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Abstract 

 

This document provides an empirically based performance model for grid-connected 

photovoltaic inverters used for system performance (energy) modeling and for 

continuous monitoring of inverter performance during system operation.  The 

versatility and accuracy of the model were validated for a variety of both residential 

and commercial size inverters. Default parameters for the model can be obtained from 

manufacturers’ specification sheets, and the accuracy of the model can be further 

refined using measurements from either well-instrumented field measurements in 

operational systems or using detailed measurements from a recognized testing 

laboratory. An initial database of inverter performance parameters was developed 

based on measurements conducted at Sandia National Laboratories and at laboratories 

supporting the solar programs of the California Energy Commission 
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INTRODUCTION 

 

This document provides a description and demonstrations of a versatile performance model for 

the power inverters used in photovoltaic (PV) systems.  These inverters convert the direct current 

(dc) power provided by an array of PV modules to alternating current (ac) power compatible 

with the utility power grid. The inverter performance model can be used in conjunction with a 

photovoltaic array performance model [1, 2, 3] to calculate expected system performance 

(energy production), to verify compatibility of inverter and PV array electrical characteristics, 

and to continuously monitor inverter performance characteristics that may indicate the need for 

repair or maintenance. 

 

A primary objective of this effort was to develop an inverter performance model applicable to all 

commercial inverters used in photovoltaic power systems, providing a versatile numerical 

algorithm that accurately relates the inverter’s ac-power output to the dc-power input. The model 

developed requires a set of measured performance parameters (coefficients).  The complexity 

and the accuracy of the performance model are “progressive” in the sense that the accuracy of 

the model can be improved in steps, as more detailed test data are available.  Manufacturers’ 

specification sheets provide initial performance parameters, field measurements during system 

operation provide additional parameters and accuracy, and detailed performance measurements 

as conducted by recognized testing laboratories [4, 5] provide further refinement of parameters 

used in the model. The inverter performance model presented does not provide an electrical 

engineering model of circuit characteristics or power conditioning algorithms used in the 

development of new inverter designs [6]; rather it is an empirical, or phenomenological, model 

that simply but accurately replicates the power delivery characteristics of the dc- to ac-inversion 

process. 

 

The modeling approach used was similar to that often used in “design of experiments” analyses, 

where the non-linear response of a complex system or process can be modeled as the interaction 

of several factors, each factor typically having a linear relationship with an independent variable 

or variables. The understandability of the inverter performance model was improved through an 

algebraic construction where factors in the model have easily understood physical significance. 
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DESCRIPTION OF INVERTER PERFORMANCE MODEL 
 

Manufacturers’ specification sheets contain a variety of information essential to the successful 

application of a PV inverter, including ac voltage, ac frequency, maximum ac power and current, 

acceptable dc voltage range, maximum dc power and current, dc startup voltage, total harmonic 

distortion, power factor, and acceptable environmental extremes, as well as mechanical 

characteristics. However, the inverter’s “power conversion performance” or efficiency is often 

provided as a single peak efficiency value, which can be misleading, and sometimes as a 

“California Energy Commission (CEC) weighted” efficiency value. Regardless, PV system 

engineers and analysts would benefit from more detailed performance characteristics. 
 

Independent testing laboratories now provide more detailed inverter performance data, notably 

those laboratories supporting the solar power initiatives of the CEC [7].  These laboratories 

typically use an inverter testing methodology based on the protocol collaboratively developed by 

Sandia National Laboratories and BEW [8].  The objective of the CEC testing protocol is to 

verify inverter performance specifications, as well as to quantify performance characteristics as a 

function of power level and dc input voltage, the two parameters determined by laboratory 

evaluations to have the most significant impact on efficiency. The inverter test data documented 

by the CEC [4] are thorough, providing measurements at six power levels and three different dc 

voltage levels.  Five to seven replicate measurements at each condition provide good statistical 

rigor.  Figure 1 illustrates an example of inverter performance data documented by the CEC, 

providing inverter efficiency (ac-power divided by dc-power) as a function of the ac-power 

output of the inverter, at three different dc voltage levels.  Our effort, documented in this report, 

shows that by presenting the CEC test data differently, additional information can be obtained 

that is more directly applicable in modeling PV system energy production.  Later in this 

document, several examples will more clearly illustrate the alternative procedure for extracting 

more information from the CEC data. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.  Inverter performance measurements conducted by a nationally  
recognized testing laboratory and documented by the CEC. 
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The initial concept for the new inverter performance model provided in this document resulted 

from analysis of system performance data recorded in Sandia’s PV System Optimization 

