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Abstract. In this paper, we develop a rigorous, unified framework based
on Ordinary Differential Equations (ODEs) to study epidemic routing
and its variations. These ODEs can be derived as limits of Markovian
models under a natural scaling as the number of nodes increases. While
an analytical study of Markovian models is quite complex and numerical
solution impractical for large networks, the corresponding ODE models
yield closed-form expressions for several performance metrics of inter-
est, and a numerical solution complexity that does not increase with the
number of nodes. Using this ODE approach, we investigate how resources
such as buffer space and power can be traded for faster delivery, illus-
trating the differences among the various epidemic schemes considered.
Finally we consider the effect of buffer management by complementing
the forwarding models with Markovian and fluid buffer models.

Keywords: Delay tolerant networks, wireless ad hoc networks, epidemic
routing, performance modeling, ordinary differential equations.

1 Introduction

Epidemic routing [13] has been proposed as an approach for routing in sparse
and/or highly mobile networks in which there may not be a contemporaneous
path from source to destination (i.e., a special case of Delay Tolerant Network).
Epidemic routing adopts a so-called “store-carry-forward” paradigm – a node re-
ceiving a packet buffers and carries that packet as it moves, passing the packet on
to new nodes that it encounters. Analogous to the spread of infectious diseases,
each time a packet-carrying node encounters a new node that does not have a
copy of that packet, the carrier is said to infect this new node by passing on
a packet copy; newly infected nodes, in turn, behave similarly. The destination
receives the packet when it first meets an infected node. Epidemic routing is able
to achieve minimum delivery delay at the expense of increased use of resources
such as buffer space, bandwidth, and transmission power. Variations of epidemic
routing have recently been proposed that exploit this trade-off between delivery
delay and resource consumption, including K-hop schemes [9, 3], probabilistic
forwarding [8, 4], and spray-and-wait [12, 11].

Early efforts evaluating the performance of epidemic routing schemes used
simulation [13, 5, 8]. More recently, Markovian models have been developed to
study the performance of epidemic routing [10, 3, 4], 2-hop forwarding [3], and
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spray-and-wait [12, 11]. Recognizing the similarities between epidemic routing
and the spread of infectious diseases, [10] used ordinary differential equation
(ODE) models adapted from infectious disease-spread modeling [2] to study the
source-to-destination delivery delay under the basic epidemic routing scheme,
and then adopted Markovian models to study other performance metrics.

In this paper, we develop a rigorous, unified framework, based on Ordinary
Differential Equations (ODE), to study epidemic routing and its variations. The
starting point of our work is [3], where the authors consider common node mo-
bility models (e.g., random waypoint and random direction mobility) and show
that nodal inter-meeting times are nearly exponentially distributed when trans-
mission ranges are small compared to the network’s area, and node velocity is
sufficiently high. This observation suggests that Markovian models of epidemic
routing can lead to quite accurate performance predictions; indeed [3] develops
Markov chain models for epidemic routing and 2-hop forwarding, deriving the
average source-to-destination delivery delay and the number of extant copies of a
packet at the time of delivery. An analytical study of such Markov chain models
is quite complex for even simple epidemic models, and more complex schemes
have defied analysis thus far. Moreover, numerical solution of such models be-
comes impractical when the number of nodes is large.

We develop ODEs as a fluid limit of Markovian models such as [3], under
an appropriate scaling as the number of nodes increases. This approach allows
us to then derive closed-form formulas for the performance metrics considered
in [3], obtaining matching results. More importantly, we are also able to use
the ODE framework to further model the so-called “recovery process” (packet
deletion at infected nodes, following the successful delivery to the destination),
to study more complex variants of epidemic routing, and to model the per-
formance of epidemic routing with different buffer management schemes under
buffer constraints. While different recovery processes are studied also in [10, 11]
using Markov chains, model simulation is first needed to determine a number of
model parameters. Many of our ODE models can be analytically solved, provid-
ing closed-form formulas for the performance metrics of interest; in cases where
we resort to numerical solution, the computation complexity does not increase
with the number of nodes. The drawback of our ODE models is that they are
used to evaluate the moments of the various performance metrics of interest,
while numerical solution of Markov chain models can provide complete distri-
butions (e.g., for the number of packet copies in the system). Simulation results
show good agreement with the predictions of our ODE models.

