
-fIS? 024 PEFORMANCE NERSURtEHENTS OF ISTRIDUTED SIMUATION /
STRRTEOIES(U) UTAH UNIV SALT LAKE CITY DEPT OF COMIPUTER
SCIENCJE Rt R FUJIMOTO 190? UUCS-07-026 NS@14-l?-K-ftf4

UNCLASSIFIEDD F/O125 M

,soonlfll..llff

Lm fllf

1.02.0

IlllI III l i mI~
BII.25 1.4 1.64

MCPOCOPy RESOLUTION TES
T

CHAR-

LA% %*~z I ,. I I

S 0 0 0 .. , - . , .0.. . . . - ,' , . . - " " ' . .

i Ic ULE COD

I CN-00
- r -. PERFORMANCE MEASUREMENTS OF

0 -, DISTRIBUTED SIMULATION STRATEGIES

Richard M. Fujimoto'
-' ,Computer Science Department

University of Utah
ISalt Lake City, UT 84112

0Technical Report No. UUCS-87-026

TECHNICAL REPORT
Vt

. Department of

Computer Science
,.. ,

.... STECO 2W870

University of Utah-o°- , 1 -

Salt Lake City, Utah
L *-,*'/';' 8/ 0 29 u007

Jkppave fmpublic M~emw
Disbuion Unlimited

PERFORMANCE MEASUREMENTS OF
DISTRIBUTED SIMULATION STRATEGIES

Richard M. Fujimoto'
Computer Science Deparnment

University of Utah
Salt Lake City, UT 84112

Technical Report No. UUCS-87-026

ABSTRACT

-4

Although many distributed simulation strategies have been developed, to date, little empiri-
cal data is available to evaluate their performance. A multiprocessor-based, distributed simula-
tion testbed is described that was designed to facilitate controlled experimentation with distri-
buted simulation algorithms. Using this testbed, the performance of simulation strategies using
deadlock avoidance and deadlock detection and recovery techniques was examined under various
synthetic workloads. The distributed simulators were compared with a uniprocessor-based event
list implementation. Results of a series of experiments are reported that demonstrate that mes-
sage population and the degree to which processes can look ahead in simulated time play critical

roles in the performance of distributed simulators using these algorithms. An "avalanche"
phenomenon was observed in the deadlock detection and recovery simulator as message popula-
tion was increased, and was found to be a necessary condition for achieving good performance. It
is demonstrated that these distributed simulation algorithms can provide significant speedups
over sequential event list implementations for some workloads, even in the presence of only a
moderate amount of parallelism and many feedback loops. However, a moderate to high degree
of parallelism was not sufficient to guarantee good performance for all workloads that were
tested.

1. INTRODUCTION

Discrete event simulation has long been a task with computation requirements that chal-
lenge the fastest available computers. For example, simulations of communication networks,
parallel computer architectures, and logic networks often require hours, days, or even weeks of ,,lor
CPU time using traditional, single processor techniques. Simulator performance may be --

improved using vectorizing techniques (Chandak and Browne, 1983), processors dedicated to GRA]

specific simulation functions (Comfort 1984), execution of independent trials on separate proces- TAD 0

sors (Biles et al., 1985), or the execution of a single instance of a simulation program on a paral- riced 0
lel computer. The latter technique, referred to as distributed simulation, is the subject of this trteation

IThis work was supported by ONR contract number N00014-87-K-0184 and NSF grant number DCR-85(MR26.
Distribution/

AvailabilityCodes
Avail and/or

-I-Dtst Special

-. A L'. ' __

paper.

Simulation would initially appear to be a natural candidate for parallel processing because
many of the aforementioned applications contain a high degree of parallelism. However, the
exploitation of this parallelism is elusive because the global notion of simulated time does not
easily map to a distributed computer. This property distinguished distributed simulation from
other forms of parallel computation.

Several schemes have been proposed to solve this problem. A survey of the literature has
been reported by Kaudel (1987). One important class of distributed simulation algorithms are the
so-called "conservative" mechanisms developed by Chandy and Misra. One mechanism is
based on a deadlock avoidance technique in which NULL messages are used to distribute clock

. information among the processes taking part in the simulation (Chandy and Misra, 1979).
Another mechanism is based on a deadlock detection and recovery paradigm - the simulator
runs until deadlock, the deadlock is detected, and an algorithm is executed to break the deadlock
(Chandy and Misra, 1981). Enhancements to these algorithms are described in (Misra, 1986).
Other approaches to distributed simulation have been proposed, notably the Time Warp approach
proposed by Jefferson (1985), but the work proposed here will be confined to deadlock avoidance
and deadlock detection and recovery techniques.

To date, little empirical data measuring the performance of specific implementations of
these algorithms is available, although numerous simulation studies have been reported. The
relationship between the system being simulated and performance of a distributed simulator is not
well understood. A notable exception is the recent work of Reed, Malony, and McCredie (1987).
This work is restricted to queueing network simulations, however, and does not attempt a
comprehensive study of distributed simulator performance across a wide variety of workloads.
The goal of the present study is to collect empirical data in order to identify aspects of the work-
load that have a critical impact on performance. In particular, one important goal of this work is
to evaluate the effectiveness of distributed simulation strategies in achieving speedups over
sequential event list implementations when the workload contains a moderate to high degree of
parallelism.

A set of experiments are described that were designed to evaluate the effectiveness of con-

servative distributed simulation strategies. Empirical data is collected for the deadlock avoidance
and the deadlock detection and recovery schemes developed by Chandy and Misra. A distributed
simulation testbed has been developed using a shared memory multiprocessor, the BBN
Butterfly. A wide range of synthetic distributed simulation workloads can be easily created in the
testbed facilitating flexible experimentation.

2. THE DISTRIBUTED SIMULATION TESTBED

The testbed consists of four important components:

* the application program that simulates some physical system; A synthetic workload generator
was used to facilitate the creation of parameterized workloads.

* the distributed simulator responsible for correctly executing the application program;

* software to implement important "system" functions such as scheduling and interprocess
communication; and

• the multiprocessor hardware on which the programs execute.

Each of these will be described next.

-2-

Z.

i. IFT 7 - .W- -- --- - - -V W.W VT9T777 -

2.1. The Application Program

The distributed simulator application consists of a collection of n logical processes LPo,
LP I, ... LPI 1 . Each simulates a portion of the physical system, i.e., the system being modeled.
All interactions among Ls are through timestamped messages. A link from LP, to LP, indicates
that LPI may send messages to LP . The sequence of timestamps on messages sent over any
given link in the simulator is always a non-decreasing sequence of values.

Each logical process maintains a set of input and output message queues, one associated
with each incoming and outgoing link respectively. Output queues buffer messages until the LP
can guarantee no new message will be sent on the link with a smaller timestamp. Input queues
hold messages that are ready to be processed by the LP if it can be guaranteed that no smaller
timestamped message will be received on another input port sometime in the future.

Messages in each input and output queue are sorted in non-decreasing timestamp order.
While a first-in-first-out (FIFO) discipline is sufficient to ensure this ordering for input queues,
explicit insertion procedures are used to preserve the sorted order in output queues.

The LinkClock value of an incoming link is defined as the timestamp of the first message in
the input queue associated with the link. If the queue is empty, then it is the timestamp of the last
message placed into (or removed from) the queue. This measures the extent to which interactions
between the corresponding processes in the physical system have been simulated.

In the experiments described here, synthetic workloads are created using busy wait loops
and random number generators rather than executing code for a specific simulation application.
This facilitates controlled experimentation and evaluation of the influence of specific workload
parameters on performance. It should be emphasized, however, that the testbed contains a com-
plete implementation of the distributed simulation algorithms, and application specific simula-
tions could easily replace the synthetic workloads without modification of other portions of the
testbed.

