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Abstract 
 

This paper presents a method for achieving 
optimization in clouds by using performance models in 
the development, deployment and operations of the 
applications running in the cloud. We show the 
architecture of the cloud, the services offered by the 
cloud to support optimization and the methodology 
used by developers to enable runtime optimization of 
the clouds. An optimization algorithm is presented 
which accommodates different goals, different scopes 
and timescales of optimization actions, and different 
control algorithms. The optimization here maximizes 
profits in the cloud constrained by QoS and SLAs 
across a large variety of workloads.   
 
1. Clouds and Optimization 
 

A public cloud is a collection of computers 
providing services at retail, where users pay for 
services they use (processing cycles, storage or higher 
level services), and do not worry about the 
mechanisms for providing these services. A private 
cloud, say within a company, may expose more 
mechanisms and provide more control to its users. 
Cloud management is responsible for all resources 
used by all the applications deployed in the cloud, and 
the opportunity for global resource optimization is a 
major driver for implementation of clouds. Clouds 
depend on virtualization of resources to provide 
management combined with separation of users [14]. 

Each application in a cloud sees a virtual 
environment dedicated to itself, such as virtual 
machines for its deployable processes and virtual disks 
for its storage. The cloud management allocates real 
resources to this environment by, for instance, 
increasing the share of a real processor or memory 
taken by a virtual machine, or by deploying additional 
virtual machines with replicas of application processes. 

The application offers services, and also uses services 
offered by other applications. Each service has a price 
(Pc for service class c), and we will consider that the 
application collects this price whenever its services are 
used, and pays this price when it uses other services. 
Each real resource also has a price paid by the 
application, for instance each second of CPU time has 
a price (Ch for host processor h). The profit of the 
application provider AP and the cloud provider CP can 
thus be calculated. We assume that when the total AP 
profits are maximized, the CP can arrange that its 
profit is also maximized. 

Quality of service is one goal of cloud management; 
we will treat it as a constraint on resource 
optimization, which seeks the maximum profit out of 
the minimum of resources. For simplicity we will 
consider only the response time of a service as a 
measure of its QoS, specified by AP and maintained by 
AP and CP. 

The concern of AP is to design an efficient 
application, to price its services, and to manage the 
virtual resources allocated to it. All of these require 
understanding how the application consumes resources 
(and external services). The concern of CP is to 
maximize its profits from the operation of the cloud, 
while meeting its contractual QoS obligations to the 
APs. 

 

 
Figure 1. Layers of services in a Cloud 

 



This paper describes how the approach to resource 
management developed in [20][23][24][25] and [9] can 
be applied to large systems like clouds, and how the 
responsibilities for adequate QoS are divided between 
the application developer, application manager and 
cloud manager. The approach uses a performance 
model to integrate the system concerns and features, 
tracks the model to keep it up to date, and optimizes it 
to make resource management decisions. Other 
approaches are described in [1][12] [17]. 
 
2. Cloud Architecture 
 

Figure 2 shows a view of our CERAS[12] 
laboratory cloud with a three-level hierarchy for 
optimization. Each level observes and tries to improve 
the situation. The application developer tunes the code 
over time, discovering and improving inefficient 
operations (for example, a set of separate database 
queries may be replaced by a single query of larger 
scope and lower cost). The AP admin tunes the run-
time configuration to make the best use of the existing 
resources (for example, a buffer pool may be increased 
to improve its hit rate). The CP admin modifies the 
resource allocation to a given application to maintain 
its QoS and run it a lower cost (for example, deploying 
additional replicas of some elements, or increasing the 
size of its processor pool). 