Through our modeling studies, we obtain insights into different epidemic rout-
ing schemes. In particular, we identify rules of thumb for configuring these
schemes, we show the existence of a linear relation between total number of
copies sent and the buffer occupancy under certain schemes, and we demon-
strate that the relative benefit of different recovery schemes depends strongly on
the specific infection process. Finally our analysis of buffer-constrained epidemic
routing suggests that sizing node buffers to limit packet loss is not vital as long
as appropriate buffer management schemes are used.
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The remainder of this paper is structured as follows. Basic epidemic routing
and our basic ODE model are described and derived in Section 2, allowing one to
characterize the source-to-destination delivery delay, the number of copies made
for a packet, and the average buffer occupancy. In Section 3, the model is ex-
tended for three important variations of basic epidemic routing: K-hop forward-
ing, probabilistic forwarding and limited-time forwarding; we use these extended
models to characterize the tradeoff between delivery delay and resource (buffer,
power) consumption in Section 4. In Section 5, we integrate the ODE models
with Markov and fluid queue models to study the effect of finite buffers, and com-
pare different buffer management strategies. Finally in Section 6 we summarize
the paper and discuss about future work. Throughout the paper, we compare
our work with related efforts, where appropriate. Due to space constraint some
of the derivations are in [14].

2 Basic Epidemic Routing

In this section we develop our ODE model for basic epidemic routing [13], after
briefly describing epidemic routing and the scenario we are considering. We then
use the model to study three different recovery techniques for limiting the number
of packet copies in the network, validating these models against simulation.

We consider a set of N + 1 nodes with a finite transmission range moving
in a closed area and different source-destination pairs. We say that two nodes
“meet” when they come within transmission range of each other, at which point
they can exchange packets. Let us focus on a single packet. The analogy with
disease spreading is useful in describing epidemic routing. The source of the
packet can be viewed as the first carrier of a new disease, the first infected node,
and it copies the packet to (infects) every node it meets. These new infected
nodes act in the same way. As a result, the population of susceptible nodes (i.e.,
nodes without a copy of the packet) decreases over time. Once a node carrying a
packet meets the destination, it passes the packet on to the destination, deletes
the packet from its own buffer, and retains “packet-delivered” information (an
anti-packet) which will prevent it from receiving another copy of this packet in
the future; such a node has recovered from the disease. We will shortly consider
more sophisticated recovery schemes.

Consider now many packets spreading at the same time in the network. We
assume that when two nodes meet they can exchange an arbitrary number of
packets, and each node has enough buffer to store all packets (the latter assump-
tion is relaxed in Section 5), thus allowing different infections to be considered
independently. We also assume a mechanism exists so that nodes never exchange
a packet if both nodes are already carrying a copy of that packet.

2.1 ODE Models for Basic Epidemic Routing

As noted earlier, [3] showed that the pairwise meeting time between nodes is
nearly exponentially distributed, if nodes move in a limited region (of area, A)
according to common mobility models (such as the random waypoint or random
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direction model [1]) and if their transmission range (d) is small compared to
A, and their speed is sufficiently high. The authors also derived the following
formula for estimating the pairwise meeting rate β:

β ≈ 2wdE[V ∗]
A

, (1)

where w is a constant specific to the mobility models, and E[V ∗] is the average
relative speed between two nodes. Under this approximation, [3] showed that the
evolution of the number of infected nodes can be modeled as a Markov chain.

