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Abstract

The effect of turbulence on laser propagation is a significant challenge to current

electro-optical systems. While atmospheric compensation techniques in space object

imaging and high-energy laser weapons have been thoroughly investigated, optimiz-

ing these techniques for Laser Communication (LaserCom) has not been examined to

the same degree. Average Strehl ratio is the typical design metric for current atmo-

spheric compensation systems. However, fade probability is the relevant metric for

LaserCom. This difference motivated the investigation into metric-driven atmospheric

compensation.

Metric-based tracking techniques for fade mitigation is the first major focus

of this research. In a moderate range air-to-air scenario, focal plane spot breakup

is the dominant failure mechanism. Although the impact of spot breakup on aver-

age Strehl is small, spot breakup considerably increases fade probability. This result

demonstrates that optimization of an atmospheric compensation system requires con-

sideration of the metric of interest. Metric-driven design led to exploration of peak

intensity tracking, which reduces fade probability by greater than 50% over conven-

tional centroid trackers and Adaptive Optics (AO) systems for scenarios studied.

An investigation of atmospheric compensation requirements based on deep fade

phenomenology is the second major focus of this research. Fades are classified based

on complexity of the required compensation technique. For compensation techniques

studied, regions of superior performance, in terms of fade probability, are identified.

Peak tracking is shown to outperform AO for thresholds below approximately 4% of

the unabberated intensity. Furthermore, the boundary between superior performance

regions is nearly invariant to turbulence strength. This boundary invariance simplifies

operation of a composite system which is able to adaptively select compensation

methodology in near real-time.
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An adaptive binary decision threshold is the third major focus of this research.

Results show this technique to be viable for decreasing Bit-Error Rate (BER) in

the presence of scintillation and receiver noise. Expressions for BER are derived for

both the fixed and adaptive threshold cases. Analytic results show that an adaptive

threshold provides a BER improvement of up to 1.60 orders of magnitude (33-fold

decrease) for a 10 Gbps link, and up to 0.56 orders of magnitude (3.6-fold decrease)

for a 10 Mbps link. Adaptive thresholding yields improved performance without the

additional cost, weight, and/or complexity of increasing source power, incorporating

wavefront control at receiver, or incorporating AO at the transmitter.

v
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Performance-Metric Driven Atmospheric Compensation

for

Robust Free-Space Laser Communication

I. Introduction

1.1 Problem Definition

The atmosphere presents a significant challenge for many Electro-Optical (EO)

systems. Attenuation, scattering, turbulence, clouds, and thermal blooming are all

potential obstacles to system performance. For this research, turbulence is the sole

atmospheric distortion investigated. Atmospheric turbulence can be described by

random fluctuations in the velocity of nearly homogeneous patches of air existing in a

continuum of sizes. The chaotic mixing of these atmospheric cells leads to a random

distribution of air temperature and pressure, and therefore refractive index. The

resulting phase distortions imposed on wavefronts traveling through the atmosphere

are termed optical turbulence. Extended turbulence and challenging engagement

scenarios also lead to amplitude fluctuations, which are sensed as intensity variations

by the human eye and optical detectors. The twinkling of stars is a well known

example.

A variety of atmospheric compensation methods have been investigated, mostly

from the perspective of High-Energy Laser (HEL) weapons and space object imag-

ing. These methods are broadly classified as either real-time or post-processing tech-

niques [84]. Hybrid techniques have also been considered for image restoration. A

real-time system relies on a mechanical device to adjust the wavefront phase. This

technology area is known as Adaptive Optics (AO). Post-processing algorithms for

image restoration are often studied from an inverse filtering or deconvolution frame-

work.
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A Mean Square Error (MSE) performance metric is typical of both AO systems

and image restoration algorithms. For post-processing techniques, the common metric

is the MSE between the truth and restored image intensities. In AO, the aperture

averaged mean square phase abberation is often used for system analysis and design.

For a closed-loop system, assuming negligible amplitude fluctuations, mean square

phase is directly related to average Strehl ratio [47, 89]. As a result, characterization

of turbulence effects and optimization of AO performance is typically accomplished

in terms of mean square phase [44,64,101,103].

Laser Communication (LaserCom) is the primary application motivating this

research. Unmanned Aerial Vehicles (UAVs) of various sizes are playing an ever in-

creasing role in surveillance, reconnaissance, and weapon delivery applications. In

the case of imagery collection, large amounts of data must be quickly disseminated

to decision makers. LaserCom is under investigation to improve this capability. For

communication performance, the probability of fade, which is associated to the tail

of the signal power’s Probability Density Function (PDF), is more important than

average signal power. In summary, the difference of design approaches based on min-

imizing MSE versus preventing deep signal fades is the motivation for this research.

The additional weight, size, power, and other constraints imposed on small airborne

platforms are also considered in the sense that simplicity is desired.

1.2 Problem Relevance

HEL weapons and LaserCom are both important transformational technolo-

gies for the military. HEL weapons, and directed-energy weapons in general, will

provide future battlefield commanders with unique capabilities. These technologies

offer profound advantages over conventional weapons [80] given their potential for

instantly delivering tailored effects from a large standoff distance with pin-point accu-

racy [81:15]. LaserCom is envisioned as a replacement and/or complement to existing

Radio-Frequency (RF) based communication links. Very small optical wavelengths

and corresponding narrow beamwidths make interception much more difficult than
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for RF systems. LaserCom can serve as a rapidly deployable, high-bandwidth, highly

secure, line-of-sight connection, improving the ability to provide decision makers with

near real-time access to data collected [81:15]. In fact, commercial LaserCom compo-

nents were installed within days of the terrorist attack on the World Trade Center,

successfully re-establishing high speed data links used by Merrill Lynch Brokerage [54].

However, optical wavelengths are also much more susceptible to atmospheric turbu-

lence effects than those in the RF range.

1.3 Research Contributions

The primary contributions from this research are

• Extended the standard approach to atmospheric turbulence compensation sys-

tem design from one that strives to minimize MSE to one that strives to optimize

a particular metric of interest: fade probability.

• Identified focal plane image breakup as the dominant failure mechanism causing

deep fades for moderate range air-to-air LaserCom. Significant breakup first

occurs when D/r0 ≈ 0.6 and σ2
χ = 0.19.

• Investigated alternate tracking techniques based on metric-driven design and

knowledge of spot breakup.

– Demonstrated that peak-intensity tracking outperforms traditional cen-

troid tracking and AO in terms of the metric of interest. Fade probability

is reduced by greater than 50% over conventional centroid trackers and AO

systems for scenarios studied.

– Demonstrated that metric-driven control of two wavefront phase modes

outperforms MSE-driven control of over 23 modes for the metric of interest.

This improved performance is achieved with a simpler system, which is very

important for potential UAV based optical receivers.

• Defined an architecture to further examine preferred regions of operation for

various atmospheric compensation techniques. The fade threshold boundary for
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defining regions of superior performance for AO and peak tracking is demon-

strated to be nearly invariant to turbulence strength. This boundary invariance

simplifies operation of a composite system which is able to adaptively select

compensation methodology in real-time.

• Demonstrated that an adaptive threshold provides a Bit-Error Rate (BER) im-

provement of up to 1.60 orders of magnitude (33-fold decrease) for a 10 Gbps

link, and up to 0.56 orders of magnitude (3.6-fold decrease) for a 10 Mbps link.

Adaptive thresholding yields improved performance without the additional cost,

weight, and/or complexity of increasing source power, incorporating wavefront

control at receiver, or incorporating AO at the transmitter.

1.4 Document Outline

Chapter II covers background necessary for a study of light propagation through

atmospheric turbulence. Critical mathematical concepts are first reviewed, followed

by a theoretic discussion of atmospheric optical turbulence and its characterization.

Free-space optical wave propagation is then reviewed, which is based on the scalar

wave equation derived from Maxwell’s equations. Finally, the theory of propaga-

tion through turbulence and the accepted approach to its numerical modelling are

discussed.

Chapter III provides necessary background on laser communication and AO. A

brief history of AO technology development is provided. A basic system for compen-

sated real-time imaging is then described, including discussions of the major subsys-

tems: beacon, wavefront sensor, wavefront computer, and deformable mirror. Next is

a discussion of Strehl ratio, which is the standard performance metric for AO systems.

Two forms of instantaneous Strehl ratio are formulated for use in subsequent chap-

ters. Next is a discussion of error sources and system limitations, followed by a review

of one advanced concept currently being investigated to improve AO performance in

very challenging scenarios. Next, digital communication and direct-detection Laser-
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Com are described. Last, existing literature relevant to this research is reviewed,

including a summary of important concepts for atmospheric compensation.

Chapter IV presents the results of an investigation of alternate tracking al-

gorithms for LaserCom fade mitigation. A moderate range air-to-air scenario was

studied using analysis and wave-optics simulation. Focal plane image spot breakup

is shown to be the dominant failure mechanism. The impact of spot breakup is min-

imal for average Strehl, but considerable for fade probability - demonstrating that

optimization of a wavefront control system should consider the performance metric

of interest. Fade probability is directly related to BER for direct-detection commu-

nication systems. Metric-driven design led to exploration of peak intensity tracking,

which reduced fade probability by greater than 50% over conventional centroid track-

ers and AO systems for scenarios studied. The duration of both signal fades and

periods of focal plane image breakup are then characterized. From a system design

standpoint these results are important for both sensor frame-rate and system band-

width requirements, as well as optimizing error-correction codes. At times, the peak

tracker jumped from one subspot to another during a single period of spot breakup,

leading to fade conditions. Modifications to the basic peak tracking algorithm are

proposed and show promise for further performance improvement.

Chapter V investigates atmospheric compensation requirements based on deep

fade phenomenology. Fades are classified based on complexity of the required com-

pensation technique. For compensation techniques studied, regions of superior perfor-

mance are identified in terms of fade probability as a function of detection threshold.

Peak tracking outperforms AO for thresholds below approximately 4% of the unabber-

ated intensity. Furthermore, the boundary between regions of superior performance is

nearly invariant to turbulence strength. This boundary invariance simplifies operation

of a composite system which is able to adaptively select compensation methodology

in real-time.
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Chapter VI presents an adaptive binary decision threshold for mitigating scin-

tillation induced bit-errors. Results show this technique to be viable for decreasing

BER in the presence of scintillation and receiver noise. Expressions for BER are

derived for both the fixed and adaptive threshold cases. Analytic results show an

adaptive threshold provides BER improvement of 0.41 to 1.60 orders of magnitude

for a 10 Gbps link, and up to 0.56 orders of magnitude for a 10 Mbps link. Adaptive

thresholding yields improved performance without the additional cost, weight, and/or

complexity of increasing source power, incorporating wavefront control at receiver, or

incorporating AO at the transmitter.

Chapter VII concludes with a review of primary research contributions.
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II. Atmospheric Turbulence and the Propagation of Light

This chapter covers relevant background in the areas of mathematics, optics,

and atmospheric turbulence. Fundamental mathematical concepts and rela-

tions crucial to analysis of turbulence and propagation are presented in Section 2.1.

Section 2.2 covers atmospheric turbulence theory applicable to the visible and infrared

wavelengths. Section 2.3 discusses free-space propagation of light, fundamentally gov-

erned by Maxwell’s equations. Optical turbulence effects on propagation are covered

in Section 2.4. Finally, Section 2.5 introduces the numerical simulation approach

commonly used for high-fidelity modelling of optical turbulence effects.

2.1 Mathematical Foundations

2.1.1 Linear Systems and Random Processes. For Linear Time-Invariant (LTI)

or Linear Space-Invariant (LSI) systems and deterministic signals, the input, x(t), and

output, y(t), are related by

y(t) =

∫ ∞

−∞

x(α)h(t− α)dα

= (x⊛ h)(t) , (2.1)

where h(t) is the system impulse response and ⊛ is the convolution operator. This

input-output relationship becomes straightforward multiplication in the frequency

domain:

Y (f) = X(f)H(f) , (2.2)

where Y (f), X(f), and H(f) are the Fourier transforms of y(t), x(t), and h(t), respec-

tively. Under certain conditions, a similar relationship holds for stochastic signals.

For Wide-Sense Stationary (WSS) random processes (constant mean and autocorre-

lation only a function of separation) the Power Spectral Densities (PSDs) of the input

and output of a LTI system are related by

Sy(f) = Sx(f) |H(f)|2 , (2.3)
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where Sx(f) and Sy(f) are the PSDs of the input and output, respectively, and H(f)

is again the Fourier transform of the system impulse response. Based on the Wiener-

Khintchine theorem [6:713], a relationship between the autocorrelation (or covariance)

function and the PSD of a WSS random process exists and is given by

Sx(f) = F {Γx(τ)} , (2.4)

where F{·} is the Fourier transform operator and Γx(τ) is the autocorrelation function

of the random process x.

A multi-dimensional random process is known as a random field. In general,

the spatial autocorrelation of a real-valued scalar random field, x(~r), is given by

Γx (~r1, ~r2) = E {x(~r1)x(~r2)} , (2.5)

where E{·} is the expectation operator. Several properties are often assumed in the

study of optical turbulence to allow application of existing mathematical tools. First,

if a random field is statistically homogeneous, then its moments are independent of

location (i.e., invariant to translation), and the autocorrelation is solely a function of

the separation vector, ~r = ~r2 − ~r1:

Γx (~r1, ~r2) = E {x(~r1)x(~r1 + ~r)}

= Γx(~r) ∀ ~r1 . (2.6)

Homogeneity allows application of the Wiener-Khintchine theorem to a random field.

Second, if a random field is also statistically isotropic, then its moments are indepen-

dent of (invariant to) rotation and the autocorrelation is only a function of separation

magnitude:

Γx (~r1, ~r2) = Γx(|~r|) . (2.7)
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Many analyses assume the underlying random process is also ergodic, so that ensemble

averages can be equated to temporal (or spatial) averages.

Some useful relations between the spectral and spatial domains are now pre-

sented. Following the work of Beland [20:161-164], these relationships are presented

in terms of the covariance function:

Bx (~r1, ~r2) = E {[x(~r1)− E{x(~r1)}][x(~r2)− E{x(~r2)}]}

= Γx (~r1, ~r2)− E {x(~r1)E{x(~r2)}} − E {E{x(~r1)}x(~r2)}

+E{x(~r1)}E{x(~r2)}

= Γx (~r1, ~r2)− E{x(~r1)}E{x(~r2)} . (2.8)

Note that for zero-mean processes, E{x(~r1)} = E{x(~r2)} = 0 and the spatial covari-

ance of (2.8) and the spatial autocorrelation of (2.5) are equal.

The three-dimensional Wiener-Khintchine theorem for a homogeneous random

field x(~r) is given by

Φx( ~K) =

(

1

2π

)3 ∫∫∫ ∞

−∞

Bx(~r)e
i ~K·~rd~r , (2.9)

where ~K = Kxx̂ +Kyŷ +Kz ẑ is the vector wavenumber and Bx(~r) is the covariance

function. The inverse relation is given by

Bx (~r) =

∫∫∫ ∞

−∞

Φx( ~K)e−i
~K·~rd ~K . (2.10)

For real-valued homogeneous random fields, the covariance and spectrum are both

even functions, which implies that (2.9) and (2.10) can be expressed as cosine trans-

forms:

Φx( ~K) =

(

1

2π

)3 ∫∫∫ ∞

−∞

Bx(~r) cos( ~K · ~r)d~r (2.11)
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and

Bx (~r) =

∫∫∫ ∞

−∞

Φx( ~K) cos( ~K · ~r)d ~K . (2.12)

If the medium is also statistically isotropic, integration over the two angular

dimensions in spherical coordinates gives

Φx(K) =

(

1

2π2K

)
∫ ∞

0

Bx(r) sin(Kr)rdr (2.13)

and

Bx(r) =
4π

r

∫ ∞

0

Φx(K) sin(Kr)KdK , (2.14)

where K = | ~K| is magnitude of the 3-D wavenumber vector and r = |~r| is magnitude

of the 3-D spatial separation vector. Atmospheric parameters are often measured and

statistics estimated in 1-D, so the following relation between the 1-D, Sx(K), and

3-D, Φx(K), PSDs can be very useful:

Φx(K) = − 1

2πK

[

d

dK
Sx(K)

]

. (2.15)

However, optical systems are typically concerned with fields and their properties in

a two-dimensional form - the plane transverse to the optical axis. As such, it can be

useful to integrate over the spatial frequency variable corresponding to propagation

direction, Kz:

Fx(Kx, Ky; z) =

∫ ∞

−∞

Φx(Kx, Ky, Kz) cos(Kzz)dKz , (2.16)

where Fx(Kx, Ky; z) is the resulting 2-D PSD describing homogeneous fluctuations

for planes separated by a distance z. For homogeneous and isotropic conditions,

converting to cylindrical coordinates, setting z = 0, and integrating out the angular

dependence gives the 2-D covariance:

Bx(ρ) = 2π

∫ ∞

0

J0(Kρ)Fx(K, 0)dK , (2.17)
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where K =
√

K2
x +K2

y is the magnitude of the radial vector wavenumber and J0(·) is

a Bessel function of the first kind, zero-order.

2.1.2 Structure Functions. Random fields are more difficult to analyze

when they are not stationary (i.e., non-homogeneous) because the autocorrelation and

covariance functions cannot be spectrally decomposed using the Wiener-Khintchine

theorem. However, there are times when a random field can be described as having

homogeneous fluctuations about a slowly varying mean. This scenario is known as

stationary increments in the temporal domain or local homogeneity in the spatial

domain. A locally homogeneous random field, x(~r), is mathematically described by

x(~r) = µx(~r) + x1(~r), E {x1(~r)} = 0 ∀ ~r , (2.18)

where x1(~r) is assumed homogeneous and µx(~r) = E {x(~r)} is the mean of x(~r) and

assumed to be slowly varying.

The structure function is defined as

Dx(~r1, ~r2) = E
{

[x(~r1)− x(~r2)]2
}

, (2.19)

and is a valuable tool for describing and analyzing locally homogeneous fields. Sub-

stituting (2.18) into (2.19) gives an insightful formulation [20:165]:

Dx(~r1, ~r2) = [µx(~r1)− µx(~r2)]2 + E
{

[x1(~r1)− x1(~r2)]
2}

+ 2µx(~r1)E {x1(~r1)− x1(~r2)} − 2µx(~r2)E {x1(~r1)− x1(~r2)}

= [µx(~r1)− µx(~r2)]2 + E
{

[x1(~r1)− x1(~r2)]
2} ; (2.20)

the structure function is now decomposed into the sum of contributions from the

means and the fluctuations. For many physical processes (such as atmospheric turbu-

lence), the difference between the means will be negligible for separations of interest.

Therefore, [µx(~r1)− µx(~r2)]2 ≪ E
{

[x1(~r1)− x1(~r2)]
2} is assumed, which leads to the
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following approximation:

Dx(~r1, ~r2) ≈ E
{

[x1(~r1)− x1(~r2)]
2} (2.21)

≈ Dx1
(~r1, ~r2) . (2.22)

Expanding the argument of the expectation operator in (2.19), the structure

function can be rewritten as

Dx(~r1, ~r2) = E
{

x(~r1)
2
}

+ E
{

x(~r2)
2
}

− 2E {x(~r1)x(~r2)} . (2.23)

Homogeneity (stationarity) allows further simplification:

Dx(~r) = 2E
{

x(~r1)
2
}

− 2E {x(~r1)x(~r1 + ~r)} . (2.24)

When the autocorrelation function exists, the structure function can be expressed as

Dx(~r) = 2 [Γx(0)− Γx(~r)] . (2.25)

Finally, if the field is also isotropic the structure function only depends on separation

magnitude:

Dx(r) = 2 [Γx(0)− Γx(r)] , (2.26)

where r = |~r|.

Similar to the covariance/PSD relationship, a generalized form of the Wiener-

Khintchine theorem provides a spectral decomposition of the structure function. Note

that if the process is only locally homogeneous, no covariance (autocorrelation) is

associated with the PSD. For a locally homogeneous random field, the structure func-

tion/PSD relationship is given by [20:164]

Dx(~r) = 2

∫∫∫ ∞

−∞

Φ( ~K)[1− cos( ~K · ~r)]d ~K . (2.27)

12



If the random field is also locally isotropic, the spectral decomposition is given by

Dx(r) = 8π

∫ ∞

0

Φ(K)

[

1− sin(Kr)

Kr

]

K2dK . (2.28)

The inverse relation is given by

Φx(K) =

(

1

4π2K2

)
∫ ∞

0

sin(Kr)

Kr

d

dr

[

r2 d

dr
Dx(r)

]

dr . (2.29)

The 2-D structure function is related to the 2-D spectrum by

Dx(ρ) = 4π

∫ ∞

0

[1− J0(Kρ)]Fx(K, 0)KdK , (2.30)

where K =
√

K2
x +K2

y .

From (2.28) several observations are made about the value of the structure func-

tion [20:166]. The term [1−sin(Kr)/Kr] acts to high-pass filter the PSD, significantly

reducing structure function dependence on low spatial frequencies, which correspond

to separations much larger than r. The structure function is also mathematically

convenient because, unlike the covariance function, it exists even when there is a sin-

gularity at the PSD origin. The result is a statistical descriptor more general than

the covariance or autocorrelation.

2.1.3 Orthonormal Basis Functions. Two vectors are orthogonal if their

inner (dot) product is zero. Likewise, two functions are orthogonal over the interval

(a, b) if their inner (scalar) product is zero:

∫ b

a

A(x)B(x)dx = 0 . (2.31)

Furthermore, a function (vector) is called normalized if its magnitude is unity:

∫ b

a

A(x)A(x)dx = 1 . (2.32)
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Consider a complete set of functions {φk(x)}, k = 1, 2, 3, . . . , which span the space of

an arbitrary function, f(x), and are all normalized and mutually orthogonal:

∫ b

a

φm(x)φn(x)dx = δmn ∀ m,n , (2.33)

where δmn is the Kronecker delta function given by

δmn =







1, m = n

0, m 6= n
. (2.34)

Such an orthonormal basis set can be used to decompose f(x):

f(x) =
∞
∑

n=1

cnφn(x) a ≤ x ≤ b , (2.35)

proividing a valuable analysis tool. If the series on the right side of (2.35) converges,

then the expansion coefficients are given by

cn =

∫ b

a

f(x)φn(x)dx . (2.36)

A finite sum of orthonormal functions can be used to approximate an arbitrary

function that is piecewise continuous and has a piecewise continuous first derivative:

SM(x) =
M
∑

n=1

αnφn(x) a ≤ x ≤ b . (2.37)

The mean square error between SM(x) and f(x) is minimized when the arbitrary

coefficients, αn, are found using (2.36).

2.1.4 Zernike Polynomials. The Zernikes are a set of polynomials which are

orthogonal over the unit circle. The seminal paper addressing application of Zernikes

to modelling optical turbulence was published in 1976 by Robert Noll [64]. Following

Noll and more recent work of Roggemann and Welsh [84], the Zernike polynomials
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Table 2.1: The first 11 Zernike polynomials [65].

n m i Zernike Polynomial Associated Aberration

0 0 1 1 Piston
1 1 2 2r cos θ Tip
1 1 3 2r sin θ Tilt

2 0 4
√

3(2r2 − 1) Defocus

2 2 5
√

6r2 sin 2θ Astigmatism

2 2 6
√

6r2 cos 2θ Astigmatism

3 1 7
√

8(3r3 − 2r) sin θ Pure Coma

3 1 8
√

8(3r3 − 2r) cos θ Pure Coma

3 3 9
√

8r3 sin 3θ Trefoil

3 3 10
√

8r3 cos 3θ Trefoil

4 0 11
√

5(6r4 − 6r2 + 1) Spherical

are defined by the following equations:

Z(r, θ)i=even =
√

2(n+ 1)Rm
n (r) cos(mθ), m 6= 0, (2.38)

Z(r, θ)i=odd =
√

2(n+ 1)Rm
n (r) sin(mθ), m 6= 0, and (2.39)

Zi(r, θ) =
√
n+ 1R0

n(r), m = 0, (2.40)

where the azimuthal and radial orders, m and n, respectively, are required to be non-

negative integers with n ≥ m and n−m = even. The Zernike radial functions, Rm
n (r),

are defined by

Rm
n (r) =

(n−m)/2
∑

s=0

(−1)s(n− s)!
s![(n+m)/2− s]![(n−m)/2− s]!r

n−2s . (2.41)

Zernike polynomials are often referenced by the single index, i. The beauty of Zernikes

in the analysis of optical turbulence effects is that lower order modes correspond to

traditional static abberations, such as coma and astigmatism. The first 11 Zernike

polynomials are listed in Table 2.1 [65], along with their corresponding mode numbers

and induced optical aberrations.
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2.2 Optical Turbulence

2.2.1 Kolmogorov Theory (Velocity Fluctuations). Chaotic motion of air in

the atmosphere is the fundamental physical cause of optical turbulence. Therefore,

results from the area of fluid dynamics are foundational. Fluid flow is typically char-

acterized as falling into one of two regimes: laminar (smooth and steady) or turbulent

(chaotic). The Reynold’s number is used to define the transition between these two

states. Reasonable assumptions for atmospheric parameters give a Reynold’s num-

ber on the order of 105, which is large enough to assume that atmospheric flow is

almost always turbulent [84:58]. The nature of turbulent fluid dynamics is described

by the Navier-Stokes equations, which are nonlinear and underdetermined [20:157].

Difficulties in using these equations led Kolmogorov to take a statistical approach in

his investigation of velocity fluctuations in the atmosphere.

The main physical construct behind Kolmogorov’s approach is the energy cas-

cade theory of Richardson [75], which states that energy is injected into the system

at large scale sizes. This large scale size is termed the outer scale, L0, for atmospheric

turbulence. L0 ranges from tens to a few hundred meters, and near the Earth’s surface

is proportional to height as L0 = 0.4h [92]. Energy is injected into the atmosphere

by the sun as large air masses are put in motion via convection and/or wind shear.

Nearly uniform atmospheric patches are initially on the order of L0 in size, but break

up over time in turbulent flow. Energy thus cascades downward through a continuum

of smaller and smaller “eddies.” Eventually, eddies reach a lower size threshold called

the inner scale, l0, where energy begins to dissipate as heat [20:167]. The value of

l0 ranges from millimeters near the Earth’s surface to centimeters in the upper at-

mosphere. The range of scale sizes between l0 and L0 is termed the inertial range,

where kinetic forces dominate and eddy properties are independent of the parent.

Kolmogorov assumed that velocity fluctuations are homogeneous and isotropic in this

range. Strong turbulence causes l0 to decrease and L0 to increase, expanding the

inertial range at both ends.
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Using dimensional arguments, Kolmogorov showed that the structure function

for longitudinal velocity fluctuations in the inertial range is given by

Dv(r) = C2
vr

2/3 , l0 < r < L0 , (2.42)

where C2
v is called the velocity “structure constant” and describes the strength of tur-

bulence. Validity of the 2/3 power law structure function breaks down for separations

outside the inertial range due to a loss of isotropic conditions. With the assumption of

a locally homogeneous and isotropic field, a Taylor’s series expansion of the structure

function definition of (2.28) for small separations shows behavior proportional to r2.

Continuity of the two regions of behavior is mathematically enforced at r = l0:

Dv(r) = C2
v l

−4/3
0 r2 , r < l0 . (2.43)

2.2.2 Conservative Passive Scalars. Kolmogorov’s treatment of turbulence

was in terms of velocity fluctuations, which result in a chaotic mixture of various sized

parcels, or cells, of air. Each parcel has a slightly different temperature, pressure,

and humidity. A particular cell characteristic is termed passive if its dynamics do

not affect (exchange energy with) the turbulent flow. Furthermore, the turbulent

mixing of air is assumed to be an adiabatic (conservative) process in that a parcel

of air swirled around by an eddy does not have time to gain or lose heat [20:170].

Extending Kolmogorov’s theory to conservative passive scalars is credited to Corrsin

and Obhukov [20:170]. This extension was key because velocity fluctuations are not

directly applicable to a study of optical turbulence. However, the index of refraction

can be expressed as a function of conservative passive scalars. Kolmogorov theory is

thus extended to describe the refractive index variations that cause bending of light

rays and changes in optical wavefront phase.
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The refractive index, n, for optical and infrared wavelengths at a specific location

in the atmosphere is a function of wavelength, pressure, and temperature [5, 41]:

n(r) ≈ 1 + 77.6× 10−6(1 + 7.52× 10−3λ−2)
P (r)

T (r)
, (2.44)

where λ is wavelength in µm, P is pressure in millibars, and T is temperature in kelvin.

Dependence on wavelength is relatively weak in the optical range (∼ 0.3 to 10 µm).

Therefore, (2.44) is often simplified by letting λ = 0.5 µm [20:173]:

n(r) ≈ 1 + 79× 10−6P (r)

T (r)
. (2.45)

Differentiating (2.45) with respect to pressure and temperature reveals a greater sensi-

tivity to temperature changes. Potential temperature is a conservative passive scalar,

so Kolmogorov theory can be used.

The atmospheric index can be rewritten in terms of potential temperature and

specific humidity. This allows extension of Kolmogorov theory to the key quantity of

interest for optical turbulence studies: the refractive index. The structure function

for refractive index fluctuations is thus seen to follow the 2/3 power law, and is given

by

Dn(r) =







C2
nr

2/3, l0 ≤ r < L0

C2
nl

−4/3
o r2, r ≤ l0

, (2.46)

where C2
n is the refractive index “structure constant” and the index fluctuations are

assumed to be locally homogeneous and isotropic. The generalized Wiener-Khintchine

theorem is used to find the corresponding PSD, known as the Kolmogorov spectrum:

Φn(K) = 0.033C2
nK

−11/3 , (2.47)

where K = | ~K| is the magnitude of the three-dimensional spatial frequency vector.

