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ABSTRACT

Aim/Purpose The aim of this study was to analyze various performance metrics and ap-
proaches to their classification. The main goal of the study was to develop
a new typology that will help to advance knowledge of metrics and facili-
tate their use in machine learning regression algorithms

Background Performance metrics (error measures) are vital components of the evalua-
tion frameworks in various fields. A performance metric can be defined as
a logical and mathematical construct designed to measure how close are the
actual results from what has been expected or predicted. A vast variety of
performance metrics have been described in academic literature. The most
commonly mentioned metrics in research studies are Mean Absolute Error
(MAE), Root Mean Squared Error (RMSE), etc. Knowledge about metrics
properties needs to be systematized to simplify the design and use of the
metrics.

Methodology A qualitative study was conducted to achieve the objectives of identifying
related peer-reviewed research studies, literature reviews, critical thinking
and inductive reasoning,

Contribution The main contribution of this paper is in ordering knowledge of perfor-
mance metrics and enhancing understanding of their structure and propet-
ties by proposing a new typology, generic primary metrics mathematical
formula and a visualization chart
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Performance Metrics Typology

Findings Based on the analysis of the structure of numerous performance mettics,
we proposed a framework of metrics which includes four (4) categories:
primary metrics, extended metrics, composite metrics, and hybrid sets of
metrics. The paper identified three (3) key components (dimensions) that
determine the structure and properties of primary metrics: method of de-
termining point distance, method of normalization, method of aggrega-
tion of point distances over a data set. For each component, implementa-
tion options have been identified. The suggested new typology has been
shown to cover a total of over 40 commonly used primary metrics

Recommendations Presented findings can be used to facilitate teaching performance metrics to
for Practitioners university students and expedite metrics selection and implementation processes
for practitioners

Recommendations By using the proposed typology, researchers can streamline development of
for Researchers new metrics with predetermined properties

Impact on Society  The outcomes of this study could be used for improving evaluation results in
machine learning regression, forecasting and prognostics with direct or indirect
positive impacts on innovation and productivity in a societal sense

Future Research Future research is needed to examine the properties of the extended metrics,
composite metrics, and hybrid sets of metrics. Empirical study of the metrics is
needed using R Studio or Azure Machine Learning Studio, to find associations
between the properties of primary metrics and their “numerical” behavior in a
wide spectrum of data characteristics and business or research requirements

Keywords performance metrics, error measures, accuracy measures, distance, similarity,
dissimilarity, properties, typology, classification, machine learning, regression,
forecasting, prognostics, prediction, evaluation, estimation, modelin,
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INTRODUCTION

Performance evaluation is an interdisciplinary research problem. Performance metrics (error
measures) are vital components of the evaluation frameworks in various fields. A performance metric
can be defined as a logical and mathematical construct designed to measure how close are the actual
results from what has been expected or predicted. Among most commonly used Mean Absolute Ex-
ror (MAE), Root Mean Squared Error (RMSE) can be mentioned. In a generic sense, performance
metrics are linked to the scientific concepts of distance and similarity. In machine learning regression
experiments, performance metrics are used to compare the trained model predictions with the actual
(observed) data from the testing data set (e.g., Botchkarev, 2018a; Makridakis, Spiliotis and Assima-
kopoulos, 2018). The results of these comparisons can directly influence the decision-making process
of selecting the types of machine learning algorithms for implementation.

Deza and Deza (2016) indicate that similarity measures are needed in almost all knowledge disci-
plines. A long-standing interest in performance metrics can be found in forecasting and prognostics.
Forecasting has a long history of employing performance metrics to measure how much forecasts
deviate from observations in order to assess quality and choose forecasting methods, especially in
support of supply chain or predicting workload for software development (e.g., Carbone and Arm-
strong, 1982; De Gooijer and Hyndman, 2006). Prognostics - an emerging concept in condition-
based maintenance (CBM) of critical systems in aerospace, nuclear, medicine, etc. — heavily relies on
performance metrics (e.g., Saxena et al, 2008).

Classification is one of the main topics of scientific research (Parrochia, n.d.). Each knowledge do-
main, as a subject of scientific research, requires classification systems (typology) to structure the
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contents in a systematic manner. Categories of the typology are defined based on resemblances (or
differences) of items/objects in a specific context. Typologies are helpful in ordering and organizing
knowledge, defining the scope and simplifying studies, facilitating information retrieval and detecting
duplicative objects (e.g., Gerber, Baskerville & Van der Merwe, 2017). Multiple performance metrics
have been designed and described in academic journals (see References). Knowledge about their
properties needs to be systematized in a clear way to simplify the design and use of the metrics.
Available classifications have certain drawbacks (e.g., Cha, 2007; Makridakis & Hibon, 1995), which
are described in the paper.

The intention of this paper was to review existing performance metrics classifications and develop a
typology that will help to improve our knowledge and understanding of a variety of metrics and facil-
itate their use in machine learning regression, forecasting and prognostics.

The rest of the paper is structured as follows. First, we provide a literature review. Thenwe describe
methodology of the study. In the next section, we describe a proposed metrics framework, which
includes the following categories: primary metrics, extended metrics, composite metrics and hybrid
sets of metrics. The main attention and space in this paper is focused on the properties and typology
of the primary metrics. The final sections present discussion and conclusions.

METHODOLOGY

Objectives. The first objective of this study was to provide an overview of a variety of the perfor-
mance metrics and approaches to their classification (grouping/systematization). The main goal of
the study was to develop a new typology that will help to advance knowledge of metrics, enhance
understanding of their structure and properties, and facilitate their use in machine learning regtres-
sion, forecasting and prognostics.

Method. Several research methodologies were used to achieve the objectives: identification of relat-
ed peer-reviewed papers, critical literature review, critical thinking and inductive reasoning. The study
has a qualitative nature. The search was conducted in Google Scholar and several databases through
the EBSCO integrated search including Health Business Elite, Health Policy Reference Center, Bio-
Med Central, Business Source Complete, MEDLINE Complete, CINAHL Complete, PubMed, The
Cochrane Library, etc. Around 500 papers were retrieved and previewed. Over 80 papers (which
used qualitative, quantitative and mixed methods of studies) where selected, reviewed in more detail
and cited in the paper.

For better understanding by the readers, the proposed typology has been formulated and presented
in several ways: mathematical, verbal, visual. First, mathematical expressions are provided for a gen-
eralized metrics construct and metrics components. Complexity of this mathematics does not go be-
yond the second-year computer science program requirements. Second, all mathematics are accom-
panied by verbal descriptions of their meaning and practical implications in certain scenarios. Finally,
the table-format chart presents a typology in a one-page simple and clear way and ties together all
metrics components for easier visual comprehension.

Terminology and abbreviations. As this paper covers research in an interdisciplinary area, which is
related to machine learning, prognositcs, forecasting, terminology may vary from field to field.

Our main focus is on performance metrics. In literature, many terms are used with close meaning,
e.g., measure, distance, similarity, dissimilarity, index, etc.

Different terms are used in literature regarding grouping performance metrics, e.g., classification,
taxonomy, etc. In the literature review, we use the terms used by the authors of the papers under
consideration. Later in the paper, we refer to our construct as typology.

Multiple performance metrics are considered in the paper. Commonly, we refer to them using abbre-
viations. A list of all metrics abbreviations mentioned in the paper is provided in Appendix A. Usual-
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ly, the first letters in abbreviations use: M for mean (arithmetic), Md for median, GM for geometric
mean.

Mathematical definitions of performance metrics are shown in Appendix B. These metrics are im-
plemented in R Studio (e.g., packages MLmetrics, forecast) and in Azure Machine Learning Studio
(e.g., Botchkarev, 2018b). Some metrics have alternative definitions. They are listed in Appendix C.

Performance metrics are designed to compare two data sets. We refer to them as actual,

A= (41,4, ..., A)), ie., adata set containing actual values, and predicted, P = (Py, Py, ..., Pj), i.e., a
data set containing predicted values. In literature, depending on the research field, actual may be re-
ferred to as observed or measured, and predicted may be called forecasted, modeled, simulated, esti-
mated.

LITERATURE REVIEW

The Literature Review section is structured into two parts aligned with the two main topics of the
paper. The first part overviews the most common metrics. The second part provides descriptions of
known metrics’ classifications, their benefits and drawbacks.

PART I: THE MOST COMMON METRICS

A large variety of metrics has been suggested and used in many knowledge areas. Makridakis and
Hibon (1995, p. 3) stated that “there are fourteen accuracy measures which can be identified in the
forecasting literature”. It seems that no other author risked offering an exhaustive list of metrics.
Usually, a list of metrics is accompanied with qualifiers: most popular, commonly, widely or frequent-
ly used, etc. There are many analytic reviews covering dozens of metrics. Kyriakidis, Kukkonen,
Karatzas, Papadourakis and Ware, (2015) studied 24 metrics used in air quality forecasting. De Gooi-
jer and Hyndman (2006), in a review covering 25 years of time series forecasting, list 17 commonly
used accuracy measures. Shcherbakov et al (2013) presented a survey of more than twenty forecast
error measures. Prasath, Alfeilat, Lasassmeh and Hassanat (2017) studied 54 (fifty-four) measures and
their effect on machine learning of K-Nearest Neighbor Classifier (KNN). Numerous distance met-
rics from diverse knowledge domains are compiled and briefly described in the Encyclopedia of dis-
tances (Deza & Deza, 2016).

Some metrics are more popular than the others. Several researchers conducted surveys of organiza-
tions and practitioners to understand the frequency of use or importance of different metrics. A vari-
ety of metrics were identified in these surveys. However, top most common metrics came up in
many studies. Table 1 shows three metrics found most popular in the independent surveys that were
performed over a timeline of 25 years: mean square error (MSE) (or root MSE (RMSE)), mean abso-
lute error (MAE) and mean absolute percentage error (MAPE).

Table 1. Top three metrics identified in the surveys, percentage

C&A, M&K, M et al, F&G,
Metrics 1982 1995 2006 2007
Mean square error (MSE) or Root MSE (RMSE) 34 10 6 9
Mean absolute error (MAE) 18 25 20 36
Mean absolute percentage error (MAPE) 15 52 45 44

Note: C&A, 1982 — study by Carbone and Armstrong (1982); M&K, 1995 — study by Mentzer and
Kahn (1995); M et al, 2006 — study by McCarthy, Davis, Golicic and Mentzer (2006); F&G, 2007 —

study by Fildes and Goodwin (2007).

Data in the Table 1 reveals that preferences towards metrics have changed over the years. In the
1980s, the prevalence of the MSE/RMSE was quite clear with 34 percent — almost twice as high as of
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the other two metrics. However, in the 1990s, MAPE moved in the leading position and kept it in
the 2000s with over 40 percent. MAE retains the second place in all surveys. It should be noted that
surveys illustrated in Table 1 were conducted using different methodologies (e.g., types of respond-
ents, sample sizes, acceptance of multiple selections, etc.). So, the comparative results should be
treated as qualitative trends rather than exact numbers.