We introduce our modeling approach starting from the Markov model for
simple epidemic routing. Given nI(t), the number of infected nodes at time t,
the transition rate from state nI to state nI +1 is rN (nI) = βnI(N −nI), where
N is the total number of nodes in the network (excluding the destination). If we
rewrite the rates as rN (nI) = Nλ(nI/N)(1 − nI/N) and assume that λ = Nβ
is constant, we can apply Theorem 3.1 in [7] to prove that, as N increases, the
fraction of infected nodes (nI/N) converges asymptotically to the solution of the
following equation1:

i′(t) = λi(t)(1 − i(t)), for t ≥ 0 (2)

with initial condition i(0) = limN→∞ nI(0)/N . The average number of infected
nodes then converges to I(t) = Ni(t) in the sense of footnote 3. The following
equation can be derived for I(t) from Eq.(2):

I ′(t) = βI(N − I), (3)

with initial condition I(0) = Ni(0). Such an ODE, which we have shown results
as a fluid limit of a Markov model as N increases, has been commonly used
in epidemiology studies, and was first applied to broadcast in mobile ad hoc
network in [6], epidemic routing in [10], as a reasonable approximation.

We remark that 1) the initial population of infected nodes must scale with
N , and 2) the pairwise meeting rate scales as 1/N . Eq.(1) also provides insight
into the physical interpretation of the meeting rate scaling, in particular one can
consider that the area A increases with N , keeping node density constant. In
the following we will consider Eq.(3) with initial condition I(0) = 1, which cor-
responds to an initial fraction of infected nodes i(0) = 1/N . Despite the “small”
number of initial infected nodes, we will see via our simulation results that the
approximation is a good one. We also note that Eq.(3), as well as other related
equations we will derive shortly, can also be obtained in a different manner from
Markovian models by neglecting terms related to higher moments [2, 14].

2.2 Delay Under Epidemic Routing

Let Td be the packet delivery delay, i.e., the time from when a packet is generated
at the source to the time when it is first delivered to the destination, and denote
1 Formally, ∀ε > 0, limN→∞ Prob{| sups≤t{nI(s)/N − i(s)}| > ε} = 0.
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its Cumulative Distribution Function (CDF) by P (t) = Pr(Td < t). Under the
same scaling and approximations considered earlier, we can derive the following
equation for P (t): P ′(t) = λi(1 − P ) [14], and in a similar manner

P ′(t) = βI(1 − P ). (4)

Eq.(4) was proposed in [10], based on an analogy with a Markov process. Solving
Eq.(3) and Eq.(4) with I(0) = 1, P (0) = 0, we get

I(t) =
N

1 + (N − 1)e−βNt
, P (t) = 1 − N

N − 1 + eβNt

From P (t), the average delivery delay can be explicitly found in closed form as
E[Td] =

∫ ∞
0 (1 − P (t))dt = lnN/(β(N − 1)). The average number of copies of

a packet in the system when the packet is delivered to the destination, E[Cep],
can also be derived [14]: E[Cep] =

∫ ∞
0 I(t)P ′(t)dt = N−1

2 .
We note that while [3] obtained the same result for the number of copies,

derived the Laplace-Stieltjes Transform (LST) of the delay, and from the LST
found the following asymptotic expression for the average delay as N → ∞:

1
β(N−1)(ln N +γ +O( 1

N )), the derivation is much simpler using our ODE model.

2.3 Recovery from Infection

Next we study the total number of packet copies sent, and the packet’s aver-
age storage requirement under the recovery schemes proposed in [4]. Clearly,
once a node delivers a packet to the destination, it should delete the packet
from its buffer to save storage space and prevent the node from infecting other
nodes. Moreover, to avoid being reinfected by the packet, a node can store a
so-called “anti-packet” once it delivers a packet to the destination. We refer to
this scheme as IMMUNE scheme. A more aggressive approach towards delet-
ing obsolete copies is to propagate anti-packets among nodes. An anti-packet
can be propagated only to infected nodes (which we will term as IMMUNE TX
scheme), or to both infected and susceptible nodes (VACCINE scheme).

