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Abstract. In this paper we investigate a single-server retrial queueing
system with collision of the customer and an unreliable server. If a cus-
tomer finds the server idle, he enters into service immediately. The ser-
vice times are independent exponentially distributed random variables.
During the service time the source cannot generate a new primary call.
Otherwise, if the server is busy, an arriving (primary or repeated) cus-
tomer involves into collision with customer under service and they both
moves into the orbit. The retrial time of requests are exponentially dis-
tributed. We assume that the server is unreliable and could be break
down. When the server is interrupted, the call being served just before
server interruption goes to the orbit. Our interest is to give the main
steady-state performance measures of the system computed by the help
of the MOSEL tool. Several Figures illustrate the effect of input para-
meters on the mean response time.
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1 Introduction

The performance analysis of computing and communicating systems has always
been an important subject of computer science. The goal of this analysis is to
make predictions about the quantitative behavior of a system under varying
conditions, e.g., the expected response time of a server under varying numbers
of service requests, the average utilization of a communication channel under
varying numbers of communication requests, and so on.

Retrial queueing systems (RQS) are characterized by the feature that arriv-
ing customers finding all the servers busy upon arrival are obliged to leave the
service area and repeat their requests for service after some random time [1–3].
This feature plays an important role in modeling many problems in telephone
switching systems, telecommunication networks, computer networks, call cen-
ters, etc. The main difference between retrial queues and classic queues is that
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the classic queueing theory does not take the actually existed retrial customers
into account. It assumes these retrial customers are either lost due to congestion
or delayed in the waiting line (if any).

Since in practice some components of the systems are subject to random
breakdowns it is of basic importance to study reliability of retrial queues with
server breakdowns and repairs. Finite-source retrial queues with unreliable server
have been investigated in several recent papers, for example, [4–10].

Many times when different data is transmitted and there are only a limited
number of available free channels may cause a conflict. This may in many cases
result in collisions that lead to data loss. Recent results on retrial queues with
collisions can be found in, for example [11–15].

The aim of the present paper is to investigate a single-server retrial queueing
system with collision of the customer and an unreliable server.

Because of the fact, that the state space of the describing Markov chain is
very large, it is rather difficult to calculate the system measures in the traditional
way of writing down and solving the underlying steady-state equations. To sim-
plify this procedure we used the software tool MOSEL (Modeling, Specification
and Evaluation Language), see [16], to formulate the model and to obtain the
performance measures. The organization of the paper is as follows. Section 2 con-
tains the corresponding queueing model with components. In Sect. 3, we present
some numerical examples.

2 System Model

Let us consider (Fig. 1) a closed retrial queuing system of type M/M/1//N with
collision of the customers and an unreliable server. The number of sources is N
and each of them can generate a primary request with rate λ/N . If a customer
finds the server idle, he enters into service immediately. The service times are
independent exponentially distributed random variables with parameter µ. Dur-
ing the service time the source cannot generate a new primary call. Otherwise,

Fig. 1. System
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if the server is busy, an arriving (primary or repeated) customer involves into
collision with customer under service and they both moves into the orbit. The
retrial time of requests are exponentially distribution with rate σ/N . We assume
that the server is unreliable and could be break down. The lifetime is supposed to
be exponentially distributed with failure rate γ0 if the server is idle and with rate
γ1 if it is busy. When the server breaks down, it is immediately sent for repair
and the recovery time is assumed to be exponentially distributed with rate γ2.
If the server fails in busy state, the interrupted request goes to the orbit.
The server can be in three states:

– idle state: If the server is available and it can start serving the arriving
requests.

– busy state: If the server is available and busy.
– failed state: If the server is in failed state, it couldn’t start serving any arriving

requests until it wouldn’t be repaired.

All random variables involved in the model construction are assumed to be
independent of each other.

We introduce the following notations (see the summary of the model para-
meters in Table 1):

– k(t) is the number of active source at time t,
– o(t) is the number of jobs in the orbit at time t.
– y(t) = 0 if the server is up and y(t) = 1 if the server is failed at time t
– c(t) = 0 if the server is idle and c(t) = 1 if the server is busy at time t

It is ease to see that:

k(t) =

{

N − o(t), y(t) = 1orc(t) = 0
N − o(t) − 1, c(t) = 1

.

To maintain theoretical manageability, the distributions of inter-event times
(i.e., request generation time, service time, retrial time, available state time,
sleeping state time, failed state time) presented in the network are by assump-
tion exponential and totally independent. The state of the network at a time t
corresponds to a Continuous Time Markov Chain (CTMC) with 3 dimensions:

X(t) = (y(t); c(t); o(t)) (1)

The steady-state distributions are denoted by

P (y, c, o) = lim
t→∞

P (y(t) = y, c(t) = c, o(t) = o) (2)

Note, that the state space of this Continuous Time Markovian Chain is finite,
so the steady-state probabilities surely exist. For computing the steady-state
probabilities and the system characteristics, we use the MOSEL software tool in
this paper. These computations are described in eg. [17,18].
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Table 1. Overview of model parameters

Parameter Maximum Value at t

Number of sources N (population size) k(t)

Generation rate of active sources λ/N

Total gen. rate λ1N λ1k(t)

Service rate µ

Number of busy servers 1 (number of servers) c(t)

