
Performance Metrics and Empirical Results of a

PUF Cryptographic Key Generation ASIC

Meng-Day (Mandel) Yu
*
, Richard Sowell

*
, Alok Singh

*
, David M’Raїhi

*
, Srinivas Devadas

†

*
Verayo, Inc., San Jose, CA, USA

{myu, rsowell, asingh, david}@verayo.com
†
MIT, Cambridge, MA, USA

devadas@mit.edu

Abstract— We describe a PUF design with integrated error

correction that is robust to various layout implementations and

achieves excellent and consistent results in each of the following

four areas: Randomness, Uniqueness, Bias and Stability. 133 PUF

devices in 0.13 µm technology encompassing seven circuit layout

implementations were tested. The PUF-based key generation

design achieved less than 0.58 ppm failure rates with 50%+

stability safety margin. 1.75M error correction blocks ran error-

free under worst-case V/T corners (±10% V, 125ºC/-65ºC) and

under voltage extremes of ±20% V. All PUF devices

demonstrated excellent NIST-random behavior (99 cumulative

percentile), a criterion used to qualify random sources for use as

keying material for cryptographic-grade applications.

Keywords - Physical Unclonable Function (PUF); Error

Correction; Key Generation; ASIC; NIST Randomness

I. INTRODUCTION

A. Background and Motivation

Physical Unclonable Functions (PUFs) implemented in
silicon devices are used to produce output bits that are a
function of manufacturing variations. These accumulated bits
correspond to a hardware biometric signature that can be used
to identify silicon devices based on Hamming distance
comparisons. Identification is performed by comparing a
regenerated sequence of PUF output bits on a silicon device
against a previously provisioned sequence [1, 4, 6-7, 9, 17].
Inter-class variation is derived using pair-wise Hamming
distance comparisons between two sequences of PUF output
bits from different PUF devices. Intra-class variation is a
measure of the amount of PUF noise present by comparing the
Hamming distance between a provisioned sequence of PUF
output bits and a regenerated sequence, possibly under a
significantly different environmental condition than during
provisioning.

In the recent years, there have been numerous works
regarding the use of PUFs for cryptographic key generation [1-
2, 7, 10-13, 16, 18-21]. A reliability algorithm is added to the
PUF circuit to account for PUF noise, which typically increases
with increasing change in environmental conditions (e.g.,
voltage, temperature) between a provisioning condition, where
a reference snapshot of the PUF output bits sequence is taken,
and a regeneration condition. While there have been several
error correction schemes developed under the assumption of a
particular PUF noise model, there are relatively few works
where comprehensive PUF key generation results, i.e., ones
obtained empirically from a PUF + reliability algorithm

implementation, have been demonstrated under extreme
environmental variations.

The current work describes a PUF architecture and
reliability algorithm combination robust to various PUF circuit
layout implementations, where each PUF circuit produces
“random-looking” raw PUF output bits and further these bits
can be reliably and efficiently error corrected. We note while it
is possible to produce a PUF with random-looking bits, for
example by applying bit-wise XOR of two or more
manufacturing-variation-derived bits to produce a composite
PUF output bit, these PUF bits may not error correct reliably
and efficiently. We obtained excellent and consistent empirical
results in the areas of Randomness, Uniqueness, Bias, and
Stability across seven distinct PUF circuit-level
implementations (constituting 133 PUF devices), including
ones derived using a Standard-Cell ASIC design flow as well
as ones derived using a full-custom Custom-Cell ASIC design
flow. This helps to accelerate widespread deployment by
reducing performance sensitivities associated with the specifics
of a particular layout implementation.

B. Our Contribution

This paper makes the following contributions:

� PUF circuit-level designs: Standard-Cell, Custom-Cell,

and low-power designs are described that include
techniques to reduce area and power.

� Extensive characterization of PUF key generation
ASIC implementation: Randomness, Uniqueness, Bias,
and Stability.

� PUF architecture + reliability algorithm combination
robust to various layout implementations: Consistent
results for 133 PUF devices regardless of layout
implementation specifics.

� Large stability safety margin: 50%+ unused error
correction capacity for 133 PUF devices tested under
extreme environmental variations, after an aggregate of
1.75M+ tests.