Similar to our earlier analysis in Section 2.1, we can derive ODEs that take
into account the recovery process as the limit of Markov models [14], with the
additional consideration that we need to scale the number of destinations nD

in a manner similar to the scaling of the number of initially infected nodes,
i.e. limN→∞ nD/N = d. For example, if we consider the IMMUNE scheme, the
number of infected and recovered nodes should be respectively close to I(t) and
R(t), which are solutions of the following equations:

I ′(t) = βI(N − I − R) − βID, R′(t) = βID

where D is the number of destinations and we consider I(0) = 1, R(0) = 0,
D = 1. This model allows us to evaluate the average number of times that
a packet is copied during its lifetime, E[Gep]. In fact E[Gep] = limt→∞ I(t) +
R(t) − I(0) − R(0) and a good approximation can be found through the pre-
vious equations by expressing I as a function of R, without the need to solve
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Fig. 1. Delay under epidemic routing

for I(t) and R(t) (see Table 1 for results and [14] for a detailed derivation).
Analogous ODEs can be derived for the IMMUNE TX and VACCINE schemes,
and a closed formula can be derived for E[Gep] for the IMMUNE TX scheme
(Table 1). Numerical solutions are needed for the VACCINE scheme.

We next consider the average storage requirement in the case of N +1 unicast
flows, with each node being the source of one flow and destination for one other
flow, and each flow generating packets with Poisson rate λ. Denote by L the
average packet lifetime (the time from when the packet is generated by the
source node to when all copies of the packet are removed from the system). The
average number of copies of a packet in the system during its lifetime is given by∫ ∞
0 I(t)dt/L, where I(t) is the solution to the ODEs that include the recovery

process. As the total arrival rate of new packerts to the system is (N + 1)λ,
by Little’s law, the average number of packets in the system is (N + 1)λL.
Therefore the average total buffer occupancy in the whole network is given by
E[Qtotal] = (

∫ ∞
0 I(t)dt/L)(N + 1)λL =

∫ ∞
0 I(t)dt(N + 1)λ, and the per-node

buffer occupancy is thus E[Q] = λ
∫ ∞
0 I(t)dt.

Modeling a node’s buffer as an M/M/∞ queue gives the same result [14]
and shows a linear relationship between the average buffer occupancy and the
number of copies made when IMMUNE is used. In fact, given that each packet
is copied E[Gep] times, each flow generates relay traffic of rate E[Gep]λ, and the
total rate of relay traffic in the network is E[Gep]λ(N + 1) (as there are N + 1
flows). This traffic is equally divided among the N + 1 nodes, hence the arrival
rate of relay packets to each node is E[Gep]λ, and the total packet arrival rate is
λ(1+E[Gep]). If a copy is deleted only when the node meets the destination2, the
service rate is 1/β and the average buffer occupancy is E[Q] = λ

β (1 + E[Gep]).

2.4 Model Validation

Throughout the paper, we validate our models using a simulator we developed to
simulate the epidemic routing scheme and its variations under various mobility
2 This is the case under IMMUNE for the basic epidemic routing, and also for two

other schemes we are going to consider: probabilistic and K-hop forwarding.
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Fig. 2. Copies sent and buffer occupancy under epidemic routing

models. Here, we validate our models using a specific setting considered in [3]:
nodes move according to random direction model within a 20 × 20 terrain. The
transmission range of the node is chosen to be 0.1. The node speed is chosen
uniformly in the range 4-10, and the mean trip duration is 1/4. The pair-wise
meeting rate for this setting is found to be β = 0.00435 using the formula in [3].

We vary the number of nodes, N, and let each flow generate packets with
Poisson rate λ = 0.01. The simulation is run long enough so that 100 packets
are generated for each flow. The mean and CDF of the delivery delay obtained
from the simulation are compared with the model results in Fig.1. We observe
that the model is able to accurately predict the delivery delay, capturing the
performance trend as N increases, with a slightly larger discrepancy in the CDF.
To investigate modeling errors, we run another set of simulations with nodes
meeting according to a Poisson process with rate β = 0.00435 (i.e., we set the
meeting rate in the simulation to exactly match the model’s meeting rate) and
the results of the two sets of simulations are very close (Fig.1.(b)). We thus
conjecture that the prediction errors are mainly due to the small number of
initial infected nodes. We also use a moment-closure technique to derive a ODE
system involving second moments [14]. The modified ODE provides a better
prediction of average delivery delay and the CDF of delivery delay (Fig.1).

