
 
 

University of Birmingham

Performance Modelling and Verification of Cloud-
based Auto-Scaling Policies
Evangelidis, Alexandros; Parker, David; Bahsoon, Rami

DOI:
10.1109/CCGRID.2017.39

License:
None: All rights reserved

Document Version
Peer reviewed version

Citation for published version (Harvard):
Evangelidis, A, Parker, D & Bahsoon, R 2017, Performance Modelling and Verification of Cloud-based Auto-
Scaling Policies. in Proceedings of 2017 IEEE/ACM 17th International Symposium on Cluster, Cloud and Grid
Computing (CCGrid'17). IEEE Xplore, pp. 355-364, IEEE/ACM 17th International Symposium on Cluster, Cloud
and Grid Computing, Madrid, Spain, 14/05/17. https://doi.org/10.1109/CCGRID.2017.39

Link to publication on Research at Birmingham portal

Publisher Rights Statement:
(c) 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other users, including reprinting/
republishing this material for advertising or promotional purposes, creating new collective works for resale or redistribution to servers or lists,
or reuse of any copyrighted components of this work in other works

General rights
Unless a licence is specified above, all rights (including copyright and moral rights) in this document are retained by the authors and/or the
copyright holders. The express permission of the copyright holder must be obtained for any use of this material other than for purposes
permitted by law.

•	Users may freely distribute the URL that is used to identify this publication.
•	Users may download and/or print one copy of the publication from the University of Birmingham research portal for the purpose of private
study or non-commercial research.
•	User may use extracts from the document in line with the concept of ‘fair dealing’ under the Copyright, Designs and Patents Act 1988 (?)
•	Users may not further distribute the material nor use it for the purposes of commercial gain.

Where a licence is displayed above, please note the terms and conditions of the licence govern your use of this document.

When citing, please reference the published version.

Take down policy
While the University of Birmingham exercises care and attention in making items available there are rare occasions when an item has been
uploaded in error or has been deemed to be commercially or otherwise sensitive.

If you believe that this is the case for this document, please contact UBIRA@lists.bham.ac.uk providing details and we will remove access to
the work immediately and investigate.

Download date: 26. Aug. 2022

https://doi.org/10.1109/CCGRID.2017.39
https://doi.org/10.1109/CCGRID.2017.39
https://birmingham.elsevierpure.com/en/publications/1e37fd4c-abd8-4acb-ad88-6b49c4adbaed


Performance Modelling and Verification of
Cloud-based Auto-Scaling Policies

Alexandros Evangelidis, David Parker, Rami Bahsoon
School of Computer Science

University of Birmingham
Birmingham, United Kingdom

E-mail: {a.evangelidis, d.a.parker, r.bahsoon}@cs.bham.ac.uk

Abstract—Auto-scaling, a key property of cloud computing,
allows application owners to acquire and release resources
on demand. However, the shared environment, along with the
exponentially large configuration space of available parameters,
makes configuration of auto-scaling policies a challenging task. In
particular, it is difficult to quantify, a priori, the impact of a policy
on Quality of Service (QoS) provision. To address this problem,
we propose a novel approach based on performance modelling
and formal verification to produce performance guarantees
on particular rule-based auto-scaling policies. We demonstrate
the usefulness and efficiency of our model through a detailed
validation process on the Amazon EC2 cloud, using two types
of load patterns. Our experimental results show that it can be
very effective in helping a cloud application owner configure an
auto-scaling policy in order to minimise the QoS violations.

I. INTRODUCTION

Cloud computing has become the most prominent way of
delivering software solutions, and more and more software
vendors are deploying their applications in the public cloud.
In cloud computing, one of the key differentiating factors
between successful and unsuccessful application providers is
the ability to provide performance guarantees to customers,
which allows violations in performance metrics such as CPU
utilisation to be avoided.

In order to achieve this, cloud application providers use one
of the key features of cloud computing: auto-scaling, which
allows resources to be acquired and released on demand. While
auto-scaling is an extremely valuable feature for software
providers, specifying an auto-scaling policy which can guaran-
tee that no performance violations will occur is an extremely
hard task, and “doomed to fail” [1] unless considerable care
is taken. In addition, in order for a rule-based auto-scaling
policy to be configured correctly, there has to be an in-depth
level of knowledge from the application manager, which is not
necessarily true in practice [2]. This is the case even when a
single auto-scaling rule needs to be specified.

Furthermore, public cloud providers such as Amazon EC2
and Microsoft Azure have started to offer more sophisticated
rule-based policies to their users, which allow them to combine
a set of auto-scaling rules. This type of policy is often referred
to as step adjustment, and is used to specify a fully automated
scaling policy. However, this “freedom” of being able to
specify multiple auto-scaling rules comes with the cost of an
extremely large configuration space. In fact, it is exponential

in the number of performance metrics and predicates, making
it virtually impossible to find the optimal values for the auto-
scaling variables [3]. In addition, methods such as trial-and-
error while the application is running are immediately ruled
out, since it could have detrimental effects for the application
owner to let the auto-scaler control the application with a
complex policy whose effects on the Quality of Service (QoS)
are unknown.

As noted in [4], auto-scaling policies “tend to lack correct-
ness guarantees”. The ability to specify auto-scaling policies
that can provide performance guarantees and reduce violations
of Service Level Agreements (SLAs) is essential for more
dependable and accountable cloud operations. However, this
is a complex task due to: (i) the large configuration space
of the conditions and parameters that need to be defined; (ii)
the unpredictability of the cloud as an operating environment,
due to its shared, elastic and on demand nature; and (iii)
the heterogeneity in cloud resource provision, which makes it
difficult to define reliable and universal auto-scaling policies.
For example, looking at public cloud providers, one can
observe that there is no guarantee on the time it will take for
an auto-scale request to be served, nor whether the auto-scale
request will receive a successful response or not.

