

VOLUME XX, 2017 1

Date of publication xxxx 00, 0000, date of current version xxxx 00, 0000.

Digital Object Identifier 10.1109/ACCESS.2017.Doi Number

Performance Measurement through Caching in
Named Data Networking based Internet of
Things

Yahui Meng1, Amran Bin Ahmad2
1, School of Science, Guangdong University of Petrochemical Technology, Maoming, China1; mengyahui@gdupt.edu.cn;

1,2InterNetworks Research Laboratory School of Computing (SOC) University Utara Malaysia 06010 UUM Sintok, Malaysia; amran@uum.edu.my;

*Correspondence: Amran Bin Ahmad (amran@uum.edu.my);

ABSTRACT Named Data Networking (NDN) is considered the future of Internet architecture, providing a

realistic solution for data delivery using a caching module in an Internet of Things (IoT) based environment.

However, a major challenge of the caching module is data redundancy, which decreases the overall caching

performance by caching similar data at numerous locations in an NDN-based IoT scenario. Moreover, the

latency and stretch are maximized due to high redundant caching operations. Several attempts have been

made by the research community to provide an enhanced solution to overcome such issues. However, the

caching module still requires efficient enhancement. This study provides critical insights into earlier caching

strategies. To solve the problems of these caching strategies, an enhanced caching strategy is proposed, named

Priority-based Content Popularity-Aware (PCPA) Caching Strategy, which is evaluated by comparing its

performance with some of the novel NDN-based IoT caching strategies. The proposed caching strategy

outperforms the comparing strategies in terms of latency, hop count, cache hit ratio and energy consumption.

INDEX TERMS: Named Data Networking; Internet of Things; Caching

I. INTRODUCTION

The Internet of Things (IoT) comprises small and
heterogeneous devices constrained by low power, low cost,
and limited memory [1]. These devices, known as smart
devices, include wireless sensors. Due to their limited
memory and low power, data often becomes inaccessible.
IoT-based applications such as smart towns, smart health,
smart homes, and smart grids require enhanced privacy and
security to retrieve data using these devices. Additionally,
some IoT-based applications, such as smart transportation,
require improved mobility services. End-users are primarily
interested in downloading desired data rather than knowing
the sources or physical locations of the data. For example, in
Wireless Sensor Networks (WSNs), devices have a specific
purpose of information harvesting [2]. Moreover, the IoT
encompasses a multitude of small, low-power devices that
have specific names or complex identification and address
requirements for network identification. While IPv6 offers
ample address space to address IoT device naming and
addressing challenges, constrained devices struggle to
handle long address spaces, resulting in increased resource
consumption and communication difficulties [3, 4].
Currently, a vast number of IoT-based contents are generated
and processed rapidly, and content may have multiple
versions with different timestamps. This complexity in

content naming increases the challenges of rapidly growing
content. Therefore, it demands a highly reliable address
space and permanent naming technique for both IoT-based
heterogeneous devices and contents [5]. Moreover,
interoperability and heterogeneity are critical aspects of IoT.
The IoT network is built using billions of smart sensors to
provide IoT services, and these sensors play a significant role
in overall IoT-based communications [6]. However, these
sensors (devices) are heterogeneous and constraint-oriented,
having limited resources such as battery life, memory size,
and processing power. Furthermore, communication is
carried out among these sensors using several heterogeneous
technologies such as wired, wireless, Bluetooth, cellular,
Cognitive Radio Networks (CRN), and Long-Term
Evolution (LTE) [7]. Therefore, IoT-based networks require
high heterogeneity regarding device specifications and
diverse communication techniques and technologies to
ensure interoperability. In terms of data availability in IoT
networks, data often becomes unavailable when a mobile
node moves from one place to another [8]. Similarly, data
cannot be forwarded when the device runs out of battery [9].
Therefore, techniques like in-network caching are highly
required to improve data availability [10].
 To address these critical challenges in IoT-based
networks, Named Data Networking (NDN) is a promising

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

mailto:amran@uum.edu.my

VOLUME XX, 2017 1

and flexible Internet architecture that provides all the
necessary facilities to support IoT-based communications
[11]. It is a challenging task for the current IP-based Internet
architecture to meet the scalability demands of supporting
billions of IoT devices and handling the enormous volume of
data generated from such devices. In this regard, NDN
provides a naming concept to efficiently support billions of
devices by providing unique names and addresses to devices
and data items, respectively [12]. Moreover, NDN
introduces receiver-driven communication concepts to
support IoT-based applications and offers flexible caching
features to make data location-independent, enabling easy
handoff for mobile devices [13]. Additionally, in NDN, the
content is considered a self-certified entity that enhances the
security and privacy of transmitting data for both the sender
and the receiver [14]. Furthermore, named content makes it
easy for the provider to verify that the data is disseminating
according to the query flow, while location independence
hides the source of the data. Moreover, the problem of
heterogeneity among IoT-based devices can be easily solved
by categorizing the devices using the NDN naming feature.
Therefore, heterogeneous devices can operate with one
another by integrating the NDN strategy layer into IoT-based
networks [13]. This study focuses on the NDN-based
caching feature that enables the IoT-based network to cache
data anywhere and fetch similar data from nearby caching
nodes with less delay, improving overall data availability and
reducing the frequency of retrieving data from the provider.
As a result, a significant number of network resources, such
as energy, power, and network life, can be conserved [15,
16].
 NDN-IoT caching provides several benefits, but it also
imposes complications and restrictions on the development
of caching strategies in different IoT networks. To propose a
strategy for NDN-based IoT, it is necessary to consider
certain properties related to the content and the node selected
for content caching [17]. Content properties, such as
freshness, popularity, timing ephemerality, provider, and
node properties, such as the path stretch between the caching
node and provider, battery (power level), and free memory,
should be taken into account. Currently, researchers are
interested in exploring content freshness, but content
popularity is a more important parameter for enhancing
caching performance, and measuring it requires urgent
attention [18, 19]. Therefore, it is crucial to consider both
content and node properties while making caching decisions.
Additionally, content properties and node properties, such as
Content Store (CS) size, battery life, caching module design,
and node position in NDN-based IoT networks, should be
taken into account. NDN-based caching fails to consider less
memory, low power, and battery life, resulting in all
incoming requests traversing several hops to find the
required content, ultimately retrieving the content from the
original provider [20, 21]. This maximizes the stretch ratio,
resource consumption, content retrieval delay, and link
utilization, reducing the data hit rate and overall caching
performance of the network. Therefore, NDN caching
strategies are more appropriate for improving IoT-based
network performance. However, there is still a problem
related to selecting an incentive node in a network that can

provide efficient caching performance in multiple aspects,
such as data availability, short latency, and lower energy
consumption [22, 23]. Based on the aforementioned
problems, we conducted a caching strategy in this study.

FIGURE 1. PAPER TEXONOMY

The contributions of the current study are presented as

follow:

• This study provides a review of diverse caching
concepts and issues in NDN-IoT caching
environments. Primarily, we introduce the importance
of NDN and IoT architecture and caching concepts.

• We define related caching strategies and identify
problems with existing caching strategies.

• We critically categorize NDN and IoT-based caching
strategies.

• We identify critical issues of NDN and IoT-based
caching strategies.

• Based on the current issues of earlier NDN-based IoT
caching strategies, we developed a new model to
overcome these problems. We propose an NDN-based
IoT caching strategy named Priority-based Content
Popularity-Aware (PCPA) Caching.

• The proposed caching strategy provides three
mechanisms: dynamic content selection, content
caching, and content backup caching mechanism.

• According to the content selection mechanism, PCPA
not only selects the most popular content based on the
request frequency but also selects popular content by
measuring the distance between end-users and caching
node.

• The content caching mechanism provides the optimal
caching node to cache the transmitted content and
increases the cache hit performance.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

• The backup caching mechanism provides the caching
nodes to less popular contents to be cached near the end
devices and reduces the data retrieval latency.

• We comprehensively compare the proposed strategy
with different NDN-based IoT caching strategies, and
we establish a simulation environment to check the
efficiency of the proposed caching strategy.

 The paper is organized as follows. Section II explains the

problems based on the current study is proposed. Section III

discusses the persisting issues with earlier studies that still

need to be addressed. Section IV introduces the proposed

caching strategy, while Section V outlines the performance

evaluation process. Finally, the study concludes in the last

section VI. Figure 1 show the paper taxonomy.

II. RELATED STUDIES

In NDN-based IoT networks, caching at intermediate nodes

or devices offers several benefits, such as decoupling

receivers or devices from the producers' location, reducing

redundant data dissemination, and increasing the scalability

of IoT networks [20, 24]. Moreover, caching can improve the

energy consumption of IoT-based heterogeneous devices,

and the overall network mobility can be organized more

efficiently. Furthermore, employing caching features

carefully can improve the life and flexibility of IoT-based

networks. To improve caching performance, several NDN-

IoT-based caching mechanisms (cache placement strategies

and replacement policies) have been developed based on

different criteria, such as probabilistic-based caching,

centrality-based caching, content-based caching, node-based

caching, and popularity-based caching [25, 26].

 The NDN-IoT default caching strategy, called Cache

Everything Everywhere (CEE) [27], provides a simple

structure that offers high data availability and reachability.

