
Performance Management of Accelerated
MapReduce Workloads in Heterogeneous Clusters

Jordà Polo, David Carrera, Yolanda Becerra, Vicenç Beltran, Jordi Torres and Eduard Ayguadé
Barcelona Supercomputing Center (BSC) -
Technical University of Catalonia (UPC)

Barcelona, Spain

Abstract—Next generation data centers will be composed of
thousands of hybrid systems in an attempt to increase overall
cluster performance and to minimize energy consumption. New
programming models, such as MapReduce, specifically designed
to make the most of very large infrastructures will be leveraged
to develop massively distributed services. At the same time,
data centers will bring an unprecedented degree of workload
consolidation, hosting in the same infrastructure distributed
services from many different users. In this paper we present our
advancements in leveraging the Adaptive MapReduce Scheduler
to meet user defined high level performance goals while transpar-
ently and efficiently exploiting the capabilities of hybrid systems.
While the Adaptive Scheduler was already able to dynamically
allocate resources to co-located MapReduce jobs based on their
completion time goals, it was completely unaware of specific
hardware capabilities. In our work we describe the changes
introduced in the Adaptive Scheduler to enable it with hardware
awareness and with the ability to co-schedule accelerable and
non-accelerable jobs on the same heterogeneous MapReduce
cluster, making the most of the underlying hybrid systems. The
developed prototype is tested in a cluster of Cell/BE blades and
relies on the use of accelerated and non-accelerated versions
of the MapReduce tasks of different deployed applications to
dynamically select the best version to run on each node. Decisions
are made after workload composition and jobs’ completion time
goals. Results show that the augmented Adaptive Scheduler
provides dynamic resource allocation across jobs, hardware
affinity when possible, and is even able to spread jobs’ tasks
across accelerated and non-accelerated nodes in order to meet
performance goals in extreme conditions. To our knowledge this
is the first MapReduce scheduler and prototype that is able to
manage high-level performance goals even in presence of hybrid
systems and accelerable jobs.

Keywords—MapReduce, scheduling, accelerators, performance
management, heterogeneity

I. INTRODUCTION

Cloud computing has dramatically transformed the way
many critical services are delivered to customers (i.e. the
Software, Platform and Infrastructure as a service paradigms),
and at the same time has posed new challenges to data
center infrastructures. The result is a complete new genera-
tion of large scale infrastructures, bringing an unprecedented
level of workload and server consolidation, that demand new
programming models, management techniques and hardware
platforms. At the same time, cloud computing has made
available mainstream an unprecedented computing capacity
that opens a new range of opportunities to build new services
that require large scale computing. Therefore, data analytics

is one of the more prominent fields that can benefit from next
generation data center computing.

The intersection between cloud computing and next gener-
ation data analytics services [1] depicts a future scenario in
which amassed data will be made available mainstream, and
users will be able to process it to create added value services.
Consequently, building new models to develop such applica-
tions and mechanisms to manage them are open challenges
currently not yet addressed. An example of programming
model especially well suited for large scale data analytics is
MapReduce [2], introduced by Google back in 2004.

MapReduce workloads usually involve a very large number
of small computations executing in parallel. High levels of
computation partitioning and a relatively small size of individ-
ual tasks are a design point of these platforms. In that aspect,
MapReduce workloads are closer to online web workloads
than to HPC jobs. While MapReduce was originally used
primarily for batch data processing, its use has been extended
to shared, multi-user environments in which submitted jobs
may have completely different priorities. This change makes
task scheduling, which is responsible for selecting tasks for
execution across multiple jobs, even more relevant. Task
selection and slave node assignment govern a job’s opportunity
to make progress, and thus influences job performance. Such
properties were already leveraged in the Adaptive MapReduce
Scheduler [3].

At the same time, there is a clear trend towards the adoption
of heterogeneous hardware [5] and hybrid systems [6] in
the computing industry, due to its superior performance and
energy efficiency to run specialized workloads. Heterogeneous
hardware (mixing generic processors with accelerator cores
such as GPUs or the SPUs in the Cell/BE [7] processor)
will be leveraged to improve both performance and energy
consumption, making the best of each specific platform. For
example, a MapReduce framework enabled to run on hybrid
systems, as the one introduced in [8], has the potential to
impact immensely upon the future of many fields such as
financial analysis, healthcare and smart cities management.
The MapReduce framework and the domain-specific languages
built upon it, provide an easy and convenient way to develop
massively distributed data analytics services that exploit all
the computing power of these large scale facilities, while low
level generic languages, such as OpenCL [9], will provide
portability across different hardware platforms. Huge clusters

Distributed File System (HDFS) FileSize

Split size

S

P

U

S

P

U

S

P

U

PPU

 Map()

Map()

TT

PPU

 Map()

TT

Split size

 Map()

TT

S

P

U

S

P

U

Map()

 Map()

TT
Record Record

S

P

U

S

P

U

S

P

U

S

P

U

S

P

U

Java Mappern Accelerated Mapper

SPU

Runtime

SPU

Runtime

B
lo
c
k

B
lo
c
k

Fig. 1. Architecture of the system: 2 levels of parallelism

of hybrid many-core servers will bring workload consolidation
strategies one step forward, becoming the norm in future
platforms.

In this paper we leverage the Adaptive MapReduce Sched-
uler and the Cell/BE processor to show how next generation
software and hardware can be combined to meet high level
performance goals of customers while transparently and effi-
ciently managing software and hardware resources. Such an
approach requires an integrated management of next gener-
ation data centers that addresses two critical goals: meeting
high level performance goals for data analytics services, and
exploiting the capabilities of heterogeneous hardware. While
both challenges have been addressed in the past by separate
(see [3] and [8] for more details) their integration represents a
completely new challenge. Such integration is addressed in
this paper. To our knowledge, this is the first MapReduce
scheduler that is able to manage heterogeneous hardware while
observing jobs’ completion time goals.

The remainder of the paper is structured as follows: Sec-
tion II introduces some technical background necessary to
understand MapReduce, Cell/BE processor and the Adaptive
Scheduler. Section III introduces the basic techniques used in
the Adaptive Scheduler to estimate job completion time. In
Section IV we describe the extensions required to enable the
Adaptive Scheduler with hardware heterogeneity awareness.
Section V presents the experiments that support our contribu-
tions. Finally, Section VI goes through the related work and
Section VII concludes the paper.

