P̄ sN s1 P̄ sN s2 · · · P sN sN


 (19)

where P̄ sisj are the approximate cross-covariance ma-
trix between sensor si and sj . Using the same fusion
technique given by (3) but with the covariance matrix
P̄, the fused state estimate is given by

x̂ML
a = (I′P̄−1I)−1I′P̄−1X̂ (20)

The fusion center will assume the covariance of the
fused state estimate to be

P̄ dis = (I′P̄−1I)−1 (21)



while the exact MSE of the fused state estimate using
approximate cross-covariance matrix is

P dis
a = (I′P̄−1I)−1(I′P̄−1PP̄−1I)(I′P̄−1I)−1 (22)

Notice that the approximate track-to-track fusion is
indeed optimal i.e.,

x̂ML
a = x̂ML and P dis

a = P dis (23)

for any ρij given by (15) when all the sensors have the
same estimation error covariance and cross-covariance
matrices. But the covariance obtained by the fusion
center is different from the exact MSE given by (22)
depending on the target maneuvering index.

4.2 Case 2: Unequal Measurement
Noise

When the local trackers have different covariance and
cross-covariance matrices, the MSE obtained using ap-
proximate track-to-track fusion is only suboptimal and
the MSE difference depends on the approximation co-
efficients. To simplify the problem, we only consider
a two-sensor case. Sensor 1 maintains a local tracker
with target maneuvering index λ while sensor 2 with
target maneuvering index

√
rλ, meaning the variance

of the measurement noise from sensor 2 is 1
r that of sen-

sor 1 for the same target motion equation. We want to
find the ratio r that achieves the maximum MSE dif-
ference between the distributed and centralized track-
ers. First, we consider the position variance difference
under various λ. Figs. 4–5 show the ratios at which
the corresponding MSE position differences between
the distributed and centralized trackers achieve maxi-
mum under different target maneuvering indices. No-
tice that the ratio r at which the difference is maximum
is close to 1 when the target undergoes uniform motion
and slightly decreases as the target maneuvering index
increases. The MSE position difference shown in Fig. 5
is quite close to that of the 2 sensor case with r=1.
Figs. 4–5 are a “worst case” analysis for the distrib-
uted tracker. In general, the MSE position difference
between the distributed and centralized trackers does
not change significantly for the unequal measurement
noise case. Similar results hold for velocity.
We are also interested in the performance using ap-

proximate track-to-track fusion with various r. Notice
that the cross-covariance matrix is not symmetric for
r �= 1. We found that there is no fixed ρij suitable
for all cases in the approximate track-to-track fusion.
For a real tracking system, the following approxima-
tion of the cross-covariance matrix P sisj can be used.
To make it suitable for a general estimation problem,
we assume the dimension of the state vector is n. Each
element of P sisj is approximated by

p
sisj

lm = ρ sign(ρsi

lmρ
sj

lm)
[|ρsi

lmρ
sj

lm| · psi

ll p
sj
mm

] 1
2

l,m = 1, 2, ..., n
(24)
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Figure 4: Ratio between the target maneuvering in-
dices of the two sensors at which one has maximum
MSE position difference between the distributed and
centralized trackers for various target maneuvering in-
dices.
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Figure 5: Percentage of the position covariance differ-
ence between the distributed and the centralized track-
ers [(pdis

11 −pc11)/pc11] at ratio r for which it is maximum.

where

ρsi

lm =
psi

lm√
psi

ll p
si
mm

(25)

and ρ is a constant chosen within [0.1, 0.4].

5 Comparison of the Central-
ized and Distributed Tracker

Using a Realistic Air-to-Air
Scenario

In this section we compare the performance between
centralized and distributed tracking systems using a
realistic air-to-air encounter scenario. The target and
platform trajectories are designed to simulate fighter
aircraft trajectories pursued by other fighters which
use measurements from a radar as well as inertial and



GPS navigation. The scenarios used in this paper are
chosen from the 24 recommended scenarios in distrib-
uted tracking algorithm (DTA) evaluation plan [3] with
the assistance of DTA Trajectory Generator and DTA
Sensor Simulator4. We consider up to 4 platforms pur-
suing 3 targets.