However, CEE can increase redundant content replications,

leading to increased overall bandwidth and power

consumption. Additionally, caching content at all network

nodes can result in increased unwanted cache usage and

unnecessary consumption of network resources. The Client

Cache Strategy (CCS) [28] improves content validity by

determining content popularity based on requests received at

network nodes. However, this process can be time-

consuming and reduce caching performance in terms of

content retrieval latency and cache hit. CCS caches content

at the betweenness centrality node, which can increase the

overall stretch ratio for future requests and lead to link

congestion.

 The Tag-based Caching (TC) [29] strategy uses tag

filters to look up and disseminate content, but managing tags

can be challenging when a user applies the same tag to

different content. This can result in increased cache storage

consumption and reduced network and device performance.

The Sleeping-based Strategy (SCS) [30] manages sleeping

nodes to respond to incoming requests and improves energy

performance. However, prioritizing content can increase

caching and network congestion. The Periodic Caching

Strategy (PCS) [31] uses Autonomous Systems (ASs) to

cache content and improve system performance. However,

content caching at the betweenness centrality node can

become congested and lead to path stretch. Probabilistic

Caching (ProbCache) [25] enhances content caching,

freshness, and energy efficiency by using caching

probability and dynamic attributes. It reduces content

transmissions and caching operations, increasing cache hit

rate and reducing content retrieval delay. The Cooperative

Content Caching (CCC) [10] strategy improves energy

efficiency and consumption by reducing the number of

transmissions towards IoT devices. However, initiating

several tables to execute upon receiving a request can

increase communication overhead and reduce the data hit

rate.

 The Approximate Betweenness Centrality (ABC) [32]

strategy improves caching performance under resource-

constrained environments by determining centrality for each

content. However, measuring approximate centrality can be

challenging when the cache of a node becomes full and many

requests are received for multiple contents. Probabilistic

caching strategies have diverse mechanisms for determining

caching positions, but performing multiple functions for

each caching operation can consume more energy.

Centrality-based caching strategies offer efficient caching

performance by caching content at a centrality position.

Hence, most of the subsequent Interests are satisfied from the

centrality position, resulting in efficient caching

performance. The centrality-based caching strategies

promote the idea of content-centrism in which the

disseminated contents are cached within the cache of the

centrality node, such as the betweenness centrality node. The

centrality node helps reduce latency because it caches the

contents at the node linked with the maximum number of

neighbor nodes. As a result, a large number of requests pass

through the centrality node to obtain the content rather than

traversing it to the main provider.

 In probabilistic caching, the content's probabilistic value

is measured to cache it at different locations to fulfill the

demands of end devices. However, in popularity-based

caching, the frequency of requested content is measured by

taking the sum of incoming requests for that content. In

content-based caching, IoT imposes several constraints on

the content, such as freshness, probability, and popularity. In

node-based caching, the appropriate node is required to be

selected for caching the requested content [33, 34]. CEE

stores contents by caching all the content at the routers,

which increases the number of same-content replications.

Leave Copy Down (LCD) [35] was developed to improve

the content caching structure by reducing data redundancy.

However, it increases the amount of similar data replications.

Moving Copy Down (MCD) [36] was proposed to overcome

the challenges arising from LCD and CEE strategies by

removing the redundant data items in the data delivery path.

The Edge Caching Strategy (ECS) [30] was developed to

reduce the path length between the consumer and the cached

content to satisfy end-users’ demands. In proxy caching, the

content retrieval time is minimized for subsequent Interests.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

Table 1. Related studies and their basic aim and goals.

Sr References Aim/ Goal

1 Amadeo et al. [27] It is known as default NDN-IoT caching strategy that provide simple caching structure

and caches all the incoming content at all on-path caching nodes.

2 Wang et al. [28] It caches incoming requested contents at betweenness centrality node.

3 Al-Ward H et al. [29] It uses tag filters to look up and disseminate content for the caching of transmitted

contents.

4 Amadeo et al. [30] It manages sleeping nodes to respond to incoming requests and improves energy

performance.

5 Naeem et al. [31] It caches the incoming data items at the edge node and betweenness centrality node of

each autonomous system.

6 Naeem et al. [25] It defines probabilistic value at each caching node to decide the incoming content to be

cached or not.

7 Arshad et al. [10] This strategy improves energy efficiency and consumption by reducing the number of

transmissions towards IoT devices.

8 Pfender et al. [32] It improves caching performance under resource-constrained environments by

determining centrality for each content.

9 Meng et al. [35] It was developed the improve the structure of CEE caching strategy by reducing the

redundancy.

10 Meng et al. [36] It was developed to reduce the redundant data items at the data delivery path and improve

the caching structure of LCD and CEE strategies.

11 Amadeo et al. [30] In this caching strategy the incoming content are cached at the network edges to respond

the subsequent user requests.

12 Hail et al. [37] It evaluates the probabilistic values to identify the content caching node.

13 Naeem et al. [25] It identifies the probabilistic values and forwards the caching contents hop by hop for

most popular contents.

14 Barnardini et al. [38] It caches the content using the threshold values to find the most popular contents.

15 Ren et al. [39] It was developed using local gain and max-gain value to find the popular content and

content caching nodes.

16 Current Study It provides combination of mechanisms in which appropriate content selection, caching

node selection, and backup caching mechanism are involved. It improves the content

dissemination and data retrieval latency. It enhances the data availability and reduces the

path stretch between end user and caching nodes.

However, it does not define any criteria to cache contents

based on their popularity. Probabilistic caching provides

several ways to cache content, such as Probabilistic Caching

Strategy for Internet of Things (pCASTING) [37], random

probabilistic caching, ProbCache, and Hope-based

Probabilistic Cache (HPC) [25]. Similarly, HPC also

improves homogeneous content replication at multiple

locations. The Most Popular Cache (MPC) [38] was

introduced to promote the most downloaded (popular)

content. Max Gain In-network Caching (MAGIC) [39] was

established to reduce bandwidth consumption and stretch

(hop reduction). Therefore, the use of NDN caching

strategies is appropriate for improving the performance of

IoT-based networks. However, selecting the best incentive

node to provide efficient caching performance remains a

problem. The selection of popular content is crucial to

improve caching performance, but it can also create

complications and restrictions in developing caching

strategies for different IoT networks. Therefore, an optimal

caching strategy or combination of placement and

replacement strategies is needed to enhance network

performance in terms of data retrieval latency and energy

consumption [21].

 Table 1 shows the related studies and their basic goals.

To overcome these challenges, a three-fold-based caching

strategy named Priority-based Content Popularity-Aware

(PCPA) caching strategy has been designed, which includes

content selection, content caching, and backup caching

mechanisms. The proposed caching strategy caches the

content at the appropriate node along the data downloading

path and enhances the performance of an NDN-based IoT

network.

III. PROBLEM FORMULATION

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

According to the location dependency in the IP Internet, all

Interests need to be forwarded to the remote server. As a

result, the same content is traversed through several hops

from the remote server to the consumer for each request [40].

This IP address-based communication increases the path

stretch because the same content is transmitted from the

remote server for each reply [41]. While NDN-IoT caching

offers several benefits, it also presents complications and

restrictions in developing caching strategies for different IoT

networks. To propose an NDN-based IoT strategy, it is

necessary to consider properties related to content and the

node selected for content caching. Content properties include

freshness, popularity, timing ephemerality, and provider,

while node properties encompass the path stretch between

the caching node and provider, battery level, and free

memory.

 Currently, researchers are keenly interested in exploring

content freshness. However, content popularity is a much

more important parameter for enhancing caching

performance. Therefore, it requires urgent attention to

measure the popularity of contents and improve the

performance of the NDN-based IoT caching module.

Moreover, it is essential to consider both content and node

properties when making caching decisions. Content

properties and node properties, such as CS size, battery life,

caching module design, and node position in NDN-based IoT

networks, should be taken into account. However, NDN-

based caching lacks consideration for constraints such as

limited memory, low power, and battery life. Consequently,

when these conditions are not met, all incoming requests

need to traverse several hops to find the required content,

resulting in increased stretch ratio, resource consumption,

content retrieval delay, and link utilization. This leads to a

reduced data hit rate and overall caching performance of the

network. Therefore, NDN caching strategies are more

appropriate for improving IoT-based network performance.

 However, there is still a problem related to the selection

of an incentive node in a network that can provide efficient

caching performance in multiple aspects, such as data

availability, short latency, and lower energy consumption.

Sometimes, content popularity has multiple effects, and

when content has a higher popularity count but less usage in

the future, efficient energy performance is reduced,

consuming more resources and unproductive storage. This is

because most frequently requested content cannot be

accommodated in the node's cache, and a large number of

incoming requests for that content are forwarded to remote

providers, significantly increasing content retrieval delays.