Even most popular metrics have been scrutinized from time to time and strongly criticized or even
rejected. Here are some examples.

Armstrong and Collopy (1992) stated that RMSE (arguably one of the top-used metrics) was not reli-
able, and was inappropriate for comparing accuracy across time series. Later, Willmott and Matsuura
(2005, p. 82) found that RMSE has “disturbing characteristics” and is inappropriate for use as an er-
ror measure (Willmott, Matsuura and Robeson, 2009). The authors extended their conclusion on all
square error measures (e.g., standard error). They recommended RMSE not to be reported in the
literature and strongly advised in favour of using MAE. Chai and Draxler (2014) disputed these con-
clusions, at least partially, and presented arguments against avoiding RMSE.

Makridakis (1993) criticized the use of RAE as not meaningful for decision making.

Foss, Stensrud, Kitchenham and Myrtveit (2003) concluded that MMRE (MAPE), another very pop-
ular metric, is unreliable and may be misleding. Still, according to a number of surveys reviewed by
Gneiting (2011), MAPE is the most commonly used measure for assessing forecasts in organisations.

Li (2017) asserted that correlation coefficient (R) and the coefficient of determination (R*2) should
not be used as measures to assess the accuracy of predictive models for numerical data (because they
are biased, insufficient or misleading).

Discussions on which metric to use are common in the literature. Usually, they are based on the
premise that there could be a single “ideal” metric that beats all others in all situations. Paradoxically,
a drive for having a best single metric, leads to an opposite result — the number of metrics tend to
increase steeply.

Recently, new metrics are being developed and published on more regular basis (e.g., Bratu, 2013;
Chen, Twycross and Garibaldi, 2017; Grigsby et al, 2018; Kim and Kim, 2016; Kyriakidsis, et al, 2015;
Mathai, Agarwal, Angampalli, Narayanan and Dhakshayani, 2016; Tofallis, 2015). Two approaches
are commonly used to develop new metrics. First is focused on modifying existing measures to adjust
them to task-specific conditions (e.g., Bratu, 2013; Grigsby et al, 2018; Mathai, et al, 2016; Monero,
Pol, Abad and Blasco, 2013). The second approach is to combine the information contained in sev-
eral existing measures (e.g., Kyriakidis, et al, 2015).

Still, no consensus on the “best” metric has been achieved. On the contrary, another notion is gain-
ing popularity. Researchers express a more practical view that there is no need to strive for a single
best metric. This is an unrealistic goal - "a quest for an ideal". Silver, Pyke and Thomas (2016, ch. 3)
argued that “no single measure is universally best”. Chai and Draxler (2014, p. 1248) clarified that “as
every statistical measure condenses a large number of data into a single value, it only provides one
projection of the model errors emphasizing a certain aspect of the error characteristics of the model
performance.” This notion is supported by Armstrong and Collopy (1992), Mahmoud (1987), Fildes
and Goodwin (2007), Kyriakidis et al, (2015), etc.

There is a foundational point which needs to be mentioned considering performance metrics. Evalu-
ation error (deviation of actual and predicted values) is a random variable. Its complete description is
possible only with probability density function or moments, if they exist (e.g., Ayyub & McCuen,
2010).

Certain terminology clarifications are provided in the next three paragraphs for better understanding
throughout the paper.
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Some popular metrics are referred to as scale-dependant (Hyndman, 20006) ot dimensioned (Willmott and
Matsuura, 2005) as errors have physical dimensions and expressed in the units of the data under anal-
ysis (variable of interest), e.g., MAE, RMSE. Note that the condition to categorize a metric as dimen-
sional is two-fold: first, it must have a dimension, and, second, the dimension must be the same as of
the variable of interest. For example, if we use machine learning regression to predict cost of a medi-
cal intervention, measured in dollars, then the mean absolute error will also be found in dollars. By
the same token, predicting quantities with dimensions in time, speed, distance, etc. measured in di-
mensional units, respectively, second, mile per hour, kilometer, etc., metrics will preserve the same
units.

Two caveats need to be considered. First, certain metrics, although bear physical dimension, e.g.,
MSE and other squared error metrics, strictly speaking, should not be included in the dimensioned
group, because their dimensions are different (changed) from the dimension of the variable of inter-
est. For example, the cost prediction exercise mentioned above, will result in MSE measured in
“squared dollars”. Second, certain variables of interest have no physical dimension, i.e., dimension-
less (Dimensionless Quantity, n.d.). Examples of dimensionless quantities include: GDP ratio, coeffi-
cient of determination, elasticity, etc. (List of Dimensionless Quantities, n.d.). Sometimes dimension-
less quantities are given special names: percentages, degrees, decibels, radians, etc. Applying metrics
to dimensionless variables of interest will provide dimensionless results. Paradoxically, applying
MAE, RMSE metrics in these cases are still usually included in a dimensioned group. So the under-
line idea is that the metric should not be changing the nature (dimensional or dimensionless) of the
input data.

By contrast, there is another group of metrics that do not have dimension and referred to as dimen-
sionless (Dimensionless Quantity, n.d.) or scale-free, scaled, or scale-independent. Commonly, di-
mensionless metrics involve mathematical division of quantities of the same dimensional units (e.g.,
ratios, relative, percentage indicators), e.g., MAPE.

PART IT: KNOWN METRICS CLASSIFICATIONS, THEIR BENEFITS, AND
DRAWBACKS

It should come as no surprise, that with a multitude of available performance metrics, research ef-
forts are taken to organize them into categories according to common characteristics and properties
for easier study, design and thoughtful application. In this review, descriptions of known metrics’
classifications, their benefits and drawbacks have deliberately made rather concise. This can be ex-
plained by the fact that all prior classifications were constructed without well-established founda-
tions, i.e., they reveal lack of explicit statements of properties that were used to group or separate
certain categories of metrics.

Makridakis and Hibon (1995) proposed a classification of error metrics by two criteria: the character
of measure (absolute, relative to a base or other method, relative to the size of errors) and the type of
evaluation (a single method, more than one method, in comparison to some benchmark). They pre-
sented results in a table format: character of measures as rows and types of evaluation as columns.
They applied the classification to a set of 14 metrics they studied and placed metric titles in the cells
of intersecting criteria. It can be seen from the table that some metrics (e.g., MAPE and MdAPE)
were assigned to two cells. It reveals that the classification criteria are not mutually exclusive (over-
lapping) which is not good for a classification. To the best of our knowledge, this was the first at-
tempt to build a formal error metrics typology.

Hyndman (2006) suggested classifying metrics into four groups:

- scale-dependent metrics (e.g., MAE, GMAE);
- percentage-error metrics (e.g., MAPE);
- relative-error metrics (e.g., MARAE, GMRAE);
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- scale-free error metrics (e.g., MASE).
This classification is simple, intuitively clear (at least for some metrics) and has been widely used in
the literature. However, in the logical sense, this classification is not perfect — it has overlappings. It
appears that the groups are categorised based on whether the metric has a scale (i.e., measured in
certain units) or not. Following this logic, the classification should consist of only two top-level clas-
ses: scale-dependent and scale-free. Percentage and relative metrics should be included in the scale-
free metrics. Further, percentage metrics should be a subclass of the more general relative metrics (at
least linguistically, although algorithmic relationship could be more complicated).

Also, it should be noted that Hyndman (20006, p. 44) includes MSE into scale-dependent group
(claiming that the error is “on the same scale as the data” in the data set). This requires clarification
because the MSE has a dimension of the squared scale/unit. To bring the MSE to the scale of the
data we need to take a square root which results in another metric — RMSE.

Similar, but slightly different, classification was proposed by Hyndman and Koehler (2000). It
acknowledged the following five groups:

- scale-dependent measures (e.g., MSE, RMSE, MAE, MdAE);
- measures based on percentage errors (e.g., MAPE, MAAPE, RMSPE, RMdSPE, sMAPE,
sMdAPE);

- measures based on relative errors (e.g., MRAE, MARAE, GMRAE);

- relative measures (e.g., ReIMAE, CumRAE);

- scaled errors (e.g.,, MASE, RMSSE, MdASE).
This classification delineates relative metrics into measures based on relative individual errors and
metrics based on combination of measures (dividing one metric by another).

Cha (2007) analyzed similarity measures as they apply to the comparison of the probability density
functions. He suggested a classification which included nine groups:

- L, Minkowski family measures (e.g., Euclidean, City block (Manhattan), Chebyshev);

- L,family measures (e.g., Average Manhattan — otherwise referred to as mean character dis-
tance or mean absolute error or Gower, Kulczynski distance, Soergel distance). They are
based on Manhattan normalized absolute difference;

- Intersection family (e.g., Wave Hedges, Czekanowski);

- Inner product family (e.g., Kumar-Hassebrook, Dice);

- Fidelity family or Squared-chord family (e.g., fidelity, Bhattacharyya);

- Squared L, family (e.g., squared Euclidean, Neyman);

- Shannon’s entropy family (e.g., Kullback-Leibler, Jeffreys);

- Combinations — measures utilizing multiple approaches from previous groups;

- Vicissitude measures (e.g., Vicis-Wave Hedges, Vicis symmetric).

This publication is widely cited (over 1,200 citations as of July 2018). However, the criteria of group-
ing metrics into categories were not explicitly stated, and there were some inconsistencies in assigning
measures to the groups. For example, generalized Minkowski measure is listed as a separate measure
in the Minkowski family. Some groups include distances from other groups, e.g., Family L, includes
distances from the Intersection family, and Squared L, family includes distances from the Inner
Product Family.

Cha’s classification has been applied in several studies. Prasath et al (2017) used Cha’s (2007) classifi-
cation (with the exception of the Intersect family) to study 54 (fifty four) distance and similarity
measures effect on the performance of K-Nearest Neighbor Classifier. Tschopp and Hernandez-
Rivera (2017) used Cha’s (2007) classification to study similarity and distance measures for vector-
based datasets (e.g., histograms, signals, probability distribution functions). Hernandez-Rivera, Cole-
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man and Tschopp (2017) used Cha’s (2007) classification to study similarity measures in application
to X-ray diffraction patterns.

Cunningham (2009) developed a taxonomy of similarity mechanisms for case-based reasoning which
includes four groups:

- Direct mechanisms (e.g., Minkowski, Manhattan, Euclidean);

- Transformation-based mechanisms (e.g., Edit Distance (Levenshtein Distance), alignment
measures for biological sequences, Earth Mover Distance);

- Information theoretic measures (e.g., compression-based similarity, GenComress);

- Emergent measures arising from an in-depth analysis of the data (e.g., Random Forest, Clus-
ter Kernels).