For illustrative purposes, LP behavior is described in the context of a simulator for an air
traffic system in which each logical process models an airport, and interactions between Ls

correspond to airplanes traveling between airports. Logical process LP, executes a programmed
loop consisting of the following steps:

(1) Determine the incoming link to LP, that has the smallest LinkClock value.

(2) If the corresponding input queue is empty, then LP, blocks until a new message is placed

into the queue. Otherwise, perform the steps that follow.

(3) If the corresponding input queue contains a message, remove the message from the input
queue and execute a busy wait loop to emulate simulation activity. In the air traffic simu-
lation, this corresponds to the time the simulator spends simulating the activities of an
airplane from its arrival at the airport until its departure for a new destination.

(4) The timestamp of the message is incremented. This increment corresponds to the amount
of time the airplane spends in the airport (e.g., waiting for gates, new flight crews, etc.) as
well as its transit time to the airport that it will visit next.

(5) Select an output link and forward the message on this link. The simulator will buffer the
message in the corresponding output queue until it can be sure no message with smaller
timestamp will be sent on this link. In the airport simulator, the output port selection may
be specified by predetermined flight schedules.

One aspect of the workload model described above merits special attention. In any simula-
tion application, a logical process LP, cannot transmit a message to another process LP, until:

* LP, can determine the new timestamp and direction in which the message is to be sent; for

"4. example, in the airport simulation, the airport process may have to first make sure an "airplane

",3

- N -3* .-

crash" event does not occur that would close the airport before its scheduled departure.

* LP, has determined that no other message will be sent in the future to LP, that carries a smaller
timestamp. This requirement is necessary to ensure correctness of conservative distributed
simulation algorithms.

In either case, some amount of simulated time must elapse before LP, is able to safely transmit
the message. This amount of (simulated) time depends on the ability of the process to "look
ahead" into the future. The greater the lookahead ability of a process, the sooner it will be able
to safely transmit the message. In general, lookahead is a complex function that is time variant
and highly dependent on the details of the simulation that is being performed.

Lookahead is a fundamental aspect of all discrete event simulation programs. Event driven
simulations progress by scheduling new events in the simulated time future based on knowledge
of events that have occurred in the past. Without this lookahead ability, no future events could be
scheduled, and the simulation program will quickly grind to a halt.

In the workload model implemented by the testbed, the lookahead function is the minimum
timestamp increment a message will encounter in traveling through the process. If all messages
with timestamp T or less have been received, and tj. is the minimum timestamp increment (i.e.,
the lookahead), then the process can determine all messages it will send with timestamp T + t.
or less. In the testhed, processes treat messages independently of one another. It will be seen
later that lookahead plays a critical role in determining the effectiveness of conservative distri-
buted simulation strategies in achieving good speedup.

In the testbed, several parameters characterize a specific simulation workload:

e Time Stamp Increment. The amount of simulated time by which the timestamp of a message
is increased as it travels through an LP may be selected from one of the following distributions
(see table 1): deterministic, biased, shifted exponential, shifted uniform, or bimodal. The
shifted exponential and uniform distributions are used to ensure the lookahead value is strictly
greater than zero, a necessary condition for the deadlock avoidance simulation method. These
distributions are commonly used in performance evaluations of sequential event list implemen-
tations of simulation programs and represent distributions often observed in practice (e.g., see
Jones 1986).

e Message Population. The number of messages that exist in the simulator remains constant
until the end of the simulation approaches and messages are deleted. The experimenter may
select an arbitrary number of messages to reside in the simulator (subject to memory con-
straints) to control the amount of available parallelism.

* Topology of Logical Processes. Arbitrary network topologies may be selected by specifying a
connectivity matrix to the workload generator. Logical processes configured as 16 (4 by 4) and

64 (8 by 8) node toroid networks were examined in the experiments discussed here (see figure
1). The toroid topology was selected because (1) it is a topology of practical interest for simu-
lation of parallel computer architectures and communication networks; (2) it does not contain
any inherent bottlenecks that could color the results; (3) it is rich in cycles, providing a good
test case for the distributed simulation algorithms; and (4) it contains a reasonably high node
degree (of four), again providing a reasonably challenging test case for the algorithms.

e Routing Probability. A pseudo random number generator is used to select the output link on
which each message is to be forwarded. The workload model programmed into the testbed
allows arbitrary routing probabilities to be selected. Except where indicated otherwise, the
experiments described here assume messages are uniformly distributed among the available
output links. This avoids bottlenecks which could color performance measurements. This
assumption is relaxed in some of the experiments described later.

-4-

,V,.
'.4. -4

* Computation Granularity and Distribution. The amount of time spent in the busy wait loop
to emulate simulation activity is selected stochastically (at present, either an exponential of
normal distribution may be selected) or deterministically. If the selected time is less than that
required to execute random number generators to select the timestamp increment, output link,
and computation time, the busy wait is skipped. This imposes a lower bound on the computa-
tion granularity in the testbed configuration of a few hundred microseconds depending on the
distributions that are selected.

The experiments performed in this study assume homogeneous simulation systems, i.e.,
each logical process is parameterized in the same way. This reflects the situation found in many
simulators, e.g., simulations of communication network, and simplifies the analysis of measure-
ment data. Some experiments were also performed in which non-uniformity was introduced into
the workload. This will be discussed later.

2.2. The Distributed Simulator

One level lower than the application workload described above is the simulator software
that must correctly execute the simulation program. Important parameters of the testbed simula-
tors are:

" Simulation Strategy. At present, Chandy and Misra's deadlock avoidance and deadlock
detection and recovery algorithms have been implemented, as well as sequential event list

,- implementations.

m Process Mapping. An arbitrary process to processor mapping function can be specified. The

* mapping of processes to processors is greatly simplified by the hardware configuration, a
shared memory multiprocessor, that effectively provides full connectivity among the proces-
sors. The mapping problem then becomes one of clustering communicating processes onto the
same processor and balancing workloads to avoid bottlenecks. A simple partitioning strategy
that clusters communicating processes was used that satisfies both of these goals. The toroid
was simply divided into a coarser grid, and processes at the same grid position are mapped to
the same processor. Experiments were designed so that the same number of processes could be
mapped to each processor in each trial. The homogeneous nature of the workload does not jus-
tify any other mapping. Therefore, these experiments make the optimistic assumption that a
good mapping can be found for the distributed simulation program.

* Process Scheduling. A static scheduling policy may be used in which processors are restricted
to only execute processes that have been mapped to it. Alternatively, a dynamic load balanc-
ing strategy may be selected in which idle processors examine process queues in other proces-
sors in order to find work. This will be described in greater detail later. Unless indicated oth-
erwise, we will assume static scheduling is used,

Other aspects of the testbed software include the scheduler and software to implement mes-
sage passing primitives. We will defer descriptions of these aspects of the testbed until after the
testbed hardware has been described.

2.3. Testbed Hardware
TMA BBN Butterfly multiprocessor was used for the distributed simulation tested. The

multiprocessor consists of a collection of processor nodes and a high performance interconnec-
tion switch. As shown in figure 2, each processor node contains a 16 MHz MC68020 with
MC68881 floating point coprocessor, up to 4 MBytes of memory, and a processor node con-
troller (PNC), a microcoded engine implemented with 2900 series AMD parts. The interconnec-
tion switch is configured as an Omega network. Although the system may be expanded to

* -5-€ € p ,,' € , , ,'"- € , . "."p ." . . "- . , . . " . . "" . , '- - . '"" '- . """."", . ""€ "" , ""''

contain up to 256 processors, the testhed on which the experiments were performed contained

only 17.