In order to address the aforementioned challenges, we
propose a novel approach based on performance modelling
and probabilistic verification, which is a formal approach to
generating guarantees about quantitative aspects of systems
exhibiting probabilistic behaviour. In particular, we use prob-
abilistic model checking and the PRISM tool [5], [6], where
guarantees are expressed in quantitative extensions of temporal
logic and numerical solution of probabilistic models is used
to quantify these measures precisely.

We use this as a formal way of quantifying the uncertainty
that exists in today’s cloud-based systems and as a means
of providing performance guarantees on auto-scaling policies
for application designers and developers. Another important
novel aspect of our approach is the combination of probabilis-
tic model checking with Receiver Operating Characteristic
(ROC) analysis during empirical validation. This allows us not
only to refine our original probabilistic estimates after collating
real data and to validate the accuracy of our model, but also
to obtain global QoS violation thresholds for the policies.

The probabilistic model is a discrete-time Markov chain



(DTMC), which we specify in the modelling language of the
PRISM tool. The initialisation phase of the model begins by
gathering CPU utilisation and response time traces, which are
then fed into a k-means clusterer, in order to represent the
states of our model under the different outcomes of average
CPU utilisation and response time. Additionally, our model
accounts for the variability in time between different auto-
scale requests by introducing a waiting time parameter, on
the scale of 1 (best) to 5 (worst), which can be specified by
the cloud application developers or administrators, to verify
their auto-scaling policy under different scenarios. It also
takes into account the stochasticity of auto-scale requests,
by transitioning between the different waiting times with a
probability p, which can be specified by the user a priori, or
left as a free parameter in order to probabilistically verify an
auto-scaling policy under different values of p.

We demonstrate the correctness and usefulness of this
approach through an extensive validation, using real VMs
running on the Amazon EC2 cloud, under two different load
patterns.1 In order to validate the accuracy of our model, we
perform Receiver Operating Characteristic (ROC) analysis,
which is widely used in machine learning and data mining [8].
In a sense, we follow a relatively similar approach to the
validation of classification models, by treating the probability
as a ranking measure which determines the likelihood of the
event of interest, in our case the probability for a violation.
ROC can be used to help the decision maker to select the
appropriate classification threshold, by quantifying the trade-
off between sensitivity and specificity. Additionally, it can be
used to validate the accuracy of a classification model, by
computing the AUC (Area Under Curve) metric, which is one
of the most commonly used summary indices [9].

Our validation starts by ordering the probabilities that have
been computed from our PRISM model for each auto-scaling
policy. Then, we plot the respective ROC curve by computing
the points for the respective thresholds [0..1]. Through this
analysis, we are able to find the optimal threshold of discrim-
inating between the auto-scaling policies that could result in
a CPU/response time violation. Our criterion of optimality is
the point which minimises the Euclidean distance between the
ROC curve, and point (0,1), which is often called the point
of “perfect classification”. Also, this gives us the ability to
refine our original violation estimates after we have seen the
real data, and to obtain a global threshold for distinguishing
between auto-scaling policies. After plotting the ROC curve,
we compute the AUC, which in our case can be interpreted as
the number of times our model can distinguish performance
violations/non-violations of randomly selected auto-scaling
policies. This is an “important statistical property” [8] of AUC,
and one of the reasons that it has been used so widely for
validating the performance of classifiers.

Our modelling and verification framework is intended to
minimise the time and costs for cloud application owners who
do not have the resources or the desire to clone their existing

1We have made the data used to validate our model publicly available [7].

applications in order to test them in a cloud-based environ-
ment. It can also provide valuable assistance in designing,
analysing and verifying the auto-scaling policies of applica-
tions and services which are being deployed on public clouds,
and could help in providing robust performance guarantees.

Probabilistic model checking has previously been applied
to a wide range of application domains, including aspects
of cloud computing [4], [10]. However, to the best of our
knowledge, this is the first work to use probabilistic model
checking to provide performance guarantees for auto-scaling
policies from the perspective of a cloud application provider.
We believe it is also the first case where the results of prob-
abilistic verification have been validated using VMs running
on a major public cloud provider, Amazon EC2, and the first
usage of ROC analysis to validate such results.

II. PRELIMINARIES

A. Rule-based auto-scaling policies

An auto-scaling policy [3] defines the conditions under
which capacity will be added or removed, in order to satisfy
the objectives of the application owner. Auto-scaling is divided
into scaling-up/-down, and scaling-out/-in methods, with the
two methods also defined as vertical (add more RAM, CPU
to existing VMs) and horizontal (add more “cheap” VMs)
scaling. In this work, we focus on scaling-out and -in, since
it is a commonly used and cost-effective approach.

The main auto-scaling method that is given to application
providers by all public cloud providers today (e.g., Amazon,
Microsoft Azure, Google Cloud) is rule-based. The rule-based
method is the most popular, and is considered to be the state-
of-the-art in auto-scaling an application in the cloud [11]. It
has been widely adopted for its pragmatic reasons: on the
surface, it is simple and intuitive to configure by administra-
tors and application providers. Moreover, when employed in
certain and repeatable contexts, the approach can be efficient
and cost-effective. However, as the cloud exhibits dynamic and
unpredictable workload usage, rule-based approaches can be
ineffective and limited. Our research hopes to address these
limitations.