We present comprehensive experimental results through
direct empirical testing of an integrated PUF + reliability
algorithm implementation under high environmental variations,
including worst-case voltage-temperature corners. We
introduce stability safety margin, computed as the proportion of
error correction capacity remaining under some specified
environmental conditions, for a certain number of test runs.

 This is important to help account for scaling issues
associated with a large-scale deployment, to provide a safety
margin for very large population sizes, manufacturing skews,
aging, radiation damage, etc. We also demonstrate consistent
results in the areas of Randomness, Uniqueness, Bias, and
Stability from a variety of PUF circuit implementation layouts,
including Standard-Cell designs as well as Custom-Cell
designs. This is important to achieve widespread deployment,
as some ASIC design houses may not have Custom-Cell layout
and design capabilities. Finally, this work “starves” the power
rail of PUF circuits to greatly reduce power consumption while
preserving the PUF key generator performance. We note that
in the present work, we focus on the description and
presentation of results on four of these PUF circuit
implementations comprising 76 PUF devices. The results here
are representative of the larger data set.

C. Related Works

Gassend et al. introduced silicon PUFs in [6] [7], where the
notion of Inter- and Intra-device variation was used to measure
the quality of a silicon PUF circuit for an authentication
application. Gassend [7] pioneered the use of error correction
with silicon PUFs using a 2-D error correction Hamming code.
Suh [18] took a more robust approach to account for
environmental noise using a single-stage BCH(255) code.
Bösch [2] introduced a two-stage error correction approach.
Maes [11-12] introduced the use of soft-decision error
correction coding. Yu [20] used an information-theoretically
secure Index-Based Syndrome coding approach to achieve
robust error correction as an alternative to Code-Offset
Syndrome [5] used in the previous approaches [2, 7, 11-12, 18].
Paral [13] used yet another alternative to Code-Offset
Syndrome, specifically a pattern matching technique, to derive
stable PUF key bits.

TABLE I. PUF KEY GENERATION RESULTS COMPARISON

 Temperature
Volt-

age

V/T

Corners

Stability

Safety

Margin

NIST

STS

Bösch -20ºC to 80ºC n/a n/a n/a n/a

Maes n/a n/a n/a n/a n/a

Yu -55ºC to 125ºC ±10% 2-corners 50% n/a

Seli. -40ºC to 80ºC ±10% n/a 24% n/a

Paral -25ºC to 85ºC n/a n/a n/a n/a

This

Work
-65ºC to 125ºC ±20% 4-corners 50%+ Yes

Table I contains a summary of published PUF key

generation results. Bösch [2] developed error correction
schemes using a PUF noise profile obtained from [8], which
did not explicitly account for voltage effects. Maes [11-12] did
not specify the temperature and voltage ranges covered by the
PUF noise profile used. Yu [20-21] lacked a 4-corner analysis
and NIST randomness data. Selimis in [16] lacked worst-case
voltage-temperature analysis, and under single parameter (e.g.,
temperature only or voltage only) analysis achieved a 24%
stability safety margin under the assumption that an error
correction scheme can correct up to a quarter of the PUF bits

being noisy (flipped), i.e., a fractional Hamming distance of
0.25, which is the theoretical limit for a conventional single-
stage error correction scheme such as a BCH code [3] [14].
Paral [13] lacked voltage data, though the results corresponded
to an RFID deriving power from its antenna implying some
voltage fluctuation. The current work accounts for a wide
temperature range, a wide voltage variation, and contains a 4-
corner voltage-temperature (V/T) analysis. Additionally, a
50%+ stability safety margin remains even under these extreme
conditions for 1.75M test runs covering 133 PUF devices,
illustrating the empirical robustness of the error correction
scheme used; there is plenty of error correction capacity or
headroom in the error correction algorithm to correct additional
errors, e.g., due to factors not explicitly accounted for in these
tests. PUF output bit sequences are subjected to extensive
NIST Randomness Statistical Test Suite (STS) testing, yielding
consistent results for 133 PUF devices.

