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ABSTRACT Named Data Networking (NDN) is considered the future of Internet architecture, providing a 

realistic solution for data delivery using a caching module in an Internet of Things (IoT) based environment. 

However, a major challenge of the caching module is data redundancy, which decreases the overall caching 

performance by caching similar data at numerous locations in an NDN-based IoT scenario. Moreover, the 

latency and stretch are maximized due to high redundant caching operations. Several attempts have been 

made by the research community to provide an enhanced solution to overcome such issues. However, the 

caching module still requires efficient enhancement. This study provides critical insights into earlier caching 

strategies. To solve the problems of these caching strategies, an enhanced caching strategy is proposed, named 

Priority-based Content Popularity-Aware (PCPA) Caching Strategy, which is evaluated by comparing its 

performance with some of the novel NDN-based IoT caching strategies. The proposed caching strategy 

outperforms the comparing strategies in terms of latency, hop count, cache hit ratio and energy consumption. 

INDEX TERMS: Named Data Networking; Internet of Things; Caching 

I. INTRODUCTION 

The Internet of Things (IoT) comprises small and 
heterogeneous devices constrained by low power, low cost, 
and limited memory [1]. These devices, known as smart 
devices, include wireless sensors. Due to their limited 
memory and low power, data often becomes inaccessible. 
IoT-based applications such as smart towns, smart health, 
smart homes, and smart grids require enhanced privacy and 
security to retrieve data using these devices. Additionally, 
some IoT-based applications, such as smart transportation, 
require improved mobility services. End-users are primarily 
interested in downloading desired data rather than knowing 
the sources or physical locations of the data. For example, in 
Wireless Sensor Networks (WSNs), devices have a specific 
purpose of information harvesting [2]. Moreover, the IoT 
encompasses a multitude of small, low-power devices that 
have specific names or complex identification and address 
requirements for network identification. While IPv6 offers 
ample address space to address IoT device naming and 
addressing challenges, constrained devices struggle to 
handle long address spaces, resulting in increased resource 
consumption and communication difficulties [3, 4]. 
Currently, a vast number of IoT-based contents are generated 
and processed rapidly, and content may have multiple 
versions with different timestamps. This complexity in 

content naming increases the challenges of rapidly growing 
content. Therefore, it demands a highly reliable address 
space and permanent naming technique for both IoT-based 
heterogeneous devices and contents [5]. Moreover, 
interoperability and heterogeneity are critical aspects of IoT. 
The IoT network is built using billions of smart sensors to 
provide IoT services, and these sensors play a significant role 
in overall IoT-based communications [6]. However, these 
sensors (devices) are heterogeneous and constraint-oriented, 
having limited resources such as battery life, memory size, 
and processing power. Furthermore, communication is 
carried out among these sensors using several heterogeneous 
technologies such as wired, wireless, Bluetooth, cellular, 
Cognitive Radio Networks (CRN), and Long-Term 
Evolution (LTE) [7]. Therefore, IoT-based networks require 
high heterogeneity regarding device specifications and 
diverse communication techniques and technologies to 
ensure interoperability. In terms of data availability in IoT 
networks, data often becomes unavailable when a mobile 
node moves from one place to another [8]. Similarly, data 
cannot be forwarded when the device runs out of battery [9]. 
Therefore, techniques like in-network caching are highly 
required to improve data availability [10]. 
      To address these critical challenges in IoT-based 
networks, Named Data Networking (NDN) is a promising 
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and flexible Internet architecture that provides all the 
necessary facilities to support IoT-based communications 
[11]. It is a challenging task for the current IP-based Internet 
architecture to meet the scalability demands of supporting 
billions of IoT devices and handling the enormous volume of 
data generated from such devices. In this regard, NDN 
provides a naming concept to efficiently support billions of 
devices by providing unique names and addresses to devices 
and data items, respectively [12]. Moreover, NDN 
introduces receiver-driven communication concepts to 
support IoT-based applications and offers flexible caching 
features to make data location-independent, enabling easy 
handoff for mobile devices [13]. Additionally, in NDN, the 
content is considered a self-certified entity that enhances the 
security and privacy of transmitting data for both the sender 
and the receiver [14]. Furthermore, named content makes it 
easy for the provider to verify that the data is disseminating 
according to the query flow, while location independence 
hides the source of the data. Moreover, the problem of 
heterogeneity among IoT-based devices can be easily solved 
by categorizing the devices using the NDN naming feature. 
Therefore, heterogeneous devices can operate with one 
another by integrating the NDN strategy layer into IoT-based 
networks [13]. This study focuses on the NDN-based 
caching feature that enables the IoT-based network to cache 
data anywhere and fetch similar data from nearby caching 
nodes with less delay, improving overall data availability and 
reducing the frequency of retrieving data from the provider. 
As a result, a significant number of network resources, such 
as energy, power, and network life, can be conserved [15, 
16]. 
       NDN-IoT caching provides several benefits, but it also 
imposes complications and restrictions on the development 
of caching strategies in different IoT networks. To propose a 
strategy for NDN-based IoT, it is necessary to consider 
certain properties related to the content and the node selected 
for content caching [17]. Content properties, such as 
freshness, popularity, timing ephemerality, provider, and 
node properties, such as the path stretch between the caching 
node and provider, battery (power level), and free memory, 
should be taken into account. Currently, researchers are 
interested in exploring content freshness, but content 
popularity is a more important parameter for enhancing 
caching performance, and measuring it requires urgent 
attention [18, 19]. Therefore, it is crucial to consider both 
content and node properties while making caching decisions. 
Additionally, content properties and node properties, such as 
Content Store (CS) size, battery life, caching module design, 
and node position in NDN-based IoT networks, should be 
taken into account. NDN-based caching fails to consider less 
memory, low power, and battery life, resulting in all 
incoming requests traversing several hops to find the 
required content, ultimately retrieving the content from the 
original provider [20, 21]. This maximizes the stretch ratio, 
resource consumption, content retrieval delay, and link 
utilization, reducing the data hit rate and overall caching 
performance of the network. Therefore, NDN caching 
strategies are more appropriate for improving IoT-based 
network performance. However, there is still a problem 
related to selecting an incentive node in a network that can 

provide efficient caching performance in multiple aspects, 
such as data availability, short latency, and lower energy 
consumption [22, 23]. Based on the aforementioned 
problems, we conducted a caching strategy in this study. 

 

 
FIGURE 1. PAPER TEXONOMY 

 

 

The contributions of the current study are presented as 

follow: 

• This study provides a review of diverse caching 
concepts and issues in NDN-IoT caching 
environments. Primarily, we introduce the importance 
of NDN and IoT architecture and caching concepts. 

• We define related caching strategies and identify 
problems with existing caching strategies. 

• We critically categorize NDN and IoT-based caching 
strategies. 

• We identify critical issues of NDN and IoT-based 
caching strategies. 

• Based on the current issues of earlier NDN-based IoT 
caching strategies, we developed a new model to 
overcome these problems. We propose an NDN-based 
IoT caching strategy named Priority-based Content 
Popularity-Aware (PCPA) Caching. 

• The proposed caching strategy provides three 
mechanisms: dynamic content selection, content 
caching, and content backup caching mechanism. 

• According to the content selection mechanism, PCPA 
not only selects the most popular content based on the 
request frequency but also selects popular content by 
measuring the distance between end-users and caching 
node. 

• The content caching mechanism provides the optimal 
caching node to cache the transmitted content and 
increases the cache hit performance. 
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• The backup caching mechanism provides the caching 
nodes to less popular contents to be cached near the end 
devices and reduces the data retrieval latency. 

• We comprehensively compare the proposed strategy 
with different NDN-based IoT caching strategies, and 
we establish a simulation environment to check the 
efficiency of the proposed caching strategy. 