 

 
 

 Figure 2.   The CERAS cloud 
 

2.1 Service Architecture 
 
For management and deployment purposes a high-

level architecture which captures service interfaces and 
requests, deployable units of software, and resources is 
appropriate. For simplicity we will assume that the 
deployable unit is the concurrent process, termed here 

a task. A metamodel for such an architecture is shown 
in Figure 3. 
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Figure 3.  A simplified metamodel for a 

service architecture 
 
For brevity we will illustrate a service architecture 

not by a software model exactly, but by a performance 
model (LQM) with corresponding entities, which can 
be generated from the software (by methods like those 
in [20]). Figure 4 shows a LQM for a single small web 
application which offers services to its users and 
requires services from other applications. The 
resources in this case are the host processors. We can 
see services on the application boundary, offered to 
users and other applications, and there are internal 
services (without names) which are private to the 
application and are offered by layers internal to the 
application. 
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Figure 4.  Architecture of an application, 

shown by an LQM 
 
The entities in the LQM correspond one-to-one to 

software entities and relationships in the high-level 
service architecture; the deployment (which is not part 
of the software architecture) is also indicated by the 
attachments to ovals representing host processors. 

The architecture of the collection of services in the 
whole cloud is just the union of application models, 



plus a matrix of request frequencies from one service 
to another, through which the applications interact. 
This includes infrastructure services such as 
directories. 

 
2.2  Performance model 
 

The role of a performance model is to predict the 
effect of simultaneous changes to many decision 
variables, and to assist in making optimal decisions 
over many variables. Without a model the complex 
interactions among these decisions cannot be 
predicted. The use of performance models for 
optimizing decisions in autonomic control was shown 
in [20], and this work is an extension to handle larger 
systems. 

Any performance model could be used; an LQM 
[6][15][19] is a good choice because of its 
correspondence to architecture, and its representation 
of layered resource behaviour [5]. Tasks and 
processors are the resources shown in Figure 4, but 
other resources such as IO devices and buffers can be 
included. The performance parameters of the LQM 
include CPU demands of entries and mean requests 
from one entry to another, including external services. 
The LQM is a kind of extended queueing network 
model and can be solved to predict throughputs, mean 
queueing delays and mean service delays at entries, 
and resource utilizations. For more detail see 
[5][6][15][19]. 

 
2.3 Workload and QoS Requirement 

 
The workload describes the intensity of the streams 

of user requests for service, in terms either of a 
throughput fc for user class c, or the number Nc of users 
that are interacting and their think time Zc. In this work 
we assume that each service that is requested by users 
has its own request class c, with Nc users and think 
time Zc sec. Zc represents the user’s mean delay 
between receiving a response, and issuing its next 
request. If there workload is specified as throughput, it 
can be easily converted in number of users and think 
time.  

Each class has either a required throughput fc,min or a 
required user response time Rc,max. Rc,max can be re-
expressed as a minimum user throughput requirement 
using Little’s well-known result: 

 
fc ≥ fc,min = Nc  /(Rc,max + Zc)  (1) 
 

In this way the original delay requirements are 
translated into equivalent throughput requirements, and 
the optimization deals only with throughputs. 
 

 
2.4 Optimization loops and models 

 
In CERAS the three feedback loops shown in 

Figure 2 can all be regarded as having the structure 
shown in Figure 5, with differences in what is 
controlled and in the model used to make decisions. 
The developer modifies the code using intuitive mental 
models for performance tuning, perhaps guided by 
principles such as given in [17]. It is also possible for 
the developer to use a performance model created from 
design documents (e.g. see [20]) and to derive design 
decisions from it [20][22]. 

The models used by the application administrator  
may be simple feedback loops such as load balancing, 
or may take advantage of a performance model as 
described in [13] [20], with decisions limited in scope 
to the one application and the resources provided to it. 
By itself this level may not have sufficient capability to 
assure QoS. Optimization activities performed by 
application and cloud Administrators can implemented 
through Autonomic Managers based on models. 

The cloud administrator uses a global LQM and 
makes decisions about what resources to allocate to 
each application. In this work the decisions suggest the 
deployment of each task, including task replication. 

While optimization approaches for the developer 
and the application administrator have been considered 
in previous work, the large-scale techniques necessary 
for the cloud level have not been examined before. 
Section 4 will indicate a promising approach for the 
cloud level which has been prototyped for the CERAS 
cloud. 
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Figure 5. Feedback control for QoS and 

optimization 
 
 



3. Engineering for QoS and Optimization 
 

The design requirements can be summarized: 
• The application software should be efficient and 

adaptable to different run-time situations, 
• The cloud must provide infrastructure for 

deploying and monitoring application elements and 
user QoS, 

• The cloud feedback loop must be able to track the 
performance model and to optimize the 
management decisions. 
 