There are several other PSD forms describing refractive index fluctuations. All

obey the −11/3 power law (three-dimensional spectra) in the inertial range, but some
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modifications have been made outside the inertial range - for the sake of mathematical

convenience or experimental comparison. Based on an assumed physical model of the

fluctuations, Kolmogorov began with the velocity structure function, Dv(r). To use

the generalized Wiener-Khintchine theorem to find the corresponding PSD, the struc-

ture function is integrated over all separations. The resulting Kolmogorov spectrum

has a singularity at K = 0, resulting in infinite area under the spectrum. This implies

a random process with infinite variance (energy), which is non-physical and not rep-

resentative of the atmosphere captured by a finite aperture. It is for this reason that

several mathematical modifications to the original Kolmogorov spectrum have been

developed. The most recent of these modified spectra both bounds total energy un-

der the curve and accounts for a bump seen empirically at high frequencies near 1/l0.

Although these spectra are mathematically valid for all separations (wavenumbers),

their form outside the inertial range is not based on a physical model/understanding

of the atmosphere.

Tatarskii [93] proposed a spectrum which allows for a finite inner scale. He

multiplied the Kolmogorov PSD by a Gaussian term with a 1/e point near K = 1/l0.

This low-pass filter significantly reduces spectral energy for wavenumbers larger than

about 1/l0:

Φn(K) = 0.033C2
nK

−11/3 exp

(

−K
2

K2
m

)

, (2.48)

where Km = 5.92/l0 is the Gaussian cutoff (1/e point). Although this specific form

was chosen ad-hoc, it makes sense to limit energy in this region because fluctuations

disappear as energy begins to dissipate as heat. The von Karman [20:174] spectrum

allows for a finite outer scale and eliminates the singularity:

Φn(K) = 0.033C2
n(K

2 +K2
0)−11/6 , (2.49)
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where K0 = 2π/L0. A combination of the Tatarski and von Karman spectra is termed

the modified von Karman PSD [20:174]:

Φn(K) = 0.033C2
n(K

2 +K2
0)−11/6 exp

(

−K
2

K2
m

)

. (2.50)

The modified von Karman spectra is fairly tractable and readily used for theoretical

studies. However, behavior outside the inertial range does not reflect empirical data

showing a bump at large spatial frequencies (wavenumbers) near 1/l0. Hill [5:54] intro-

duced a numerical model known as the “Bump” (or “Hill”) PSD that closely matches

the experimental data. To increase usefulness of the Hill model, Andrews [5:54] pro-

posed an analytical approximation given by

Φn(K) = 0.033C2
n

[

1 + 1.802
K

Kl

− 0.254

(

K

Kl

)7/6
] exp

{

−
(

K
Kl

)2
}

(K2 +K2
0)11/6

, (2.51)

where Kl = 3.3/l0 and K0 = 2π/L0.

2.2.3 Refractive Index Structure Constant (Parameter). C2
n is the primary

measure of optical turbulence strength along the propagation path. Several addi-

tional scalar parameters which more precisely characterize certain optical effects of

turbulence are presented in Section 2.4.2. Many of these additional parameters are

proportional to moments of the C2
n profile. C2

n typically ranges from about 10−17 m−2/3

for “weak” turbulence to about 10−13 m−2/3 for “strong” turbulence. The “constant”

in refractive index structure constant is a misnomer; C2
n actually varies over time

and space. Therefore, C2
n is also known as the “structure parameter” and is often

expressed as a function of altitude or distance from the telescope aperture. C2
n is

measured using thermal probes or point-to-point laser measurements. Temperature

measurements can be made horizontally or over a narrow range of altitude, where

pressure fluctuations can be neglected. The refractive index structure constant C2
n
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can thus be related to the temperature structure constant C2
T as

C2
n =

(

79× 10−6 P

T 2

)2

C2
T . (2.52)

Measurements of C2
n have been made at several geographical locations, leading

to various analytical models. One that is often used in research is the Hufnagel-Valley

model [84:61-62]:

C2
n(h) = 5.94× 10−53

( v

27

)2

h10 exp

( −h
1000

)

+ 2.7× 10−16 exp

( −h
1500

)

+ A exp

(−h
100

)

, (2.53)

where A (m−2/3) describes strength of turbulence near the ground, v (m/s) is rms wind

speed (5 to 20 km above ground), and h is altitude above sea level (meters). Typically,

the free parameters are set to A = 21 m/s and v = 1.7 × 10−14 m−2/3, resulting in

what is commonly called the H-V5/7 model. The 5/7 notation describes the fact

that these parameter values were chosen so that at a wavelength of λ = 0.5 µm,

the resulting atmospheric coherence length is r0 = 5 cm and the isoplanatic angle is

θ0 = 7 µrad. Another C2
n model widely used in Airborne Laser (ABL) studies is called

Clear-1 [20:220]:

log10{C2
n(h)} =































−∞ h ≤ 1.23

−10.7025− 4.3507h+ 0.8141h2 1.23 < h ≤ 2.13

−16.2897 + 0.0335h− 0.0134h2 2.13 < h ≤ 10.34

−17.0577− 0.0449h− 0.0005h2 + 0.6181α(h) 10.34 < h ≤ 30

, (2.54)

where h is altitude above mean sea level in km and α(h) is given by

α(h) = exp

[

−0.5

(

h− 15.5617

3.4666

)2
]

. (2.55)
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Figure 2.1: Models of turbulence strength as characterized by the refractive index
structure parameter, C2

n [20, 84].

Note that Clear-1 is based on measurements taken in the New Mexico desert where

ground level is 1.216 km. Also, the Clear-1 C2
n profile is often multiplied by a constant

to model the more challenging turbulence scenarios. The most common approach is to

use a factor of two, which yields what is commonly called the “2×Clear-1” model. Us-

ing this same notation, the original Clear-1 model given by (2.54) is sometimes called

“1×Clear-1” for clarity. H-V5/7, 1×Clear-1, and 2×Clear-1 are plotted in Figure 2.1

for altitude ranging from 0 to 30 km above sea-level.

2.2.4 Temporal Statistics. A majority of published material addressing

optical turbulence deals with spatial statistics. Temporal statistics are also important

as they drive (temporal) bandwidth requirements for real-time compensation systems.

Analysis of atmospheric temporal dynamics is greatly simplified via Taylor’s “Frozen

Flow” hypothesis, which is now summarized [20:174-6].

Two underlying physical processes drive the temporal evolution of atmospheric

turbulence. The first is motion of the atmosphere (advection) across the path of in-

terest, and is best visualized by a fixed (Eulerian) frame of reference. The second

process is the motion of individual eddies, which is best visualized by a moving (La-
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grangian) frame of reference. These internal eddy dynamics would be seen by an

observer moving with the flow at the mean rate.

The time constant describing advection of turbulence (τadv) across the Field of

View (FOV) is estimated as

τadv ≈
L0

V⊥
, (2.56)

where L0 is the outer scale of turbulence and V⊥ is the effective wind velocity per-

pendicular to the optical axis (due to the atmosphere and/or telescope motion). The

time scale of internal eddy dynamics (τint) is described by

τint ≈
L0

Vfluc
, (2.57)

where Vfluc is the velocity of fluctuations about the mean flow rate. Velocity fluctu-

ations are small compared to the average and can be estimated as 10% of the mean

wind speed [20:175]. Temporal evolution of turbulence is therefore assumed to be

driven by the mean motion of the atmosphere.

The basic concept resulting from Taylor’s hypothesis is that turbulence can be

thought of as a relatively frozen phase screen blowing across the telescope FOV. For

a turbulence variable depending on both space and time, ξ(~r, t), Taylor’s hypothesis

gives the following relationship:

ξ(~r, t+ τ) = ξ(~r − V⊥τ, t) . (2.58)

However, applicability of Taylor’s hypothesis should be questioned in scenarios where

wind is nearly parallel to the observation (propagation) path and the perpendicular

component is therefore small.
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2.3 Free-Space Propagation

In a linear, dielectric, isotropic, homogeneous, and nondispersive propagation

medium, Maxwell’s equations yield the scalar wave equation:

∇2U(P, t)− n2

c2
∂2U(P, t)

∂t2
= 0 , (2.59)

where k = 2π/λ is the radiation wavenumber, and U represents any component of

the electric or magnetic field at a position, P , and time, t. By further assuming the

solution to be a monochromatic wave with sinusoidal time variations, (2.59) becomes

the time-independent reduced wave equation, also known as the Helmholtz equation:

(∇2 + k2)U(P ) = 0 . (2.60)

The complex optical field resulting from diffraction by a finite aperture is found by

solving (2.60) using the method of Green’s functions. The result is a mathematical

statement of the Huygens-Fresnel principle:

U(P1) =
1

jλ

∫∫

Σ

U(P0)
exp(jkr01)

r01
cos θds , (2.61)

where U(P0) and U(P1) are the incident and diffracted fields, respectively, θ is the

angle between the aperture outward normal, n̂, and the vector, ~r01, pointing from P0

to P1, and Σ defines the surface area of the aperture. Equation (2.61) is a fundamental

relationship underlying modern optical scalar diffraction theory.

2.3.1 Fresnel Diffraction Integral. The Huygens-Fresnel principle can be

expressed in cartesian coordinates:

U(x, y) =
z

jλ

∫∫

Σ

U(ξ, η)
exp(jkr01)

r2
01

dξdη , (2.62)
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where the magnitude of the vector ~r01 is now given by

r01 =
√

z2 + (x− ξ)2 + (y − η)2 . (2.63)

Note that (2.62) was obtained by assuming scalar diffraction and that r01 ≫ λ. The

Fresnel diffraction integral is obtained by making one additional approximation. The

binomial expansion of r01 is given by

r01 = z

[

1 +
1

2

(

x− ξ
z

)2

+
1

2

(

y − η
z

)2

+ · · ·
]

. (2.64)

The numerator of the integrand of (2.62) is more sensitive to changes in r01 than

the denominator. Therefore, only the first term of the binomial expansion is used

to approximate r01 in the denominator, while the first two terms are retained in the

numerator. The resulting Fresnel diffraction integral can be expressed as

U(x, y) =
ejkz

jλz
ej

k
2z

(x2+y2)F
{

U(ξ, η)ej
k
2z

(ξ2+η2)
}

∣

∣

∣

∣

fX,Y =x,y
λz

, (2.65)

where U(ξ, η) is the original field and U(x, y) is the result of propagating a distance

z. The diffracted field is now seen to be a scaled Fourier transform of the product of

the original field and a quadratic phase factor.

2.3.2 Angular Spectrum. The propagation of optical fields through homoge-

neous media can also be formulated as a linear system [42:59-60]. A wave travelling

in the positive z direction is described in any plane perpendicular to its path by its

angular spectrum, which is simply the Fourier transform of the field with direction

cosines substituted for spatial frequency variables. This formulation indicates that

any field can be described in terms of a weighted sum of plane waves travelling in

various directions. If a field is known at z = 0, then the effects of propagation through
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the homogeneous media are described by the transfer function of wave propagation:

H (fX , fY ) =











exp

[

j2π z
λ

√

1− (λfX)2 − (λfY )2

]

√

f 2
X + f 2

Y <
1
λ

0 otherwise,

(2.66)

where λ is the optical wavelength, z is the propagation distance, and fX and fY are

the spatial frequencies in the x and y directions, respectively.

2.3.3 Fresnel Approximation to the Angular Spectrum. The Fresnel ap-

proximation to the propagation transfer function applies a binomial expansion and

approximation to the exponent of (2.66). The binomial expansion of
√

1− x is

1− 1

2
x− 1

8
x2 −

1

16
x3 − . . . . (2.67)

Using only the first two terms, the exponent is simplified:

√

1− (λfX)2 − (λfY )2 ≈ 1− (λfX)2

2
− (λfY )2

2
. (2.68)

The Fresnel approximation to the angular spectrum propagator is thus [42:71-72]:

H (fX , fY ) =







ejkz exp [−jπλz (f 2
X + f 2

Y )] |λfX | ≪ 1 and |λfY | ≪ 1

0 otherwise.
(2.69)

2.4 Propagation Through Turbulence

2.4.1 Analytical Approaches. In turbulent media, propagation is described

by the stochastic Helmholtz equation:

(

∇2 + k2n2(~p)
)

U(~p) = 0 , (2.70)

where n(~p) is a random field and an exact solution no longer exists. Several approaches

have been taken to solve for statistical moments of the propagated field. The first
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to show good agreement with empirical data in the weak fluctuations regime was the

Rytov method, which followed the Born method. Both solutions use the method of

small perturbations. First was the Born approach, which assumed a solution of the

form U = U0 + U1 + U2 + · · · . However, Rytov theory begins by expressing the field

as

U = eψ = eχeiS , (2.71)

where χ is the log-amplitude. The assumed solution is then expanded in terms of ψ:

ψ ≈ ψ0 + ψ1 + ψ2 + · · · , (2.72)

where ψ0 is the incident field, ψ1 is the first-order scattered field, and so forth. The

Rytov and Born solutions can be equated, but due to the assumed form, the Rytov

solution is applicable under a wider range of conditions.

A third non-perturbation approach uses an extended Huygens-Fresnel theory [5,

20]. In contrast to the Born and Rytov methods, this approach provides a solution in

terms of the complete field and allows a linear systems representation. The extended

Huygens-Fresnel method has been shown applicable under all conditions of atmo-

spheric turbulence for first and second-order field moments. However, the fourth-order

field moment solution has only been shown accurate for weak fluctuations.

A fourth approach is the parabolic equation method [5:114], which is anticipated

to be applicable under all conditions. A parabolic differential equation is generated

for each statistical moment of the field. Exact solutions have only been derived for

first and second-order field moments, and the second-order moment equation has only

been solved for plane and spherical originating waves.

To garner final results using any of the above methods, some form of transmitted

field must generally be assumed. The earliest solutions were for plane and spherical

waves. More recently, Gaussian and other beam-wave shapes have also been studied.

Also, the various approaches using perturbation theory share one primary drawback:
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they are only valid in weak turbulence conditions. Due especially to the difficulty

in deriving solutions applicable under all turbulence conditions, several heuristic ap-

proaches have been taken and simulations are often accomplished.

2.4.2 Effects Characterization (Derived Parameters). A plane wave trav-

elling through an atmospheric slab of thickness ∆z will experience an optical path

difference given by [84:69]

φi(~r) = k

∫ zi+∆zi

zi

n1(~r, z)dz , (2.73)

where k is the optical wavenumber, n1 is the index fluctuation, and ~r is the transverse

position vector. Assuming that n1 is a Gaussian random field allows the transmitted

field autocorrelation to be expressed in terms of the phase structure function:

Γut(~r) = E
{

ejφ(~r1)e−jφ(~r1−~r)
}

= e−
1

2
Dφ(~r) . (2.74)

For a WSS random process, the phase structure function is defined as

Dφ(~r) = E
{

[φ(~r1)− φ(~r1 + ~r)]2
}

. (2.75)

Substituting (2.73) into (2.75) and simplifying gives [44]

Dφ(~r) =
1

3

6

5

Γ(1/2)Γ(1/6)

Γ(2/3)
k2r5/3

∫ L

0

C2
n(z)dz , (2.76)

where L is propagation path length.

One effect of turbulence on propagation of light is image blurring (beam spread)

beyond the diffraction limit. As an example, imagine a plane wave entering the

Earth’s atmosphere with an arbitrarily large spatial coherence. Propagation through

turbulent atmosphere results in degraded spatial coherence in the aperture plane of

a collecting telescope. This degradation is characterized by the transverse coherence

length defined by the 1/e point of the field autocorrelation function. From (2.74), this
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definition is equivalent to the separation r which causes the phase structure function

to equal two. The resulting separation is given by

ρ0 =











[

1.46k2
∫ L

0
C2
n(z)dz

]−3/5

, l0 < ρ ≤ L0
[

1.64k2l
−1/3
0

∫ L

0
C2
n(z)dz

]−1/2

, ρ ≤ l0

, (2.77)

where ρ is magnitude of the radial position vector in the aperture plane, ρ0 is the sep-

aration distance beyond which two points on the wavefront are uncorrelated, l0 is the

inner scale corresponding to the smallest eddy size, L0 is the outer scale corresponding

to the largest eddy size, and k is the optical wavenumber.

A much more common parameter used to describe the effect of turbulence on

spatial coherence is the atmospheric coherence length (a.k.a., the Fried parameter),

or r0 = 2.1ρ0. r0 was defined in 1966 by David Fried to more specifically describe the

effect of turbulence on resolution of an incoherent imaging system [34]. For a plane

wave, r0 is given by [84:72]

r0 = 0.185λ6/5

(
∫ L

0

C2
n(z)dz

)−3/5

, (2.78)

where z is position along the propagation path and λ is optical wavelength. Two

key relationships should be noted from (2.78). First, the transverse coherence length

(in the inertial range) is proportional to λ6/5. Therefore, image degradation due to

turbulence is somewhat less in the infrared region than in the visible region. Second,

r0 is inversely proportional to the integrated turbulence strength. Since much of the

turbulence occurs at lower altitudes, major observatories around the world are built

on high mountaintops to effectively reduce the integrated turbulence strength. The

corresponding equation for a spherical wave is [84:72]

r0 = 0.185λ6/5

(

∫ L

0

C2
n(z)

[

L− z
L

]5/3

dz

)−3/5

, (2.79)
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where integration is from the pupil (observer) at z = 0 to the source located at z = L.

The integration can also be done from source to observer:

r0 = 0.185λ6/5

(
∫ L

0

C2
n(z)

[ z

L

]5/3

dz

)−3/5

. (2.80)

When modelling atmospheric turbulence as a set of discrete layers, the Fried param-

eter is expressed as

r0 = 0.185λ6/5

(

N
∑

k=1

C2
ni

L

N

)−3/5

(2.81)

for a plane wave, and as

r0 = 0.185λ6/5

(

N
∑

k=1

C2
ni

[

1− k

N

]5/3
L

N

)−3/5

(2.82)

for a spherical wave, where N is the number of layers. For the case of constant

turbulence strength throughout the path, r0 is given by

r0 = 0.185λ6/5
(

LC2
n

)−3/5
, (2.83)

for a plane wave, and by

r0 = 0.185λ6/5

(

3

8
LC2

n

)−3/5

, (2.84)

for a spherical wave. One more note of interest concerning r0 calculations. The

structure parameter is often modelled as being solely a function of altitude, in which

case (2.78) becomes [95:34]

r0 = 0.185λ6/5

(

sec(γ)

∫ L

0

C2
n(h)dh

)−3/5

, (2.85)

where γ is the angle from Zenith and h is altitude.
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The phase structure function for Kolmogorov turbulence (in the inertial range)

can be expressed in terms of r0 [84:71]:

Dφ(r) = 6.88

(

r

r0

)5/3

, (2.86)

where r is magnitude of the radial position vector in a plane perpendicular to propa-

gation direction and r0 is calculated for either a plane or spherical wave. The general-

ized Wiener-Khintchine theorem gives the corresponding Kolmogorov PSD for phase

fluctuations:

Φφ(f) = 0.023r
−5/3
0 f−11/3 , (2.87)

where f =
√

f 2
X + f 2

Y is spatial frequency in cycles per meter. The following simple

relationship can also be used to find the PSD for phase fluctuations from a PSD for

index of refraction fluctuations, see Martin [59:467] or Coles, et al. [30:2092]:

Φφ( ~K) = 2πk2∆zΦn( ~K) . (2.88)

The PSD for index of refraction fluctuations Φn( ~K) is proportional to C2
n. Therefore,

the resulting ∆zC2
n term in (2.88) can be replaced by an integral, allowing use of the

r0 equation for simplification. Note the requirement to multiply (2.88) by (2π)2 when

converting from spatial frequency in radians per meter to cycles per meter in order

to maintain the correct area under the PSD surface (i.e., properly account for total

energy in the random process).

Several other common forms of the PSD for phase fluctuations are now presented

in a form used for later analysis. The modified von Karman spectrum is given by [20]

Φφ(f) = 0.023r
−5/3
0

exp [−1.126(l0f)2]
[

f 2 +
(

1
L0

)2
]11/6

, (2.89)
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where f =
√

f 2
X + f 2

Y is again the spatial frequency in cycles per meter, r0 is the

Fried parameter, and L0 and l0 are the outer and inner scales, respectively. Finally,

the modified spectrum [5] can be expressed as

Φφ(f) = 0.023r
−5/3
0

[

1 + 3.43l0f − 0.538(l0f)7/6
] exp [−3.625(l0f)2]
[

f 2 +
(

1
L0

)2
]11/6

. (2.90)

2.4.3 Modal Analysis of Perturbed Wavefront. Zernike polynomials have

been used to expand the phase of a perturbed wavefront subsequent to propaga-

tion through atmospheric turbulence [64]. Such an approach is very useful from two

standpoints. First, it provides an analytical tool for predicting the performance of

wavefront compensation systems such as AO. Second, it provides a foundation for one

of two primary methods used to numerically simulate the random phase distortions

introduced by atmospheric turbulence (see Section 2.5.1.2). Noll’s analysis also high-

lights the fact that variations in overall wavefront tilt are the predominant effect of

optical turbulence.

Several key relationships resulting from Noll’s analysis are now presented, all

of which assume the Kolmogorov PSD. First, the aperture averaged mean square

wavefront phase is defined as [84:93]

ǫ2 =

∫

W (~r)E{φ2(~r)}d~r , (2.91)

where W (~r) is the aperture weighting function defined to be zero outside the aperture

and normalized within the aperture such that

∫

W (~r)d~r = 1 . (2.92)
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As first published by Noll, for an uncompensated distorted wavefront (piston removed)

the mean square phase within a circular aperture is given by

ǫ2 = 1.0299

(

D

r0

)5/3

, (2.93)

where D is the circular aperture diameter and r0 is the Fried parameter, which is

related to turbulence strength. For the sake of brevity, ǫ2 is often referred to simply

as the mean square phase. Subsequent to removal of Zernike tip and tilt, the residual

mean square phase, ǫ2R, is given by

ǫ2R = 0.134

(

D

r0

)5/3

. (2.94)

Equation (2.94) is used to estimate performance for an ideal tracking scenario. The

corresponding expression for a square aperture is

ǫ2R = 0.1748

(

L

r0

)5/3

, (2.95)

where L is the length of an aperture edge.

2.4.4 Impact on Imaging Systems. Wavefront tilt is the dominant pertur-

bation in any r0 sized patch; the tilt-removed rms wavefront error is about λ/17 in an

r0 sized aperture. Therefore, a telescope of diameter r0 will basically see a diffraction

limited image move around the focal plane due to changes in wavefront tilt. r0 ranges

from 5 to 10 cm (λ = 0.5 µm) at locations near sea-level, to 20 to 30 cm on the

best mountaintop astronomical sites. For telescopes with apertures larger than r0,

resolution is effectively limited by the atmospheric coherence length instead of the

aperture diameter.

The Modulation Transfer Function (MTF) in the focal plane is given by [35]

MTF (ν) = exp [−3.44(λfν/r0)] , (2.96)
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where f is the focal length of the system and ν is the spatial frequency. The effective

MTF of an optical system looking through a turbulent atmosphere is simply the

product of the system MTF and the atmospheric MTF. Therefore, turbulence has

the effect of low-pass filtering and the elimination of higher frequencies results in

image blurring.

2.4.5 Rytov Theory Predictions. As noted in Section 2.4.1, the Rytov ap-

proximation led to the first (useful) solutions giving good agreement with actual data.

Rytov results are generally accepted as being valid in the weak turbulence regime,

normally defined by the value of the Rytov variance [67:201]:

σ2
1 = exp

{

4σ2
χ

}

− 1 = 1.23C2
nk

7/6L11/6 , (2.97)

where k = 2π/λ is the optical wave number, λ is wavelength, L is propagation dis-

tance, and σ2
χ is variance of the log-amplitude (see (2.71)). The Rytov variance is

the normalized irradiance variance of an unbounded plane wave in weak fluctuations,

but is also used as an overall turbulence strength indicator (even outside the realm

of weak turbulence). The various regimes of turbulence strength are often defined as

follows [5:98]:

• σ2
1 < 1, weak fluctuations,

• σ2
1 ∼ 1, moderate fluctuations,

• σ2
1 ≫ 1, strong fluctations, and

• σ2
1 →∞, saturation regime.

The normalized irradiance variance, also called the scintillation index, is defined as

σ2
I =

E{I2} − E{I}2
E{I}2 , (2.98)

where I is the intensity of the optical field.

34



The Fresnel approximation to the first-order Rytov solutions show that log-

amplitude and phase are proportional to a sum of index fluctuations along the prop-

agation path [20:180]. The index fluctuations are considered independent from eddy-

to-eddy (layer-to-layer). The index fluctuations are also assumed to be zero-mean,

which implies that the phase and log-amplitude means are also zero. Furthermore, the

central limit theorem is invoked to predict that both PDFs will be Gaussian. There-

fore, the PDFs of phase and log-amplitude are Gaussian while those for amplitude

and intensity (I = e2χ) are log-normal.

Rytov results for the covariance, structure function, and 2-D spectrum are now

presented for an unbounded plane wave [20:180-181]:

Bζ(ρ, L) = 4π2

∫ L

0

dη

∫ ∞

0

KJ0(Kρ)Hζ(L− η,K)Φn(K, η)dK , (2.99)

Dζ(ρ, L) = 8π2

∫ L

0

dη

∫ ∞

0

K[1− J0(Kρ)]Hζ(L− η,K)Φn(K, η)dK , (2.100)

and

Fζ(K, 0, L) = 2π

∫ L

0

Hζ(L− η,K)Φn(K, η)dη , (2.101)

where propagation is from z = 0 to L, ρ is the magnitude of the radial position

vector, k is the optical wavenumber, K is the three-dimensional spatial wavenumber,

η is the variable of integration along the propagation path, and Φn(K, η) is the PSD

describing index fluctuations. The parameter ζ is used to simplify the equations, and

is either χ or S. Hχ and HS are filter functions that depend on the form of the

originating wave, and for a plane wave are given by

Hχ(x,K) =
{

k sin
[

K2x/(2k)
]}2

(2.102)

and

HS(x,K) =
{

k cos
[

K2x/(2k)
]}2

. (2.103)
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Returning to the discussion of scintillation statistics, the log-amplitude variance

for an infinite plane wave source is expressed in terms of the propagation length by

assuming the Komologorov spectrum and evaluating the covariance function (2.99)

at ρ = 0 [20]:

σ2
χ(L) =

−5
√

3π

144

Γ(2/3)Γ(−5/12)

Γ(11/12)
21/6k7/6

∫ L

0

(L− z)5/6C2
n(z) dz , (2.104)

where the source is located at z = 0 and the observer is located at z = L. The

important physical interpretation of (2.104) is that for a given point along the in-

tegration path through the atmosphere, the strength of turbulence is weighted by a

factor proportional to the remaining distance to the observation point. For a point

source, the log-amplitude variance is given by

σ2
χ(L) =

−5
√

3π

144

Γ(2/3)Γ(−5/12)

Γ(11/12)
21/6k7/6

∫ L

0

[

z(L− z)
L

]5/6

C2
n(z) dz . (2.105)

If constant turbulence strength along the propagation path is assumed, simpler

forms of the 2-D spectra for log-amplitude and phase result:

Fχ(K, 0, L) = πk2L{1− [k/(K2L)] sin(K2L/k)}Φn(K) (2.106)

and

FS(K, 0, L) = πk2L{1 + [k/(K2L)] sin(K2L/k)}Φn(K) . (2.107)

Plotting the two spectra given by (2.106) and (2.107) provides valuable insight into

the cause of phase and log-amplitude fluctuations (see Figure 2.2). The spectral plots

highlight two important facts. First, phase fluctuations are more influenced by large

scale perturbations. This result basically corroborates the Zernike decomposition

analysis described in Section 2.4.3, which indicates that a vast majority of phase

perturbation energy is found in the lowest order modes (tip, tilt, etc.). Second, log-

amplitude fluctuations are relatively insensitive to large-scale perturbations. The peak
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(b) Log-Amplitude Spectrum of (2.106)

Figure 2.2: PSDs for phase and log-amplitude fluctuations as predicted by Rytov
theory for a constant turbulence strength path. Propagation distance is L = 1 km
and the wavelength is λ = 0.5 µm. The modified von Karman atmospheric PSD was
used with L0 = 10 m and l0 = 1 cm.

of the spectrum occurs near a spatial frequency corresponding to the Fresnel zone:

2π/
√
λL. This frequency is 281 rad/m when L = 1 km, λ = 0.5 µm, L0 = 10 m, and

l0 = 1 cm.

2.4.6 Probability Density of Irradiance. Considerable work has been done

(going back to at least the 1960s) to investigate the PDF form for describing the irra-

diance of an optical wave subsequent to propagation through atmospheric turbulence.