   The paper is organized as follows. Section II explains the 

problems based on the current study is proposed. Section III 

discusses the persisting issues with earlier studies that still 

need to be addressed. Section IV introduces the proposed 

caching strategy, while Section V outlines the performance 

evaluation process. Finally, the study concludes in the last 

section VI. Figure 1 show the paper taxonomy. 

II. RELATED STUDIES   

In NDN-based IoT networks, caching at intermediate nodes 

or devices offers several benefits, such as decoupling 

receivers or devices from the producers' location, reducing 

redundant data dissemination, and increasing the scalability 

of IoT networks [20, 24]. Moreover, caching can improve the 

energy consumption of IoT-based heterogeneous devices, 

and the overall network mobility can be organized more 

efficiently. Furthermore, employing caching features 

carefully can improve the life and flexibility of IoT-based 

networks. To improve caching performance, several NDN-

IoT-based caching mechanisms (cache placement strategies 

and replacement policies) have been developed based on 

different criteria, such as probabilistic-based caching, 

centrality-based caching, content-based caching, node-based 

caching, and popularity-based caching [25, 26]. 

      The NDN-IoT default caching strategy, called Cache 

Everything Everywhere (CEE) [27], provides a simple 

structure that offers high data availability and reachability. 

However, CEE can increase redundant content replications, 

leading to increased overall bandwidth and power 

consumption. Additionally, caching content at all network 

nodes can result in increased unwanted cache usage and 

unnecessary consumption of network resources. The Client 

Cache Strategy (CCS) [28] improves content validity by 

determining content popularity based on requests received at 

network nodes. However, this process can be time-

consuming and reduce caching performance in terms of 

content retrieval latency and cache hit. CCS caches content 

at the betweenness centrality node, which can increase the 

overall stretch ratio for future requests and lead to link 

congestion. 

       The Tag-based Caching (TC) [29] strategy uses tag 

filters to look up and disseminate content, but managing tags 

can be challenging when a user applies the same tag to 

different content. This can result in increased cache storage 

consumption and reduced network and device performance. 

The Sleeping-based Strategy (SCS) [30] manages sleeping 

nodes to respond to incoming requests and improves energy 

performance. However, prioritizing content can increase 

caching and network congestion. The Periodic Caching 

Strategy (PCS) [31] uses Autonomous Systems (ASs) to 

cache content and improve system performance. However, 

content caching at the betweenness centrality node can 

become congested and lead to path stretch. Probabilistic 

Caching (ProbCache) [25] enhances content caching, 

freshness, and energy efficiency by using caching 

probability and dynamic attributes. It reduces content 

transmissions and caching operations, increasing cache hit 

rate and reducing content retrieval delay. The Cooperative 

Content Caching (CCC) [10] strategy improves energy 

efficiency and consumption by reducing the number of 

transmissions towards IoT devices. However, initiating 

several tables to execute upon receiving a request can 

increase communication overhead and reduce the data hit 

rate. 

      The Approximate Betweenness Centrality (ABC) [32] 

strategy improves caching performance under resource-

constrained environments by determining centrality for each 

content. However, measuring approximate centrality can be 

challenging when the cache of a node becomes full and many 

requests are received for multiple contents. Probabilistic 

caching strategies have diverse mechanisms for determining 

caching positions, but performing multiple functions for 

each caching operation can consume more energy. 

Centrality-based caching strategies offer efficient caching 

performance by caching content at a centrality position. 

Hence, most of the subsequent Interests are satisfied from the 

centrality position, resulting in efficient caching 

performance. The centrality-based caching strategies 

promote the idea of content-centrism in which the 

disseminated contents are cached within the cache of the 

centrality node, such as the betweenness centrality node. The 

centrality node helps reduce latency because it caches the 

contents at the node linked with the maximum number of 

neighbor nodes. As a result, a large number of requests pass 

through the centrality node to obtain the content rather than 

traversing it to the main provider. 

       In probabilistic caching, the content's probabilistic value 

is measured to cache it at different locations to fulfill the 

demands of end devices. However, in popularity-based 

caching, the frequency of requested content is measured by 

taking the sum of incoming requests for that content. In 

content-based caching, IoT imposes several constraints on 

the content, such as freshness, probability, and popularity. In 

node-based caching, the appropriate node is required to be 

selected for caching the requested content [33, 34]. CEE 

stores contents by caching all the content at the routers, 

which increases the number of same-content replications. 

Leave Copy Down (LCD) [35] was developed to improve 

the content caching structure by reducing data redundancy. 

However, it increases the amount of similar data replications. 

Moving Copy Down (MCD) [36] was proposed to overcome 

the challenges arising from LCD and CEE strategies by 

removing the redundant data items in the data delivery path. 

The Edge Caching Strategy (ECS) [30] was developed to 

reduce the path length between the consumer and the cached 

content to satisfy end-users’ demands. In proxy caching, the 

content retrieval time is minimized for subsequent Interests. 
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Table 1. Related studies and their basic aim and goals. 

 

 

Sr References Aim/ Goal  

1 Amadeo et al. [27] It is known as default NDN-IoT caching strategy that provide simple caching structure 

and caches all the incoming content at all on-path caching nodes. 

2 Wang et al. [28] It caches incoming requested contents at betweenness centrality node.  

3 Al-Ward H et al. [29] It uses tag filters to look up and disseminate content for the caching of transmitted 

contents. 

4 Amadeo et al. [30] It manages sleeping nodes to respond to incoming requests and improves energy 

performance. 

5 Naeem et al. [31] It caches the incoming data items at the edge node and betweenness centrality node of 

each autonomous system.  

6 Naeem et al. [25] It defines probabilistic value at each caching node to decide the incoming content to be 

cached or not. 

7 Arshad et al. [10] This strategy improves energy efficiency and consumption by reducing the number of 

transmissions towards IoT devices. 

8 Pfender et al. [32] It improves caching performance under resource-constrained environments by 

determining centrality for each content.  

9 Meng et al. [35] It was developed the improve the structure of CEE caching strategy by reducing the 

redundancy.  

10 Meng et al. [36] It was developed to reduce the redundant data items at the data delivery path and improve 

the caching structure of LCD and CEE strategies.  

11 Amadeo et al. [30] In this caching strategy the incoming content are cached at the network edges to respond 

the subsequent user requests. 

12 Hail et al. [37] It evaluates the probabilistic values to identify the content caching node.  

13 Naeem et al. [25] It identifies the probabilistic values and forwards the caching contents hop by hop for 

most popular contents.  

14 Barnardini et al. [38] It caches the content using the threshold values to find the most popular contents. 

15 Ren et al. [39] It was developed using local gain and max-gain value to find the popular content and 

content caching nodes. 

16 Current Study It provides combination of mechanisms in which appropriate content selection, caching 

node selection, and backup caching mechanism are involved. It improves the content 

dissemination and data retrieval latency. It enhances the data availability and reduces the 

path stretch between end user and caching nodes.  

 

However, it does not define any criteria to cache contents 

based on their popularity. Probabilistic caching provides 

several ways to cache content, such as Probabilistic Caching 

Strategy for Internet of Things (pCASTING) [37], random 

probabilistic caching, ProbCache, and Hope-based 

Probabilistic Cache (HPC) [25]. Similarly, HPC also 

improves homogeneous content replication at multiple 

locations. The Most Popular Cache (MPC) [38] was 

introduced to promote the most downloaded (popular) 

content. Max Gain In-network Caching (MAGIC) [39] was 

established to reduce bandwidth consumption and stretch 

(hop reduction). Therefore, the use of NDN caching 

strategies is appropriate for improving the performance of 

IoT-based networks. However, selecting the best incentive 

node to provide efficient caching performance remains a 

problem. The selection of popular content is crucial to 

improve caching performance, but it can also create 

complications and restrictions in developing caching 

strategies for different IoT networks. Therefore, an optimal 

caching strategy or combination of placement and 

replacement strategies is needed to enhance network 

performance in terms of data retrieval latency and energy 

consumption [21]. 