3.1 Developer responsibilities 
 
Mostly the cloud hides resource management from 

the developer, so that he can focus on implementing 
functions. For QoS, efficient execution is the 
developer’s responsibility. Application management 
may also require the software to include interfaces for 
modifying internal resources such as caches and 
control paths such as prefetching of data 

A subtle goal for the developer is to provide 
flexibility in the concurrency architecture (the 
allocation of functions to tasks) to support adaptable 
deployment at runtime. More concurrency creates 
flexibility, but also introduces overhead costs for 
interprocess communication. Event based architectures 
may help address this issue [4], as they provide 
asynchrony and concurrency at the level of the service. 

Another goal for the developer is to provide the 
structure of the performance model. This can consists 
of the component interactions diagrams, where 
components are the software artifacts (services) that 
are deployed form the “tasks” depicted in Figure 4. 
The structure of the model can be passed to the 
network administrator and cloud as a deployment 
descriptor. 

 
3.2 QoS and Optimization in the life cycle of 
the application on the cloud 

 
The performance model of the managed component, 

application, and cloud is completed with runtime data 
provided by the sensors. It supports Application tuning 
at all times and is relatively fast and inexpensive, so it 
is the preferred way to achieve QoS goals. However it 
may not be capable by itself of maintaining a SLA, and 
it cannot set its own QoS targets.  

 
3.3 Architecture Implications 

 
The cloud incorporates several elements in order to 

provide the feedback control shown in Figure 5; the 

resulting architecture is sketched in Figure 6. 
Monitoring of resources provides utilization 
information at the level of physical processor, virtual 
machine, and other logical resources. Monitoring of 
user requests  gives measures of throughput and 
response time. The performance model tool stores a 
model of each application and its deployment, and 
includes estimation tools for updating the model 
parameters periodically from the monitoring (the 
ModelTracker). When a new application is loaded an 
initial performance model is provided by AP, derived 
either from the application design (as described in 
[20]) or by tracing its behaviour (as described in [25]). 
Finally some deployment effector tools must be 
included to load and initialize VM images on host 
processors, as indicated by the optimization. 

The management entities on the right can be 
implemented within autonomic managers. 
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Figure 6. Sketch of model-based 

optimization architecture 
 

3.4 Optimization technique 
 
The optimization technique uses an auxiliary 

network flow model (NFM [7]) showing the flow of 
execution demands at the processors and how they 
combine to produce flows at the tasks, services and 



user-responses. The NFM consists of nodes 
representing entities and arcs representing flows of 
execution demand, in CPU-sec of execution per sec.  
• nodes for processors have a flow equal to the 
processor utilization.  
• nodes for tasks (each of which may represent 
multiple replicas) have flows from all processors on 
which the task is deployed.  
• nodes for services (or entries in the LQN) have 
flows from the task which implements the service.  
• nodes for user classes are a special type called a 
processing node [7], with flows from all services used 
by the class, and output flows to the user representing 
the class throughput.  
 
The processing node converts the request rate into a 
demand rate, using fixed parameters which capture the 
workload of each service and the use of services by the 
class requests. A fragment of a NFM graph is shown in  
Figure 7 . More details are given in [9], where the 
model is applied only to minimize cost subject to 
constraints, and profit is not included. 

An iterative approach is used, which can only be 
sketched here. The NFM gives an optimal deployment, 
allocating host reservations to tasks. This is used in the 
LQN to predict the effect of contention, which will 
reduce throughputs. The NFM is adjusted by 
introducing pseudo-flows at the services, which 
account for the lost capacity due to contention, and the 
NFM is re-solved. Experience with convergence of the 
iteration has been excellent. 
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Figure 7.  A network flow model 

Note that the NFM reserves a fraction of a host for 
a task, which is implemented in practice by creating a 
virtual machine VM that takes a fraction of its host 
cycles (for simplicity, each task is assumed to have its 
own virtual machine, a constraint which can eventually 
be removed). The LQN models each VM as a separate 
processor running at a slower rate reflecting the 
fraction of capacity allocated to it. 