All memory references made by the 68020 are passed to the PNC. Local memory refer-

ences are forwarded to the local memory, while remote references are passed to the appropriate

processor node through the switch. The PNC also handles memory requests made by other pro-

cessors to this node. Atomic test-and-set like memory operations are also implemented in the
PNC.

Execution times of various instructions and operations arc shown in table 2. As can be

seen, a local memory reference requires 600 nanoseconds, and a remote memory reference 4

microseconds assuming no switch contention. Experimental data indicates that switch conten-

tion, and hot spot congestion in particular, is unlikely (Thomas 1986). Atomic memory opera-

tions such as the atomic-or on which the locking primitives are based require approximately 20
microseconds, and a parameterless function call requires 6.9 microseconds. Although portions of
Chrysallis, the Butterfly's operating system, are implemented in the PNC, only the atomic opera-

tions are used in the distributed simulation testbed.

Each processor executes a single Chrysalis process that contains:

* code for the logical processes,

* a scheduler which controls the execution of logical processes,

* code for message passing primitives, and

e code for the distributed simulator.

Implementation of logical processes within a single Chrysallis process greatly reduces the cost of

context switches. The scheduler can initiate and resume execution of a logical process with a
simple procedure call. A copy of all of the testbed's code exists on each processor, allowing any
processor to execute any logical process; however, the state variables (mailboxes, etc.) do not

migrate from the processor to which the process was originally mapped, so remote execution

incurs some performance degradation because more remote memory references are required.

The simulation testbed was implemented using the Uniform System programming environ-
ment provided by BBN (Thomas 1986). The Uniform System is used primarily for initialization

purposes, e.g., to initially map the Butterfly's memory into a common, global address space. A

single Uniform System task is created for each processor that executes the scheduler, and does
not terminate until the simulation is complete. After initialization, only the locking and low-level
atomic operations provided by the Butterfly are used.

2.4. The Scheduler

A scheduler executes on each processor that selects and then resumes execution of logical

processes. Each scheduler maintains a queue of tunable processes. Only processes mapped to
the local processor may reside in the process queue of a given scheduler. When a logical process

causes a blocked process to become unblocked, it simply adds that process to the end of the

scheduling queue on which that process resides. Locks ensure that queue accesses are properly

synchronized.

The scheduler is simply a loop that repeatedly removes the next process from its process

queue and executes it. If the queue is empty and static scheduling is used, the scheduler keeps
interrogating the queue until a process mapped to that processor is added to the queue. If the

dynamic scheduling policy is used, each scheduler is allowed to execute any tunable logical pro-
cess in the system. Idle schedulers poll the process queues in other processors searching for a

tunable process. The local process queue is given highest priority because execution of processes

mapped to the local processor is more efficient - fewer remote memory refcernccs are required

-6-

A

* Processors are numbered 0,1,2,.. N-I. If the scheduler on processor i finds its local queue is
empty, it checks the queue on processor i+l, then i+2, i+3 etc. (all arithmetic is modulo N), until
a nonempty queue is found. A single, global scheduling queue was avoided to eliminate the pos-
sibility of it becoming a bottleneck. Moreover, this scheduling policy is well suited to the sym-
metric, homogeneous nature of the distributed simulation workload used in the experiments.

2.5. Message Passing Prinmitives

Message passing primitives were implemented using the lock and unlock primitives. The
send operation first places the message into the appropriate output queue of the sending process,
making sure that the timestamp order of the queue is preserved. If the sender can guarantee no
smaller timestamped messages will follow, the message is copied (by the sender) into the input
queue of the receiver using remote memory references. Locking is required on input queue
operations, but none is needed on output queue operations. If the send operation causes an input
queue to become full, then the sending process becomes blocked until space in the input queue
becomes available. Unless indicated otherwise, input queues may contain up to 16 messages.

The receive primitive inspects the process's input queues to determine which has the smal-

lest LinkClock value. If the selected queue is empty, the process is blocked and a flag on the
queue is set indicating the process is blocked on this queue. Otherwise, the message at the front
of this queue is returned.

Sending or receiving a message may unblock a neighboring process. The sending process
checks the blocked flag on the receiving input queue. If the blocked flag is set, the sender
schedules the receiver and resets the blocked flag. A receiver can detect when it must unblock a
sender by checking if the queue from which it is removing the message is full before the message
is removed. Because it is the responsibility of the sending or receiving process to unblock its
neighbors before it itself is blocked, at least one process will always be running or scheduled in
some processor's scheduling queue except when the system is deadlocked. This simplifies
deadlock detection.

3. THE SIMULATION ALGORITHMS

Two distributed simulation algorithms were implemented in the testbed: one based on
deadlock avoidance and another based on deadlock detection and recovery. The shared memory
architecture of the Butterfly was used to facilitate deadlock detection. A single processor, event
list implementation was also developed in order to compute speedup.

3.1. Deadlock Avoidance Strategy

The deadlock avoidance scheme developed by Chandy and Misra was implemented. Each
logical process send a NULL message to each of its neighbors whenever it blocks. The times-
tamp on this message is equal to the local clock value of the process plus the lookahead value.
Lookahead values for the different timestamp increment functions are shown in table 1. This

timestamp indicates a lower bound on the timestamp of the next forthcoming message. Chandy
and Misra have shown that this approach is sufficient to avoid deadlock (Chandy and Misra,
1979).

One optimization was performed to streamline the processing of NULL messages. Rather
than enqueueing each NULL message sent to another processor, a single variable is associated

with each input link that contains the timestamp of the last NULL message that was received.

This avoids unnecessary enqueue and dequeue operations and leads to more efficient memory

-7"

4.-

4."

• l ' -.. ' .''.' .' .'. "'." ".•". '4 '. ". "'" .@ °.""# -""."°. ."":"." .' .P .. ' . . " "" . ". ". . ". '.. .-. • . . "."• " .. .''".

utilization.

3.2. Deadlock Detection and Recovery Strategy

The second simulation approach is based on deadlock detection and recovery. The simula-
tion runs until deadlock, the deadlock is detected, and an algorithm is initiated to break the
deadlock (Chandy and Misra, 1981). A central controller is used to coordinate the deadlock
recovery procedure.

Deadlock in the testbed is easily detected by maintaining a global counter indicating the
number of processes that are either scheduled or running. The counter is incremented whenever a

process unblocks another, and decremented whenever a process becomes blocked. Once a pro-
cess decrements the counter, it will not increment it again until it has been rescheduled and
resumes execution. The system is deadlocked whenever the counter reaches zero and there is at
least one process that has not yet terminated (otherwise, the computation has terminated). Each
scheduler checks if the deadlock counter has reached zero whenever it fails to find a process to
run. If the counter is zero, the scheduler initiates a computation to break the deadlock.

The deadlock recovery algorithm locates the message in the system with the smallest times-
tamp and arranges for it to be processed next. A distributed algorithm is used to perform this
computation. Each scheduler finds the message with minimum timestamp buffered in the
processes mapped to that scheduler's processor. It then reports this local minimum to the central

controller which computes a global minimum. By convention, the scheduler executing on PE 0
acts as the central controller.

An alternative deadlock recovery algorithm was also implemented in which messages are
propagated throughout the system in order to restart as many processes as possible. This algo-

rithm is described by Chandy and Misra (1981). It was found, however, that the additional time
required to execute this algorithm yielded a net loss in performance. The performance figures
reported here are based on the former deadlock recovery approach.

3.3. Uniprocessor Simulation Algorithm

Finally, a single processor, event list simulator was developed to allow comparison of dis-
tributed simulation programs with sequential event list implementations. In order to obtain a fair
comparison, the uniprocessor simulator was constructed by modifying the distributed simulator.
Both implementations maintain the same overall structure, organization, programming style, and
conventions.