       Table 1 shows the related studies and their basic goals. 

To overcome these challenges, a three-fold-based caching 

strategy named Priority-based Content Popularity-Aware 

(PCPA) caching strategy has been designed, which includes 

content selection, content caching, and backup caching 

mechanisms. The proposed caching strategy caches the 

content at the appropriate node along the data downloading 

path and enhances the performance of an NDN-based IoT 

network. 

III. PROBLEM FORMULATION 
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According to the location dependency in the IP Internet, all 

Interests need to be forwarded to the remote server. As a 

result, the same content is traversed through several hops 

from the remote server to the consumer for each request [40]. 

This IP address-based communication increases the path 

stretch because the same content is transmitted from the 

remote server for each reply [41]. While NDN-IoT caching 

offers several benefits, it also presents complications and 

restrictions in developing caching strategies for different IoT 

networks. To propose an NDN-based IoT strategy, it is 

necessary to consider properties related to content and the 

node selected for content caching. Content properties include 

freshness, popularity, timing ephemerality, and provider, 

while node properties encompass the path stretch between 

the caching node and provider, battery level, and free 

memory.  

       Currently, researchers are keenly interested in exploring 

content freshness. However, content popularity is a much 

more important parameter for enhancing caching 

performance. Therefore, it requires urgent attention to 

measure the popularity of contents and improve the 

performance of the NDN-based IoT caching module. 

Moreover, it is essential to consider both content and node 

properties when making caching decisions. Content 

properties and node properties, such as CS size, battery life, 

caching module design, and node position in NDN-based IoT 

networks, should be taken into account. However, NDN-

based caching lacks consideration for constraints such as 

limited memory, low power, and battery life. Consequently, 

when these conditions are not met, all incoming requests 

need to traverse several hops to find the required content, 

resulting in increased stretch ratio, resource consumption, 

content retrieval delay, and link utilization. This leads to a 

reduced data hit rate and overall caching performance of the 

network. Therefore, NDN caching strategies are more 

appropriate for improving IoT-based network performance. 

       However, there is still a problem related to the selection 

of an incentive node in a network that can provide efficient 

caching performance in multiple aspects, such as data 

availability, short latency, and lower energy consumption. 

Sometimes, content popularity has multiple effects, and 

when content has a higher popularity count but less usage in 

the future, efficient energy performance is reduced, 

consuming more resources and unproductive storage. This is 

because most frequently requested content cannot be 

accommodated in the node's cache, and a large number of 

incoming requests for that content are forwarded to remote 

providers, significantly increasing content retrieval delays. 

Centrality-based caching has a serious problem of selecting 

only a central node for content caching, which has limited 

cache storage, while a large number of contents are requested 

and cached. Consequently, it is impossible to cache all 

contents within the limited cache storage and improve 

overall caching performance. Therefore, it is highly required 

to select a node that can improve data availability for IoT-

based end devices and network performance. On the other 

hand, selecting popular content is the most crucial part for 

improving caching performance. To achieve this, a dynamic 

mechanism is highly required to measure content 

popularities based on content requested frequency. Thus, 

IoT-based applications require contents with different 

characteristics, such as real-time applications needing fresh 

content, while flash crowds require contents with high 

requested frequency. Hence, it is considered that NDN-based 

IoT caching is still under construction and exists in its early 

stage     

       CEE has a simple structure that provides a caching-

based environment with high data availability and 

reachability. However, it increases the redundant replication 

of contents, leading to higher overall bandwidth and power 

consumption. Additionally, it results in unwanted cache 

usage by caching undesirable contents at all nodes, which 

unnecessarily consumes network resources. To address these 

issues, pCASTING was proposed to enhance content 

caching mechanisms, content freshness, and energy 

efficiency. The caching procedure operates in a distributed 

manner based on caching probability and probabilistic 

decisions. It utilizes dynamic attributes to improve cache 

occupancy and energy efficiency, thereby reducing content 

transmissions and caching operations. Content caching 

probability is defined by measuring caching utility along 

with content freshness, giving higher freshness content a 

higher probability to be cached with a higher energy level. 

This approach increases the cache hit rate and reduces 

content retrieval delay. The Caching Fresh Popular Content 

(CFPC) [42] mechanism allows individual nodes to make 

independent caching decisions based on two primary factors: 

popularity count and content life. Popularity count is 

computed by aggregating user requests for specific content 

across all network nodes, while content life is determined by 

evaluating the freshness value considering its creation and 

expiration dates. As caching nodes become filled with 

content, new content must be accommodated to handle new 

requests. This cycle repeats every time a request is generated, 

resulting in most requests being fulfilled by the content 

publisher. To overcome these challenges, a caching strategy 

that enhances overall performance is necessary. Sometimes, 

content popularity can negatively impact efficient energy 

performance, as highly popular content may not be useful in 

the future, leading to increased resource consumption and 

unproductive storage. When frequently requested content 

cannot be accommodated in a node's cache, a large number 

of incoming requests for that content will be forwarded to 

remote providers, significantly increasing content retrieval 

delays. 

       The problems can be summarized as the need to 

efficiently enhance the content popularity parameters and 

mechanisms to improve data retrieval and cache hit 

performance. Additionally, the selection of nodes for content 

caching is a crucial measure in content caching decisions that 

affects performance when the data routing path becomes 

longer. Therefore, a node selection mechanism is highly 

required to enhance the overall NDN-based IoT network 

performance. It is also essential to select a node that 

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



 

VOLUME XX, 2017 1 

improves data availability for IoT-based end devices and 

network performance. Furthermore, selecting popular 

content is crucial for improving caching performance, and a 

dynamic mechanism is needed to measure content popularity 

based on the frequency of requests. IoT-based applications 

require content with different characteristics, such as real-

time applications needing fresh content, while flash crowds 

require content with high request frequency. Therefore, it 

can be considered that NDN-based IoT caching is still under 

construction and in its early stages. 

IV. PROPOSED CACHING STRATEGY   
The objective of this study is to design a caching strategy that 

enhances the performance of NDN-based IoT networks. The 

proposed caching strategy aims to improve content selection 

and node selection mechanisms, as well as backup caching 

mechanisms. In NDN, caching modules play a significant 

role, with caching placement and replacement being crucial 

tasks for improving overall network performance. NDN 

caching strategies are more suitable for enhancing IoT-based 

network performance. However, there is still a problem 

concerning the selection of an efficient node in a network 

that can deliver optimal caching performance across various 

aspects, including data availability, short latency, and low 

energy consumption. Content popularity can sometimes have 

multiple effects, where highly popular content may become 

less useful in the future, resulting in reduced energy 

performance and increased resource and unproductive 

storage consumption. This issue arises because frequently 

requested content cannot always be accommodated in a 

node's cache, leading to a large number of incoming requests 

for such content being forwarded to remote providers, 

thereby significantly increasing content retrieval delays. 

While NDN-based IoT caching offers several benefits, it also 

presents complications and restrictions in the development 

of caching strategies for different IoT networks. 

A. CACHING CONCEPT 

In NDN-based IoT, content selection is based on users' 
request frequency, which indicates the number of requests 
received for a specific content. To determine content 
popularity, the number of requests for that content must be 
identified. This involves identifying the nodes and paths used 
to disseminate the requests and retrieve the desired content. 
All nodes in the NDN-based IoT network can measure the 
number of incoming requests for a particular content. The 
content with the highest request frequency value is 
considered to be the most popular content. Thus, it has a 
higher probability of being selected as popular content, also 
known as high popular content. Therefore, if the data 
contents are cached or transmitted through these network 
nodes and sensed by the nodes, they can be measured using 
the following equation: 

 

𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … … . . 𝒙𝒏}                         (1) 

 

where x ∈ X and |X| indicates the total number of contents 

following the network path from publisher to subscriber. 