Cust. in service area N c(t) + o(t)

Requests in Orbit N (orbit size) o(t)

Retrial rate σ/N

Server’s failure rate (idle case) γ0

Server’s failure rate (busy case) γ1

Server’s repair rate γ2

When we have calculated the distributions defined above, the most important
steady-state system characteristics can be obtained in the following way:

– Utilization of the server

US =

N
∑

o=0

P (0, 1, o) (3)

– Utilization of the repairman

Ur =

1
∑

c=0

N
∑

o = 0

P (1, c, o) (4)

– Availability of the server

AS =
1

∑

c=0

N
∑

o = 0

P (0, c, o) = 1 − Ur (5)

– Average number of jobs in the orbit

O = E(o(t)) =

1
∑

y = 0

1
∑

c = 0

N
∑

o = 0

oP (y, c, o) (6)

– Average number of jobs in the server

C = E(c(t)) =
N−1
∑

o = 0

oP (0, 1, o) (7)
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– Average number of jobs in the network

M = O + C =
1

∑

y = 0

1
∑

c = 0

N
∑

o = 0

oP (y, c, o)

+

N − 1
∑

o = 0

oP (0, 1, o)

(8)

– Average number of active sources

Λ = N − M = N −

1
∑

y = 0

1
∑

c = 0

N
∑

o = 0

oP (y, c, o)

−

N−1
∑

o = 0

oP (0, 1, o)

(9)

– Average generation rate of sources:

λ = λ/NΛ1 (10)

– Average waiting time in orbit:

ETo =
O

λ
(11)

– Average waiting time in orbit:

ET =
M

λ
(12)

3 Numerical Results

The Table 2 shows the input parameters of the investigated Figures.
Figure 2 shows the steady-state distribution of the three investigated cases.

In this figure we can see also the effect of the breakdown of the Server. We can
see that the mean number of customers increases as the breakdown intensity
are getting larger. From the shape of the curves it is clearly visible that the
steady-state distribution of the cases are normally distributed.

Figures 3 and 4 shows the mean response time as a function of the customer
generation rate. As we see the mean response time will be greater as we increase
the generation rate, but after after λ/N is greater than 1.5 the mean response
time starts to decrease.

On Fig. 5 the utilization of the server is displayed as a function of λ. As we
see the Utilisation will be greater as we increase the λ/N generation rate. We
can understand these property if we take into account that a higher generation
rate result more requests in the System.
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Fig. 2. Steady-state distributions

Table 2. Numerical values of model parameters

Case N λ/N γ0 γ1 γ2 σ/N

Fig. 2 case 1 100 0.01 0.01 0.01 1 0.1

Fig. 2 case 2 100 0.01 0.1 0.1 1 0.1

Fig. 2 case 3 100 0.01 1 1 1 0.1

Fig. 3 100 0.03 − 8.1 0.01 0.01 1 0.1

Fig. 4 100 0.03 − 8.1 0.1 0.1 1 0.1

Fig. 5 100 0.03 − 8.1 0.1 0.1 1 0.1

Fig. 6 100 3 0.01 − 1.01 γ0 1 0.1

Fig. 7 100 3 0.01 − 1.01 γ0 1 0.1

Fig. 8 100 3 0.2 0.2 γ2 0.1

Fig. 9 100 3 0.2 0.2 γ0 0.1

On Fig. 6 one can see the effect of the Server’s failure rate for the Utilisation.
As we see the Utilisation will be smaller as we increase the failure rate.

On Fig. 7 the effect of Server’s breakdown with mean response time is dis-
played. The Mean Response Time is increasing steadily by increasing the failure
of the server. On the one hand, this is due to the fact that if the server is breaks
down in the busy state, the request is placed in the orbit. On the other hand,
the defective server can not accept new requests. Therefore, the increase in the
intensity of failure results in an increase in response times.
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Fig. 3. vs λ/N , γ0 = γ1 = 0.01

Fig. 4. vs λ/N , γ0 = γ1 = 0.1

On Fig. 9 we can see the effect of the Server’s repair rate for the Response
Time. As we see the Response Time will be smaller as we increase the repair
rate. This is because a failed server can not receive or process requests. Thus,
the higher repair intensity results in shorter response times.

On Fig. 8 we investigate the effect of the Server’s repair rate on Utilisation
of the server. As we see the Utilisation will be higher as we increase the repair
rate.
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Fig. 5. Utilisation vs λ/N , γ0 = γ1 = 0.1, γ2 == 1

Fig. 6. Utilisation vs γ0, γ0 = γ1, λ/N = 3
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Fig. 7. Mean Response Time vs γ0, γ0 = γ1, λ/N = 3

Fig. 8. Response Time vs γ2, γ0 = γ1 = 0.2, λ/N = 3
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Fig. 9. Utilisation vs γ2, γ0 = γ1 = 0.2, λ/N = 3

4 Conclusions

In this paper we investigated a single-server retrial queueing system with collision
of the customer and an unreliable server. The MOSEL tool was used to formulate
and solve the problem, and the main performance and reliability measures were
derived and analyzed graphically. We have investigated also the impact of server’s
failure rate and the server’s repair rate on the performance of the system. To
our best knowledge, this is the first proposal for the use of single-server retrial
queueing system with collision of the customer and an unreliable server.
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