Centrality-based caching has a serious problem of selecting

only a central node for content caching, which has limited

cache storage, while a large number of contents are requested

and cached. Consequently, it is impossible to cache all

contents within the limited cache storage and improve

overall caching performance. Therefore, it is highly required

to select a node that can improve data availability for IoT-

based end devices and network performance. On the other

hand, selecting popular content is the most crucial part for

improving caching performance. To achieve this, a dynamic

mechanism is highly required to measure content

popularities based on content requested frequency. Thus,

IoT-based applications require contents with different

characteristics, such as real-time applications needing fresh

content, while flash crowds require contents with high

requested frequency. Hence, it is considered that NDN-based

IoT caching is still under construction and exists in its early

stage

 CEE has a simple structure that provides a caching-

based environment with high data availability and

reachability. However, it increases the redundant replication

of contents, leading to higher overall bandwidth and power

consumption. Additionally, it results in unwanted cache

usage by caching undesirable contents at all nodes, which

unnecessarily consumes network resources. To address these

issues, pCASTING was proposed to enhance content

caching mechanisms, content freshness, and energy

efficiency. The caching procedure operates in a distributed

manner based on caching probability and probabilistic

decisions. It utilizes dynamic attributes to improve cache

occupancy and energy efficiency, thereby reducing content

transmissions and caching operations. Content caching

probability is defined by measuring caching utility along

with content freshness, giving higher freshness content a

higher probability to be cached with a higher energy level.

This approach increases the cache hit rate and reduces

content retrieval delay. The Caching Fresh Popular Content

(CFPC) [42] mechanism allows individual nodes to make

independent caching decisions based on two primary factors:

popularity count and content life. Popularity count is

computed by aggregating user requests for specific content

across all network nodes, while content life is determined by

evaluating the freshness value considering its creation and

expiration dates. As caching nodes become filled with

content, new content must be accommodated to handle new

requests. This cycle repeats every time a request is generated,

resulting in most requests being fulfilled by the content

publisher. To overcome these challenges, a caching strategy

that enhances overall performance is necessary. Sometimes,

content popularity can negatively impact efficient energy

performance, as highly popular content may not be useful in

the future, leading to increased resource consumption and

unproductive storage. When frequently requested content

cannot be accommodated in a node's cache, a large number

of incoming requests for that content will be forwarded to

remote providers, significantly increasing content retrieval

delays.

 The problems can be summarized as the need to

efficiently enhance the content popularity parameters and

mechanisms to improve data retrieval and cache hit

performance. Additionally, the selection of nodes for content

caching is a crucial measure in content caching decisions that

affects performance when the data routing path becomes

longer. Therefore, a node selection mechanism is highly

required to enhance the overall NDN-based IoT network

performance. It is also essential to select a node that

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

improves data availability for IoT-based end devices and

network performance. Furthermore, selecting popular

content is crucial for improving caching performance, and a

dynamic mechanism is needed to measure content popularity

based on the frequency of requests. IoT-based applications

require content with different characteristics, such as real-

time applications needing fresh content, while flash crowds

require content with high request frequency. Therefore, it

can be considered that NDN-based IoT caching is still under

construction and in its early stages.

IV. PROPOSED CACHING STRATEGY
The objective of this study is to design a caching strategy that

enhances the performance of NDN-based IoT networks. The

proposed caching strategy aims to improve content selection

and node selection mechanisms, as well as backup caching

mechanisms. In NDN, caching modules play a significant

role, with caching placement and replacement being crucial

tasks for improving overall network performance. NDN

caching strategies are more suitable for enhancing IoT-based

network performance. However, there is still a problem

concerning the selection of an efficient node in a network

that can deliver optimal caching performance across various

aspects, including data availability, short latency, and low

energy consumption. Content popularity can sometimes have

multiple effects, where highly popular content may become

less useful in the future, resulting in reduced energy

performance and increased resource and unproductive

storage consumption. This issue arises because frequently

requested content cannot always be accommodated in a

node's cache, leading to a large number of incoming requests

for such content being forwarded to remote providers,

thereby significantly increasing content retrieval delays.

While NDN-based IoT caching offers several benefits, it also

presents complications and restrictions in the development

of caching strategies for different IoT networks.

A. CACHING CONCEPT

In NDN-based IoT, content selection is based on users'
request frequency, which indicates the number of requests
received for a specific content. To determine content
popularity, the number of requests for that content must be
identified. This involves identifying the nodes and paths used
to disseminate the requests and retrieve the desired content.
All nodes in the NDN-based IoT network can measure the
number of incoming requests for a particular content. The
content with the highest request frequency value is
considered to be the most popular content. Thus, it has a
higher probability of being selected as popular content, also
known as high popular content. Therefore, if the data
contents are cached or transmitted through these network
nodes and sensed by the nodes, they can be measured using
the following equation:

𝑿 = {𝒙𝟏, 𝒙𝟐, 𝒙𝟑, … … . . 𝒙𝒏} (1)

where x ∈ X and |X| indicates the total number of contents

following the network path from publisher to subscriber.

Since the content is divided into chunks and all the chunks

are considered the same size, the total number of contents

can be calculated using the following equation 2:

𝑋 = ∑ 𝑥𝑖 (2)

𝑛

𝑐=1

where 𝑐𝑖 ∈ 𝐶 and |𝐶| shows the total number of contents.

B. CONTENT POPULARITY

Content popularity can be identifying through probability

matrix. It can be measured using the following equation 3

and 4:

 𝑃 = {𝑝1, 𝑝2, 𝑝3, … … … 𝑝𝑛} (3)

 𝑃 = ∑ 𝑝𝑖 (4)

𝑛

𝑝=1

where 𝑝𝑖 ∈ 𝑃 and |𝑃| shows that magnitude of popularity.

For a specific content 𝑥 the popularity can be measured using

the following equation 6:

 𝑃𝑥 =
𝑟𝑥

𝑅𝑇

 (5)

where 𝑟𝑥 shows the number of requests generated to

download content 𝑥 while 𝑅𝑇 represents the number of

requests generated for all contents cached at the network

nodes. The popularity of a specific content at time 𝑡 can be

calculated by the equation 7 given in the following:

 𝑃𝑥(𝑡) =
𝑟𝑥

𝑅𝑇

(𝑡) (6)

If the content 𝑥 already cached at a network node 𝑛 then the

following equation 7 will be defined the function:

 𝑃𝑥
𝑛(𝑡) =

𝑟𝑥
𝑛

𝑅𝑇
𝑛 (𝑡) (7)

where 𝑟𝑥
𝑛 shows the number of requests received for content

𝑥 and node 𝑛 at time 𝑡 while 𝑅𝑇
𝑛 represents the total number

of requests received at node 𝑛 for all contents. We considered

an NDN-based IoT environment in which IoT-based sensor

nodes or IoT devices are used to generate IoT-based contents

and called publisher or content producers. As traditional

practices, the NDN-based IoT nodes will remain in sleeping

mode until they receive a user request or an event happen.

As a request reaches at nodes, the nodes get activated to

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

respond the incoming request by sending the requested

content or it needs to forward the incoming requests. The

number of nodes between publisher and subscriber can be

denoted using the following equation:

 |𝑁| = {𝑛1, 𝑛2, 𝑛3, … … … 𝑛𝑖} (8)

where |𝑁| shows the total number of network nodes. It can

be denoted as:

 |𝑁| = ∑ 𝑛𝑖

𝑛

𝑛=1

 (9)

where 𝒏𝒊 ∈ 𝑵 and |𝑵| shows the total number of nodes.

C. CONTENT FRESHNESS

Unlike traditional Internet data, in the NDN-based IoT

caching scenario, the lifespan of data plays a crucial role in

implementing real applications in an IoT environment. Each

content in the NDN-based IoT is associated with a specific

time period assigned by the publisher or data producer, and

once that time period elapses, the content is considered

expired. In IoT applications, this time period is referred to as

the content freshness value or content lifetime [43].

Freshness indicates the lifespan of a content and indicates

how recently the content was generated by the publisher.

Caching IoT-based contents is more challenging compared

to traditional Internet contents because IoT caching decisions

need to consider freshness or content lifespan, which

depends on the type of content. The freshness may vary for

different applications with the same content; for example,

some applications require highly fresh data, while others can

be satisfied with older data [44]. The content freshness can

be defined using the following equations:

 𝐹 = {𝑓1, 𝑓2, 𝑓3, … … … 𝑓𝑛} (10)

 𝐹 = ∑ 𝑓𝑖 (11)

𝑛

𝑓=1

where 𝑓𝑖 ∈ 𝐹 and |𝐹| shows the maximum freshness. In order

to calculate the freshness for a specific content the following

equation 12 is specified the function to measure the

freshness:

 𝐹𝑥 = 𝑇𝑥
𝑐 − 𝑇𝑥

𝑔
 (12)

where the 𝐹𝑥 shows the freshness of content 𝑥, 𝑇𝑥
𝑐

demonstrates the current time and the 𝑇𝑥
𝑔

 shows the time

when the content 𝑋 was generated. Therefore, the freshness

can be defined as the time deference between current time

and the time of content generation.