5.1 Platform and Target Trajectories,
Sensor Models and Filter Configu-
rations

5.1.1 Platform and Target Trajectories

The platform trajectories consist of parallel straight
lines with variable initial position offsets. The position
offsets can be scaled to provide the desired angular dif-
ferences in the respective lines of sight to the targets.
In [3] each platform trajectory is divided into 3 main
course segments, separated by turning and climbing
maneuvers. The initial platform position is around
−86◦ in longitude and 44◦ in latitude. The initial
altitude is 20 kft. In dense platform situations, the
distance between two platforms is 0.02◦ difference in
geodetic longitude, that is, approximately 7.3 kft. The
total time span of DTA scenarios is 2000 s (approxi-
mately 33min). The platforms perform a climb from
20 kft up to 30 kft starting around 930 s and a descent
to 21 kft starting around 1390 s. The maximum speed
of a platform in the horizontal plane is around 620 ft/s
and around 110 ft/s along the vertical axis. The max-
imum acceleration in climbing is around 1g and when
descending around 1.5g. The maximum turn rate is
approximately 20◦/s.
All platform trajectories have 2 course changes of

approximately 30◦ each (which start around 730 s and
1390 s, respectively), with a maximum bank angle of
about 17◦ as determined by a low turn acceleration
level of 0.3g. Each platform also has 2 vertical maneu-
vers with altitude changes of up to 10 kft at around 10◦

flight path angle with respect to the horizontal plane.
The target trajectories also consist of parallel

straight lines running perpendicular to the (average)
platform trajectories, with initial position offsets to
achieve the desired spacing, and located so as to
achieve desired distances of closest approach. The tar-
get position offsets can be scaled in proportion to the
track sensor range and angular measurement errors, so
as to make the targets more or less easy to separate
via the measurements. The initial target positions are
around −82.5◦ in longitude and 47.5◦ in latitude. The
initial altitude is 27 kft. In dense target situations,
the distance between two targets is 0.01◦ difference in
longitude and latitude, that is, approximately 5.2 kft.
The medium separation has a 0.02◦ difference in longi-
tude and latitude while the sparse situation has a 0.03◦

difference. The maximum speed of a target in the hor-

4The software for platform and target trajectory generation,
sensor measurement simulation was developed by Integrity Sys-
tems [3] for the Air Force Research Laboratory.

izontal plane is around 600 ft/s and around 100 ft/s
along the (local) vertical axis. The maximum acceler-
ation in diving is 2.14g and in jinking it is 3.5g.
Figure 6 illustrates the general geometry of the tar-

get and platform trajectories as viewed from above.
For the purposes of illustration, we have shown 3 plat-
forms and 3 targets. Each platform trajectory has 3
course segments as described earlier. The target tra-
jectories also have 3 course segments. The target turns
allow near-constant horizontal accelerations to be in-
troduced at prescribed levels. The final segments in-
clude 200 s of jinking maneuvers (linked S-turns) with
time-varying accelerations at similarly prescribed lev-
els. Target altitude changes (not shown) introduce ver-
tical accelerations as well as changes in target eleva-
tion angles as viewed from the platforms. The targets
perform two dives at around 1100 s to 22 kft and at
around 1450 s to 20 kft. One 30◦ course change occurs
at around 600 s and other course changes (30◦, 40◦,
50◦ respectively for the 3 targets) occur around 1400 s.
Jinking motion starts around 1500 s.

Figure 6: Platform-Target Trajectory Geometry Map
for DTA Scenarios (from [4]).

5.1.2 Target Motion Models and Filter Design
Parameters

In this subsection we define the terms and state the as-
sumptions used throughout the rest of the section. It
is assumed that the surveillance system is implemented
at each platform with a local tracker and in the central-
ized configuration a centralized processor receives mea-
surements from each platform to form global state esti-
mates. The measurements from different platforms are
synchronized and the tracker using the measurements



from all platforms is called the centralized global esti-
mator. In the distributed configuration a fusion center
receives the local state estimates from each platform
and fuses these estimates to form a global estimate.
The tracker using state estimates from all platforms is
called distributed estimator. The motion models are
defined in the horizontal plane and along the vertical
axis of the target’s local reference frame. The filters
for the horizontal and vertical motion are decoupled.
Two filtering algorithms, namely the Kalman filter

and the Interacting Multiple Model (IMM) estimator,
are chosen to compare their performance for both cen-
tralized and distributed trackers. The motion model
used in the Kalman filter is white noise acceleration
(WNA) with high process noise (WNA-H). It captures
target maneuvering to the highest expected level. The
motion models used in the IMM estimator are WNA
model with high process noise, WNA model with low
process noise (WNA-L, which models uniform target
motion), and coordinated turn (CT) model in the hor-
izontal plane. The motion models used in the IMM
estimator along the vertical axis are a WNA-L and a
WNA-H.
The targets may have different acceleration levels

in lateral and axial direction during the maneuvering
phase. To model this acceleration discrepancy, we use
directional process noise for both the Kalman filter
and the IMM estimator. Assume the variance of the
process noise is σ2

l in the lateral direction, and σ2
a in

the axial direction. At certain time k, the filter esti-
mated course is denoted as φ(k) (obtained from the
velocity components). The process noise covariance in
the horizontal plane is taken as