Since the content is divided into chunks and all the chunks 

are considered the same size, the total number of contents 

can be calculated using the following equation 2: 

 

𝑋 = ∑ 𝑥𝑖                                               (2)

𝑛

𝑐=1

 

where 𝑐𝑖 ∈ 𝐶 and |𝐶| shows the total number of contents. 

B. CONTENT POPULARITY   

Content popularity can be identifying through probability 

matrix. It can be measured using the following equation 3 

and 4:  

 

 𝑃 = {𝑝1, 𝑝2, 𝑝3, … … … 𝑝𝑛}                            (3) 

                𝑃 = ∑ 𝑝𝑖                                             (4)

𝑛

𝑝=1

 

where 𝑝𝑖 ∈ 𝑃 and |𝑃| shows that magnitude of popularity. 

For a specific content 𝑥 the popularity can be measured using 

the following equation 6:   

          𝑃𝑥 =
𝑟𝑥

𝑅𝑇

                                         (5) 

where 𝑟𝑥 shows the number of requests generated to 

download content 𝑥 while 𝑅𝑇 represents the number of 

requests generated for all contents cached at the network 

nodes. The popularity of a specific content at time 𝑡 can be 

calculated by the equation 7 given in the following: 

 𝑃𝑥(𝑡) =
𝑟𝑥

𝑅𝑇

(𝑡)                                (6) 

If the content 𝑥 already cached at a network node 𝑛 then the 

following equation 7 will be defined the function:  

     𝑃𝑥
𝑛(𝑡) =

𝑟𝑥
𝑛

𝑅𝑇
𝑛 (𝑡)                                (7) 

where 𝑟𝑥
𝑛 shows the number of requests received for content 

𝑥 and node 𝑛 at time 𝑡 while 𝑅𝑇
𝑛 represents the total number 

of requests received at node 𝑛 for all contents. We considered 

an NDN-based IoT environment in which IoT-based sensor 

nodes or IoT devices are used to generate IoT-based contents 

and called publisher or content producers. As traditional 

practices, the NDN-based IoT nodes will remain in sleeping 

mode until they receive a user request or an event happen. 

As a request reaches at nodes, the nodes get activated to 
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respond the incoming request by sending the requested 

content or it needs to forward the incoming requests. The 

number of nodes between publisher and subscriber can be 

denoted using the following equation: 

 |𝑁| = {𝑛1, 𝑛2, 𝑛3, … … … 𝑛𝑖}                       (8) 

where |𝑁| shows the total number of network nodes. It can 

be denoted as:   

      |𝑁| = ∑ 𝑛𝑖

𝑛

𝑛=1

                                       (9) 

where 𝒏𝒊 ∈ 𝑵 and |𝑵| shows the total number of nodes. 

 
C. CONTENT FRESHNESS    

Unlike traditional Internet data, in the NDN-based IoT 

caching scenario, the lifespan of data plays a crucial role in 

implementing real applications in an IoT environment. Each 

content in the NDN-based IoT is associated with a specific 

time period assigned by the publisher or data producer, and 

once that time period elapses, the content is considered 

expired. In IoT applications, this time period is referred to as 

the content freshness value or content lifetime [43]. 

Freshness indicates the lifespan of a content and indicates 

how recently the content was generated by the publisher. 

Caching IoT-based contents is more challenging compared 

to traditional Internet contents because IoT caching decisions 

need to consider freshness or content lifespan, which 

depends on the type of content. The freshness may vary for 

different applications with the same content; for example, 

some applications require highly fresh data, while others can 

be satisfied with older data [44]. The content freshness can 

be defined using the following equations: 

   𝐹 = {𝑓1, 𝑓2, 𝑓3, … … … 𝑓𝑛}                       (10) 

    

 𝐹 = ∑ 𝑓𝑖                                       (11)

𝑛

𝑓=1

 

where 𝑓𝑖 ∈ 𝐹 and |𝐹| shows the maximum freshness. In order 

to calculate the freshness for a specific content the following 

equation 12 is specified the function to measure the 

freshness: 

 𝐹𝑥 = 𝑇𝑥
𝑐 − 𝑇𝑥

𝑔
                                   (12)  

where the 𝐹𝑥 shows the freshness of content 𝑥, 𝑇𝑥
𝑐 

demonstrates the current time and the 𝑇𝑥
𝑔

 shows the time 

when the content 𝑋 was generated. Therefore, the freshness 

can be defined as the time deference between current time 

and the time of content generation.   

D. INTERMEDIATE NETWORK NODE  

The NDN-based IoT network consists of wireless sensor 

nodes or IoT devices that have the capability to identify, 

process, and cache transmitted contents. When users send 

requests to fetch content from the producer, these requests 

follow a path and pass through multiple network nodes to 

reach the producer. The nodes responsible for transmitting 

the user's request to the producer are referred to as 

intermediate network nodes. Therefore, all the nodes 

between the user and the producer are considered 

intermediate nodes. Most of the time, NDN-based IoT nodes 

remain in sleeping mode until an event occurs, such as a 

request reaching the node to fetch some content. When the 

event occurs, the nodes get activated to perform the required 

sensing task and send the requested content back to the end 

user. For simplicity, let's assume that all NDN-based IoT 

caching nodes can sense one type of content. If a user sends 

out requests, these requests can be measured using the 

following equations. In NDN, the users' requests are 

commonly referred to as "Interest," so the users' Interests can 

be defined as: 

 

 𝑅 = {𝑟1, 𝑟2, 𝑟3 … . . , 𝑟𝑛}                        (13) 

 

 

  𝑅 = ∑ 𝑟𝑖                                  (14)

𝑛

𝑟=1

 

where 𝑟𝑖 ∈ 𝑅 and | 𝑅| shows the maximum number of users’ 

requests. If the number of requests were generated at time 𝑡 

then the equation 13 and 14 will defined as15 and 16 given 

in the following: 

 𝑅(𝑡) = {𝑟1(𝑡), 𝑟2(𝑡), 𝑟3(𝑡), … . . , 𝑟𝑛(𝑡)}              (15) 

 

        𝑅(𝑡) = ∑ 𝑟𝑖(𝑡)                                  (16)

𝑛

𝑟=1

 

As the number of Interest (request) are received for content 

𝑥 at network node 𝑛 at time 𝑡 then the equation 16 will be 

converted in to the following 17: 

 

 𝑅𝑥
𝑛(𝑡) = ∑ 𝑟𝑖(𝑡)                             (17)

𝑛

𝑟=1

 

   𝑟(𝑡) = 𝑥, 𝑛, 𝑓, (𝑡)                          (18) 

 

where 𝑟 ∈ 𝑅, 𝑓 ∈ 𝐹, 𝑛 ∈ 𝑁, and 𝑥 ∈ 𝑋. Equation 18 shows 

that each request 𝑟 generated for content 𝑥 having freshness 

𝑓and 𝑡 is the time at which the Interest reached at a node 𝑛. 

The NDN-based IoT network nodes are associated with the 

storage capabilities to cache the transmitted contents for 

fulfill the user demands by sending the content from the 

caching nodes to the end users. Therefore, the caching nodes 
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between user and publisher can be defined by the following 

equation 19: 

   |𝐶| = {𝑐1, 𝑐2, 𝑐3, … … . . , 𝑐𝑛}                    (19) 

 

|𝐶| is the amount of cache storage of the network and if the 

content 𝑥 is cached at the network nodes as a traditional 

prospective in NDN a copy of content is cached at all the 

nodes between user and publisher: 

 

 |𝐶| = {𝑐𝑥1
, 𝑐𝑥2

, 𝑐𝑥3
, … … . . , 𝑐𝑥𝑛

}               (20) 

 

When the content 𝑥 is cached at network node 𝑛 at time 𝑡 

then the equation 20 will be converted into equation 21: 

 

𝐶(𝑡) = {𝑐𝑥1
(𝑛, 𝑡), 𝑐𝑥2

(𝑛, 𝑡), 𝑐𝑥3
(𝑛, 𝑡), … … . . , 𝑐𝑥𝑛

(𝑛, 𝑡)}  

                                                                                                  (21) 

 

According to the current study the same content 𝑥 will not 

be cached at all the network nodes between user and 

publisher. Therefore, in order to show the current caching 

status regarding the present study, the equation 22 shows the 

content 𝑥 will be cached at node 𝑖 at time 𝑡. 