II. ARCHITECTURAL CHOICES

A. An Empirically Robust Combination

The current work analyzes and leverages prior results to
derive an empirically robust combination of PUF architecture +
reliability algorithm choices. One of the design goals was to
derive a PUF key generation design that has a high tolerance to
a variety of PUF layout specifics. In this section, we describe
the choices made and the rationale.

i. PUF Architecture Chosen and Rationale

For the PUF architecture, we chose a k-sum PUF
architecture based on [20], shown in Figure 1. This was
considered superior to an approach where pair-wise PUF ring
oscillators were compared [19], since the summation structure
allows PUF oscillator pairs that are closer to each other in
frequency (the noisy pairs) to not affect the overall PUF output
bit as much due to the summation (averaging) process. The
approach was also considered superior to an Arbiter PUF [7]
[10] [13] approach in that a traditional Arbiter PUF does not
produce “soft-decision” information at the PUF output to
indicate the strength of the “1” or the “0” produced. The
approach was also considered a better choice than a PUF based
on initial SRAM values (memory PUF) [2, 9, 11-12, 17] in that
soft-decision information can be readily obtained from (the
sum of) oscillator comparisons at a higher resolution.

Fixed Challenge

Counter

(top delay

term)

-

Osc2

Osc3

Osc2k-2

Osc2k-1

Counter

(bottom

delay term)

C0

C1

Ck-1

 +

+

“Soft-Decision” PUF Output Bit

LFSR

-

Fixed Challenge

Osc1

Osc0

Figure 1: k-sum PUF

Figure 2: PUF Cryptographic Key Generation ASIC Block Diagram

ii. Reliability Algorithm Chosen and Rationale

For the reliability algorithm, the two-stage approach in [20], as
opposed to the single-stage approach in [21], was chosen, so
that an empirical stability safety margin measure can be readily
derived to help account for unknowns in a large-scale
deployment. Index-Based Syndrome (IBS) coding [20] was
used instead of Code-Offset [5], to achieve additional coding
gains inherent in the index-coding scheme, on top of the noise-
reduction associated with the oscillator summation (averaging)
process. In IBS, an index points to a strong representation of a
“1” bit or a “0” bit, where each bit can be either a data bit (the
“k” portion of an ECC block) or a parity bit (the “n-k” portion
of an ECC block). We use a 4-bit index, selecting the strongest
representation out of 16 “Soft Decision” PUF Output Bit
choices. We select either the maximum difference of top and
bottom delay terms (ref: Figure 1), with the difference
represented as a signed (e.g., a 2’s complement) value, or the
minimum difference of top and bottom delay terms, depending
on whether we want to encode a “1” bit or a “0” bit. For the
BCH stage, a BCH (n = 63, k = 30, t = 6) code using a three-
module architecture, consisting of a Syndrome Computer,
Euclidean Solver, and Chien Search finite field factoring
algorithm, was used.

As shown in Figure 2, the user selects one or more PUF
banks to generate a cryptographic key (four of these PUF bank
implementations are presented). A typical PUF bank consists
of 128 oscillators and requires 768 NAND2 equivalent gates;
shared PUF control and processing logic is used for all the
banks. An incremental bank growth can provide for more
keying material. The output of the PUF is processed by a two-
stage error correction block, using Index-Based Syndrome
(IBS) coding and BCH coding [20]. The error correction is
empirically robust and provably secure since the hardware
algorithms integrated into the ASIC use secure constructs from
[20] and [21]. Downstream cryptographic functions, such as
hash function and AES, use the PUF-derived key for
cryptographic applications.

B. Circuit-Level Implementations

The ASIC architecture used a “banked” approach to allow
different implementation types to be compared. The

implementations include circuit innovations that improved area
and power. The simulated power measurements in the typical
PVT dropped from 309.7 µW per PUF oscillator (“S”) to 49.9
µW (“CO”), which is approximately a factor of 6.2. These
circuits are further described below.

A reference starting design (Figure 3) is the Standard-Cell
PUF (“S”), which uses 36 standard-cells, INVX1. These are
arranged in a 9x4 configuration, where standard-cell inverter
gates are used as dummy loads to slow the oscillation. One of
the inversion stages is implemented with a NAND gate to start-
stop the oscillator. The oscillator output is buffered to prevent
output feedback noise from negatively affecting the oscillation.