The principal modifications to the multiprocessor code to generate the event list implemen-

tation were:

* Code was added to insert and remove elements from a global timestamp sorted event list.

e Code for synchronization overhead, e.g., locks, was eliminated.

* Code for message queues and message passing primitives was eliminated. The procedure to
send messages in the multiprocessor program was replaced by a procedure to insert an event
into the event list. The procedure to receive messages was eliminated entirely.

* The scheduler program was replaced with a loop to repeatedly remove the first element in the

event list and execute the code for the appropriate logical process to process that event.

The event list was implemented as a splay tree (Sleator and Tarjan, 1985). Empirical evi-

dence suggests that splay trees are among the fastest methods for implementing an event list
(Jones 1986). An alternative implementation using a singlely linked linear list was also
developed. It was found that this implementation yielded performance comparable to the splay

-8-

-- -.,€ - 4. -- *. ', . ".'.-. , ," . ,-., ,'.".. ."- . .' . ,"-' . -'-. . - : " "- - , - -""*- - ".
" ', , ' " " t

r
-v' -v -* ... ' "r. . ***'.*,* .* . . #- *-(-,:'" _ ' . ' ' ' . . _ -.- . : - - -. -

tree for small simulations, but as expected, ran much more slowly for many of the larger simula-
tions. The splay tree implementation is used in all comparisons with uniprocessor simulations
reported here.

3.4. Performance Metrics

Three metrics are defined to evaluate the performance of the distributed simulation pro-

grams:

e Speedup. SU(n), the speedup using n processors, is defined as the execution time of the single

processor, event list implementation using a splay tree divided by the execution time of the dis-

tributed simulation program when n processors are used.

* NULL Message Ratio. NMR is defined as the number of NULL messages processed by the

simulator using deadlock avoidance divided by the number of real (non-NULL) messages pro-
cessed. This measures the overhead of the deadlock avoidance approach.

* Deadlock Ratio. DR is the number of messages processed by the distributed simulator using

deadlock detection and recovery divided by the number of deadlocks which occur. This figure
measures the efficiency of the deadlock detection and recovery algorithm.

The single processor execution times were obtained by running the splay tree simulator on a
single node of the Butterfly. The same compiler as that used by the distributed simulator was
used. Therefore, compiler and processor speed dependencies are factored out of the speedup

figures.

4. THE EXPERIMENTS

The discussion that follows describes the experimental methodology that was used and pro-
vides an overview of the results that were obtained. Some statistical aspects of the measurements

are then described, followed by the measurements themselves. Finally, conclusions that were
drawn from these measurements are presented.

4.1. Experimental Methodology

The large number of testbed parameters complicates the performance evaluation. Com-
plete, factorial testing of all combinations of parameters was not feasible. Therefore, it is
appropriate to describe the methodology that was used. One important goal of these experiments
was to determine the effectiveness of distributed simulation strategies in achieving good speed-

ups when moderate or high degrees of parallelism are available in the application.

An initial set of experiments was performed using a set of parameters that are "reasonable"
for a typical simulation application, e.g., a communication network simulator. These parameters
are summarized in table 3. The workload is a reasonable model for communication network
simulations that have been performed by the author to evaluate the performance of multicomputer

networks (Fujimoto 1983).
After initial experimentation, it quickly became apparent that timestamp distribution had a

rather profound impact on performance. The distributed simulators provided significant speedups

over the sequential, event list implementation for many, though not all, workloads. In order to
test the robustness of this dependence, parameters of the initial workload were varied. Several
parameters were found to have only a secondary effect on performance. In particular, the compu-

tation grain, distribution, and variances were varied, but yielded only modest changes in perfor-

mance. A dynamic scheduling strategy was measured to evaluate the effectiveness of the static

.9.

scheduling policy. It was found that the static scheduling policy performed reasonably well, and
therefore could not be blamed for poor performance. Attention could now be focused on parame-
ters believed to be of primary importance.

Closer examination of the internal operation of the simulators revealed that the aspect of the
timestamp stamp distribution that appeared important is the lookahead function, which for the
testbed, is derived directly from the timestamp increment function. To verify and document this
observation, a quantity called the lookahead ratio was defined, and varied across different times-
tamp increment distributions. The lookahead ratio could easily be varied within a single distribu-
tion by modifying parameters of that distribution. It was found that, indeed, different timestamp
distributions with the same lookahead ratio yielded similar performances.

A second parameter of great importance is the message population. Experiments varying
message population revealed an "avalanche" phenomenon in the deadlock detection and
recovery simulator where performance remains poor at relatively low and moderate message
populations, but then increases dramatically once message population reaches a certain level.
The "knee" in this performance curve is referred to as the "avalanche point." Experiments were

performed in which both of these critical parameters, lookahead and message population, were
varied simultaneously. It was found that the avalanche point was highly dependent on the looka-
head ratio.

To test the robustness of these results, other aspects of the workload were varied. In partic-
ular, zymmetry was introduced into the workload, and found not to invalidate the previously

observed results. Some final experiments were performed to validate the results that had previ-
ously been derived.

4.2. Confidence Intervals

The experimental data that follows was obtained by averaging several trial runs on the dis-
tributed simulation testbed. Several different seeds for the random number generator were used
to test the stability of the results. For the most part, measurement data was well behaved. The
95% confidence intervals for the data points was less than ± 5% of the reported values for most of
the experimental data, and was typically less than 2%. One notable exception is measurements of
deadlock ratio near, and especially beyond the avalanche point. Here, variances were substan-
tially larger, and confidence intervals expanded to much higher levels (e.g., 30% or 40%). This
does not change the qualitative conclusions that were drawn from these measurements, however.

4.3. Varying the Timestamp Increment Distribution

Speedup curves for the 16 (4 by 4) and 64 (8 by 8) node toroid network simulator using the
deadlock avoidance strategy are shown in figure 3. The parameters used in these runs are shown
in table 3; notably, the message population is set at four per logical process, or one per link in the
toroid. The total message population remains constant throughout each execution of the distri-
buted simulator, however, the number of messages residing in a particular link or logical process
will vary during the run.

As can be seen, the deadlock avoidance strategy yields good speedup figure for the deter-
ministic and biased distribution, but disappointing performance for the others. When 64
processes are used, as much as 75% of ideal speedup is obtained for the biased and deterministic
distributions using 64 processes, but only 20 to 45% of ideal for others. Speedup figures for the
16 process toroid are somewhat less. These curves demonstrate conclusi, , that distributed
simulation methods can provide significant speedups over sequential, event I- ,plementations
for some interesting workloads exhibiting a moderate degree of parallelism, c\, , the presence

-10-

-p.

."'" S ".- ", "- . "- . - ".S. ",,, " ". .r ". "- ".- ".. ". "a ".".r - - .-. -- "- ".- " .- - - " . . " "."- ." " - ... ".. ." . . " .- •C . . . n -" . ".-"

W-rl'"rn m .',I W." PWXv-X ~PI ,-.* ~w J r~''~~'VJ' pi T W h-" W W -VW-

of feedback loops.

The corresponding speedup curves for the deadlock detection and recovery strategy are
shown in figure 4. Speedup is rather disappointing, however, except for the deterministic times-
tamp increment distribution. All of the speedup curves yield performances well below those for
the simulator using deadlock avoidance. As we shall soon see, this can be attributed to a rela-
tively low message population.