In a rule-based method, the application provider has to
specify an upper and/or a lower bound on a performance
metric (e.g., CPU utilisation) along with the desired change in
capacity for this situation. For example, a rule-based method
that will trigger a scale-out decision when CPU utilisation
exceeds 60% might take the form: if cpu utilisation > 60%
then add 1 instance [12]. The performance metrics that pub-
lic cloud providers usually follow include CPU utilisation,
throughput and queue length. In this work, we consider auto-
scaling decisions based on CPU utilisation, as it is one of the
most important metrics in capacity planning, and also the most
widely used in auto-scaling policies. The auto-scale control
panel of the Amazon EC2 cloud can be seen in Figure 1.

B. Probabilistic model checking and PRISM

PRISM [6] is a probabilistic model checker, which supports
the construction and formal quantitative analysis of various



Fig. 1. Amazon EC2’s auto-scale control panel.

probabilistic models, including discrete-time Markov chains
(DTMCs), continuous-time Markov chains and Markov deci-
sion processes, which are expressed in PRISM’s modelling
language. A model in PRISM is broken down into modules,
which represent different components of the system/process
being modelled. The state of the model comprises values for
a set of variables, which are either local to some module or
global for the whole model.

Here, we use DTMCs, which are well suited to modelling
systems whose states evolve probabilistically, but without any
nondeterminism or external control. They are therefore ap-
propriate here, where we want to verify auto-scaling policies,
whose outcomes are probabilistic. Formally, a discrete-time
Markov chain is defined as follows.

Definition 1. A DTMC is a tuple M =
〈
S,P,AP,L

〉
where:

• S is a finite set of states;
• P : S × S → [0, 1] is a transition probability matrix;
• AP is a finite set of atomic propositions;
• L: S → 2AP is a labelling function.

For DTMCs, properties of the model are specified in
PRISM using an extension [13] of the temporal logic PCTL
(probabilistic computation tree logic) [14]. A typical property
is P./ p[ψ], where ./∈ {≤, <,>,≥} and p ∈ [0, 1], which
asserts that the probability of event ψ occurring meets the
bound ./ p. As an example, in our model, where we want to
verify whether the auto-scaling decisions will drive the cloud
application to a state where the utilisation will be less than
95% with probability greater than 0.7, the following formula
will be checked : P>0.7[F (util < 95)].

In addition, PRISM supports numerical properties such as
P=?[F fail], which means “what is the probability for the
cloud application to end up in a failed state, as a result of the
auto-scaling decisions made?”. Of course, what is considered
a failed state will differ between cloud application owners,
according to the relative importance they put on the non-
functional aspects of their application. PRISM allows a wide
range of such properties to be specified and analysed.

III. FORMAL MODELLING OF RULE-BASED AUTO-SCALING
POLICIES

A. State representations

We model the dynamics of the auto-scaling process as a
DTMC, the states of which are updated in each time step,
corresponding to one minute. We have discretised time into
one minute slots since this is an appropriate duration to
gather and analyse the “external” data that constitute the
state (e.g., arrivals, utilisation levels). In addition, due to the
general uncertainty that manifests in a cloud environment, time
intervals of less than one minute would make limited sense.
They would result in unmanageably large spaces due to, for
example, small temporal spikes in utilisation levels which can
be ignored in our model. It would also be unrealistic to assume
that a time step of less than one minute is long enough to flag
a violation, and consequently to send an auto-scale request.

The states in our model can be divided into deterministic
and stochastic. The former model the deterministic aspects
of an auto-scaling policy that is to be verified. This is
similar to a realistic case, where the cloud application will
transition to states that have been previously defined by the
application manager in the auto-scaling policy. To make the
analogy more concrete with a realistic example, deterministic
states in our model encode the subset of the conditions that
apply to a cloud-based application, which determine whether
an auto-scale request will be sent to the cloud provider or
not. Stochastic states encode the probabilistic outcomes or
responses of the auto-scale requests.

B. k-means clustering

Before the clustering process begins, we standardise the
CPU utilisation and response time values by computing their
z-scores [15]. Then, the model is initialised after k-means
clustering has been run on the CPU utilisation, and response
time traces. The value of k is also the number of different
outcomes that could happen when a scale-out or a scale-in
action occurs. Equivalently, k can be thought of as the number
of states per number of VMs in operation.

As a result, as the size of k grows larger, the more
detailed the possible state representations will be, possibly at
the cost of adding a degree of overhead in the verification
process. Conversely, for smaller values of k, the scalability of
the verification process is improved, at the possible cost of
representing the states in a “coarser” way. In our model, after
experimenting with different cluster sizes, we have set k = 5.

C. Encoding auto-scaling policies in PRISM

We have developed a DTMC model, in the PRISM mod-
elling language (≈1000 lines of code), that encapsulates the
dynamics that affect the auto-scaling process, and can be used
to formally verify auto-scaling policies. The “free” parameters
(constants) which are left to the user of the model to set, are:
i-iv) step adjustments for scale-out and scale-in rules, v) the
increment which specifies the number of instances which will
be added. vi) the decrement which specifies the number of



TABLE I
MODEL PARAMETERS

Model Parameters

Time variables
t Discretised time (step) for each state
WAIT TIME Waiting time for an auto-scale request to be served
MAX TIME Maximum time the model will run

Virtual machines INITIAL VMs Number of reserved VMs
cVMs VMs operating currently

Auto-scale requests

scale out 1 Scale-out request for CPU utilisation between 60% and 70%
scale out 2 Scale-out request for CPU utilisation between 70% and 100%
scale in 1 Scale-in request for CPU utilisation between 30% and 40%
scale in 2 Scale-in request for CPU utilisation between 0% and 30%

Other actions wait No action is taken

Cloud provider auto-scale responses satisfy scale out request Adds the percentage of capacity requested
satisfy scale in request Removes the percentage of capacity requested