Laboratory [2].  Fully instrumented PV systems provided the opportunity to analyze performance 

of both the PV array and the inverter based on daylong energy production for many days with a 

wide variety of operating (environmental) conditions. These “field” data provided hundreds of 

measurements at different power levels, from startup to levels exceeding the inverter’s peak 

power rating, but the range for dc voltage was relatively limited and not easily controlled 

compared to the CEC laboratory testing approach.  The advantages of the “field testing” 

approach for acquiring inverter performance data are that recorded data are completely 

representative of actual system operating conditions, and free from possible electronic 

interactions that might occur between an inverter and test equipment (power supplies) in the 

laboratory.  Figure 2 illustrates a “field test” example with thousands of measurements recorded 

over a 13-day period. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.  “Field test” results for a 2.5-kW Solectria PVI2500 inverter recorded during system 
operation at Sandia, showing both inverter efficiency and relationship between ac-power and 

dc-power over an extended 13-day test period, including both clear and cloudy days. 

 

 

The characteristic perhaps most evident in Figure 2 is the well-behaved nature of the relationship 

between measured ac-power and dc-power, over the full range of dc-input power for both rapidly 

changing cloudy conditions as well as clear sky conditions.  The relationship between ac and dc 

power appears to be nearly linear.  However, the power consumed by the inverter itself (self-

consumption) as well as the electrical characteristics of inverter circuitry at different voltage and 

power levels result in differing degrees of non-linearity in the relationship between ac-power and 

Measured Performance 2.5-kW Inverter, 13-Day Period

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

dc Power (W)

a
c

 P
o

w
e
r 

(W
)

40

50

60

70

80

90

100

In
v
e
rt

e
r 

E
ff

ic
ie

n
c

y
 (

%
)Measured ac Power

Efficiency from Fit

Measured Efficiency

Poly Fit, ac Power

dc-Voltage Range

230 to 290 Vdc



 

13 

  

dc-power. The measured inverter efficiency values (ac-power divided by dc-power), also shown 

in Figure 2, amplify the non-linearity inherent in the relationship between ac- and dc-power. 

Frequently in modeling PV system energy production, inverter efficiency is assumed to be a 

constant value, which is the same as assuming that inverter efficiency is linear over its operating 

range, which is clearly not the case. The scatter in the efficiency measurements resulted from a 

combination of variation in dc input voltage, inherent inverter behavior, rapidly varying solar 

irradiance, and measurement error. Again, the objective of our effort was to accurately model the 

relationship between ac-power and dc-power for all inverter types, over their full operating 

voltage and power range. 

 

Stability and repeatability of inverter performance characteristics are a prerequisite both for 

reliable PV system performance, as well as for determining parameters used in the performance 

model.  Similarly, the stability and repeatability of performance characteristics for PV arrays are 

a prerequisite for high-reliability PV systems. Therefore, when conducted in the laboratory, the 

inverter testing protocol must be accurate, repeatable, and not introduce electrical instabilities 

that are not representative of actual operation in a PV system. Additional discussion of 

instabilities introduced by test equipment are provided later in this report for specific inverter 

test results that are used to validate our inverter performance model. 

 

It should be noted that the inverter’s maximum-power-point-tracking (MPPT) effectiveness was 

not explicitly included in our performance model for several reasons. First, the MPPT 

effectiveness of most inverters manufactured today is quite high, providing 98 to nearly 100% of 

the energy available from the PV array.  Second, MPPT effectiveness is very difficult to measure 

because it requires simultaneous measurements of dc-power into the inverter and the maximum 

power point (Pmp) of the PV array.  In most cases, the inverter is rapidly varying its operating 

voltage over a reasonably large range while “searching” for the array Pmp. To complicate the 

situation, the only way to measure the array Pmp accurately is to disconnect the inverter from the 

array and measure a current-voltage (I-V) curve, thus interrupting the MPPT process.  Another 

procedure used to monitor an inverter’s MPPT characteristics involves using an accurate 

performance model for the PV array so that the measured dc-power into the inverter can be 

continuously compared to a predicted Pmp for the PV array [2].  Using the array performance 

model to continuously predict Pmp based on solar irradiance and array temperature measurements 

provides an effective way to observe the inverter’s MPPT characteristics, particularly during 

rapid variations in solar irradiance (clouds) where the MPPT algorithm must be versatile in order 

to “lock on” to a rapidly changing Pmp. However, due to the uncertainty in the PV array 

performance model (± 2% at best), the approach is not accurate enough to quantify MPPT 

effectiveness for high-performance inverters where the MPPT effectiveness is 98% or better.  

Therefore, instead of attempting to incorporate an inverter’s MPPT effectiveness in our model 

explicitly, the slight system energy loss related to MPPT can be better addressed as a simple 

multiplicative “derate factor” in system performance modeling. 