For the different recovery schemes, Fig.2 plots E[Gep(N)]/N , and the average
buffer occupancy as predicted by the model and obtained from simulation. We
find that the ODE models are more accurate for IMMUNE than for VACCINE.
In some sense, any error in the infection process modeling is amplified by the
exponentially fast recovery of VACCINE. We observe that IMMUNE TX only
slightly reduces the number of copies sent for each packet, while VACCINE
further reduces the number of copies sent. The reduction in buffer requirements
is similar for IMMUNE TX and VACCINE.

3 Extended Model

Although the recovery schemes discussed in the previous section lead to substan-
tial differences in buffer and power requirements, they all achieve the minimum
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Table 1. Summary of closed-form expressions obtained for different schemes
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delay. The following schemes allow one to trade-off timely delivery with resource
consumption.

K-Hop forwarding: Under K-hop forwarding, a packet can traverse at most
K hops to reach the destination. We can model these schemes by introducing
K − 1 ODEs, describing the evolution of the number of nodes infected by i-hop
paths for 1 ≤ i < K. For example in 2-hop forwarding only the source node can
copy the packet to nodes other than the destination, hence the packet spreading
rate equals to the rate that the source node meets susceptible nodes. This leads
to the following equation for I(t): I ′(t) = β(N − I) with I(0) = 1.

Probabilistic forwarding: Under probabilistic forwarding, each relay node
accepts a packet forwarded from an infected node with probability p, resulting
in an effective infection rate of pβ, so we have I ′(t) = βpI(N − I) with I(0) = 1.

Limited-Time forwarding: For limited-time forwarding, when a relay node
accepts a packet copy from an infected node, it starts a timer with an exponential
random timeout value with mean 1/μ. When the timer expires, the node deletes
the copy and stores the corresponding anti-packet so that it will not be infected
by that packet again. Let Ir(t) be the average number of infected relay nodes at
time t, and T (t) be the number of timed-out nodes at time t, then we have:

I ′r(t) = β(Ir + 1)(N − Ir − T − 1) − μIr, T ′(t) = μIr

with Ir(0) = 0, T (0) = 0. A variant of this scheme is studied in [14].
With the above ODEs, the packet delivery delay is then found by P ′(t) =
βI(1−P ) for 2-hop and probabilistic forwarding, and P ′(t) = β(Ir +1)(1−P ) for
limited-time forwarding, both with P (0) = 0. We solve the above ODEs either
analytically or numerically, and then extend them to consider the recovery pro-
cess. We also perform simulations to validate the models [14]. The main results
are summarized in Table 1.

4 Performance Trade-Off

In this section, we use our ODE models to quantitatively explore the performance
trade-offs offered by the various epidemic routing schemes. Previous work [4, 11]
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(a) delay vs buffer occupancy tradeoff (b) delay vs number of copies sent tradeoff

Fig. 3. Comparison with IMMUNE recovery

investigated the buffer-delay trade-off by varying the number of nodes. However,
we believe that the number of nodes is often given, and it is consequently more
important to evaluate the performance trade-offs achieved by different schemes
and/or understand how performance changes when configurable parameter val-
ues change. In terms of the power-delay trade-off, previous work [11, 12] only
considered the trade-off achieved by a special scheme that enforces a fixed num-
ber of copies (and hence energy consumption). Our results are mainly based on
numerical solution of ODE (for N = 100, β = 0.00435, λ = 0.01), but also on
the asymptotic formulas we derived.

Fig.3.(a) and Fig.3.(b) respectively plot the delay-versus-buffer-occupancy
and the delay-versus-number-of-copies-sent trade-offs for the IMMUNE scheme.
In the figure, the two singleton points correspond to 2-hop and 3-hop forwarding,
while two curves have been obtained for probabilistic forwarding and limited-
time forwarding (without reinfection) respectively; for these curves, each point
corresponds to a different value of the copy probability, p, and the mean timeout
interval, 1/μ (the values are shown in Table 2).