Figure 3: Standard-Cell PUF (“S”)

The reference standard-cell design was optimized for area
(and power) as shown in Figure 4. The Standard-Cell
Optimized PUF (“SO”) uses an innovative technique where
standard-cell gates are used to starve the ring oscillator power
rails. The standard-cell gates are arranged in cascade, where
the output of one standard-cell gate is fed into the power rail of
the next. This requires creative manipulation of Standard-Cell
ASIC layout tools. The number of inverter equivalents was
reduced from a reference value of 36 to 9. Simulation showed
a 2.6x reduction in power consumption compared to the
reference (“S”) implementation, from 309.7 µW to 116.8 µW
per PUF oscillator. A custom level-shifter was designed to
give the ring oscillator output a full-range voltage swing. This
implementation achieved excellent results in each of the four

PUF Control & Processing Logic

PUF Block

(Contains Multiple

OSC Banks)

2-Stage ECC

“Soft-Decision”

PUF Output Bit

Hashing /

Cryptographic

Blocks

C

CO
…

SO

S

Index-Based

Syndrome (IBS)

Coding

BCH

PUF Banks

Chien Search

Polynomial

Root Finder

Syndrome

Computer

Euclidean

Solver

r’(x) = {k’, (n-k)’}

e(x)

Programmable

LFSR

k n-k

GF(26) Arithmetic

36 INV

categories of testing: Randomness, Uniqueness, Bias, and
Stability; the results looked relatively similar to the other
implementations, while achieving power/area savings.

Figure 4: Standard-Cell Optimized PUF (“SO”)

In Figure 5, we move to a full-custom PUF circuit layout
implementation approach, to compare the savings. After
simulating various topologies, the Custom-Cell PUF (“C”)
design was derived, using a triple-stacked PMOS/NMOS
structure to increase input loading. The simulated power per
oscillator is 72.96 µW, which is a 4.2x reduction from the
reference “S” implementation.

Figure 5: Custom-Cell PUF (“C”)

In Figure 6, we implemented a power/area-optimized
variant for the Custom-Cell PUF shown in Figure 5, by adding
power rail starvation using a network of pass-gate PMOS
transistors. The resulting Custom-Cell Optimized PUF
(“CO”) achieved a simulated power per PUF oscillator of
49.91 µW, which is a 6.2x reduction from the reference “S”
implementation.

Figure 6: Custom-Cell Optimized PUF (“CO”)

As it will be shown in Section III, the Randomness,
Uniqueness, Bias, and Stability results do not vary appreciably
across all four implementations.

III. PERFORMANCE METRICS AND EMPIRICAL RESULTS

Using PUFs as the basis for cryptographic key generation
requires significant analysis beyond the Intra-class and Inter-
class metrics used for PUF-based authentication. It is
important to analyze the Randomness of PUF output bits in
addition to PUF Uniqueness (i.e., Inter-class variation). PUF
Bias (the proportion of 1s in a PUF output bit sequence) needs
to be analyzed; a non-negligible bias reduces the guessing
entropy of the PUF output bit sequence. Finally, Stability of
the PUF error correction mechanism needs to be analyzed
under various environmental conditions, including worst-case
corners. A total of 133 PUF devices, comprising seven PUF
circuit layout implementations, each underwent empirical tests
in all four areas, namely, Randomness, Uniqueness, Bias, and
Stability, all producing consistent and excellent results. This
section focuses on the presentation of results for 76 PUF
devices, encompassing four PUF circuit implementations.

A. Randomness

In Figure 7, the rightmost column on the top row (“RND”)
represents the NIST pass rate distribution when NIST-
recommended random bits are applied to the NIST statistical
tests for randomness [15]; note that the top of each plot shows
the min/max pass rates. The distribution obtained for the four
PUF implementations closely resembles the results from
“RND”, showing a degree of indistinguishability between PUF
randomness test results vs. random bits test results. The bottom
row of Figure 7 shows the minimum pass rates for each of the
15 NIST tests (92%+) as well as the Cumulative p-values
(99.9%+ pass) and Cumulative Proportions (99%+ pass).
NIST testing and indistinguishability are common techniques
used for entropy source analysis and cryptographic analysis,
and we leverage those techniques on PUF output bits from a
PUF Key Generation ASIC.