The deterministic distribution arises in physical systems that are synchronous to a global
clock. It is a somewhat specialized distribution from the standpoint of distributed simulation
strategies because the simulator behaves very similarly to a time driven simulator, i.e., one in
which processes advance in lock step from one time step to the next. If the message population is
low, the processes execute all of the messages in the current time step and then deadlock. The
recovery algorithm will then break the deadlock and, in effect, advance the simulation to the next
time step. The number of deadlocks that occur is simply the number of timesteps in which the
simulation is run. The deadlock ratio is the same as the message population. As will be demon-
strated later, significantly higher performance can be obtained if the message population is
increased; the frequency of deadlock can be reduced significantly if each incoming link contains
at least one message most of the time.

Performance of the 16 node toroid is somewhat less than the 64 node toroid because the
simulation does not contain sufficient parallelism to keep all of the processors busy. In addition,
as the number of processes per processor is decreased, each process is afforded less time to col-
lect messages before it is executed by the scheduler. As a result, a process may be scheduled
more often than if there were more processes mapped to the processor. The additional scheduling
overhead and increased idle time lead to poorer performance in the 16 node simulator, particu-
larly as the number of processors is increased.

The NULL message ratio overhead for the deadlock avoidance strategy and number of real
messages per deadlock in the recovery scheme are plotted in figures 5 and 6 respectively. These
demonstrate that the poor (or good) speedup figures are caused by high (or low) overhead in the
simulation strategy. Ten to twenty NULL messages per real message were often observed when

speedup was poor, in contrast to NULL message ratios of I or lower when good speedup was
observed. NULL message ratios tend to increase as the number of processors increases because
the time between resumptions of tasks is shorter when there are fewer processes mapped to each
processor, and thus less time for (real) messages to accumulate in the input queues, and blocking
occurs more frequently, as described earlier. The generally lower NULL message ratios in the 64
node toroid, when compared to the 16 node toroid, is also a consequence of this phenomenon. As
suggested by Misra, this phenomenon can be reduced somewhat by introducing a delay before
sending out NULL messages to allow any soon-to-arrive non-NULL message to be received.

The real messages per deadlock ratios in the detection and recovery simulator indicate that

except for the deterministic timestamp increment, only one or two messages are processed

between deadlocks. This accounts for the poor speedup figures.

4.4. Varying the CPU Grain and Distribution

The original performance measurements assumed the CPU execution time to process each
message was selected from an exponential distribution with mean of 1 millisecond (actually, a
truncated distribution because, as noted earlier, the time required to invoke random number gen-
erators places a lower bound on the CPU time that is used). Experiments were run in which a
larger grain of computation was used. In particular, these experiments used the following distri-
butions to select a computation time for each message:

a, -Il-

9 an exponential distribution with mean of 50 milliseconds.

9 a normal distribution with 50 millisecond mean, and standard deviation of I millisecond.

* a normal distribution with 50 millisecond mean, and standard deviation of 40 milliseconds.

The results of these experiments are shown in figures 7 and 8 for the deadlock avoidance and
recovery strategies respectively. As can be seen, increasing the CPU grain does improve perfor-
mance somewhat, however, this is an effect of secondary importance. This is, to some extent, a
consequence of using a shared memory multiprocessor as the testbed. An implementation with a
slower communication switch can be expected to show a significant degradation in speedup if the
grain of computation is too small because the communication overhead will dominate.

4.5. Dynamic Scheduling

The experiments described thus far assumed a static scheduling policy. Simulation runs

using the dynamic scheduling policy described earlier were also performed to ensure that the
scheduling policy was not leading to poor performance. Speedup curves for these runs are shown
in figures 9 and 10 for the avoidance and recovery strategies respectively. The dynamic schedul-
ing policy performs more poorly than the static scheduler in most instances. This is because the
symmetric nature of the workload and hardware organization allows a good static mapping of
tasks to processors to be obtained. When this is the case, it is better for schedulers to wait until
some task that is mapped to it is ready to execute rather than locate an- execute a task from
another processors queue, because the latter incurs a performance degradation since remote
memory references are required to access the process's state. These speedup curves verify that
the static scheduler obtains reasonably good performance, and thus does not contribute appreci-
ably to poor speedup figures.

4.6. Lookahead and Lookahead Ratio

The data presented thus far has demonstrated that the distribution of the timestamp incre-
ment has an important effect on performance. The reason for this dependence is related to the
notion of lookahead that is relevant to all distributed simulators no matter what strategy is used.
The lookahead notion was introduced by Chandy and Misra where it is essential to the operation
of the deadlock avoidance algorithm. Though not explicitly required in the deadlock detection
and recovery algorithm, it is nevertheless essential as discussed earlier. We shall soon see that
lookahead plays an important role in the performance of both of the distributed simulation stra-
tegies that were examined.

As described earlier, lookahead characterizes the ability of a process to predict future mes-

sages that it will send based on knowledge of messages it has already received. In particular, if a
process has received all messages with timestamp t or less, and can predict all future messages
with timestamp t + T or less, then we say the lookahead of the process is T. Here, we assume the
lookahead ability of a process is fixed throughout the simulation, and is the same on each output
link.

Lookahead is important in the distributed simulation algorithms discussed here because a
process with poor lookahead ability will be forced to delay forwarding messages, effectively
decreasing the message population and the available parallelism. In addition, the conserv ilve

distributed simulation strategies discussed here require that the sequence of timestamps of ,1,k,-
sages sent over a link must be non-decreasing, further delaying message transmission in * ,,III

situations. These two factors tend to reduce the efficiency of the distributed simulator.

In the deadlock avoidance strategy, lookahead plays a critical role because if the mcosagc

population is not sufficiently large, a cycle will develop carrying a NULL message that, in 0 1 CCt.

-12-

-a '~~ ' ~a -'.. -e

increases in timestamp at each hop by an amount equal to the lookahead value. This cycle will
persist until some process's clock becomes sufficiently large to allow the next real message to be
processed. The smaller the lookahead, the longer the cycle will persist, leading to a correspond-
ing degradation in performance.

To test this hypothesis and quantitatively measure this phenomenon, we define the looka-
head ratio (LAR) as:

LAR = mean timestaWp increase
lookahead

A low (e.g., 1.0) LAR corresponds to a high degree of lookahead. In the testbed, the lookahead
function is the minimum timestamp increase a message will encounter in traveling through a pro-
cess, so LAR is the mean of the function divided by its minimum. The deterministic distribution
is characterized by the lowest possible lookahead ratio (in the testbed), 1.0. Lookahead ratios for
the other distributions used for these experiments are shown in table 1.

Figure 11 shows the NULL message ratio for the biased and exponential distributions, two
distributions that earlier displayed significant differences in performance, as the lookahead ratio
is increased. LAR is increased by increasing the mean of the timestamp increment function while
holding the minimum constant. Eight processors were used in these, and the experiments that
follow. These curves demonstrate that the two timestamp increment distributions that earlier
yielded strikingly different performances now perform almost identically once they are modified
to have the same lookahead ratio. This confirms the hypothesis that the dependence of perfor-
mance on the timestamp increment function which was earlier observed is due to differences in
the lookahead ratio.

The NULL message ratio increases approximately linearly with the lookahead ratio. This is
consistent with the above description of performance degradation in deadlock avoidance simula-
tors where NULL messages circulate in loops.

Similar experiments varying the lookahead ratio for the deadlock detection and recovery
strategy were not as enlightening. Deadlock ratio as a function of lookahead is shown in figure
12. Deadlock ratios remained from one to three messages per deadlock, independent of the loo-
kahead ratio value, that is, except when the lookahead ratio was 1.0, and the timestamp increment
is deterministic; in this case, the simulator runs much more efficiently, as described earlier.
Higher message populations are required to gain efficient operation for non-deterministic times-
tamp increments, as will be described next.