Jousselme and Maupin (2012) researched dissimilarity measures within the mathematical framework
of evidence theory and presented a classification and general formulations for each category of
measures. Their classification includes five categories/families. Four categories are the same as in
Cha’s classification (2007): Minkowski, Inner product, Fidelity and Information-based (Shannon).
The fifth one is a Composite family based on the notion of two combined components: one that
represents a measure of structural dissimilarity and the second that measures “information change
relatively to orthogonal sum” (Jousselme and Maupin, 2012, p. 123).

Shcherbakov et al (2013) used a forecast error classification which is similar to Hyndman and Koeh-
ler’s (2006) and included seven groups: absolute forecasting errors, measures based on percentage
errors, symmettic etrrors, measures based on relative errors, scaled errors, relative measures and other
error measutes.

Weller-Fahy, Borghetti and Sodemann (2015) surveyed distance and similarity measures used within
network intrusion anomaly detection. They grouped distance measures into four types:

- Power distances which are based on mathematical expressions involving raising to power
(e.g., Euclidean, Manhattan, Mahalanobis, Heterogeneous distance);

- Distances on distribution laws (probability-related) (e.g., Bhattacharya coefficient, Jensen,
Hellinger);

- Correlation similarities and distances (e.g., Spearman, Kendall, Pearson);

- Other similarities and distances which do not fit into the three main categories).

Some authors, without attempting to build a complete taxonomy, suggest grouping metrics by certain
aspects, e.g., characteristic of error measured. Motley, Brito and Welling (2018) grouped metrics by
the nature of measured statistic: accuracy (e.g., MSE, RMSE, MdAE, etc.) and bias (e.g., ME, MPE,
etc.).

The review of the existing classifications revealed that their drawbacks are caused by lack of explicitly
stated metrics properties that were used to group certain categories of metrics. That led to overlap-
pings of groups and inconsistencies in assigning metrics to the categories. This study attempts to
overcome revealed drawbacks of prior typologies.

FINDINGS

PERFORMANCE METRICS FRAMEWORK

Based on the analysis of the structure of numerous performance metrics presented in the literature,
we propose a framework of metrics: primary metrics, extended metrics, composite metrics, and hy-
brid sets of metrics. Outline and examples of each category follow.

Primary metrics is arguably the most numerous category and include commonly used metrics such
as MAE, MSE, sMAPE, etc. As it is shown in the next section, the structure of the primary metrics
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involves three steps: calculating point distance, performing normalization and aggregating point re-
sults over a data set. Refer to the next section for detailed description and analysis. Also, these met-
rics are used for construction of the metrics in other categories.

Extended metrics are commonly based on the primary metrics with additional normalization. The
delineation with primary metrics is that normalization is performed after aggregation. Examples in-
clude:

- Normalized Root Mean Squatred Error: NRMSE_sd = RMSE/sd -normalized by the standard
deviation of the actual data; or NRMSE_max-min =RMSE/(maxA — minA) - normalized by the
difference between maximum and minimum actual data; or NRMSE_m = RMSE/A -normalized
by the mean of actual data, also known as coefficient of variation of the RMSE (CVRMSE)
(Aman, Simmhan and Prasanna, 2011; Aman, Simmhan and Prasanna, 2015).

- MAD/Mean ratio (Hoover, 2006; Kolassa and Schiitz, 2007).

Composite metrics involve two or more primary metrics which are combined to produce a single
result. Examples of composite metricsinclude:

- Mean Absolute Scaled Error: MASE=MAE/MAE;, where MAE;, is MAE from an in-sample
naive forecast (Hyndman and Koehler, 2006).

- Relative Mean Absolute Scaled Error: ReIMAE = MAE/MAE,, where MAE,, is MAE from a
benchmark method, e.g., Hyndman and Koehler (2006), and relative geometric root mean square
error (RGRMSE) (Syntetos and Boylan, 2005).

- Relative Root Mean Squared Error: RelRMSE = RMSE/RMSEy,where RMSE;, is RMSE from a
benchmark method, e.g., Chen, T'wycross and Garibaldi (2017), Thomakos and Nikolopoulos
(2015). Note that ReIRMSE is also known as Theil’s U or U2 (De Gooijer and Hyndman, 2000).

Syntetos and Boylan (2005) observed that metrics which have a term ‘relative’ in their title can be
built by combining any methods and suggested to group them into ‘accuracy measures relative to
another methods’.

Vogt, Remmen, Lauster, Fuchs, and Miller (2018) tested combinations of up to six metrics in the
dynamic simulation of buildings energy consumption. They recommended a composite metric calcu-
lated as a sum of four equally weighted statistical indices: the Coefficient of Variation of Root Mean
Square Error (CV(RMSE)), the Normalized Mean Error (NME), the standardized contingency

coefficient, and the coefficient of determination.

Hybrid sets of metrics are represented by several metrics (two or more) which are used in the same
experiment with several output results. These sets are not intended to be combined in a single math-
ematical structure to provide a single-number output. Not any list of metrics can constitute a hybrid
set. In a hybrid set, proposed metrics should be used to deliver mutually complementary properties
providing better understanding of performance errors, e.g., measuring bias and accuracy. Using hy-
brid sets is in line with Fildes and Goodwin’s (2007) advice of using multiple forecasting accuracy
measutes.

Kyriakidis et al (2015) developed a set of performance indices to evaluate artificial neural network
models for air quality forecasting.

Another hybrid set of metrics was introduced by Morley, Brito and Welling (2018). They proposed
two new metrics to be used in conjunction in radiation belt electron flux modeling and forecasting:
the median symmetric accuracy and the symmetric signed percentage bias the use.

Zhang et al (2015) were searching for a set comprehensive, consistent, and robust metrics to assess
performance of solar power forecasts. They recommended a suite of metrics consisting of MBE,
standard deviation, skewness, kurtosis, distribution of forecast errors, Re nyi entropy, RMSE, and
OVERPer.
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In our view, development of the hybrid sets of metrics should be on the top of the research agenda.
Items of the agenda may include: studies on informational relationships of metrics; developing rec-
ommendations on avoiding redundancy of metrics compiled into a hybrid set; exploring ways of
building minimum sets of metrics sufficiently describing error performance (e.g., Tian, Nearing, Pe-
ters-Lidard, Harrison and Tang, 2016).

PRIMARY METRICS TYPOLOGY

Analysis of multiple performance metrics used for evaluation in many fields led to identification of
three (3) key components (dimensions) that determine the properties of metrics and can be used for
designing typology:

—  Method of determining point distance, ID.

—  Method of normalization, N.
—  Method of aggregation of point distances over a data set, G.

This approach to building a typology is usually referred to as morphological typology - a scientific
method widely used in many fields, especially in linguistics, biology, astronomy, etc.

A generic formula defining a primary performance metric can be written as follows:
m = G* (N*[D*(4;,P)]}
j=1n

whereA; — actual value; P; — predicted value; n — size of the data set; z — numerical index of the
method (not ‘to the power of” symbol).

The meaning of the formula is in sequential determining the point distance between the actual and
predicted values, normalizing it and then aggregating over a complete data set. All performance met-
rics explicitly contain components of determining the point distance and aggregation. Normalization
component is optional, i.e., in some metrics N = 1.

Note that to simplify notation, we are not using superscript in the individual realizations of the
methods, i.e., for z = 1 we write D1, not D1,

Table 2 demonstrates most common methods which will be described in the subsections below. The
fact that each category has almost the same number of options (4-5) is just a coincidence. The list of

methods in the typology is not intended to be comprehensive. Only most popular methods are in-
cluded.

Table 2. Performance metrics typology components and implementation options

Point Distance, D Normalization, N Aggregation, G
Error (magnitude of etror): | Unitary normalization:N1 = 1 Mean aggregation, G1
D1=4;-P
Absolute error: Normalization by actuals: Median aggregation, G2
D2 =|A; — P N2 =A4;°
Squared error: Normalization by variability of actuals: Geometric mean aggre-
D3 = (4; — P))* N3=(4—-4)° gation, G3
Logarithmic quotient error: | Normalization by the sum of actuals and Sum aggregation, G4
D4 = In(P;/A;) predicted values: N4 = (4; + P;)™°¢
Absolute Log quotient error: | Normalization by maximum (or minimum)
D5 = [In(P;/A;)| value of actuals or predicted:

N5 = [max(4;P)]"¢

Note: The values of the variable ¢ will be explained in the next section.
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Methods of determining a point distance, D.

It should be noted that the method used to calculate point distance largely determines the overall
properties of the performance metric.

In general, point distance can be calculated using any basic mathematical operation: subtraction, addi-
tion, multiplication and division (e.g., Deza and Deza, 2016). Commonly, point distances are referred
to by the name of the result of the operation, respectively, difference, sum, product, quotient.

Point distances based on subtraction most commonly used in performance metrics and include: error
(magnitude of error), A; — Pj; absolute error, |A; — Pj|; and squared error, (A; — P;)?. They may be
referred to as difference errors (e.g., Willmott et al, 1985) or just ‘errors’ as this type by far, the most
widely used measure of error in literature.

Subtraction point distances (absolute error and squared error) correspond to the mathematical no-
tions of the Manhattan distance (Taxicab geometry, n.d.) and the Euclidean distance (n.d.), respec-
tively, and their generalization - Minkowski distance (n.d.). More methodological details are provided
by McCune, Grace and Urban (2002).

Point distances based on division (similarly to the subtraction distances) include: magnitude of quo-
tient error, q; = P;/A; (referred to as accuracy ratio by Toffalis (2015)); absolute quotient error, |q;];
and squared quotient error, g j2_ Note that division point distances are undefined when actual values
are zeros.

Kitchenham, Pickard, MacDonell and Shepperd (2001) introduced quotient error (accuracy ratio)
into software development effort forecasting industry, designating it variable z. Although this metric
has been studied earlier, as an alternative to subtraction-type errors, in different environments. For
example, Olver (1978) used it as an error for basic operations in floating-point arithmetic; also
Tornqvist, Vartia and Vartia (1985) considered this metric as one of relative measures in statistics.

Most commonly, quotient error is used in the form of logarithmic quotient, i.e., In(P;/A;). Although
Tofallis (2015) studied squared quotient error as a loss function in prediction model selection.

Multiplication point distances are more suitable for vector represented data and binary data which are
not in scope of this study. Examples can be found in inner product and fidelity groups of metrics in
Cha (2007) and Prasath et al (2017): e.g., Inner Product Distance (IPD), Harmonic Mean Distance
(HMD) (not to be confused with harmonic mean — aggregation procedure).

To the best of our knowledge, addition point distances were not used in the practical applications in
the fields of our interest.

Properties of the commonly used point distances are outlined below.
Error (magnitude of error): D1 = Aj - PJ

The most “natural” method of determining point distance between the actual and predicted values is
subtracting one from another. The result of subtraction is a magnitude of error (or just error). Fol-
lowing the currently accepted notation in forecasting, we will be subtracting predicted value from the
actual.

Finding the magnitude of error is a straight forward and computationally efficient method. Other
methods of determining point distance use the magnitude of error for further processing.