B. Uniqueness

For PUF Uniqueness testing (Figure 8), all four PUF
implementations produced a Gaussian distribution for the Inter-
class variations. Furthermore, as the number of PUF
comparisons increases from 34K to 1.1M, obtained by applying
more challenges to each PUF device, the µ (statistical mean)
converges to 0.5, and σ (standard deviation) does not flare out.
We are able to show µ convergence (based on law of large
numbers, and specifically that a sample mean approaches the
true mean for random processes as sample size increases) and σ
convergence (student-t converges to Gaussian) based on
empirical ASIC data as the basis for PUF uniqueness
extrapolation to very large sample sizes. One conclusion that
one could draw from these results is that as the number of PUF
devices and number of PUF response comparisons increase to a
very large number, the standard deviation σ should not get
worse and flare out, and the statistical mean µ should not
deviate from an ideal value very close to 0.5, providing a
measure of assurance for the uniqueness of PUF-derived
values.

Triple-stacked

PMOS & NMOS

VDD starvation using sized PMOS

9 INV

VDD starvation using

cascaded standard-cell

inverters

C. Bias

For the PUF bias tests (Figure 9), all four PUF types
produce bias distributions that are well within ±1% of ideal,
beyond which the bias becomes cryptographically significant in
that NIST randomness tests would likely, and readily, fail. In
cryptographic applications, one is concerned not only about
average security, but also worst-case security. The average
bias is within 1% of 1% from ideal (0.50003). The worst-case
bias is at 0.49698, within half a percent of ideal. For the
bottom row of Figure 9, the bias mean is shown on the bottom
of each plot corresponding of each of the four PUF
implementations, and the worst-case bias value is shown on
top.

D. Stability

For PUF stability testing (Figure 10), all four PUF
implementations produced highly stable PUF output bits with
50%+ stability safety margin under all the conditions tested. A
total of 1.75M+ error correction blocks (63 bits each) were
provisioned under nominal voltage (1.2V) and room
temperature (25ºC), and subsequently regenerated under
voltage extremes of ±20% V, and also regenerated under the
four VT corners of ±10% V, -65ºC/125ºC. No error bits were
observed after full error correction, and no more than three bits
of errors remain after first-stage error correction (IBS
decoding).

There are three rows in the figure. The first row
corresponds to provisioning under nominal conditions (1.2V,
25ºC), and regeneration under a high level of voltage stress of
±20% V while maintaining the same temperature. The second
row corresponds to provisioning under the same nominal
conditions, and regeneration under the slow-fast and fast-slow
voltage-temperature corners. The third row corresponds to
provisioning under the same conditions and regeneration under
the slow-slow and fast-fast voltage-temperature corners. We
note that six regeneration conditions (two per row) are shown
in the row legend. Each plot contains two histograms
representing the raw PUF noise, with the fitted Gaussian µ, σ
displayed below each plot. The spike at zero bits represents the
post error correction result; since all the errors were corrected,
this is also the sample size for a particular combination of test
condition. The pair of triplets near the top of each plot
corresponds to the maximum error bits observed i. at the raw
PUF output, ii. after first-stage ECC (IBS decoding), iii. after
second-stage ECC (BCH decoding) for each of the two
regeneration conditions. The middle number for each triplet
indicates how many bits out of the six-bit BCH error correction
capability were used, from which a stability safety margin (bits
of error correction capability unused, out of 6 bits)
measurement can be derived.

Figure 7: PUF Randomness

Note: The top row shows the NIST randomness test pass rates for the 4 PUF implementations as well as the test results for NIST-

recommended random bits (the right most “RND” column). The top of each plot shows the min, max pass rates. The bottom

row shows the minimum pass rates for each of the 15 NIST randomness test items.

Figure 8: PUF Uniqueness

Note: The top row contains the inter-class PUF distribution for the 4 PUF implementations with 34k comparisons. When the

number of comparisons is increased to 1.1M (bottom row), both the µ and σ values do not increase and show convergence.