D. INTERMEDIATE NETWORK NODE

The NDN-based IoT network consists of wireless sensor

nodes or IoT devices that have the capability to identify,

process, and cache transmitted contents. When users send

requests to fetch content from the producer, these requests

follow a path and pass through multiple network nodes to

reach the producer. The nodes responsible for transmitting

the user's request to the producer are referred to as

intermediate network nodes. Therefore, all the nodes

between the user and the producer are considered

intermediate nodes. Most of the time, NDN-based IoT nodes

remain in sleeping mode until an event occurs, such as a

request reaching the node to fetch some content. When the

event occurs, the nodes get activated to perform the required

sensing task and send the requested content back to the end

user. For simplicity, let's assume that all NDN-based IoT

caching nodes can sense one type of content. If a user sends

out requests, these requests can be measured using the

following equations. In NDN, the users' requests are

commonly referred to as "Interest," so the users' Interests can

be defined as:

 𝑅 = {𝑟1, 𝑟2, 𝑟3 … . . , 𝑟𝑛} (13)

 𝑅 = ∑ 𝑟𝑖 (14)

𝑛

𝑟=1

where 𝑟𝑖 ∈ 𝑅 and | 𝑅| shows the maximum number of users’

requests. If the number of requests were generated at time 𝑡

then the equation 13 and 14 will defined as15 and 16 given

in the following:

 𝑅(𝑡) = {𝑟1(𝑡), 𝑟2(𝑡), 𝑟3(𝑡), … . . , 𝑟𝑛(𝑡)} (15)

 𝑅(𝑡) = ∑ 𝑟𝑖(𝑡) (16)

𝑛

𝑟=1

As the number of Interest (request) are received for content

𝑥 at network node 𝑛 at time 𝑡 then the equation 16 will be

converted in to the following 17:

 𝑅𝑥
𝑛(𝑡) = ∑ 𝑟𝑖(𝑡) (17)

𝑛

𝑟=1

 𝑟(𝑡) = 𝑥, 𝑛, 𝑓, (𝑡) (18)

where 𝑟 ∈ 𝑅, 𝑓 ∈ 𝐹, 𝑛 ∈ 𝑁, and 𝑥 ∈ 𝑋. Equation 18 shows

that each request 𝑟 generated for content 𝑥 having freshness

𝑓and 𝑡 is the time at which the Interest reached at a node 𝑛.

The NDN-based IoT network nodes are associated with the

storage capabilities to cache the transmitted contents for

fulfill the user demands by sending the content from the

caching nodes to the end users. Therefore, the caching nodes

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

between user and publisher can be defined by the following

equation 19:

 |𝐶| = {𝑐1, 𝑐2, 𝑐3, … … . . , 𝑐𝑛} (19)

|𝐶| is the amount of cache storage of the network and if the

content 𝑥 is cached at the network nodes as a traditional

prospective in NDN a copy of content is cached at all the

nodes between user and publisher:

 |𝐶| = {𝑐𝑥1
, 𝑐𝑥2

, 𝑐𝑥3
, … … . . , 𝑐𝑥𝑛

} (20)

When the content 𝑥 is cached at network node 𝑛 at time 𝑡

then the equation 20 will be converted into equation 21:

𝐶(𝑡) = {𝑐𝑥1
(𝑛, 𝑡), 𝑐𝑥2

(𝑛, 𝑡), 𝑐𝑥3
(𝑛, 𝑡), … … . . , 𝑐𝑥𝑛

(𝑛, 𝑡)}

 (21)

According to the current study the same content 𝑥 will not

be cached at all the network nodes between user and

publisher. Therefore, in order to show the current caching

status regarding the present study, the equation 22 shows the

content 𝑥 will be cached at node 𝑖 at time 𝑡.

 𝐶(𝑛, 𝑡) = ∑ 𝑐𝑥𝑖
(𝑛, 𝑡)

𝑛

𝑐=1

 (22)

where 𝑐𝑖 ∈ 𝐶. The caching status of a network node can be

defined suing the binary values (0, 1). If the content is cached

at node the status will be 1 otherwise, it will be 0. Therefore,

if the content 𝑥 cached at node 𝑛 at time 𝑡 the status will be

shown by the following equation 23:

 𝑐𝑥𝑖
(𝑛, 𝑡) = 1 (23)

If the content 𝑥 cannot found at node 𝑛 at time 𝑡 the caching

status is shown by the following equation 24:

 𝑐𝑥𝑖
(𝑛, 𝑡) = 0 (24)

 ∑ 𝑆. 𝑐𝑥𝑖
(𝑛, 𝑡) =

𝑛

𝑐=1

𝑑 (25)

where 𝑆 shows the size of data content 𝑥 cached at 𝑖𝑡ℎ node

and 𝑑 represents the size of cache of intermediate node 𝑖.
Therefore, in order to find the caching status at any-time

along the data delivery path at time 𝑡 and 𝑖𝑡ℎ node using the

following decision strategy:

 𝑆𝑡𝑟𝑎𝑡𝑒𝑔𝑦 = 𝐶(𝑛, 𝑡) → 𝐶(𝑛, 𝑡 + 1) (26)

According to the equation 26, we can obtain the new caching

status of an intermediate network node at time 𝑡 + 1.

A. SYSTEM MODEL
To propose a new strategy for NDN-based IoT, it is

necessary to consider certain properties related to content

and the nodes selected for content caching. These properties

include content freshness, content popularity, provider

information, as well as node properties such as path stretch

between caching node and provider, battery power level, and

available memory. The selection of popular content is crucial

for improving caching performance. Therefore, a dynamic

mechanism is required to measure content popularity based

on request frequency. IoT-based applications require content

with different characteristics. For example, real-time

applications require fresh content, while flash crowds

demand content with high request frequency. This suggests

that NDN-based IoT caching is still under development and

in its early stages. Caching plays a significant role in

enhancing the overall performance of an NDN-IoT network.

By caching appropriate contents along the data downloading

path, caching strategies can efficiently meet end-user

demands in a short time. To further enhance network

performance, it is essential to design an optimal caching

strategy or a combination of placement and replacement

strategies. This strategy should aim to improve data retrieval

latency, energy consumption, hop count, and cache hit ratio.

In this study, a threefold-based caching strategy called

Priority-based Content Popularity-Aware (PCPA) caching

strategy is proposed. It combines three mechanisms: content

selection, content caching, and backup caching. The content

selection mechanism in PCPA is responsible for selecting

specific content in the proposed caching strategy. Unlike

other content popularity-based caching strategies, the

proposed strategy selects content based on both the

frequency of user requests and the number of hops traveled.

This is achieved by measuring the number of incoming

requests for a particular content in recent time and evaluating

the distance traveled by multiple requests to fetch the same

content. All NDN-based IoT network nodes can measure the

number of incoming requests for a specific content using the

Pending Interest Table (PIT).

 The content with the highest request frequency value is

considered as the Highly Frequently Requested (HFR)

content and has a higher probability of being selected.

However, in this strategy, the content cannot be selected as

HFR content based solely on request frequency. The number

of hops traveled by user requests is also taken into account.

The popularity evaluation considers the number of hops

traveled by each request to measure the distance between the

end-user and the NDN-based IoT caching node. By

measuring the distance, requests that have traveled a greater

number of hops are identified, and the Average Hop Distance

(AHD) is determined.

 Therefore, a content has a higher chance of being

selected as HFR if its average distance traveled by requests

is higher than other contents. This is because some requests

may reach the provider node after traveling a large number

of hops, while others are sent from nodes located near the

provider node or one hop away. As a result, requests sent

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

from closer nodes can reach the provider node earlier than

those sent from farther nodes. In general, content is selected

to be cached regardless of where the requests originate. This

leads to a larger number of redundant requests being

transmitted to download the same content multiple times

from the distant provider node, increasing overall content

retrieval latency and the average number of hops.

Algorithm 1. Content Freshness

Input:

Incoming requests

Output:

 Fresh contents

Procedure: GetFreshContent

1: user request (𝑟𝑖) reaches at node 𝑛𝑖

2: for (check the node 𝑛𝑖 has the requested content 𝑥𝑖)

3: if (required content 𝑥𝑖 found at node 𝑛𝑖) then

// According to equation 12

4: if (𝑇𝐶𝑢𝑟𝑟𝑒𝑛𝑡 > 𝑥𝑖 . 𝑇𝐸𝑥𝑝𝑖𝑟𝑒) then

5: forwards the user request (𝑟𝑖) to the pub

6: if(publisher returned fresh content 𝑥𝑖) then

7: refresh content 𝑥𝑖 at node 𝑛𝑖

8: else

9: evict the expired copy of content 𝑥𝑖 from node 𝑛𝑖

10: end if

11: end if

12: end if

13: end for

14: return fresh copy of content 𝑥𝑖

[where 𝑖 = {1, 2, 3, … … 𝑛}, and 𝑥𝑖 ∈ 𝑋, 𝑟𝑖 ∈ 𝑅]

To address this issue, the proposed caching strategy takes

into account the average distance as a primary consideration.

It selects content for caching based on both HFR and AHD.

However, a question arises: what happens if a content meets

the first condition of being HFR (receiving a greater number

of requests than other contents) but fails to meet the second

condition of AHD? In such cases, the content freshness or

content lifetime is considered to choose an appropriate

content as popular. In an NDN-based IoT scenario, content

freshness or content life is crucial for improving overall

network performance. Content providers set the freshness or

content lifetime and attach it to the content header. When the

content life expires, the content is considered invalid and

evicted from the node to make room for new contents. The

algorithm (Algorithm 1) identifies the content freshness. In

some cases, the content producer may need to create a new

copy of the expired content. IoT applications often require

fresh contents, such as healthcare services that need up-to-

date information to make appropriate decisions based on

vital parameters like blood oxygen level and blood pressure.