II. TECHNICAL BACKGROUND

A. MapReduce

MapReduce is a framework originally designed by Google
to exploit large clusters to perform parallel computations. It is
based on an implicit parallel programming model that provides
an easy and convenient way to express certain kinds of
distributed computations, particularly those that process large
data sets. Hadoop [10] is a state of the art MapReduce runtime
and the supporting distributed file system (HDFS [11]) that

helps with the distribution of data across nodes. The runtime
and the distributed file system also provide fault tolerance and
reliability, which are crucial in such a large-scale environment.
Hadoop runtime consists of a single master process (the Job-
Tracker) and a large number of slave processes (TaskTrackers).
HDFS uses a master process to manage data distribution
(NameNode) and slave processes to host data locally in each
node (DataNodes). When a MapReduce application (or ‘job’)
is submitted to the runtime, it is split into a large number
of Map and Reduce tasks, which are executed by the slave
nodes. The runtime is responsible for dispatching tasks to
slave nodes and ensuring their completion and, therefore,
responsible for selecting tasks for execution across multiple
jobs. Task selection and slave node assignment govern a
job’s opportunity to make progress, and thus influences job
performance.

B. Hardware heterogeneity

Current research trends show that next generation data
centers will contain a remarkable degree of heterogeneity of
nodes (i.e. the RoadRunner [5] cluster, composed of Opterons
and Cell/BE blades), in an attempt to improve data center
power efficiency and performance. Such heterogeneity, involv-
ing generic and specialized processors co-existing in the same
data center and performing differentiated tasks, hinders the
efficient use of node resources in a convenient way. In this
new scenario, the actual challenge is to exploit heterogeneous
intra-node resources in a transparent way. For our particular
experiments we pick the Cell/BE processor as an example of
hybrid hardware.

The Cell BE architecture [12], has nine processing cores on
a single chip: one 64-bit Power Processing Element (PPE core)
and eight Synergistic Processing Elements (SPE cores) that use
18-bit addresses to access a 256K Local Store. The PPE core
accesses system memory using a traditional cache-coherent
memory hierarchy. The SPE cores access system memory via
a DMA engine connected to a high bandwidth bus, relying on
software to explicitly initiate DMA requests for data transfer.
The DMA engine can support up to 16 concurrent requests
of up to 16K, and bandwidth between the DMA engine and
the bus is 8 bytes per cycle in each direction. Each SPE uses
its Local Store to buffer data transferred to and from system
memory. The bus interface allows issuing asynchronous DMA
transfer requests, and provides synchronization calls to check
or wait for previously issued DMA requests to complete.

C. Accessing Hardware accelerators from Hadoop

The work presented in this paper takes advantage of a
system prototype that extends Hadoop runtime to access the
capabilities of underlying hardware accelerators. Although
such prototype was presented in [8], we include here a brief
description of its main characteristics. The original prototype
neither observed jobs’ completion time goals nor modified
Hadoop scheduling decisions in any way.

The architecture of the prototype has two main components,
each one devoted to manage one of the parallelism levels (see

Figure 1). The first component is based on Hadoop and its
purpose is to partition the data and to assign a piece of work
to each node in the cluster. The second component implements
a second level partition of the data, that is the intra-node
distribution of the data, and executes the actual computing
function. We have implemented this second component as
a shared native library that allows us to divide and execute
tasks on the SPUs. The processing routine executed by each
node, that is, the map function executed by each TaskTracker,
invokes the second component of our prototype, using Java
Native Interface [13].

In previous work we developed this prototype to evaluate
the benefits from exploiting the two levels of parallelism
presented on clusters of hybrid processors. In this paper we
go a step further by considering also heterogeneous clusters
composed of both kinds of processors, with and without
hardware acceleration support, and enabling a MapReduce
runtime with a scheduler that considers these characteristics
to dynamically decide which node is more suitable to host
tasks for each application.

III. THE ADAPTIVE SCHEDULER

In this section we describe the Adaptive Scheduler, which is
an application-centric multi-job task scheduler for MapReduce
workloads. In our work, the Adaptive Scheduler is integrated
with the prototype described in Section II, what results in
an augmented version of the scheduler that is aware of
the underlying hardware capabilities, to manage the existing
hardware properly and to make hardware-aware scheduling
decisions. The Adaptive Scheduler core is described in detail
in [3], and downloadable from [14].

A. Original Design for Homogeneous Clusters

The Adaptive Scheduler relies on estimates of individual job
completion times given a particular resource allocation, and
uses these estimates so as to maximize each job’s chances
of meeting its performance goal. The main objective of the
task scheduling mechanism is to enable a MapReduce runtime
to dynamically allocate resources in a cluster of machines
based on the observed progress rate achieved by the jobs,
and the completion time goal associated with each job. Recall
that in its original form, the scheduler expected the cluster
to be homogeneous, and was unable to distinguish between
accelerator-enabled and regular nodes.

The scheduling technique targets a highly dynamic envi-
ronment, such as that described in [4], in which new jobs
can be submitted at any time, and in which MapReduce
workloads share physical resources with other workloads, be
it MapReduce or not. Thus, the actual amount of resources
available for MapReduce applications can vary over time.
The Adaptive Scheduler adjusts the resource allocation to all
jobs, according to estimates on the completion time given a
particular resource allocation. The minimum unit of resource
allocation is the slot, which corresponds to a worker process
created by a TaskTracker in a slave node. The goal of the
estimation technique is not to provide accurate predictions all

the time, but to permit fair management of completion times
of multiple jobs when combined with a dynamic scheduling
middleware.

B. Job performance estimation

We are given a set of jobs M to be run on a MapReduce
cluster. Each job m is associated with a completion time goal,
Tmgoal. The Hadoop cluster includes a set of TaskTrackers TT ,
each TaskTracker (TTt) offering a number of execution slots,
st, which can host a task belonging to any job. A job (m)
is composed of a set of tasks. Each task (tmi) takes time αmi
to be completed, and requires one slot to execute. The set
of tasks for a given job m can be divided into tasks already
completed (Cm), not yet started (Um), and currently running
(Rm). We also use Cm,t to denote the set of tasks of job m
already completed by TaskTracker t.