Figure 9: PUF Bias

Note: The top plot contains the PUF bias distributions for 76 PUF devices. The bottom row contains plots for the 4 PUF

implementation types, with the bias mean shown at the bottom of each plot, and the worst-case bias value shown on top.

Figure 10: PUF Stability

Note: For all cases, provisioning was performed at 1.2V, 25ºC. Six regeneration conditions are shown. The top row shows

regeneration under +/- 20% voltage. The middle row shows regeneration under fast-slow and slow-fast voltage-temperature

corners. The bottom row shows regeneration under slow-slow and fast-fast voltage-temperature corners. Each plot contains two

histograms representing the raw PUF noise, with the fitted Gaussian µ, σ displayed below each plot. The spike at zero bits

represents the post error correction result; since all the errors were corrected, this is also the sample size. The pair of triplets near

the top of each plot are the maximum error bits observed at the raw PUF output, after first-stage ECC (IBS decoding) and after

second-stage ECC (BCH decoding) for each of the two regeneration conditions. The error correction block size is 63 bits. The

middle number for each triplet indicates how many bits out of the six-bit BCH error correction capability is used, from which a

stability safety margin (amount of correction capacity unused, out of 6 bits) measurement can be derived.

TABLE II. PUF IMPLEMENTATION COMPARISONS, 0.13µm ASIC

 NIST Randomness Uniqueness Bias Stability

Pwr

a

(µW)

Area
a

(µm
2
)

min-pass

(%)

Cum

p-val

(%)

Cum

prop

(%)

mean wc
margin

b

wc noise
c

S 310 200 94.00 99.94 99.33 0.501 0.49781
83%

0.22

SO 117 65 93.00 99.97 99.38 0.489 0.50160
83%

0.22

C 73 60 94.12 99.97 99.27 0.493 0.49698
83%

0.21

CO 50 43 93.44 99.97 99.36 0.497 0.49868
83%

0.19

a. for each oscillator inversion ring b. stability safety margin c. worst-case fractional hamming distance before any error correction

IV. CONCLUSIONS

We presented empirical PUF key generation test results in
the context of a PUF ASIC implementation with integrated

error correction. Specifically, a total of 133 PUF devices
comprising seven PUF circuit layout implementations were
designed, implemented, and tested. Four metrics specific to
PUF key generation were defined, and empirical data was
obtained from 0.13 µm ASICs. The choice of an oscillator

summation PUF architecture coupled with a two-stage index-
based error correction approach produced consistent
Randomness, Uniqueness, Bias, and Stability results across all
these implementations, of which four representatives are
summarized in Table II. Since the results are only slightly
layout dependent, and the design can in fact be implemented in
a Standard-Cell approach (albeit less optimized), we conclude
that the PUF key generator design is highly portable across
different design methods (Standard vs. Custom Cell) and
particular layout choices (power starved vs. none), which eases
adoption. The high (50%+) stability safety margin,
quantifiable-by-design for this particular PUF key generation
design, means that excess error correction capability can be
relied upon to help account for the unexpected in large-scale
deployments. Future work includes explicit analysis of process
scaling.

REFERENCES

[1] F. Armknect, R. Maes, A.-R. Sadeghi, F.-X. Standaert,

C. Wachsmann, “A formal foundation for security

features of physical functions,” IEEE Symposium on

Security and Privacy 2011.

[2] C. Bӧsch, J. Guajardo, A.-R. Sadeghi, J. Shokrollahi, P.

Tuyls, “ Efficient helper data key extractor on FPGAs,”

Workshop on Cryptographic Hardware and Embedded

Systems (CHES) 2008, Lecture Notes in Computer

Science (LNCS) vol. 5154, pp. 181-197.

[3] R. C. Bose, D. K. Ray-Chaudhuri, “On a class of error

correcting binary group codes,” Information and Control,

vol. 3, no. 1, pp. 68-79, Mar. 1960.

[4] S. Devadas, E. Suh, S. Paral, R. Sowell, T. Ziola, V.