Adjustment

s o adj 1 Percentage of capacity to be added when scale out 1 is chosen
s o adj 2 Percentage of capacity to be added when scale out 2 is chosen
s i adj 1 Percentage of capacity to be removed when scale in 1 is chosen
s i adj 2 Percentage of capacity to be removed when scale in 2 is chosen

Boolean auto-scaling variables

scale out trigger Coordinates scale-out requests
scale in trigger Coordinates scale-in requests
capacity added Indicates that capacity has (not) been added
capacity removed Indicates that capacity has (not) been removed

Performance metrics

arrivals Arrivals (requests)
served reqs Average requests/jobs served per 1 time unit
util Average VM CPU utilisation
r t Average response time

Probabilities q Prob. of the different outcomes of util and r t (based on k-means)
p Probability of delay in serving an auto-scale request

Increments / Decrements inc Scale-out policy adds instances in increments of inc
dec Scale-in policy removes instances in decrements of dec

TABLE II
AN EXAMPLE OF A STEP ADJUSTMENT AUTO-SCALING POLICY AS SEEN IN

AMAZON’S DOCUMENTATION [16]

Scale-out policy
Lower Bound Upper Bound Adjustment Metric value

0 10 0 50 ≤ value < 60
10 20 10 60 ≤ value < 70
20 null 30 70 ≤ value < +∞

Scale-in policy
Lower Bound Upper Bound Adjustment Metric value

-10 0 0 40 < value ≤ 50
-20 -10 -10 30 < value ≤ 40
null -20 -30 −∞ < value ≤ 30

instances which will be removed, vii) the number of VMs
that are currently reserved, viii) the maximum time the model
will run the ix) probability p, and x) the time that it will take
for an auto-scale request to be satisfied. In Table I we show
the parameters that characterise our model, and in Listing 1
which of the parameters are expressed as constants in PRISM.

Listing 1
CONSTANTS IN PRISM

const double s_o_adj_1;
const double s_o_adj_2;
const double s_in_adj_1;
const double s_in_adj_2;
const inc; const dec;
const INITIAL_VMs;
const MAX_TIME;
const double p; const WAIT_TIME;

The first seven constants are under the control of the appli-
cation provider, and represent the values that an application
owner would have to set in reality. The last two represent
parameters that are not controllable, and are being used as
a basis for modelling and analysis of scenarios of interest
(e.g., worst-case scenarios). After these parameters have been
specified, the model transitions, with a probability q, to the
possible outcomes of CPU utilisation and response time which
are associated with the particular number of VMs. These
outcomes, and the respective probability q, are set according
to k-means which has been run beforehand. The verification
process is explained in a later section.

Then, depending on the granularity of the auto-scaling
policy, there can be multiple states each of which is a
deterministic state. For example, for the step adjustment auto-
scaling policy in Table II, the deterministic state would have
had six different representations (one for each CPU utilisation
interval). Then, depending on the utilisation level (similar to a
realistic auto-scaling policy), the model transitions to the ap-
propriate deterministic state, which causes the respective auto-
scale request to be triggered or not, resulting in a transition to
a stochastic state. This represents the fact that the auto-scaling
request has been sent to the cloud provider, and is ready to be
processed.

According to the type of scenario one wishes to analyse
and verify, different transitions will occur. For example, let us
assume that the probability p is set to 0.2, which means that
with probability 0.2 the auto-scale request will be satisfied
in the next time step, and with probability 0.8 the auto-



scale request will be satisfied according to the WAIT TIME
which is associated with p. Then, for the first case the
model will transition with probability p to a state where the
capacity added variable will be set to true, and subsequently
the auto-scaling request will be immediately satisfied, resulting
in a change in the overall VM capacity.

On the contrary, with probability 1 − p, the model will
transition to a state where the auto-scale request will be
satisfied based on the best-effort reservation policy, and the re-
spective boolean auto-scaling variables will be set to true/false
accordingly, representing the realistic case in which the auto-
scaling actions are being locked, and the application is forced
to wait until the auto-scale request is satisfied. For example,
when a scale out transition happens, the corresponding state
variable scale out trigger is set to true, preventing further
scale-out or scale-in requests from being triggered, as would
have happened in a realistic setting. In Listing 2, we show a
sample of the PRISM code which determines the transitions,
based on the probability p, that was set in the initialisation
phase. The lines of code before the → symbol, show the
predicates that have to be satisfied for the transition to occur.

Listing 2
TRANSITION BASED ON THE VALUE OF p.

[choice] (...)&(t<MAX_TIME)&
(scale_out_trigger=true|..)&
(best_effort=false)&(imm_res=false)->
p:(imm_res’=true) + 1-p:(best_effort’=true);

Also, the waiting time which was initialised before the
model started will now start to decrement, and until the
duration of the waiting time has elapsed, the model will be
prohibited from sending any other auto-scale requests. Again,
this is according to realistic cloud controllers in practice,
where the application owner is prohibited from sending any
more auto-scale requests until the one that has been sent
has been satisfied. In Listing 3, PRISM sample code for the
scale out 1 transition is shown.

Listing 3
SCALE-OUT STEP 1 TRANSITION IN PRISM

[scale_out_1] (...) & (cVMs>=1)&
(scale_out_trigger=false)&
(scale_in_trigger=false)&
(best_effort=false)&
(t<MAX_TIME)&(util>=60 & util<70)->
(scale_out_trigger’=true)&
(t’=t+1)&(actual_util’=ceil(util));

Furthermore, while the waiting time is active, the model
continues to generate load for the VMs to process. As has
been described above, we abstract the generated load in the
model, and our focus is directly on the impact of the load on
the performance metrics (CPU utilisation, and response time),

based on k-means. The transitions unfold in a similar manner,
for example when the waiting time has completely elapsed, the
auto-scale request will be satisfied, and the requested capacity
will be added or removed.