Let µm be the mean completed task length observed for
any running job m, denoted as µm =

P
i∈Cm

αm
i

|Cm| . Let µtm
be the mean completion time for any task belonging to a
job m and being run on a TaskTracker TTt. Notice that
as the TaskTrackers are not necessarily identical, in general
µm 6= µtm. When implementing a task scheduler which
leverages a job completion time estimator, both µm and µtm
should be considered. However, in the work presented in this
paper, only µm is considered, i.e., all µtms are presumed equal.
Three reasons have motivated this decision: 1) a design goal
is to keep the task scheduler simple, and therefore all slots
are considered identical. Under this assumption, estimating the
resource allocation required by each job given its completion
time goal is an easy task that can be performed with cost
O(M). If the differences between TaskTrackers are taken
into account, the cost of making the best task allocation for
multiple jobs can easily grow to be exponential. 2) the scenario
in which task scheduling occurs is highly dynamic, and thus
the task scheduling and completion time estimate for each
job refreshed every few minutes. Therefore, a highly accurate
prediction provides little help when scheduling tasks in a
scenario in which external factors can change the execution
conditions over time. The approach is focused on dynamically
driving the slot allocation to different jobs under changing
conditions; and 3) the completion time estimate for a job
m can only benefit from having information relative to a
particular TaskTracker if at least one task that belongs to the
job has been scheduled in that TaskTracker. In practice, it is
likely that each job will have had tasks scheduled on only a
small fraction of the total TaskTrackers.

For any currently executing (on-the-fly) task tmi we define
βmi as the task’s elapsed execution time, and δmi as the
remaining task execution time. Notice that αmi = βmi +δmi , and
that δi and αmi are unknown. Our completion time estimation
technique relies on the assumption that, for each on-the-fly
task tmi , the observed task length αmi will satisfy αmi = µm,
and therefore δmi = µm − βmi .

C. Task Scheduling

The task scheduler consists of two components: a schedul-
ing policy that assigns a priority to each job, and an allocation
algorithm that assigns free slots to jobs based on their priority.
Jobs are organized in a ordered queue, sorted by priority.

The priority of each job is calculated based on the number
of slots to be allocated concurrently to each job over time
so that it can make its goal. For such purpose, our technique
needs to estimate the amount of work still pending for each
job, assuming that each allocated slot will be used for time µm.
Such estimation needs to consider both the tasks that are in the
task queue waiting to be started, as well as the tasks currently
in execution. Based on these two parameters, we propose that
the number smreq of slots to be allocated in parallel to this job
can be estimated as:

smreq =
(

P
i∈Rm

δm
i

µm
+ |Um|)× µm

Tmgoal − Tcurr
− |Rm| (1)

where Tmgoal is the completion time goal for the job m, and
Tcurr is the current time. Therefore, the order in the task list
is defined by the value smreq dynamically calculated for each
job. Notice that smreq is a real value, and it is unlikely that two
jobs have equal smreq values at a given moment. If that does
occur, the jobs will be differentiated arbitrarily.

A more detailed description of how special cases are treated
can be found in [3].

IV. AUGMENTING THE SCHEDULER

In this Section we describe the changes introduced in the
Adaptive Scheduler to exploit hardware accelerators in het-
erogeneous MapReduce clusters. The changes have required
a redesign of the scheduling policy to make it more aware
of the underlying hardware and thus favour the execution of
accelerable mappers on machines with accelerators.

A. Adding Hardware Heterogeneity Awareness

Scheduling jobs that contain accelerable and non-
accelerable MapReduce task implementations requires for the
scheduler to keep track of different kinds of TaskTrackers
depending on the hardware characteristics of the nodes in
which they are running. Whenever a job is deployed with
an accelerator-based version of its code and one of the
tasks for that job is scheduled to run on an accelerator-
enabled TaskTracker, the code that will run in that node will
be the accelerator-specific version. Otherwise, regular non-
accelerated Java version of the code will be run on the node.

TaskTrackers are configured and grouped into pools of
machines with different features: TaskTrackers running on
regular machines (non accelerator-enabled) are included in the
regular pool Preg , while TaskTrackers running on accelerated
machines are included into the accelerated pool denoted by
Pacc.These pools are used not only to favour the affinity and
execute accelerable tasks on accelerator-enabled nodes, but
also to detect whether new jobs may benefit from accelerators
or not. During an initial calibration stage, right after jobs are
submitted, the scheduler first makes sure to execute at least

one map task on each pool. Then, as soon as these initial
tasks are completed, the scheduler decides whether a job will
benefit or not from running on machines from that pool by
comparing the observed elapsed task times on accelerated
TaskTrackers (µmacc) with those obtained on the regular pool
(µmreg). Recall that some jobs that are I/O bound may not
clearly benefit from task acceleration even if their code can
be run on top of an accelerator. In that case, providing affinity
to accelerator-enabled nodes would bring no benefit and could
even result in competition for accelerators with other jobs that
in fact could take advantage of them. Therefore, only in the
case that the speedup obtained when running on one of the
accelerated pools (µmreg/µ

m
acc) passes a certain configurable

threshold, the job will be marked as accelerable. Otherwise
it will be marked as regular and will be preferably executed
on Preg . Accelerable jobs will preferably run on TaskTrackers
from Pacc.