Also, the error is measured with the same units as the data under analysis (variable of interest). It is
easily interpretable. In many problems, our business objective or loss function is proportional to the
difference between the actual and predicted values (not square or absolute value of this difference, as
other point distances imply).
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The issue with this method may arise at the aggregation phase, when the positive and negative errors
will be cancelling each other. It means that even with large (but having different signs) errors the re-
sult of calculating the performance metric may yield zero demonstrating a falsely high accuracy. On
another hand, this property of a magnitude of error (showing the direction of error) may convey use-
tul information, e.g., it may be used in analysis to determine whether the forecasting method tends to
overestimate or underestimate actual values, i.e., biased. This distance is used in ME, MPE, etc.

Absolute error:D2 = [4; — P

The idea behind the absolute error is to avoid mutual cancellation of the positive and negative errors.
Absolute error has only non-negative values which facilitates aggregation of point distances over the
data set.

By the same token, avoiding potential of mutual cancelations has its price — skewness (bias) cannot
be determined.

Absolute error preserves the same units of measurement as the data under analysis and gives all indi-
vidual errors same weights (as compared to squared error). This distance is easily interpretable and
when aggregated over a dataset using an arithmetic mean has a meaning of average error.

The use of absolute value might present difficulties in gradient calculation of model parameters (Chai
and Draxler, 2014). This distance is used in such popular metrics as MAE, MdAE, etc.

Squared error:D3 = (A; — P;)?

Squared error follows the same idea as the absolute error — avoid negative error values and mutual
cancellation of errors.

Due to the square, large errors are emphasized and have relatively greater effect on the value of per-
formance metric (if > 1). At the same time, the effect of relatively small errors (e< 1) will be even
smaller. Sometimes this property of the squared error is referred to as penalizing extreme etrors or
being susceptible to outliers. Based on the application, this property may be considered positive or
negative. For example, emphasizing large errors may be desirable discriminating measure in evaluat-
ing models (Chai and Draxler, 2014).

Squared error has unit measure of squared units of data. This may not be intuitive, e.g., squared dol-
lars. This could be reversed at the aggregation phase by taking square root.

Squared error is acknowledged for its good mathematical properties. It is continuously differentiable
which facilitates optimization.

Logarithmic quotient error:D4 = In(P;/A;) = In(P;) — In(4))

Logarithmic (Log) quotient error has some useful properties. The error is symmetric (to the change
of actual and predicted values in the formula) and dimensionless (e.g., Tofallis, 2015; Tornqvist et al,
1985).

As an example, log quotient distance is used in Median Log Accuracy Ratio (MdLAR) or MALQ — in
author’s notation (Motley, 2016; Motley, Brito and Welling, 2018).

Also, quotient distance is used (with normalization which results in non-symmetry) in the Shannon’s
ot entropy-type metrics, e.g., Kullback-Leibler Divergence (KLD) and Jeffreys Divergence (JD) (Cha,
2007; Kullback and Leibler, 1951). Martin, Moreno, Garrido and Blanco (2015) found that the KLLD-
based method in the presence of contaminated noise outperformed the L2-based measure in the
global localization of mobile robots experiment.
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Absolute Log quotient error:D5 = |In(P;/4;)|

The intention of taking an absolute value of the log quotient error is to ensure symmetric behaviour
of the metric in a sense of possible changing the positions of the predicted and actual values in the
formula without altering the result (Motley, Brito and Welling, 2018).

This distance is used in median symmetric accuracy (MdSA) which was developed to enhance certain
characteristics of the MAPE (Morley, Brito and Welling, 2018).

Yu, Eder, Dennis, Chu and Schwartz (2006) proposed two metrics for evaluating air quality models
using absolute log quotient error: Mean Normalized Absolute Factor Error (MNAFE) and Mean
Normalized Factor Bias (MNFEB).

Other point distances

Two more distance metrics have been mentioned in the literature but have not been widely used.
First, a time-distance measure of accuracy designed to perform two-dimensional comparisons of time
series (Granger and Jeon, 2003; Sicherl, 1994). Second, so called, mean-based measures where error is
calculated as e = A — P; for evaluating forecasts against the mean of the underlying process of in-
termittent demand (Prestwich, Rossi, Tarim and Hnich, 2014). These measures did not gain populari-
ty and have not been included in the final typology.

Methods of normalization, N.

The main idea behind normalization is to design metrics which can be used to compare multiple se-
ries having various dimensions. Most of the normalization methods involve division/multiplication

of the point distance by certain parameter. Utilizing operation of mathematical division immediately
leads to two properties: first, change of the dimension — often making the metric dimensionless, and
second, risks of the denominator to become zero or close to zero and make operation impossible.

It should be emphasized that in our typology normalization is applied to the point distance (each
individual error) prior to aggregation phase. There are some metrics with normalization or similar
mathematical operations are applied to the aggregated error value. These cases are considered ex-
tended metrics.

Unitary normalization: N1 = 1

Unitary normalization — division by one — does not require any calculations and has been included
for the generalization purposes. A number of metrics employ unitary normalization, e.g., ME (MBE),
MAE (MAD), MdAE, GMAE, MSE. These metrics sustain the dimension of the point distance. So,
they are appropriate for analyzing single series, but not useful for comparing multiple series.

Normalization by actuals: N2 = A]-_C

Normalization by actuals involves division of the error by the actual value. For the magnitude of er-
ror and absolute error ¢ = 1, and for the squared error ¢ = 2. Also, for the absolute distance etror,
absolute actuals are used.

Normalization by actuals is used, for example, in MARE (referred to as MMRE - Mean Magnitude
Relative Error — in software effort estimation field, e.g., Jorgensen, 2007).

Commonly, the results are multiplied by 100 to present the ratio as a percentage. Normalization by
actuals is used in MPE, MAPE, MdAPE, RMSPE, RMdSPE — often referred to as percentage met-
rics.

Metrics with normalization by actuals are dimensionless allowing comparison of multiple series.

If actual values are zeros or very close to zeros, the metric cannot be used (undefined due to division
by zero). An example of such scenario can be found in predicting intermittent (sporadic) demand
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(Hyndman, 2006). To avoid a problem of division by zero, Tabataba et al (2017) suggest adding a
small value (e.g., the lowest non-zero value of actual data) to A; in the denominator, calling this algo-
rithm a corrected MAPE (cMAPE).

Obvious analogy with normalization by actuals is normalization by predicted values. This method is
mentioned in some papets, e.g., Tofallis (2015), Térnqvist, Vartia and Vartia (1985), but did not be-
come popular in the literature. Fildes and Goodwin (2007) cautioned that inflating predicted values
would distort this normalization type. Although the preference of forecaster practitioners towards
actuals in denominator is not overwhelming: according to a survey by Green and Tashman (2009)
56% prefer actuals.

Normalization by variability of actuals: N3 = (4; — A)~¢

Normalization by variability of actuals includes division of the error by the difference between the
actual value and mean value of all actuals. For the magnitude of error and absolute error ¢ = 1, and
for the squared error ¢ = 2. Also, for the absolute distance error, absolute actuals are used.

Inclusion of the actuals mean A is intended to lower the risk of division-by-zero situations. Actuals
mean is implemented in R packages (e.g., in MLwetrics, metrics, rminer). In general case, normalization
can use an error from a benchmark method (usually naive forecasting) (Hyndman, 2000).

Normalization by variability of actuals is used in RAE, MRAE, MARAE, GMRAE, RSE, RRSE —
often referred to as relative metrics.

Normalization by the sum of actuals and predicted values: N4 = (4; + P;)™°¢

Normalization by the sum of actual and predicted values involves division of the point distance by
the sum of the actuals and predicted values. It was introduced in relation to MAPE. Initial intent be-
hind this type of normalization was to make MAPE symmetric (Makridakis, 1993). However, later it
was shown that the objective was not gained — sMAPE (symmetric MAPE) was still asymmetric
(Goodwin and Lawton, 1999). At the same time, it seems reasonable to assume that the sum of the
actuals and predicted values has less risk to be equal to zero. Several options of this normalization
method exist (Symmetric Mean Absolute Percentage Error, n.d.). Popular ones use an average of
theactuals and predicted values, i.e., (Aj + P;)/2 (Green and Tashman, 2009) or use absolute actual
and predicted values.

Normalization by the sum of actual and predicted values is used in SMAPE and sMdAPE — often
referred to as ‘symmetric’ percentage metrics. Also, this normalization is used in FB and FAE (e.g.,
Yu et al, 20006).

Normalization by maximum (or minimum) value of actuals or predicted: N5 =
[max(4; B)]

Normalization by the maximum (or minimum) amount of actuals and predicted values. In the known
metrics, ¢ = 1. It was introduced in relation to the so called Wave Hedges Distance (e.g., Cha, 2007,
Prasath, Alfeilat, Lasassmeh and Hassanat, 2017). This normalization was proved useful in a com-
parative study of similarity metrics for compressed domain image retrieval (Hatzigiorgaki and
Skodras, 2003).

Other normalization methods

Normalization by standard deviation or the difference of the actual and predicted values (as in Mean
Normalized Absolute Factor Error - MNAFE) may be used.

All normalization methods described in this subsection have the form of a multiplier (denominator),
so the generic formulae for a performance metric can be simplified:

m = G* {N* x D*(4;, P))}
j=1n
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Although, implementation of more sophisticated methods in the future cannot be excluded.

Methods of aggregation of point distances over a data set, G.

Agoregation of point distances (in many cases after normalization) over a data set represents the final
ggreg p Y p
phase in the calculating primary performance metric.

Mean aggregation, 1

Note that we use the term ‘mean’ to refer to the ‘arithmetic mean’. For any other types of means we
add an attribute, e.g., geometric mean. Calculation of the arithmetic mean of the normalized point
distances over a data set is the most popular aggregation method (Arithmetic Mean, n.d.). Finding
arithmetic average of the observed errors is easy: it involves summing the values of point distances
and dividing by the number of elements of the data set. It is also intuitively clear: the result repre-
sents an expected value of the error. The method is used, for example, in MPE, MRAE, MSE, etc.
Mean aggregation is sensitive to outliers and skewed data. Refer to Other aggregation methods below
for the versions of the mean aggregation intended to overcome issues with asymmetrical distribu-
tions of data and extreme values.

Median aggregation, G2

Computation of the median involves listing all point distances in an ordered form by their value (as-
cending or descending) and finding the number in the centre or the mean of two middle values, if the
data set has even number of elements (Median, n.d.).

Opposite to other methods, median method can be called “aggregation” only conditionally: it is not
based on some sort of bundling of all point distances of the data set and calculating an output value.
The output of this method is one of the existing values of point distances (searched and found
through a special procedure).

The median method is more resistant to outliers than the mean (Bakker and Gravemeijer, 2006). On
the other hand, there is no clear and easy mathematical formula to describe the method, so theoreti-
cal considerations are a cumbersome task (although, computational algorithms present no difficulty

and included in most statistical software packages).

The method is used, for example, in MAAE, MdRAE, sMdAPE, etc.