IV. FORMAL VERIFICATION OF AUTO-SCALING POLICIES

The verification process consists of two phases. In the first
phase, we generate load on the rented VMs to gather at least
100 data points for CPU utilisation and response time, for
each VM number between 1 and 8. These 100 data points
correspond to approximately 100 minutes of load generation,
monitoring, and data gathering for each VM, and for each
load type, resulting in a 26 hour data collection approximately.
These data points are used for the initialisation of our model.
In the second phase, we use k-means clustering to cluster the
respective data points, which correspond to different outcomes
of CPU utilisation and response time. Once the clustering
process is finished, the clusters are fed into our model in
PRISM, and once an auto-scaling policy or a set of auto-
scaling policies is passed as an input to our model, we obtain
the verification results.

TABLE III
AUTO-SCALING POLICIES FOR FORMAL VERIFICATION

Action Inc/Dec Min Util. Max Util. Initial VMs Adjust.
Scale-out [1..2] 60% 70% 2,3,4,8 [+10%]
Scale-out [1..2] 70% 100% 2,3,4,8 [+30%]
Scale-in [1] 0% 30% 2,3,4,8 [-30%]
Scale-in [1] 30% 40% 2,3,4,8 [-10%]
Wait - 40% 60% 2,3,4,8 0%

Throughout this process we obtain CPU utilisation and
response time guarantees under two load patterns: “periodic”
and “aggressive” (see Section V-B for details). Specifically,
we are interested in computing the probability that the cloud
application (consisting of all the VMs), will end up in a state
where the utilisation is ≥ 95%, and the probability response
time is ≥ 2 seconds for “periodic” load, and ≥ 5 seconds for
the “aggressive” load (Listing 4) under the policies shown in
Table III. We vary the INITIAL VMs in the range [1..8] and
inc, dec in the range [1..3].

Listing 4
PROPERTIES TO BE CHECKED

P=? [F util >= 95] //both load patterns
P=? [F r_t >= 2] // "periodic" load
P=? [F r_t >= 5] // "aggressive" load

In addition, since the outcome of the auto-scaling action de-
pends on uncontrollable parameters, we vary the probability p,
and the WAIT TIME in our model. It is important to note that
the verification process is not driven by too “optimistic” or too
“pessimistic” parameter tuning. Specifically, we are interested
in verifying for which set of “reasonable” variables in the
auto-scaling policy, utilisation and response time guarantees



Fig. 2. PRISM results for P=? [F util ≥ 95] (“periodic” load) Fig. 3. PRISM results for P=? [F r t ≥ 2] (“periodic” load)

hold. By “reasonable”, we mean that we do not analyse auto-
scaling policies under unrealistic conditions, such as choosing
an increment of 20 VMs, since there is a non-negligible cost
associated with renting the VMs. Also, we avoid unrealistic
assumptions with respect to the time taken to satisfy auto-
scale requests, by not varying p above 0.5. This fits our
purpose of performing worst-case analysis as well. In our
modelling and verification approach the worst-case is defined
for the situation in which the auto-scale request will never be
satisfied immediately (p = 0), and it would take at least 5
(WAIT TIME= 5) time units to be satisfied. Conversely, the
best-case is defined with p = 0.5 and WAIT TIME= 1.

In Figures 2 and 3, we show the output of verification,
for a specific auto-scaling policy, under “periodic” load. For
the controllable parameters, we set the adjustments to ±10%
and ±30% for the two steps, respectively, as in Table III.
For space reasons, we omit the graph for the “aggressive”
load. For the uncontrollable parameters, we set p = 0.2 and
WAIT TIME= 3, as an average case, which is not biased
towards worst- or best-case scenarios. In Figure 2, we can
observe that the probability for a CPU utilisation violation
follows a decreasing trend as the number of reserved VMs
increases. An important observation which we capture is the
decrease by approximately 0.5 in the probability for a CPU
utilisation violation when the cloud application starts serving
HTTP requests with 4 VMs compared to 3. In Figure 3, the
probability for response time violation fluctuates around 0.95,
and drops sharply to 0 when the reserved VMs become 5.

V. MODEL VALIDATION

The validation framework consists of three parts. The first
is the experimentation setup on the Amazon EC2 cloud, the
second is the load profile and the third is the ROC analysis. We
describe each of these below. Data and other supplementary
material from this process is available online [7].

A. Experimentation setup

The validation process uses a live public cloud setting:
Amazon EC2. The architecture of this experimental setup, is
similar to the one in Figure 4. We have created an auto-scaling
group with minimum and maximum capacity of 1 and 8 VMs
respectively. The VM types that were used were t2.micro with

Fig. 4. Experimental setup on Amazon EC2

1 CPU and 1 GB of RAM. In order to simulate the auto-
scaling process in the front layer (web servers) of a cloud-
based application, a Python start-up script [17] was launched
on those VMs, to simulate the HTTP processing and the CPU
consumption. Specifically, the VMs were configured to process
each request in 1 second and to send a 500 HTTP response
code when 9 seconds have passed. Also, an Internet-facing
load balancer was used which distributed the load in a round-
robin fashion.

In addition, to monitor and log all the metrics of the auto-
scaling group, we have used Amazons EC2’s monitoring ser-
vice, CloudWatch [18]. The performance metrics are averaged
over all the VMs. We monitor and gather the performance
metric data for each VM number and for each auto-scaling
policy. For each of the policies shown in Table III, we generate
load and monitor our VMs on the Amazon EC2 cloud for 10
minutes. Then, we repeat this process 30 times for each auto-
scaling policy, resulting in 5 hours of data gathering per auto-
scaling policy we are validating, approximately. These samples
are then used to validate the verification results of our model.