Other than detecting accelerable jobs, the scheduler itself
still assigns resources depending on job priority, which is in
turn primarily based on the need of task slots to meet the
completion time goal (smreq). However, this estimation is now
slightly different: for accelerable jobs, only the mean time of
tasks executed on accelerator-enhanced hardware are observed:

smreq,acc =
(

P
i∈Rm

acc
δm

i

µm
acc

+ |Umacc|)× µmacc
Tmgoal − Tcurr

− |Rmacc| (2)

It should be noted, though, that this approach entails another
issue: even though jobs can be easily prioritized within each
pool, the scheduler still needs a global prioritization if there are
not enough resources to meet the completion time goals. This
is accomplished by normalizing the need of slots depending on
the observed speedup as well as the capacity of the accelerated
pool:

smreq,extra = (
µmreg
µmacc

)× (smreq,acc −
∑
t∈Pacc

st) (3)

For the sake of clarity, take for instance a cluster with
10 slots running on accelerator-enabled machines, and a job
whose map tasks take 50s to complete on an accelerator and
100s on a regular machine. Since it is accelerable, if the job
needs 10 or less slots to meet the completion time goal, the
scheduler will try to schedule it on accelerators only. However,
if the job is missing its goal and accelerable nodes are not
enough, the number of required slots will change accordingly:
an estimation of 15 accelerated slots to meet the completion
goal will be normalized to 10 accelerated slots + 10 regular
slots ((100/50)× (15− 10)).

This way accelerable jobs are prioritized over regular ones
with a similar need of resources, but the latter are not excluded
from running if they have a much tighter completion time goal.
Similarly, if there are not enough resources to complete an
accelerable job on time, these are able to request additional
non-accelerated slots, taking into account how much slower
these nodes are compared to running them on machines with
accelerators.

Finally, notice that while the presented mechanism assumes

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
cl

u
st

er
 n

o
d

es
 a

ll
o

ca
te

d
 (

%
)

Load, based on accelerated task time (%)

Speedup 1x
Speedup 2x
Speedup 3x
Speedup 4x
Speedup 5x

(a) 10% of the cluster accelerated

 0

 20

 40

 60

 80

 100

 0 20 40 60 80 100 120 140 160

F
ra

ct
io

n
 o

f
cl

u
st

er
 n

o
d

es
 a

ll
o

ca
te

d
 (

%
)

Load, based on accelerated task time (%)

Speedup 1x
Speedup 2x
Speedup 3x
Speedup 4x
Speedup 5x

(b) 30% of the cluster accelerated

Fig. 2. Slot allocation as a function of load – non-accelerated pool runs tasks slower than the accelerated one, so applications with a higher speedup need a
larger fraction of slots from the non-accelerated pool as soon as there is not enough capacity in the accelerated pool

that only two pools are defined in the system, regular and
accelerated, it could be easily extended to support different
types of accelerators. Then, affinity could be enforced across
pools based on the speedup observed for each one of them,
being the generic pool the last on to use for accelerable jobs.

B. Running Accelerated Tasks in the Non-accelerated Pool

Under some circumstances, such as jobs with very tight
deadlines or overloaded systems, the scheduler is faced to the
situation of having to deal with accelerable jobs that cannot
meet their goal with the resources of the accelerated pool only.
Therefore, the scheduler is forced to spread tasks from a job
across both pools, accelerated and non-accelerated, in order to
make progress faster.

While we will show real examples of such situation in
Section V, in this Section we develop a theoretical model to
illustrate how different jobs exhibiting different acceleration
pose different challenges to the scheduler. For such purpose,
we take a hypothetical cluster of machines running one single
accelerable job, and suppose that a fraction of the available
nodes are enabled with hardware accelerators (the accelerated
pool) while the remaining are not enabled with this technology
(the non-accelerated pool). We use two configurations of the
cluster for our study, varying the size of each pool. In one
case we use a proportion of 10% to 90% for the accelerated
- non-accelerated pools, and in the second the proportion is
30% to 70%.

As defined above, let smreq,acc be the number of slots to be
allocated in parallel to an accelerable job m in the accelerated
pool to make its goal, TT the set of TaskTrackers in the cluster,
and st the number of execution slots offered by a TaskTracker
t. Then, we define the load of the system at any moment of
time as:

load =
smreq,acc∑
t∈Pacc

st
(4)

Therefore, a load of 50% means that job m requires an

allocation equivalent to the 50% of the slots available in
the accelerated pool Pacc to meet its goal. Notice that this
definition of load is based on smreq,acc and thus, on µmacc.
Therefore, load is calculated based on the average value µmacc
observed for the group of TaskTrackers of the accelerated pool
Pacc.

Results, in Figure 2, show load level for the system (defined
in Figure case as described above) in the X-axis, and the
fraction of nodes of the whole cluster that the job would be
allocated in the Y-axis. Recall that the horizontal line indicates
the fraction of the cluster that is accelerator-enabled for each
scenario. Whenever a fraction of the cluster is allocated to
the job, if the fraction fits in the accelerated pool, then
accelerated nodes are allocated, providing on this way pool-
affinity through the scheduler.

Figure 2 represents the effect of running accelerated tasks on
the non-accelerated pool. Such situation is required when the
load of the accelerated pool is beyond its capacity. This point
can be seen in the figures when the allocated fraction of the
cluster is above the size of the accelerated pool, indicated with
the horizontal line and corresponding to 10% for Figure 2(a)
and 30% for Figure 2(b). Beyond that point, accelerable tasks
start running also on the non-accelerated pool, using non-
accelerated versions of the code. Therefore, their performance
is lower than when they run in the accelerated pool, and the
difference depends on the per-task speedup of each job. In
the Figure we have included the simulation for different jobs,
each one with a different of per-task speedup. In particular we
show values for per-task speedups of 1x, 2x, 3x, 4x and 5x.
Recall that the higher the speedup is, the higher the allocation
in the non-accelerated pool must be to compensate for the lack
of additional accelerated nodes. As an example, for a per-task
speedup factor of 5x, going a little beyond the capacity of
the accelerated pool results in needing to allocate the entire
cluster to the job to meet its completion time goal. This
example illustrates how jobs that show high per-tasks speedups
in the accelerated pool will force the scheduler to steal many

 20

 40

 60
R

u
n
n
in

g
 t

as
k
s

 20

 40

 60
R

u
n
n
in

g
 t

as
k
s

Wordcount

 0

 20

 40

 60

0 1000 2000 3000 4000 5000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S2 D2S3 D3 Montecarlo 1
Montecarlo 2

Fig. 3. Exp. 1A: Augmented Adaptive Scheduler

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

Wordcount

 0

 20

 40

 60

0 1000 2000 3000 4000 5000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S2 D2 S3 D3 Montecarlo 1
Montecarlo 2

Fig. 4. Exp. 1B: Adaptive Scheduler without hardware affinity support

resources from the non-accelerated pool to satisfy the demand
of the job, missing the goal in many situations. Section V will
show this effect on real workloads running in a prototype on
top of a medium-size cluster.