Table 2. Settings considered for Limited-Time and Probabilistic forwarding

Timeout (1/μ) 1 2 5 10 20 40 80 160 320
Probability (p,%) 0.1 0.5 0.8 1 2 5 10 20 50 80

Let us first consider the delay-versus-buffer-occupancy trade-off. One can re-
duce the buffer occupancy by decreasing p or 1/μ, but at the same time the delay
will increase3. Limited-time forwarding appears to be the best choice when lim-
iting buffer occupancy is the main concern. As a thumb rule, one can choose
1/μ ≈ 2E[Td] (= 20 in this specific setting). This choice significantly reduces the
buffer occupancy in comparison to basic epidemic routing (about one tenth),
with a negligible increase in the delivery time.

Fig. 3.(b) shows that the curves for probabilistic and K-hop forwarding are sim-
ilar to the delay-versus-buffer trade-off curves. This is due to the proportionality
3 Intuitively these schemes behave as the original epidemic model as p → 1 and 1/μ →

∞, whereas p → 0 and 1/μ → 0 correspond to a scenario without any relay: the
packet is delivered directly from the source to the destination.
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(a) delay vs buffer occupancy tradeoff (b) delay vs number of copies sent tradeoff

Fig. 4. Comparison with VACCINE recovery

between number of copies and buffer occupancy we have shown in Section 2.3. We
observe that if power saving is of primary concern, then probabilistic forwarding
appears to be the best choice. For example, with p = 0.008 the average delay is
about 30% less in comparison to the non-relaying case, while the average number
of copies is only 3.5. K-hop forwarding offers intermediate performance, without
sacrificing either of the two metrics.

Fig. 4 shows the same trade-offs for the VACCINE scheme. We observe that
for different schemes, different performance improvements are achieved by VAC-
CINE: in particular, the largest improvement is achieved for probabilistic for-
warding, followed by K-hop forwarding, and then limited-time forwarding. The
relatively small improvement for limited-time forwarding is due to its intrinsic
recovery feature: nodes automatically recover as the timer expires and they can-
not be reinfected. The explanation is more complex for the probabilistic and
K-hop forwarding schemes. Because of the two counteracting processes – the
counter-infection due to anti-packets spreading and the ongoing packet infection
– the net recovery speed depends not only on the recovery scheme but also on
the specific infection process. Given the same average delivery delay, when the
recovery process starts, the average number of nodes infected and the current
infection rate are higher under probabilistic forwarding (its infection rate is ex-
ponential, hence in the long term it is faster than K-hop). For this reason, we
expect the IMMUNE recovery process to be significantly “longer” for proba-
bilistic routing, leading to larger buffer occupancy and more copies. Conversely
under VACCINE, the recovery process is much shorter, the buffer occupancy is
mainly determined by the initial infection process (before the delivery), and the
difference becomes much smaller, as shown in Fig.4.

5 Epidemic Routing Under Constrained Buffer

Thus far, we have assumed that each node has sufficient space to store all pack-
ets. Realistically, however, mobile nodes often have limit storage due to cost
and form factor. Sizing the buffer to limit end-to-end packet losses due to buffer
overflow in store-carry-forward networks is hard. For example, [4] studied buffer
occupancy variability for the purpose of buffer sizing, but their model required an
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empirical distribution obtained from simulation. In this section, we examine the
performance of epidemic routing when each node can store at most B packets.
We consider three buffer management strategies: (i) droptail where newly arriv-
ing packets are dropped if the buffer is full (previously studied in [13] through
simulation), (ii) drophead where the oldest packet in the buffer is dropped to ac-
cept newly arriving packets, and (iii) source-prioritized drophead, drophead sp,
which gives priority to packets arriving directly from the source. We describe
the model for drophead sp here; a full analysis can be found in [14].