B. Load profile

We generate two types of load in the VMs; a “periodic” and
an “aggressive” load pattern. The main reason for choosing a
periodic load pattern is because it is considered one of the
most popular workload types in cloud computing [19]. To
generate a periodic load we have used Apache JMeter [20],



0
2

5
5

0
7

5
1

0
0

0 1
0

2
0

Time (minutes)

C
P

U
 u

ti
lis

a
ti
o

n
 (

%
)

Fig. 5. Sample CPU utiilisation trace under “periodic” load.

1
.0

1
.5

2
.0

2
.5

3
.0

0 1
0

2
0

Time (minutes)

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Fig. 6. Sample response time trace under “periodic” load

2
0

4
0

6
0

8
0

1
0
0

0 1
0

2
0

Time (minutes)

C
P

U
 u

ti
lis

a
ti
o
n
 (

%
)

Fig. 7. Sample CPU utilisation trace under “aggressive” load.

2
3

4
5

6

0 1
0

2
0

Time (minutes)

R
e

s
p

o
n

s
e

 t
im

e
 (

s
e

c
s
)

Fig. 8. Sample response time trace under “aggressive” load

which is a professional open source tool for testing web-based
applications. Also, on top of Apache JMeter, we make use of
the Ultimate Thread Group [21] extension for Apache JMeter,
which gives us greater flexibility over the threads we are
creating. Specifically, we create 3 Ultimate thread groups and,
within each thread group, we start generating HTTP requests
from 1 thread, and then we gradually increase the number of
threads. Also, we keep the load duration of each thread for
approximately 200 seconds.

The second type of workload we are considering has a
greater degree of randomness, and our aim is to validate our
model against an aggressive load pattern, but with an inherent
degree of randomness. For this type of workload we make the
assumption that HTTP requests arrive according to a Poisson
process with exponentially distributed inter-arrival times.

In order to generate random variables to simulate the
workload, the inverse transform sampling method was used,
which is one of the most widely used sampling methods in
performance modelling. This method is relatively simple once
the CDF of the random variable X that is to be generated is
known, and the CDF of X can be inverted easily, which holds
in our case since the inter-arrival times of the HTTP requests
in 1 time unit are exponentially distributed, and the inverse
of the CDF of an exponential distribution has a closed-form
expression. The algorithm works as follows [22]:

1) Generate u ∈ U(0, 1)
2) Return X = F−1

X (u)

As a result, step 2 will return a realisation of a random
variable X from an exponential distribution. In our case, since
we assume 1 time unit, we keep generating exponentially
distributed random variables until their sum is 1. We run 1000
simulations and, after storing the results in a vector, we take
a sample size of 50 instances.

In Figures 5–8 we show a sample of a CPU utilisation, and
a response time trace under the two types of workload.

C. Results and model validation via ROC analysis

In this section, we give an overview of ROC analysis, and
how it fits our purpose of discriminating between auto-scaling
policies that could or could not result in a QoS violation. Our
PRISM model takes as an input an auto-scaling policy x, and
produces a continuous output which is a probabilistic estimate
denoting the probability that an auto-scaling policy will result
in a QoS violation/non-violation.

Effectively, we wish to find the mapping from x to a discrete
variable y ∈ {0, 1}, with 0 and 1 indicating the non-violation,
and violation cases, respectively. However, since the output
of the model is continuous (P (x = 1)), and the prediction
we want to make is binary, through ROC analysis we find a
threshold t such that if P (x = 1) ≥ t, then we predict that
y = 1, and if P (x = 1) < t, then we predict y = 0. We
choose t based on our optimality criterion which minimises
the Euclidean distance between the ROC curve and point (0,1).
Figures 9–12 show the ROC curves for CPU utilisation and
response time under the two load patterns. In Figure 9, for
example, the threshold t would be approximately 0.8.

However, it is important to note that what is considered
optimal varies according to the problem one is trying to
address, and the relative importance of missing, or increasing
true and false positives. This threshold acts now as a global
threshold, and based on that we compute the confusion matrix,
and the associated performance measures, where the predicted
outcome is determined by this threshold, and the actual values
are obtained through real measurements on the Amazon EC2
cloud.

For the ROC curves in Figures 9–12, we plot the diagonal
(red dashed line), which can be thought of as a baseline, which



would have been obtained by a random classifier, in order
to show how the AUC (Area Under Curve) extends over the
diagonal. AUC takes values between 0 and 1, with 1 indicating
a “perfect” classifier. For example, if the AUC = 0.5, this is
equivalent to a random classification model, and consequently
the further the AUC extends over this diagonal, the greater the
accuracy of the model.

For completeness, we also consider the MCC (Matthews
Correlation Coefficient) [23], despite the fact this is often
contrasted with AUC. MCC takes values between -1 and
+1, indicating a negative and positive correlation between
the predicted and the actual value. Below, we provide its
definition, along with several other performance measures
used to validate our model, in terms of the metrics from the
confusion matrix.

• ACC = (TP+TN)
(TP+FP+FN+TN) (overall accuracy of model)

• TPR = TP
(TP+FN) (true positive rate or sensitivity)

• TNR = TN
(FP+TN) (true negative rate or specificity)

• FPR = FP
(FP+TN) (false positive rate, 1 - specificity)

• FNR = FN
(FN+TP ) (false negative rate, 1 - sensitivity)

• MCC = TP×TN−FP×FN√
(TP+FP )(TP+FN)(TN+FP )(TN+FN)

In Tables IV and V, we show the results for these perfor-
mance measures.