The log-normal PDF, one of the earlier results, is generally accepted as a good model

for the weak turbulence regime. A majority of measurement data supports the lower

order normalized moments of the irradiance as predicted by the log-normal model

under weak turbulence conditions [69, 70]. However, some data also indicates that

the log-normal PDF can underestimate the peak and the behavior of the tails [29,49],

which can be important for LaserCom and laser radar applications [8:87]. As turbu-

lence strength increases, measurements indicate greater deviations from log-normal

statistics [29, 69]. Eventually, the optical wave (amplitude) approaches a zero-mean

Gaussian distribution. Therefore, the intensity approaches a negative exponential

distribution (far into the saturation regime).
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The log-normal distribution for the irradiance results from the Rytov approxi-

mation, which implies that the logarithm of both amplitude and irradiance are Gaus-

sian. The log-normal PDF for the irradiance is given by [8:87]

p(I) =
1

IσI
√

2π
exp

[

− [ln(I/E{I}) + σ2
I/2]

2

2σ2
I

]

, I > 0 , (2.108)

where σ2
I is the normalized irradiance variance (a.k.a., the scintillation index) given

by (2.98). The normalized irradiance variance is also related to the log-amplitude

variance according to [5:113]

σ2
I = exp

(

4σ2
χ

)

− 1 . (2.109)

Due to the inadequacy of the log-normal model in strong turbulence scenarios,

various other PDFs have been investigated, such as the K distribution, the I-K distri-

bution, the log-normally modulated exponential, and the log-normal Rician (a.k.a.,

Beckmann’s PDF). However, all of these PDFs have their own drawbacks. Some

are not consistent with measured and simulation data or are only valid in certain

regimes. Others such as the Beckmann PDF have displayed a close fit to measured

and simulation data, but are difficult to work with. The Beckmann PDF contains an

integral with no known closed-form solution and poor convergence properties. Fur-

ther, the Beckmann PDF contains parameters which cannot be directly related to

atmospheric turbulence parameters. Details of these PDFs are not presented here,

but are concisely summarized by Al-Habash, et al. [3]. Several authors also published

simulation results during the mid-1990s for the PDF of irradiance for plane waves [33]

and spherical waves [49] subject to turbulence. The gamma-gamma PDF has been

the subject of more recent work by Andrews, Phillips, and Al-Habash [3, 5], and is

proposed to be a valid model in all turbulence strengths. Furthermore, the two free

parameters of the gamma-gamma model can be calculated from C2
n, path length (L),

and wavelength (λ).
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The gamma-gamma PDF is derived from a heuristic model of optical scintil-

lation due to turbulence by assuming an underlying doubly stochastic process. It is

assumed that small-scale intensity fluctuations are modulated by large-scale intensity

fluctuations, both of which obey independent gamma distributions. The resulting

gamma-gamma PDF is given by [8:90]

p(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
I(α+β)/2−1Kα−β

(

2
√

αβI
)

, I > 0 , (2.110)

where the positive parameter α represents the effective number of large-scale scatter-

ing cells, β represents the effective number of small-scale cells, and Kν(x) is a modified

Bessel function of the second kind. The two free parameters can be calculated using

either measured or simulated values for C2
n, path length (L), and wavelength (λ), as

shown below. Note also that (2.110) has been normalized so that E{I} = 1 [8:91].

For a non-unity mean, the gamma-gamma PDF can be expressed as [8:236]

p(I) =
2(αβ)(α+β)/2

Γ(α)Γ(β)E{I}

(

I

E{I}

)(α+β)/2−1

Kα−β

(

2

√

αβI

E{I}

)

, I > 0 . (2.111)

For a negligible inner scale (i.e., l0 = 0) and a spherical wave, the large-scale

and small-scale variance are given by [7,9]

σ2
x
∼= exp







0.49β2
0

(

1 + 0.56β
12/5
0

)7/6






− 1 (2.112)

and

σ2
y
∼= exp







0.51β2
0

(

1 + 0.69β
12/5
0

)7/6






− 1 , (2.113)

where β2
0 = 0.496C2

nk
7/6L11/6 is the spherical wave Rytov variance [67:201]. Ac-

counting for aperture averaging effects from a receiving aperture of diameter D, the
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spherical wave large and small-scale variance become [8]

σ2
x
∼= exp







0.49β2
0

(

1 + 0.18d2 + 0.56β
12/5
0

)7/6






− 1 (2.114)

and

σ2
y
∼= exp







0.51β2
0

(

1 + 0.69β
12/5
0

)−5/6

1 + 0.90d2 + 0.62d2β
12/5
0






− 1 , (2.115)

where d =
√

kD2/(4L).

From the equations given above for the small and large-scale variance and the

equation for the Rytov variance, the two parameters of the gamma-gamma PDF are

calculated using

α =
1

σ2
x

, (2.116)

and

β =
1

σ2
y

. (2.117)

The total scintillation index in terms of alpha and beta is now given by

σ2
I =

1

α
+

1

β
+

1

αβ
. (2.118)

Also, Al-Habash, et al. [3] actually use the gamma-gamma PDF in terms of the

natural log of intensity to compare their work with existing simulation data published

in the 1990s. Using transformation of a single random variable, where the transfor-

mation is one-to-one, the gamma-gamma PDF is expressed in terms of y = ln(I):

p(y) =
2(αβ)(α+β)/2

Γ(α)Γ(β)
ey(α+β)/2Kα−β[2(αβey)1/2], y > −∞ . (2.119)
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2.5 Wave-Optics Simulations

Monte Carlo wave-optics simulations are often used as a tool to analyze existing

AO systems, predict the performance of new systems, and/or explore a parameter

space in the design. This is due in part to the fact that analytical solutions to the

stochastic wave equation are difficult to derive and do not exist for all turbulence

regimes. Furthermore, the effects of a closed-loop control system on properties of

the optical field compound the difficulties of an analytic approach. Simulations are

also desirable from the standpoint that they are much cheaper than building and

testing complex AO systems, as well as being much safer when high-energy lasers are

involved.

From an optical turbulence standpoint, the atmosphere is typically modelled

as one or more discrete 2-D phase-only perturbation layers, or “phase screens,” cou-

pled with free-space propagation between layers [84:66-67]. This approach assumes

that a continuous atmosphere can be represented by a set of two-dimensional phase

screen(s). This yields good results which closely match an extended turbulence anal-

ysis, provided the number, location, and relative strengths of the screens are chosen

wisely [5]. For some weak turbulence scenarios such as astronomical imaging near

zenith, a single phase screen at the pupil can serve as an accurate model because a

vast majority of turbulence is located near the telescope (at the end of the propa-

gation path), and thus the effects are primarily phase-only. For stronger turbulence

regimes, multiple layers are required to model the amplitude distortions in the optical

field that result from phase perturbations followed by significant additional propaga-

tion distance. Sampling constraints based on turbulence strength (and the associated

diffraction) must also be considered and effectively limit the maximum propagation

distance for a given screen size.

Vacuum (free-space) propagation between screens can be accomplished using

either geometric or Fourier optics. Geometric optics is a valid approach for some

weaker turbulence situations, but does not account for diffraction effects which be-
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come increasingly important as strength of turbulence grows. There are several pos-

sible implementations of a numeric Fourier optics propagator; the Fresnel diffraction

integral and the Fresnel approximation to the angular spectrum propagator are often

used. The WaveTrain™ wave-optics code produced by MZA Associates Corporation

actually uses both formulations, choosing intelligently between the two depending on

propagation distance in order to ease sampling constraints [78].

Temporal evolution of turbulence is traditionally modelled using Taylor’s frozen-

flow hypothesis, which was discussed in Section 2.2.4. Taylor’s hypothesis assumes

that a given snapshot of the atmosphere’s phase perturbation map remains nearly

constant in the time it takes a section of the atmosphere to blow across a telescopes’s

FOV. Therefore, to model wind or target/platform motion, phase screens are simply

shifted laterally during the course of the simulation.

2.5.1 Phase Screen Generation. Two distinct approaches have historically

been taken to generate random screen realizations [65:162-164]. The first entails fil-

tering white noise with a known PSD function describing the phase fluctuations. The

second utilizes a modal decomposition of the distorted phase; summing randomly

weighted modes where coefficients are forced to obey a known covariance (derived

from optical turbulence theory). A multitude of variations on these two basic themes

have been proposed over the past several decades, with primary goals being to de-

crease computational complexity and increase the accuracy of a necessarily discrete

implementation. Several additional methods, including one based on fractals [65:164],

have also been proposed in the literature but have not been implemented. The PSD

and modal expansion methods are discussed in detail in Sections 2.5.1.1 and 2.5.1.2,

respectively.

2.5.1.1 Power Spectral Density Method. The most straightforward

and often used phase screen generation approach is to filter complex white noise

with the square root of a PSD describing phase fluctuations. This forces the PSD of

the random screen to match the known spectrum [61]. The main advantage of this
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method is the speed afforded by the Fast Fourier Transform (FFT) implementation of

the Discrete Fourier Transform (DFT); computational complexity is on the order of

N logN . Furthermore, the PSD approach is easily modified to use any one of several

power spectra describing the phase perturbations. However, there exist at least two

important drawbacks. First, phase screen periodicity is induced by use of the DFT,

resulting in unwanted correlation between the outer edges. The second is an under-

representation of low frequency content. The lowest spatial frequency represented in a

given screen is fXmin
= 1/N∆x, where N is grid size (pixels) and ∆x is sample spacing

(meters per pixel). Thus, the minimum modelled frequency is inversely proportional

to grid size. These drawbacks are typically countered by: 1) creating larger screens,

2) injecting additional low frequency content subsequent to initial screen generation,

or 3) using only a center portion of the original screen. The basic PSD method is now

described.

Subsequent to filtering in the spatial frequency domain and taking the inverse

transform, the real and imaginary parts of the result represent independent random

realizations, given by

φ(x, y) = Re

[

F−1

{

√

Φφ(fX , fY ) [a(fX , fY ) + i b(fX , fY )]

}]

, (2.120)

and

φ(x, y) = Im

[

F−1

{

√

Φφ(fX , fY ) [a(fX , fY ) + i b(fX , fY )]

}]

, (2.121)

where fX and fY are spatial frequencies (m−1) in the x and y directions, respectively,

Φφ(fX , fY ) is the power spectrum describing turbulence-induced phase distortions,

and a and b are pseudo-random numbers generated from a zero-mean, unit-variance

Gaussian distribution. In practice, the FFT is used to enforce this frequency domain

constraint due to its computational efficiency. The corresponding discrete version of
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(2.120) is

φ(n∆x,m∆x) = Re
[

FFT−1
{

√

P (l, k)[a(l, k) + i b(l, k)]
}]

, (2.122)

where ∆x is the phase screen sample spacing, P (l, k) is the power associated with the

spatial frequency (fX = l∆fX , fY = k∆fX), ∆fX is the sample spacing in Fourier

space, m and k are matrix row indices, and n and l are column indices. Use of a square

grid is assumed so that ∆fX = ∆fY . Care must be taken to properly account for the

power under the discretized PSD surface; the power associated with each sample in

Fourier space is given by

P (l, k) = Φφ(l∆fX , k∆fX)∆fX
2 . (2.123)

The relationship between sample spacing in physical and Fourier space is given by

∆fX =
1

N∆x
=

1

L
, (2.124)

where L is the physical extent of the screen and ∆fX is spatial frequency (cycles/me-

ter). Using (2.123), (2.124), and the modified von Karman PSD for optical turbulence

given by (2.50), the discrete phase screen is now described by

φ(n,m) =
√

0.023

(

L

r0

)5/6

Re



FFT−1







[

l2 + k2 +

(

L

L0

)2
]−11/12

exp

[

−0.5632

(

l0
L

)2

(l2 + k2)

]

[a(l, k) + i b(l, k)]

}]

, (2.125)

where the ∆x’s have been removed from the argument of φ to simplify notation.

Depending on the particular FFT implementation used to calculate (2.125), multipli-

cation by an additional scaling factor may be required (the Matlab
R© ifft2 function

requires an N2 factor, where N is the matrix dimension in pixels). Note that use

of complex white noise is unnecessary, but desirable as it allows generation of twice
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Figure 2.3: One phase screen realization created by filtering white noise with the
modified von Karman PSD (typically referred to as the PSD method). The range of
image values is in terms of radians. The parameter values used to generate the screen
were: r0 = 10 cm, ∆x = r0/10, l0 = 1 mm, and L0 = 100 m.

the number of screens for a fixed number of FFT operations. A representative screen

generated using this process is displayed in Figure 2.3. Also note that Kolmogorov

turbulence is self-similar; a given screen can be used to model various turbulence

strengths via the (L/r0)
5/6 factor.

2.5.1.2 Modal Decomposition/Covariance Methods. The modal ex-

pansion method [65,84] has two main advantages. First, screens generated using this

approach do not lack the appropriate low-frequency content. Second, the screens are

not periodic. However, several drawbacks do exist. Modelling temporal evolution

is less straightforward and computation is significantly less efficient than the PSD

method. Truncation error (see Section 2.1.3) also results in a loss of high-frequency

content. The basic method is now described.
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Optical phase perturbations induced by atmospheric turbulence can be de-

scribed as a weighted sum of Zernike polynomials (see Sections 2.1.4 and 2.4.3):

φ(Rρ, θ) ≈
N
∑

i=1

aiZi(ρ, θ) , (2.126)

where N is the number of Zernike modes included and ρ is normalized position ranging

from zero to one. Due to the fact that Zernikes are only orthogonal over the unit circle,

the following transformation is made to allow implementation with an aperture of

arbitrary diameter:

r = Rρ , (2.127)

where r is absolute position and R is the real aperture radius. Using this transforma-

tion, (2.126) becomes

φ(r, θ) ≈
N
∑

i=1

aiZi

( r

R
, θ
)

. (2.128)

To create a random phase screen realization, weighted Zernike modes are summed

together. The weights, ai, are random, but forced to satisfy correlation properties de-

rived from a given PSD describing phase fluctuations due to atmospheric turbulence.

Values of the desired covariance matrix derived from the Kolmogorov PSD are given

by Noll [64]. However, the formulation of Noll’s result as presented by Roggemann

and Welsh [84:97-98] was used here, and is given by

E{aiaj} = 0.0072

(

D

r0

)5/3

(−1)(ni+nj−2mi)/2 [(ni + 1)(nj + 1)]1/2 π8/3δmimj

× Γ(14/3)Γ [(ni − nj − 5/3)/2]

Γ [(ni − nj + 17/3)/2] Γ [(nj − ni + 17/3)/2] Γ [(ni + nj + 23/3)/2]
(2.129)

for i− j = even, and

E{aiaj} = 0 (2.130)

for i − j = odd. Cholesky decomposition applied to the above covariance matrix is

used to create random instances of the Zernike weight vector, a. First, the covariance

46



matrix given by (2.129) and (2.130) is generated for the desired number of Zernike

modes (excluding piston). The covariance matrix is then decomposed into the product

of two square matrices using Cholesky factorization:

C = RRT , (2.131)

where T indicates the matrix transpose operator. Finally, the desired random weight

vector (with the appropriate statistics) is given by

a = Rb , (2.132)

where b is a vector of uncorrelated, zero-mean, unit-variance, Gaussian random num-

bers. Several examples of Zernike phase screens are presented in Figure 2.4. Note the

increase in the detail of screen structure as more Zernike modes are included. Phase

screen statistics should also approach theoretical predictions with an increasing num-

ber of modes.

2.5.2 Phase Screen Validation. Phase screen validation results are now

presented for both the PSD and Zernike generation methods. Aperture averaged

mean square phase (ǫ2) versus aperture size and structure function versus separation

are often calculated and compared to theory for the purpose of validating discrete

phase screens. For the PSD generation method, ǫ2 is normally calculated for screens

where tip and tilt have been removed, because it is known that basic PSD screens

are lacking in low-frequency content. Further, these modes are normally removed by

a beam steering mirror, while all higher-order modes are corrected by a deformable

mirror at the heart of the AO system. 750 screen realizations were used in all cases

to estimate both ǫ2 and the structure function. All PSD phase screen validation

results are based on the modified von Karman PSD, while results for the Zernike

approach are based on the Kolmogorov PSD. For both methods, the Fried Parameter
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(d) Modes 2 through 1000

Figure 2.4: Zernike phase screens created using an increasing number of modes,
where the modal coefficients obey Kolmogorov statistics. The parameter values used
to generate the screens were r0 = 10 cm and ∆x = r0/10. The same random weight
vector realization was used in all cases.

was r0 = 10 cm and sample spacing was ∆x = r0/10. The PSD screens were generated

using an outer scale of L0 = 100 m and an inner scale of l0 = 1 mm.

Theoretical results for the uncompensated (piston-removed) and Zernike tip/tilt-

removed mean square phase as a function of D/r0 were presented in (2.93) and (2.94).

Also recall that with the assumption of homogeneous and isotropic conditions the
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structure function is given by

Dφ(r) = E
{

[φ(~r1)− φ(~r1 + r)]2
}

, (2.133)

where r is the scalar displacement. For each screen, the aperture averaged sum

square phase was calculated for a set of increasing aperture dimensions by extracting

the pixels captured by a given aperture (mask) and calculating their unbiased sample

variance. The dynamically sized mask used to extract the desired portion of the phase

was odd-dimensioned, such that it was symmetric about the on-axis pixel. For the

case of tip/tilt-removed mean square phase, Zernike tip and tilt were also removed

via projection for every aperture size. 750 vectors containing variance versus aperture

size were thus created, and then averaged to garner a final estimate of ǫ2. To estimate

the structure function, (2.133) was implemented numerically by subtracting a phase

screen from a shifted version of itself. The sample mean of the squared difference was

then calculated. This was done as a function of an integer number of pixel shifts. The

structure function was thus calculated twice for each phase screen, by shifting in the

x and y-directions. These two results were then averaged, to obtain an intermediate

estimate of the structure function. A series of 2-term averages was calculated for 750

independent screens, then averaged to garner a final structure function estimate. The

estimated structure functions are compared to the theoretical curve for Kolmogorov

turbulence given by (2.86). Also, the Zernike screens used to estimate statistics were

first generated over a circular region. The maximum square matrix inscribed within

the aperture was then extracted for estimating the structure function.

PSD screen validation results are presented in Figure 2.5 (a) through Fig-

ure 2.5 (f). Figures (b), (d), and (f) are identical to the results of Figures (a),

(c), and (e), but are presented in logarithmic space. Figures (a) and (b) present

results for uncompensated aperture averaged mean square phase versus D/r0. This

result demonstrates the underrepresentation of low-frequency content (i.e., large sep-

arations) in the PSD screens. For the tip/tilt-removed case presented in Figures (c)
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Figure 2.5: Mean square phase and structure function estimates vs. theory for
PSD phase screens using the modified von Karman PSD (r0 = 0.1 m, ∆x = r0/10,
L0 = 100 m and l0 = 1 mm). 750 phase screen realizations were used to estimate
statistics.
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and (d) there is a much better match between simulation and theory, although there is

some deviation for the largest aperture sizes. This may be due to the period nature of

PSD screens. Structure function estimates are presented in Figures (e) and (f). As for

the tip/tilt-included mean square phase, there is a considerable discrepancy between

simulation and theory. Figure (e) corroborates the result of Lane, Glindemann, and

Dainty [56:212]. The discrepancy between simulation and theory at small separation

sizes seen in Figure 2.5(f) is probably due primarily to the loss of low-frequency con-

tent. The increasing discrepancy (roll-off) at large separations is due to the periodic

nature of the FFT, and thus screen statistics. This is why the maximum shift pre-

sented for the structure function is half the width of the screen. The other half of the

simulation result is simply a mirror image of the result presented in Figures 2.5 (e)

and (f).

Zernike screen validation results are presented in Figure 2.6 (a) through Fig-

ure 2.6(d). Figures (b) and (d) are identical to the results presented in Figures (a)

and (c), but are presented in logarithmic space. Figures 2.6(a) and (b) present results

for uncompensated aperture averaged mean square phase versus D/r0. Simulation re-

sults are very close to theory, which demonstrates that the Zernike method properly

captures the low-frequency content which is lost in the PSD approach. Structure func-

tion estimates are presented in Figures (c) and (d) and closely match the theoretical

curve.

As discussed above, one documented reason for the disparity between theory and

simulation for PSD screens is the loss of low frequency content due to sampling [56,72].

The lowest frequency in the sampled spectrum to be modelled is 1/L, where L is the

physical width represented by an array of samples. This drawback can be offset

to some degree by increasing the number of samples (for a constant spacing), but

this increases the computational burden. The Zernike approach provides a much

better match with theory, but is more computationally intensive and requires more

computer RAM. Extending the Zernike approach to temporal simulation via Taylor’s

Frozen Flow Hypothesis (see Section 2.2.4) is also less straightforward than for the
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Figure 2.6: Mean square phase and structure function estimates vs. theory for phase
screens created by summing randomly weighted Zernike polynomials 2 through 990,
where the random weights obey Kolmogorov statistics (r0 = 0.1 m and ∆x = r0/10).
750 phase screen realizations were used to estimate statistics.

PSD method. WaveTrain™, a wave-optics simulation software package developed by

MZA Associates Corporation, was used during this research effort to produce some

key research results presented in Chapters IV through VI. WaveTrain™ uses the

PSD method by default, but includes an option which augments power in the tip/tilt

Zernike modes. This approach combines, to some extent, benefits of both the PSD

and Zernike methods.
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III. LaserCom and Adaptive Optics

This chapter provides necessary background on LaserCom and Adaptive Op-

tics (AO). Sections 3.1 through 3.6 address AO, while Sections 3.7 and 3.8

address LaserCom. Section 3.1 provides a brief history of AO and addresses rele-

vance to Air Force applications. Section 3.2 describes a basic AO system applied to

imaging. Section 3.3 provides further information on the major subsystems: beacon,

Wavefront Sensor (WFS), wavefront computer, and Deformable Mirror (DM). Sec-

tion 3.4 discusses Strehl ratio - the typical performance metric for AO systems. First,

the mathematical relationship between pupil and focal plane fields for monochromatic

light is reviewed. Several forms of the Strehl ratio are then defined. Section 3.5 reviews

several potential sources of performance degradation: scintillation and branch-points,

anisoplanatism, and DM/wavefront fitting error. Section 3.6 describes one type of

advanced AO system currently being investigated to improve performance in very

challenging atmospheric scenarios. Section 3.7 provides a brief history of LaserCom.

Section 3.8 describes digital communication and a basic direct detection LaserCom

system. Last, Section 3.9 is a literature review describing relevant current research in

wavefront control and signal processing for LaserCom.

3.1 Brief History of Adaptive Optics

Like many ideas realized for the first time in the twentieth century due to

technological and manufacturing advances, the concept of AO is not particularly new.

Horace Babcock was the first to suggest, in the early 1950s, a system for improved

astronomical imaging [10]. His approach used an electrostatically controlled thin layer

of oil to introduce corrective phase delays. In 1957 a Russian, Vladimir P. Linnik,

independently described the same concept in a Soviet Journal [58]. Several decades

later, when the space programs of Russia and the U.S. were in full swing, the DoD took

the lead in advancing AO technology. The first fully operational AO system was built

and installed in a surveillance telescope at Haleakala Observatory on Maui, Hawaii,

for the purpose of imaging Russian satellites launched during the Cold War [94].
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Today, AO is an important technology for improving the performance of both

military and commercial systems that image or propagate optical sources through

the atmosphere. AO is an enabling technology for the multi-billion dollar ABL pro-

gram [80] and the U.S. government has made a large investment in technology de-

velopment at several sites: the Starfire Optical Range (SOR) on Kirtland AFB, NM;

White Sands Missile Range, NM; and the Air Force Maui Optical and Supercomput-

ing Site (AMOS) in Hawaii. Both SOR and AMOS are capable of capturing near

diffraction-limited images of space objects from the ground. Since the unveiling in

the early 1990s of classified work accomplished by the DoD, AO technology has also

found its way into many astronomical telescopes [65:5]. Newer applications for AO

continue to emerge, such as retinal imaging and laser welding [28,39]. AO should also

improve the performance of LaserCom systems in many scenarios [57,96–98,100].

3.2 Basic AO System for Compensated Imaging

It has long been known that turbulence in the atmosphere distorts images of

heavenly bodies as seen from Earth. Operation of a single deformable mirror AO

system to compensate for these distortions in real-time is conceptually quite simple.

The standard design includes a Beam Steering Mirror (BSM) to correct for global

wavefront motion (i.e., phase tilt) and a DM to correct higher-order phase aberrations.

The basic AO system for compensated space object imaging is depicted by Figure 3.1.

Light waves from a distant star (i.e., point source) are essentially planar as they

enter the Earth’s atmosphere. Propagating downward, a spatially coherent plane

wave encounters pockets of air that vary in temperature and pressure, resulting in

slight variations in refractive index. Therefore, different portions of the wavefront are

subject to slightly different optical path lengths between the top of the atmosphere

and the collecting aperture of a telescope. The distorted phase of the wavefront

arriving at the telescope is visualized as being “wrinkled.”

The incoming distorted wavefront is captured by the primary mirror, re-imaged

onto the beam steering and deformable mirrors, and then passed on to a WFS.
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Figure 3.1: Adaptive optics system for compensated space object imaging.

Phase distortions are monitored in real-time by the wavefront sensor. The Shack-

Hartmann (S-H) sensor is typically used and actually measures wavefront slopes over

an array of sub-apertures. Signals from the WFS are processed and used to control a

deformable mirror on a millisecond timescale - leveling the wavefront and increasing

spatial coherence. In the case of the S-H WFS, the slope data is passed to a computer

that employs an algorithm (such as least-squares) to reconstruct an estimate of the

continuous phase, which is then used to provide control commands to the deformable

mirror. The wavefront sensor is normally placed “downstream” from the deformable

mirror so the control system can perform in a closed-loop fashion. Also, the DM

is normally placed downstream from the BSM due to dynamic range limitations of

current DM hardware. For observations near zenith the sensed wavefront contains

primarily phase-only distortions, and thus nearly diffraction-limited results may be

obtained.

3.3 Major AO System Components

As seen in Figure 3.1, the major components required for AO system operation,

in addition to a telescope, include a beacon (i.e., reference source), wavefront sensor,

(real-time) wavefront computer, deformable mirror, and imaging cameras. A beacon
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is required to sense the atmosphere-induced phase distortions. The wavefront sensor

provides an estimate of either the field, or the first or second derivative of the wavefront

phase. Dedicated real-time computing then processes the WFS measurements and

delivers appropriate control signals to the deformable mirror. The deformable mirror

imposes the required perturbation to the phase of the incoming field such that the

reflected field is approximately planar. A flat tip-tilt mirror, commonly called a beam

steering mirror, is also normally included in the system “upstream” from the DM

to correct for overall tilt in the distorted wavefront, thus removing what appears as

jitter to the human eye. The corrected field is then imaged by science cameras for

the purpose of astronomy, satellite surveillance, etc.

3.3.1 Beacon. Beacons come in two basic varieties: natural and man-

made [44:70-71]. As might be guessed, a natural beacon simply uses starlight as a

reference source. A natural beacon is commonly termed a Natural Guide Star (NGS),

and utilizes either direct starlight or sunlight reflected by a satellite to probe the at-

mosphere. Natural guide stars have several key limitations. First, when using a star

as a reference, it must either be the object to be imaged, or be close enough such that

correlation exists between the atmosphere along the two lines of sight. A larger angu-

lar separation clearly leads to a decrease in correlation of atmospheric fluctuations and

performance. De-correlation due to angular separation is mathematically described

by the isoplanatic angle, θ0, which is discussed in Section 3.5. The NGS must also be

bright enough to provide sufficient SNR in the WFS. This requirement severely limits

the number of stars or satellites that can be imaged using this approach.

Two types of man-made beacons, or Laser Guide Stars (LGS), have been inves-

tigated and demonstrated: Rayleigh and sodium. Rayleigh beacons are created by

focusing a laser-beam at approximately 15 to 20 km above the Earth. The backscatter

(due to Rayleigh scattering) in the visible or Near Infrared (NIR) can be collected and

used as a beacon field. The sodium beacon utilizes a layer of atomic sodium located

in the upper atmosphere at an altitude of approximately 90 km. A laser source with
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a wavelength of λ = 589 nm can be used to excite the sodium atoms, resulting in

resonant fluorescence that is collected by the telescope. Whereas a range of wave-

length sources can be used for a Rayleigh beacon, the sodium beacon requires one

specific wavelength. One major benefit of a LGS is that it can be positioned at the

optimal location in the sky. However, the Rayleigh beacon exists at a relatively low

altitude and therefore fails to sense all of the atmospheric fluctuations. Furthermore,

the addition of a LGS adds significant complexity to system design.

3.3.2 Wavefront Sensor. Several types of wavefront sensors have been uti-

lized in practice, and several more have been discussed in the literature. The two

designs typically seen in actual systems are the Shack-Hartmann and the Shearing

Interferometer (SI) WFSs. Both of these designs sense the average wavefront slope

in each of an array of subapertures. More recently, the Self-Referencing Interferom-

eter (SRI) WFS has been explored and is expected to outperform both the S-H and

SI in strong turbulence (high scintillation) conditions [16–19, 74]. The SRI WFS is

currently being investigated both analytically and experimentally by the Air Force

Research Laboratory [73, 74]. The primary difference between the SRI WFS and the

S-H and SI WFSs is that it provides an estimate of the actual field.

3.3.3 Wavefront Computer and Control Algorithms. High speed Digital

Signal Processors (DSPs) are required to analyze the WFS measurements and cre-

ate appropriate control signals for the phase correcting device. This must be done

in near real-time. For the continuous face-sheet DMs typically used in practice, the

DM should be commanded with a smooth and continuous function in order to avoid

stressing/damaging the mirror. A “reconstructor” algorithm is used to produce an

estimate of the continuous phase. A Least-Squares (LS) reconstructor combined with

a S-H WFS is the most straightforward and common implementation. The time scale

for adjusting the AO system is about r0/ν, where ν is the wind velocity. A typical

value of r0/ν at visible wavelengths is 30 msec. To sense and remove the turbulence

induced phase differences, the AO control system must operate at approximately 10
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times the rate of atmosphere change. This implies a system bandwidth of approxi-

mately 300 Hz.