 

Neither the inverter (heat sink) operating temperature nor the ambient temperature were 

explicitly included in our performance model, for two reasons.  Current inverters that are 

laboratory tested and listed as eligible for CEC recognized applications in California are tested at 

different ambient temperatures (25 and 40 ºC), and their efficiencies typically do not have a 

strong temperature dependence, as evidenced in test results presented later in this document. In 
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Definition of Parameters for Inverter Perforamnce Model
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actual applications, inverters are mounted in a wide variety of locations and orientations (in 

garages, on external walls, in the sun, in the shade) and as a result, it is impractical to attempt to 

model inverter operating temperature as a function of environmental conditions.  Therefore, if 

laboratory tests verify that inverter performance is stable at its maximum specified ambient 

temperature, and if the inverter is mounted according to the manufacturer’s specifications, then it 

is not necessary to include inverter temperature in the performance model. 

 

Basic Equations 
 

Figure 3 graphically illustrates our inverter performance model, with performance characteristics 

exaggerated in order to illustrate the physical significance of the parameters used in the model. 

The basic equations describing the model and the definition of all parameters follow. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.   Illustration of the inverter performance model and the factors describing 
 the relationship of ac-power output to both dc-power and dc-voltage input.  

 

 

The following equations define the model used to relate the inverter’s ac-power output to both 

the dc-power and the dc-voltage, which were used as the independent variables. The parameters 

with the “o” subscript are constant values that define a reference or nominal operating condition. 

 

 Pac = {(Paco / (A - B)) – C ⋅ (A - B)}⋅ (Pdc- B) + C ⋅ (Pdc - B)
2
 (1) 
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where: 

 

 A = Pdco ⋅{1 + C1⋅(Vdc - Vdco)} (2) 
 

 B = Pso ⋅{1 + C2⋅(Vdc - Vdco)} (3) 
 

 C = Co ⋅{1 + C3⋅(Vdc - Vdco)} (4) 

 

Performance Parameter Definitions 
 

Pac  = ac-power output from inverter based on input power and voltage, (W) 

Pdc = dc-power input to inverter, typically assumed to be equal to the PV array maximum 

power, (W) 

Vd = dc-voltage input, typically assumed to be equal to the PV array maximum power 

voltage, (V) 

Paco = maximum ac-power “rating” for inverter at reference or nominal operating condition, 

assumed to be an upper limit value, (W) 

Pdco = dc-power level at which the ac-power rating is achieved at the reference operating 

condition, (W) 

Vdco = dc-voltage level at which the ac-power rating is achieved at the reference operating 

condition, (V) 

Pso = dc-power required to start the inversion process, or self-consumption by inverter, 

strongly influences inverter efficiency at low power levels, (W) 

Pnt = ac-power consumed by inverter at night (night tare) to maintain circuitry required to 

sense PV array voltage, (W) 

Co = parameter defining the curvature (parabolic) of the relationship between ac-power and 

dc-power at the reference operating condition, default value of zero gives a linear 

relationship, (1/W) 

C1  = empirical coefficient allowing Pdco to vary linearly with dc-voltage input, default value 

is zero, (1/V) 

C2 = empirical coefficient allowing Pso to vary linearly with dc-voltage input, default value 

is zero, (1/V) 

C3 = empirical coefficient allowing Co to vary linearly with dc-voltage input, default value is 

zero, (1/V) 
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DETERMINATION OF INVERTER PERFORMANCE PARAMETERS 
 

The accuracy and versatility of the inverter performance model depends on the data available for 

determining the performance parameters used in the model.  We structure our model to make it 

possible to add parameters successively, improving accuracy, as more detailed test data are 

available.  Initial (default) parameters can be obtained from manufacturer specification sheets.  If 

available, daylong ac-power and dc-power measurements from operating systems provide 

additional parameters and improved accuracy.  Finally, detailed laboratory measurements, like 

those conducted by nationally recognized testing laboratories for the CEC [4], can be used to 

obtain all performance parameters currently included in the model. During the validation of our 

performance model, an initial database of inverter parameters was generated and is given in the 

appendix of this document. Using the methods described in this document, field measurements 

or tabulated performance data provided by recognized laboratories provide the means for adding 

parameters for new inverters to the database. 
 

Manufacturer Specification Sheets 
 

The terminology used and the performance parameters available from manufacturers’ 

specification sheets vary greatly. However, it is usually possible to determine reasonable 

estimates for the three parameters needed to provide a simple linear model for inverter 

performance (Paco, Pdco, Pso), with no dependence on dc-voltage input. The rated ac-power (Paco) 

is usually specified, as is the peak and/or CEC weighted efficiency. Dividing Paco by the 

efficiency value provides a value for the associated dc-power level (Pdco). The dc-power required 

to start the inversion process (Pso) may not be given in the specification, and should not be 

confused with the nighttime ac-power consumption (Pnt). Lacking a specification, a reasonable 

estimate for Pso is 1% of the inverter’s rated power. Field and laboratory test data have indicated 

that the startup or self-consumption power, as used in our model, is typically larger than the 

power level sometimes referred to as “standby” power or “consumption during operation.” 
 