Geometric mean aggregation, G3
The geometric mean is defined as the n-th root of the product of the values of the data set (Geomet-
ric Mean, n.d.).

Geometric mean, as a median aggregation, is more robust to outliers than arithmetic mean aggrega-
tion (Fildes, 1992; Zhou, Zhou and Mathews, 1999;).

As the method includes operations of multiplication and root extraction, the downside of this meth-
od is that aggregation is undefined, if the point distances contain negative or zero-value elements.

Makridakis and Hibon (1995, p. 10) note an advantage of geometric means in interpreting model
comparisons: if there are two geometric mean assessments, e.g., 10 and 12, then “the mean absolute
errors of the second method are 20% higher than those of the first”.

The method is used, for example, in GRMSE (Fildes, 1992; Newbold and Granger, 1974), GMRAE,
GMAE, etc.

Sum aggregation, G4

The sum aggregation is just summing point distances to create a simple metric (Sum of Absolute Dif-
ferences, n.d.). The method is used, for example, in RAE, SSE, RSE, SAD, etc.

59



Performance Metrics Typology

Other aggregation methods

The harmonic mean is calculated as the reciprocal of the arithmetic mean of the reciprocals of the
data set (Harmonic Mean, n.d.). The harmonic mean (as well as arithmetic and geometric) was known
to ancient Greek mathematics since around 500 BC (Heath, 1981). Sometimes all three means re-
ferred to as Pythagorean Means (n.d.). However, this method is not as popular as the other two
means.

The truncated mean (or trimmed mean) is a version of the arithmetic mean. It involves discarding
some extreme data points at the high and low end before calculating arithmetic mean on the rest of
the data set. This method appears to be more robust to outliers compared to a standard arithmetic
mean, but could lead to a biased estimation, if underlying error distribution is not symmetric (Meyer
& Venkatu, 2014; Truncated Mean, n.d.). Windsorized mean is similar to the truncated mean, except
the extreme data points are not discarded but replaced by the next largest (or smallest) values (Win-
sorized Mean, n.d.).

Use of M-estimators is another method to deal with outliers and non-normal distributions which may
contaminate arithmetic mean (M-estimator, n.d.). M-estimator is a robust estimator that weights the
observations on the basis of their relative distance from the centre of the distribution. Monero et al
(2013) proposed using Huber M-estimator to improve performance of the mean absolute percentage
error metric. They called this metric Resistant MAPE or R-MAPE.

Similar to the median aggregation, sometimes maximum aggregation is used. It involves searching the
maximum value in the point distances. This method is employed in Maximum Absolute Error (Max-
AE) (Zhang et al, 2015).

VISUALIZING TYPOLOGY

The developed typology has been visualized using a table format. Metric components and their im-
plementation options are shown on the right side (point distance), left side (aggregation) and top
(normalization) of the chart. Each cell located on the intersection of three components defines an
individual metric. For example, MRAE can be identified as D2ZN3G1 or GRMSEcan be identified as
D3N1G3. Table 3 demonstrates that 40 primary metrics have been conveniently ordered and orga-
nized by their components shedding light on the properties of the metrics. Some cells of the chatt
are blank opening opportunities for designing new metrics.

Note that for better visualization the table is not comprehensive. It includes only most popular com-
ponents. For example, MNFB metric is shown on the list in the Appendix C with mathematical defi-
nitions of metrics by not in the Table because it uses normalizer which is not very common.

DISCUSSION

The paper provided an overview of a wide range of performance metrics used in machine learning
regression, forecasting and prognostics. A comparison of prior metrics classifications and their limi-
tations was conducted. Prior typologies (e.g., Hyndman, 2006; Hyndman and Koehler, 20006) are
based on a one-level (“flat”) structure with 5-9 categories which made it difficult to organize multiple
metrics without overlappings. Our typology suggests two levels with a detailed typology of primary
metrics which allows incorporating more metrics than it was possible with prior classifications. Sug-
gested typology has been shown to cover most of the commonly used primary metrics — total of over
40.

Also, prior typologies group together metrics with significant differences. For example, Hyndman’s
classification (2006) arranges together metrics based on different errors — absolute and squared — alt-
hough these metrics have considerably different properties.
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Finally, prior typologies operate with metrics taken as complete structures without going deeper into
the metric construct. Our typology defines metrics components which determine metrics’ properties.

Suggested in this paper generic formula for primary performance metrics is more comprehensive
than used by Willmott & Matsuura (2005), as their definition can be applied only to metrics with
mean-averaging type of error aggregation.

Table 3. Performance metrics (etror measures) typology
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The developed typology can inform metric selection process decision making by structuring perfor-
mance metrics considerations (point distance, normalization and aggregation phases) and focusing on
the key properties of the components chosen. For example, if the business or research need is to
emphasize outliers, squared error and arithmetic mean should be used. However, if the business re-
quirement is to isolate outliers, then selection of absolute error and geometric mean is desirable. In
other words, the use of this typology turns selection of a metric from a browsing exercise over doz-
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ens of metrics into a straightforward process of identifying point distance, normalization and aggre-
gation methods that fit the purpose of the task.

The benefits of the developed typology, outlined above, are also applicable to the process of facilitat-
ing creation of new metrics. It should be noted that this study have not revealed recently conceived
types of point distances, normalizers or aggregators - all of them existed for a while. Suggested visual-
ization table can be used as a tool for creating new metrics by consciously choosing blank cells in the
chart (an analogy with the Periodic Table of the chemical elements). The current structure of the vis-
ualization table potentially provides for 100 different metrics.

Assumptions and limitations

It has been shown that the typology developed in this paper can be applied to a wide variety of
commonly used performance metrics. Although most known metrics can be easily classified with the
typology, there are certain exceptions, as to every rule. These exceptions are usually related to met-
rics which have been developed for use in ad hoc circumstances (specific input data structure). For
example, mean arctangent absolute percentage error (MAAPE) proposed by Kim and Kim (2016).
MAAPE is a modification of MAPE which involves taking arctangent of the absolute error normal-
ized by the actual values.

Our approach in this study is conceptual. We are not empirically comparing various metrics (e.g.,
Armstrong, & Collopy, 1992), but rather consider their qualitative properties.

We focus on machine learning regression with numerical data. Metrics for evaluating categorical, or-
dinal, binary types of data are not in scope (e.g., Choi, Cha, & Tappert, 2010).

Finally, within machine learning metrics the study considers only metrics used in regression algo-
rithms. The tasks of classification or clustering may require different types of metrics (Deza & Deza,
2016).

Listed limitations are essential for the reader to understand what is not included in the study and
shape expectations of generalizability of the findings. Also, these limitations were used for formulat-
ing directions of future research.

CONCLUSION

The importance and timeliness of the paper is determined by the increased interest of researchers
and practitioners to improving evaluation results in machine learning regression, forecasting and
prognostics. The paper overviewed multiple performance metrics and conducted a comparison of
prior metrics classifications.

The main findings and results of the study include the following. The paper proposed metrics
framework, which includes four (4) categories: primary metrics, extended metrics, composite metrics
and hybrid sets of metrics. The paper identified three (3) key components (dimensions) that deter-
mine the structure and properties of primary metrics: method of determining point distance, method
of normalization, method of aggregation of point distances over a data set. For each component,
implementation options have been identified and their properties described. The paper proposed a
new primary metrics typology designed around the key metrics components. The suggested typology
has been shown to cover most of the commonly used primary metrics — total of over 40. A new ge-
neric mathematical formula for primary performance metrics has been proposed which implies se-
quential determining the point distance between the actual and predicted values, normalizing it and
then aggregating results over a complete data set. Typology visualization chart has been designed
which can be used as a tool for classifying and assessing existing, and creating new metrics.

The main contribution of this paper is in ordering knowledge of performance metrics and enhancing
understanding of their structure and properties by proposing a new typology, generic primary metrics
mathematical formula and a visualization chart. The practical significance of the paper is in the fact
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that the presented findings can be used to facilitate teaching performance metrics to university stu-
dents, expedite metrics selection process for practitioners and streamline new metrics development
for academics.

Two future research opportunities can be conceived from the results of this paper. First, following
the approach taken in this paper to model and analyze primary metrics, to continue conceptual re-
search into the properties of the other metrics categories identified in this paper, namely: extended
metrics, composite metrics and hybrid sets of metrics. Second, start an empirical study of the metrics,
using R Studio or Azure Machine Learning Studio, to find associations between the conceptual prop-
erties of primary metrics and their “numerical” behavior in a wide spectrum of data characteristics
and business or research requirements.

REFERENCES

Aman, S., Simmbhan, Y., & Prasanna, V. K. (2015).Holistic measures for evaluating prediction models in smart
grids. IEEE Transactions on Knowledge and Data Engineering, 27(2), 475-488.
https://doi.org/10.1109/TKDE.2014.2327022

Aman, S., Simmhan, Y., & Prasanna, V. K. (2011). Improving energy use forecast for campus micro-grids using
indirect indicators. In IEEE 111h International Conference on Data mining Workshops (ICDMW), Decentber 2011
(pp. 389-397). IEEE. https://doi.org/10.1109/ICDMW.2011.95

Arithmetic Mean.(n.d.). In Wikjpedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/ Arithmetic_mean

Armstrong, J. S., & Collopy, E (1992). Error measures for generalizing about forecasting methods: Empirical
comparisons. International Journal of Forecasting, 8(1), 69-80. https://doi.org/10.1016/0169-2070(92)90008-
W

Ayyub, B. M., & McCuen, R. H. (2016). Probability, statistics, and reliability for engineers and scientists (3rd
ed.). Boca Raton: CRC Press.