TABLE IV
PERFORMANCE MEASURES FOR “PERIODIC” LOAD

Perf. metrics ACC TPR TNR FPR FNR MCC
CPU util 0.92 0.88 1 0 0.12 0.83
Resp. time 0.9 0.82 0.94 0.06 0.18 0.77

TABLE V
PERFORMANCE MEASURES FOR “AGGRESSIVE” LOAD

Perf. metrics ACC TPR TNR FPR FNR MCC
CPU util 0.91 0.98 0.65 0.35 0.02 0.7
Resp. time 0.96 0.97 0.93 0.07 0.03 0.86

VI. DISCUSSION OF RESULTS

Our model captures accurately enough the probability of
CPU utilisation and response time violations for the specific
auto-scaling policies that were shown in the previous section.
This can be seen from the AUC values for the auto-scaling
policies under the two types of load, as shown in Figures 9–12.
For auto-scaling policies which could result in CPU utilisation
violation, the AUC value is larger under the “periodic” load,
whereas for policies which could result in response time vio-
lations, the AUC is larger for the “aggressive” load. However,

for both of these cases, the AUC is high (> 0.8), which shows
the high accuracy of our model, under the thresholds [0..1],
for the two types of workload.

In Tables IV and V we show the validation results of
the model after picking a global threshold for each of the
four cases. For the auto-scaling policies verified under the
“periodic” load (Table IV), we note that the overall accu-
racy (ACC) is higher for CPU utilisation violation detection,
compared to response time. An important observation is that
TNR=1, which represents the fact that our model was able
to detect, without any error, auto-scaling policies that would
not result in CPU utilisation violation, and as a result there
were no misclassifications of auto-scaling policies which did
not cause a CPU utilisation violation in the 10 minute period.
Moreover, TPR=0.88 indicates that 88% of the auto-scaling
policies which did cause a CPU utilisation violation were
correctly identified as such. For the response time, despite
the fact that we see a marginal loss of 0.02 compared to the
CPU utilisation in the overall accuracy of the model, we note
that TPR and TNR achieve high values of 0.82 and 0.94,
respectively. However, we note an increase in the FNR by
0.06.

For the auto-scaling policies validated under the “aggres-
sive” workload (Table V), we note that the overall accuracy of
the model with respect to CPU utilisation violation detection
remains high (ACC=0.91). Furthermore, the increase in FPR
(0.35), compared to the “periodic” load, means that our model
flagged auto-scaling policies as CPU utilisation violators,
when in fact they were not. One of the possible causes of
this could have been the fact that our gathered CPU utilisation
traces contained too many violations, compared to the initial
gathered traces that were passed to k-means, in order to be
used in the state representation of our model. This effect is
due to the random nature of the load, and could potentially
indicate that more samples are required.

Another observation is the very small value of FNR (0.02),
which is considerably more important in our case, since the
effects of not flagging an auto-scaling policy as a possible
QoS violator could be more serious than the opposite scenario.
Finally, for both types of workload, MCC is ≥ 0.7 for both
CPU utilisation and response time, indicating a very strong
positive relationship between the policies our model flagged
as very likely to cause/not cause a violation, and the actual
outcome when these policies were evaluated in the VMs in
Amazon EC2 cloud. We consider the high value of MCC
(≥ 0.7) as particularly important since MCC is a balanced
measure of the quality of binary classifications, even in cases
of imbalanced data.

VII. RELATED WORK

Probabilistic model checking has been employed with great
success in recent years to verify and analyse properties of
systems that manifest varying degree of uncertainty. Domains
include automotive systems [24], security [25], biology [26]
and many others. Lately, there has been an increased interest
by researchers in applying probabilistic model checking to



Fig. 9. ROC curve for CPU util. viol. (“periodic” load) Fig. 10. ROC curve for resp. time viol. (“periodic” load)

Fig. 11. ROC curve for CPU util. viol. (“aggressive” load) Fig. 12. ROC curve for resp. time viol. (“aggressive” load)

cloud computing. The main reason is that, from whichever
perspective cloud computing is examined (e.g., IaaS, Paas,
SaaS layer), there is an inherent degree of uncertainty, and
there is a great need for this uncertainty to be quantitatively
analysed.

Over the last five years, there has been an active interest
from researchers in employing probabilistic model checking
in dealing with the resource provisioning problems in the
cloud. For instance, Fujitsu researchers [10] used probabilistic
model checking to verify the performance of live migrations
in the IaaS layer [10]. They assume that migration requests
are distributed in a uniform way, which is not necessarily true
in practice [27].

In addition, [4] proposed a Markov decision process model
developed with PRISM, among other models, in order to for-
mally verify different types of auto-scaling policies, including
rule-based, and as a result their work is characterised by
its breadth. The difference between our work and theirs is
that we focus exclusively on rule-based auto-scaling policies,
by developing one dedicated model (≈1000 lines of code)
to simulate the dynamics of the auto-scaling process. As a
result, we take a vertical in-depth approach in the auto-scaling
process, by considering a significant number of parameters that

occur in realistic cases.
Other work on the evaluation of auto-scaling policies,

not using probabilistic model checking, includes [28], which
proposed a performance metric for evaluating auto-scaling
policies, but it is not clear where their experiments were
conducted and to what extent their proposed metric can be
helpful in a realistic cloud setting. The other differentiating
factor in our work is that we perform an extensive validation
of our model on a major public cloud provider (Amazon EC2).
This means that we do not have, or assume, any type of control
on the underlying auto-scaling mechanisms or on the VM
provisioning methods and strategies employed by the cloud
provider, and through our model, we are trying to infer the
different outcomes that could happen. In general, however, we
note that the use of probabilistic model checking for pragmatic
use cases in the cloud is still at its infancy, and our research
hopes to make an advancement towards bridging this gap.