V. EVALUATION

In this Section we present a series of tests that demonstrate
the effectiveness of our techniques to enable the Adaptive
Scheduler for Hadoop with hardware-awareness. We use a
cluster of 60 IBM’s Cell/BE blades to run MapReduce work-
loads composed of a set of jobs, each one deployed with a
user-defined completion time goal. Although our cluster is
homogeneous, in each test we decide to consider that only
a fraction of the machines is accelerator-enabled, and non-
accelerated nodes are used to run non-accelerated code only.
In practice, it reproduces the configuration of a heterogeneous
cluster in which some nodes are accelerator-enabled. Although
we do not take advange of low level programming languages
(i.e. OpenCL [9]) that support different parallel platforms
(accelerators and multi-core generic processors, for instance),

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

Wordcount

 0

 20

 40

 60

0 1000 2000 3000 4000 5000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S2 D2 S3 D3 Montecarlo 1
Montecarlo 2

Fig. 5. Exp. 1C: Adaptive Scheduler (empty accelerated pool)

we emulate such behavior by deploying some jobs with
multiple versions of their low-level code, that is, different
versions of MapReduce’s map function are implemented.
Then, the runtime can dynamically choose which version to
run in each node, depending on the characteristics of the node
(accelerated or not accelerated). Notice that for any accelerable
job, multiple MapReduce tasks can be scheduled at the same
time on different nodes and thus, multiple versions of its
map function (accelerated and non-accelerated) can be running
simultaneously in different nodes, being their results collected
and merged by Hadoop runtime after their execution.

In each test we evaluate different properties of the decisions
made by the Adaptive Scheduler. Different tests are grouped
into two experiments. In the first experiment we look at the
capacity of the scheduler to dynamically estimate the speedup
shown by accelerable applications, use that information to
estimate the resource requirements for each job, and pro-
vide accelerated pool-affinity when possible. In the second
experiments, we explore how the Adaptive Scheduler handles
competition within the accelerated pool (competition for non-
accelerated resources was already explored in [3]), as well
as how accelerable tasks are run for some jobs in the non-
accelerated pool to make the necessary progress to meet their
completion time goal.

A. Testing environment

The system used to run the experiments is a 60 IBM
QS22 blades cluster, each one equipped with 2x 3.2Ghz Cell
processors and 8GB of RAM. These nodes were used as
Hadoop DataNodes and TaskTrackers. The JobTracker and
the NameNode run in a separate machine. All the nodes
were connected using a Gigabit ethernet. To simulate an
environment in which some of the nodes are enabled with
accelerators, we create two logical partitions in the system:
a 54 node partition is considered to have no acceleration
support (running code will be limited to the PPU of the Cell
processors), and 6 nodes are accelerated (having full access to
their SPUs).

For this experiment we use three MapReduce applications
that will be colocated on the same physical cluster:
• Montecarlo: we choose a Montecarlo simulation appli-

cation to represent CPU intensive applications with very
little input data. We have two implementations of the map
section of this MapReduce application, one is written in
pure Java while the other is Cell/BE-accelerated.

• Crypt: we use a data encryption application to represent
data-intensive accelerable applications. We have imple-
mented a 128 bits key AES encryption algorithm using
both a Java code and a Cell-accelerated code. The Java
version is based on the methods offered in the standard
javax.crypto.Cipher package. This application en-
crypts an input of 60GB in all experiments.

• WordCount: the third application is the WordCount sam-
ple application, only in non-accelerated version, process-
ing an input between 57 and 125GB worth of text files.

Both Montecarlo and Crypt can benefit from executing on
nodes with acceleration support (with a speedup factor of up
to 25x and 2.5x respectively). The TaskTrackers are enabled
to decide at runtime which version of the mapper should be
used depending on the locally available hardware. WordCount
does not have an accelerated map version, so the performance
of its tasks is the same on all nodes.

B. Experiment 1: Scheduling accelerable tasks

In this section we evaluate the execution of the same
workload using three different configurations, and will show
the benefits of adding hardware affinity support to the Adaptive
Scheduler when running simultaneously accelerable and non-
accelerable applications. The configurations are as follows:
• Experiment 1A. Augmented Adaptive Scheduler with

hardware affinity and with 10% of the nodes enabled with
hardware acceleration support. In this case, the Adaptive
Scheduler prioritizes the allocation of accelerator-enabled
nodes to accelerable applications, as described in Sec-
tion IV-A.

• Experiment 1B. Original Adaptive Scheduler, that is,
without hardware awareness. No hardware affinity is
provided. In this configuration, although the scheduler
does not distinguish the kind of hardware, 10% of the
nodes are still enabled with hardware acceleration sup-
port. Thus, all map tasks assigned to accelerated nodes
execute the accelerated version of the code (if available).
Variance of µm is high.

• Experiment 1C. Augmented Adaptive Scheduler with
hardware affinity considerations, but without nodes en-
abled with hardware acceleration support. In this case,
only non-accelerated versions of the map tasks are exe-
cuted across the cluster.

Figure 3, Figure 4 and Figure 5 show the results for the
execution on the three configurations. In all configurations,
the workload is composed of one instance of the WordCount
application, which is not able to exploit hardware acceleration
support, and two instances of the Montecarlo simulation,

which exhibit a high speedup on accelerated nodes. The first
job that is submitted is the WordCount application. Afterwards,
the first Montecarlo simulation is submitted at S2, and a
second Montecarlo job is submitted 300 seconds after the first
one completes, at time S3. Recall that S3 will vary depending
on the actual completion time of the first instance. WordCount
is set to have a relaxed completion time goal, of 5000 seconds,
while Montecarlo simulations have tighter completion time
goals, being 2200 seconds (D2) for the first instance and 500
seconds (D3) for the second one. The goal for the first instance
of Montecarlo can be met running only with resources from
the accelerated pool, while the goal for the second instance is
so tight that this job needs to spread over both pools to meet
it.