Bakker, A., & Gravemeijer, K. P. (2006). An historical phenomenology of mean and median. Educational Studies
in Mathematics, 62(2), 149-168. https://doi.org/10.1007/s10649-006-7099-8

Botchkarev, A. (2018a). Evaluating performance of regression machine learning models using multiple error metrics in Azgure
Machine Learning Studio. Retrieved from http://ssrn.com/abstract=3177507

Botchkarev, A. (2018b). Evaluating hospital case cost prediction models using Azure Machine Learning Studio. Retrieved
from https://arxiv.org/ftp/arxiv/papers/1804/1804.01825.pdf

Bratu, M. (2013). New accuracy measures for point and interval forecasts: A case study for Romania’s forecasts
of inflation and unemployment rate. .A#lantic Review of Economics, 1. Retrieved from
https://www.econstor.eu/bitstream /10419/146573/1/776595040.pdf

Carbone, R., & Armstrong, J. S. (1982). Note. Evaluation of extrapolative forecasting methods: Results of a
survey of academicians and practitioners. Journal of Forecasting, 1(2), 215-217.
https://doi.org/10.1002/£0r.3980010207

Cha, S.H. (2007). Comptehensive survey on distance/similarity measures between probability density functions.
International Journal of Mathematical Models and Methods in Applied Sciences. 1(4), 300-307. Retrieved from
http://csis.pace.edu/ctappert/dps/d861-12/session4-p2.pdf

Chai, T., & Draxler, R. R. (2014). Root mean square error (RMSE) or mean absolute error (MAE)?—Arguments
against avoiding RMSE in the literature. Geoscientific Model Development, 7(3), 1247-1250.
https://doi.org/10.5194/gmd-7-1247-2014

Chen, C., Twyctross, J., & Garibaldi, ]. M. (2017). A new accuracy measure based on bounded relative error for
time series forecasting. PioS ONE, 72(3), e0174202. https://doi.org/10.1371 /journal.pone.0174202

Choi, S. S., Cha, S. H., & Tappert, C. C. (2010). A survey of binary similarity and distance measures. Journal of
Symmm, C]bemeim and Infarmalm, 8(1), 43-48. Retrieved from

63


https://doi.org/10.1109/TKDE.2014.2327022
https://doi.org/10.1109/ICDMW.2011.95
https://en.wikipedia.org/wiki/Arithmetic_mean
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1016/0169-2070(92)90008-W
https://doi.org/10.1007/s10649-006-7099-8
http://ssrn.com/abstract=3177507
https://arxiv.org/ftp/arxiv/papers/1804/1804.01825.pdf
https://www.econstor.eu/bitstream/10419/146573/1/776595040.pdf
https://doi.org/10.1002/for.3980010207
http://csis.pace.edu/ctappert/dps/d861-12/session4-p2.pdf
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1371/journal.pone.0174202
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.352.6123&rep=rep1&type=pdf

Performance Metrics Typology

Cunningham, P. (2009). A taxonomy of similarity mechanisms for case-based reasoning. IEEE Transactions on
Knowledge and Data Engineering, 21(11), 1532-1543. https://doi.org/10.1109/TKDE.2008.227

De Gooijet, . G., & Hyndman, R. J. (2006).25 years of time series forecasting,. International Jonrnal of Forecasting,
22(3), 443-473. https://doi.org/10.1016/]}.ijforecast.2006.01.001

Deza, M. M., & Deza, E. (2016). Encyclopedia of distances (4th ed.). Springer, Berlin, Heidelberg,
https://doi.org/10.1007/978-3-662-52844-0

Dimensionless Quantity. (n.d.). In Wikipedia. Retrieved June 22, 2018, from
https://en.wikipedia.org/wiki/Dimensionless quantity

Euclidean Distance. (n.d.). In Wikipedia. Retrieved May 30, 2018, from
https://en.wikipedia.org/wiki/Fuclidean distance

Fildes, R. (1992). The evaluation of extrapolative forecasting methods. International Journal of Forecasting, 8(1),
81-98. https://doi.org/10.1016/0169-2070(92)90009-X

Fildes, R., & Goodwin, P. (2007). Against your better judgment? How organizations can improve their use of
management judgment in forecasting. Interfaces, 37(6), 570-576. https://doi.org/10.1287 /inte.1070.0309

Foss, T., Stensrud, E., Kitchenham, B., & Myrtveit, I. (2003). A simulation study of the model evaluation crite-
rion MMRE. IEEE Transactions on Software Engineering, 29(11), 985.
https://doi.org/10.1109/TSE.2003.1245300

Geometric Mean. (n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Geometric mean

Gerber, A., Baskerville, R., & Van der Merwe, A. (2017). A taxonomy of classification approaches in IS re-
search. In Tuwenty-third Americas Conference on Information Systems, Boston, 2017. Retrieved from
https://aisel.aisnet.org/cgi/viewcontent.cgirarticle=1232&context=amcis2017

Gneiting, T. (2011). Making and evaluating point forecasts. Journal of the American Statistical Association, 106(494),
746-762. https://doi.org/10.1198/jasa.2011.r10138

Goodwin, P.,, & Lawton, R. (1999). On the asymmetry of the symmetric MAPE. International Journal of Forecast-
ing, 15(4), 405-408. https://doi.org/10.1016/50169-2070(99)00007-2

Granger, C. W. ., & Jeon, Y. (2003). A time—distance criterion for evaluating forecasting models. International
Journal of Forecasting, 19, 199 — 215. https://doi.org/10.1016/S0169-2070(02)00030-4

Green, K., & Tashman, L. (2009). Percentage error: What denominator? Foresight: The International Journal of
Applied Forecasting, (12), 36-40.

Grigsby, M. R., Dj, J., Leroux, A., Zipunnikov, V., Xiao, L., Crainiceanu, C., & Checkley, W. (2018). Novel met-
rics for growth model selection. Ewmerging Themes in Epidenziology, 15(4). https://doi.org/10.1186/s12982-
018-0072-7

Harmonic Mean.(n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Harmonic _mean

Hatzigiorgaki, M., & Skodras, A. N. (2003, June). Compressed domain image retrieval: A comparative study of
similarity metrics. In Proceedings of 1 isual Communications and Image Processing 2003 (Vol. 5150, pp. 439-449).
International Society for Optics and Photonics. https://doi.org/10.1117/12.507669

Heath, T. H. (1981). A history of Greek mathematics. Dover, New York.

Hernandez-Rivera, E., Coleman, S. P, & Tschopp, M. A. (2017). Using Similarity Metrics to Quantify Differ-
ences in High-Throughput Data Sets: Application to X-ray Diffraction Patterns. ACS Combinatorial Science,
79(1), 25-36. https://doi.org/10.1021/acscombsci.6b00142

Hoover, ]. (20006). Measuring forecast accuracy: Omissions in today’s forecasting engines and demand-planning
software. Foresight: The International Journal of Applied Forecasting, 4(4), 32-35.

Hyndman, R. J. (2006). Another look at forecast-accuracy metrics for intermittent demand. Foresight: The Interna-
tional Journal of Applied Forecasting, 4(4), 43-46.

64


https://doi.org/10.1109/TKDE.2008.227
https://doi.org/10.1016/j.ijforecast.2006.01.001
https://doi.org/10.1007/978-3-662-52844-0
https://en.wikipedia.org/wiki/Dimensionless_quantity
https://en.wikipedia.org/wiki/Euclidean_distance
https://doi.org/10.1016/0169-2070(92)90009-X
https://doi.org/10.1287/inte.1070.0309
https://doi.org/10.1109/TSE.2003.1245300
https://en.wikipedia.org/wiki/Geometric_mean
https://aisel.aisnet.org/cgi/viewcontent.cgi?article=1232&context=amcis2017
https://doi.org/10.1198/jasa.2011.r10138
https://doi.org/10.1016/S0169-2070(99)00007-2
https://doi.org/10.1016/S0169-2070(02)00030-4
https://doi.org/10.1186/s12982-018-0072-z
https://doi.org/10.1186/s12982-018-0072-z
https://en.wikipedia.org/wiki/Harmonic_mean
https://doi.org/10.1117/12.507669
https://doi.org/10.1021/acscombsci.6b00142

Botchkarev

Hyndman, R. J., & Koehler, A. B. (2006). Another look at measures of forecast accuracy. International Journal of
Forecasting, 22(4), 679-688. https://doi.org/10.1016/j.ijforecast.2006.03.001

Jorgensen, M. (2007, December). A critique of how we measure and interpret the accuracy of software devel-
opment effort estimation. In First International Workshop on Software Productivity Analysis and Cost Estimation.
Information Processing Society of Japan, Nagoya. Retrieved from
https://pdfs.semanticscholar.org/f347/d4de8aldecfcea2602¢33254dbf4b5bd366d.pdf#page=25

Jousselme, A. L., & Maupin, P. (2012). Distances in evidence theory: Comprehensive survey and generaliza-
tions. International Jonrnal of Approximate Reasoning, 53(2), 118-145.
https://doi.org/10.1016/}.ijar.2011.07.006

Kim, S., & Kim, H. (2016). A new metric of absolute percentage error for intermittent demand forecasts. Infer-
national Journal of Forecasting, 32(3), 669-679. https://doi.org/10.1016/j.ijforecast.2015.12.003

Kitchenham, B. A., Pickard, L. M., MacDonell, S. G., & Shepperd, M. J. (2001). What accuracy statistics really
measure? IEE Proceedings-Software, 148(3), 81-85. https://doi.org/10.1049/ip-sen:20010506

Kolassa, S., & Schiitz, W. (2007). Advantages of the MAD/MEAN ratio over the MAPE. Foresight: The Interna-
tional Journal of Applied Forecasting, (6), 40-43.

Kullback, S., & Leibler, R. A. (1951).On information and sufficiency. The Annals of Mathematical Statistics, 22(1),
79-86. https://doi.org/10.1214/aoms /1177729694

Kyriakidis, I., Kukkonen, J., Karatzas, K., Papadourakis, G., & Ware, A. (2015). New statistical indices for evaluating
model forecasting performance. Skiathos Island, Greece. Retrieved from http://iranarze.ir/wp-

content/uploads/2017/12/53-English-Iran Arze.pdf
Li, J. (2017). Assessing the accuracy of predictive models for numerical data: Not r nor r2, why not? Then

what? PloS One, 12(8), €0183250. Retrieved from https://doi.org/10.1371/journal.pone.0183250

List of Dlmen51onless Quanntles (n.d). In Wz/ézpedza Retrieved June 22,2018, from
: . . iki/List of di 1

M-estimator. (n.d.). In Wikipedia. Retrieved June 22, 2018, from https://en.wikipedia.org/wiki/M-estimator

Mahmoud, E. (1987). The Evaluation of Forecasts. in The Handbook of Forecasting: A Manager’s Guide, Makrida-
kis, S. and Wheelwright, S. C., eds. New York: John Wiley & Sons.

Makridakis, S. (1993). Accuracy measures: Theoretical and practical concerns. International Journal of Forecasting,
9(4), 527-529. https://doi.org/10.1016/0169-2070(93)90079-3

Makridakis, S., & Hibon, M. (1995). Evaluating accuracy (or error) measures. INSEAD Working Paper Series, Fon-
tainebleau, France.