3.3.4 Deformable Mirror. This section could also be more generally termed

“Phase Correction Devices.” However, continuous face-sheet piezo-electric deformable

mirrors have been the dominant implementation used in astronomical and military

systems. As stated before, the goal of this component is to impart phase changes onto

an optical field in order to reverse the effects of atmospheric turbulence. In addition to

continuous face-sheet DMs, Micro Electro-Mechanical System (MEMS) mirrors [39]

and liquid crystal Spatial Light Modulators (SLMs) [63] have also been investigated

and are beginning to receive more attention. The continuous face-sheet deformable

mirrors must be protected from being commanded to shapes that are highly abrupt,

as they can be damaged by very high spatial frequencies. A beam steering mirror

is also typically required due to dynamic range limitations of current DM hardware

technology.

3.4 Focal Plane Metrics

3.4.1 Propagation between Pupil and Focal Planes. For coherent light such

as a laser, optical fields in the pupil and focal planes are related by a Fourier transform.

Following Goodman [42:102-4], the basic development is now presented. The Fresnel

diffraction integral is given by

U(x, y; z) =
ejkz

jλz
ej

k
2z (x2+y2)

∞
∫∫

−∞

{

U(ξ, η)ej
k
2z (ξ2+η2)

}

e−j
2π
λz

(xξ+yη)dξdη , (3.1)

where (ξ, η) are coordinates in the pupil plane and (x, y) are coordinates in the focal

plane. Assuming the more general case of strong turbulence, monochromatic light

incident on the telescope aperture can be described by

Ul(ξ, η) = A(ξ, η)ejφa(ξ,η) . (3.2)
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Making the typical paraxial approximation allows the phase transformation imparted

by a converging lens to be described as

tl(ξ, η) = e−j
k
2f (ξ2+η2) . (3.3)

The complex amplitude distribution behind the lens is now given by

U ′
l (ξ, η) = A(ξ, η)ejφa(ξ,η)P (ξ, η)e−j

k
2f (ξ2+η2) , (3.4)

where P (ξ, η) defines the aperture area. Propagation of the incoming field from the

pupil plane to the focal plane is now described using Fresnel diffraction:

Uf (x, y) =
ejkf

jλf
ej

k
2f (x2+y2)

∞
∫∫

−∞

{

U ′
l (ξ, η)e

j k
2f (ξ2+η2)

}

e−j
2π
λf

(xξ+yη)dξdη . (3.5)

Substituting (3.4) for U ′
l gives

Uf (x, y) =
ejkf

jλf
ej

k
2f (x2+y2)

×
∞
∫∫

−∞

{

A(ξ, η)ejφa(ξ,η)P (ξ, η)e−j
k
2f (ξ2+η2)ej

k
2f (ξ2+η2)

}

e−j
2π
λf

(xξ+yη)dξdη . (3.6)

The two quadratic phase factors in the integrand of (3.6) exactly cancel, leaving

Uf (x, y) =
ejkf

jλf
ej

k
2f (x2+y2)

∞
∫∫

−∞

{

A(ξ, η)ejφa(ξ,η)P (ξ, η)
}

e−j
2π
λf

(xξ+yη)dξdη . (3.7)

The focal plane field is now seen to be the two-dimensional Fourier transform of that

part of the incoming field captured by the pupil (aperture), with some additional

phase factors out front. Using operator notation for the Fourier transform gives a
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more compact expression:

Uf (x, y) =
ejkf

jλf
ej

k
2f (x2+y2)F

{

A(ξ, η)ejφa(ξ,η)P (ξ, η)
}

|fX,Y =x,y
λf

. (3.8)

The field intensity is the quantity of interest because it can be directly measured. The

instantaneous focal plane intensity is described as

If (x, y) = Uf (x, y)U
∗
f (x, y) = |Uf (x, y)|2 (3.9)

=
1

λ2f 2
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∞
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−∞
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λ2f 2
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∣

∣
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{

A(ξ, η)ejφa(ξ,η)P (ξ, η)
}
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λf

∣

∣

∣

2

. (3.11)

3.4.2 Strehl Ratio. The metric typically used to assess performance of AO

systems is the Strehl ratio, which is defined as the on-axis intensity in the focal plane

(i.e., far-field) produced by the aberrated system divided by the on-axis intensity for

the unaberrated (diffraction-limited) case:

S =
If (0, 0)

If,DL(0, 0)
. (3.12)

Using (3.10), the Strehl ratio becomes

S =

1
λ2f2

∣

∣

∣

∣

∞
∫∫

−∞

{

A(ξ, η)ejφa(ξ,η)P (ξ, η)
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e−j·0dξdη
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∣

∣

∣

2

1
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A0(ξ, η)P (ξ, η)dξdη

∣

∣

∣

∣

2 , (3.14)

where A0(ξ, η) is the amplitude profile resulting from vacuum propagation. For a

single DM AO system applying a single phase modulation in the pupil plane, the
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“corrected” Strehl is given by

S =

∣

∣

∣

∣

∞
∫∫

−∞

A(ξ, η)ej[φa(ξ,η)+φc(ξ,η)]P (ξ, η)dξdη
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∣

2
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∣

∞
∫∫

−∞

A0(ξ, η)P (ξ, η)dξdη

∣

∣

∣

∣

2 , (3.15)

where φc(ξ, η) represents the phase correction imparted by the deformable mirror (or

other device).

For this research, two forms of Strehl ratio are defined: absolute Strehl (SA)

and relative Strehl (SR). Absolute Strehl is defined to be the result given by (3.14),

and is repeated here:

SA =

∣

∣

∣

∣

∞
∫∫

−∞

A(ξ, η)ejφa(ξ,η)P (ξ, η)dξdη
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∣

∣
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∣

∣

∣

∣

∞
∫∫

−∞

A0(ξ, η)P (ξ, η)dξdη

∣

∣

∣

∣

2 . (3.16)

The term absolute is indicative of the fact that the denominator of (3.16) provides a

constant normalization; the power in A0(ξ, η) depends only on vacuum propagation

parameters. Relative Strehl is defined to be the value of on-axis intensity in the far-

field, normalized by the on-axis intensity for a uniform phase with the same amplitude

profile:

SR =

∣

∣

∣

∣

∞
∫∫

−∞

A(ξ, η)ejφa(ξ,η)P (ξ, η)dξdη

∣

∣

∣

∣

2

∣

∣

∣

∣

∞
∫∫

−∞

A(ξ, η)P (ξ, η)dξdη

∣

∣

∣

∣

2 . (3.17)

The term relative is indicative of the fact that the denominator of (3.17) provides a

relative normalization; the total power in A(ξ, η) varies due to scintillation. Therefore,

SR provides a measure of improvement relative to the total power currently captured

by the aperture. Also note that (3.17) is sometimes referred to as the “phasor sum

Strehl.”
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3.4.3 Power-in-the-Bucket. For some applications, it may be useful to

consider the energy captured by a disk of given radius in the focal plane. This metric

is typically called either “Encircled Strehl” or “Power-in-the-Bucket” (PIB) [95], and

can be expressed as

PIB =

∫∫

√
x2+y2≤R

If (x, y)dxdy

∫∫

√
x2+y2≤R

If,DL(x, y)dxdy
, (3.18)

where R is the radius of the circular area of interest in the focal plane, centered on

the optical axis.

3.5 Error Sources (Partial List)

3.5.1 Scintillation. Strong turbulence conditions result in temporal and

spatial fluctuations in the intensity of the received optical field. The characterization

of these fluctuations is discussed in Chapter II. Scintillation causes problems for

AO systems. As an example, a drop in intensity on some of the wavefront sensor

subapertures can lead to phase estimation errors. These errors may propagate through

the system causing the closed-loop control system to become unstable. Scintillation

can also cause problems with tracking. Branch points are related to scintillation and

WFS performance, and are discussed in greater detail in the following section.

3.5.2 Branch Points. Wavefront sensors in use today typically provide data

that indirectly describes the wavefront phase. In the case of the Shack-Hartmann

and shearing interferometer sensors, quantities proportional to wavefront slopes are

obtained. The slopes are related to the phases by

g = Gφ , (3.19)

where g is a vector of wavefront phase differences, φ is a vector of actual phase values

(or DM actuator positions), and G is a matrix describing the geometric configuration

of wavefront sensor and phase determination positions [95:258]. In a closed-loop

62



implementation accounting for the effect of a deformable mirror, G is often referred

to as the influence or poke matrix. Typically, there are more equations than unknowns

yielding an overdetermined system. The least-squares estimate for the phase is then

given by

φ̂ = (GTG)−1GTg . (3.20)

Propagation of a coherent monochromatic optical field through a turbulent at-

mosphere (where the field is subject to spatially varying phase perturbations) results

in constructive and destructive interference in the amplitude (intensity) of the field.

Locations in the optical field where amplitude goes to zero indicate the presence of

a Branch Point (BP). In practice, BPs are located by summing the principal value

gradients around the smallest possible closed contour [40], where the principal value

operator PV {·} produces an equivalent phase in the range −π to π. If a BP is

enclosed, then the contour integral of principal value phase gradients equals ±2π.

Likewise, if a BP is not enclosed, the contour integral equals zero. The LS estimator

for the phase does not correctly reconstruct the phase if BPs are present, because it

assumes that measured slopes are indicative of the gradient of a scalar phase func-

tion. Actually, the function describing the gradient of the perturbed phase must

be treated as the sum of the gradient of a scalar potential and the curl of a vector

potential [37,40]:

g(~r) = ∇s(~r) +∇× ~H(~r) , (3.21)

where ~r is a position vector of x and y components, s(~r) is a scalar potential, and

~H(~r) is a vector potential. Since g(~r) only has components in the x and y direc-

tions, ~H(~r) clearly has non-zero components only in the z direction. In going from

a discrete space to a continuous formulation, the G matrix above can be equated to

the gradient operator (∇), GT can be equated to the divergence operator (∇·), and

GTG can be equated to the Laplacian operator (∇2) [37]. A continuous formulation

allows additional insight into the operation of the LS reconstructor. Equation (3.20)
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describing the LS estimate is recast in a continuous space formulation as

∇2φ̂(~r) = ∇ · [∇s(~r) +∇× ~H(~r)] . (3.22)

Recall the vector identity stating that the divergence of the curl of a vector is equal

to zero [91], and (3.22) becomes

∇2φ̂(~r) = ∇ · [∇s(~r)] , (3.23)

which indicates that the LS estimate for the phase has completely ignored the con-

tribution from the vector potential. The actual phase can now be defined as

φ(~r) = φLS(~r) + φHID(~r) , (3.24)

where φHID(~r) is the “hidden” phase unaccounted for in the LS reconstruction [37,73].

The intensity and principal value (i.e., wrapped) phase of one scintillated pupil

plane field are displayed in Figures 3.2(a) and 3.2(b), respectively. The image val-

ues in Figure 3.2(a) are in terms of irradiance (watts/m2). The field contains three

branch points whose locations are indicated in Figure 3.2(b). An open square indi-

cates a positive BP where the contour integral yields a value near 2π, while the open

circle indicates a negative BP corresponding to a contour integral value near −2π.

This example was produced in a wave-optics simulation supporting research for Chap-

ters IV and V. The scenario is a 100 km path with a constant turbulence strength

of C2
n = 2× 10−17 m−2/3 and a 10 m/s uniform crosswind. The optical wavelength is

1.5 µm and the log-amplitude variance for this case is σ2
χ = 0.19. Note that all branch

points are located in regions of low intensity. The focal plane intensity corresponding

to this pupil plane field is displayed in Figure 3.2(c). The focal plane image is broken

into two separate spots, both near in size to the Airy disk. This example of spot

breakup is a preview of important results in Chapters IV and V.
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Figure 3.2: A scintillated pupil plane field example generated in wave-optics sim-
ulation which contains three branch points. Pupil plane intensity is plotted in (a),
while pupil plane principal value phase is plotted in (b). The corresponding focal
plane intensity is presented in (c). The scenario is a 100 km path with a 10 m/s
uniform crosswind at a wavelength of 1.5 µm. The turbulence strength is a constant
C2
n = 2× 10−17 m−2/3.

The LS and hidden components of the phase according to (3.24) are plotted in

Figure 3.3. Figure 3.3(a) shows the LS reconstruction of the phase; this surface is

a form that is realizable by a continuous face-sheet deformable mirror. The hidden

phase (containing branch points) is displayed in Figure 3.3(b) and contains abrupt

changes that are difficult for a continuous face-sheet deformable mirror to realize in
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Figure 3.3: The LS and hidden portions of the scintillated phase profile presented
in Figure 3.2. The scenario is a 100 km path with a 10 m/s uniform crosswind at a
wavelength of 1.5 µm. The turbulence strength is a constant C2

n = 2 × 10−17 m−2/3

and log-amplitude variance is σ2
χ = 0.19.

practice. Note that no BPs were observed in wave-optics simulation data generated

for the results of Chapters IV and V when C2
n was less than 2× 10−17 m−2/3.

3.5.3 Anisoplanatism. Anisoplanatism is used to describe a series of po-

tential error sources for AO systems. In general, the word anisoplanatism is used

to describe errors resulting from a difference or nonuniformity in a parameter. The

Greenwood frequency describes the temporal effect of finite correction system band-

width [44:337-339]:

fG =

[

0.102k2

∫ L

0

C2
n(z)v

5/3
w (z)dz

]3/5

, (3.25)

where vw(z) is wind velocity as a function of path position and integration is from

observer to source. For typical scenarios of interest, fG is in the range of tens to

hundreds of Hz [95:44]. In terms of the typical aperture averaged mean square phase

error metric, the impact of Greenwood frequency is modelled as [99:25]

ǫ2temporal =

(

fG
f3dB

)3/5

, (3.26)
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where f3dB is the closed-loop control bandwidth. A rule of thumb for determining

bandwidth requirements for an AO system is described below [104]:

1. Calculate fG,

2. Assume AO system bandwidth is ≈ 2× fG (Strehl ≈ 0.7), and

3. Sample at about 10 × the AO system bandwidth for loop stability.

Another anisoplanatic error is introduced when the AO beacon and the imaging

object (or propagation target) of interest are not the same and separated by a finite

angle. The isoplanatic angle is used to describe this effect and is given by [36]

θ0 =

[

2
√
π

Γ(1/6)

5Γ(2/3)
k2

∫ L

0

C2
n(z)z

5/3dz

]−3/5

, (3.27)

where z is path position and integration is from observer to source. θ0 is the approx-

imate angle beyond which the optical turbulence becomes uncorrelated. The mean

square phase error due to angular anisoplanatism can be expressed as [44]

ǫ2angular =

(

θ

θ0

)5/3

, (3.28)

Additional errors can also be described in this fashion, such as tilt, focus, and chro-

matic anisoplanatism [44].

3.5.4 Wavefront Measurement and Fitting Errors. For an N degree-of-

freedom deformable mirror, the greatest reduction in mean square wavefront error

is achieved by fully compensating the first N Karhunen-Loeve modes. However,

given a real DM with finite actuator spacing and dynamic range, there will be some

residual error between the actual wavefront and mirror surface. Hudgin analyzed the

error between a LS fit and Kolmogorov turbulence for several different forms of the

influence function [53]. His result for the wavefront error variance after correction is

given by

ǫ2fitting = α

(

rs
r0

)5/3

, (3.29)
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Figure 3.4: Example of an advanced AO system, where two DMs are used to correct
both amplitude and phase distortions.

where rs is the actuator spacing, r0 is the atmospheric coherence length (Fried pa-

rameter), and α depends on the form of the influence function. Published values

include α = 0.23 for a Gaussian influence function and α = 1.26 for piston-only

control [95:71].

Likewise, error is introduced from the WFS due to a finite number of subaper-

tures. In other words, the wavefront is more accurately measured as the number

of subapertures increases. In terms of mean square phase error, this degradation is

modelled by [99:30]

ǫ2WFS = 0.17

(

dsub
r0

)5/3

, (3.30)

where dsub is the subaperture size and all subapertures are of equal dimension.

3.6 Advanced AO Concepts

The addition of a second deformable mirror to a transmitting system, as shown

in Figure 3.4, allows pursuit of full-wave conjugation. This concept is often referred to

as Multi-Conjugate Adaptive Optics (MCAO). Wave conjugation is achieved by taking

advantage of the fact that phase modulation followed by propagation results in changes

to the field amplitude distribution. By employing a phase-retrieval type algorithm,

the second deformable mirror can be driven to a shape that results in an amplitude

field equal to that of the sensed field after propagation of a laser from DM-2 to DM-1.
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A two-DM AO system with the second deformable mirror conjugate to infinity (i.e.,

the far-field) was studied by Roggemann and Lee and shown to provide an increase

in on-axis field amplitude at the target by a factor of 1.4 to 1.5, as compared with

a one-DM phase-only correction system [83]. Additional investigations of the MCAO

concept have been accomplished by Barchers, Ellerbroek, Fried, and Link [11–15].

3.7 Brief History of LaserCom

Best known for the telephone, Alexander Graham Bell also invented optical

wireless communication. Bell actually viewed the “photophone” (see Figure 3.5) as

his most important invention, saying [1] “It’s the greatest invention I have ever made;

greater than the telephone!” Dr. Bell was the sole owner of 18 patents and shared 12

more with collaborators; of these 30, four were for the photophone [21–24]. His de-

vice first demonstrated wireless communication on 3 Jun 1880 using intensity (analog)

modulated sunlight. The following year, Dr. Bell and his assistant, Charles Sumner

Tainter, used the photophone to successfully transmit the human voice through ap-

proximately 200 m of free-space [1].

Bell’s invention was a precursor to modern fiber optic and LaserCom systems.

However, the photophone was highly susceptible to the weather, given that sunlight

was used as the source and no compensation techniques were implemented to combat

Figure 3.5: Illustrations of Alexander Graham Bell’s photophone transmitter (left)
and receiver (right) (courtesy of the Bell-Labs website).
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Table 3.1: Pros and cons of a LaserCom system.

Challenges Advantages

Atmospheric turbulence, absorption,
and scattering

More compact (e.g., smaller antenna)
and lighter weight components

Acquisition, tracking, and pointing are
more difficult

Increased security via narrow beam

Building sway and seismic activity Increased bandwidth/data-rate
Physical obstructions Rapid deployment
Fog, clouds, rain No FCC and construction licenses/fees

challenges such as poor weather and atmospheric turbulence. The advent of fiber

optics overcame virtually all of the environmental drawbacks to Bell’s original design

- optical fiber communication is immune to adverse weather and electro-magnetic

interference. However, fiber optics has some of its own drawbacks. Many of these are

addressed in a complementary fashion by free-space LaserCom. A summary of pros

and cons of free-space LaserCom is presented in Table 3.1 [8:201-203].

Today, LaserCom is envisioned as a value-added tool in the overall communi-

cation network for both commercial and military applications: a rapidly deployable,

high-bandwidth, line-of-sight connection. In fact, commercial LaserCom components

were installed within days of the terrorist attack on the World Trade Center, suc-

cessfully re-establishing high-speed data links used by Merrill Lynch Brokerage [54].

In this case, LaserCom demonstrated its potential to temporarily patch a high-speed

connection, but it is also being developed and utilized for permanent connections.

Commercial terrestrial LaserCom vendors have their sights set on the market segment

described by the so-called “Last Mile” problem, aiming to serve telecom providers

with a cheaper, rapidly deployable pipeline from buildings connected to fiber to nearby

buildings that are not [54]. From a military perspective, LaserCom technology is of in-

terest as a replacement and/or complement to existing and future RF based links [79].

USAF and DoD leadership have highlighted the importance of communication on the

battlefield and outlined technology transformations being pursued to create a more
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agile force able to meet new and emerging threats [81, 87]. LaserCom is identified

as a specific technology being explored to provide more secure, higher bandwidth

connections with the goal of providing decision makers with near real-time access to

data collected anywhere [80,81]. LaserCom research for military applications is being

conducted and sponsored by the Air Force Research Laboratory, the Air Force Insti-

tute of Technology, and other federal agencies such as the Defense Advanced Research

Projects Agency [50].

3.8 LaserCom System Overview

The major components of a digital communication system are presented in Fig-

ure 3.6 [90]. The modulator converts bits to symbols prior to transmission through the

channel. In the case of LaserCom, the channel is the stochastic atmosphere, whereas

in fiber optics it is a well characterized glass fiber. For the On-Off Keyed (OOK)

direct-detection system considered in this research, the relationship between bits and

symbols is one-to-one. The symbols for a 1 and 0 are simply the on and off states

of the laser source, respectively. The encoder and decoder implement Forward Error-

Correction Coding (FEC) to decrease BER for a fixed transmitter power. Examples

include linear block, convolutional, Reed-Solomon, and turbo codes [43,90]. FECs are

not considered in this research for the following reasons. First, the focus of this work

is on channel characteristics. Second, convolutional and turbo-codes are capable of

providing significant performance improvement, but suffer from decoding delays - a

drawback for real-time communication [43].
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The optical receiver model used for this research is described by Figure 3.7. The

source wavefront originates from the transmitter’s pupil plane. The primary aperture

of the receiving telescope corresponds to the receiver’s pupil plane, while the detector

lies in the receiver’s focal plane. Since the transmitter and receiver are separated by a

significant distance for all scenarios of interest, the receiver’s focal plane corresponds

to the image plane. Thus, an image of the transmitting source is produced at the

telescope focus. For coherent light, the (complex) optical field in the focal plane is

related to the optical field in the pupil plane by a two-dimensional Fourier transform.

In a basic LaserCom system as described by Figure 3.7, a detector is placed in

the receiver’s focal plane. A filter follows the detector, where the filter’s bandwidth

is chosen to match the frequency content of the incoming signal. The filter output

is the sum of signal and noise currents. Some applications require coupling into a

single mode fiber (SMF) [73], which would replace the detector in the focal plane.

Fiber coupling provides increased bandwidth, optical amplification, and flexibility in

detector placement. The core diameter for SMFs is on the order of 9 µm [60].
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3.9 Literature Review

A variety of approaches have been studied for the purpose of mitigating fluc-

tuations in the received optical field subsequent to propagation through atmospheric

turbulence. For this literature review, the large body of existing work is broadly

divided into two major categories: wavefront control and signal processing. First,

wavefront control techniques involve physically changing the optical field. Second,

signal processing techniques are those which can be implemented solely in software

or firmware. Important concepts from this body of work are now summarized.

3.9.1 Wavefront Control.

• Partial Spatial Coherence (transmitter)

The degree of fluctuations in an optical field subsequent to propagation through

turbulence depends on both strength of turbulence and the degree of spatial

coherence at the transmitter. This has led to investigations of partial coher-

ence for decreasing intensity fluctuations and improving (decreasing) bit-error

rate [76, 77]. One simple approach to decrease spatial coherence is placing a

phase diffuser in front of the transmitting beam [77]. However, by partially

destroying spatial coherence at the transmitter, the beam size is increased and

average power at the receiver is reduced. Also, Ricklin and Davidson [77] note

that gains from partial coherence diminish with increasing turbulence strength,

as the turbulence itself begins to dominate the degree of spatial coherence in

the optical field.

• Adaptive Beam Size (transmitter)

Adaptive adjustment of the transmitter beam size has been investigated and

shown to mitigate intensity fluctuations at the receiver for a ground-to-satellite

configuration. From a system design standpoint, Yenice and Evans [105, 106]

suggest that controlling the beam size by a factor of two over relatively long

time scales should be feasible. Nevertheless, this technique requires real-time
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knowledge of atmospheric statistics and a more complicated architecture for the

transmitter.

• Spatial Diversity (transmitter and/or receiver)

The optical power captured by a real aperture will experience smaller fluctua-

tions than a point receiver. A noticeable reduction occurs as the dimension of

the receiving telescope increases beyond the spatial coherence of intensity. In

this case, multiple patches of intensity are summed together and thus reduce the

overall level of fluctuations. For tactical applications, this approach is limited

due to size constraints on the receiving telescope. Furthermore, the SNR benefit

from large apertures may be offset by increased background noise [8:226]. Vari-

ations on this theme include spatial diversity at the receiver via multiple smaller

apertures [8], and at the transmitter via multiple source beams [48,68,88].

Implementing any of the above three wavefront control techniques requires hard-

ware modification. Also, the first two techniques, partial coherence and adaptive beam

size, pertain solely to the transmitter. This research only addresses receiver-based

techniques and focuses on solutions that allow incorporation onto tactical platforms

such as UAVs. Thus, the research approach is fundamentally different from those

above.

• Adaptive Optics (transmitter and/or receiver)

Tyson, et al. [98, 100] have experimentally demonstrated AO wavefront control

as a means to improve BER performance of LaserCom systems. However, for

strong scintillation scenarios, obtaining valid wavefront measurements is diffi-

cult. The S-H WFS degrades considerably in the presence of strong scintilla-

tion [17], which motivated the current development of the SRI WFS [73] by the

Air Force Research Laboratory. The SRI WFS has been demonstrated to pro-

vide superior performance over the S-H in the presence of strong scintillation.

An advanced MCAO system, as described in Section 3.6, could utilize the SRI

WFS to yield a more robust AO system. This research presents a tracking-only
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solution and demonstrates why it is optimal in the scenarios studied for the

relevant error metric, BER.

AO technology has been thoroughly studied for HEL and space object imaging

applications. However, the past five years have seen growing interest in us-

ing AO for improving LaserCom performance. Researchers have demonstrated

BER reduction due to AO through both analysis [96] and experiment [98,100].

However, a system design approach based on mean square phase [44], which is

related to average Strehl ratio [47], continues to dominate the literature. This

research is unique in that system optimization and design are driven by specific

failure mechanisms instead of the standard design equations based on mean

square phase.

3.9.2 Signal Processing.

• Forward Error-Correction Codes and Interleaving (transmitter and receiver)

FECs have recently been considered for free-space LaserCom systems. Zhu and

Kahn [110] developed an approximate upper bound on error-correction cod-

ing for LaserCom, assuming weak turbulence. Block, convolutional, and turbo

coding performance was considered, as well as varying the interleaver length

for block and turbo codes. Zhu and Kahn [108, 109] also studied maximum-

likelihood and Markov model detection techniques. Ohtsuki [66] showed that

turbo-codes outperform convolutional codes for certain LaserCom scenarios. Yu,

Li, and Ricklin [107] studied Reed-Solomon codes and demonstrated improved

performance for log-normal (i.e., weak turbulence) atmospheric statistics. FECs

are not considered in this research for the following reasons. First, the focus of

this work is on channel characteristics. Second, convolutional and turbo-codes

are capable of providing significant performance improvement, but suffer from

decoding delays - a drawback for real-time communication [43]. However, FECs

are not incompatible with the work presented. In fact, they are complementary,
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and results from Chapter IV guide the design of FECs and interleaving for the

air-to-air scenarios studied.

• Adaptive Thresholding (receiver)

An adaptive detection threshold has recently been explored as a method to

decrease BER in the presence of scintillation. Burris, et al. [26, 27, 45] have

focused on the problem of parameter estimation. Kalman filters [26,27,45], least

mean square adaptive predictors [45], and maximum likelihood techniques [45]

have been evaluated for estimating the mean and variance of bit levels over time.

These techniques have been shown to be capable of improving BER by an order

of magnitude or greater [25, 52]. This same group of researchers are currently

implementing a system to experimentally evaluate adaptive thresholding in a

maritime environment at a Naval Research Laboratory facility. The propagation

path is a 10 mile ground-to-ground link across the Chesapeake Bay. Current

system design and initial results were presented in August 2005 [52].

The existing work of Burris, et al. has focused on the detection/estimation

aspect of the adaptive thresholding problem, as well as experimental evalua-

tion of performance in a maritime environment. The results of this research

both complement and extend these published results. Chapter VI provides a

new analytic expression for BER using an adaptive threshold, given an arbitrary

PDF describing turbulence-induced intensity fluctuations. Furthermore, current

published results are based on data from a 10 mile ground-to-ground maritime

scenario. These results are not directly applicable to a moderate to long-distance

air-to-air scenario due to the shorter propagation length and ground-layer tur-

bulence considerations. The gamma-gamma PDF has received significant at-

tention in recent work and currently provides the best analytic description of

turbulence-induced intensity fluctuations. In fact, the gamma-gamma PDF has

been recently utilized to produce analytic BER predictions describing the effect

of AO [96] and aperture averaging [8] on LaserCom performance. The gamma-

gamma PDF is proposed for use in extending the analytic BER expressions for
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optimal fixed and adaptive thresholds derived in Chapter VI to a wide variety

of turbulence and propagation scenarios. The new BER expressions, including

the gamma-gamma PDF, provide the first analytic performance predictions for

an adaptive threshold applied in a moderate to long-distance air-to-air scenario

of interest.
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IV. Alternate Tracking Techniques for Fade Mitigation

A majority of Adaptive Optics (AO) research and development has focused on

maximizing average Strehl by minimizing residual mean square phase aber-

ration. Furthermore, most (if not all) currently operational AO systems are ground

based. However, AO has more recently been considered as a means to improve perfor-

mance of LaserCom systems operating through the atmosphere. For communication

performance, the probability of fade and the associated tail of the signal power’s PDF

are more important than average signal power. Small airborne platforms face size,

weight, power, and other limitations which are not a primary concern for ground

based systems. Optimization for fade probability versus average Strehl and the con-

straints imposed on small airborne platforms motivated a metric-driven, critical mode

approach to wavefront control.

Section 4.1 addresses relevant Air Force applications and presents the results

of a basic engagement analysis for a 100 km propagation path. Propagation effects

and system performance were investigated further using a wave-optics simulation

constructed in WaveTrain™ and executed from Matlabr . Details of the simulation

setup and model validation are provided in Section 4.2. A first-order Strehl analysis

is presented in Section 4.3.1. Spot breakup in the focal plane image is demonstrated

in Section 4.3.2 and identified as the primary failure mechanism. Peak tracking was

investigated as a means to limit the impact of spot breakup on fade probability and

was found to outperform both centroid tracking and AO in the air-to-air scenario.