 

     𝐶(𝑛, 𝑡) = ∑ 𝑐𝑥𝑖
(𝑛, 𝑡)

𝑛

𝑐=1

                    (22) 

 

where 𝑐𝑖 ∈ 𝐶. The caching status of a network node can be 

defined suing the binary values (0, 1). If the content is cached 

at node the status will be 1 otherwise, it will be 0. Therefore, 

if the content 𝑥 cached at node 𝑛 at time 𝑡 the status will be 

shown by the following equation 23: 

 

              𝑐𝑥𝑖
(𝑛, 𝑡) = 1                                 (23) 

 

If the content 𝑥 cannot found at node 𝑛 at time 𝑡 the caching 

status is shown by the following equation 24: 

 

 𝑐𝑥𝑖
(𝑛, 𝑡) = 0                                 (24) 

 

 

       ∑ 𝑆. 𝑐𝑥𝑖
(𝑛, 𝑡) =

𝑛

𝑐=1

𝑑                    (25) 

 

where 𝑆 shows the size of data content 𝑥 cached at 𝑖𝑡ℎ node 

and 𝑑 represents the size of cache of intermediate node 𝑖. 
Therefore, in order to find the caching status at any-time 

along the data delivery path at time 𝑡 and 𝑖𝑡ℎ node using the 

following decision strategy: 

 

 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝐶(𝑛, 𝑡) → 𝐶(𝑛, 𝑡 + 1)             (26) 

 

According to the equation 26, we can obtain the new caching 

status of an intermediate network node at time 𝑡 + 1. 

A. SYSTEM MODEL   
To propose a new strategy for NDN-based IoT, it is 

necessary to consider certain properties related to content 

and the nodes selected for content caching. These properties 

include content freshness, content popularity, provider 

information, as well as node properties such as path stretch 

between caching node and provider, battery power level, and 

available memory. The selection of popular content is crucial 

for improving caching performance. Therefore, a dynamic 

mechanism is required to measure content popularity based 

on request frequency. IoT-based applications require content 

with different characteristics. For example, real-time 

applications require fresh content, while flash crowds 

demand content with high request frequency. This suggests 

that NDN-based IoT caching is still under development and 

in its early stages. Caching plays a significant role in 

enhancing the overall performance of an NDN-IoT network. 

By caching appropriate contents along the data downloading 

path, caching strategies can efficiently meet end-user 

demands in a short time. To further enhance network 

performance, it is essential to design an optimal caching 

strategy or a combination of placement and replacement 

strategies. This strategy should aim to improve data retrieval 

latency, energy consumption, hop count, and cache hit ratio. 

In this study, a threefold-based caching strategy called 

Priority-based Content Popularity-Aware (PCPA) caching 

strategy is proposed. It combines three mechanisms: content 

selection, content caching, and backup caching. The content 

selection mechanism in PCPA is responsible for selecting 

specific content in the proposed caching strategy. Unlike 

other content popularity-based caching strategies, the 

proposed strategy selects content based on both the 

frequency of user requests and the number of hops traveled. 

This is achieved by measuring the number of incoming 

requests for a particular content in recent time and evaluating 

the distance traveled by multiple requests to fetch the same 

content. All NDN-based IoT network nodes can measure the 

number of incoming requests for a specific content using the 

Pending Interest Table (PIT). 

         The content with the highest request frequency value is 

considered as the Highly Frequently Requested (HFR) 

content and has a higher probability of being selected. 

However, in this strategy, the content cannot be selected as 

HFR content based solely on request frequency. The number 

of hops traveled by user requests is also taken into account. 

The popularity evaluation considers the number of hops 

traveled by each request to measure the distance between the 

end-user and the NDN-based IoT caching node. By 

measuring the distance, requests that have traveled a greater 

number of hops are identified, and the Average Hop Distance 

(AHD) is determined. 

         Therefore, a content has a higher chance of being 

selected as HFR if its average distance traveled by requests 

is higher than other contents. This is because some requests 

may reach the provider node after traveling a large number 

of hops, while others are sent from nodes located near the 

provider node or one hop away. As a result, requests sent 
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from closer nodes can reach the provider node earlier than 

those sent from farther nodes. In general, content is selected 

to be cached regardless of where the requests originate. This 

leads to a larger number of redundant requests being 

transmitted to download the same content multiple times 

from the distant provider node, increasing overall content 

retrieval latency and the average number of hops. 
 

Algorithm 1. Content Freshness  

Input:  

Incoming requests   

Output: 

  Fresh contents 

Procedure: GetFreshContent 

1: user request (𝑟𝑖) reaches at node 𝑛𝑖 

2:     for (check the node 𝑛𝑖 has the requested content 𝑥𝑖) 

3:         if (required content 𝑥𝑖 found at node 𝑛𝑖) then 

// According to equation 12 

4:             if (𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡 >  𝑥𝑖 . 𝑇𝐸𝑥𝑝𝑖𝑟𝑒) then 

5:               forwards the user request (𝑟𝑖) to the pub 

6:                if(publisher returned fresh content 𝑥𝑖) then  

7:                    refresh content 𝑥𝑖 at node 𝑛𝑖   

8:               else 

9:                evict the expired copy of content 𝑥𝑖 from node 𝑛𝑖       

10:             end if    

11:           end if                      

12:         end if                      

13:    end for   

14: return fresh copy of content 𝑥𝑖 

[where 𝑖 = {1, 2, 3, … … 𝑛}, and  𝑥𝑖 ∈ 𝑋,  𝑟𝑖 ∈ 𝑅]   

 

To address this issue, the proposed caching strategy takes 

into account the average distance as a primary consideration. 

It selects content for caching based on both HFR and AHD. 

However, a question arises: what happens if a content meets 

the first condition of being HFR (receiving a greater number 

of requests than other contents) but fails to meet the second 

condition of AHD? In such cases, the content freshness or 

content lifetime is considered to choose an appropriate 

content as popular. In an NDN-based IoT scenario, content 

freshness or content life is crucial for improving overall 

network performance. Content providers set the freshness or 

content lifetime and attach it to the content header. When the 

content life expires, the content is considered invalid and 

evicted from the node to make room for new contents. The 

algorithm (Algorithm 1) identifies the content freshness. In 

some cases, the content producer may need to create a new 

copy of the expired content. IoT applications often require 

fresh contents, such as healthcare services that need up-to-

date information to make appropriate decisions based on 

vital parameters like blood oxygen level and blood pressure. 

Therefore, if a content does not meet both conditions 

mentioned earlier, its content freshness or content lifetime is 

considered to determine the appropriate popular content for 

caching. The content with a higher lifetime contains highly 

fresh information, indicating its popularity in recent time. 

Thus, content lifetime is a crucial factor in choosing a 

suitable content as popular. The content selection algorithm 

(Algorithm 2) demonstrates the selection of highly fresh 

content. 