Makridakis, S., Spiliotis, E., & Assimakopoulos, V. (2018). Statistical and machine learning forecasting methods:
Concerns and ways forward. PloS One, 13(3), €0194889. https://doi.org/10.1371/journal.pone.0194889

Martin, F., Moreno, L., Garrido, S., & Blanco, D. (2015). Kullback-Leibler divergence-based differential evolu-
tion Markov Chain filter for global localization of mobile robots. Sensors, 15(9), 23431-23458.
https://doi.org/10.3390/5150923431

Mathai, A. V., Agarwal, A., Angampalli, V., Narayanan, S., & Dhakshayani, E. (2016). Development of new
methods for measuring forecast error. International Jonrnal of Logistics Systems and Management, 24(2), 213-225.
https://doi.org/10.1504/1J1.SM.2016.076472

McCarthy, T. M., Davis, D. E, Golicic, S. L., & Mentzer, J. T. (2006). The evolution of sales forecasting man-
agement: A 20-year longitudinal study of forecasting practices. Journal of Forecasting, 25(5), 303-324.
https://doi.org/10.1002/f0r.989

McCune, B, Grace, ]. B,, & Urban, D. L. (2002). Analysis of ecological communities (Vol. 28). Chapter 6. Gleneden
Beach, OR: MjM software design. Retrieved from
https://www.umass.edu/landeco/teaching/multivariate /readings / McCune.and.Grace.2002.chapter6.pdf

Median. (n.d.). In Wikipedia. Retrieved July 19, 2018, from https://en.wikipedia.org/wiki/Median

65


https://doi.org/10.1016/j.ijforecast.2006.03.001
https://pdfs.semanticscholar.org/f347/d4de8a1decfcea2602c33254dbf4b5bd366d.pdf#page=25
https://doi.org/10.1016/j.ijar.2011.07.006
https://doi.org/10.1016/j.ijforecast.2015.12.003
https://doi.org/10.1049/ip-sen:20010506
https://doi.org/10.1214/aoms/1177729694
http://iranarze.ir/wp-content/uploads/2017/12/53-English-IranArze.pdf
http://iranarze.ir/wp-content/uploads/2017/12/53-English-IranArze.pdf
https://doi.org/10.1371/journal.pone.0183250
https://en.wikipedia.org/wiki/List_of_dimensionless_quantities
https://en.wikipedia.org/wiki/M-estimator
https://doi.org/10.1016/0169-2070(93)90079-3
https://doi.org/10.1371/journal.pone.0194889
https://doi.org/10.3390/s150923431
https://doi.org/10.1504/IJLSM.2016.076472
https://doi.org/10.1002/for.989
https://www.umass.edu/landeco/teaching/multivariate/readings/McCune.and.Grace.2002.chapter6.pdf
https://en.wikipedia.org/wiki/Median

Performance Metrics Typology

Mentzer, J. T., & Kahn, K. B. (1995). Forecasting technique familiarity, satisfaction, usage, and application. Jozur-
nal of Forecasting, 14(5), 465-476. https://doi.org/10.1002/£01r.3980140506

Meyer, B,, & Venkatu, G. (2014). Trimmed-mean inflation statistics: Just hit the one in the middle. Federal Reserve
Bank of Cleveland Working Papers, (WP 12-17R).

Minkowski Distance.(n.d.). In Wikipedia. Retrieved May 30, 2018, from
https://en.wikipedia.org/wiki/Minkowski distance

Moreno, J. J. M., Pol, A. P, Abad, A. S., & Blasco, B. C. (2013). Using the R-MAPE index as a resistant measure
of forecast accuracy. Psicothema, 25(4), 500-5006. https://doi.org/10.7334/psicothema2013.23

Motley, S. K. (2016). Alternatives to accuracy and bias metrics based on percentage errors for radiation belt modeling applica-
tions. Los Alamos National Laboratory report, LA-UR-16-24592. https://doi.org/10.2172/1260362

Morley, S. K., Brito, T. V., & Welling, D. T. (2018). Measures of model performance based on the log accuracy
ratio. Space Weather, 16(1), 69-88. https://doi.org/10.1002/2017SW001669

Newbold, P, & Granger, C. W. (1974). Experience with forecasting univariate time series and the combination
of forecasts.Journal of the Royal Statistical Society. Series A (General), 737(2), 131-165.
https://doi.org/10.2307/2344546

Olver, F. W. J. (1978). A new approach to error arithmetic. SLAM Journal on Numerical Analysis, 15(2), 368-393.
https://doi.org/10.1137/0715024

Parrochia, D. (n.d.). The internet encyclopedia of philosophy (Classification), ISSN 2161-0002, Retrieved on Septem-
ber 6, 2018, from https://www.iep.utm.edu/classifi

Prasath, V. B,, Alfeilat, H. A. A., Lasassmeh, O., & Hassanat, A. (2017). Distance and similarity measures effect on the
performance of k-nearest neighbor classifier-A review. Retrieved from https://arxiv.org/pdf/1708.04321.pdf

Prestwich, S., Rossi, R., Tarim, S. A., & Hnich, B. (2014). Mean-based error measutres for intermittent demand
forecasting, International Journal of Production Research, 52(22), 6782-6791.
https://doi.org/10.1080/00207543.2014.917771

Pythagorean Means. (n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Pythagorean means

Saxena, A., Celaya, ]., Balaban, E., Goebel, K., Saha, B., Saha, S., & Schwabacher, M. (2008). Metrics for evaluat-
ing performance of prognostic techniques. In Inernational Conference on Prognostics and Health Management,
2008 (PHM October, 2008), (pp. 1-17). IEEE. https://doi.org/10.1109/PHM.2008.4711436

Shcherbakov, M. V., Brebels, A., Shcherbakova, N. L., Tyukov, A. P, Janovsky, T. A., & Kamaev, V. A. E. (2013).
A survey of forecast error measures. World Applied Sciences Journal, (Information Technologies in Modern Industry,
Education & Society) 24, 171-176.

Sicherl, P. (1994). Time distance as an additional measure of discrepancy between actual and estimated values in
time series models. In International Symposinm on Economic Modelling. The World Bank, Washington DC.

Silver, E. A, Pyke, D. F,, & Thomas, D. J. (2016). Inventory and production management in supply chains. CRC Press.
https://doi.org/10.1201/9781315374406

Sum of Absolute Differences. (n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Sum of absolute differences

Symmetric Mean Absolute Percentage Error. (n.d.). In Wikipedia. Retrieved July 4, 2018, from
https://en.wikipedia.org/wiki/Symmetric mean absolute percentage error

Syntetos, A. A., & Boylan, J. E. (2005). The accuracy of intermittent demand estimates. International Jonrnal of
Forecasting, 21(2), 303-314. https://doi.org/10.1016/j.ijforecast.2004.10.001

Tabataba, F. S., Chakraborty, P, Ramakrishnan, N., Venkatramanan, S., Chen, |., Lewis, B., & Marathe, M.
(2017).A framework for evaluating epidemic forecasts. BMC infections diseases, 17(1), 345.
https://doi.org/10.1186/s12879-017-2365-1

66


https://doi.org/10.1002/for.3980140506
https://en.wikipedia.org/wiki/Minkowski_distance
https://doi.org/10.7334/psicothema2013.23
https://doi.org/10.2172/1260362
https://doi.org/10.1002/2017SW001669
https://doi.org/10.2307/2344546
https://doi.org/10.1137/0715024
https://www.iep.utm.edu/classifi
https://arxiv.org/pdf/1708.04321.pdf
https://doi.org/10.1080/00207543.2014.917771
https://en.wikipedia.org/wiki/Pythagorean_means
https://doi.org/10.1109/PHM.2008.4711436
https://doi.org/10.1201/9781315374406
https://en.wikipedia.org/wiki/Sum_of_absolute_differences
https://en.wikipedia.org/wiki/Symmetric_mean_absolute_percentage_error
https://doi.org/10.1016/j.ijforecast.2004.10.001
https://doi.org/10.1186/s12879-017-2365-1

Botchkarev

Taxicab Geometry.(n.d.). In Wikipedia. Retrieved May 30, 2018, from
https://en.wikipedia.org/wiki/Taxicab_geometry

Tian, Y., Nearing, G. S, Peters-Lidard, C. D., Harrison, K. W, & Tang, I.. (2016). Performance metrics, error
modeling, and uncertainty quantification. Monthly Weather Review, 144(2), 607-613.
https://doi.org/10.1175/MWR-D-15-0087.1

Tofallis, C. (2015). A better measure of relative prediction accuracy for model selection and model estimation.
Journal of the Operational Research Society, 66(8), 1352-1362. https://doi.org/10.1057/jors.2014.103

Thomakos, D. D., & Nikolopoulos, K. (2015). Forecasting multivariate time series with the theta method. Jour-
nal of Forecasting, 34(3), 220-229. https://doi.org/10.1002/for.2334

Tornqvist, L., Vartia, P., & Vartia, Y. O. (1985). How should relative changes be measured? The American Statisti-
cian, 39(1), 43-46.

Tschopp, M. A., & Hernandez-Rivera, E. (2017). Quantifying similarity and distance measures for vector-based Datasets:
Histograms, signals, and probability distribution functions No. ARL-TN-0810). US Army Research Laboratory
Aberdeen Proving Ground United States. Retrieved from

http://www.dtic.mil/dtic/tr/fulltext/u2/1026967.pdf

Truncated Mean.(n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Truncated mean

Vogt, M., Remmen, P, Lauster, M., Fuchs, M., & Miiller, D. (2018). Selecting statistical indices for calibrating
building energy models. Building and Environment. 144, 94-107.
https://doi.org/10.1016/j.buildenv.2018.07.052

Weller-Fahy, D. J., Borghetti, B. J., & Sodemann, A. A. (2015). A survey of distance and similarity measures used
within network intrusion anomaly detection. IEEE Communications Surveys & Tutorials, 17(1), 70-91.
https://doi.org/10.1109/COMST.2014.2336610

Willmott, C. J., Ackleson, S. G., Davis, R. E., Feddema, J. J., Klink, K. M., Legates, D. R., O’Donnell, J., & Rowe,
C. M. (1985). Statistics for the evaluation and comparison of models. Journal of Geophysical Research: Oceans,
90(C5), 8995-9005. https://doi.org/10.1029/]C090iC05p08995

Willmott, C. J., & Matsuura, K. (2005). Advantages of the mean absolute error (MAE) over the root mean
square error (RMSE) in assessing average model performance. Climate research, 30(1), 79-82.
https://doi.org/10.3354/cr030079

Willmott, C. J., Matsuura, K., & Robeson, S. M. (2009). Ambiguities inherent in sums-of-squares-based error
statistics. Azmospheric Environment, 43(3), 749-752. https://doi.org/10.1016/j.atmosenv.2008.10.005

Winsorized Mean.(n.d.). In Wikipedia. Retrieved July 19, 2018, from
https://en.wikipedia.org/wiki/Winsotized mean

Yu, S., Eder, B, Dennis, R., Chu, S. H., & Schwartz, S. E. (2006). New unbiased symmetric metrics for evalua-
tion of air quality models. Atmospheric Science Letters, 7(1), 26-34. https://doi.org/10.1002/asl.125

Zhang, ]., Florita, A., Hodge, B. M., Lu, S., Hamann, H. I, Banunarayanan, V., & Brockway, A. M. (2015). A
suite of metrics for assessing the performance of solar power forecasting. Solar Energy, 171, 157-175.
https://doi.org/10.1016/j.solener.2014.10.016

Zhou, Q. H., Zhou, Q. N., & Mathews, J. D. (1999). Arithmetic average, geometric average, and ranking: Appli-
cation to incoherent scatter radar data processing. Radio Science, 34(5), 1227-1237.
https://doi.org/10.1029/1999RS900062

ACKNOWLEDGMENT

The views, opinions and conclusions expressed in this paper are those of the author alone and do
not necessarily represent the views of his current or former employer(s) or organizations he is affili-
ated with.