Initial peak tracking simulation results are presented in Section 4.3.3. The impacts of

a higher fidelity receiver model are explored in Section 4.3.4. Fidelity was increased

by including mirror dynamics and a model of the Shack-Hartmann wavefront sensor.

Performance impacts were minimal for peak tracking, but considerable for traditional

AO. The possibility of a peak tracker jumping from one distinct bright region to

another during a single period of spot breakup was also considered, and possible

modifications to the basic algorithm are proposed for future research. The duration

of signal fades and periods of focal plane image breakup are then characterized in
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Table 4.1: Air and space platforms for potential LaserCom links [55,62].

(feet) (km)
Airborne Platform Approximate Ceiling

Predator A 25,000 7.62
Predator B 50,000 15.24

Airborne Laser (ABL) 40,000 12.19
Global Hawk 65,000 19.81
Airship (low) 70,000 21.34
Airship (high) 100,000 30.48

Spaceborne Platform Approximate Altitude

LEO Satellite 3.28× 106 1000
GEO Satellite 114.8× 106 35000

Sections 4.3.5 and 4.3.6, respectively. From a system design standpoint these results

are important for both sensor frame-rate and system bandwidth requirements, as well

as optimizing error-correction codes. Final conclusions from this effort and directions

for future research are presented in Sections 4.4 and 4.5, respectively.

4.1 Introduction and Air-to-Air Engagement Analysis

Potential LaserCom links of military interest would connect ground, air, and

space-based assets [50]. A list of potential air and space platforms is presented in

Table 4.1 [55, 62]. In particular, UAVs on reconnaissance/surveillance missions can

produce large amounts of imaging data. In the air-to-space scenario, a LaserCom

uplink to a communication satellite in Geosynchronous Orbit (GEO) is a potential

solution for high bandwidth offload and data dissemination. Another possibility is

an air-to-air scenario where one UAV is reconnoitering over enemy lines and a second

UAV is deployed some distance away and used to relay real-time imagery to fixed or

mobile positions on the ground. The second UAV would provide a flexible, quickly

deployed high-speed link over obstacles such as mountainous terrain, as well as limiting

the effects of atmospheric turbulence for a potential air-to-ground optical connection.

Other possible links include ground-to-air, space-to-space, and space-to-ground. Due

to the increasing role of UAVs on the battlefield [50] and their probable requirement for
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Figure 4.1: Models of turbulence strength as characterized by the refractive index
structure parameter, C2

n, for altitude ranging from 8 to 15 km.

simple and compact wavefront control systems, the air-to-air scenario was identified

as the focus of this study.

The scenario used to study LaserCom fades and fade mitigation is modelled

after a theoretical UAV-to-UAV optical communication link. The maximum ceiling

of the Predator is approximately 8 or 15 km, depending on the model [62]. The

nominal scenario for this research is a 100 km crosslink with each platform at an

altitude of 10 km. The minimum altitude of the line-of-sight between the two UAVs is

approximately 9.8 km. Therefore, the path is modelled as having constant turbulence

strength. Several models of the refractive index structure parameter C2
n are plotted

in Figure 4.1 for altitudes ranging from 8 to 15 km [20,51]. C2
n values are seen to vary

from approximately 1×10−18 to 3×10−17 m−2/3 over this altitude range. In reality, C2
n

varies with altitude, location (geography), and time of day [84:61]. These models are

based on curve fitting to the average of many measurements. Furthermore, this work

is concerned with LaserCom performance under difficult conditions, so turbulence

strength was allowed to range from 1×10−18 to 1×10−16 m−2/3. Note that the worst-
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Table 4.2: Optical turbulence parameters describing a 100 km air-to-air LaserCom
scenario at a wavelength of 1.5 µm. Both the transmitting and receiving apertures
have a diameter of 20 cm.

Plane Wave Spherical Wave

C2
n (m−2/3) θ0 (µrad) r0 (cm) σ2

χ D/r0 r0 (cm) σ2
χ D/r0

1× 10−18 6.77 119.8 0.02 0.17 215.8 0.01 0.09
2× 10−18 4.47 79.0 0.05 0.25 142.4 0.02 0.14
3× 10−18 3.50 62.0 0.07 0.32 111.6 0.03 0.18
4× 10−18 2.95 52.1 0.10 0.38 93.9 0.04 0.21
5× 10−18 2.58 45.6 0.12 0.44 82.2 0.05 0.24
6× 10−18 2.31 40.9 0.14 0.49 73.6 0.06 0.27
7× 10−18 2.11 37.3 0.17 0.54 67.1 0.07 0.30
8× 10−18 1.95 34.4 0.19 0.58 62.0 0.08 0.32
9× 10−18 1.81 32.1 0.22 0.63 57.7 0.09 0.35
1× 10−17 1.70 30.1 0.24 0.67 54.2 0.10 0.37
2× 10−17 1.12 19.9 0.48 1.01 35.8 0.19 0.56
3× 10−17 0.88 15.6 0.72 1.29 28.0 0.29 0.71
4× 10−17 0.74 13.1 0.96 1.53 23.6 0.39 0.85
5× 10−17 0.65 11.5 1.20 1.75 20.6 0.48 0.97
6× 10−17 0.58 10.3 1.44 1.95 18.5 0.58 1.08
7× 10−17 0.53 9.4 1.68 2.14 16.9 0.68 1.19
8× 10−17 0.49 8.6 1.92 2.32 15.6 0.78 1.29
9× 10−17 0.46 8.1 2.16 2.49 14.5 0.87 1.38
1× 10−16 0.43 7.6 2.40 2.65 13.6 0.97 1.47

case of 1× 10−16 m−2/3 matches what was used by Roggemann and Koivunen [82] in

a study of wavefront sensing and deformable mirror control in strong scintillation.

Table 4.2 presents values of the isoplanatic angle (θ0), Fried parameter (r0),

and log-amplitude variance (σ2
χ) for a wavelength of 1.5 µm and C2

n values ranging

from 1 × 10−18 to 1 × 10−16 m−2/3. Corresponding values of D/r0 are also provided

for a 20 cm diameter aperture. Because this scenario assumes constant turbulence

strength, these parameter values apply to both propagation directions: outbound and

inbound. Equations for θ0, r0, and σ2
χ are presented in Chapters II and III and are
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repeated here for reference. The well known result for log-amplitude variance is [67]

σ2
χ(L) = 0.5632 k7/6

∫ L

0

[γ(L− z)]5/6C2
n(z) dz , (4.1)

where γ = 1 for a plane wave or γ = z/L for a spherical wave, and integration is from

source to observer. For constant turbulence strength, the integrals can be evaluated

due to the resulting constancy of C2
n. For spherical wave log-amplitude variance, the

integral over the C2
n weighting factor is not trivial, but can be solved in terms of

Gamma functions [67:197]. For plane and spherical waves, the simplified expressions

for log-amplitude variance are given by [67]

σ2
χ,plane =

−5
√

3

33

(π

2

)5/3 Γ(2/3)Γ(−5/12)

Γ(11/12)
λ−7/6L11/6C2

n

≈ 2.62λ−7/6L11/6C2
n (4.2)

and

σ2
χ,sph =

−5
√

3

96

(π

2

)5/3 Γ(2/3)Γ(−5/12)Γ(5/6)Γ(11/6)

Γ(11/12)Γ(5/3)
λ−7/6L11/6C2

n

≈ 1.06λ−7/6L11/6C2
n . (4.3)

The corresponding expressions for the Fried parameter are [84]

r0,plane =

(

5

4

)1/10 [
6Γ(6/5)

π3

]1/2 [
Γ(2/3)

Γ(1/6)

]3/5

λ6/5
(

LC2
n

)−3/5

≈ 0.185λ6/5
(

LC2
n

)−3/5
(4.4)

and

r0,sph =

(

5

4

)1/10 [
6Γ(6/5)

π3

]1/2 [
Γ(2/3)

Γ(1/6)

]3/5

λ6/5

(

3

8
LC2

n

)−3/5

≈ 0.185λ6/5

(

3

8
LC2

n

)−3/5

. (4.5)
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The simplified expression for the isoplanatic angle (which is independent of plane

versus spherical wave propagation) is [89]

θ0 = π−3/2

[

3

5

Γ(1/6)

Γ(2/3)

]−3/5

λ6/5
(

L8/3C2
n

)−3/5

≈ 0.104λ6/5
(

L8/3C2
n

)−3/5
. (4.6)

Using the outcome of this basic analysis, specific engagements were identified as

candidates for further study using wave-optics simulation. The main concern of this

research is communication performance under difficult conditions, so attention was

focused on engagements resulting in moderate to strong turbulence [20:186]. This is

the point where conventional techniques become inadequate, both in terms of under-

standing system failure and ability to mitigate the fades.

4.2 Simulation Methodology

4.2.1 Simulation System Overview. The wave-optics simulation used for this

study was constructed in WaveTrain™. Once the model was created and debugged, the

simulation code was saved as a *.dll file. Matlabr was then used to both run the simu-

lation (via the mex-file interface) and analyze results. The top-level block diagram as

viewed in WaveTrain™ is presented in Figure 4.2. Basically, the simulation consists of

a laser source, the atmosphere, data sensors, and several compensation schemes. The

source is a 1 watt collimated Gaussian beam. A near infrared wavelength of 1.5 µm

was chosen for this study based on existing source and sensor technologies developed

for commercial telecommunications. The atmosphere is modelled by 10 phase screens

which are equally spaced over the 100 km path. The first screen is located 10 km

from the source and the last screen lies in the pupil plane of the receiver. The inner

and outer scales of turbulence were assumed to be 1 mm and 100 m, respectively.

An identical set of random seeds was used to generate screens for each C2
n value to

allow comparisons of instantaneous Strehl across turbulence strength and provide ex-

perimental repeatability. According to available documentation, WaveTrain™ uses
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Figure 4.2: The WaveTrain™ model used to generate a wave-optics simulation for
studies of deep fade phenomenology and fade mitigation.

the standard FFT phase screen generation method. However, an optional switch

locF lag [71] initiates augmentation of tip/tilt power, which is underrepresented in

the basic FFT approach [72]. Subsequent to initial model validation efforts, all phase

screens for this research were generated using locF lag = 1 which corresponds to a

first-order (tip/tilt) Zernike boost. The variances of Zernike modes two and three

(see Table 2.1) are increased to match Noll’s theoretical result [64], which assumes

Kolmogorov turbulence.

A sample spacing of 1 cm was used for all propagation grids. For this grid spac-

ing, the chosen wavelength, and screen-to-screen propagation distance, the minimum

grid size to avoid aliasing of the fresnel angular spectrum propagator [42] is nmin = 300

pixels. The next highest power of two is 512 which is the propagation grid size used

for all results presented here. Also note that r0 values at C2
n = 1 × 10−16 m−2/3 are

7.6 cm and 13.6 cm for plane and spherical waves, respectively. These values imply

that for the strongest turbulence strength studied, there are somewhere between 7

and 14 samples per r0. Parameter values for the initial WaveTrain™ simulation are
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Table 4.3: Initial WaveTrain™ parameter values for the wave-optics simulation.

SOURCE
Type Collimated Gaussian beam
Beam Waist (1/e point of amplitude) 7.5 cm
Power 1 watt
Wavelength 1.5 µm
Aperture Diameter 20 cm (no central obscuration)

ATMOSPHERE
Engagement Scenario Air-to-Air
C2
n Profile Uniform

Path Length 100 km
Phase Screen Profile 10 uniformly spaced screens
Phase Screen Generation Method FFT with low-order correction
Wind Speed (uniform crosswind) 10 m/s

TRACKING
Receiver Aperture Diameter 20 cm (no central obscuration)
Beam Steering Mirror (BSM) Dynamics 2-axis critically damped harmonic oscillator
BSM Time Constant 1× 10−4 sec
Track Camera Size 256× 256 pixels
Pixel Size 0.586 µm (∼ 31 pixels across Airy disk)
Camera Frame Rate 1 kHz
Integration Time 1 µsec
System Latency 0 sec

ADAPTIVE OPTICS (AO)
Receiver Aperture Diameter 20 cm (no central obscuration)
Deformable Mirror (DM) Dynamics Critically damped harmonic oscillator
Actuator Time Constant 1× 10−4 sec
Number of DM Actuators 21
Number of HWFS Subapertures 16
Wavefront Sensor Camera Size 257× 257 (64 samples per subaperture)
Pixel Size 2.34 µm (∼ 31 pixels across Airy disk)
Camera Frame Rate 1 kHz
Integration Time 1 µsec
System Latency 0 sec

given in Table 4.3 and basically describe an idealized model with no latency, no noise,

and oversampling of the focal plane.
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Figure 4.3: Vacuum propagation results used for model validation and performance-
metric normalization.

4.2.2 Vacuum Propagation Results. The following data were collected in

the case of no atmosphere to verify normalization, particularly for calculation of log-

amplitude variance (σ2
χ) and performance metrics:

1. Source field at transmitter pupil plane,

2. Pupil plane field at receiver, and

3. Focal plane intensity at receiver.

Images of vacuum propagation results are displayed in Figure 4.3. The source trans-

mits 1.0 w (0 dB) of optical power through a 20 cm aperture. In a perfect vacuum with

performance limited only by diffraction effects, 34.9 mw (-14.57 dB) of optical power

is captured at the receiver by a 20 cm aperture. In the focal plane, the power in the

on-axis pixel is 41.8 µw (-43.79 dB). For a focal length of f = 1 m, the power within a

circular area matching the size of the Airy disk (diameter = 2.44λf/D = 18.3 µm) is

29.3 mw (-15.34 dB). This is 83.8% of the power captured by the pupil and matches

well with the 84% predicted by diffraction theory [46:461].

4.2.3 Atmospheric Model Design. Several points should be considered when

setting up a layered atmospheric model in a wave-optics simulation. One primary con-
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Table 4.4: Simulated and theoretical log-amplitude variance for a 100 km uniform
turbulence path at a wavelength of 1.5 µm. 100 independent atmospheric realizations
were used to estimate σ2

χ for each value of C2
n.

σ̂2
χ from Simulation σ2

χ from Theory

C2
n (m−2/3) locF lag = 0 locF lag = 1 Plane Wave Spherical Wave

2× 10−17 0.16 0.19 0.48 0.19
3× 10−17 0.24 0.30 0.72 0.29
4× 10−17 0.31 0.40 0.96 0.39

cern is that sampling requirements are satisfied, which is discussed in Section 4.2.1.

The focus here is on four other considerations impacting the choice of number, gen-

eration method, and placement of phase screens:

• The impact of phase screen low-order correction on simulated irradiance fluctu-

ations at the receiver.

• The minimum screen separation must be greater than L0 to allow use of inde-

pendent phase screens for each layer.

• The modelling accuracy for most optical turbulence parameters depends on the

number of screens.

• Wave-optics simulations inherently assume that each segment represents a phase

only perturbation, so the amplitude fluctuations introduced by any single layer

should be small.

As stated in Section 4.2.1, WaveTrain™ uses the basic FFT method for gen-

erating statistically independent phase screens. This method suffers from a well-

documented underrepresentation of low-frequency variations [72]. To determine whether

or not the optional low-order Zernike boost has a noticeable impact on simulated ir-

radiance fluctuations, log-amplitude variance was estimated for several turbulence

strengths and for both locF lag = 0 and locF lag = 1 conditions. The on-axis pixel

was used to estimate σ2
χ from 100 independent realizations of the atmosphere. Re-

sults are presented in Table 4.4. Note that by including low-order phase correction,
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the simulated log-amplitude variance increased on the order of 20 to 30%. Often,

the underrepresentation of low frequencies is ignored by assuming their removal by a

closed-loop system. Published results exploring the impact of the cumulative effects

of missing low-frequency content (in multiple layers) on statistics of the received field

were not found during the literature review. Due to the focus of this research on

the impact of intensity fluctuations on fade probability, locF lag = 1 was used for all

subsequent simulations.

Assuming that the simulation will generate statistically independent phase screens,

an upper limit on the number of screens is imposed by the outer scale of turbulence,

L0. In order to allow screen independence, the following is required:

∆L =
L

N
≥ L0 (4.7)

where L is the total propagation distance, N is the number of screens, L0 is the outer

scale, and uniform screen spacing is assumed. An upper limit for the number of phase

screens can be expressed as

Nmax =
L

L0

. (4.8)

For the scenario studied here with L = 100 km and L0 = 100 m, the maximum

number of screens is 1000. In practice, available computing resources must also be

considered in choosing a value for N . Typically, 4 to 20 screens are used [71, 84]

with the low end of this range coinciding with astronomical applications where a

significant portion of the total turbulence is located near the aperture [84:66-7]. For

paths yielding moderate to strong scintillation, such as the extended turbulence path

studied in this research, 10 to 20 screens is typical [15]. As stated previously, this

research used 10 screens over a 100 km path, matching that used by Roggemann and

Koivunen [82].

The third consideration for setting up a wave-optics simulation is to ensure that

enough screens are used to properly model the parameters of interest. For the metric

of interest (fade probability), intensity fluctuations are of ultimate concern, but pupil
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plane phase is directly related to focal plane intensity and thus important for wavefront

compensation techniques. Many parameters describing optical turbulence effects are

proportional to moments of the C2
n profile. In most cases, error is introduced by

including a necessarily finite number of layers. Often, this effect is studied, if at all,

by increasing the number of screens and seeing if results change. However, better

analytic quantification is sought here by examining the difference between continuous

and layered C2
n profiles, and the resulting impact on parameters of interest. Results

are now presented for both σ2
χ and r0.

The discretization error in modelling the log-amplitude variance and Fried pa-

rameter is now quantified. The equation for log-amplitude variance as a function of a

continuous C2
n profile is given in (2.105) for the spherical wave case. These equations

were derived from Rytov theory by assuming the Kolmogorov spectrum and a specific

form of the source wavefront. By further assuming that the turbulence lies in layers

separated by ∆L = L/N , (2.105) can be rewritten as [82,84]

σ2
χ,layered(L) =

−5
√

3π

144

Γ(2/3)Γ(−5/12)

Γ(11/12)
21/6k7/6L

11/6

N8/3

N
∑

m=1

[m(N −m)]5/6 C2
nm

.

(4.9)

The expression in (4.9) assumes uniform screen spacing with the first screen

located ∆L from the source and the last screen located in the receiver’s pupil plane.

By also assuming constant turbulence strength, (4.9) becomes

σ2
χ,layered(L) =

−5
√

3π

144

Γ(2/3)Γ(−5/12)

Γ(11/12)
21/6k7/6L

11/6

N8/3
C2

n

N
∑

m=1

[m(N −m)]5/6 .

(4.10)

For the case of non-uniform turbulence, C2
n could be modelled as piecewise-constant.

The discretization error for log-amplitude variance is now expressed as

εσ2
χ

=
|σ2
χ − σ2

χ,layered|
σ2
χ

. (4.11)
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Substituting (4.3) and (4.10) into (4.11) gives the following error expression for spher-

ical wave log-amplitude variance as a function of the number of screens:

εσ2
χ,sph

(N) = 1− 16

3

Γ(5/3)

Γ(5/6)Γ(11/6)
N−8/3

N
∑

m=1

[m(N −m)]5/6 . (4.12)

The corresponding expression for a plane wave source is given by

εσ2
χ,pln

(N) = 1− 11

6
N−11/6

N
∑

m=1

(N −m)5/6 . (4.13)

An identical approach can be taken to describe the error in modelling phase

fluctuations. The resulting discretization error for the spherical wave Fried parameter

is given by

εr0,sph(N) = 1−
(

8

3
N−8/3

N
∑

m=1

m5/3

)−3/5

. (4.14)

Note that in the plane wave case, there is no discretization error for the Fried param-

eter because there is no weighting factor on the C2
n profile.

Analytic results of (4.12), (4.13), and (4.14) are plotted in Figure 4.4 for N =

1, 2 . . . 50. Although Roggemann and Koivunen [82] did compare the numerical values

of the layered and continuous formulations of log-amplitude variance for their cho-

sen value of N [82:913], the results in Figure 4.4 provide a general result to guide

the selection of N . Roggemann and Koivunen published (spherical wave) values of

σ2
χ,layered = 0.155 and σ2

χ = 0.158 corresponding to ten layer and continuous C2
n

profiles, respectively. These values correspond to a discretization error of 1.9% per

Equation (4.11), which matches well with the result of Figure 4.4 for N = 10. Equa-

tions (4.12), (4.13), and (4.14) provide a compact tool to assist an analyst in choosing

the appropriate number of phase screens in a constant turbulence strength scenario,

and with simple extensions non-constant C2
n as well.

Last, the extent to which the model has maintained a phase-only effect from each

individual layer is considered. For the worst case scenario of C2
n = 1 × 10−16 m−2/3,
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Figure 4.4: Log-amplitude variance and Fried parameter formulation error due to
a layered C2

n profile. The scenario is a constant turbulence strength path with N
uniformly spaced phase screens. The first screen is ∆L away from the source and the
last screen is located N ×∆L from the source, lying in the receiver’s pupil plane.

the single (10 km) layer log-amplitude variance is 0.0352 and 0.0142 for plane and

spherical wave sources, respectively. This corresponds to a spherical wave Rytov

variance of 0.057, which corresponds to the weak irradiance fluctuation regime as

desired [5:98-99].

4.3 Results

Fade probability is the performance Metric of Interest (MOI). This can be cal-

culated for various quantities describing the received signal, such as Strehl, power-in-

the-bucket, and optical fiber coupling efficiency. Strehl ratio was chosen for the results

presented here based on its historical precedence. Strehl is typically defined as the

ratio of the aberrated on-axis focal plane intensity to that for the case of unaberrated

phase. This quantity is termed the relative Strehl ratio (SR) because it describes

performance relative to the power captured by the telescope at a given point in time

and does not account for power lost due to scintillation. The fade rate calculations
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presented here are in terms of absolute Strehl (SA), which is defined as the ratio of

the aberrated on-axis focal plane intensity to that resulting from vacuum propagation.

Absolute Strehl is more useful for describing performance of a communication system,

but relative Strehl may provide additional insight into the reasons for performance

degradation.

4.3.1 First-Order Performance Analysis. Estimates of log-amplitude vari-

ance from simulation data (see Table 4.4) indicate that the Gaussian beam source is

behaving much like a point source. Therefore, spherical wave Rytov theory results for

the Fried parameter are also assumed to be indicative of the simulation. Correspond-

ing values of D/r0 were presented in Table 4.2. Note that D/r0 < 1 until C2
n exceeds

5 × 10−17 m−2/3. Even for the strongest turbulence considered (1 × 10−16 m−2/3),

D/r0 < 1.5. These results indicate that atmosphere-induced phase perturbations in

the receiver pupil plane are largely dominated by tip and tilt, even in the strongest

turbulence conditions. From a system design perspective, this leads to consideration

of a tracking-only solution as a primary option. Simple beamsteering is especially

attractive for mobile tactical platforms where simplicity, compactness, and low power

consumption are critical.

Performance is further explored using analytic results for Strehl. The “extended

Marechal approximation” to the average relative Strehl ratio is given by [44,89]

E{SR} ≃ e−ǫ
2

(4.15)

where ǫ2 is the aperture averaged mean square phase error in radians2. Equation (4.15)

is valid when ǫ is less than about two radians, assumes that amplitude fluctuations

are negligible, and is often used for top-level analysis and design of wavefront control

systems (see Section 3.5). This approximation yields a simple formula that can be

combined with the results of Noll [64] to theoretically estimate performance as a
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Figure 4.5: Analytic results for mean relative Strehl ratio using the extended
Marechal approximation and the results of Noll.

function of D/r0 and an assumed number of perfectly removed Zernike modes:

E{SR} ≃ e−α(D/r0)5/3

(4.16)

where the value of α depends on which modes are removed. Three cases were

evaluated: uncompensated (α = 1.0299), tracking-only with removal of modes 2

and 3 (α = 0.134), and tracking plus AO with removal of modes 2 through 24

(α = 0.0180) [84]. The second case models an ideal tracking system, while the third

case approximates an ideal AO system with tracking and a 21 actuator higher-order

correcting element. Resulting average Strehl values are plotted in Figure 4.5. For the

strongest turbulence case of C2
n = 1× 10−16 m−2/3, (4.16) predicts worst case Strehls

of 0.14 for an uncompensated system, 0.77 for tracking-only, and 0.97 for tracking

plus AO. These results imply that tracking-only is a good solution, increasing SR by

a factor of 5.5. While tracking plus AO improves SR more, it comes with signifi-

cant added cost and complexity. Also, this is a first-order analysis and thus ignores

scintillation effects which will decrease SR averages stated above.
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4.3.2 Initial Simulation Results. Based on the discussion presented in Sec-

tion 4.3.1, a tracking-only system is an attractive alternative. At the same time, the

given path distance and turbulence strengths correspond to the region of moderate to

strong scintillation and the results of Marechal and Noll are not definitive. Therefore,

a series of wave-optics simulations was undertaken to better understand performance

under these challenging conditions.

After several exploratory simulation runs, a database of temporally correlated

pupil fields was generated, encompassing 10 values of C2
n: [1, 2 . . . 10] × 10−17 m−2/3.

A uniform crosswind of 10 m/s (22.4 mph) in the x-direction and 0 m/s in the y-

direction was applied. The Gaussian beam source was propagated through the 100 km

(10 screen) path and receiver pupil fields were captured at 10 kHz. For a 1024× 1024

pixel “atmosphere,” 512 × 512 propagation grid, and 10 m/s wind, the maximum

shift of the 10 screen atmosphere is 512 pixels without phase screen wrapping. Shifts

greater than 512 pixels would result in repeated atmospheric statistics and degrade

simulation accuracy. Pupil plane sample spacing is 1 cm per pixel, resulting in the

following calculation for number of samples per atmospheric realization:

512 pixels× 1 cm/pixel

10 m/s
× 10 kHz = 5120 samples per atmosphere . (4.17)

Thirty such 5120 sample (i.e., 0.512 sec) runs were accomplished for each value of C2
n,

giving a total of 30×5120 = 153, 600 (complex) pupil fields per turbulence strength. In

other words, thirty independent realizations of the atmosphere were generated for each

turbulence strength prior to propagation and screen shifting based on Taylor’s frozen

flow hypothesis (see Section 2.2.4). This approach provides multiple independent sets

each containing temporally correlated pupil fields, which allows for investigation of

temporal effects of turbulence and the ability to estimate various statistical quantities.

Because this investigation is only considering wavefront control at the receiver, this

pupil field database can be subsequently used as input to the receiver portion of the

WaveTrain™ model without having to re-propagate through the phase screens. This

94



2 3 4 5 6 7 8 9 10

x 10
−17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 

 

Uncompensated

Centroid Tracking

LS−Phase Removal

Peak Tracking

Turbulence Strength, C2
n (m−2/3)

E
{S

R
}

Figure 4.6: Simulation results for mean relative Strehl ratio calculated from wave-
optics simulation. Approximately 153,600 data points from 30 0.512 sec simulation
runs were used to estimate each E{SR} value. The scenario is a 100 km constant
turbulence path with a 10 m/s uniform crosswind at a wavelength of 1.5 µm.

alleviates some of the computational burden each time a new wavefront control scheme

is investigated. A receiver model written solely in Matlabr is also an option at this

point, and was the approach taken next.

As the first step beyond analytic results of Section 4.3.1, the simulated pupil

fields were propagated to the focal plane and metrics were calculated. This approach

yields quicker results than WaveTrain™ at the expense of fidelity. First, mirror dy-

namics and signal processing latency are ignored. Second, the modelling of AO perfor-

mance is based on perfect LS phase correction. This approach essentially provides an

upper bound for the typical Shack-Hartmann/least-squares reconstructor system. In

anticipation of upcoming results, this section also presents results for a peak intensity

tracker.

Estimates of mean relative Strehl ratio are plotted in Figure 4.6. Simulation

results are more optimistic than the Marechal/Noll approximation in the uncom-

pensated case, but more pessimistic for centroid tracking and AO, which now yield

improvement factors of less than 2 and 2.5, respectively. Simulation results for com-
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plete LS-phase removal and centroid tracking both display a more rapid falloff in

relative Strehl once turbulence strength exceeds C2
n = 3 × 10−17 m−2/3, which is the

region where the scenario enters the moderate amplitude fluctuation regime [5]. How-

ever, results for peak tracking in Figure 4.6 are very close to analytic predictions for

ideal tracking in Figure 4.5. This result is at least partially explained by observations

described in the next paragraph. Also note that relative Strehl for LS-phase removal

and peak tracking both drop off at the nearly the same rate as turbulence strength

increases, while centroid tracking drops off more rapidly.

In terms of communication system performance, deep signal fades are the great-

est concern. BER for OOK direct-detection communication systems depends on

the area under the PDF tail for signal-plus-noise conditions. For a closed-loop sys-

tem operating in moderate to strong turbulence, the distribution average and vari-

ance may not have significant impact on BER. Therefore, the entire temporal set

(30 × 0.512 sec = 15.36 sec per C2
n value) of absolute Strehl data for the centroid

tracking case was examined and some of the deepest fades identified. Starting with

the weakest turbulence explored in the simulation, C2
n = 1 × 10−17 m−2/3, one deep

fade was observed which clearly stood out from the rest of the data. The corre-

sponding focal plane images were generated and a well-formed Airy-sized spot was

observed throughout the fade period. Values of total power captured by the 20 cm

telescope during the same period were then examined and a corresponding drop in

power entering the aperture was observed. This type of fade cannot be addressed

by the receiver alone. Next, the two deepest fades for C2
n = 2 × 10−17 m−2/3 were

investigated, which both standout visually as being much deeper than any others at

this C2
n value, and are both significantly deeper than the minimum of the entire data

set for C2
n = 1× 10−17 m−2/3. The focal plane images corresponding to the minimum

of each fade are presented in Figures 4.7(a) and (b).