Field Performance Measurements 
 

When accurate daylong measurements of both dc-power input and true ac-power (not volt-amps, 

VA) from the inverter are available, then additional performance parameters can be determined, 

providing improved accuracy for the inverter performance model relative to the simple linear 

model.  Figure 4 illustrates field measurements of true ac-power, dc-power, and inverter 

efficiency over a 13-day period including both clear and cloudy weather conditions.  The data 

values recorded were near instantaneous measurements, as opposed to average values 

determined over a time interval.  The associated dc-voltage was also recorded during the field 

measurements. A parabolic fit (2
nd

 order polynomial) to the measured ac-power versus dc-power 

provided parameters (Pdco, Pso, Co) used in the performance model. Paco was assumed equal to the 

manufacturer’s peak ac-power rating. The quadratic formula was used to solve for both the x-

intercept (Pso) when Pac = 0 and for Pdco when Pac = Paco (2500 W in this case). A chart of 

measured dc-voltage versus measured dc-power over the 13-day period was used to obtain an 

estimate for the Vdco associated with the peak power condition at Pdco, Paco. Good day-to-day 

repeatability in performance characteristics has been observed for a variety of inverters during 

field testing at Sandia; therefore, it is likely that measurements recorded over a single day would 

provide inverter performance parameters that are representative of expected behavior. 
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Figure 4.  “Field test” results for a SMA SWR-2500U inverter recorded during  
system operation at Sandia, showing both inverter efficiency and relationship between  

ac-power and dc-power over a 13-day test period, including both clear and cloudy days.  
Chart shows over 4,000 measurements.  

The error in the inverter performance model for field measurements was evaluated by calculating 

the percentage difference between the modeled and measured efficiency and plotting this 

difference as a function of the measured dc-power.  Figure 5 shows the calculated error in the 

inverter efficiency model for the inverter data shown in Figure 4.  Note that the error was well 

distributed about zero, and that for the majority of the power range the error was within ± 1%. 

Thus, an inverter with a modeled efficiency of 92% would have an uncertainty of about ± 0.9%. 

The larger error at the peak power level occurred when the inverter was operating at its peak dc-

power limit. The large error (scatter) at low power levels occurred as inverter efficiency rapidly 

dropped and was due to both measurement error and limitations in the model.  The accuracy 

obtained using “field” measurements can be improved using laboratory measurements and a 

slightly more complex model, as will be discussed next. Nonetheless, the inverter model, with 

performance coefficients derived from field measurements during PV system operation, provides 

a very straightforward method for modeling inverter performance, and it provides a good method 

for monitoring inverter behavior as the system ages. 
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y = -1.4710E-05x
2
 + 9.6267E-01x - 1.8831E+01

0

500

1000

1500

2000

2500

3000

0 500 1000 1500 2000 2500 3000

dc Power (W)

a
c
 P

o
w

e
r 

(W
)

40

50

60

70

80

90

100

In
v

e
rt

e
r 

E
ff

ic
ie

n
c
y

 (
%

)

Measured ac Power

Measured Efficiency

Model Efficiency

Poly. (Measured ac Power)

Paco = 2500 (W)

Pdco = 2731 (W)

Vdco = 380 (V)

Pso = 19.6 (W)

Co = -1.47E-5 (1/W)

dc-Voltage Range

350 to 410 Vdc



 

19 

  

Field Measurements SMA SWR2500U Inverter, 13-Day Period
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Figure 5.  Calculated errors between modeled inverter efficiency  

and measured efficiency based on field test data over a 13-day period for  
the SMA SWR-2500U inverter in an operating system.  

 

 

Laboratory Performance Measurements 
 

The example shown in Figure 6 illustrates laboratory measurements available on the CEC 

website “List of Eligible Inverters” [4].  In this case, the inverter had a reasonably large 

operational range for dc-voltage input; as a result, the inverter efficiency varied noticeably, being 

higher at low dc-voltage input. 

 

The CEC test protocol provides inverter performance (efficiency) measurements at six different 

power levels (10%, 20%, 30%, 50%, 75%, and 100% of ac-power rating) and three different 

input voltage levels (Vmin, Vnom, Vmax).  The mid-range dc voltage, Vnom, defined by the CEC 

protocol (selected by the manufacturer at any point between Vmin+0.25*(Vmax-Vmin) and 

Vmin+0.75*(Vmax-Vmin)), was used as the reference voltage, Vdco, in the inverter performance 

model.  The CEC measurement procedure provides five to seven replicated measurements at 

each test condition, providing good statistical rigor. The primary limitation of the CEC 

procedure was that measurements were performed for a single inverter of each type; the inverter 

may or may not be representative of the “typical” inverter off the production line. 
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Figure 6.  Inverter performance measurements conducted by nationally recognized testing 

laboratory for the CEC at six power levels and three dc-voltage levels. 
After parameter determination, the Sandia inverter performance  

model provided the solid lines through the measured values. 