Qh =
[ − cosφ(k) sinφ(k)

sinφ(k) cosφ(k)

]
[
σ2

l 0
0 σ2

a

] [ − cosφ(k) sinφ(k)
sinφ(k) cosφ(k)

] (26)

In [6] we found that an IMM estimator using 3 models
(WNA-L, WNA-H and CT) in the horizontal plane and
2 models (WNA-L, WNA-H) along the vertical axis
yields better estimation accuracy than other choices of
target motion models for the IMM estimator5. The
process noise parameters for the Kalman filter and the
IMM estimator modules are listed in Table 1.
The mode transition probabilities for horizontal and

vertical motions of the IMM estimator are additional
design parameters [1] to provide the trade-off between
the peak estimation error at the onset of maneuver and
the noise reduction factor during uniform motion. The
mean sojourn times of the two modules for the vertical
filter are 40 s and 10 s, respectively. The probability
transition matrix for (the end of the) interval T is given
by

Πv =
[
πv11 πv12

πv21 πv22

]
(27)

5For civilian air traffic surveillance [8], 2 models (WNA-L and
CT) were enough for horizontal motion.

where πv11 = max{.5, 1− T
40}, πv22 = max{.5, 1− T

10},
and πv12 = 1 − πv11, πv12 = 1 − πv11. Similarly, the
mean sojourn times of the three modules for the hor-
izontal filter are 40 s, 20 s and 20 s, respectively. The
probability transition matrix for (the end of the) inter-
val T is then given by [2]

Πh =


 πh11 πh12 0
πh21 πh22 πh23

πh31 0 πh33


 (28)

where πh11 = max{.5, 1 − T
40}, πh22 = πh33 =

max{.5, 1 − T
20}, and πh12 = 1 − πh11, πh21 = πh23 =

0.5(1 − πv11), πh31 = 1 − πh33. For the measurement
interval T = 2 s (medium measurement rate) we have

Πh =


 0.95 0.05 0

0.05 0.9 0.05
0.1 0 0.9


 (29)

Πv =
[
0.95 0.05
0.2 0.8

]
(30)

for the horizontal and vertical IMM estimators, respec-
tively. For the CT model, we use an extended Kalman
filter (EKF) module. The detailed equations of the
target motion models can be found in [8].
Notice that the filters may not reach the steady state

even during the target uniform motion for a long period
of time since the measurement noise statistics change
with time. The target maneuvering index is smaller at
the beginning than in the end since the range of the
target to the platform becomes closer. The platforms
are close enough so that the pairs of platform-target
geometries are similar, meaning that the local trackers
have similar state estimation error statistics. We will
see whether the distributed tracker yields the perfor-
mance degradation predicted using an α-β filter.

5.1.3 Sensor Models

We assume that each platform is equipped with a radar
that measures range, azimuth, and elevation. For the
platform and target trajectories illustrated in Figure
6, the sequences of platform and target courses keep
the targets within the platform sensor fields of view.
The radar, specified in [3], has the maximum detection
range of 1.2 · 106 ft (approximately 197 nmi) and maxi-
mum angular field of view ±1.047 rad(60◦) in azimuth,
±0.524 rad(30◦) in elevation. The measurement noise
has the statistics given in Table 2.
The probability of detection is modeled as follows.

At every scan, if a target is in the radar surveillance

measurement unit high medium low
range (σr) ft 200 400 1000

azimuth (σθ) mrad 2.0 4.0 1.0
elevation (σε) mrad 2.0 4.0 1.0

Table 2: The standard deviations of the measurement
noises.



region, the target detection probability depends only
on its range. A reference range r0 is set to 7.6 · 105 ft
and the detection probability PD at r0 is 0.9. The
detection probability at range r is given by

PD = 0.9(r/r0)
4

(31)

The false alarm rates can be set to zero or at three
levels (low, medium and high). They are represented,
respectively, by mean values of 0.2, 1, and 5 false
alarms per scan. In [3] the PFA per-cell is set to 10−6

for medium accuracy sensor (that is, the mean per-
frame values divided by 106). The false position mea-
surements are governed by a uniform distribution for
range, azimuth and elevation within the surveillance
volume. The radar has four options for the setting
of measurement rate (high, medium, low, and very
low: 1Hz, 0.5Hz, 0.2Hz and 0.1Hz). The medium
rate (0.5Hz, T=2s) is the nominal rate for all testing
scenarios.
Each platform is also equipped with an inertial nav-

igation unit (INU) and a navigation filter (NAV) that
simulates GPS outputs of the platform position and
velocity. The navigation filter computes GPS-derived
Kalman filter corrections to the INU state. The output
files are generated using the DTA Trajectory Genera-
tor and DTA Sensor Simulator [4].