In both cases, the focal plane image has completely separated into two distinct

regions, each comparable in size and shape to an Airy pattern. The occurrence of

this degree of spot breakup is somewhat counterintuitive because D/r0 is less than
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is 3 and the image is frame 2719 of
5120. The value of absolute Strehl
is SA = 0.0014 (-28.7) dB.
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(b) The atmospheric random seed
is 0 and the image is frame 3726 of
5120. The value of absolute Strehl
is SA = 0.0023 (-26.4) dB.

Figure 4.7: Two examples of focal plane image spot breakup for centroid tracking

and a uniform turbulence profile of C2
n = 2 × 10−17 m−2/3. The image in (a) corre-

sponds to the minimum in SA during the deepest fade at this turbulence strength,
while (b) corresponds to the minimum of the second deepest fade. The scenario is a
100 km path with a 10 m/s uniform crosswind at a wavelength of 1.5 µm.

one (≈ 0.6). However, the spherical wave Rytov variance is 0.8, indicating that the

scenario is approaching moderate scintillation conditions. In Chapter V, a greater

understanding of the root cause of image breakup is pursued. For now, simply note

that spot breakup occurs (if only rarely) for values ofD/r0 less than 1 and is identified

as a failure mechanism for LaserCom, where extremely low bit-error rates are typically

desired [67].

4.3.3 Benefit of Peak Tracking. The occurrence of spot breakup is not a

great concern if there exists a fast enough detector that is also large enough to capture

the entire image plane. For moderate bandwidths, such detectors exist and could be

placed at the telescope focus. However, for current bandwidth requirements, this is

not the case. Thus, an alternate approach is considered whereby captured energy

is coupled into a SMF. The SMF is then coupled to a detector. For this set-up,

spot breakup becomes a significant concern from the standpoint of fade probability.

Coupling into an optical fiber may also be desirable for amplification purposes, such
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Figure 4.8: Simulation results for mean absolute Strehl ratio calculated from wave-
optics simulation. Approximately 153,600 data points from 30 0.512 sec simulation
runs were used to estimate each value of mean Strehl. The scenario is a 100 km path
with a 10 m/s uniform crosswind at a wavelength of 1.5 µm.

as in the self-referencing interferometer wavefront sensor currently being developed by

the Air Force Research Laboratory [73]. Flexibility in detector placement is another

potential advantage. For this research, fiber-coupled detection is assumed. The core

diameter for SMFs is on the order of 9 µm [60]. The diameter of the Airy disk

for the chosen system parameters (see Table 4.3) and a focal length of f = 1 m

is 2.44λf/D = 18.3 µm. Therefore, a traditional centroid tracking approach may

force a low point between two peaks onto the fiber head and may remain there for

the duration of spot breakup. A peak tracker could provide an increase in fade rate

performance by forcing an intensity peak onto the fiber during image breakup.

From this point forward, performance results are presented in terms of absolute

Strehl, which is more descriptive of the true communication system. Values of mean

absolute Strehl are plotted in Figure 4.8. In addition to the four schemes presented in

Figure 4.6, results are also included for perfect phase removal. Perfect phase removal

is defined as replacing the distorted phase of the raw pupil field with uniform phase

before propagating to the focal plane. In this case, the fluctuations in absolute Strehl
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are due entirely to scintillation, both in terms of energy scattered out of the pupil

and imperfections in the Airy pattern caused by pupil plane amplitude variations.

While perfect phase correction is never achievable, it provides an informative upper

bound on performance. Overall, wavefront control at receiver appears less effective

in terms of absolute Strehl because energy scattered out of the pupil is accounted

for by this metric. However, all wavefront control techniques are still providing some

level of improvement. For turbulence strength less than C2
n = 3 × 10−17 m−2/3, LS-

phase removal results are indistinguishable from those for ideal phase removal, while

for C2
n < 2 × 10−17 m−2/3, centroid tracking results are indistinguishable from those

for peak tracking. As turbulence strength increases, however, perfect phase removal

begins to outperform LS-phase removal, and peak tracking begins to outperform cen-

troid tracking. The increasing separation between LS and perfect phase removal is

due to the hidden (i.e., branch point) portion of the phase which becomes non-zero

as amplitude fluctuations increase. The increasing separation between centroid and

peak tracking is due to periods of image breakup when the centroid is located in an

intensity null between two bright spots. Also note that in terms of mean absolute

Strehl, LS-phase removal outperforms peak tracking regardless of turbulence strength.

Attention is now turned to the metric of interest: fade probability. Fade prob-

ability results are presented in Figure 4.9 for a threshold defined as 2% (-17 dB) of

the on-axis focal plane power in vacuum. This threshold value is representative of a

detection threshold corresponding to realistic values of BER. Additionally, computa-

tion requirements for estimating fade probability increase as the threshold decreases.

Results in Figure 4.9 show that peak tracking is providing a significant increase in

performance over all techniques except perfect phase removal. For the strongest tur-

bulence case and the given threshold, peak tracking is fading 79% less often than

an uncompensated system, and 54% and 29% less often than centroid tracking and

LS-phase removal, respectively. This result is in contrast to both the analytic first-

order analysis and simulation results for mean relative and absolute Strehl, where

tracking-only systems always performed poorer than AO (LS-phase removal). The
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Figure 4.9: Fade probability results calculated using the lower fidelity Matlabr

receiver model. Approximately 153,600 data points from 30 0.512 sec simulation runs
were used to calculate each value of fade probability using a threshold of SA = 0.02.
The scenario is a 100 km path with a 10 m/s uniform crosswind at a wavelength of
1.5 µm.

fact that peak tracking (control of only two Zernike phase modes) is outperforming

perfect removal of the entire LS-phase is remarkable, and emphasizes the importance

of comparing performance using the appropriate metric. These results are also encour-

aging for potentially smaller, mobile platforms where higher-order wavefront sensing

and control would add significant cost and complexity. Additionally, performance of

the most widely used higher-order wavefront sensing approach, the Shack-Hartmann,

drops off in high scintillation scenarios [17], which implies an inability to achieve

perfect LS-phase correction.

The gain in fade rate performance from peak tracking is due to the fact that

it prevents the system from dwelling in a valley between two peaks during periods

of image breakup. Of course, in an actual system, the peak tracker may at times

transition from the peak of one subspot to the peak of another during a single pe-

riod of image breakup. The finite response time of the mirror and the high rate at

which communication systems operate may result in dropouts during these transition
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periods, a problem that was ignored up to now by assuming instantaneous mirror

response. This potential problem is investigated further in Section 4.3.4.

4.3.4 Impact of Finite Mirror Bandwidth. To better understand the impact

of hardware dynamics on fade probability, receiver propagations were recalculated

using the WaveTrain™ model. As discussed in Section 4.3.2, the main differences

between the Matlabr and WaveTrain™ receiver simulations are hardware dynamics

and AO model fidelity. WaveTrain™ models both BSM and DM actuator dynamics

as critically damped harmonic oscillators with a response time of 1× 10−4 sec. Track

camera and wavefront sensor frame rates are also reduced to 1 kHz in the WaveTrain™

model, giving nine data points between track camera and wavefront sensor images to

observe the impact of finite mirror bandwidth. Another difference between the two

models is that the Matlabr code uses a 128× 128 grid to propagate the pupil field to

the focal plane, whereas the WaveTrain™ model uses a 256×256 grid. This difference

does not impact Strehl results because pupil plane sampling is constant.

Fade probability results for the higher fidelity WaveTrain™ model are plotted

in Figure 4.10. As in the previous section, peak tracking outperforms both AO and

centroid tracking. The only significant difference between results in Figure 4.10 and

Figure 4.9 is that the AO curve has increased noticeably reflecting poorer perfor-

mance. AO and centroid tracking now yield nearly identical performance. The effect

of scintillation on the more realistic Shack-Hartmann wavefront sensor is the main

contributor to this change. However, fitting error between the wavefront and a DM

with a limited number of compensated modes is also now included in the simulation.

For the strongest turbulence case of C2
n = 1 × 10−16 m−2/3 and the given threshold,

peak tracking is fading 78% less often than an uncompensated system, and 54% and

52% less often than centroid tracking and AO, respectively.

Comparing the results in Figure 4.9 and Figure 4.10 shows that peak tracking

performance is not significantly changed by the more realistic sensor frame rate and

BSM dynamics included in the WaveTrain™ receiver model. However, the data used
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Figure 4.10: Fade probability results for a higher fidelity WaveTrain™ receiver
model. Approximately 153,600 data points from 30 0.512 sec simulation runs were
used to calculate each value of fade probability using a threshold of SA = 0.02. The
scenario is a 100 km path with a 10 m/s uniform crosswind at a wavelength of 1.5 µm.

to calculate the fade probability results in Figure 4.10 does include cases where the

mirror jumps from one subspot to another during a single period of image breakup,

causing the on-axis point to experience a brief yet significant drop in power. An

example of jump-induced fades is presented in Figure 4.11. This result shows SA for

each compensation technique during one occurrence of spot breakup. Note that both

centroid tracking and AO suffer the deepest fade due to placement of the central null.

Perfect phase removal provides the best performance and serves as an informative

upper bound. Peak tracking experiences two abrupt fades in SA during this period,

with both jump-induced fades causing SA to fall below that of the uncompensated

case. However, for this particular example, peak tracking Strehl never falls below that

of centroid tracking or AO. The minimum in SA during the fade for the uncompensated

case is significantly greater than the minimum for either centroid tracking or AO. This

is due to the on-axis point in the uncompensated case coinciding with the edge of one

of two subspots versus near the midpoint. However, in general the uncompensated
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Figure 4.11: Absolute Strehl ratio for a higher fidelity WaveTrain™ receiver us-
ing various compensation schemes at a uniform turbulence strength of C2

n = 2 ×
10−17 m−2/3. The scenario is a 100 km path with a 10 m/s uniform crosswind at a
wavelength of 1.5 µm. The minimum of the centroid tracking curve corresponds to
the focal plane image in Figure 4.7(a).

system provides significant degradation in fade probability performance as seen by

the results in Figure 4.10.

A variety of other cases of jump-induced fades have been observed where a

jump causes peak tracking SA to either (a) fall below that of all other compensation

techniques, or (b) decrease, but remain higher than all other methods. Overall, it

appears that the mirror response time relative to the typical duration of spot breakup

is such that jump-induced fades experienced by the peak tracker are not as significant

as spot breakup induced fades for centroid tracking and AO. This is the primary

reason for the excellent peak tracker performance seen in Figure 4.10 even when more

realistic mirror dynamics are incorporated.

4.3.5 Duration and Number of Fades. Up to now, results presented in this

chapter demonstrate two important points. First, results in Figures 4.5, 4.6, 4.8, and

4.9 demonstrate that mean Strehl ratio (absolute or relative) is not valid for comparing

performance of wavefront control systems when fade probability is the performance
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Figure 4.12: Mean fade duration versus turbulence strength for a detection thresh-
old of SA = 0.02. Fade duration results were calculated using data from the higher
fidelity WaveTrain™ receiver model.

metric of interest. Second, Figures 4.9 and 4.10 demonstrate that in terms of fade

probability, peak intensity tracking outperforms typical centroid tracking and AO

systems. This means that metric-driven control of two Zernike modes outperforms

MSE-driven control of 23+ modes, i.e., a simpler system yields superior performance.

Results in Figures 4.12 through 4.15 provide additional insight into performance

gains afforded by peak tracking, as well as results that will guide the interleaving

length selection for FECs. These results were calculated using data from the higher-

fidelity WaveTrain™ receiver model. Individual fade periods were identified using

an absolute Strehl threshold of 0.02. The duration of each continuous fade period

(disjoint from other fade periods) was calculated to the temporal resolution of the

simulation. Thus, a vector of fade durations was generated, one for each value of tur-

bulence strength and each compensation technique. Various fade duration statistics

were then calculated.

Figures 4.12, 4.13, and 4.14 present average, standard deviation, and maximum

fade duration versus turbulence strength, respectively. These results are presented in

104



1 2 3 4 5 6 7 8 9 10

x 10
−17

0

2

4

6

8

10

12

 

 

Uncompensated

Centroid Tracking

AO

Peak Tracking

Turbulence Strength, C2
n (m−2/3)

F
ad

e
D

u
ra

ti
on

S
ta

n
d
ar

d
D

ev
ia

ti
on

(c
m

)

Figure 4.13: Standard deviation of fade duration versus turbulence strength for a
detection threshold of SA = 0.02. Fade duration results were calculated using data
from the higher fidelity WaveTrain™ receiver model.
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Figure 4.14: Maximum fade duration versus turbulence strength for a detection
threshold of SA = 0.02. Fade duration results were calculated using data from the
higher fidelity WaveTrain™ receiver model.
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Figure 4.15: Number of fades versus turbulence strength for a detection threshold
of SA = 0.02. Results were calculated using data from the higher fidelity WaveTrain™

receiver model. Approximately 153,600 data points from 30 0.512 sec simulation runs
were used to calculate each value of fade probability. This corresponds to 15.351 sec
of real time per C2

n value for a 10 m/s uniform crosswind.

terms of the corresponding amount of (uniform) atmospheric shift relative to the line-

of-sight between transmitter and receiver. This distance estimate can be converted

to a temporal fade duration by dividing by the (uniform) wind speed. The results

in Figures 4.12, 4.13, and 4.14 provide additional insight into the fade probability

performance gains due to peak intensity tracking. Figure 4.12 shows that for the

peak tracker, the mean fade duration is significantly less than either centroid tracking

or AO, as well as the uncompensated case. Figure 4.13 shows that for the peak tracker,

the standard deviation of fade duration is less than either centroid tracking or AO

for all but one of the C2
n values considered. Figure 4.14 indicates that maximum

fade duration is somewhat less for the peak tracker than for the other techniques

regardless of turbulence strength. The reduction in maximum fade duration due to

peak tracking is most apparent for the strongest turbulence scenarios.

Figure 4.15 shows number of fades versus turbulence strength. The number of

fades is defined as the number of negative (or positive) threshold crossings. As stated
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previously, a threshold of SA = 0.02 was used for all fade results presented in this

chapter. The amount of data generated for each value of C2
n corresponds to 15.351

seconds of real time. Thus, results for the number of fades in Figure 4.15 could be

normalized to give a result in terms of fades per seconds, as is sometimes seen in the

literature [8]. This result, combined with the results of Figures 4.12 through 4.14,

will guide the interleaving length selection for FECs.

The problem of contiguous bit errors due to atmosphere-induced signal power

fades is similar to burst errors in RF wireless communication. Convolutional FEC

coding and Viterbi decoding are capable of significant bit error correction capability,

but assume random noise, i.e, uncorrelated bit errors. Therefore, data interleaving

is used in RF wireless system to effectively change correlated bit error into uncor-

related bit errors. However, a realistic upper limit (near 20 ms) on the interleaving

length exists for real-time voice communication to avoid problems such as echo [2].

For LaserCom, the interleaving length would be calculated based on the mean fade

duration plus several fade duration standard deviations to provide effective FEC per-

formance. Once again, fade duration results presented in this section are in terms of

the corresponding amount of (uniform) atmospheric shift relative to the line-of-sight

between transmitter and receiver. This distance estimate is converted to a temporal

fade duration by dividing by the (uniform) wind speed. Thus, the results in this

section are easily scaled to wind speeds greater than the nominal 10 m/s used in

the wave-optics simulations and imply a minimum relative wind speed such that the

required interleaving length is less than 20 ms (to maintain effective real-time voice

communications). Therefore, for the valid range of wind speeds, the reductions in

mean, standard deviation, and maximum fade duration seen in Figures 4.12 through

4.14 imply that peak tracking would reduce decoding delays due to interleaving and

FECs. Thus, real-time communication performance would be improved.

4.3.6 Spot Breakup Dynamics. Spot breakup duration is important for

system design from the standpoint of sensor frame rate and mirror bandwidth re-
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Table 4.5: Characterization of focal plane spot breakup dynamics, where µd and
σd are the mean and standard deviation of breakup duration, respectively, and d
represents breakup duration for a threshold of λ/(4D) = 1.875 µm. The number of
breakup periods refers to the number of contiguous periods in time where the centroid-
to-peak separation was above threshold. The optical wavelength (λ) is 1.5 µm and
the tracking aperture diameter (D) is 20 cm.

C2
n (m−2/3) Number of Breakup Periods µd (cm) σd (cm)

1× 10−17 N/A N/A N/A
2× 10−17 27 3.1 3.2
3× 10−17 145 3.1 3.5
4× 10−17 322 3.6 4.2
5× 10−17 478 4.1 4.8
6× 10−17 615 4.4 5.1
7× 10−17 723 4.8 5.4
8× 10−17 798 5.3 6.3
9× 10−17 917 5.3 6.7
1× 10−16 994 5.4 6.9

quirements, as well as for optimizing FEC performance. Periods of spot breakup

were identified by first calculating the difference between centroid and peak intensity

locations for all uncompensated focal plane images. This metric provides a single

scalar quantity for classifying periods of breakup because visual inspection of more

than one million focal plane images is both unrealistic and subjective. Periods when

the separation was greater than a given threshold were identified as regions of spot

breakup. A threshold of λ
4D

was chosen as a fraction of the diffraction limit and based

on observations of focal plane data showing spot breakup. Contiguous periods of

spot breakup were identified, and the duration of each breakup period was recorded.

Breakup periods in progress at the beginning or end of a given 0.512 sec continuous

data stream were discarded so as not to corrupt results. The mean (µd) and standard

deviation (σd) of breakup duration are presented in Table 4.5.

Similar to fade duration results presented in Section 4.3.5, spot break dura-

tion results presented here are in terms of the corresponding amount of (uniform)

atmospheric shift relative to the line-of-sight between transmitter and receiver. This
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distance estimate can then be converted to a temporal breakup duration by divid-

ing by wind speed for the given scenario. Both breakup duration and number of

breakups increase with turbulence strength. This result helps explain the increasing

performance of peak tracking relative to centroid tracking seen in Figures 4.9 and 4.10.

Clearly, assumptions as to maximum expected wind velocity and platform speed must

be made in order to finalize sensor frame rate and FEC selections.

4.4 Closing Remarks

This chapter detailed an investigation of a moderate range air-to-air LaserCom

scenario using a performance-metric driven approach to wavefront control. Focal plane

spot breakup was identified as the dominant failure mechanism, which occurred even

when D/r0 < 1. The impact of spot breakup on average absolute and average rela-

tive Strehl was low, but was considerable for fade probability. This demonstrates that

optimization of a wavefront control system requires consideration of the performance-

metric of interest. Metric-driven design led to exploration of peak intensity tracking

as a method to minimize fade probability. Peak tracking provided a significant ad-

vantage over both centroid tracking and AO for scenarios studied. When the added

fidelity of finite mirror response time and imperfect wavefront sensing was included,

peak tracking continued to show excellent benefit, while AO performance degraded

considerably. Peak tracking reduced fade probability by greater than 50% over con-

ventional centroid trackers and AO systems. However, a tracking only system is

much simpler and smaller, which is an important consideration for tactical systems.

At times, the peak tracker jumped from one subspot to another during a single period

of image breakup, leading to fade conditions. Modifications to the basic peak tracking

algorithm are proposed as future work. Initial investigations show promise for further

performance gains. Last, spot breakup dynamics were characterized. For the given

uniform crosswind scenario, spot breakup duration is described by the correspond-

ing amount of uniform atmospheric shift. Ultimately, sensor frame rate and mirror

109



bandwidth requirements for a peak tracking system are largely governed by relative

platform speed and wind speed along the propagation path.

4.5 Future Work

There are several promising areas for extending the research. The first is en-

hancement of the peak tracking algorithm to mitigate the impact of spot jumping

on fade probability. The objective is to maximize the minimum power occurring

along the path connecting the peak of one subspot to the peak of another. There are

basically two approaches that could be taken:

• Adjust the time at which the mirror jumps, and

• Adjust the path taken by the mirror.

This is not a trivial problem because the morphology of spot breakup varies both

within a given turbulence strength and across turbulence strength. Further work

could be done to understand and characterize aspects of spot breakup morphology

relevant to the design of advanced tracking algorithms. Initial work has yielded an

algorithm which works well during some breakup conditions, but poorly during others.

The ability to predict breakup morphology from previous focal plane images could

be very useful. Estimating the location of peak intensity in continuous space from

discrete sampling could also be further explored.

Second, incorporation of a peak tracking algorithm with an AO system should

be considered. The SRI WFS would be of particular interest for distributed turbulence

scenarios of interest. Coupling Efficiency (CE) into a SMF can be estimated by an

overlap integral of the incoming complex field and the fundamental mode field of the

fiber [102:2447] which can be approximated as Gaussian under certain conditions [85].

Therefore, the optimal pupil plane field to maximize CE is the Fourier transform of

the fiber’s fundamental mode, which causes CE to exhibit a spatial dependence on the

pupil plane phase [86:146]. Accounting for this spatial dependence in system design

should result in further performance gains for fiber-coupled systems.

110



Last, additional work should be done to characterize signal fade and image

breakup duration in non-constant C2
n scenarios and for non-uniform wind profiles.

The entire analysis process used in this chapter could be repeated for a UAV-to-GEO

engagement, where an optical communication link may provide an additional means

for disseminating surveillance imagery in near real-time.
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V. Fade Phenomenology Considerations for System Design

Chapter IV focused on metric-driven control of Zernike tilt modes for fade mit-

igation. This chapter takes a higher-level system approach to metric-driven

wavefront control. A methodology is presented which uses atmospheric turbulence

complexity to drive wavefront compensation technique selection.

Section 5.1 provides motivation for this research. Section 5.2.1 describes the fo-

cal plane intensity as a convolution of various pupil plane amplitude and phase terms.

The relative importance of, and system complexity implied by, each convolution term

is addressed in Sections 5.2.2 and 5.2.3. This convolution decomposition leads to the

fade classification method presented in Section 5.2.4, which is based on complexity of

the required compensation technique. Section 5.3 identifies regions of superior per-

formance, in terms of fade probability, for compensation techniques studied. This

section addresses the broader applicability of results presented in Chapter IV. Fi-

nal conclusions from this effort and directions for future research are presented in

Sections 5.4 and 5.5, respectively.

5.1 Motivation and Introduction

Traditional AO systems modify pupil plane phase to improve the focal plane

image (satellite imaging) or increase energy on target in the far-field (HEL weapons).

Strehl ratio is typically used as the primary performance metric in designing such

systems. The “extended Marechal approximation” [44, 89] to the average relative

Strehl ratio was presented in (4.15), and is repeated here for reference:

E{SR} ≃ e−ǫ
2

. (5.1)

The expression in (5.1) assumes that amplitude fluctuations are negligible and is

valid when the aperture averaged mean square phase error, ǫ2, is less than about

4 rad2. The extended Marechal approximation implies that maximizing average Strehl

corresponds to minimizing residual ǫ2. This result has motivated investigations of AO

system optimization based on minimizing residual ǫ2 [84, 101,103].

112



Strehl optimization based on mean square phase is a reasonable approach for

imaging and HEL weapon applications, where high resolution imaging or maximum

energy on target are desired. Multiple AO error sources have also been formulated in

terms of mean square phase. Several examples were presented in Section 3.5, and two

of these are repeated here for reference. First, the impact of finite correction system

bandwidth on mean square phase error is described by

ǫ2temporal =

(

fG
f3dB

)3/5

, (5.2)

where fG is the Greenwood frequency defined by (3.25) and f3dB is the closed-loop

control bandwidth. Second, the impact of a finite degree-of-freedom Deformable Mir-

ror (DM) on mean square phase error is described by

ǫ2fitting = α

(

rs
r0

)5/3

, (5.3)

where rs is the actuator spacing; r0 is the Fried parameter, which is related to tur-

bulence strength; and α depends on the form of the actuator influence function.

Equation (5.3) was derived based on the error between a LS fit and Kolmogorov

turbulence.

Based on (5.2), (5.3), and other results of similar form, advanced systems today

often focus on increasing the number of DM actuators and the bandwidth at which

corrections can be applied. However, imaging and HEL applications are not typi-

cally concerned with very brief drops in power. For applications such as LaserCom,

preventing the received power from falling below a detection threshold (during trans-

mission of a 1) is the relevant issue. As an example, for a 1 Gbps LaserCom system, a

1 µs fade corresponds to a duration of 1,000 bits. Tactical LaserCom systems also face

significant space, weight, and power limitations on smaller platforms such as UAVs:

thus, lower-order, less complex systems are desired. Therefore, unlike many current
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Figure 5.1: Conceptual example of research philosophy: the trade-off of average
power and fade probability.

optical systems which are not similarly constrained, the goal is optimal control of a

limited number of degrees-of-freedom, in terms of the performance metric of interest.

The divergence of design approaches based on minimizing MSE versus prevent-

ing deep signal fades (regardless of tactical system constraints) motivates this research,

and leads to consideration of a potential trade-off between average Strehl ratio and

fade probability [31]. To visualize this concept, assume that the received optical power

is described by one of two Gaussian PDFs depicted in Figure 5.1. Fade probability

is defined as the area under the PDF tail left of the threshold. In this conceptual

example, the decrease in mean intensity is clearly advantageous (from a LaserCom

perspective): A 10% decrease in mean intensity is accompanied by a 40% decrease

in variance, resulting in more than an order of magnitude improvement (reduction)

in fade probability. In reality, received intensity does not follow a Gaussian distri-

bution. However, results presented in Chapter IV demonstrate that such a tradeoff

can be made for the scenario of interest by using peak intensity tracking. This chap-

ter pursues further insights into compensation technique selection based on system

complexity, as a function of turbulence strength and detection threshold.
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5.2 Complexity-Based System Design

Challenging propagation scenarios result in both amplitude and phase perturba-

tions in the optical field. Values for Rytov variance and D/r0 presented in Chapter IV

indicate that pupil plane amplitude variations are more severe than phase variations

for the 100 km air-to-air scenario of interest. For the strongest turbulence consid-

ered (C2
n = 1× 10−16 m−2/3), values for the Rytov variance and Fried parameter are

σ2
1 = 3.9 and r0 = 13.6 cm, respectively. This value of σ2

1 indicates that amplitude

fluctuations are in the moderate-to-strong fluctuation range (see Section 2.4.5). For

the D = 20 cm diameter telescope considered, this value of r0 gives D/r0 = 1.5.

Based on (5.1) and the results of Noll (as in Section 4.3.1), ideal tracking (Zernike tilt

removal) increases average SR by 450% over the uncompensated case, while AO (re-

moval of Zernike modes 2 through 24) increases average SR by 25% over the tracking

case. This indicates that phase variations in the scenario of interest are largely domi-

nated by fluctuations in tip and tilt. Therefore, this is considered a relatively benign

scenario in terms of phase fluctuations. However, rare higher-order phase aberrations

are a potential concern.

This section mathematically describes the impact of pupil plane phase and am-

plitude on the instantaneous focal plane intensity profile. Focal plane image examples

are presented to help the reader visualize and understand the relative impact of am-

plitude and phase errors on the focal plane energy distribution. The culmination

of this section is a method for classifying fades based on complexity of the required

wavefront compensation technique.

5.2.1 Convolution Decomposition of Focal Plane Field. Chapter III de-

veloped the mathematical relationship between optical fields in the pupil and focal

planes. The result is given in (3.11), which indicates that the two fields are related

by a Fourier transform. Fourier transform properties allow (3.11) to be rewritten as

If

(

fX
λf
,
fY
λf

)

=
1

λ2f 2

∣

∣F {A(ξ, η)}⊛ F
{

ejφa(ξ,η)
}

⊛ F {P (ξ, η)}
∣

∣

2
, (5.4)
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where ξ and η are coordinates in the pupil plane, f is focal length, λ is optical

wavelength, and the focal plane intensity If is described in terms of normalized spatial

coordinates to simplify notation. Equation (5.4) shows that focal plane intensity (for

a coherent source) is proportional to the magnitude of the convolution of three terms.

The first term, F {A(ξ, η)}, is the Fourier transform of the amplitude profile within

the pupil. This term accounts for the impact of scintillation, both in terms of spatial

variations and fluctuations in total captured power. The second term, F
{

ejφa(ξ,η)
}

, is

the Fourier transform of the phase profile within the pupil. The third and final term,

F {P (ξ, η)}, accounts for the impact of diffraction from a finite aperture. Diffraction

represents a physical limit on performance and is not discussed further.

The contribution from pupil plane phase can be decomposed using a modal

expansion:

φ(ξ, η) =
∞
∑

n=1

anfn(ξ, η) . (5.5)

Using a finite sum to approximate the phase surface gives

φ(ξ, η) ≈
N
∑

n=1

anfn(ξ, η) , (5.6)

where N is the number of modes. Truncation errors will depend on the choice of

bases set {fn}. Substituting (5.6) for φa in (5.4) gives the following expression for the

instantaneous focal plane intensity pattern:

If (fX , fY ) =
1

λ2f 2

∣

∣F {A(ξ, η)}⊛ F
{

eja1f1(ξ,η)
}

⊛ F
{

eja2f2(ξ,η)
}

⊛ · · ·

⊛F
{

ejaNfN (ξ,η)
}

⊛ F {P (ξ, η)}
∣

∣

2
. (5.7)

Zernike polynomials are typically used for optical phase expansion. An alterna-

tive is to decompose the phase into two components: Least-Squares (LS) phase and

hidden phase. This approach follows the branch point discussion of Section 3.5.2 and
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results in the following expression for the focal plane intensity:

If (fX , fY ) =
1

λ2f 2

∣

∣F {A(ξ, η)}⊛ F
{

ejφLS(ξ,η)
}

⊛

F
{

ejφHID(ξ,η)
}

⊛ F {P (ξ, η)}
∣

∣

2
. (5.8)

Equation (5.8) is central to the results presented in this chapter. The next two

sections further discuss specific impacts from the pupil plane amplitude and phase

terms. These discussions lead to the complexity based fade classification presented in

Section 5.2.4.