Therefore, if a content does not meet both conditions

mentioned earlier, its content freshness or content lifetime is

considered to determine the appropriate popular content for

caching. The content with a higher lifetime contains highly

fresh information, indicating its popularity in recent time.

Thus, content lifetime is a crucial factor in choosing a

suitable content as popular. The content selection algorithm

(Algorithm 2) demonstrates the selection of highly fresh

content.

Algorithm 2. Content Selection Mechanism

Input:

Incoming requests

Incoming requests for a specific content

Output:

 Most frequently requested contents

Procedure GetPopularContent:

1: multiple interests arrive at intermediate node 𝑛𝑖

2: for (requests 𝑟𝑖 checks whether it has required content 𝑥𝑖)

3: if (𝑥𝑖 . 𝑟𝑖𝐶𝑜𝑢𝑛𝑡 > 𝑥𝑗 . 𝑟𝑗𝐶𝑜𝑢𝑛𝑡 or 𝑥𝑖.𝑛𝑖Count >

 𝑥𝑗.𝑛𝑗Count) then

4: if (𝑥𝑖 . 𝑓𝑖 > 𝑥𝑗 . 𝑓𝑗) then

7: select 𝑥𝑖

8: else

9: forward 𝑟𝑖 the to the next node 𝑛𝑗

10: end if

11: end if

12: end for

13: return most frequently requested content

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛}, 𝑖 ≠ 𝑗 and 𝑥𝑖 , 𝑥𝑗 ∈ 𝑋, 𝑟𝑖 , 𝑟𝑗 ∈ 𝑅,

 𝑓𝑖 , 𝑓𝑗 ∈ 𝐹]

In the first phase, the content selection mechanism is

discussed, where users' requests are measured and the

distance for each request is calculated to determine the

average distance for choosing popular content. Once the

content selection mechanism is completed, the execution

process moves to the next phase, which is the content

caching mechanism.

In the content caching mechanism, caching decisions are

made based on the content selection. These caching

decisions occur along the data delivery path from the content

producer to the requested users. Caching the content can

typically reduce data retrieval latency and path stretch for

subsequent requests from end users. Efficient caching

decisions require the computation of several parameters,

including path distance, caching nodes, disseminated

content, number of hops along the path, and available space

in caching nodes. Different content caching mechanisms

have been designed, such as probabilistic caching, single

node caching, and centrality-aware caching.

 On the other hand, the Priority-based Content Popularity-

Aware (PCPA) strategy provides a threshold value to assign

to each node for identifying the content caching node. The

content will be cached on the node that exhibits more

interests than the threshold value. This threshold is

determined by calculating the predictor history and incoming

users' requests to identify the caching node. When a number

of requests are generated to fetch a specific content from the

content provider, the requests propagate from the user

through various network nodes until they reach the content

provider node. Each network node creates an entry as the

request passes through it, and when the requested content is

found, the node sends the content back to the user.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

 Furthermore, the request entry is deleted from each node

as the content is disseminated through the nodes. According

to PCPA, each node is associated with a static threshold

value.

Algorithm 3. Content Caching Mechanism

Input:

 Demanded Content: Content which is needed by user

Output:

 Content cached at intermediate node

Procedure: GetCachingNode

1: content 𝑥𝑖 reached at node 𝑛𝑖

2: for (check node 𝑛𝑖 has content 𝑥𝑖)

3: if (node 𝑛𝑖 has content 𝑥𝑖) then

4: forward content 𝑥𝑖 to next node 𝑥𝑗

5: else if (node 𝑛𝑖 has enough cache space) then

9: else if (𝑥𝑖.node 𝑛𝑖 has 𝑟𝑖 > 2) then

10: else if (neighbors.node 𝑛𝑖 > 2) then

11: cache content 𝑥𝑖 at node 𝑛𝑖

12: end if

13: end else if

14: end else if

15: end else if

16: end for

17: return content 𝑥𝑖 cached at node 𝑛𝑖

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛}, 𝑖 ≠ 𝑗 and 𝑥𝑖 ∈ 𝑋, 𝑥𝑗 ∈ 𝑋]

 The threshold is assigned as 𝑁𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 > 2 where 𝑁 =
{𝑛1, 𝑛2, 𝑛3, … … … 𝑛𝑛}. Therefore, each node has a specific

count which means if a node receives more than two requests

the node will be recommended to be cached that content for

which the requests are received. More specifically, if a node

receives more than two requests for a specific content the

node will be selected to be cached that content. Here, a

question is raised why dynamic threshold is node selected for

the content caching? If the dynamic threshold is used the

dynamic value will be increased with the time and a time will

come when the incoming content show the smaller number

of requests even it is selected as popular but the node

dynamic value is greater than value node has received

number of requests. As a result, the content will not be

cached at any of the intermediate nodes. For example, at

node N a content A is cached recently and the dynamic

threshold is calculated as 10 at that time to cache content A.

After a small time, a content B is arrived at node N and node

N received 8 requests for content B. According to the

dynamic threshold value 10, the content B will not

recommend to be cached at node N. Thus, the dynamic

threshold value will be increased as the increasing in number

of requests and it will not appropriate to caches the contents

showing less popularity than recent contents. Hence, the

overall performance is reduced. Moreover, it is not only the

condition to cache the content at a network node. However,

in order to reduce the redundant replications of same content,

the node should be connected with more than two neighbor

nodes or the node should have more than two outgoing

interfaces. Therefore, if the node connected with more

neighbors have more probability to caches the content.

Usually, all the network nodes are associated with two

neighbors in which one is incoming and one is out going.

Therefore, if all the network nodes will allow caching all the

content, then the proposed model will behave like NDN

default caching strategy EEC and it increases the content

redundancy.

Algorithm 4. Back up Caching Mechanism

Input:

 Demanded Content: Content which is needed by end user

Output:

 Content cached at back up caching edge node

Procedure: BeckupEdgeNode

1: for (𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 in Node 𝑛𝑖)

2: compare 𝑐𝑜𝑛𝑒𝑡𝑛𝑡 𝑥𝑖 with 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑗

3: if (R.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑗 > R.𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖) then

4: least downloaded content = 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖

5: evict 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 from Node 𝑛𝑖

6: cache 𝑐𝑜𝑛𝑡𝑒𝑛𝑡 𝑥𝑖 at Node 𝑛𝑘

7: end if

8: end for

9: return content 𝑥𝑖 cached at node 𝑛𝑘

[where 𝑖, 𝑗 = {1, 2, 3, … … 𝑛} and 𝑖 ≠ 𝑗 ≠ 𝑘, 𝑘 = 𝑛 − 1, R =

requests]

[where 𝑛𝑖= intermediate node and 𝑛𝑘= edge node, 𝑥𝑖 ∈ 𝑋, 𝑥𝑗 ∈

𝑋, 𝑛𝑘 ∈ 𝑋]

 Algorithm 3 shows the content caching mechanism. In

backup facility procedure, when a high prioritized content is

arrived at intermediate node, the Time Aware Least

Downloaded (TALD) content is evicted from the

intermediate node to accommodate the new high prioritized

content and the evicted content in cached at backup facility

node. The backup facility node is considered as edge node

because there is less probability to generate a large number

of subsequent requests for TALD contents. Therefore, the

PCPA manages the cache by accommodating the high

prioritized content at intermediate nodes. Thus, the TALD

content is cached at edges of the NDN-based IoT network.

Algorithm 4 shows the mechanism of backup caching

method. Moreover, the cache of the intermediate nodes will

be used for the high prioritized content efficiently. As a

result, the subsequent requests for TALD content can

accomplish at one-hop distance and hence, the cache hit will

be maximized with less response latency. To understand the

PCPA concepts, Figure 2 illustrates the content selection,

content caching, and backup caching mechanism of the

PCPA caching strategy. In the given scenario, four requests

were sent from IoT-based devices (1, 3, and 4) to fetch

content C1. Instantly, another request is sent by IoT-based

device 5 to download content C1. According to the PCPA,

the content that has received a higher number of user requests

and all the requests have traveled more distance in hops will

be selected as popular. Therefore, all the requests for content

C1 have traveled more hops to get the content. Thus, content

C1 is selected as popular and recommended to cache along

the data downloading nodes. In order to cache C1 along the

path, the number of incoming users' requests is measured at

each node.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 1

FIGURE 2. PRIORITY BASED POPULARY-AWARE CACHING

 If a node shows that the number of requests for content

C1 is more than threshold 2, the content C1 will be cached at

that node. Consequently, C1 is cached at intermediate nodes

4 and 2 because these nodes are showing more requests than

the threshold requests of the total number of users' requests

generated at the content provider. As content C1 needs to be

cached at I-Node 2, the cache of that node is already

occupied by highly requested content C1 and C2. According

to PCPA, content C4 is evicted based on the time-aware least

downloaded content from I-Node 2 and cached at the edge

node, E-Node 3, to make room for incoming content C1 at I-

Node 2.