 

 

All the performance parameters required in the more complex inverter model, defined in 

Equations 1 through 4, can be determined using the CEC test data.  The procedure for 

determining performance parameters from the tabulated CEC data is the same as previously 

discussed for the case using field measurements.  The distinction is that data at each of the three 

dc-voltage levels were treated separately, allowing three of the parameters (Pdco, Pso, Co) to be 

expressed as a linear function of the dc-voltage, Vdc, as indicated in Equations 2 through 4. Three 

separate parabolic fits were used, one for each set of ac-power versus dc-power measurements 

recorded at a near constant dc-voltage level.  During analysis, the tabulated CEC test data were 

first combined using all replicate measurements, and then sorted by ascending dc voltage to 

combine measurements for each of the three common dc-voltage levels.  The mid-voltage data, 

Vnom, provided the “reference” operating condition. 
 

In order to determine the coefficients C1, C2, and C3, the values for Pdco, Pso, and Co determined 

from the three separate parabolic fits were used to calculate the dc-voltage dependence for each 

factor. For instance, Figure 7 shows the linear fit used to determine the coefficient C2, as well as 

the value for Pso at the Vnom reference voltage.  The data for this inverter, as well as several 

others investigated, suggested that the dc-power required to start the inversion process was 

somewhat lower at the low dc-voltage level, consistent with achieving higher inverter efficiency 

at low dc-voltage levels.  The same analytical procedure (linear fit) was used to determine C1, 

Pdco, and C3, Co at the Vnom reference voltage. 

SMA SWR2500U Inverter, CEC Data, 5 Replicates
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y = 0.0588x + 20.733

or

y = 20.733 (1 + .002836x) 

0

5

10

15

20

25

30

35

40

-300 -200 -100 0 100 200 300

Vdc - Vnom (V)

P
s

o
 (

W
d

c
)

Pso = 20.733

C2 = .002836

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 
 

Figure 7.   Linear regression (trend line) used to determine C2 coefficient  
and value for Pso at the Vnom reference voltage for SMA SWR2500U inverter. 

 

 

The added complexity in the inverter performance model, resulting from including voltage 

dependence for three factors, significantly reduced the error associated with the modeled inverter 

efficiency.  Figure 8 shows that the calculated error between the modeled and the measured 

inverter efficiency was reduced to less than ± 0.2% when all parameters were included in the 

model.  This result was encouraging because the inverter model is actually rather simple, and it 

is straightforward to determine the required performance parameters.  Additional analysis was 

conducted to verify that the model worked equally well for inverters from a variety of 

manufacturers. 
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CEC Laboratory Data, SMA SWR2500U Inverter, 5 Replicates
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Figure 8.  Calculated errors between modeled inverter efficiency and measured  
efficiency based on CEC laboratory test data for the SMA SWR-2500U inverter 

 at six power levels and three dc-voltage levels. 
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VALIDATION OF INVERTER PERFORMANCE MODEL 
 

The data quality and the large variety of inverter types included in the tabulated CEC test results 

provided an ideal opportunity for validating our inverter performance model.  The CEC website 

includes measured performance data for inverters from many different manufacturers, as well as 

for both low (~2.5-kW) and high capacity (~225-kW) inverters.  Analysis and determination of 

performance parameters for a variety of inverters with subsequent analysis of modeling errors 

was used to validate our performance model. 

 

Typical Laboratory Test Results 
 

Figures 9 and 10 show CEC measured performance for two common residential-scale inverters, 

along with the Sandia performance model shown as solid lines through the measured data points. 

The performance parameters determined for these two inverters are provided in the inverter 

database in the appendix of this document.  The performance model was very effective in fitting 

measured data for both these inverters with a standard error in measured versus modeled 

efficiency of about 0.1%.  The model was equally effective for the commercial-scale 225-kW 

inverter shown in Figure 11. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 9.  Comparison of measured versus Sandia performance  
model using CEC laboratory test data for the Xantrex GT3.8 inverter  

at six power levels and three dc-voltage levels. 

CEC Laboratory Data, Xantrex GT3.8 Inverter, 7 Replicates
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CEC Data, Xantrex PV225S Inverter,  7 Replicates
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Figure 10.  Comparison of measured versus Sandia performance model  
using CEC laboratory test data for the PV Powered PVP3200 inverter at six  

power levels and three dc-voltage levels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11.  Comparison of measured versus Sandia performance model using CEC test data for 
the large 225-kW Xantrex PV225S inverter at six power levels and three dc-voltage levels. 
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CEC Laboratory Data, Solectria PVI2500 Inverter, 7 Replicates
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Anomalous Test Results 
 

Performance models and test results are rarely perfect.  Significant discrepancies between the 

model and measured values may occur for a variety of reasons: an inadequate model, errors in 

test measurements, irregular inverter behavior, or unexpected interactions between the inverter 

and the test equipment. 