Figure 3 shows the results for Experiment 1A. An horizontal
line indicates the limit of the accelerated pool. Recall that the
WordCount application initially runs across the two pools, but
without exploiting the acceleration capabilities of the accel-
erated pool, because no accelerated code is provided for this
application. When the first Montecarlo job is submitted(S2),
the Adaptive Scheduler starts the calibration phase, putting
two tasks to run for this job, one in each pool, to evaluate
the speedup. When the first estimation of resource demand is
done, the scheduler starts allocating resources to the job in the
accelerated pool. The job completes at time 863s. Short after
that, the second Montecarlo instance is submitted (S3). Due to
its tighter completion time goal, and after the initial execution
of one task in each partition to calibrate the estimation, the
scheduler determines that for this second instance to meet its
goal, the job needs to be spread across both partitions, in a
combination of pure Java and accelerated versions of the code.
The job meets its completion time goal and completes at time
1824s. Notice that this second Montecarlo instance performs
just slightly faster than the first Montecarlo instance, although
it is running most of the time using 9x times more nodes than
the first one. Further details of this situation are discussed in
Section IV-B. After that point, the WordCount job gets all the
resources allocated again and runs until completion.

Figure 4 shows the results for Experiment 1B, in which the
Adaptive Scheduler is not aware of hardware heterogeneity.
In this case, all maps of all jobs execute across all nodes.
As it can be observed, the number of nodes assigned to the
first Montecarlo job is higher than when using the Adaptive
Scheduler with hardware affinity. The reason for this is that,
as the Adaptive Scheduler assigns nodes to this job that do not
have hardware acceleration support, the execution of the non-
accelerated version of these maps increases considerably the
average map time for this job (recall that this non-accelerated
version is around 25x slower than the accelerated version).
Thus the job requires more nodes to meet its completion time
goal. We have to remark that, although the higher number of
assigned nodes, the execution time of this job is still more than
twice the execution of the same job under the same execution
conditions but using hardware affinity during the scheduling
decisions. Notice also that this configuration also increases the
execution time of the WordCount application. This is because,

as this application has a very relaxed completion time goal, it
has a low priority for the scheduler that assigns to WordCount
only the nodes that the Montecarlo simulation does not need to
meet its tight completion time goal. Regarding the execution
of the second job of the Montecarlo simulation there are
not noticeable differences between this configuration and the
configuration considering hardware affinity because its tight
completion time goal requires in both configurations to get
most of the nodes in the cluster. Finally, Figure 5 shows the
results for Experiment 1C, in which there are no nodes with
hardware acceleration support. Thus, in this configuration only
non-accelerated versions of the map tasks are executed. This
is the configuration that requires a higher number of nodes to
meet the completion time goal of the first Montecarlo job and,
thus, the configuration that gets the worst execution time for
the WordCount application. This configuration also illustrates
the performance penalty that Montecarlo simulation suffers
when there are not accelerated nodes available and only it
is possible to execute the non-accelerated version of its map
function. Although the second job of Montecarlo get all the
nodes in the cluster, its execution time doubles the execution
time observed when all nodes are assigned too but 10% of
them are enabled with hardware acceleration support (see
Figure 3). Thus, this second job misses its completion time
goal, as it was set tight enough to require the allocation of all
the cluster when the size of the accelerated pool is 10% of the
cluster used for these experiments.

C. Experiment 2: Arbitrating between pools

In this section we evaluate the Adaptive Scheduler when
arbitration between both pools is required. We use a workload
composed of a WordCount job (which is not accelerable),
the Montecarlo simulation (which is accelerable and has a
high per-task speedup) and the Crypt application (which is
accelerable and has a moderated per-task speedup).

We show the results for the following three configurations:
• Experiment 2A. This configuration shows an scenario in

which completion time goal of each job is relaxed enough
to be met using only nodes of the pool with highest
affinity for each job. All of the jobs run simultaneously.

• Experiment 2B. In the second configuration we show how
the Adaptive Scheduler arbitrates the allocation inside
the accelerated pool when two accelerable jobs compete
for its nodes. In addition, the tight completion time goal
for accelerable jobs forces the scheduler to allocate them
nodes from the non-accelerated pool.

• Experiment 2C. This configuration illustrates how a non-
accelerable job can steal nodes from the accelerated pool
when needed to meet its completion time goal.

Figure 6 shows the results for Experiment 2A. We execute
one instance of each application of the workload, all of them
with a relaxed completion time goal, which can be met using
only the nodes from the affinity pool of each application
(accelerated pool for the Montecarlo simulation and Crypt
and non-accelerated pool for WordCount). An horizontal line
in the graphs marks the number of nodes in the accelerated

pool. We first launch the job that executes the WordCount
application. The scheduler executes one map task on each
pool to determine whether the application is accelerable or
not. After determining that it is not, the job is assigned all
available resources in the cluster until the job that executes the
Crypt application is submitted (instant S2). At this moment,
the scheduler assigns to the Crypt job one node of each pool to
decide the affinity of the job. Once the scheduler decides that
this job is accelerable, it starts applying the affinity criteria:
as WordCount map tasks running on accelerated nodes are
finishing the scheduler assigns them to Crypt. When the job
for the Montecarlo simulation starts (instant S3), both jobs
have to share the accelerated pool. The scheduler decides
how to allocate these nodes considering the completion time
goal of each job. In this example, Montecarlo has a tighter
completion time than Crypt and, for this reason, it gets more
nodes than Crypt. At the same time, WordCount continues
the execution using only nodes from the non-accelerated pool,
as they are enough for this job to meet its completion time
goal. Montecarlo ends the execution meeting its performance
goal (instant D3) and at this moment all accelerated nodes are
assigned to the Crypt job that ends the execution meeting its
performance goal at instant D2.