Under drophead sp, when a packet arrives to a full buffer, the node discards
the oldest relay packet (i.e., a packet it has received from other node) to make
space for the new packet. If all buffered packets are source packets, and the
arriving packet is a source packet, the oldest source packet is deleted. Relay
packets arriving to a buffer filled with source packets are not accepted. Therefore,
given Pf , the probability that a node’s buffer is filled with source packets, the
effective infection rate is then β(1 − Pf ). Pf can be derived by modeling the
number of node-buffered source packets as a Markov chain.

As before, we focus on the spreading of a single packet. Let Gdhs be the average
number of copies made for each packet. In the source node, the copy of this packet
becomes older at rate λ, the rate at which new source packets arrive. In infected
relay nodes, the packet becomes older whenever another packet arrives, with
rate (Gdhs + 1)λ (this is the total packet arrival rate to a node by an argument
similar to that in Section 2.3). Let Is

j (t) be the probability that the packet is
the j-th newest source packet in the source node’s buffer, Ij(t) be the average
number of infected relay nodes where the copy is the j-th newest packet in the
buffer, S(t) be the average number of susceptible nodes, and D(t) be the average
number of nodes that have dropped the packet. We can then use the following
ODEs to model packet spreading:

S′(t) = −β(1 − Pf )S
∑

i(I
s
i + Ii)

I ′1(t) = β(1 − Pf )S
∑

i(I
s
i + Ii) − (Gdhs + 1)λI1

I ′j(t) = (Gdhs + 1)λ(Ij−1 − Ij), 2 ≤ j ≤ B

Is
1
′(t) = −λIs

1 , Is
j
′(t) = λ(Is

j−1 − Is
j ), 2 ≤ j ≤ B

D′(t) = (Gdhs + 1)λIB + λIs
B , P ′(t) = β

∑
i(I

s
i + Ii)(1 − P )

The sums above are for 1 ≤ i ≤ B. The initial conditions are given by:
S(0) = N − 1, Is

1 (0) = 1, Is
j (0) = 0, for j = 2, ...B, Ik(0) = 0, for k = 1, ..., B,

D(0) = 0, P (0) = 0. We find Gdhs by solving the following fixed-point problem
using a binary search algorithm: given Gdhs, we numerically solve the corre-
sponding extended ODE model (including the recovery process) and calculate
the accumulated amount of flow from state S to I1, i.e., Gdhs.

We have simulated these schemes, using the same setting as before (N =
100, λ = 0.01, β = 0.00435), with different buffer size B = 5, 10, 20, and com-
pared our ODE results with simulation. Table 3 tabulates the loss probabilities.
We observe that the models provide reasonable loss probability predictions, and
accurately reflect the relative performance of the three dropping schemes. The
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Table 3. Loss Probability Under Constrained Buffer

Buffer size simulation/model droptail drophead drophead sp
5 simulation 0.9696 0.2234 0.0536

model 0.8544 0.0928 0.0079
10 simulation 0.9471 0.0315 0.0

model 0.7891 0.0088 0.0
20 simulation 0.899 0.0016 0.0

model 0.7011 0.0 0.0

shape of the delay distribution probability function is also well-captured by the
model [14]. We observe that naive droptail performs poorly. Drophead provides
fast infection, as relay packets are always accepted; however, significant packet
losses are incurred for B ≤ 10. With drophead sp, although the infection spreads
slower, more packets are delivered. If the packet rate is so high that the buffer
can only hold its own source packets, drophead sp degenerates to direct source-
destination transmission. Note that with infinite buffers, the average buffer oc-
cupancy for this setting is over 200 (Fig. 2.(b)). Our results here suggest that
similar performance can be achieved by drophead and drophead sp with a much
smaller buffer size, equal to only 20 packets.

6 Summary and Future Work

In this paper, we proposed a unified framework based on ODEs to study the per-
formance of epidemic routing and its variations. Using these models, we obtained
a rich set of quantitative results on the delivery delay, number of copies sent,
and buffer requirements (and the tradeoffs of these performance metrics) un-
der various schemes. We further considered buffer-constrained case, and showed
that with appropriate buffer management schemes, a much smaller buffer can
be used with negligible effect on delivery performance. In the future, we plan to
investigate schemes for deleting anti-packets and the overhead of anti-packets.
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