67


https://en.wikipedia.org/wiki/Taxicab_geometry
https://doi.org/10.1175/MWR-D-15-0087.1
https://doi.org/10.1057/jors.2014.103
https://doi.org/10.1002/for.2334
http://www.dtic.mil/dtic/tr/fulltext/u2/1026967.pdf
https://en.wikipedia.org/wiki/Truncated_mean
https://doi.org/10.1016/j.buildenv.2018.07.052
https://doi.org/10.1109/COMST.2014.2336610
https://doi.org/10.1029/JC090iC05p08995
https://doi.org/10.3354/cr030079
https://doi.org/10.1016/j.atmosenv.2008.10.005
https://en.wikipedia.org/wiki/Winsorized_mean
https://doi.org/10.1002/asl.125
https://doi.org/10.1016/j.solener.2014.10.016
https://doi.org/10.1029/1999RS900062

Performance Metrics Typology

APPENDICES

APPENDIX A: LIST OF METRICS ABBREVIATIONS

Metric Abbreviation Metric Name

CM Canberra Metric

CoD Coefficient of Determination

CVRMSE Coefficient of variation of the RMSE

DivD Divergence Distance

ED Euclidean Distance (L2-norm)

FAE Fractional absolute error

FB Fractional Bias

GMAE Geometric Mean Absolute Error

GMRAE Geometric Mean Relative Absolute Error

GRMSE Geometric Root Mean Squared Error

HMD Harmonic Mean Distance (not to be confused with harmonic mean — ag-
gregation procedure)

1IPD Inner Product Distance

JD Jeffreys Divergence

KLD Kullback-Leibler Divergence

LMR Log Mean Squared Error Ratio

MAAPE Mean Arctangent Absolute Percentage Error

MAD Mean Absolute Deviation

MAE Mean Absolute Error

MAGE Mean Absolute Gross Error

MAPE Mean Absolute Percentage Error

MARE Mean Absolute Relative Error

MASE Mean Absolute Scaled Error

MaxAE Maximum Absolute Error

MBE Mean Bias Error

MCD Mean Character Difference

MD Manhattan Distance

MdAE Median Absolute Error

MdAPE Median Absolute Percentage Error

MdASE Median Absolute Scaled Error

MdLAR Median Log Accuracy Ratio

MdRAE Median Relative Absolute Error

MdSA Median Symmetric Accuracy

MdSPE Median Square Percentage Error

ME Mean Error

MMRE Mean Magnitude Relative Error

MNAFE Mean Normalized Absolute Factor Error

MNB Mean Normalized Bias
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MNFB
MPE
MRAE
MSE
MSPE
NCSD
NMSE
NRMSE_m

NRMSE_mm
NRMSE_sd

RAE
RelRMSE
RMAE
RMdASPE
RMSE
RMSPE
RMSSE
RRSE
RSE
SAD
sMAPE
SMdJAPE
SquD
SSE

VSD
WHD

Botchkarev

Mean Normalized Factor Bias

Mean Percentage Error

Mean Relative Absolute Error

Mean Squared Error

Mean Square Percentage Error

Neyman Chi-Square Distance

Normalized Mean Squared Error (normalized by variance)

Normalized Root Mean Squared Error (normalized by the mean of actual
data)

Normalized Root Mean Squared Error (normalized by the difference be-
tween maximum and minimum actual data)

Normalized Root Mean Squared Error (normalized by the standard devia-
tion of the actual data)

Relative Absolute Error

Relative Root Mean Square Error

Relative Mean Absolute Error

Root Median Square Percentage Error

Root Mean Squared Error

Root Mean Square Percentage Error

Root Mean Squared Scaled Error

Root Relative Squared Error

Relative Squared Error

Sum of absolute differences

Symmetric Mean Absolute Percentage Error
Symmetric Median Absolute Percentage Error
Squared Chi-square Distance

Sum of Squared Error (Squared Euclidean)
Vicis Symmetric Distance

Wave Hedges Distance
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APPENDIX B: METRICS MATHEMATICAL DEFINITIONS
Note 1.Legend:Aj — actual values; 4 — the mean of the actual values; P; — predicted values; ; =

Aj — Pj-error; n — size of the data set
Note 2. Metrics are listed according to the categories they belong to, i.e., primary, extended, compo-
site, hybrid sets; and within categories — by type of error.

Metric Abbre- | Metric Name Metric Formula
viation (alternative names are given
in brackets)
PRIMARY METRICS
Error (magnitude of error): D1 = A; — P; = e;
ME Mean Error (Mean Bias Ex- 1
ror) ME = — Z ej
n
=1
MNB Mean Normalized Bias 1 e
MNB = —Z—’
MPE Mean Percentage Error 100 n e
MPE = — Z <
n - A]
FB Fractional Bias 1 2xe;
FB = —Z !
n > AJ + PJ
MD Manhattan Distance (City n
Block, L{-norm, Taxicab MD = €j
norm) j=1
Absolute error: D2 = |A; — Pj| = |ej]
MAE Mean Absolute Error (Mean 1
Absolute Deviation — MAD; MAE = — Z lejl
Mean Absolute Gross erroft; n =1
Mean Character Difference
— MCD;
Average Manhattan;
Gower)
MdAE Median Absolute Error MdAE = ledn( | &)
MaxAE Maximum Absolute Error MaxAE = ?lcllﬁ (el
MARE Mean Absolute Relative Et- 1 n le;|
ror MARE = —Z —L
(Mean Magnitude Relative ne 141
Error - MMRE)
MAPE Mean Absolute Percentage 100 & le;|
Error MAPE = — Y —L
n & |4;]
MdAPE Median Absolute Percentage le ]-|
MdAPE = 100 * Md ()
Error j=in |A]-|
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RAE Relative Absolute Error n ol
e.
RAE= ) —1—
|4; — Al
j=1
MRAE Mean Relative Absolute Ex- n
ror 1 |€j|
MRAE = — —
j=1
GMAE Geometric Mean Absolute N n
Error GMAE = 1_[ |ej|
j=1
SAD Sum of Absolute Differ- n
ences SAD = Z el
j=1
GMRAE Geometric Mean Relative n | |
1 e;
Absolute Error GMRAE = exp| - In il
n |4; = 4]
j=1
or
= 1_[" ( lej] )
j=1 |A] - Al
MdRAE Median Relative Absolute |ej|
Error MAdRAE = Md (——=)
j=1n"|4; — A|
WHD Wave Hedges Distance | e]|
WHD = Z
max(4; P;)
FAE Fractional absolute error 2 % e;]
FAE = z
|A | + 1P
sMAPE Symmetric Mean Absolute 100 2% |ej]
Percentage Error SMAPE = Z .
n & 4] + 1P|
SMdAAPE Symmetric Median Absolute * |ej
Percentage Error SMdAPE =100 « 1\_/[1 n( |A| + 1P| )
J J
CM Canberra Metric
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Squared error: D3 = (4; — P]-)2 = e]g
MSE Mean Squared Error 1
MSE = — Z ef
n
j=1
RMSE Root Mean no
Squared Error Z i, G
- RMSE = !
(Average Distance)
or
RMSE = VMSE
SSE Sum of Squared Error n
(Squared Euclidean) SSE = 2 ejz
=1
ED Euclidean Distance (L,- n
norm) ED = Z ef
=1
ot
ED =SSE
VSD Vicis Symmetric Distance n o2
VSD = !
min(4; P;)
NCSD Neyman Chi-Square Dis- 2
tance NCSD = » -
i A;
=1
SquD Squared Chi-square Distance n ejZ
DivD Divergence Distance
RSE Relative Squared Error
RRSE Root Relative Squared Error
GRMSE Geometric Root Mean
Squared Error
MSPE Mean Square Percentage
Error
MdSPE Median Square Percentage le;| 2
Error MdSPE =100 * Md | —=
j=tn\|4;]
RMSPE Root Mean Square Percent- n 5
age Error 100 lejl
RMSPE = —z —
n & |4;]
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RMdASPE Root Median Square Per-
centage Error RMdSPE = (100« Ma (12!
j=1n |A |
Logarithmic quotient error: D4 = In(P;/A;) = In(P;) — In(4))
MdLAR Median Log Accuracy Ratio MdLAR = Md (In(P;/A;j))
j=1n
KLD Kullback-Leibler Divergence L
KLD = ) Bln(B/4))
=1
JD Jeffreys Divergence n
JD = (B = ADin(B/4))
j=1
Absolute Log quotient error: DS = [In(P;/4;)|
MNAFE Mean Normalized Absolute | MNAFE
Factor 1
Etror - ;Z exp(|ln(—)| —1
MNFB Mean Normalized Factor MNFB
Bias 1
=-— In(--)| -1
nz e | fexp(lInC; HI-1
MdSA Median Symmetric Accuracy | MdSA = 1 (exp( Md (|ln(P /A;j )|)) 1)
EXTENDED METRICS
NRMSE_m Normalized Root Mean
Squared Error _ RMSE
(normalized by the mean of NRMSE_m = A
actual data)
(CVRMSE - coefficient of
variation of the RMSE)
NRMSE _sd Normalized Root Mean SE sd = RMSE
Squared Error NRMSE _sd = sd
(normalized by the standard
deviation of the actual data)
NRMSE_mm Normalized Root Mean RMSE
Squared Error NRMSE_mm = maxA — mind
(normalized by the differ-
ence between maximum and
minimum actual data)
NMSE Normalized Mean SF = MSE
Squared Error (normalized NMSE = o2

by variance)
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COMPOSITE METRICS

RMAE

Relative Mean Absolute Et-
ror

RMAE=MAE/MAE in—sample

RelRMSE Relative Root Mean Square | ReRMSE=RMSE/RMSE in—sample
Error
LMR Log Mean Squared Error LMR=log(RMSE/RMSE in—sample)
Ratio
CoD Coefficient of Determina- TP — Aj)?
tion CoD=1- Nt a4 a2
j=1(4; — 4)
MASE Mean Absolute Scaled Error MASE=MAE/MAE in—sample, naive

MASE=MAE/Q,

n
1
Q =n_1Z|Aj—Aj—1|
=

where
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APPENDIX C: PERFORMANCE METRICS ALTERNATIVE MATHEMATICAL

DEFINITIONS
Metric Abbre- | Metric Name Metric Formula
viation (alternative names are given
in brackets)
RAE Relative Absolute Error Option 1
n
RAE = Ll_
|4; — Al
j=1
Option 2
n
j=1 | &l
RAE = o.————= i
j=114; — 4l
MRAE Mean Relative Absolute Er- | Option 1
rot
n
MRAE = l L
=1
Option 2
n
MRAE = #@ﬂ_
Ny |4 — 4]
RSE Relative Squared Error Option 1
n ez
RSE =Y —T—
j=1 (Aj - 4)
Option 2
RRSE Root Relative Squared Error
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