4.7. Message Population and the Avalanche Effect

The message population, as well as the number of logical processes, determines the amount
of parallel activity that can occur in the simulation. Simulations of distributed simulators have
indicated that the message population is a critical factor in determining the efficiency of distri-
buted simulation strategies.

The NULL message ratio is shown as a function of message population in figure 13 for the
biased timestamp increment distribution with LAR values of 1. 11 and 11.0. The corresponding
curve for the exponential timestamp increment distribution (LAR = 11.0) is also shown for com-
parison. Highly efficient execution is obtained for both distributions as the message population is
increased, though overhead remains continually lower for smaller lookahead ratios, as described
earlier. It is also seen that the exponential and biased distributions with identical LAR values
yield nearly identical performance, consistent with the analyses described earlier.

Up to this point, the deadlock detection and recovery strategy has not yielded satisfactor

performance except in the special case when timestamp increases were deterministic. Figure 14.

-13-

where deadlock ratio (messages per deadlock) is plotted as a function of message population pro-
vides an explanation. The deadlock ratio remains approximately constant at one or two messages
per deadlock until a critical point at which the ratio increases dramatically, leading to an equally

dramatic improvement in performance.

We refer to the phenomenon that leads to this behavior as message avalanche, borrowing

the name from an analogous phenomenon in a reverse biased diode. As one increases (makes
more negative) the voltage across a diode, little current flows until a certain voltage at which
current increases dramatically. The reason for this dramatic change in behavior is that once a
critical voltage is reached, charge carriers (electrons) obtain sufficient energy to collide, and jar
free other electrons at lattice positions in the silicon crystal. These newly created charge carriers
collide at other lattice positions and jar free a second set of charge carriers, and so on. This
causes a multiplicative effect whereby one charge carrier causes the "release" of several others,
leading to a significant flow of current. A similar behavior was observed in the distributed simu-
lator whereby once the message population reached a certain level, a new, incoming message
caused the "release" of several others, which in turn, triggered the "release" of still others, and
so on. An avalanche of message traffic results from the initial message. This avalanche effectproved to be a necessary condition for the deadlock detection and recovery simulator to achieve

good performance.

Viewed from another perspective, the deadlock detection and recovery scheme will perform
well if message population is sufficiently high to "sustain" each logical process, i.e., the simula-
tor will operate efficiently if there is at least one message on each of its input queues whenever it
interrogates them, looking for messages to process. Conversely, performance will be poor when
this is not the case. The avalanche behavior suggests that the transition between these two modes

of operation is a very sharp one.

Near the point where the avalanche effect begins to take hold, it was found that the time to
execute the simulator actually decreased as the message population, and thus the amount of work
to be performed, was increased. This suggests that deadlock detection and recovery simulators
may, when near avalanche, benefit from the addition of "dummy" message traffic.

A second, important observation is that the message population necessary to induce

avalanche depends on the lookahead ability of the processes. Figure 14 shows that avalanche
begins with from 8 to 16 messages perLP when LAR was 1.11, but from 64 to 128 messages per
LP were required when LAR was increased to 11.0. The reason for this behavior is similar to that
described earlier - a larger portion of the message population will not be "processable" as the
lookahead ratio is increased.

4.8. Asymmetric Workloads

The workloads presented above were highly symmetric and uniform, leading one to ask if
these results are applicable to asymmetric workloads as well. Further, it is possible that the
avalanche effect described earlier is a consequence of the symmetric nature of the workload -

because all processes behave in the same fashion, one might argue that avalanche is really a
magnification of the behavior with a single process. It will be demonstrated below that the results

described so far, and avalanche in particular, remain valid even if asymmetry is introduced.

The experiments described thus far assumed that incoming message traffic was uniformly
distributed among the outgoing links. This assumption was tested by having processes randomly
select one link at the beginning of each simulation run as a "favorite" that received twice as
many messages as the others. Experiments were performed in which one, one fourth, one half,
and finally all processes have a favorite link. The resulting curves are shown in figures 15 and 16
for the deadlock avoidance and recovery algorithms. The corresponding curve whcn no processes

-14-

have a favorite port is also shown for comparison. As can be seen, this modification in the work-

load had only a minor impact on performance, and the avalanche effect still persisted in the

detection and recovery simulators.

Secondly, because lookahead had an important influence on performance, some number of

processes were selected to have different timestamp increment behavior, and correspondingly dif-
ferent lookahead functions, than others. Figures 17 and 18 shows the results of these experiments
when zero, one, one fourth, one half, and then all of the processes have a lookahead ratio of 11.0,

while the others have an LAR value of 1.11. The processes with high lookahead were selected at

random. Again, the avalanche effect persists in the deadlock recovery simulator. Further, it is
seen that the presence of only one "asymmetric" process causes a noticeable increase in the
number of messages required to reach avalanche, and that a significant fraction of asymmetric
processes yields roughly the same avalanche point as the case when all processes have the higher
LAR value. This is a negative result because it implies that the performance of the distributed
simulator is largely controlled by the most poorly parameterized processes. This phenomenon is
analogous to bottleneck phenomena where the slowest, "bottleneck" devices dominate. The
deadlock avoidance strategy was found not to be as susceptible to this behavior.

4.9. A Final Experiment

As a final test of the observations collected thus far, the initial set of experiments (figures 3

and 4) were repeated with a higher message population. The message population was increased
from I to 32 per LP. According to figure 13, this would reduce the NULL message overhead in

the deadlock avoidance simulator by more than an order in magnitude. According to figure 14,
this population should be sufficient to induce message avalanche in the biased and deterministic

timestamp increment distributions, but not the others. The speedups of the distributed simulators
over the sequential, splay tree simulator are shown in figures 19 and 20. The speedup curves are
consistent with the analyses presented earlier.

5. CONCLUSIONS

Extensive empirical performance evaluations of distributed simulation programs were per-
formed using the deadlock avoidance and deadlock detection and recovery algorithms developed

by Chandy and Misra. The principal results of these studies are:

e Distributed simulation algorithms can achieve significant speedups over sequential, event list

implementations for certain workloads containing moderate to high degrees of parallelism, even

in the presence of many feedback loops in the logical process topology.

* Message population and the lookahead ability of logical processes play an important role in
determining the efficiency of the deadlock avoidance simulation algorithm. Poor lookahead

ability and low message populations will result in excessive NULL message traffic. However,
the negative effects of one (e.g., poor lookahead) can be offset, and usually overcome by the

other (high message population).

* Message avalanche was observed in the deadlock detection and recovery simulator for moderate

to high message populations, and was necessary to achieve efficient execution.

* Lookahead also play an important role in the performance of the deadlock detection and

recovery simulator. If lookahead ability is poor, an excessively large message population is
required to achieve message avalanche.

* Deadlock detection and recovery simulators containing different types of logical processes can

be adversely affected by a small number of processes that exhibit poor Iookahcad ability. The

existence of a few such processes can greatly increase the message population necessary to

15-

.... . r

achieve avalanche.

Distributed simulation using deadlock avoidance or detection and recovery algorithms is a
viable approach to speeding up many simulation workloads. The presence of moderate or high
degrees of parallelism is not sufficient to guarantee efficient execution, however. The appropriate
speedup technique that should be used for a specific simulation problem is highly dependent on
the system being simulated, arguing for simulation systems that are sufficiently flexible to sup-
port a wide range of approaches.

Further investigation is required to evaluate the efficiency of other performance enhance-
ment techniques, notably the Time Warp paradigm. Additions to the distributed simulation
testbed are planned to support such investigations.

REFERENCES

Biles, W., "Statistical Considerations in Simulation on a Network of Microcomputers," 1985
Winter Simulation Conference Proceedings, pp. 388-393 (December 1985).