5.2 Coordinate Systems and Measure-
ment Transformations

The local and global trackers, as presented in Subsec-
tion 5.1.2, are implemented in the target local reference
frame for any initiated track. The target local reference
frame (referred to in the sequel by the subscript loc,
whenever necessary) is defined as ENU (East, North,
Up) centered at its last position estimate in the earth-
centered earth-fixed (ECEF) coordinate system. That
is, at certain time k, assuming the latest position esti-
mate is {xp(k − 1), ECEF}, the target local reference
frame is specified by the 3×3 rotation matrix Aloc and
the origin Oloc, denoted as

{Aloc, Oloc} = AXES{xp(k − 1), ECEF} (32)

The AXES procedure to derive the loc reference frame
can be found in [7].
The sensor measurements consist of target range zr,

azimuth zφ and elevation zθ, i.e., zs = [zr zφ zθ]′. The
azimuth and elevation are obtained in the sensor body
frame. The measurement zs is first transformed to
ECEF coordinates and then to the target local ref-
erence frame. The platform position in ECEF coordi-
nates derived from NAV filter output is used in the first
transformation. An issue to be considered here is the
possible bias introduced by measurement conversion
from spherical (located in the sensor body frame) to
Cartesian frame. We need to calculate the bias signifi-
cance as defined in [2], Section 1.6, to see whether mea-
surement debiasing is required. For low- medium- and

high- accuracy radars with parameters given above,
the bias significance factors are all below 0.2 at tar-
get range of 100 nmi. Thus the standard measurement
conversion from polar to Cartesian coordinates is used
in our DTA implementation. Denote the measurement
in ECEF coordinates as zECEF = [zx zy zz]′. With
the platform position zp

ECEF = [zp
x z

p
y z

p
z ]′, zECEF is

given by
zx = zp

x + zr cos zφ cos zθ
zy = zp

y + zr sin zφ cos zθ
zz = zp

z + zr sin zθ
(33)

The measurement covariance RECEF is given by

RECEF =
[ cos zφ cos zθ −zr sin zφ cos zθ −zr cos zφ sin zθ

sin zφ cos zθ zr cos zφ cos zθ −zr sin zφ sin zθ
sin zθ 0 zr cos zθ

]
[

σ 2
zr

σ 2
zφ

σ 2
zθ

] [ cos zφ cos zθ −zr sin zφ cos zθ −zr cos zφ sin zθ
sin zφ cos zθ zr cos zφ cos zθ −zr sin zφ sin zθ

sin zθ 0 zr cos zθ

]T

(34)
At scan scan k denote the measurement vector as
zECEF (k) and its covariance RECEF (k). Given the
platform position zp

ECEF (k) at time k, the measure-
ment zECEF (k) with its covariance RECEF (k) are de-
rived as above. The measurement zECEF (k) and its
covariance RECEF (k) are further converted to zloc(k)
with its covariance Rloc(k) in the target local reference
frame for the filter update. The transformation is

zloc(k) =
[
zh,loc(k)
zv,loc(k)

]
= Aloc(k)zECEF (k) +Oloc(k)

(35)

Rloc(k) =
[
Rh,loc(k) ∗

∗ Rv,loc(k)