 

Figures 12 and 13 show an example of CEC test data where the standard error for all 

measurements was reasonably good (0.55%); however, relatively large discrepancies (±3%) 

occurred between the measured and modeled efficiency at the lowest power level.  This 

variability at the low power level was likely the result of instabilities introduced by the inverter 

test equipment.  Note that this inverter was of the same type measured during field tests at 

Sandia, shown in Figure 2, where variability in the measured efficiency was much smaller at low 

power levels. 

 

Figures 14 and 15 illustrate CEC test data where relatively large discrepancies between 

measured and modeled efficiency occurred at all power levels. In this case, the variability was 

due to inherent instability in the inverter itself because the replicate measurements were not 

repeatable. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12.  Measured versus model comparison using CEC laboratory test  
data for the Solectria PVI2500 inverter at six power levels and three dc-voltage levels. 
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CEC Laboratory Data, Solectria PVI2500 Inverter, 7 Replicates
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CEC Laboratory Data, Fronius IG3000 Inverter, 7 Replicates
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Figure 13.  Calculated errors between modeled and measured efficiency based on  
CEC laboratory test data for the Solectria PVI2500  inverter at six power levels and  

three dc-voltage levels. Relatively large errors resulted at the lowest power levels only. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 14.  Measured versus model comparison using CEC laboratory test data  
for the Fronius IG3000 inverter at six power levels and three dc-voltage levels. 
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CEC Laboratory Test Data, Fronius IG3000 Inverter, 7 Replicates
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Figure 15.  Calculated errors between modeled and measured efficiency based  
on CEC laboratory test data for the Fronius IG3000 inverter at six power levels  
and three dc-voltage levels. Relatively large standard error resulted at multiple  

power levels due to lack of repeatability.  
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SYSTEM PERFORMANCE ANALYSES 
 

The inverter performance model presented in this document improves the accuracy and 

versatility of models used for designing PV systems; in particular, assessments of ac energy 

production are more accurate. The performance model, along with additional parameters 

included in the inverter database, provides the information needed to ensure compatibility and 

optimum performance of arrays and inverters. The inverter model also makes it possible to 

monitor the long-term performance and aging characteristics of both inverters and systems with 

accuracy previously unavailable. 

 

Coupling with Array Performance Model 
 

PV array performance models such as that previously documented by Sandia [1], and also 

implemented in commercial PV system design software [3], can now be coupled with an 

accurate and well-validated inverter performance model.  The combination provides a versatile 

tool for designing PV systems, studying sensitivity of ac-energy production to different module 

and inverter combinations, verifying inverter parameter limits are not exceeded, and ensuring 

optimum array utilization. In order to make best use of the inverter model and associated 

database of performance parameters, the PV array performance model must provide calculated 

values for array open-circuit voltage (Voc), maximum-power voltage (Vmp), maximum-power 

current (Imp), as well as maximum power (Pmp). The Vmp and Pmp values are used directly in the 

inverter performance model to determine ac-power production. By using hourly solar resource 

and weather data in the PV array performance model, several system design criteria can be 

evaluated.  The calculated values for Voc, Vmp, Imp, and Pmp should be used to verify that the 

array Voc does not exceed the inverter’s maximum dc voltage (Vdcmax), the array Imp does not 

exceed the inverter’s maximum dc current (Idcmax), and that the calculated Pmp rarely exceeds the 

inverter’s peak dc power rating (Pdco). 

 

As an example, Figure 16 illustrates an optimized system design for a 3.78-kW array of 

SunPower SPR210 modules (6 series by 3 parallel configuration) coupled with a Xantrex GT3.8 

inverter, and optimized for highest performance in the solar resource and weather conditions in 

Alamosa, Colorado.  Inverter efficiency is highest for dc voltages near the low MPPT limit and 

for array maximum power that only occasionally exceeds the inverter’s upper dc-power limit, 

resulting in an overall annual system ac efficiency of 15.5%. However, most system designers 

would opt to design the system a little more conservatively ( 9 series by 2 parallel configuration), 

which raises the system voltage and gives more margin for wiring losses and long-term module 

performance degradation, as illustrated in Figure 17.  The efficiency of the Xantrex GT3.8 

inverter was relatively insensitive to the dc-voltage level, so the impact on the more conservative 

design on annual system efficiency was minor, dropping to 15.4%.  The point of this discussion 

is that coupling an array performance model with the inverter performance model improves the 

ability to design and optimize PV systems based on annual ac energy production. 
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 3.78-kW Array SunPower SPR-210 modules ( 9 series x  2 parallel)

at:   Alamosa, CO -- Module tilt =  37 degree  @  180 azimuth (South)
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Figure 16.  System annual performance analysis with combined array 
 and inverter performance models, optimized for highest system efficiency.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 17.  System annual performance analysis using array and inverter performance models, 
more conservative system design providing extra margin for degradation in array voltage. 
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Inverter Performance Monitoring 
 