Khandelwal, “Design and implementation of PUF-based

‘unclonable’ RFID ICs for anti-counterfeiting and

security applications,” IEEE International Conference on

RFID 2008, pp. 58–64.

[5] Y. Dodis, L. Reyzin, A. Smith, ‘‘Fuzzy extractors: how

to generate strong keys from biometrics and other noisy

data,’’ Eurocrypt 2004, Lecture Notes in Computer

Science (LNCS) vol. 3027, pp. 523-540.

[6] B. Gassend, D. Clarke, M. van Dijk, S. Devadas,

“Silicon physical random functions,” Proc. ACM

Conference on Computer and Communications Security

(CCS) 2002, pp. 148-160.

[7] B. Gassend, “Physical random functions,” M.S. thesis,

Dept. EECS, Massachusetts Institute of Technology

(2003).

[8] J. Guajardo, S. Kumar, G.-J. Schrijen, P. Tuyls, “FPGA

intrinsic PUFs and their use for IP protection,” Workshop

on Cryptographic Hardware and Embedded Systems

(CHES) 2007, Lecture Notes in Computer Science

(LNCS) vol. 4727, pp. 63-80.

[9] D. Holcomb, W. Burleson, K. Fu, “Initial SRAM state as

a fingerprint and source of true random numbers for

RFID tags,” IEEE International Conference on RFID

2007.

[10] D. Lim, “Extracting secret keys from integrated circuits,”

M.S. thesis, Dept. EECS, Massachusetts Institute of

Technology (2004).

[11] R. Maes, P. Tuyls, I. Verbauwhede, “A soft decision

helper data algorithm for SRAM PUFs,” IEEE

International Symposium on Information Theory (ISIT)

2009.

[12] R. Maes, P. Tuyls, I. Verbauwhede, “Low-overhead

implementation of a soft decision helper data algorithm

for SRAM PUFs,” Workshop on Cryptographic

Hardware and Embedded Systems (CHES) 2009, Lecture

Notes in Computer Science (LNCS) vol. 5747, pp. 332-

347.

[13] Z. Paral, S. Devadas, “Reliable and efficient PUF-based

key generation using pattern matching,” IEEE

Symposium on Hardware-Oriented Security and Trust

(HOST) 2011.

[14] J. Proakis, “Digital Communications,” 3
rd

 Edition,

McGraw-Hill Press, 1995.

[15] A. Rukhin et al., “A Statistical Test Suite for Random

and Pseudorandom Number Generators for

Cryptographic Applications,” NIST Special Publication

800-22 Rev1a, 2010.

[16] G. Selimis, M. Konijnenburg, M. Ashouei, J. Huisken,

H. de Groot, V. van der Leest, G.-J. Schrijen, M. van

Hulst, P. Tuyls, “Evaluation of 90nm 6T-SRAM as

Physical Unclonable Function for secure key generation

in wireless sensor nodes,” IEEE International

Symposium on Circuits and Systems (ISCAS) 2011.

[17] Y. Su, J. Holleman, B. Otis, “A 1.6pJ/bit 96 (percent)

stable chip ID generating circuit using process

variations,” IEEE International Solid-State Circuits

Conference (ISSCC) 2007, pp. 200–201.

[18] G. Suh, “AEGIS: a single-chip secure processor,” Ph.D.

thesis, Dept. EECS, Massachusetts Institute of

Technology (2005).

[19] G. Suh, S. Devadas, “Physical Unclonable Functions for

device authentication and secret key generation,”

IEEE/ACM Design Automation Conference (DAC) 2007,

pp. 9–14.

[20] M. Yu, S. Devadas, "Secure and robust error correction

for physical unclonable functions," IEEE Design and

Test of Computers, Special Issue on Verifying Physical

Trustworthiness of ICs and Systems, vol. 27, no. 1, pp.

48-65, Jan./Feb. 2010.

[21] M. Yu, D. M’Raїhi, R. Sowell, S. Devadas, “Lightweight

and secure PUF key storage using limits of machine

learning,” Workshop on Cryptographic Hardware and

Embedded Systems (CHES) 2011, Lecture Notes in

Computer Science (LNCS) vol. 6917, pp. 358-373.