V. PERFORMANCE EVALUATION

To evaluate the performance of the proposed PCPA caching

strategy and the benchmark strategies, the network simulator

NDNSim version has been selected. For the present research,

a simulation environment has been established to evaluate

the proposed NDN-based IoT caching strategy. The

requirements and platform for the simulation are outlined

below. The simulation setup has been constructed to measure

the proposed model's performance and validation. Using a

network simulator to study NDN-IoT caching performance

offers several advantages for this research. NDNSim

simulator provides a set of application helper classes and

references to measure several aspects of NDN-based IoT

strategies under different scenarios. Different researchers

choose different metrics according to their research area and

the proposed model. Therefore, for this research, some

metrics have been selected to test the effectiveness of the

proposed content deployment strategy. The metrics used to

evaluate the performance of PCPA are content retrieval

latency, cache hit ratio, average hop count, and total energy

consumption. The PCPA has been simulated using a desktop

machine with the following specifications: an i7 computer

core with 12 GB RAM, a microprocessor of 3 GHz

processor, and Ubuntu 20.04 version installed as an

operating system to run the NDNSim simulator. For the

current simulation, 200 IoT nodes have been randomly

distributed in a square area of 500m x 500m grid topology.

 Fifteen nodes at the border were selected as content

producers (publishers), 45 nodes were selected as cache

nodes, and 140 nodes were chosen as users (subscribers).

The Zipfian distribution was used to generate contents, and

its α distribution value ranged between 0.2 to 1.0.

IEEE802.11a was selected as the wireless interface (wireless

technology), and the cache size of each node varied from 5

chunks to 20 chunks. The simulation was executed 50 times,

and the percentage of these was considered the final result.

The parameters and selected values for the present

simulation are given in the following Table 1. In simulation,

the cache size was selected as constant (minimum and

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

maximum) such as 5 chunks and 20 chunks. While, the

weight factor (α) was selected as varying parameter and its

value is taken as α = 0.2 to α = 1.0.

TABLE 1. Parameters and Corresponding Values

Parameters Values

Wireless Technology IEEE 802.11

Topology Size (500 × 500) m

Radio Coverage Area 100m

Total number of nodes 200

Size of a chunk 200 bytes

Cache Size 5, 10, 15, and 20

Chunks

Number of Consumers 140 nodes

Mobility model Random

Popularity model Zipf

Weight Factor (α) 0.2, 0.4, 0.6, 0.8, 1.0

Simulation Time 300s

Number of simulations Run 50 runs

A. COMPARING STRATEGIES

Four caching strategies were selected as Cache Everything

Everywhere (CEE), Periodic Caching Strategy (PCS),

Endpoint Linked Green Content (ELGC) caching strategy,

and Energy-aware Caching Placement (ECP) strategy to

compare the performance of the proposed PCPA caching

strategy with related caching strategies in the NDN-based

IoT environment.

1. Cache Everything Everywhere

Cache Everything Everywhere (CEE) [45] is known as

NDN-IoT default caching strategy. It provides a simple

structure that offers high data availability and reachability.

2. Periodic Caching Strategy

Periodic Caching Strategy (PCS) [31] was proposed to

provide caching of the popular contents at the betweenness

centrality node and when it gets filled the coming contents

are cached at the edge node.

3. Energy-aware Caching Placement

Energy-aware Caching Placement (ECP) [46] strategy was

proposed to improve the energy efficiency of the network. Its

goal is to optimize the energy by trading off between the

content caching energy and content transmission energy.

4. Endpoint Linked Green Content

The Endpoint Linked Green Content (ELGC) [18] caching

strategy recently been proposed to increase the energy

efficiency using threshold-based data offloading mechanism.
It optimizes the load sharing between rim nodes and end-

devices for the caching of the incoming contents.

B. EVALUATION METRICS

Based on the proposed model, the simulation was run on the

Cache Hit Ratio (CHR), Average Hop Count (AHC),

Content Retrieval Latency (CRL), and Energy Consumption

(EC).

1 Cache Hit Ratio

Cache Hit Ratio (CHR) is referring to the total number of

satisfied user incoming requests from the network caching

nodes. It is ratio between hit rate and miss rate. CHR is

measured by combining the successful data transmissions

sent to the requested users and unsatisfied user requests.

2. Average Hop Count

Average Hop Count (AHC) denotes that the total number of

hops is required for a request to travel from the user to the

source caching node where the cache hit occurs. When a user

sends out some requests to fetch some content, the requests

travels through the network caching nodes hop by hop till the

hit occur. Therefore, all the hops are measured for all

requests that sent to fetch same content is known as AHC.

The AHC is shorter for the content fetched from the caching

node as compared to the data found from the publisher.

3. Content Retrieval Latency

Content Retrieval Latency (CRL) refers to the time unit in

millisecond that is used to consume within the multiple links

taken to reply to a coming request. It can be defined as the

time required to complete one transmission of a user request

that is sent by the user to fetch a desirable content or data

item from the caching node. Usually, in NDN-IoT caching

environment, CRL is measured for the whole network in the

form of average latency and it can be defined as the time is

required in the transmission of the overall users’ requests to

fetch the demanded contents.

3. Energy Consumption

Energy Consumption (EC) is referred to the total energy

consumed by caching nodes in NDN-based IoT network and

it is measured the total of the whole network to evaluate the

performance. The IoT-based devices have limited powered

batteries that make the energy performance significant to

enhance the overall system performance. The energy

consumption is considered as the most important parameter

in developing a new caching strategy for NDN-based IoT

scenarios because of energy constrained IoT devices.

Therefore, a caching strategy is considered as efficient if, it

has the ability to reduce the energy consumption by caching

the popular contents at the nodes that can to fulfill the future

demands of the end users. Thus, the caching of disseminated

content has different affect over the battery-life of the IoT

devices such as the data closer, a few nodes will be used to

transmit the content to the end users and the less energy will

be consumed as compared to the content fetched far from the

end users because content needs to travel a greater number

of nodes. For the energy consumption additional parameters

are selected such as the initial energy is taken as 1 jule,

energy required for a transaction is 50 nJ/bit, and energy for

caching content is 10 nJ/bit.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

FIGURE 3. CACHE HIT RTAIO ON CACHE SIZE (5 CHUNKS)

FIGURE 4. CACHE HIT RTAIO ON CACHE SIZE (20 CHUNKS)

B. RESULTS AND DISCUSSION
Different caching strategies were selected to compare the
performance of the proposed PCPA caching strategy with
related caching strategies in the NDN-based IoT
environment. The CHR performance of PCPA was
compared with CEE, PCS, ECP, and ELGC to check the
significance of the outcomes. Figure 3 and Figure 4 shows
the simulation results on CHR. It is clear from Figure 3 and
Figure 4 that the performance improves with increasing the
value of the Weight Factor (α).

 In this experiment, the weight factor is taken varying

from 0.2 to 1.0 with constant cache size that is selected as 5

chunks and 20 chunks. However, the performance on EC

appearances is different as compared to the CHR, CRL, and

AHC. The reason is that, in EC, the consumption is increased

with higher content popularity value and with large cache

size because with higher popularity value more users request

is generated to fetch the high popular content and a large

number of contents are accommodated in large cache size.

Therefore, the energy consumption is increased in

accommodating a large number of contents with higher

popularity value as 1.0.

FIGURE 5. AVERAGE HOP COUNT ON CACHE SIZE (5 CHUNKS)

FIGURE 6. AVERAGE HOP COUNT ON CACHE SIZE (20 CHUNKS)

The PCPA achieves better CHR performance throughout the
simulation process with each constant cache size and varying
α values. CEE performs poorly and achieves the lowest result
with higher weight factor at α = 1.0. While. PCS and ECP
performs better than CEE with a lower α value and higher α
value as α =0.2 and α = 1.0. Moreover, ELGC outperformed
than PCS and ECP because it implements the function of
caching contents at the end devices that increases the cache
hit for the subsequent requests. Therefore, ELGC performs
better than ECP, PCS and achieves the higher result as 0.587

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

at α = 1.0. However, the proposed PCPA strategy beats all
the comparing strategies and achieves the highest result at α
= 1.0, as shown in Figure 3 and Figure 4.

FIGURE 7. CONTENT RETRIEVAL LATENCY ON CACHE SIZE (5
CHUNKS)

FIGURE 8. CONTENT RETRIEVAL LATENCY ON CACHE SIZE (20
CHUNKS)

Figure 5 and Figure 6 show the impact of a constant cache
size with varying weight factor (α) on the Average Hop
Count (AHC). The PCPA achieves better AHC performance
throughout the simulation process for each constant cache
size and varying α values. CEE performs poorly and achieves
the lowest result throughout the varying α parameter from α
= 0.2 to α = 1.0. PCS performs better than CEE with a lower
α value and achieves the better outcomes regarding AHC
result at α = 1.0. However. ECP performs slightly better than
PCS with both cache size (5 chunks and 20 chunks).
Moreover, ELGC performs better than CEE, PCS, and ECP
by achieving the better AHC result with as α parameters.

However, the proposed PCPA strategy beats all the
comparing strategies and showing better results with both
cache sizes and α parameters.