The inverter performance model provides a new opportunity for accurately monitoring the 

performance and health of the inverter, in real time. Inverter monitoring can be accomplished by 

using a data acquisition system providing periodic measurements of dc voltage and power, as 

well as true ac power.  In real time, inverter efficiency can be calculated and compared to the 

inverter efficiency determined using the inverter performance model.  Deviations between 

measured and calculated inverter efficiency would provide direct evidence of inverter 

malfunction or degradation in performance.  It is likely, given experience, that the nature of the 

deviations would provide the diagnostic information needed to define required inverter 

maintenance. 

 

Advanced inverter designs should have the inverter model incorporated in firmware, and should 

be equipped with accurate dc and ac power meters, as well as standardized communication 

protocol.  These advanced features would provide direct inverter performance monitoring 

capability, help reduce the installation cost of PV systems, and facilitate expedient and cost-

effective field maintenance.  Conceivably the PV array performance model could also be 

incorporated in the inverter’s firmware providing system monitoring and diagnostic functions for 

the entire system. 
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CONCLUSIONS 
 

An empirically based inverter performance model has been developed and validated, using both 

field and laboratory measurements, for a variety of inverter sizes, designs, and manufacturers. 

The accuracy of the model, for inverters with stable and repeatable performance, has proven to 

be more than adequate for PV system performance modeling purposes. Based on well-controlled 

laboratory measurements, the standard error obtained between measured and modeled inverter 

efficiency was typically about 0.1%.  The inverter model, particularly when coupled with an 

accurate array performance model, provides significant improvements in the ability to analyze 

PV system performance, monitor inverter and array performance, and diagnose causes of system 

performance degradation. 
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APPENDIX: Inverter Parameter Database 
 

The inverter parameter database provided below is a combination of performance parameters 

from manufacturers’ specification sheets and experimental data measured at recognized testing 

laboratories, including field tests at Sandia.  In each row, the source for the parameters displayed 

was provided, in some cases resulting in multiple entries for the same inverter type.  Additional 

parameters of use to PV system designers, but not explicitly used in our performance model, 

were also included in the database. Vdcmax and Idcmax are the upper limits for dc voltage and 

current as defined by the manufacturer. MPPT-Low and MPPT-High define the lower and upper 

voltage limits within which the inverter tracks the maximum-power point of the PV array.  

Acceptable ambient temperature extremes and the weight of the inverter are also provided. 
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Inverter Performance Parameter Database (U.S. Applications, 60 Hz)

Sandia National Laboratories

2/25/07

MPPT MPPT Tamb Tamb

Manufacturer ID Source ac Volts Vintage Paco Pdco Vdco Pso Co C 1 C2 C3 Pnt Vdcmax Idcmax Low High Low Max Weight

(V) (Wac) (Wdc) (V) (Wdc) (1/W) (1/V) (1/V) (1/V) (Wac) (A) (V) (V) (C ) (C ) (lb)

Fronius IG2000 Spec 240 2006 2000 2100 300 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 13.6 150 450 -20 50 26

Fronius IG2500-LV Spec 208 2006 2350 2489 300 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 16.9 150 450 -20 50 26

Fronius IG3000 CEC 240 2006 2700 2879 277 27.9 -1.009E-05 -1.367E-05 -3.587E-05 -3.421E-03 0.91 500 18 150 450 -20 50 26

Fronius IG3000 Spec 240 2006 2700 2836 300 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 18 150 450 -20 50 26

Fronius IG4000 Spec 240 2006 4000 4201 300 15 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 26.1 150 450 -20 50 42

Fronius IG4500-LV Spec 208 2006 4500 4767 300 15 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 29.3 150 450 -20 50 42

Fronius IG5100 Spec 240 2006 5100 5357 300 15 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.15 500 33.2 150 450 -20 50 42

PV Powered PVP1800 Spec 120 2005 1800 1945 210 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 360 15 120 360 -20 40

PV Powered PVP2800 Spec 240 2005 2800 2950 295 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 450 15 200 390 -20 40 74

PV Powered PVP2800 Spec 208 2005 2800 2920 285 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 450 15 180 390 -20 40 74

PV Powered PVP2000 Spec 120 2006 2000 2150 250 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 15 135 360 -20 40 76

PV Powered PVP2900 Spec 208 2006 2900 3085 350 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 15 205 500 -20 40 89