5.2.2 Fluctuations in Total Captured Power. Pupil plane amplitude per-

turbations affect focal plane metrics in two ways. First, there can be significant

fluctuations in total power captured by the telescope. Second, spatial variations in

the pupil plane amplitude profile impact the corresponding focal plane amplitude

profile. This section only addresses fluctuations in total captured power. The next

section addresses the spatial variations.

The instantaneous received power captured by the telescope is given by

s =

∞
∫∫

−∞

A2(ξ, η)P (ξ, η) dξdη , (5.9)

where P (ξ, η) = 1 within the aperture and P (ξ, η) = 0 elsewhere. To illustrate

variations in s caused by turbulence, Figure 5.2 presents total captured power versus

time for one segment of the wave-optics simulation data described in Chapter IV.

This specific data segment corresponds to a single realization of the ten phase screen

‘atmosphere’ at a uniform turbulence strength of C2
n = 2×10−17 m−2/3 and a uniform

relative wind speed of 10 m/s. The maximum and minimum captured powers for all

simulation data at this turbulence strength are 159.4 mw and 1.8 mw, respectively.

Since the metric of interest is fade probability, Figure 5.3 shows the minimum

captured power for each value of C2
n studied in the simulation. The corresponding
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Figure 5.2: Instantaneous received power versus time for a single realization of
the ten phase screen ‘atmosphere’ at a uniform turbulence strength of C2

n = 2 ×
10−17 m−2/3. The scenario is a 100 km path with a 10 m/s uniform crosswind. The
receiving telescope is 20 cm in diameter and the wavelength is 1.5 µm.
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Figure 5.3: Minimum and maximum instantaneous received power versus turbu-
lence strength. Each data point corresponds to the extreme value of 153,600 data
points generated using 30 independent realizations of the ten phase screen ‘atmo-
sphere’ and a 10 m/s wind. The scenario is a 100 km path at a wavelength of 1.5 µm.
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maximum values are also displayed. Each data point in Figure 5.3 corresponds to the

extreme value of 153,600 data points generated using 30 independent realizations of

the ten phase screen ‘atmosphere’ and a 10 m/s wind. The global minimum occurred

for C2
n = 8×10−17 m−2/3, while the global maximum occurred for C2

n = 6×10−17 m−2/3.

Notice that the minimum captured power steadily decreases with increasing turbu-

lence strength until C2
n = 6 × 10−17 m−2/3. For stronger turbulence, the minimum

value is nearly the same, and actually increases slightly for the strongest turbulence

scenarios studied. This behavior is similar to the saturation in log-amplitude variance

seen both in wave-optics simulation and experimental results [20]. This is due to an

increasing loss of spatial coherence, which limits the degree of self-interference of the

optical field.

In terms of LaserCom performance, fluctuations in total captured power cannot

be addressed by wavefront control at the receiver. However, Chapter VI proposes a

signal processing approach to mitigate the impact of power fluctuations on bit-error

probability. The following section addresses spatial variations in both amplitude and

phase.

5.2.3 Spatial Fluctuations in the Pupil Plane Field. In the area of digital

image processing, phase is generally more important than amplitude in reconstructing

an image [?]. Since image quality is not the metric of interest here, it is not clear

that this will be the case for LaserCom. Furthermore, the relative impact on fade

probability of the LS and hidden portions of the phase are also of interest. Therefore,

the complex pupil field associated with the focal plane image breakup presented in

Figure 4.7(a) was further examined. This image occurred for a turbulence strength

of C2
n = 2× 10−17 m−2/3, which corresponds to a log-amplitude variance of 0.19 and

a Fried parameter of 33.1 cm (D/r0 = 0.61).

For the pupil field of interest several operations were performed. Each opera-

tion relates to one of the convolution terms in (5.8). First, the uncompensated field

was propagated to the focal plane. The resulting intensity image is displayed in Fig-
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(c) Amplitude Correction: Global
Peak is SA = −11.4 dB
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Figure 5.4: Focal plane images for various corrections to the pupil plane field and a

uniform turbulence profile of C2
n = 2× 10−17 m−2/3. The atmospheric random seed is

3 and the image is frame 2719 of 5120. The scenario is a 100 km path with a 10 m/s
uniform crosswind.

ure 5.4(a). Second, the perturbed pupil phase was replaced with a uniform phase

which models ideal phase compensation. The modified field was propagated to the

focal plane and the resulting intensity image is displayed in Figure 5.4(b). This case

corresponds to complete removal of both the LS and hidden phase terms in (5.8).

Third, the perturbed amplitude profile was replaced with a uniform amplitude (while

conserving energy). The modified field was propagated to the focal plane and the

resulting image is displayed in Figure 5.4(c). This case corresponds to removing all

spatial fluctuations in the amplitude convolution term, resulting in a constant am-
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(b) LS-phase Correction:
Global Peak is SA = −11.1 dB
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(c) Hidden Phase Correction:
Global Peak is SA = −9.1 dB

Figure 5.5: Focal plane images for various corrections to the pupil plane phase and

a uniform turbulence profile of C2
n = 2× 10−17 m−2/3. The scenario is a 100 km path

with a 10 m/s uniform crosswind.

plitude across the telescope aperture. However, energy was conserved in calculating

the constant amplitude so that fluctuations in total captured power are still present.

Finally, the image resulting from both amplitude and phase correction is presented in

Figure 5.4(d) which is the ideal diffraction limited Airy pattern.

This experiment at least partially validates the intuition that amplitude errors

are less critical than phase errors. Figure 5.4 demonstrates that for the pupil field

considered, ideal phase correction causes the broken image to merge into one spot,

while ideal (spatial) amplitude correction does not. However, spatial amplitude vari-

ations are not the same as fluctuations in total captured energy, which is a serious

issue for performance as discussed in the previous section.

The next step is to further decompose the phase contribution in accordance

with (5.8). Therefore, the impact of LS and hidden phase components are consid-

ered individually. First, the focal plane image resulting from ideal phase correction

was presented in Figure 5.4(b) and is displayed again in Figure 5.5(a) for reference.

Second, the LS portion of the perturbed pupil phase was replaced with a uniform

phase. The modified field was propagated to the focal plane and the resulting inten-

sity image is displayed in Figure 5.5(b). This case corresponds to complete removal

of the LS phase term in (5.8). Third, the hidden portion of the perturbed pupil
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phase was replaced with a uniform phase. The modified field was propagated to the

focal plane and the resulting intensity image is displayed in Figure 5.5(c). This case

corresponds to complete removal of the hidden phase term in (5.8).

Results in Figure 5.5 provide important insight into the results of Chapter IV,

as well as directions for future work. As expected, ideal pupil plane phase correction

results in a global peak value in the focal plane which is greater than global peaks for

either LS or hidden phase corrections alone. The global peak for LS-phase removal is

less than for either ideal or hidden phase correction, as well as for the uncompensated

case. This makes sense because the image remains separated into two distinct spots

as in the uncompensated image. Thus, the energy is split between two separate

spots with both approximately the same size as the Airy disk. The most interesting

observation is that removal of only the hidden (i.e., branch point) portion of the phase

causes the two original spots to merge into one. However, there is still some residual

global phase tilt, and thus the new single spot is shifted away from the optical axis.

This result helps explain the improvement due to peak tracking shown in Chapter IV.

Removal of the LS-phase performs nearly the same as centroid tracking due to the

small values of D/r0, and causes the low-intensity point between the two peaks to be

placed on the optical axis. By tracking a single peak, this is avoided. However, some

performance is still lost due to energy being shared with the other spot.

5.2.4 Complexity-Based Fade Classification. A fade can result from am-

plitude and/or phase perturbations caused by propagation through turbulence. The

typical modal-based decomposition of turbulence-perturbed phase [64] does not reveal

the optimal compensation technique for all metrics and design constraints of interest.

Therefore, a complexity-based decomposition for fade classification was developed and

is depicted in Figure 5.6.

For a given fade, the first step is to determine whether performance is limited

by phase errors or captured power. If sufficient power is captured by the aperture to

theoretically achieve the desired performance, then the signal is phase error limited.
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Figure 5.6: Complexity-based classification of turbulence induced signal fades.

Otherwise, the captured signal is power limited and cannot be corrected by wavefront

control at the receiver. This case would require an increase in transmitter power

and/or incorporation of AO in the transmitting telescope. Mathematically, the initial

decomposition is expressed as

s ≥ Ts =⇒ phase limited (5.10)

or

s < Ts =⇒ captured power limited , (5.11)

where s is total power captured by the telescope and Ts is the captured power threshold.

Ts is defined as the minimum captured power required to meet a given BER value.

Throughout this section, s is defined to be an average over numerous atmospheric

cases, and thresholds T are defined by system parameters and a desired BER. While

this discussion is based on a single frame of data, system design would be based on

results of multiple individual frames.
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As depicted in Figure 5.6, phase limited signals are further decomposed. First, if

a simple shifting of the focal plane field will meet the BER requirement, then tracking

is the least complex solution. Mathematically, the corresponding pupil plane phase

correction is given by

φBSM 6= Ctilt (5.12)

φBSM = aZ2 + bZ3 � [a, b] = arg

{

max
a,b

[MOI (φBSM)]

}

, (5.13)

where Ctilt is pupil plane tilt derived from the focal plane image centroid, and

MOI(φBSM) is the value of the focal plane metric of interest (Strehl, coupling effi-

ciency, etc.) for a given beamsteering correction in the pupil plane. If beamsteering

does not push the signal above threshold, then higher-order phase correction is re-

quired to sharpen the image (i.e., redistribute focal plane energy). If removal of the LS

portion of the phase will push the signal above threshold, then traditional single DM

(continuous face-sheet) AO should be considered. Mathematically, the corresponding

pupil plane phase correction is

φDM = −φLS , (5.14)

where the perturbed pupil plane field is given by A exp{j(φLS + φBP )}, and φBP is

the branch point, or hidden, portion of the phase. If removal of the LS-phase does

not push the signal above threshold, then the hidden phase must be at least partially

corrected. This requires consideration of a more complex system and advanced AO

techniques and hardware, such as Multi-Conjugate AO (MCAO) and spatial light

modulators (liquid crystal, MEMS, etc.), or possibly AO at the transmitter.

This approach to fade classification identifies the least complex solution for

meeting given fade probability (Pfade) and BER requirements, and guides the ap-

proach for mitigating fades. The relative importance of the different phase and am-

plitude components may vary depending on the propagation scenario. For the peak
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intensity tracking results presented in Chapter IV, a relatively small aperture, mod-

erate range LaserCom scenario was examined. Within the context of the fade classi-

fication architecture, the focus of Chapter IV was phase-limited fades correctable via

beamsteering. Spot breakup was observed for D/r0 < 1 and identified as the primary

failure mechanism for phase-limited fades in the scenarios studied.

5.3 Regions of Superior Performance

The previous section presented a method for classifying fades based on com-

plexity of the required wavefront compensation. This section identifies which of the

wavefront control techniques previously discussed provides superior performance, in

terms of minimal fade probability, for the 100 km air-to-air scenario of interest. There-

fore, Pfade was calculated for each compensation technique considered in the previous

section using the wave-optics simulation data described in Chapter IV. Pfade was

calculated for a range of fade threshold values in terms of SA, which is normalized

to the on-axis intensity resulting from vacuum propagation. Pfade values were then

available as a function of three parameters: wavefront control technique, turbulence

strength, and normalized detection threshold.

For a given turbulence strength, Pfade can be plotted as a function of normalized

detection threshold (i.e., SA) for various wavefront control methods. The remaining

results only consider three techniques: LS-phase removal, centroid tracking, and peak

intensity tracking. LS-phase removal provides an upper bound on the performance

of a traditional AO system using a LS reconstruction algorithm. Centroid tracking

is also included because it is the typical and most straightforward algorithm for con-

trolling Zernike modes two and three. Figure 5.7 presents Pfade results for these three

techniques using the strongest turbulence considered, C2
n = 1 × 10−16 m−2/3. These

results highlight distinct regions of superior performance for the three techniques. For

larger values of fade threshold (SA & 0.1) all three techniques provide nearly identical

performance in terms of fade probability. However, a closer inspection of the data

reveals that AO slightly outperforms both centroid and peak intensity tracking in

125



10
−4

10
−3

10
−2

10
−1

10
0

10
−4

10
−3

10
−2

10
−1

10
0

 

 

Centroid Tracking

Ideal Least−Squares AO

Peak Tracking

Normalized Detection Threshold (SA)

P
f
a
d
e

Figure 5.7: Fade probability Pfade versus normalized detection threshold (in terms
of absolute Strehl) for three wavefront control techniques. The strength of the uniform
turbulence profile is C2

n = 1× 10−16 m−2/3.

this region. For smaller fade thresholds (SA . 0.05), as would be applicable to a real

OOK LaserCom system, peak tracking outperforms both AO and centroid tracking.

Furthermore, the relative improvement provided by peak tracking increases with de-

creasing normalized fade threshold. In this same region, AO provides a consistent

improvement relative to centroid tracking, reducing Pfade by 24 to 44%.

Results in Figure 5.7 indicate a crossover point defining a region of superior

performance for peak tracking compared to centroid tracking and ideal LS AO. The

crossover point was numerically estimated for each value of C2
n studied and the re-

sulting boundary is plotted in Figure 5.8. This result identifies the region for superior

performance, in terms of fade probability, for peak intensity tracking as compared to

ideal LS AO. The boundary of the performance dominance region is nearly invari-

ant to turbulence strength for C2
n ≥ 3 × 10−17 m−2/3, and approximately equal to

SA = 0.04 in this turbulence region. Recall from (3.16) that SA = 0.04 indicates

an on-axis intensity in the focal plane which is 4% of the vacuum propagation re-

sult. The boundary begins to increase slightly for the weaker turbulence scenarios.
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Figure 5.8: Regions of superior performance, in terms of fade probability, for peak
tracking and AO.

Thus, for a given atmospheric turbulence strength and normalized detection thresh-

old smaller than the crossover point, the optimal compensation technique is known.

If the threshold requirement changes due to changes in system parameters or com-

munication range, this boundary informs the designer as to the optimal algorithm

selection.

5.4 Closing Remarks

This chapter defined an architecture to further examine regions of operation

for various atmospheric compensation techniques based on deep fade phenomenology.

Fades are classified based on complexity of the required compensation technique. For

compensation techniques studied, regions of superior performance are identified in

terms of fade probability as a function of detection threshold. Peak tracking outper-

forms ideal LS AO for normalized thresholds below approximately 4% of the unabber-

ated on-axis intensity in the focal plane. Furthermore, the fade threshold boundary

defining a region of superior performance for peak tracking (relative to ideal LS AO)

is nearly invariant to turbulence strength for C2
n ≥ 3 × 10−17 m−2/3. Boundary in-
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variance would simplify operation of a composite system able to adaptively select

compensation methodology in real-time.

5.5 Future Work

The result of Figure 5.5 helps visualize and explain the performance gains due to

peak tracking demonstrated in Chapter IV. This result also leads to consideration of

a potential advanced system that removes the hidden portion of phase while tracking

peak intensity. However, if it could be shown that removal of the hidden phase always

causes the broken spots to merge, traditional centroid tracking could be used instead

of peak tracking. The self-referencing interferometer WFS sensor could be combined

with advanced spatial light modulator technology for a potential implementation of

such an advanced system. The other most promising area for extending the research

would be to repeat the analysis in this chapter for other atmospheric and engagement

scenarios, such as a potential UAV-to-GEO communication uplink. The analysis could

also be extended to a two-way propagation scenario with AO at the transmitter. Fade

phenomenology could then be studied at the receiver as a function of wavefront control

technique at the transmitter.
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VI. Adaptive Thresholding

While Chapters IV and V considered physical modification of the wavefront

phase, this chapter takes a signal processing approach to improve perfor-

mance. Furthermore, the focus on wavefront control up to this point has not required

a full model of the detection noise processes. This chapter develops an adaptive bi-

nary decision threshold optimized to mitigate the impact of scintillation and detector

noise on BER.

Section 6.1 describes basic digital communication and presents an optical re-

ceiver model for OOK direct-detection. Detection noise sources considered in the

investigation are also defined. Section 6.2 reviews binary decision theory. BER ex-

pressions are then formulated for several cases of increasing complexity, culminating

in the case which accounts for signal dependent noise, scintillation, and an adaptive

decision threshold. Section 6.3 derives an optimal fixed threshold for several cases

based on minimizing BER. These results provide a means for comparing the fixed

and adaptive techniques, as well as a method to calculate the adaptive threshold

from mean signal current. Section 6.4 addresses necessary considerations prior to

calculating numeric results. Analytic results are presented in Section 6.5, beginning

with an optimal fixed threshold value for each value of turbulence strength (C2
n). BER

results for adaptive and optimal fixed thresholds are then presented, based on best-

fit gamma-gamma PDFs and the results of Section 6.2. Section 6.6 presents Monte

Carlo simulation results that validate the analytic BER results. Adaptive threshold

estimation error is also quantified. Last, conclusions from this effort and directions for

future research are presented in Sections 6.7 and 6.8, respectively. Results presented

in this chapter do not assume fiber-coupled detection or wavefront control at receiver.

However, adaptive thresholding could be readily combined with a variety of detector

and wavefront control architectures.
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Figure 6.1: Major components of a digital communication system.

6.1 Digital Communication

The major components of a digital communication system are presented in Fig-

ure 6.1 [90]. The modulator converts bits to symbols prior to transmission through the

channel. In the case of LaserCom, the channel is the stochastic atmosphere, whereas

in fiber optics it is a well characterized glass fiber. For the OOK system considered

here, the relationship between bits and symbols is one-to-one. The symbols for a 1 and

0 are simply the “on” and “off” states of the laser source, respectively. The encoder

and decoder implement Forward Error-Correction (FEC) codes to decrease BER for

a fixed transmitter power. Example FECs include linear block, convolutional, Reed-

Solomon, and turbo codes [43,90]. FEC codes are not considered in this investigation

for the following reasons. First, the focus of this work is the channel. Second, con-

volutional and turbo-codes are capable of significant performance improvement, but

suffer from decoding delays - a drawback for real-time communication [43].

6.1.1 Optical Binary Receiver Model. The optical binary receiver model

used for this investigation is described by Figure 6.2. A filter of bandwidth B follows

the detector, where B is chosen to match the frequency content of the incoming signal.

The output from the filter is

i = iS + iN , (6.1)

where iS and iN are the signal and noise currents, respectively. The signal current is

defined by

iS =
ηes

hν
, (6.2)
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Figure 6.2: Optical binary receiver model for direct-detection digital communica-
tion.

where s is optical power captured by the telescope (watts), η is quantum efficiency

(electrons/photon), e = 1.602 × 10−19 C is the elementary electric charge, h =

6.626 × 10−34 J·s is Planck’s constant, and ν is optical frequency (Hz). Note that

the product hν gives the energy in joules represented by a single photon. The signal

current given by (6.2) is assumed to be constant during any given integration pe-

riod corresponding to a single bit. Comparing the frequency of atmospheric change

(< kHz) with bandwidths studied (> MHz), this is a reasonable assumption. The

noise current is described in detail in the next section.

6.1.2 Noise Sources. There are several potential noise sources in the optical

detection process, such as: electronic thermal (or Johnson) noise, photon (or shot)

noise, generation recombination noise, 1/f noise, background noise, dark current,

etc. [32]. For typical systems, Johnson and shot noise dominate. Thus, these are the

only two detection noise terms considered:

iN = ielec + ishot . (6.3)

Shot noise is due to the random arrival times of individual photons, or conversely, the

random emission times of photoelectrons. Johnson noise is due to thermal motion of

electrons across a resistor.

The statistics of shot noise are fundamentally Poisson, but if the signal level

is large enough, a Gaussian PDF is a good approximation [4]. To determine if a
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Gaussian PDF is applicable to this research, the minimum received signal power

must be estimated. The minimum captured power for all wave-optics simulation data

initially generated for results presented in Chapter IV was 198 µw, which occurred for

C2
n = 8× 10−17 m−2/3. Incorporating an additional constant loss factor of -57 dB due

to estimated optical surface losses, atmospheric attenuation, longer paths, reduced

transmitter power, smaller receiving aperture, etc. [4], the global minimum received

power is 663 nw. The corresponding photons per bit is calculated as

Photons Per Bit =
sτ

hν
, (6.4)

where τ is the temporal bit duration (sec). For the minimum captured power and

a bit rate of 10.0 Gbps (τ = 0.1 ns), the corresponding minimum photons per bit

is 500. Furthermore, as the captured power approaches zero, the signal and shot

noise currents will also approach zero. Therefore, shot noise current statistics are well

approximated as a zero-mean Gaussian [4, 8]:

p(ishot) =
1√

2πσshot
exp

{

− i2shot
2σ2

shot

}

, (6.5)

where the mean square current due to shot noise is given by [32:173]

E{i2shot} = σ2
shot = 2eBiS (6.6)

=
2ηe2Bs

hν
, (6.7)

where B is signal bandwidth. Note that shot noise current is signal level dependent.

Johnson noise current is typically modelled as a zero mean Gaussian random

variable, with mean square current given by [32:171]

E{i2elec} = σ2
elec =

4KTB

R
, (6.8)
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where K = 1.381× 10−23 joules/kelvin is Boltzmann’s constant, T is temperature of

the electronics (kelvin), and R is the effective input resistance (ohms). The statistics

of Johnson noise are described by

p(ielec) =
1√

2πσelec
exp

{

− i2elec
2σ2

elec

}

. (6.9)

The total detector current is now given by

i = iS + ishot + ielec . (6.10)

The noise sources are assumed to be independent. Therefore, the mean current is

E{i} = E{iS}+ E{ishot}+ E{ielec} (6.11)

= iS , (6.12)

and the variance is due only to the detection noise terms:

σ2
i = σ2

shot + σ2
elec (6.13)

=
2ηe2Bs

hν
+

4KTB

R
. (6.14)

Furthermore, since a sum of Gaussian random variables is also a Gaussian random

variable, the total detector current is described by a Gaussian distribution:

p(i) =
1√
2πσi

exp

{

−(i− iS)2

2σ2
i

}

. (6.15)

6.2 Binary Decision Problem and Bit-Error Rate Formulation

Figure 6.3 depicts the basic binary decision problem [67]. The function p0(i)

is the a priori PDF for the null hypothesis, corresponding to the case that a 0 was

transmitted. The function p1(i) is the a priori PDF for the simple alternate hypoth-

esis, corresponding to the case that a 1 was transmitted. The results of Section 6.1.2
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Figure 6.3: Illustration of the basic binary decision problem. The Gaussian function
on the left, p0(i), is the a priori PDF for the null hypothesis, which corresponds to
transmission of a 0. The Gaussian function on the right, p1(i), is the a priori PDF
for the simple alternate hypothesis, which corresponds to transmission of a 1.

are used to formulate a binary decision problem applicable to LaserCom. The as-

sumption is made that no optical power reaches the detector during transmission of

a zero. The current generated by the receiver is expressed as a pair of conditional

Gaussian PDFs: p0(i), the probability of detector current, i, given a zero was sent

and p1(i), the probability of detector current given a one was sent, where

p0(i) =
1√

2πσelec
exp

{

− i2

2σ2
elec

}

(6.16)

and

p1(i) =
1√
2πσi

exp

{

−(i− iS)2

2σ2
i

}

. (6.17)

where σ2
elec is given by (6.8), iS is given by (6.2), and σ2

i is given by (6.14). BER

expressions are now formulated for several cases of increasing complexity, culminating

in the case which accounts for signal dependent noise, scintillation, and an adaptive

decision threshold.
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6.2.1 Fixed Threshold without Scintillation. In the absence of scintillation

(i.e., fixed signal level), the probability of a bit-error (i.e., BER) is expressed as

Pe = P (0)

∫ ∞

iT

p0(i)di+ P (1)

∫ iT

−∞

p1(i)di , (6.18)

where P (0) and P (1) are the a priori probabilities for transmissions of a zero or

one, respectively, and iT is the fixed decision threshold in terms of detector current.

Numerically, (6.18) is defined as the number of bits in error divided by the total

number of bits transmitted. Equation (6.18) is common to discussions of binary de-

cision theory [4, 8, 38, 67, 90]. The first term in (6.18) is often called the Probability

of False Alarm (PFA), while the second is called the Probability of Missed Detec-

tion (PMD) [67].

6.2.2 Fixed Threshold with Scintillation. The impact of scintillation is to

vary iS. To include this variation, p1(i) must be conditioned on the received optical

power. Extending the approach of Andrews, Phillips, and Hopen [8]:

Pe = P (0)

∫ ∞

iT

p0(i)di+ P (1)

∫ ∞

0

∫ iT

−∞

p1(i|s)p(s)dids , (6.19)

where p1(i|s) is the PDF of detector current during transmission of a 1 conditioned

on the optical power, s, captured by the telescope. To find the total error probability,

the PDF describing atmosphere-induced power fluctuations, p(s), is weighted by the

conditional fade probability and integrated over all possible values of s.

Equation (6.19) is now simplified to calculate subsequent results. All numeric

results presented in this chapter assume that a 0 and 1 are equally likely so that

P (1) = P (0) = 1/2. Further, substitution of (6.16) and (6.17) into (6.19) gives

Pe =
1

2

∫ ∞

iT

1√
2πσelec

exp

{

− i2

2σ2
elec

}

di

+
1

2

∫ ∞

0

∫ iT

−∞

1√
2πσi(s)

exp

{

− [i− iS(s)]2
2σ2

i (s)

}

p(s)dids , (6.20)
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where the dependence of the mean and variance of detector current on captured optical

power (during transmission of a 1) is explicit to avoid confusion.

The integrals cannot be evaluated analytically, but (6.20) is simplified prior to

numeric evaluation using the Gaussian error, and complementary error, functions. To

maintain consistency with Matlabr , the following definitions are assumed:

erf(x) =
2√
π

∫ x

0

e−t
2

dt (6.21)

and

erfc(x) =
1

2
− erf(x) (6.22)

=
2√
π

∫ ∞

x

e−t
2

dt . (6.23)

Making a change of variables and using (6.21) and (6.23), the probability of error is

expressed as

Pe =
1

4
+

1

4
erfc

[

iT√
2σelec

]

+
1

4

∫ ∞

0

erf

[

iT − iS(s)√
2σi(s)

]

p(s)ds . (6.24)

6.2.3 Adaptive Threshold with Scintillation. For the final BER formula-

tion, an adaptive threshold is assumed. Therefore, the decision threshold becomes a

function of captured power. To start, (6.18) is rewritten as

Pe|s = P (0)

∫ ∞

iT (s)

p0(i)di+ P (1)

∫ iT (s)

−∞

p1(i|s)di . (6.25)

Unlike the fixed threshold case, the terms corresponding to PFA and PMD are both

dependent on captured optical power. To find the total error probability, (6.25) is

weighted by the PDF describing atmosphere-induced power fluctuations, and inte-
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grated over all possible values of s:

Pe =

∫ ∞

0

Pe|sp(s)ds (6.26)

= P (0)

∫ ∞

0

∫ ∞

iT (s)

p0(i)p(s)dids+ P (1)

∫ ∞

0

∫ iT (s)

−∞

p1(i|s)p(s)dids . (6.27)

Once again, the error and complementary error functions given by (6.21) and (6.23)

are used to simplify the expression for BER, resulting in

Pe =
1

4
+

1

4

∫ ∞

0

erfc

[

iT (s)√
2σelec

]

p(s)ds+
1

4

∫ ∞

0

erf

[

iT (s)− iS(s)√
2σi(s)

]

p(s)ds , (6.28)

where iT (s) is the adaptive decision threshold.

6.3 Optimal Fixed Decision Threshold

This section develops an optimal fixed decision threshold for three separate

cases. First, Section 6.3.1 considers the simplest case which ignores scintillation and

signal dependant noise. This case serves as a validation point for the more general

result derived in Section 6.3.2, which accounts for signal dependent noise. The result

of Section 6.3.2 does not account for scintillation, but provides a method to calculate

the adaptive threshold. Last, Section 6.3.3 considers the impact of scintillation on the

fixed threshold selection. The optimal fixed threshold cannot be solved for directly

in this case. However, a constraint equation is produced, which can be used to

numerically solve for the optimal fixed threshold for a given PDF describing the

turbulence-induced power fluctuations.

6.3.1 Equal Variance without Scintillation. In the case where the a priori

densities for noise and signal-plus-noise have the same variance, the optimum fixed

threshold is simply the midpoint between the two means. Both densities having

the same variance implies signal independent noise. For the current notation, the

threshold in this case is iT = iS/2. This common result can be found by setting
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dPe/diT = 0 and using the Leibnitz Rule (see following subsection) or by a maximum

likelihood approach [90]. This result serves as a validation point for the following

derivation in Section 6.3.2.