]
= Aloc(k)RECEF (k)Aloc(k)T

(36)

where ∗ denotes the omitted cross-covariance terms.
After filter update, new state estimates are formed and
the target position xp(k) in ECEF coordinates is de-
rived, which will be the origin of the target local refer-
ence frame for the measurement conversion at the next
scan. The flowchart of the coordinate system used for
filter update is shown in Fig. 7 and the detailed equa-
tions for the coordinate conversion can be found in [7].
The global tracker with centralized configuration

combines the measurements from different sensors in
the target local reference frame according to the flow-
chart shown in Fig. 7. Each platform converts its
measured range, azimuth and elevation to the posi-
tion measurement of the target in ECEF coordinates
and the centralized filter converts the position mea-
surement to the measurement in target local reference
frame with the origin derived using the last filter up-
date.
For the distributed configuration, the state esti-

mates from different platforms may use target refer-
ence frames with different origins. We first convert
all the state estimates into a common target reference
frame and then do the track to track fusion using the
approximate technique (20) based on (24). The ori-
gin of the target reference frame for the next scan is



derived using the fused state estimate of the target.
Since the rotation of the coordinate system of a cer-
tain target derived by a local tracker to the common
reference frame is quite small, the covariance matrices
of the state estimates are left unchanged. The position
and velocity estimates are transformed from one local
reference frame to the common reference frame before
doing track to track fusion.

Figure 7: Flowchart of coordinate systems and con-
versions used in filter implementation.

5.3 Simulation Results

5.3.1 Comparison of the Tracking Accuracy in
Different Segments

We choose scenario A3 from [3] to compare the track-
ing accuracy between the centralized and distributed
(global) tracking accuracy. Our major focus here is to
evaluate the performance degradation of the distrib-
uted tracker using a realistic scenario and see if it is
close to the theoretical limit derived earlier. In this
scenario, we have zero false alarm rate and the 3 tar-
get spacings are medium.
In order to compare the global tracking accuracy for

different information processing configurations, we as-
sume each platform maintains its own local track list
with perfect data association. Then only the filter-
ing algorithm determines the estimation accuracy. We
compare the Kalman filter and IMM estimator with
the design parameters given in Section 5.1.2. The
RMS position and velocity errors are averaged over
6 target segments, namely constant velocity far from
the platforms (far CV, F-CV) starting at 270 s and
ending at 550 s, a turn far from the platforms (far
turn, F-T) starting at 590 s and ending at 640 s, a de-
scent at medium range from the platforms (medium
descent, M-D) starting at 1090 s and ending at 1200 s,
a turn at medium range (medium turn, M-T) starting
at 1370 s and ending at 1440 s, a second descent start-
ing at 1490 s and ending at 1540 s, a jinking motion at
close range (close jinking, C-J) starting at 1550 s and
ending at 1750 s6, and a uniform motion at close range
(close constant velocity, C-CV)7 starting at 1800 s and

6For the low acceleration target, the jinking period is shorter.
7The range depends on specific platform-target pair at the

end of the scenario. Certain platform has medium range to the
targets in set A.

ending at 2000 s. For all the test scenarios, the radar
scan rate is 0.5Hz. Table 3 shows the RMS errors ob-
tained using the Kalman filter and the IMM estimator
for scenario A4 for the various segments (all but the
very short second descent). We can see that the IMM
estimator yields less RMS errors for all the segments
of the target trajectories. Notice that target 2 yields
larger RMS errors than target 1 during the jinking pe-
riod and target 3 yields larger RMS errors than target
2 during the jinking. Comparing the results among all
the segments of each target between centralized and
distributed trackers, we can see that the distributed
track yields around 10%-15% larger RMS position and
velocity errors than the centralized one. The results are
close to but slightly larger than the theoretical bounds
of the distributed tracker.
To test the estimation accuracy of global tracker ver-

sus local tracker under false alarm environment, we use
scenario D3 from [3] with 3 platforms and 3 targets.
For simplicity, the tracking accuracy is interpreted as
the average RMS errors over the whole track life. 100
Monte Carlo runs are used and the results are listed in
Table 4. We can see that the tracking accuracy does
not degrade very much when 2-D assignment is used for
data association. The IMM estimator yields less RMS
errors than Kalman filter for both local and global esti-
mators. These RMS errors for global tracker with dis-
tributed configuration are around 7%-10% worse than
those with centralized configuration, which is close to
the theoretical bound of the distributed tracker.

5.3.2 Comparison of the Computational Load

We want to compare the computational load of the
Kalman and the IMM estimator using one critical sce-
nario. Scenario A4 from [3] is chosen for comparison
in a single run (centralized and distributed global es-
timator, with assignment, no false alarms). We have
logged the Matlab flops and the simulation time for
the two filtering schemes. The results are listed in Ta-
ble 5. Clearly, the 3-model IMM estimator has only
2 times the computation time of the Kalman filter for
this scenario. This is due to the fact that the compu-
tation of coordinate conversion and data association
takes a great part in the overall computation time.
Another important observation is that the centralized
filter is computationally less expensive than the dis-
tributed one.