Figure 7 shows the result for Experiment 2B, in which
the load over the accelerated pool is high. The experiment
is basically the same as that shown in Figure 6, except an
additional Montecarlo simulation is submitted in order to in-
crease the load on the accelerated pool. Initially, a WordCount
instance is submitted. At time S2 an instance of the Crypt
application is submitted and at instant S3 the first instance
of the Montecarlo simulation reaches the system. After the
first instance of the Montecarlo simulation is completed, a
second instance of Montecarlo is submitted, in this case with
a very tight completion time goal. This forces the Adaptive
Scheduler to assign to this job most of the nodes in the cluster,
from both accelerated pool and non-accelerated pool. When
this job completes, Crypt and WordCount continue to run
using only the nodes from the accelerated and non-accelerated
pool respectively, until the scheduler detects that the Crypt
has not enough resources to meet its completion time goal.
At that moment, Crypt starts getting allocated some non-
accelerated nodes. When Crypt completes, WordCound starts
running across all nodes in the cluster and finally meets its
goal.

Notice from this experiment that when the scheduler detects
that accelerated nodes are not enough to meet the comple-
tion time goal of accelerable job (Crypt and Montecarlo),
the number of non-accelerated nodes required to compensate
the shortage of accelerated nodes is considerably higher for
Montecarlo than for Crypt. As discussed in Section IV-B, this
is due to the different per-task speedup of both jobs: 25x in
the case of Montecarlo tasks and 2.5x in the case of Crypt
tasks.

Finally, Figure 8 shows the results for Experiment 2C, in
which the accelerable jobs have relaxed completion time goals
and the non-accelerable job is submitted with a very tight

 20

 40

 60
R

u
n
n
in

g
 t

as
k
s

Wordcount

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

S2 D2 Crypt

 0

 20

 40

 60

0 1000 2000 3000 4000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S3 D3 Montecarlo

Fig. 6. Exp. 2A: Low load scenario

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

Wordcount

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

S2 D2 Crypt

 0

 20

 40

 60

0 1000 2000 3000 4000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S3 D3 Montecarlo 1
Montecarlo 2

Fig. 7. Exp 2B: Heavy load on the accelerated pool

completion time goal. Initially, the scheduler estimates that
WordCount and Crypt will be able to meet their completion
time goals. But short after Montecarlo is submitted, the sched-
uler notices that WordCount will need more resources to meet
its goal and thus claims some nodes from the accelerated pool.
After WordCount is completed, the remaining jobs continue
sharing the accelerated pool, but most of it is assigned to
Crypt since it has a higher need of slots. Once the scheduler
acknowledges that Crypt too will meet its completion goal
and Montecarlo becomes more needy (at around instant 2850),
both jobs start sharing the pool more equally until completion.

VI. RELATED WORK

Process scheduling is a deeply explored topic for parallel ap-
plications, considering different type of applications, different
scheduling goals and different platforms architecture ([15]).
There has also been some work focused on adaptive scalable
schedulers based on job sizes ([16], [17]), but in addition to
some of these ideas, the proposed scheduler takes advantage
of one of the key features of MapReduce: the fact that jobs
are composed of a large number of similar tasks.

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

D1 Wordcount

 20

 40

 60

R
u
n
n
in

g
 t

as
k
s

S2

D2

Crypt

 0

 20

 40

 60

0 1000 2000 3000 4000

R
u
n
n
in

g
 t

as
k
s

Elapsed time (s)

S3

D3

Montecarlo

Fig. 8. Exp. 2C: Heavy load on the non-accelerated pool

There is little specific work on scheduling for MapReduce
applications. The initial scheduler provided by the Hadoop
distribution uses a very simple FIFO policy, considering five
different application priorities. In addition, in order to isolate
the performance of different jobs, the Hadoop project is work-
ing on a system for provisioning dedicated Hadoop clusters
to applications [18], but this approach can result in resource
underutilization. In [19] the authors propose a fair schedul-
ing implementation to manage data-intensive and interactive
MapReduce applications executed on very large clusters. The
main concern of this scheduling policy is to give equal shares
to each user and achieve maximum utilization of the resources.
However, scheduling decisions are not dynamically adapted
based on job progress, so this approach isn’t appropriate for
applications with different performance goals.

In [20], the authors introduce a system to manage and
dynamically assign the resources of a shared cluster to multiple
Hadoop instances. Priorities are defined by users using high-
level policies such as budgets. This system is designed for
virtualized environments, unlike the proposed work, which
is implemented as a regular Hadoop MapReduce scheduler
and thus is able to run on standard Hadoop installations and
provide more accurate estimations.

There are several works in the literature that consider the
heterogeneity trend on current execution platforms. For exam-
ple, there are some works conducting research on combining
two programming models (MPI and OpenMP) under a hybrid
approach [21], aiming to favour scalability without renouncing
to performance. These hybrid solutions have been extensively
used for scientific computing, but have not become generally
used in other fields basically for two key issues.

Recent work introduced in [22] presents an API to develop
programs to run on hybrid architectures, regardless the partic-
ular underlying core or hardware accelerator.

VII. CONCLUSIONS

In this paper we have shown how MapReduce runtimes
can be leveraged to run heterogeneous sets of workloads,

including accelerated and non-accelerated applications, on top
of heterogeneous clusters, composed of regular nodes and
accelerator-enabled systems. Hybrid systems and heteroge-
neous processors can offer advantages to some MapReduce
workloads, providing specialized cores that can efficiently
perform some critical tasks. Exploiting such hardware infras-
tructure requires some kind of infrastructure-awareness on the
task scheduler, providing hardware affinity when necessary.
Real time monitoring of the tasks allows the scheduler to
evaluate the real benefits of running each workload on different
platforms, and the scheduler may decide the best distribu-
tion of tasks on nodes accordingly. Depending on individual
performance goals of each job and on the availability of
generic and hardware-specific code for each application, the
scheduler may decide to run any version of the code on top
of the available hardware. Low level programming languages
(i.e. OpenCL [9]) that support different parallel platforms can
provide great advantage in heterogeneous scenarios.

We have developed a prototype, based on the Adaptive
Scheduler for Hadoop, that is driven by user-defined high-
level performance goals and that is able to make the most
of the underlying hardware. The scheduler logically splits
the MapReduce cluster into two partitions, two pools of
servers with different capacity to run accelerated tasks or
not. Then, it takes into account different jobs’ properties,
including their completion time goals and the availability of
accelerable versions of their code, to schedule their tasks
across the cluster. Jobs that are deployed with accelerated and
non-accelerated versions of their tasks will exhibit different
performance depending on the pool in which their tasks are
scheduled. Therefore, the scheduler provides accelerated pool-
affinity to accelerable jobs when possible, but is not limited
to run jobs’ tasks in one single pool. We have demonstrated
the effectiveness of the Adaptive Scheduler through a series of
experiments run on top of a medium-sized cluster of Cell/BE
blades.