Chandak, A. and Browne, 1. C., "Vectorization of Discrete Event Simulation," Proceedings of
the 1983 International Conference on Parallel Processing, pp. 359-361 (August 1983).

Chandy, K. M. and Misra, J., "Distributed Simulation: A Case Study in Design and Verification
of Distributed Programs," IEEE Transactions on Software Engineering SE-5(5) pp. 440-452
(Sept. 1979).

Chandy, K. M. and Misra, J., "Asynchronous Distributed Simulation via a Sequence of Parallel
Computations," Communications of the ACM 24(4) pp. 198-206 (April 1981).

Comfort, J. C., "The Simulation of a Master-Slave Event Set Processor," Simulation 42(3) pp.
117-124 (March, 1984).

Fujimoto, R. M., "VLSI Communication Components for Multicomputer Networks," Ph. D.
dissertation, Electronics Research Laboratory Report No. UCB/CSD 83/136, University of
California, Berkeley, CA (1983).

Jefferson, D. R., "Virtual Time," ACM Transactions on Programming Languages and Systems
7(3) pp. 404-425 (July 1985).

Jones, D. W., "An Empirical Comparison of Priority-Queue and Event-Set Implementations,"
Communications of the ACM 29(4) pp. 300-311 (April 1986).

Kaudel, F. J., "A Literature Survey on Distributed Discrete Event Simulation," Simulener
18(2) pp. 11-21 (June 1987).

Misra, J., "Distributed-Discrete Event Simulation," ACM Computing Surveys 18(1) pp. 39-65
(March 1986).

Reed, D. A., Malony, A. D., and McCredie, B. D., "Parallel Discrete Event Simulation: A Shared

Memory Approach," IEEE Transactions on Software Engineering, (to appear).

Sleator, D. D. and Tarjan, R. E., "Self-Adjusting Binary Search Trees," Journal of the ACM
32(3) pp. 652-686 (July 1985).

-16-

Thomas, R. H., "Behavior of the Butterfly Parallel Processor in the Presence pf Memory Hot
Sopts," Proceedings of the 1986 International Conference on Parallel Processing, pp. 46-50
(August 1986).

Thomas, R. H., "The Uniform System Approach to Programming the Butterfly Parallel Proces-
sor," BBN Report No. 6149, BBN Laboratories Inc. (June 1986).

-17-

Wa

Table 1.

Timestamp Increment Distributions

Distribution Expression to Lookahead b LAR c

Distribution compute random valuesa

Deterministic 1.0 1.0 1.0
Biased 0.9-1.0 0.9 + 0.2 rand 0.9 1.11
Exponential 0. 1-ln(rand) 0.1 11.0
Uniform 0.1 +rand 0.1 5.5
Bimodal 0.95238 rand + if rand < 0.1 0.1 10.0

I then 9.5238 else 0 1 1
arand returns a random value uniformly distributed between 0 and 1.

bLookahead is defined as the minimum value for the distribution.

CLookahead Ratio (LAR) is defined as the mean divided by the lookahead.

Table 2.

Hardware Parameters

Execution Time
Operation (microseconds)

Local memory reference 0.60
Remote memory reference 4.0

Register-to-register instruction 0.71

16 bit Load (Local Memory) 1.3

16 bit Load (Remote Memory) 6.3

Parameterless function call 6.9

Atomic inclusive OR 20

Table 3.

Parameters used in experiments.

Parameter Value

topology toroid

routing probability uniform

CPU time distribution exponential

mean CPU time per message 1 millisecond

message population 4 per LP

scheduling static

18-

I :..., , .- ... _ ,. ,_.. , . .- , ,...,. .

Figure 1. 16 node toroid network.

•Omega Network (a)

MC68881 Memory

(b)

Figure 2. (a) Butterfly Multiprocessor. (b) Single PEM Node.

-99

Speedup Using Deadlock Avoidance

4 Messages per LPSpeedup

12.
* Deterministic distribution (8x8)
o Biased distribution (8x8)
C3 Uniform distribution (8x8)
x Bimodal distribution (8x8)
V Exponential distribution (8x8)

9. Y Deterministic distribution (4x4)
+ Biased distribution (4x4)
t Uniform distribution (4x4)
t Bimodal distribution (4x4)
- Exponential distribution

(4x4)

6

3-

0+

0 4 8 12 16

Number of Processors

Figure 3. Speedup using deadlock avoidance.

Speedup Using Deadlock Recovery

Speedup 4 Messages per LP

8e Deterministic Distributioh~ (Wx)

o Bias Distribution (Wx)
o Uniform Distribution (Wx)
x Bimodal Distribution (Wx)
V Exponential Distribution (Wx)
6*Deterministic Distribution (4x4)

6.+ Bias Distribution (4x4)
t Uniform Distribution (4x4)
t Bimodal Distribution (4x4)
= Exponential Distribution (4x0)

4-

2-

0-

0 4 8 12 16

Number of Processors

Figure 4. Speedup using deadlock detection and recovery.

- 20-

Null Message Ratio
Deadlock Avoidance Strategy

NMR Si

25 ,5
* Determninistic (8x8)
o Bias distribution (8x8)
0 Uniform distribution (x8)
x Bimodal distribution (8x8)

20, V Exponential distribution (8x8)
* Deterninistic (4x4)
+ Bias distribution (4x4)
t Uniform distribution (4x4)

B Uimodal distribution (4x4)
= Exponential distribution

(04)S

10-

O5 --- '.."

10 -- -- -- -

0 4 8 12 16

Number of Processors

Figure 5. Overhead in deadlock avoidance simulator.

Deadlock Ratio

DR Deadlock Recovery Strategy
1000 S-.

. De;eminiutic distributioh (8x8)
o Biased Distribution (8x8)
0 Uniform distribution (8x8)
x Bimodal distribution (8x8) .5

V Exponential distribution (8x8)
* Deteministic distribution (4x4)
+ Biased Distribution (4x4)
"t Uniform distribution (4x4)

t BWmoda distribution (4x4)
= Exponential distribution (4x4) %

10.

0 4 8 12 16

Number of Processors

Figure 6. Overhead in deadlock recovery simulator.

-21-

S p~j, S~SV% - 1\..4 s~ :~~~

Effect of CPU Distribution

Speedup Deadlock Avoidance Strategy (4x4)
121 * Exp CPU (nmn=l ms), DetTS

o Exi CPU (min=50 ms), Det TS
O Norm CPU (rn=50 ms, sd--40 ms), Det TS
x Norm CPU (rnn=50 ns, sd= I ms), Det TS
V ExpCPU (in=1 ms), Exp TS

9- * Exp CPU (mn=50 ms), Exp TS
+ Norm CPU (mn--50 is, s - ms), ExpTS
t Norm CPU (rn=50 ms, sd=4I ms), Exp TS

6-

3-

0

0 4 8 12 16

Number of Processors

Figure 7. Speedup as CPU grain varied - deadlock avoidance.

Effect 9f CPU Distribution

Spee Deadlck Recovery Strategy (4x4)

* Exp CPU (mrn= I ms), Dt TS
o EAp CPU (n=50 ms). Det TS
"3 omal CPU (n=50 ms, sd--40 ms), Det TS
x Normal CPU (rmn=50 ms, sd-1 ms), Det TS
V ExpCPU (nn=1 ms), ExpTS
* Exp CPU (n=50 ms). Exp TS
+ Normal CPU (in-50 ms, sd=40 ms), Exp TS
t Normal CPU (rn--50 ms, sd= 1 ms),

Exp TS

4.

2-

0

0 4 8 12 16

Number of Processors

Figure 8. Speedup as CPU grain varied - deadlock recovery.