6.3.2 Unequal Variance without Scintillation. The more general case ac-

counting for signal dependent noise is now considered. In this case, the two a priori

densities illustrated by Figure 6.3 no longer have the same variance, and the thresh-

old value minimizing BER is no longer obvious. The a priori densities for noise and

signal-plus-noise are now assumed to be given by (6.16) and (6.17). The optimum

threshold which minimizes the probability of bit-error is found by finding dPe/diT = 0

and solving for iT (assuming this is not a maximum). Starting with BER as given by

(6.18) gives

dPe
diT

=
d

diT

[

P (0)

∫ ∞

iT

p0(i)di+ P (1)

∫ iT

−∞

p1(i)di

]

= 0 . (6.29)

Use of the Leibnitz Rule leads to

−P (0)p0(iT ) + P (1)p1(iT ) = 0 . (6.30)

Substitution of (6.16) and (6.17) for the a priori densities yields

σiP (0)

σelecP (1)
= exp

{

−1

2

[

(iT − iS)2

σ2
i

− i2T
σ2
elec

]}

. (6.31)

Taking the natural logarithm of both sides results in

ln

{

σiP (0)

σelecP (1)

}

= −1

2

[

(iT − iS)2

σ2
i

− i2T
σ2
elec

]

. (6.32)

Rearranging terms gives a quadratic equation in iT :

(σ2
i − σ2

elec)i
2
T + 2iSσ

2
eleciT +

[

−2σ2
elecσ

2
i ln

{

σiP (0)

σelecP (1)

}

− σ2
eleci

2
S

]

= 0 . (6.33)

138



At this point the solution is tested by assuming the special case where P (0) = P (1) =

1/2 and σi = σelec = σ. Making these substitutions yields

2iSσ
2iT − σ2i2S = 0 , (6.34)

which gives iT = iS/2, matching the previous result discussed in Section 6.3.1.

Using the quadratic formula and simplifying gives the following pair of solutions

to (6.33):

iT =

−iSσ2
elec ± σelecσi

√

2 ln
{

σiP (0)
σelecP (1)

}

(σ2
i − σ2

elec) + i2S

σ2
i − σ2

elec

. (6.35)

For the special case where σelec = σi = σ the denominator of (6.35) becomes zero.

The two solutions for the numerator are

−iSσ2 − iSσ2 = −2iSσ
2 (6.36)

and

−iSσ2 + iSσ
2 = 0 . (6.37)

In the first case, iT → ∞ which is not reasonable and thus this solution is ignored.

Therefore, the desired result for the optimal fixed threshold for the case of unequal

variance is given by

iT =

−iSσ2
elec + σelecσi

√

2 ln
{

σiP (0)
σelecP (1)

}

(σ2
i − σ2

elec) + i2S

σ2
i − σ2

elec

. (6.38)

Equation (6.38) represents a key result as it defines the optimal fixed threshold ac-

counting for signal dependent noise. Since the mean detector current is assumed

constant during any given transmission of a 1, (6.38) also gives the adaptive thresh-

old for a given value of captured optical power, s.
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6.3.3 Unequal Variance with Scintillation. The most general case, account-

ing for signal dependent noise and scintillation, is now considered. As in Section 6.3.2,

the two a priori densities illustrated by Figure 6.3 have different standard deviations.

Furthermore, the PDF for signal-plus-noise has a mean value dependent on the optical

power captured by the telescope, which varies due to atmospheric turbulence. The

search for an optimum threshold which minimizes the probability of bit-error again

starts with dPe/diT = 0. Starting with BER as defined by (6.19) gives

dPe
diT

= P (0)
d

diT

[
∫ ∞

iT

p0(i)di

]

+ P (1)
d

diT

[
∫ ∞

0

∫ iT

−∞

p1(i|s)p(s)dids
]

= 0 . (6.39)

Using the Leibnitz Rule to differentiate the integral in the first term gives

−P (0)p0(iT ) + P (1)

∫ ∞

0

d

diT

[
∫ iT

−∞

p1(i|s)di
]

p(s)ds = 0 . (6.40)

Invoking the Leibnitz Rule a second time results in

−P (0)p0(iT ) + P (1)

∫ ∞

0

p1(iT |s)p(s)ds = 0 . (6.41)

Substitution of (6.16) and (6.17) for p0(iT ) and p1(iT |s), respectively, gives the fol-

lowing:

−P (0)

σelec
exp

{ −i2T
2σ2

elec

}

+ P (1)

∫ ∞

0

p(s)

σi(s)
exp

{−[iT − iS(s)]2
2σ2

i (s)

}

ds = 0 . (6.42)

Assuming that P (0) = P (1) = 1/2 gives

∫ ∞

0

p(s)

σi(s)
exp

{−[iT − iS(s)]2
2σ2

i (s)

}

ds− 1

σelec
exp

{ −i2T
2σ2

elec

}

= 0 . (6.43)

Unfortunately, (6.43) does not provide an explicit solution for the optimal fixed thresh-

old. However, a single integral remains which can be solved numerically.
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Table 6.1: Parameter values for analysis of the optimal fixed and adaptive threshold
optical binary receivers.

Parameter Fixed Value Case 1 Case 2

η (electrons/photon) 0.80
ν (Hz) 2.0× 1014

Bit Rate/Bandwidth (bps/Hz) 10× 106 10× 109

T (kelvin) 300
R (ohms) 1000

Loss Factor (dB) -57

6.4 System Evaluation Parameters

This section addresses several necessary considerations prior to calculating thresh-

old values and BER results. First, Section 6.4.1 presents assumed values for required

system parameters. Second, to obtain numeric results using the equations formulated

in Sections 6.2 and 6.3, an analytic representation of the PDF describing turbulence-

induced power fluctuations is required. Section 6.4.2 describes using the gamma-

gamma PDF for this purpose. Last, Section 6.4.3 provides signal and noise current

values corresponding to the extremes of captured optical power for the wave-optics

simulation data described in Chapter IV.

6.4.1 System Parameter Values. System parameter values used to calculate

numeric BER results for the optimal fixed and adaptive threshold techniques are

presented in Table 6.1. Two bit rates are initially considered: 10 Mbps and 10 Gbps.

Recall that for a random binary waveform, the bandwidth for baseband transmission

is equal to the bit rate [90]. Therefore, with all other parameter values fixed, changing

the bit rate from 10 Mbps to 10 Gbps increases the variance of both Johnson and

shot noise by three orders of magnitude. The -57 dB loss factor previously discussed

is applied to the wave-optics simulation data described in Chapter IV [4].

6.4.2 Using the Gamma-Gamma PDF. To calculate optimal fixed threshold

and BER values, an analytic description of p(s) is required. The gamma-gamma PDF
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Figure 6.4: Histogram of captured power and best-fit gamma-gamma PDF for a

turbulence strength of C2
n = 3× 10−17 m−2/3. The resulting parameter values for the

gamma-gamma are α = β = 3.51.

(see Section 2.4.6) has been the subject of much recent work in this area and is used

for this purpose. Histograms of captured power were generated using the wave-optics

data set described in Chapter IV. Best-fit gamma-gamma parameters were then found

for each turbulence strength and define p(s) for subsequent calculations. Resulting

histograms and best-fit gamma-gamma curves are presented in Figures 6.4 and 6.5 for

C2
n values of 3× 10−17 and 8× 10−17 m−2/3, respectively. A best-fit was accomplished

by using the fminsearch function in Matlabr to minimize sum square error between

the normalized histogram and the gamma-gamma PDF evaluated at bin centers.

Resulting parameter values are listed in Table 6.2. Bin edge locations were adjusted

for each value of C2
n to just span the range of recorded values of captured power.

Thus, histogram resolution was maximized for a fixed number of bins; 100 bins were

used in all cases. Note that a best-fit yields identical values for α and β. Just as for

the log-normal PDF [41:399-402], when the mean value of the gamma-gamma PDF

is fixed, the other two parameters cannot be chosen independently.
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Figure 6.5: Histogram of captured optical power and best-fit gamma-gamma PDF

for a turbulence strength of C2
n = 8 × 10−17 m−2/3. The resulting parameter values

for the gamma-gamma are α = β = 2.07.

Table 6.2: Best-fit parameter values for the gamma-gamma PDF. Results for mean
captured power reflect the -57 dB loss factor listed in Table 6.1. A best-fit was ac-
complished by using the fminsearch function in Matlabr to minimize the sum square
error between the normalized histogram and the gamma-gamma PDF evaluated at
bin centers. 100 bins were used for histogram generation.

Mean Captured Best-Fit

C2
n (m−2/3) Power (µw) α = β

1× 10−17 104 9.91
2× 10−17 95 5.04
3× 10−17 87 3.51
4× 10−17 80 2.85
5× 10−17 74 2.53
6× 10−17 69 2.32
7× 10−17 64 2.18
8× 10−17 60 2.07
9× 10−17 56 2.01
1× 10−16 52 1.97
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Table 6.3: Signal and noise current values corresponding to minimum and maximum
captured power from the wave-optics simulation data described in Chapter IV.

Minimum Maximum

Captured Power, s 663× 10−9 w 763× 10−6 w
Signal Current, iS 642× 10−9 A 739× 10−6 A

Photons per Bit (at 10 Mbps) 5.0× 105 5.8× 108

Photons per Bit (at 10 Gbps) 500 5.8× 105

Noise Currents at 10 Mbps

Johnson Noise Current, ielec 13× 10−9 A
Shot Noise Current, ishot 1× 10−9 A 49× 10−9 A
Total Noise Current, iN 13× 10−9 A 50× 10−9 A

Noise Currents at 10 Gbps

Johnson Noise Current, ielec 407× 10−9 A
Shot Noise Current, ishot 45× 10−9 A 2× 10−6 A
Total Noise Current, iN 410× 10−9 A 2× 10−6 A

6.4.3 Noise Current Regimes. Signal and noise current values are presented

in Table 6.3 for the two bit rates considered and for corresponding minimum and max-

imum values of captured power (from wave-optics simulation data). Several important

observations are made from the data presented in Table 6.3. First, the total noise

current is shot noise limited for the maximum value of captured power, and Johnson

noise limited for the minimum value of captured power. This is true for both bit rates

considered. Second, the signal current generated by the minimum recorded value of

captured power is approximately 50 and 1.5 times larger than Johnson noise current

for the 10 Mbps and 10 Gbps cases, respectively. This observation is important for

upcoming discussions of both analytic and simulated BER results.

6.5 Analytic Results

6.5.1 Optimal Fixed Threshold Calculations. The first step to determine

performance of optimal fixed thresholds is calculating the threshold value itself, which

depends on turbulence strength. To present an initial comparison between the fixed

and adaptive decision threshold techniques, perfect knowledge of C2
n is assumed for
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Table 6.4: Optimal fixed threshold values iT for 10 Mbps and 10 Gbps communi-
cation links. Threshold values are presented both in terms of actual detector current,
and as a multiple of the corresponding electronic (a.k.a., Johnson) noise current.

iT (10 Mbps) iT (10 Gbps)

C2
n (m−2/3) nA σelec µA σelec

1× 10−17 125 9.7 2.54 6.2
2× 10−17 91 7.1 1.91 4.7
3× 10−17 77 6.0 1.63 4.0
4× 10−17 70 5.4 1.49 3.7
5× 10−17 65 5.1 1.40 3.4
6× 10−17 63 4.9 1.35 3.3
7× 10−17 61 4.7 1.29 3.2
8× 10−17 59 4.6 1.26 3.1
9× 10−17 58 4.5 1.23 3.0
1× 10−16 57 4.4 1.21 3.0

fixed threshold cases. Thus, an optimal fixed threshold was calculated for each C2
n

value prior to BER calculations. The best-fit gamma-gamma parameters listed in

Table 6.2 were used to determine the form of p(s), which then defined the threshold,

iT . Note that imperfect knowledge of turbulence, as existing in real-world scenarios,

will degrade performance. Resulting optimal fixed threshold values iT are presented

in Table 6.4 for bit rates of 10 Mbps and 10 Gbps. Note that the optimal threshold

monotonically decreases with increasing turbulence strength. However, the rate of

decrease drops off significantly as C2
n exceeds 2× 10−17 m−2/3.

6.5.2 Adaptive Threshold Calculation. The adaptive threshold is chosen

based on knowledge of iS. Since the mean detector current is assumed constant

during any given transmission of a 1, adaptive threshold selection reduces to a simpler

problem of choosing the optimal fixed threshold corresponding to the assumed mean

detector current. Thus, (6.38) is used to calculate the adaptive threshold as a function

of mean signal current, iS, which is a function of captured optical power, s.
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Figure 6.6: Analytic BER results versus turbulence strength for a 10 Mbps com-
munication link. The optimal fixed threshold curve assumes knowledge of C2

n, while
the adaptive curve does not.

6.5.3 Analytic BER Results. Analytic BER results for the optimal fixed

and adaptive threshold techniques are presented in Figures 6.6 and 6.7 for bit rates

of 10 Mbps and 10 Gbps, respectively. As expected, an adaptive threshold either

outperforms or provides nearly identical performance as compared to the case of

optimal fixed thresholds. However, for the 10 Mbps case the benefit of adaptive

thresholding grows as turbulence intensifies, whereas the benefit decreases slightly for

10 Gbps. To quantify the relative improvement provided by an adaptive threshold,

the (order of magnitude) BER improvement factor is defined as

BER Improvement Factor = log10

{

Pe,fixed
Pe,adapt

}

(orders of magnitude) . (6.44)

The improvement factor is plotted in Figure 6.8 for the two bit rates considered

using the adaptive threshold. Note that for a 10 Mbps link, the adaptive threshold

does not show noticeable improvement until C2
n exceeds 4 × 10−17 m−2/3. However,

for a 10 Gbps link the adaptive threshold provides significant improvement for all

turbulence strengths considered. In contrast to the 10 Mbps result, the 10 Gbps
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Figure 6.7: Analytic BER results versus turbulence strength for a 10 Gbps com-
munication link. The optimal fixed threshold curve assumes knowledge of C2

n, while
the adaptive curve does not.
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Figure 6.8: BER improvement factor of (6.44) versus turbulence strength for bit
rates of 10 Mbps and 10 Gbps using an adaptive threshold.
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Figure 6.9: BER improvement factor of (6.44) versus turbulence strength for bit
rates of 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps using an adaptive threshold.

improvement factor actually increases with decreasing turbulence strength - ranging

from 0.41 at C2
n = 1× 10−16 m−2/3 to 1.60 at C2

n = 1× 10−17 m−2/3.

To further understand the relationship between bit rate (i.e., noise bandwidth)

and the BER improvement factor, two additional bit rates were considered: 100 Mbps

and 1 Gbps. The improvement factors for all four bit rates are presented in Figure 6.9,

and are now displayed in log space along the y-axis to highlight results in the region of

weaker turbulence. The BER improvement factor is a convenient metric in the sense

that it corresponds directly to differences between the fixed and adaptive threshold

BER results in Figures 6.6 and 6.7. However, this metric is also somewhat deceptive

in that an improvement factor of 0.1 may seem trivial, which is not the case. BER

improvement factors of 0.1, 1.0, and 1.6 correspond to situations where the optimal

fixed threshold has 1.3, 10, and 33 times more bit-errors than the adaptive threshold

case. Furthermore, if 0.1 orders of magnitude is the minimum acceptable BER im-

provement per (6.44), then Figure 6.9 implies the existence of a lower bound, in terms

of turbulence strength, on the region of improvement for each bit rate. This lower

bound is approximately C2
n = [5.6, 3.6, 1.9] × 10−17 m−2/3 for bit rates of 10 Mbps,
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Figure 6.10: Probability of false alarm (PFA) versus turbulence strength for optimal
fixed thresholds and bits rates of 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps.

100 Mbps, and 1 Gbps, respectively. The value of the lower bound in the 10 Gbps case

is less than the weakest turbulence strength considered, 1× 10−17 m−2/3. Given that

a major motivation behind LaserCom is high-bandwidth communication, and that

BER degrades with increasing C2
n, the adaptive threshold is an attractive approach

for improving LaserCom performance in challenging, long-range scenarios.

To further understand performance gains afforded by adaptive thresholding, the

probabilities of missed detection (PMD) and false alarm (PFA) are plotted separately

in Figures 6.10 through 6.13 for bit rates of [1, 10, 100, 1000]× 10 Mbps. Figures 6.10

and 6.11 provide insight into BER performance for the case of optimal fixed thresh-

olds. Figure 6.10 shows PFA versus C2
n, with PFA increasing monotonically both

with increasing bit rate and turbulence strength. Figure 6.11 shows PMD versus C2
n,

with PMD appearing to approach a lower limit (as a function of bit rate) for the three

weakest turbulence strengths considered. Furthermore, for any pair of bit rate/turbu-

lence strength values considered, PMD is larger than PFA, and therefore the limiting

contributor to total bit-error probability.
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Figure 6.11: Probability of missed detection (PMD) versus turbulence strength for
optimal fixed thresholds and bits rates of 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps.
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Figure 6.12: Probability of false alarm (PFA) versus turbulence strength for an
adaptive threshold and bits rates of 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps.
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Figure 6.13: Probability of missed detection (PMD) versus turbulence strength for
an adaptive threshold and bits rates of 10 Mbps, 100 Mbps, 1 Gbps, and 10 Gbps.

Figures 6.12 and 6.13 provide insight into BER performance for the adaptive

threshold. Figure 6.12 shows PFA versus C2
n. Once again, PFA increases monoton-

ically both with increasing bit rate and turbulence strength. Furthermore, relative

to Figure 6.10 results the adaptive threshold has significantly decreased PFA for the

weakest turbulence strength considered, 1× 10−17 m−2/3. Although not obvious from

comparing the results of Figures 6.10 and 6.12, closer inspection of the data reveals

that the adaptive threshold actually increased PFA slightly for several of the stronger

turbulence strengths considered. Figure 6.13 shows PMD versus C2
n. This result shows

a similar trend to that for optimal fixed thresholds. However, relative to Figure 6.11

results the adaptive threshold has pushed the PMD curves downward - approach-

ing what appears to be a lower limit (as a function of bit rate) for weaker turbulence

strengths considered. Although not obvious from comparing the results of Figures 6.11

and 6.13, closer inspection of the data reveals that for C2
n ≥ 2× 10−17 m−2/3 the PMD

results for adaptive thresholding are smaller than for optimal fixed thresholds. This is

the region of turbulence strength which corresponds to moderate to strong amplitude

fluctuations. For the weakest turbulence considered, C2
n = 1 × 10−17 m−2/3, PMD
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values for the adaptive and optimal fixed threshold cases are nearly equal. As in the

case of optimal fixed thresholds, for any pair of bit rate/turbulence strength values

considered, PMD is larger than PFA, and therefore the limiting contributor to total

bit-error probability.

The breakout of performance by PFA and PMD gives interesting insight into

adaptive threshold performance. The adaptive threshold actually gives up some per-

formance in terms of PFA at stronger turbulence strengths, but in this same region

provides the most improvement in PMD. Furthermore, for both adaptive and optimal

fixed thresholds, PFA is smaller than PMD for any pair of bit rate/C2
n values con-

sidered. Thus, the tradeoff of PFA and PMD resulted in an overall improvement in

Pe.

6.6 Simulation Results

6.6.1 Adaptive Threshold Estimation Error. In practice, perfect knowledge

of iS is unavailable. However, iS can be estimated based on prior measurements of

detector current since bit rates are much greater than the rate of atmospheric change.

The effectiveness of an adaptive threshold implementation will depend on accuracy

of the estimate of iS, upon which the threshold iT is based. The normalized variance

of the adaptive threshold estimate is described by

σ2
îT

(N) = E

{

[iT − îT (N)]2

i2T

}

, (6.45)

where N is the number of prior samples used to generate the estimate, îT . Results in

terms of standard deviation are presented in Figure 6.14 for the 10 Mbps case. The

calculations were also made for the 10 Gbps case, but results were nearly indistin-

guishable from those presented in Figure 6.14. Initially, the estimation error decreases

with an increasing number of prior samples. This is attributed to an increased ability

to average out the noise. However, when N goes from 500 to 750 the estimation

error actually increases for C2
n > 2 × 10−17 m−2/3. This is attributed to increased
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Figure 6.14: Adaptive threshold estimation error (standard deviation) versus tur-
bulence strength for a 10 Mbps link, and a varying number of prior samples used to
estimate the threshold iT .

scintillation-induced power fluctuations captured by a great number of samples. For

the given bit rate, 1000 samples corresponds to 1 msec, which is on the order of the

expected rate of atmospheric change. Overall, based on the results presented here, a

value of N = 500 is the best choice for adaptive threshold estimation in the scenarios

studied. At this value, the estimated iT will have a normalized standard deviation of

about 5% of the true value.

6.6.2 Adaptive Threshold BER Results. To provide additional validation

of the analytic results and flexibility for future studies, a simulation approach was

also pursued. The fixed and adaptive threshold techniques were implemented in

Matlabr . Next, the wave-optics data from Chapter IV was processed using both

techniques. However, this approach yielded BER results below (better than) those

predicted by analysis. The discrepancy was suspected to result from using too few

data points to properly estimate the very small probabilities of interest. The wave-

optics simulation produced 153,510 data points per C2
n value. However, this data is

temporally correlated. To validate the assertion of too few samples, a second approach
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Figure 6.15: Analytic and simulated BER results versus bit rate for a turbulence

strength of C2
n = 1× 10−16 m−2/3. Four million independent realizations of captured

power were used to calculate each simulation result.

was undertaken. Using the best-fit gamma-gamma curves described in Section 6.4.2,

4×106 independent random realizations of captured optical power were generated for

the strongest turbulence studied (C2
n = 1×10−16 m−2/3). This new set of data was then

processed using both the optimal fixed and adaptive threshold techniques. Results

are presented in Figure 6.15 for the four bit rates considered, and show excellent

agreement between the simulation and analytic approaches. Furthermore, this result

highlights the challenge of estimating the small BER values of interest. Considering

the computation time required to generate the wave-optics data set for Chapter IV,

an analytic approach is required for the adaptive threshold investigation presented in

this chapter assuming limited computation resources.

6.6.3 Impact of Threshold Estimation Error on BER. The previous two

sections investigated adaptive threshold estimation error and validated analytic BER

results in simulation. This section extends those two results to produce a higher fi-

delity model of adaptive threshold performance. BER is plotted versus turbulence

strength in Figure 6.16 for a bit rate of 10 Gbps, and for three calculation methods.
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Figure 6.16: BER versus turbulence strength for an adaptive threshold and a bit
rate of 10 Gbps. A threshold estimation error of σîT = 0.05 was used to calculate
the third curve. One million independent realizations of captured power were used to
calculate each simulation result.

First, the analytic result is presented assuming an ideal adaptive threshold. Second,

the simulation result for the ideal adaptive threshold is presented. The third curve

corresponds to a simulated adaptive threshold, including the effect of threshold es-

timation error. The estimation error was modelled as Gaussian, with a standard

deviation of 0.05 × iT based on the results of Figure 6.14 for N = 500. One million

independent values of captured power were used to calculate each simulation result.

Figure 6.16 demonstrates that the impact of threshold estimation error on BER is

negligible for the given parameters and scenario studied.

6.7 Closing Remarks

This chapter developed an adaptive binary decision threshold to mitigate the

impact of scintillation and detector noise on BER. This included comparisons with

optimal fixed thresholds. Expressions for BER were derived for both the fixed and

adaptive threshold cases. Analytic results show an adaptive threshold provides a BER

improvement of 0.41 to 1.60 orders of magnitude (2.6 to 33-fold decrease) for a 10 Gbps
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link, and up to 0.56 orders of magnitude (3.6-fold decrease) for a 10 Mbps link. This

approach yields significant improvement in BER without the additional cost, weight,

and/or complexity of increasing source power, incorporating wavefront control at

receiver, or incorporating AO at the transmitter. Furthermore, adaptive threshold

performance was compared to fixed threshold performance, where an optimal fixed

threshold was chosen for each turbulence strength to minimize BER. This implies

that knowledge of C2
n would be required to achieve fixed threshold results presented

in this chapter. However, results for the adaptive threshold technique do not assume

knowledge of C2
n.

To highlight the impact of an adaptive threshold, several system design sce-

narios are considered. First, a bit rate requirement of 10 Mbps and a channel BER

requirement of 10−5 are assumed. As seen in Figure 6.6, an adaptive threshold meets

these requirements for all turbulence strengths considered. However, the optimal fixed

threshold meets the required BER only for C2
n ≤ 5.7× 10−17 m−2/3. In other words,

the adaptive threshold meets requirements in turbulence which is 75% stronger. Sec-

ond, a bit rate requirement of 10 Gbps and a channel BER requirement of 10−4

are assumed. As seen in Figure 6.7, an adaptive threshold provides the same BER

performance as an optimal fixed threshold, but in turbulence that is 33% stronger.

Adaptive threshold performance can also be described in terms of providing the same

BER performance for a longer communication range or smaller aperture. However,

these relationships are not straightforward. Longer propagation paths will change the

shape of p(s), and further calculations would be required to explore the space of BER

as a function of path length and aperture size.

6.8 Future Work

There are several promising areas for extending the research. First, fidelity could

be increased by accounting for fixed threshold estimation error in BER calculations.

For the optimal fixed threshold case, threshold estimation error would be driven by

C2
n estimation error. Since r0 is often used to characterize turbulence strength, and
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is related to C2
n in a simple fashion for uniform turbulence, r0 could be allowed to

vary by up to 200% from the true value. Second, the impact of peak tracking and

other wavefront control schemes on the gamma-gamma parameters could be explored.

This result could then be used to analytically investigate system performance using

both wavefront control and an adaptive threshold. A simulation approach could also

be utilized. The third area for extending the research is to explore a combination

of adaptive thresholding with other scintillation/fade compensation techniques, such

as forward error-correction codes, data interleaving, multiple beams, etc. Last, the

entire analysis could be repeated for a UAV-to-GEO engagement, where an optical

communication link provides an additional means to disseminate surveillance imagery

in near real-time to any point on Earth.
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VII. Conclusion

The goal of this research was to extend the standard approach to atmospheric

turbulence compensation system design from one that strives to minimize MSE

to one that strives to optimize the metric of interest. A MSE performance metric is

typical of both image restoration algorithms and AO systems. For post-processing

techniques, the common metric is the MSE between the ideal and recovered image

intensities. For AO, the aperture averaged mean square phase abberation is often

used for system analysis and design. For a closed-loop system, assuming negligible

amplitude fluctuations, mean square phase is directly related to average Strehl ra-

tio [47,89]. As a result, characterization of turbulence effects and optimization of AO

performance is typically accomplished in terms of mean square phase [44,64,101,103].

For LaserCom performance, the probability of fade and associated area under the tail

of the signal’s PDF are more important than the average signal power. Furthermore,

UAVs of various sizes are playing an ever increasing role for surveillance, reconnais-

sance, and weapon delivery. The divergence of design approaches based on minimizing

MSE versus preventing and mitigating the impact of deep signal fades was the mo-

tivation for this research. The additional weight, size, power, and other constraints

imposed on small airborne platforms were also considered in the sense that simplicity

is desired.

Chapter IV presented investigative results for alternate tracking schemes for

LaserCom fade mitigation. A 100 km air-to-air scenario was studied using analy-

sis and wave-optics simulation. Focal plane image spot breakup was identified as

the dominant failure mechanism. Significant breakup first occurs when D/r0 ≈ 0.6

and σ2
χ = 0.19. The impact of spot breakup was minimal for average Strehl, but

considerable for fade probability - demonstrating that optimization of a wavefront

control system must consider the performance metric of interest. Fade probability is

directly related to BER for direct-detection communication systems. Alternate track-

ing schemes were then investigated based on knowledge of spot breakup. Metric-driven

design led to exploration of peak intensity tracking, which reduces fade probability by
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greater than 50% over conventional centroid trackers and AO systems for scenarios

studied. This result demonstrates that metric-driven control of two wavefront phase

modes outperforms MSE driven control of over 23 modes for the metric of interest.

Thus, improved performance is achieved with a much simpler system. This result is

important for potential UAV based optical receivers using a fiber-coupled detector.

The duration of focal plane spot breakup was then characterized. From a system

design standpoint, this result is important for both sensor frame-rate and system

bandwidth requirements, as well as optimizing error-correction codes.

Chapter V defined an architecture to further examine regions of operation for

various atmospheric compensation techniques. Fades are classified based on complex-

ity of the required compensation technique. For compensation techniques studied,

regions of superior performance, in terms of minimal fade probability as a function

of detection threshold, were identified. Peak tracking outperforms AO for thresholds

below approximately 4% of the unabberated intensity. Furthermore, the boundary

between dominance regions is nearly invariant to turbulence strength. Boundary in-

variance would simplify operation of a composite system which is capable of adaptively

selecting compensation methodology in real-time.

Chapter VI presented an adaptive binary decision threshold for mitigating scin-

tillation induced bit-errors. Results show this technique to be viable for decreasing

BER in the presence of scintillation and receiver noise. Expressions for BER were

derived for both the fixed and adaptive threshold cases. Analytic results show an

adaptive threshold provides a BER improvement of 0.41 to 1.60 orders of magnitude

(2.6 to 33-fold decrease) for a 10 Gbps link, and up to 0.56 orders of magnitude

(3.6-fold decrease) for a 10 Mbps link. This approach yields significant improvement

in BER without the additional cost, weight, and/or complexity of increasing source

power, incorporating wavefront control at receiver, or incorporating AO at the trans-

mitter.
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This research investigates atmospheric compensation techniques to mitigate the impact of turbulence on the performance
of free-space laser communication systems. Several receiver-based techniques are developed given constraints relevant to
tactical airborne platforms. First, wavefront control techniques was considered. In a moderate range air-to-air scenario,
focal plane image breakup is identified as the dominant failure mechanism causing deep fades. This led to investigation of
peak intensity tracking, which reduces fade probability by greater than 50% over conventional centroid trackers and
Adaptive Optics (AO) systems for scenarios studied. Atmospheric compensation requirements were then examined based
on deep fade phenomenology. For compensation techniques studied, regions of superior performance are identified. Peak
tracking is shown to outperform AO for normalized detection thresholds below approximately 4% of the unabberated
intensity. An adaptive binary decision threshold is the third major focus of this research. Analytic results show that an
adaptive threshold decreases bit-error rate by up to 1.60 orders of magnitude (33-fold decrease) for a 10 Gbps link.
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