 
3.5 Objective function 

 
An objective function for cloud optimization which 

respects the individual applications will be described. 
It is linear in throughput, which is well matched to the 
NFM optimization. 
• Each service class c offered to users has a price per 
response of Pc, 
• Each host h has a price of cpu execution of Ch per 
CPU-sec, including unused CPU-sec allocated in order 
to reduce contention delays, 
• In the NFM results, each task t has a reservation αht 
in CPU-sec per sec, on some host h. 

Then an application App has a profit 
 

PROFITApp = Σc in CApp Pcfc  − Σh,t in TApp Chαht 
 

where CApp  and TApp are the sets of user classes and 
tasks involved with App. The cloud optimization is to 
maximize the total profits 
 

 TOTAL = ΣApp PROFITApp         (2) 
 

subject to constraints. When the total profit to the APs 
is maximized, presumably the CP share of this is also 
maximized, although the mechanism for this is not 
considered here. 

We envision two kinds of constraints: 
• a maximum user response time Rc,max. for each class 
c, or a minimum class throughput fc,min corresponding 
to it 
• a minimum profit PROFITApp,min for each 
application. 
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Figure 8.  A web-based application to be deployed in the cloud
  

4. Case Study 
 

We consider a cloud with 1000 VMs and from one 
to 50 applications. Each application has the same 
architecture and the LQN shown in Figure 8, but 
different (randomly generated) parameters and 
requirements. The “incremental” deployment places 
each application on a sufficient number of processors 
to meet its profit and QoS constraints, disjoint from 
already allocated processors. The “full” deployment 
optimizes the overall profit in Eq. (2) for a deployment 
on the hosts required by the “incremental” scenario, up 
to 350 for the 50 applications. Since some hosts are 
specifically assigned to some kinds of tasks (e.g. the 
data hosts are only available to the database), the 
maximum profit is achieved when certain profitable 
hosts are exhausted, though some other types of hosts 
have capacity remaining.  

Table 1 shows the optimal TOTAL profit as the 
scale increases from 1 to 50, and the number of hosts 
and VMs used. It compares the incremental allocation 
approach to a full optimization for every N. The 
disadvantage of full optimization is the effort required 
to redeploy the existing applications at each step. 

However its advantage is that it can maximize profit. 
In the present formulation, this is done by increasing 
the deployment of the most profitable application. 
Other policies can be implemented, involving for 
instance additional constraints per class. The last row 
shows the running time (in seconds) taken by the full 
optimization corresponding to the size of the cloud, on 
a state-of-the-art PC. 

 
Table 1  PROFIT as scale increases 

N Applic. 
Instances  1 10 20 30 40 50 

Incremental: 
TOTAL profit 38.5 276 488  760  1042 1278

hosts used 8  83 161 244 324 408 
VMs 10 100 200 300 400 500 
full 

optimization 
TOTAL profit

38.5 336 637 861 1270 1649 

hosts used 8 70 139 199 267 321 
VMs 10 135 360 604 807 958 

Running time 
(sec) 0.36 23.7 106.2 128.6 207.7 295.4



We can see that the full optimization provides 
substantially greater profit, using substantially less 
resources, at every N>1. An effective part of the 
optimization strategy is to create additional VMs and 
use the flexibility to allocate multiple VMs to a single 
processor, nearly 3 to 1 at N=50. 
 
5. Conclusions 
 

This paper has summarized a new optimization 
approach, and shown how it can feasibly be applied to 
profit maximization across a cloud. It has shown the 
requirements to support the approach, and an 
architecture for the necessary management tools. 

The approach is effective and scalable to meet the 
new challenges of cloud computing. A prototype of the 
optimization tool, integrated in a loop based on Figure 
5, has been implemented and demonstrated on running 
laboratory-scale services, although for different 
optimization goals. 

Cloud computing gives a new business service 
model and requires advanced autonomic management 
solutions. Clouds can be very large, and at some scale 
the performance model calculations will need to be 
partitioned into subsets of processors. The results here 
indicate that the subsets can be quite large, large 
enough to accommodate many applications 
automatically. 

Further development to take into account memory 
allocation, communications delays, VM overhead 
costs, and licensing costs of software replicas appears 
to be feasible and is the subject of this ongoing project. 
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