FIGURE 9. ENERGY CONSUMPTION ON CACHE SIZE (5 CHUNKS)

Figure 7 and Figure 8 illustrates the simulation results on
CRL using two different constant cache sizes, 5 chunks, and
20 chunks. The x-axis shows the varying weight factor α,
while the y-axis shows CRL performance in average or
percentage. CEE performs poorly in terms of CRL, while
PCS performs better than CEE. Moreover, ECP and ELGC
perform relatively similarly and shows better performance
than CEE and PCS with all α values. However, the PCPA
outperforms all strategies throughout the simulation process
with all α values and achieves better results than CEE, PCS,
ECP and ELCG. PCPA outperforms because of its ability to
cache popular and less popular content near end-users,
thereby achieving better performance. The EC performance
shows different results as compared to the CHR, CRL, and
AHC. The reason is that, in EC, the consumption is increased
with higher content popularity value and with large cache
size because with higher popularity value more users request
is generated to fetch the high popular content and a large
number of contents are accommodated in large cache size.
Therefore, the energy consumption is increased in
accommodating a large number of contents with higher
popularity value. Figure 9 and Figure 10 shows the effect of
constant cache size on different simulation scenarios using
varying weight factors. As the α value increases the energy
consumption is increased in both simulation scenarios
because, with higher popularity values a large number of
requests are received and the corresponding content are sent
back to the end users. Therefore, the network usage is
increased and consequently, the energy consumption gets
increased. However, the proposed PCPA caching strategy
outperform with both caching sizes than CEE, PCS, ECP,
and ELGC. The PCPA caches popular content close to the
end users and less energy is consumed in fetching the

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

demanded contents and thus overall energy consumption is
reduced.

FIGURE 10. ENERGY CONSUMPTION ON CACHE SIZE (20 CHUNKS)

 On the other hand, the CEE perform poor and increases
the energy consumption during data dissemination. The
reason is that, CEE performs caching operations at each node
along the data routing path and consequently, the content
evictions is also increased that increases the usage of the
network and hence, the overall energy consumption is
maximized as shown in Figure 9 and Figure 10. The ELCG
and ECP performed relatively with both cache sizes due to
their caching structures of caching contents. However, the
energy consumption is higher in ELGC than ECP because
ELGC executes extra function during content caching and
content replacement and consumes additional energy during
offloading the contents. ECP performs somehow better than
ELCG because ECP computes less parameters as compare to
the ELGC for making a caching decision. Therefore, ECP
consumes less energy than ELCG and improve the overall
performance in terms of energy consumption.

VI. CONCLUSION AND FUTURE WORK

NDN-based IoT networks offer the potential to create an

Internet environment through caching, providing various

benefits such as decoupling receivers from producers,

reducing redundant data dissemination, and enhancing

scalability. However, despite these advantages, NDN-based

IoT caching faces several challenges. This study aims to

review different caching concepts and issues in NDN-IoT

caching environments. The importance of NDN and IoT

architectures, as well as caching concepts, are introduced.

Existing caching strategies are identified, and the problems

associated with them are discussed. To address these issues,

a new caching strategy called Priority-based Content

Popularity-Aware (PCPA) Caching is proposed. The PCPA

strategy is implemented using the NDNSim simulator, and

its performance is compared with other caching strategies

such as CEE, PCS, ELCG, and ECP. Metrics such as latency,

stretch ratio, and cache hit ratio are used to evaluate the

caching performance, and the results show that the PCPA

caching strategy outperforms the other strategies, especially

with a large cache size.

 In NDN, the caching module plays a crucial role in

improving network performance. The placement and

replacement of cached content are vital tasks for efficient

caching. NDN caching strategies are particularly suitable for

enhancing IoT-based network performance. It is important to

select a suitable caching node in the network that can provide

efficient caching performance in terms of data availability,

low latency, and reduced energy consumption. However,

content popularity can have a varying impact on caching

performance. Highly popular content that is rarely used in

the future can lead to inefficient energy utilization and

excessive storage consumption. Frequently requested

content that cannot fit into a node's cache may result in a

large number of requests being forwarded to remote

providers, significantly increasing content retrieval delays.

While NDN-IoT caching offers numerous benefits, it also

imposes complexities and restrictions on caching strategy

development in different IoT networks. Therefore, the

proposed caching strategy considers content-based

properties such as freshness, content popularity, and

provider, as well as node properties including path stretch,

battery power level, and free memory, to enhance overall

caching performance.

 Based on these properties, the proposed caching strategy

can be applied to various Internet technologies such as

Software Defined Networking (SDN), Blockchain, cloud

computing, fog computing, edge computing, and mobile

edge computing. Furthermore, the proposed caching model

can be utilized to evaluate and enhance network performance

in terms of bandwidth consumption, memory consumption,

and backhaul consumption. Additionally, the proposed

strategy can be implemented to improve caching

performance in Ad hoc Networks such as Mobile Ad hoc

Networks (MANET) and Vehicular Ad hoc Networks

(VANET). In conclusion, the proposed strategy holds

potential for improving caching performance in 5G/6G

cellular networks.

REFERENCES

[1] D. R. d. S. Medeiros and M. A. Fernandes,

"Distributed genetic algorithms for low-power, low-

cost and small-sized memory devices," Electronics,

vol. 9, p. 1891, 2020.

[2] P. Perazzo, F. Righetti, M. La Manna, and C. Vallati,

"Performance evaluation of attribute-based

encryption on constrained iot devices," Computer

Communications, vol. 170, pp. 151-163, 2021.

[3] D. D. F. Del Rio, B. K. Sovacool, N. Bergman, and K.

E. Makuch, "Critically reviewing smart home

technology applications and business models in

Europe," Energy Policy, vol. 144, p. 111631, 2020.

[4] N. A. Khan and A. Awang, "Elliptic Curve

Cryptography for the Security of Insecure Internet

of Things," in 2022 International Conference on Future

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

Trends in Smart Communities (ICFTSC), 2022, pp. 59-

64.

[5] H. Khalajzadeh, A. J. Simmons, M. Abdelrazek, J.

Grundy, J. Hosking, and Q. He, "An end-to-end

model-based approach to support big data analytics

development," Journal of Computer Languages, vol.

58, p. 100964, 2020.

[6] F. Firouzi, B. Farahani, M. Weinberger, G. DePace,

and F. S. Aliee, "Iot fundamentals: Definitions,

architectures, challenges, and promises," Intelligent

Internet of Things: From Device to Fog and Cloud, pp.

3-50, 2020.

[7] G. Gardašević, M. Veletić, N. Maletić, D. Vasiljević,

I. Radusinović, S. Tomović, and M. Radonjić, "The

IoT architectural framework, design issues and

application domains," Wireless personal

communications, vol. 92, pp. 127-148, 2017.

[8] X. Wang and X. Qian, "Toward Named Data

Networking: An Approach Based the Internet of

Things Cloud With Edge Assistance," IEEE Systems,

Man, and Cybernetics Magazine, vol. 8, pp. 21-27,

2022.

[9] C. Gündogan, P. Kietzmann, T. C. Schmidt, M.

Lenders, H. Petersen, M. Wählisch, M. Frey, and F.

Shzu-Juraschek, "Information-centric networking

for the industrial IoT," in Proceedings of the 4th ACM

Conference on Information-Centric Networking, 2017,

pp. 214-215.

[10] S. Arshad, M. A. Azam, M. H. Rehmani, and J. Loo,

"Recent advances in information-centric

networking-based Internet of Things (ICN-IoT),"

IEEE Internet of Things Journal, vol. 6, pp. 2128-2158,

2018.

[11] D. Mars, S. Mettali Gammar, A. Lahmadi, and L.

Azouz Saidane, "Using information centric

networking in internet of things: a survey," Wireless

personal communications, vol. 105, pp. 87-103, 2019.

[12] A. Djama, B. Djamaa, and M. R. Senouci,

"Information-Centric Networking solutions for the

Internet of Things: A systematic mapping review,"

Computer Communications, vol. 159, pp. 37-59, 2020.

[13] W. Fang, M. Xu, C. Zhu, W. Han, W. Zhang, and J.

J. Rodrigues, "FETMS: Fast and efficient trust

management scheme for information-centric

networking in Internet of Things," IEEE access, vol.

7, pp. 13476-13485, 2019.

[14] J. Li, B. Liu, and H. Wu, "Energy-efficient in-

network caching for content-centric networking,"

IEEE Communications Letters, vol. 17, pp. 797-800,

2013.

[15] J. Pfender, A. Valera, and W. K. Seah, "Performance

comparison of caching strategies for information-

centric IoT," in Proceedings of the 5th ACM conference

on information-centric networking, 2018, pp. 43-53.

[16] N. A. Khan, A. Awang, and S. A. B. A. Karim,

"Security in Internet of Things: A review," IEEE

access, 2022.

[17] N. Askar, A. Habbal, F. Z. Alden, X. Wei, H.

Alaidaros, J. Guo, and H. Yu, "Forwarding

Strategies for Named Data Networking based IOT:

Requirements, Taxonomy, and Open Research

Challenges," IEEE access, 2023.