6 Concluding Remarks

In this paper we have investigated the relationship of
the steady state variances of the centralized and dis-
tributed trackers assuming the trackers use the same
target kinematic model. Exact results have been de-
rived for α-β filters corresponding to the commonly
used white noise acceleration models, with various tar-
get maneuvering indices, suitable for nearly constant
velocity or maneuvering targets. The performance



curves are presented for up to 4 sensors. As the num-
ber of sensors increases, the MSE difference between
the centralized and distributed trackers increases. In
the 4 sensor case, using distributed estimation with
optimal track-to-track fusion yields around 10% RMS
error larger than the optimal centralized approach.
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Target Process noise standard deviation

Filter type motion model horizontal
lateral

horizontal
axial

turn rate vertical

Kalman filter WNA-H 3g 1g — 1g
IMM WNA-L 0.05g 0.05g — 0.05g
estimator WNA-H 3g 1g — 1g

CT-L 0.05g 0.05g 5.0◦/s2 —

Table 1: Kalman filter and IMM estimator module design parameters

Scenario
A4, Filter
Conf.

Performance
Criterion

Kalman filter IMM estimator

F-CV F-T M-D M-T C-J C-CV F-CV F-T M-D M-T C-J C-CV

Cen-T1 RMS Pos. Err. 991 679 370 258 220 181 873 575 299 201 180 132
Cen-T2 RMS Pos. Err. 987 668 382 255 238 222 838 551 317 226 215 166
Cen-T3 RMS Pos. Err. 1015 697 391 274 285 236 931 635 319 248 251 172
Dis-T1 RMS Pos. Err. 1092 748 415 287 244 207 961 636 335 227 197 149
Dis-T2 RMS Pos. Err. 1099 739 424 285 260 243 923 611 351 249 237 186
Dis-T3 RMS Pos. Err. 1108 777 431 298 314 261 1042 698 354 274 277 193
Cen-T1 RMS Vel. Err. 315 174 99 95 98 98 135 84 46 47 56 32
Cen-T2 RMS Vel. Err. 317 195 103 105 103 97 138 102 52 58 89 33
Cen-T3 RMS Vel. Err. 298 212 104 105 175 96 143 126 54 69 155 35
Dis-T1 RMS Vel. Err. 349 193 110 106 108 109 148 93 52 53 63 35
Dis-T2 RMS Vel. Err. 352 218 115 116 116 108 152 112 58 65 99 37
Dis-T3 RMS Vel. Err. 330 236 115 117 193 108 159 139 60 76 171 38

Table 3: Global estimation: Comparison of RMS errors (position in ft, velocity in ft/s) between centralized
and distributed estimators using Kalman filter and IMM estimator with perfect data association, scenario A4,
100 runs.

Scenario D3 Performance
Criterion

Centralized
Kalman filter

Distributed
Kalman filter

Centralized IMM
filter

Distributed IMM
filter

Global Est., Tar. 1, RMS Pos. Err. 1042 1123 786 841
perfect association RMS Vel. Err. 135 151 73 78
Global Est., Tar. 2, RMS Pos. Err. 1077 1151 793 856
perfect association RMS Vel. Err. 161 173 79 84
Global Est., Tar. 3, RMS Pos. Err. 1003 1084 853 912
perfect association RMS Vel. Err. 143 160 87 95
Global Est., Tar. 1, RMS Pos. Err. 1225 1368 1091 1174
2-D assignment RMS Vel. Err. 176 195 98 107
Global Est., Tar. 2, RMS Pos. Err. 1297 1382 1045 1168
2-D assignment RMS Vel. Err. 188 204 96 108
Global Est., Tar. 3, RMS Pos. Err. 1276 1370 1074 1187
2-D assignment RMS Vel. Err. 183 198 98 108

Table 4: Global estimation: Comparison of RMS errors between Kalman filter and IMM estimator with
centralized and distributed configurations for scenario D3 (with high false alarm rate), 3 platforms, 100 runs.

Configuration Performance
criteria

Centralized
Kalman
filter

Distributed
Kalman
filter

Centralized
IMM
estimator

Distributed
IMM
estimator

Without data
association

Computational
Time (sec)

724 1388 1587 3162

Matlab(flops) 5.4 · 107 8.3 · 107 1.12 · 108 2.53 · 108

With data
association

Computational
Time (sec)

869 1607 1793 3564

Matlab(flops) 7.0 · 107 1.03 · 108 1.82 · 108 2.95 · 108

Table 5: Comparison of computation load between the Kalman filter and the IMM estimator (centralized vs.
distributed), scenario A4.