 
Algorithm 2. Content Selection Mechanism  

Input:  

Incoming requests 

Incoming requests for a specific content   

Output: 

  Most frequently requested contents 

Procedure GetPopularContent: 

1: multiple interests arrive at intermediate node 𝑛𝑖  

2:     for (requests 𝑟𝑖 checks whether it has required content 𝑥𝑖)  

3:            if (𝑥𝑖 . 𝑟𝑖𝐶𝑜𝑢𝑛𝑡 > 𝑥𝑗 . 𝑟𝑗𝐶𝑜𝑢𝑛𝑡  or  𝑥𝑖.𝑛𝑖Count >    

                 𝑥𝑗.𝑛𝑗Count) then   

4:                 if (𝑥𝑖 . 𝑓𝑖 > 𝑥𝑗 . 𝑓𝑗) then 

7:                     select 𝑥𝑖  

8:                     else  

9:                     forward 𝑟𝑖  the to the next node 𝑛𝑗  

10:               end if  

11:           end if  

12:    end for 

13: return most frequently requested content    

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛}, 𝑖 ≠ 𝑗 and  𝑥𝑖 , 𝑥𝑗 ∈ 𝑋,  𝑟𝑖 , 𝑟𝑗 ∈ 𝑅, 

 𝑓𝑖 , 𝑓𝑗 ∈ 𝐹]   

 

In the first phase, the content selection mechanism is 

discussed, where users' requests are measured and the 

distance for each request is calculated to determine the 

average distance for choosing popular content. Once the 

content selection mechanism is completed, the execution 

process moves to the next phase, which is the content 

caching mechanism. 

In the content caching mechanism, caching decisions are 

made based on the content selection. These caching 

decisions occur along the data delivery path from the content 

producer to the requested users. Caching the content can 

typically reduce data retrieval latency and path stretch for 

subsequent requests from end users. Efficient caching 

decisions require the computation of several parameters, 

including path distance, caching nodes, disseminated 

content, number of hops along the path, and available space 

in caching nodes. Different content caching mechanisms 

have been designed, such as probabilistic caching, single 

node caching, and centrality-aware caching. 

      On the other hand, the Priority-based Content Popularity-

Aware (PCPA) strategy provides a threshold value to assign 

to each node for identifying the content caching node. The 

content will be cached on the node that exhibits more 

interests than the threshold value. This threshold is 

determined by calculating the predictor history and incoming 

users' requests to identify the caching node. When a number 

of requests are generated to fetch a specific content from the 

content provider, the requests propagate from the user 

through various network nodes until they reach the content 

provider node. Each network node creates an entry as the 

request passes through it, and when the requested content is 

found, the node sends the content back to the user.  
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      Furthermore, the request entry is deleted from each node 

as the content is disseminated through the nodes. According 

to PCPA, each node is associated with a static threshold 

value.  

       
Algorithm 3. Content Caching Mechanism  

Input: 

        Demanded Content: Content which is needed by user 

Output:    

        Content cached at intermediate node 

Procedure: GetCachingNode 

1: content 𝑥𝑖 reached at node 𝑛𝑖  

2:     for (check node 𝑛𝑖 has content 𝑥𝑖) 

3:           if (node 𝑛𝑖 has content 𝑥𝑖) then 

4:               forward content 𝑥𝑖 to next node 𝑥𝑗  

5:            else if (node 𝑛𝑖 has enough cache space) then 

9:                  else if ( 𝑥𝑖.node 𝑛𝑖 has  𝑟𝑖 > 2) then 

10:                            else if (neighbors.node 𝑛𝑖 > 2) then                       

11:                                  cache content 𝑥𝑖 at node 𝑛𝑖 

12:          end if 

13:                  end else if 

14:                             end else if 

15:                                    end else if 

16:     end for 

17: return content  𝑥𝑖 cached at node 𝑛𝑖 

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛}, 𝑖 ≠ 𝑗 and  𝑥𝑖 ∈ 𝑋, 𝑥𝑗 ∈ 𝑋] 

 

      The threshold is assigned as 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 2 where 𝑁 =
{𝑛1, 𝑛2, 𝑛3, … … … 𝑛𝑛}. Therefore, each node has a specific 

count which means if a node receives more than two requests 

the node will be recommended to be cached that content for 

which the requests are received. More specifically, if a node 

receives more than two requests for a specific content the 

node will be selected to be cached that content. Here, a 

question is raised why dynamic threshold is node selected for 

the content caching? If the dynamic threshold is used the 

dynamic value will be increased with the time and a time will 

come when the incoming content show the smaller number 

of requests even it is selected as popular but the node 

dynamic value is greater than value node has received 

number of requests. As a result, the content will not be 

cached at any of the intermediate nodes. For example, at 

node N a content A is cached recently and the dynamic 

threshold is calculated as 10 at that time to cache content A. 

After a small time, a content B is arrived at node N and node 

N received 8 requests for content B. According to the 

dynamic threshold value 10, the content B will not 

recommend to be cached at node N. Thus, the dynamic 

threshold value will be increased as the increasing in number 

of requests and it will not appropriate to caches the contents 

showing less popularity than recent contents. Hence, the 

overall performance is reduced. Moreover, it is not only the 

condition to cache the content at a network node. However, 

in order to reduce the redundant replications of same content, 

the node should be connected with more than two neighbor 

nodes or the node should have more than two outgoing 

interfaces. Therefore, if the node connected with more 

neighbors have more probability to caches the content. 

Usually, all the network nodes are associated with two 

neighbors in which one is incoming and one is out going. 

Therefore, if all the network nodes will allow caching all the 

content, then the proposed model will behave like NDN 

default caching strategy EEC and it increases the content 

redundancy. 

     
Algorithm 4. Back up Caching Mechanism  

Input: 

       Demanded Content: Content which is needed by end user 

Output:    

        Content cached at back up caching edge node 

Procedure: BeckupEdgeNode 

1:  for (𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 in Node 𝑛𝑖) 

2:          compare 𝑐𝑜𝑛𝑒𝑡𝑛𝑡 𝑥𝑖 with 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑗 

3:           if (R.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑗 > R.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖) then 

4:                least downloaded content = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 

5:                   evict 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 from Node 𝑛𝑖 

6:                   cache 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 at Node 𝑛𝑘 

7:            end if 

8:  end for 

9: return content  𝑥𝑖 cached at node 𝑛𝑘 

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛} and 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑘 = 𝑛 − 1, R = 

requests] 

[where 𝑛𝑖= intermediate node and 𝑛𝑘= edge node,  𝑥𝑖 ∈ 𝑋, 𝑥𝑗 ∈

𝑋, 𝑛𝑘 ∈ 𝑋] 

 

 Algorithm 3 shows the content caching mechanism. In 

backup facility procedure, when a high prioritized content is 

arrived at intermediate node, the Time Aware Least 

Downloaded (TALD) content is evicted from the 

intermediate node to accommodate the new high prioritized 

content and the evicted content in cached at backup facility 

node. The backup facility node is considered as edge node 

because there is less probability to generate a large number 

of subsequent requests for TALD contents. Therefore, the 

PCPA manages the cache by accommodating the high 

prioritized content at intermediate nodes. Thus, the TALD 

content is cached at edges of the NDN-based IoT network. 

Algorithm 4 shows the mechanism of backup caching 

method. Moreover, the cache of the intermediate nodes will 

be used for the high prioritized content efficiently. As a 

result, the subsequent requests for TALD content can 

accomplish at one-hop distance and hence, the cache hit will 

be maximized with less response latency. To understand the 

PCPA concepts, Figure 2 illustrates the content selection, 

content caching, and backup caching mechanism of the 

PCPA caching strategy. In the given scenario, four requests 

were sent from IoT-based devices (1, 3, and 4) to fetch 

content C1. Instantly, another request is sent by IoT-based 

device 5 to download content C1. According to the PCPA, 

the content that has received a higher number of user requests 

and all the requests have traveled more distance in hops will 

be selected as popular. Therefore, all the requests for content 

C1 have traveled more hops to get the content. Thus, content 

C1 is selected as popular and recommended to cache along 

the data downloading nodes. In order to cache C1 along the 

path, the number of incoming users' requests is measured at 

each node.  
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FIGURE 2. PRIORITY BASED POPULARY-AWARE CACHING 

      If a node shows that the number of requests for content 

C1 is more than threshold 2, the content C1 will be cached at 

that node. Consequently, C1 is cached at intermediate nodes 

4 and 2 because these nodes are showing more requests than 

the threshold requests of the total number of users' requests 

generated at the content provider. As content C1 needs to be 

cached at I-Node 2, the cache of that node is already 

occupied by highly requested content C1 and C2. According 

to PCPA, content C4 is evicted based on the time-aware least 

downloaded content from I-Node 2 and cached at the edge 

node, E-Node 3, to make room for incoming content C1 at I-

Node 2. 