[18] H. Shrisha and U. Boregowda, "An energy efficient

and scalable endpoint linked green content caching

for Named Data Network based Internet of Things,"

Results in Engineering, vol. 13, p. 100345, 2022.

[19] K. K. Singh and R. K. Dudeja, "Hybrid Information

Placement in Named Data Networking-Internet of

Things System," in 2022 8th International Conference

on Advanced Computing and Communication Systems

(ICACCS), 2022, pp. 593-601.

[20] M. S. M. Shah, Y.-B. Leau, Z. Yan, and M. Anbar,

"Hierarchical naming scheme in named data

networking for Internet of Things: A review and

future security challenges," IEEE access, vol. 10, pp.

19958-19970, 2022.

[21] M. A. Naeem, T. N. Nguyen, R. Ali, K. Cengiz, Y.

Meng, and T. Khurshaid, "Hybrid cache

management in IoT-based named data networking,"

IEEE Internet of Things Journal, vol. 9, pp. 7140-7150,

2021.

[22] S. Hussain, S. S. Ullah, A. Gumaei, M. Al-Rakhami,

I. Ahmad, and S. M. Arif, "A novel efficient

certificateless signature scheme for the prevention

of content poisoning attack in named data

networking-based internet of things," IEEE access,

vol. 9, pp. 40198-40215, 2021.

[23] B. Alahmri, S. Al-Ahmadi, and A. Belghith,

"Efficient pooling and collaborative cache

management for NDN/IoT networks," IEEE access,

vol. 9, pp. 43228-43240, 2021.

[24] W. M. H. Azamuddin, A. H. M. Aman, R. Hassan,

and T.-A. N. Abdali, "Named data networking

mobility: A survey," in Emerging Technology Trends

in Internet of Things and Computing: First International

Conference, TIOTC 2021, Erbil, Iraq, June 6–8, 2021,

Revised Selected Papers, 2022, pp. 266-281.

[25] M. A. Naeem, S. A. Nor, S. Hassan, and B.-S. Kim,

"Performances of probabilistic caching strategies in

content centric networking," IEEE access, vol. 6, pp.

58807-58825, 2018.

[26] M. A. Naeem, M. A. U. Rehman, R. Ullah, and B.-S.

Kim, "A comparative performance analysis of

popularity-based caching strategies in named data

networking," IEEE access, vol. 8, pp. 50057-50077,

2020.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

[27] M. Amadeo, "A literature review on caching

transient contents in vehicular named data

networking," in Telecom, 2021, pp. 75-92.

[28] S. Wang, H. Chen, and Y. Wang, "Collaborative

caching for energy optimization in content-centric

internet of things," IEEE Transactions on

Computational Social Systems, vol. 9, pp. 230-238,

2021.

[29] H. Al-Ward, C. K. Tan, and W. H. Lim, "Caching

transient data in Information-Centric Internet-of-

Things (IC-IoT) networks: A survey," Journal of

Network and Computer Applications, p. 103491, 2022.

[30] M. Amadeo, C. Campolo, G. Ruggeri, and A.

Molinaro, "Beyond edge caching: Freshness and

popularity aware iot data caching via ndn at

internet-scale," IEEE Transactions on Green

Communications and Networking, vol. 6, pp. 352-364,

2021.

[31] M. A. Naeem, R. Ali, B.-S. Kim, S. A. Nor, and S.

Hassan, "A periodic caching strategy solution for

the smart city in information-centric Internet of

Things," Sustainability, vol. 10, p. 2576, 2018.

[32] J. Pfender, A. Valera, and W. K. Seah, "Reassessing

caching performance in information-centric IoT,"

Internet of Things, vol. 18, p. 100479, 2022.

[33] M. A. Naeem, S. A. Nor, S. Hassan, and B.-S. Kim,

"Compound popular content caching strategy in

named data networking," Electronics, vol. 8, p. 771,

2019.

[34] M. A. Naeem, R. Ullah, Y. Meng, R. Ali, and B. A.

Lodhi, "Caching content on the network layer: a

performance analysis of caching schemes in ICN-

based Internet of Things," IEEE Internet of Things

Journal, vol. 9, pp. 6477-6495, 2021.

[35] Y. Meng, M. A. Naeem, R. Ali, and B.-S. Kim,

"EHCP: An efficient hybrid content placement

strategy in named data network caching," IEEE

access, vol. 7, pp. 155601-155611, 2019.

[36] Y. Meng, M. A. Naeem, M. Sohail, A. K. Bashir, R.

Ali, and Y. B. Zikria, "Elastic caching solutions for

content dissemination services of ip-based internet

technologies prospective," Multimedia Tools and

Applications, vol. 80, pp. 16997-17022, 2021.

[37] M. A. Hail, M. Amadeo, A. Molinaro, and S. Fischer,

"Caching in named data networking for the wireless

internet of things," in 2015 international conference on

recent advances in internet of things (RIoT), 2015, pp.

1-6.

[38] C. Bernardini, T. Silverston, and O. Festor, "MPC:

Popularity-based caching strategy for content

centric networks," in 2013 IEEE international

conference on communications (ICC), 2013, pp. 3619-

3623.

[39] J. Ren, W. Qi, C. Westphal, J. Wang, K. Lu, S. Liu,

and S. Wang, "Magic: A distributed max-gain in-

network caching strategy in information-centric

networks," in 2014 IEEE conference on computer

communications workshops (INFOCOM WKSHPS),

2014, pp. 470-475.

[40] A. M. Alberti, M. A. F. Casaroli, D. Singh, and R. da

Rosa Righi, "Naming and name resolution in the

future internet: Introducing the NovaGenesis

approach," Future Generation Computer Systems, vol.

67, pp. 163-179, 2017.

[41] M. Amadeo, C. Campolo, J. Quevedo, D. Corujo, A.

Molinaro, A. Iera, R. L. Aguiar, and A. V. Vasilakos,

"Information-centric networking for the internet of

things: challenges and opportunities," IEEE

Network, vol. 30, pp. 92-100, 2016.

[42] M. Amadeo, G. Ruggeri, C. Campolo, A. Molinaro,

and G. Mangiullo, "Caching popular and fresh IoT

contents at the edge via named data networking," in

IEEE INFOCOM 2020-IEEE Conference on Computer

Communications Workshops (INFOCOM WKSHPS),

2020, pp. 610-615.

[43] S. Alduayji, A. Belghith, A. Gazdar, and S. Al-

Ahmadi, "PF-ClusterCache: Popularity and

Freshness-Aware Collaborative Cache Clustering

for Named Data Networking of Things," Applied

Sciences, vol. 12, p. 6706, 2022.

[44] S. Vural, N. Wang, P. Navaratnam, and R. Tafazolli,

"Caching transient data in internet content routers,"

IEEE/ACM Transactions on Networking, vol. 25, pp.

1048-1061, 2016.

[45] D. Gupta, S. Rani, S. H. Ahmed, and R. Hussain,

"Caching policies in NDN-IoT architecture,"

Integration of WSN and IoT for Smart Cities, pp. 43-64,

2020.

[46] O. Serhane, K. Yahyaoui, B. Nour, and H. Moungla,

"Energy-aware cache placement scheme for iot-

based icn networks," in ICC 2021-IEEE International

Conference on Communications, 2021, pp. 1-6.

Yahui Meng received the B.S. degree

in computer science and technology

from Air Force Engineering University,

Xi'an, China, in 2003 and the M.S

degree in software engineering from

Huazhong University of Science and

Technology, Wuhan, China, in 2008.

He is currently pursuing the Ph.D.

degree in computer science, he is a

Ph.D. Scholar at the InterNetWorks Research Lab, School of

Computing, Universiti Utara Malaysia. Meanwhile, he is

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

VOLUME XX, 2017 9

also currently an associate professor in School of Science,

Guangdong University of Petrochemical Technology,

Maoming, China. His major interests are in the field of

information centric wireless networks, named data

networking and the Internet of Things.

 Amran bin Ahmad: Dr. Amran

Ahmad is a Senior Lecturer in the School of Computing and

a member of the Internetworks Research Lab (IRL) at

Universiti Utara Malaysia. He received his Ph.D. in Network

Security from the same university. As a member of IRL, he

is actively involved in all activities initiated by the lab,

including being an IPv6 trainer, a committee member of the

International Conference on Internet Applications,

Protocols, and Services (Netapps). Dr. Amran is also a

member of the Internet Society professional body and

contributes to them as an IRL member. His research interests

include Mobile Network Technology, Web Services, and E-

Learning. He has conducted several research projects

supported by University and FRGS grants in the area of

Mobile Network Technology and E-Learning. Dr. Amran

has published several peer-reviewed articles in leading

journals and conferences. He has also served as a program

committee member for several conferences in the field of

Mobile Network Technology and Web Services. His

research work has been presented at numerous international

and local conferences. In addition to his research work, Dr.

Amran is passionate about teaching and mentoring. He has

developed and taught several undergraduate and graduate

courses in Computer Science, with a focus on Mobile

Network Technology, Web Services, and E-Learning. He

has supervised numerous research projects and thesis work

related to these areas. Dr. Amran is also actively involved in

promoting diversity and inclusion in STEM fields.

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2023.3290312

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