The Adaptive Scheduler provides dynamic resource allo-
cation across jobs, hardware affinity when possible, and is
even able to spreads jobs’ tasks across accelerated and non-
accelerated nodes in order to meet performance goals in
extreme conditions. To our knowledge this is the first MapRe-
duce scheduler and prototype that is able to manage high-level
performance goals even in presence of hybrid systems and
accelerable jobs.

ACKNOWLEDGEMENTS

This work is partially supported by the Ministry of Science
and Technology of Spain and the European Union (FEDER
funds) under contract TIN2007-60625, and by IBM through
the 2010 IBM Faculty Award program.

REFERENCES

[1] Nasa Nebula project.
URL http://nebula.nasa.gov

[2] J. Dean, S. Ghemawat, MapReduce: Simplified data processing on large
clusters, in: OSDI ’04: Sixth Symposium on Operating System Design
and Implementation, San Francisco, CA, 2004, pp. 137–150.

[3] J. Polo, D. Carrera, Y. Becerra, J. Torres, E. Ayguadé, M. Steinder,
I. Whaley, Performance-driven task co-scheduling for mapreduce envi-
ronments, in: NOMS ’10: Proceedings of the 12th IEEE/IFIP Network
Operations and Management Symposium, IEEE, Osaka, Japan, 2010.

[4] D. Carrera, M. Steinder, I. Whalley, J. Torres, E. Ayguadé, Enabling
resource sharing between transactional and batch workloads using dy-
namic application placement, in: Middleware ’08: Proceedings of the 9th
ACM/IFIP/USENIX International Conference on Middleware, 2008, pp.
203–222.

[5] Los Alamos National Laboratory, High-Performance Computing: Road-
runner.
URL http://www.lanl.gov/roadrunner/

[6] B.-G. Chun, G. Iannaccone, G. Iannaccone, R. Katz, G. Lee, L. Nic-
colini, An energy case for hybrid datacenters, in: Workshop on Power
Aware Computing and Systems (HotPower’09), Big Sky, MT, USA,
2009, 2009.

[7] M. Gschwind, P. Hofstee, B. Flachs, M. Hopkins, Y. Watanabe, T. Ya-
mazaki, A novel simd architecture for the cell heterogeneous chip-
multiprocessor, 2005.

[8] Y. Becerra, V. Beltran, D. Carrera, M. Gonzalez, J. Torres, E. Ayguadé,
Speeding up distributed mapreduce applications using hardware accel-
erators, in: ICPP ’09: Proceedings of the 2009 International Conference
on Parallel Processing, IEEE Computer Society, Washington, DC, USA,
2009, pp. 42–49.

[9] K. Group, OpenCL (Open Computing Language) - The open standard
for parallel programming of heterogeneous systems.
URL http://www.khronos.org/opencl/

[10] Apache Software Foundation, Hadoop MapReduce Tutorial.
URL http://hadoop.apache.org/mapreduce/

[11] Apache Software Foundation, Hadoop Distributed File System (HDFS)
Architecture.
URL http://hadoop.apache.org/core/docs/current/
hdfs_design.html

[12] A. E. Eichenberger, K. O’Brien, K. O’Brien, P. Wu, T. Chen, P. H.
Oden, D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhang,
P. Zhao, M. Gschwind, Optimizing compiler for the cell processor, in:
PACT ’05: Proceedings of the 14th International Conference on Parallel
Architectures and Compilation Techniques, 2005, pp. 161–172.

[13] Sun Microsystems, Inc, Java Native Interface.
URL http://java.sun.com/docs/books/jni

[14] Adaptive Scheduler. Apache isue MAPREDUCE-1380.
URL https://issues.apache.org/jira/browse/
MAPREDUCE-1380

[15] D. G. Feitelson, L. Rudolph, Parallel job scheduling: Issues and ap-
proaches, in: JSSPP, 1995, pp. 1–18.

[16] P. R. Jelenkovic, X. Kang, J. Tan, Adaptive and scalable comparison
scheduling, in: SIGMETRICS ’07: Proceedings of the 2007 ACM
SIGMETRICS international conference on Measurement and modeling
of computer systems, ACM, New York, NY, USA, 2007, pp. 215–226.

[17] A. Wierman, M. Nuyens, Scheduling despite inexact job-size infor-
mation, in: SIGMETRICS ’08: Proceedings of the 2008 ACM SIG-
METRICS international conference on Measurement and modeling of
computer systems, ACM, New York, NY, USA, 2008, pp. 25–36.

[18] Apache Software Foundation, Hadoop on demand.
URL http://hadoop.apache.org/core/docs/r0.20.0/
hod_user_guide.html

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S. Shenker,
I. Stoica, Job scheduling for multi-user MapReduce clusters, Tech.
Rep. UCB/EECS-2009-55, EECS Department, University of California,
Berkeley (Apr 2009).

[20] T. Sandholm, K. Lai, MapReduce optimization using regulated dynamic
prioritization, in: SIGMETRICS ’09: Proceedings of the eleventh inter-
national joint conference on Measurement and modeling of computer
systems, ACM, New York, NY, USA, 2009, pp. 299–310.

[21] N. Drosinos, N. Koziris, Performance comparison of pure mpi vs hybrid
mpi-openmp parallelization models on smp clusters, in: Proceedings of
the 18th International Parallel and Distributed Processing Symposium
(IPDPS04), 2004.

[22] C. Augonnet, S. Thibault, R. Namyst, P.-A. Wacrenier, StarPU: A
Unified Platform for Task Scheduling on Heterogeneous Multicore
Architectures, in: Proceedings of the 15th International Euro-Par Con-
ference, Lecture Notes in Computer Science, Vol. 5704 of Lecture Notes
in Computer Science, Springer, Delft, The Netherlands, 2009, pp. 863–
874.