PV Powered PVP3200 CEC 240 2006 3200 3348 274 53.8 -1.039E-05 8.495E-05 3.373E-03 -2.205E-04 3 500 15 230 450 -20 40 89

PV Powered PVP3200 Spec 240 2006 3200 3385 365 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 15 230 450 -20 40 89

PV Powered PVP2500 Spec 240 2006 2500 2645 295 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 20 140 450 -20 40 70

PV Powered PVP3500 Spec 240 2006 3500 3665 325 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 18 200 450 -20 40 85

SMA 1800U Spec 120 2005 1800 1915 270 15 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0 400 12.6 139 400 -25 60

SMA 2500U SNL 240 2005 2400 2625 380 19.6 -1.471E-05 0.000E+00 0.000E+00 0.000E+00 0.25 600 12 250 550 -25 60 65

SMA 2500U CEC 240 2006 2500 2694 302 20.7 -1.545E-05 6.525E-05 2.836E-03 -3.058E-04 0.32 600 12 250 550 -25 60 65

SMA 2500U Spec 240 2005 2500 2660 375 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.25 600 12 250 550 -25 60 65

SMA 2500U Spec 208 2005 2100 2234 375 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.25 600 12 225 550 -25 60 65

SMA 3800U Spec 240 2006 3800 4021 300 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.1 500 20 200 400 -25 45 85

SMA 3800U Spec 208 2006 3500 3704 290 7 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.1 500 20 180 400 -25 45 85

Solectria PVI1800 Spec 240 2005 1800 1935 235 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 400 11 125 350 -20 60 34

Solectria PVI1800 Spec 208 2005 1800 1935 235 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 400 11 125 350 -20 60 34

Solectria PVI2500 SNL 240 2005 2500 2701 260 30.0 -1.143E-05 0.000E+00 0.000E+00 0.000E+00 0.32 400 15 125 350 -20 60 36

Solectria PVI2500 CEC 240 2005 2500 2695 289 27.2 -1.417E-05 -1.214E-04 -8.706E-04 -2.682E-03 0.32 400 15 125 350 -20 60 36

Solectria PVI2500 Spec 240 2005 2500 2688 235 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.32 400 15 125 350 -20 60 36

Solectria PVI2500 Spec 208 2005 2500 2688 235 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 0.32 400 15 125 350 -20 60 36

SunPower SPR2000 Spec 120 2006 2000 2116 225 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 450 15 135 320 -20 40 76

SunPower SPR2900 Spec 208 2006 2900 3021 320 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 15 205 430 -20 40 89

SunPower SPR3200 Spec 240 2006 3200 3333 330 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 3 500 15 230 430 -20 40 89

Xantrex GT2.5 Spec 240 2006 2500 2660 370 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 600 15 195 550 -25 65 49

Xantrex GT3.0 Spec 240 2006 3000 3175 370 20 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 600 20 195 550 -25 65 49

Xantrex GT3.3 Spec 240 2006 3300 3492 370 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 600 20 195 550 -25 65 49

Xantrex GT3.3 Spec 208 2006 3300 3510 370 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 600 25 195 550 -25 65 49

Xantrex GT3.8 CEC 240 2006 3800 4022 266 24.1 -8.425E-06 8.590E-06 7.760E-04 -5.278E-04 1 600 20 195 550 -25 65 49

Xantrex GT3.8 Spec 240 2006 3800 4000 370 30 0.000E+00 0.000E+00 0.000E+00 0.000E+00 1 600 20 195 550 -25 65 49

Xantrex PV10 Spec 208 2006 10000 10989 465 100 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5 600 31.9 330 600 -20 50 115

Xantrex PV15 Spec 208 2006 15000 16393 465 150 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5 600 47.8 330 600 -20 50 160

Xantrex PV20 Spec 208 2006 20000 21739 465 200 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5 600 63.8 330 600 -20 50 160

Xantrex PV30 Spec 208 2006 30000 32609 465 300 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5 600 100 330 600 -20 50 260

Xantrex PV45 Spec 208 2006 45000 48780 465 450 0.000E+00 0.000E+00 0.000E+00 0.000E+00 5 600 150 330 600 -20 50 260

Xantrex PV100S Spec 208 2006 100000 105820 450 1000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 100 600 357 300 600 -20 50 1000

Xantrex PV100S Spec 480 2006 100000 105263 450 1000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 96 600 357 300 600 -20 50 1000

Xantrex PV225S Spec 480 2006 225000 238095 450 2000 0.000E+00 0.000E+00 0.000E+00 0.000E+00 107 600 781 300 600 -20 50 2300

Xantrex PV225S CEC 480 2006 225000 237500 345 2336 -1.074E-04 7.175E-05 1.387E-03 1.513E-03 107 600 781 300 600 -20 50 2300  
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