-22-

7a

SMUnwffMN9WS r~vlvvl w- rs-WWN~"r r. r . -. -J- -A"- M. 3 - -I. %n. -w *'VW - ~..' -

Speedup With Dynamic Scheduler

Spedup Deadlock Avoidance Strategy

* Static Sche'. Det TS (4x4)
o Dyn Sched, Det TS (4x4)
o Static Sched, DetTS (8x8)
x Dyn Sched, Det TS (8x8)
V Static Sched, Exp TS (4x4)

9- * Dyn Schd, Exp TS (4x4)
+ Static Sched, Exp TS (8x8)
t Dyn Sched. Exp TS (8x8)

6-

3-

07

0 4 8 12 16

Number of Processors

Figure 9. Speedup using dynamic scheduler - deadlock avoidance.

Speedup With Dynamic Scheduler

Speedup Deadlock Recovery Strategy
8

* Static Sch&A, Det TS (4x ,)
o Dyn Sched, Det TS (4x4)
0 Static Sched, Det TS (8x8)

x Dyn Sched. Det TS (8x8)
V Static Sched, Exp TS (4x4)

6 * Dyn Sched. Exp TS (4x4)
+ + Static Sched. ExpTS (8x8)
t Dyn Schad. Exp TS (Wx)

4-

2-

0-

O 4 8 12 16

Number of Processors

Figure 10 Speedup using dynamic scheduler - deadlock recovery.

-23- S

Null Message Ratio vs. Lookahead Ratio
NMR Deadlock Avoidance Strategy

10 * Biased is Dist (4x4) ' I

o Exp ial TS Dist (4x4)
0 BiuedTS Dist (x8)
X Exponential TS Dist (8x8)

7.5

5.0

2.5

0.0,

0 2.5 5.0 7.5 10

Lookahead Ratio

Figure 11. Overhead as lookahead ratio varied - deadlock avoidance.

Deadlock Ratio vs. Lookahead Ratio

DR Deadlock Recovery Strategy
1000
Iwo- * Biased TS Dist (4x4)

o Expcitia TS Dist (4x4)
0 Bias TS Dist (Sx)
x Exponetial TS Dist (xS)

100-

10.

I,

0 1 2 3 4 5

Lookahead Ratio

Figure 12. Overhead as lookahead ratio varied - deadlock recovery.

.24 -

eA. . ..

sas aMWW awar 7~ flMrsan . w r awlS *-I an WIN ." ion Pw Rn MF1. MI r f nPIfl IW iraW4 17 tM" n - -

Null Message Ratio vs. Message Population

NMR Deadlock Avoidance Strategy

1000
* Bias TS Dist ,LAR=I.I (4x4)
o Bias TS Dist. LAR=I.11 (8x8)
o Bias TS Dist. LAR=I 1.0 (4x4)
x BiasTS DistLAR=1.0 (8x8)

100V Exp TS Dist LAR=I 1.0 (4x4)
* ExpTS Dist. LAR=11.0 (8x8)

10.

1-

0.01-

0.25 1 4 16 64

Messages Per LP

Figure 13. Overhead as message population varied - deadlock avoidance.

Deadlock Ratio vs. Message Population

DR Deadlock Recovery Strategy
10000., , ,

* Bias TS. LAR=1.11 (4x4)
o Bias TS. LAR=I. 1I (8x8)
o Bias TS. LAR= 11.0 (4x4)
x Bias TS. LAR=I 1.0 (8x8)
VExp TS. LAR=I 1.0 (4x4)

1000 *ExpTS.LAR=11.0(8x8)

100-

10-

0.25 1 4 16 64 256

Messages Per LP

Figure 14. Overhead as message population varied - deadlock recovery.

-25 -

" 3,s ' ,' -\.,,'.,'-' .. . ' ,..' V-... .*, 's'.'..,.¢.,'r',.r,:. '

Null Message Ratio with Non-Uniform Routing

Deadlock Avoidance StrategyNMR

100

10

1-
* No LPs non-uniform (4x4)
o 1 LP non-uniform (4x4)
o I in 4 LPs non-uniform (4x4)× 1 in 2 LPs non-uniform, (44

V All LPs non-uniform (4x4)
0.1 * No LPs non-uniform (x8)

+ I LP non-uniform (8x8)
t 1 in 4 LPs non-uniform (8x8)
tI in 2 LPs non-uniform (Wx)

= All LPs non-uniform (8x8)

0.01 , I

0.25 1 4 16 64

Messages Per LP

Figure 15. Overhead with non-uniform routing - deadlock avoidance.

Deadlock Ratio with Non-Uniform Routing

DR Deadlock Recovery Strategy
10000 1 1 1

* No LPs Non-Uniform (4x4)
o 1 LP Non-Uniform (4x4)
o 1 in 4 LPs Non-Uniform (4x4)
x 1 in 2 LPs Non-Uniform (4x4)
V All LPs Non-Uniform (4x4)

1000. * No LPs Non-Uniform (x8)
+ 1 LP Non-Uniform (8x8)
t 1 in 4 LPs Non-Uniform (8x8)
:t1 in 2 LPs Non-Uniform (8x8)

SAll LPs Non-Uniform (8x8)

100-

10.

1
0.25 1 4 8 64

Messages Per LP

Figure 16. Overhead with non-uniform muting - deadlock recovcry.

- 26 -

Null Message Ratio with Non-Uniform Lookahead

NMR Deadlock Avoidance Strategy

1000

100

10

o ~LA Pwi x4hi AR

0. * ~wih hi LAR (X)
0 1inLPwitih hig:(0)
x I in2LUswih high LAR (x4)
V llnLPs wihh LAR (x)

0.5 * 4o 16s 64 A W

Figure ~ 17 Overhead with nh-igo lokaea (Wedlc)aodac

Deadlock Ratio with Non-Uniform Lookahead

DR. 10000.Rcvey tatg

* No LPs wlHigh LAR (4x4)
o1ILP w/ HighLA(4x4)
o 1lin 4LPs w/ High LAR (4x4)
x I in 2LPs w/High LAR (44)
V All LPs w/ High LAR (4x4)

1000) * No LPs w/High LAR (Wx)
+ IlLP w/High LAR (Wx)
t Ilin 4LPs w/High LAR (Wx)
t I in 2LPs w/ HighLAR (Wx)

=All LPs w/ High LAR (8x)

100-

10

0.25 1 4 16 64 256

Messages Per LP

Figure 18. Overhead with non-uniformn lookahead - deadlock recovery.

-27-

Speedup Using Deadlock Avoidance

Sp-edup 32 Messages per LP

* Determinislic TS Dist (8i8)
o Biased TS Dist (8x8)
o Uniform TS Dist (8x8)
x Bimodal TS Dist (8x8)
V Exponential TS Dist (8x8)

Determinisic TS Dist (4x4)
+ BiasedTS Dist (4x4)
t Uniform TS Dist (4x4)
* Bimodal TS Dist (4x4)
= Exponential TS Dist (4x

8-

4.

0 4 8 12 16

Number of Processors

Figure 19. Speedup with high message population - deadlock avoidance.

Speedup Using Deadlock Recovery

Spedup 32 Messages per LP

6 Deterministic TS Dist (8x8)
o Biased TS Dist (8x8)
0 Uniform TS Dist (8x8)
x Bimodal TS Dist (8W)
V Exponential TS Dist (8x8)

12 Deterministic TS Dist (4x4)
+ Biased TS Dist (4x4)
t Uniform TS Dist (4x4)
t Bimodal TS Dist (4x4)
= Exponential TS Dist (4x4

8

4-

0-r
0 4 8 12 16

Number of Processors

Figure 20. Speedup with high message population - deadlock recovery.

-28-

Iv

-- xI

!q .

FiB. p

4.