 

V. PERFORMANCE EVALUATION  

To evaluate the performance of the proposed PCPA caching 

strategy and the benchmark strategies, the network simulator 

NDNSim version has been selected. For the present research, 

a simulation environment has been established to evaluate 

the proposed NDN-based IoT caching strategy. The 

requirements and platform for the simulation are outlined 

below. The simulation setup has been constructed to measure 

the proposed model's performance and validation. Using a 

network simulator to study NDN-IoT caching performance 

offers several advantages for this research. NDNSim 

simulator provides a set of application helper classes and 

references to measure several aspects of NDN-based IoT 

strategies under different scenarios. Different researchers 

choose different metrics according to their research area and 

the proposed model. Therefore, for this research, some 

metrics have been selected to test the effectiveness of the 

proposed content deployment strategy. The metrics used to 

evaluate the performance of PCPA are content retrieval 

latency, cache hit ratio, average hop count, and total energy 

consumption. The PCPA has been simulated using a desktop 

machine with the following specifications: an i7 computer 

core with 12 GB RAM, a microprocessor of 3 GHz 

processor, and Ubuntu 20.04 version installed as an 

operating system to run the NDNSim simulator. For the 

current simulation, 200 IoT nodes have been randomly 

distributed in a square area of 500m x 500m grid topology. 

        Fifteen nodes at the border were selected as content 

producers (publishers), 45 nodes were selected as cache 

nodes, and 140 nodes were chosen as users (subscribers). 

The Zipfian distribution was used to generate contents, and 

its α distribution value ranged between 0.2 to 1.0. 

IEEE802.11a was selected as the wireless interface (wireless 

technology), and the cache size of each node varied from 5 

chunks to 20 chunks. The simulation was executed 50 times, 

and the percentage of these was considered the final result. 

The parameters and selected values for the present 

simulation are given in the following Table 1. In simulation, 

the cache size was selected as constant (minimum and 
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maximum) such as 5 chunks and 20 chunks. While, the 

weight factor (α) was selected as varying parameter and its 

value is taken as α = 0.2 to α = 1.0. 

TABLE 1. Parameters and Corresponding Values  

Parameters  Values  

Wireless Technology  IEEE 802.11 

Topology Size (500 × 500) m 

Radio Coverage Area  100m 

Total number of nodes 200 

Size of a chunk  200 bytes 

Cache Size 5, 10, 15, and 20 

Chunks 

Number of Consumers  140 nodes 

Mobility model  Random 

Popularity model Zipf 

Weight Factor (α)  0.2, 0.4, 0.6, 0.8, 1.0 

Simulation Time 300s 

Number of simulations Run 50 runs    

 

A. COMPARING STRATEGIES  

Four caching strategies were selected as Cache Everything 

Everywhere (CEE), Periodic Caching Strategy (PCS), 

Endpoint Linked Green Content (ELGC) caching strategy, 

and Energy-aware Caching Placement (ECP) strategy to 

compare the performance of the proposed PCPA caching 

strategy with related caching strategies in the NDN-based 

IoT environment.  

1. Cache Everything Everywhere 

Cache Everything Everywhere (CEE) [45] is known as 

NDN-IoT default caching strategy. It provides a simple 

structure that offers high data availability and reachability.  

2. Periodic Caching Strategy 

Periodic Caching Strategy (PCS) [31] was proposed to 

provide caching of the popular contents at the betweenness 

centrality node and when it gets filled the coming contents 

are cached at the edge node. 

3. Energy-aware Caching Placement 

Energy-aware Caching Placement (ECP) [46]  strategy was 

proposed to improve the energy efficiency of the network. Its 

goal is to optimize the energy by trading off between the 

content caching energy and content transmission energy. 

4. Endpoint Linked Green Content 

The Endpoint Linked Green Content (ELGC) [18] caching 

strategy recently been proposed to increase the energy 

efficiency using threshold-based data offloading mechanism. 
It optimizes the load sharing between rim nodes and end-

devices for the caching of the incoming contents.    
 

B. EVALUATION METRICS  

Based on the proposed model, the simulation was run on the 

Cache Hit Ratio (CHR), Average Hop Count (AHC), 

Content Retrieval Latency (CRL), and Energy Consumption 

(EC). 

1 Cache Hit Ratio 

Cache Hit Ratio (CHR) is referring to the total number of 

satisfied user incoming requests from the network caching 

nodes. It is ratio between hit rate and miss rate. CHR is 

measured by combining the successful data transmissions 

sent to the requested users and unsatisfied user requests. 

2.    Average Hop Count  

Average Hop Count (AHC) denotes that the total number of 

hops is required for a request to travel from the user to the 

source caching node where the cache hit occurs. When a user 

sends out some requests to fetch some content, the requests 

travels through the network caching nodes hop by hop till the 

hit occur. Therefore, all the hops are measured for all 

requests that sent to fetch same content is known as AHC. 

The AHC is shorter for the content fetched from the caching 

node as compared to the data found from the publisher. 

3.     Content Retrieval Latency  

Content Retrieval Latency (CRL) refers to the time unit in 

millisecond that is used to consume within the multiple links 

taken to reply to a coming request. It can be defined as the 

time required to complete one transmission of a user request 

that is sent by the user to fetch a desirable content or data 

item from the caching node. Usually, in NDN-IoT caching 

environment, CRL is measured for the whole network in the 

form of average latency and it can be defined as the time is 

required in the transmission of the overall users’ requests to 

fetch the demanded contents. 

3.     Energy Consumption  

Energy Consumption (EC) is referred to the total energy 

consumed by caching nodes in NDN-based IoT network and 

it is measured the total of the whole network to evaluate the 

performance. The IoT-based devices have limited powered 

batteries that make the energy performance significant to 

enhance the overall system performance. The energy 

consumption is considered as the most important parameter 

in developing a new caching strategy for NDN-based IoT 

scenarios because of energy constrained IoT devices. 

Therefore, a caching strategy is considered as efficient if, it 

has the ability to reduce the energy consumption by caching 

the popular contents at the nodes that can to fulfill the future 

demands of the end users. Thus, the caching of disseminated 

content has different affect over the battery-life of the IoT 

devices such as the data closer, a few nodes will be used to 

transmit the content to the end users and the less energy will 

be consumed as compared to the content fetched far from the 

end users because content needs to travel a greater number 

of nodes. For the energy consumption additional parameters 

are selected such as the initial energy is taken as 1 jule, 

energy required for a transaction is 50 nJ/bit, and energy for 

caching content is 10 nJ/bit. 
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FIGURE 3. CACHE HIT RTAIO ON CACHE SIZE (5 CHUNKS)  

 

FIGURE 4. CACHE HIT RTAIO ON CACHE SIZE (20 CHUNKS)  

 

B. RESULTS AND DISCUSSION  
Different caching strategies were selected to compare the 
performance of the proposed PCPA caching strategy with 
related caching strategies in the NDN-based IoT 
environment. The CHR performance of PCPA was 
compared with CEE, PCS, ECP, and ELGC to check the 
significance of the outcomes. Figure 3 and Figure 4 shows 
the simulation results on CHR. It is clear from Figure 3 and 
Figure 4 that the performance improves with increasing the 
value of the Weight Factor (α).  

       In this experiment, the weight factor is taken varying 

from 0.2 to 1.0 with constant cache size that is selected as 5 

chunks and 20 chunks. However, the performance on EC 

appearances is different as compared to the CHR, CRL, and 

AHC. The reason is that, in EC, the consumption is increased 

with higher content popularity value and with large cache 

size because with higher popularity value more users request 

is generated to fetch the high popular content and a large 

number of contents are accommodated in large cache size. 

Therefore, the energy consumption is increased in 

accommodating a large number of contents with higher 

popularity value as 1.0. 

 

FIGURE 5. AVERAGE HOP COUNT ON CACHE SIZE (5 CHUNKS) 

 

FIGURE 6. AVERAGE HOP COUNT ON CACHE SIZE (20 CHUNKS) 

 

The PCPA achieves better CHR performance throughout the 
simulation process with each constant cache size and varying 
α values. CEE performs poorly and achieves the lowest result 
with higher weight factor at α = 1.0. While. PCS and ECP 
performs better than CEE with a lower α value and higher α 
value as α =0.2 and α = 1.0. Moreover, ELGC outperformed 
than PCS and ECP because it implements the function of 
caching contents at the end devices that increases the cache 
hit for the subsequent requests. Therefore, ELGC performs 
better than ECP, PCS and achieves the higher result as 0.587 
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at α = 1.0. However, the proposed PCPA strategy beats all 
the comparing strategies and achieves the highest result at α 
= 1.0, as shown in Figure 3 and Figure 4. 

         

 

FIGURE 7. CONTENT RETRIEVAL LATENCY ON CACHE SIZE (5 
CHUNKS) 

 

 

FIGURE 8. CONTENT RETRIEVAL LATENCY ON CACHE SIZE (20 
CHUNKS) 

Figure 5 and Figure 6 show the impact of a constant cache 
size with varying weight factor (α) on the Average Hop 
Count (AHC). The PCPA achieves better AHC performance 
throughout the simulation process for each constant cache 
size and varying α values. CEE performs poorly and achieves 
the lowest result throughout the varying α parameter from α 
= 0.2 to α = 1.0. PCS performs better than CEE with a lower 
α value and achieves the better outcomes regarding AHC 
result at α = 1.0. However. ECP performs slightly better than 
PCS with both cache size (5 chunks and 20 chunks). 
Moreover, ELGC performs better than CEE, PCS, and ECP 
by achieving the better AHC result with as α parameters. 

However, the proposed PCPA strategy beats all the 
comparing strategies and showing better results with both 
cache sizes and α parameters. 

 

 

FIGURE 9. ENERGY CONSUMPTION ON CACHE SIZE (5 CHUNKS) 

 

Figure 7 and Figure 8 illustrates the simulation results on 
CRL using two different constant cache sizes, 5 chunks, and 
20 chunks. The x-axis shows the varying weight factor α, 
while the y-axis shows CRL performance in average or 
percentage. CEE performs poorly in terms of CRL, while 
PCS performs better than CEE. Moreover, ECP and ELGC 
perform relatively similarly and shows better performance 
than CEE and PCS with all α values. However, the PCPA 
outperforms all strategies throughout the simulation process 
with all α values and achieves better results than CEE, PCS, 
ECP and ELCG. PCPA outperforms because of its ability to 
cache popular and less popular content near end-users, 
thereby achieving better performance. The EC performance 
shows different results as compared to the CHR, CRL, and 
AHC. The reason is that, in EC, the consumption is increased 
with higher content popularity value and with large cache 
size because with higher popularity value more users request 
is generated to fetch the high popular content and a large 
number of contents are accommodated in large cache size.   
Therefore, the energy consumption is increased in 
accommodating a large number of contents with higher 
popularity value. Figure 9 and Figure 10 shows the effect of 
constant cache size on different simulation scenarios using 
varying weight factors. As the α value increases the energy 
consumption is increased in both simulation scenarios 
because, with higher popularity values a large number of 
requests are received and the corresponding content are sent 
back to the end users. Therefore, the network usage is 
increased and consequently, the energy consumption gets 
increased. However, the proposed PCPA caching strategy 
outperform with both caching sizes than CEE, PCS, ECP, 
and ELGC. The PCPA caches popular content close to the 
end users and less energy is consumed in fetching the 
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demanded contents and thus overall energy consumption is 
reduced. 

 

 

FIGURE 10. ENERGY CONSUMPTION ON CACHE SIZE (20 CHUNKS)  

     On the other hand, the CEE perform poor and increases 
the energy consumption during data dissemination. The 
reason is that, CEE performs caching operations at each node 
along the data routing path and consequently, the content 
evictions is also increased that increases the usage of the 
network and hence, the overall energy consumption is 
maximized as shown in Figure 9 and Figure 10. The ELCG 
and ECP performed relatively with both cache sizes due to 
their caching structures of caching contents. However, the 
energy consumption is higher in ELGC than ECP because 
ELGC executes extra function during content caching and 
content replacement and consumes additional energy during 
offloading the contents. ECP performs somehow better than 
ELCG because ECP computes less parameters as compare to 
the ELGC for making a caching decision. Therefore, ECP 
consumes less energy than ELCG and improve the overall 
performance in terms of energy consumption. 

VI. CONCLUSION AND FUTURE WORK  

NDN-based IoT networks offer the potential to create an 

Internet environment through caching, providing various 

benefits such as decoupling receivers from producers, 

reducing redundant data dissemination, and enhancing 

scalability. However, despite these advantages, NDN-based 

IoT caching faces several challenges. This study aims to 

review different caching concepts and issues in NDN-IoT 

caching environments. The importance of NDN and IoT 

architectures, as well as caching concepts, are introduced. 

Existing caching strategies are identified, and the problems 

associated with them are discussed. To address these issues, 

a new caching strategy called Priority-based Content 

Popularity-Aware (PCPA) Caching is proposed. The PCPA 

strategy is implemented using the NDNSim simulator, and 

its performance is compared with other caching strategies 

such as CEE, PCS, ELCG, and ECP. Metrics such as latency, 

stretch ratio, and cache hit ratio are used to evaluate the 

caching performance, and the results show that the PCPA 

caching strategy outperforms the other strategies, especially 

with a large cache size. 

        In NDN, the caching module plays a crucial role in 

improving network performance. The placement and 

replacement of cached content are vital tasks for efficient 

caching. NDN caching strategies are particularly suitable for 

enhancing IoT-based network performance. It is important to 

select a suitable caching node in the network that can provide 

efficient caching performance in terms of data availability, 

low latency, and reduced energy consumption. However, 

content popularity can have a varying impact on caching 

performance. Highly popular content that is rarely used in 

the future can lead to inefficient energy utilization and 

excessive storage consumption. Frequently requested 

content that cannot fit into a node's cache may result in a 

large number of requests being forwarded to remote 

providers, significantly increasing content retrieval delays. 

While NDN-IoT caching offers numerous benefits, it also 

imposes complexities and restrictions on caching strategy 

development in different IoT networks. Therefore, the 

proposed caching strategy considers content-based 

properties such as freshness, content popularity, and 

provider, as well as node properties including path stretch, 

battery power level, and free memory, to enhance overall 

caching performance. 

       Based on these properties, the proposed caching strategy 

can be applied to various Internet technologies such as 

Software Defined Networking (SDN), Blockchain, cloud 

computing, fog computing, edge computing, and mobile 

edge computing. Furthermore, the proposed caching model 

can be utilized to evaluate and enhance network performance 

in terms of bandwidth consumption, memory consumption, 

and backhaul consumption. Additionally, the proposed 

strategy can be implemented to improve caching 

performance in Ad hoc Networks such as Mobile Ad hoc 

Networks (MANET) and Vehicular Ad hoc Networks 

(VANET). In conclusion, the proposed strategy holds 

potential for improving caching performance in 5G/6G 

cellular networks. 
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