VIII. CONCLUSION AND FUTURE WORK

We presented a novel probabilistic verification scheme,
followed by an extensive and robust validation on VMs rented
on a major public cloud provider, Amazon EC2. This is, to the
best of our knowledge, the first in-depth study of auto-scaling



policies, which is conducted on a public cloud provider, and
not on a simulation toolkit or on a private cloud.

To this end, we have developed a Markov model using the
PRISM model checker, in order to capture the dynamics of the
auto-scaling process. This allowed us to compute probabilities
of CPU utilisation and response time violation for each auto-
scaling policy passed as an input to our model. Then, by using
ROC analysis we were able to refine our original estimates,
and find a global estimate which best represented a threshold
for differentiating between auto-scaling policies which could
be flagged as QoS violators or non-violators. Our experiments
show that our verification scheme can be of valuable assistance
to cloud application owners and system administrators in
formally configuring, and verifying the auto-scaling policies
of their applications/systems in the cloud.

In this work, we dealt mainly with the dynamics of an
auto-scaling policy by varying the increments and the initial
VMs in operation, as part of the controllable parameters. As
future work, we will analyse the effects of varying the other
controllable parameters of an auto-scaling policy, such as the
percentages of the scale-out and scale-in adjustments. Finally,
we will investigate further the temporal properties of the auto-
scaling process such as the time the application spends in an
overutilised versus an underutilised state.

ACKNOWLEDGMENT

The authors would like to thank the anonymous reviewers
for their helpful comments.

REFERENCES

[1] X. Dutreilh, A. Moreau, J. Malenfant, N. Rivierre, and I. Truck, “From
Data Center Resource Allocation to Control Theory and Back,” in 2010
IEEE 3rd International Conference on Cloud Computing, Jul. 2010, pp.
410–417.

[2] R. Han, L. Guo, M. M. Ghanem, and Y. Guo, “Lightweight Resource
Scaling for Cloud Applications,” in 2012 12th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGrid), May
2012, pp. 644–651.

[3] H. Ghanbari, B. Simmons, M. Litoiu, and G. Iszlai, “Exploring Al-
ternative Approaches to Implement an Elasticity Policy,” in 2011 IEEE
International Conference on Cloud Computing (CLOUD), Jul. 2011, pp.
716–723.

[4] A. Naskos, E. Stachtiari, A. Gounaris, P. Katsaros, D. Tsoumakos,
I. Konstantinou, and S. Sioutas, “Dependable Horizontal Scaling Based
on Probabilistic Model Checking,” in 2015 15th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing (CCGrid),
May 2015, pp. 31–40.

[5] M. Kwiatkowska, G. Norman, and D. Parker, “Stochastic Model Check-
ing,” in Proceedings of the 7th International Conference on Formal
Methods for Performance Evaluation, ser. SFM’07. Berlin, Heidelberg:
Springer-Verlag, 2007, pp. 220–270.

[6] ——, “PRISM 4.0: Verification of probabilistic real-time systems,” in
Proc. 23rd International Conference on Computer Aided Verification
(CAV’11), ser. LNCS, G. Gopalakrishnan and S. Qadeer, Eds., vol. 6806.
Springer, 2011, pp. 585–591.

[7] “Suporting material,” http://www.prismmodelchecker.org/files/ccgrid17/.

[8] T. Fawcett, “An Introduction to ROC Analysis,” Pattern Recogn. Lett.,
vol. 27, no. 8, pp. 861–874, Jun. 2006.

[9] W. J. Krzanowski and D. J. Hand, ROC Curves for Continuous Data,
1st ed. Chapman & Hall/CRC, 2009.

[10] S. Kikuchi and Y. Matsumoto, “Performance Modeling of Concurrent
Live Migration Operations in Cloud Computing Systems Using PRISM
Probabilistic Model Checker,” in 2011 IEEE International Conference
on Cloud Computing (CLOUD), Jul. 2011, pp. 49–56.

[11] H. Ghanbari, B. Simmons, M. Litoiu, C. Barna, and G. Iszlai, “Optimal
Autoscaling in a IaaS Cloud,” in Proceedings of the 9th International
Conference on Autonomic Computing, ser. ICAC ’12. New York, NY,
USA: ACM, 2012, pp. 173–178.

[12] L. M. Vaquero, L. Rodero-Merino, and R. Buyya, “Dynamically Scaling
Applications in the Cloud,” SIGCOMM Comput. Commun. Rev., vol. 41,
no. 1, pp. 45–52, Jan. 2011.

[13] V. Forejt, M. Kwiatkowska, G. Norman, and D. Parker, “Automated
verification techniques for probabilistic systems,” in Formal Methods for
Eternal Networked Software Systems (SFM’11), ser. LNCS, M. Bernardo
and V. Issarny, Eds., vol. 6659. Springer, 2011, pp. 53–113.

[14] H. Hansson and B. Jonsson, “A logic for reasoning about time and
reliability,” Formal Aspects of Computing, vol. 6, no. 5, pp. 512–535,
1994.

[15] C. Romesburg, Cluster Analysis for Researchers. Lulu Press, 2004.
[16] “Dynamic Scaling - Auto Scaling,” http://docs.aws.amazon.

com/autoscaling/latest/userguide/as-scale-based-on-demand.html#
as-scaling-adjustment, 2016.

[17] “GoogleCloudPlatform/python-docs-samples,” https://github.com/
GoogleCloudPlatform/python-docs-samples, 2016.

[18] “Amazon CloudWatch - Cloud & Network Monitoring Services,” https:
//aws.amazon.com/cloudwatch/, 2016.

[19] B. Furht, “Cloud Computing Fundamentals,” in Handbook of Cloud
Computing, B. Furht and A. Escalante, Eds. Springer US, 2010, pp.
3–19.

[20] “Apache JMeter - Apache JMeterTM,” http://jmeter.apache.org/, 2016.
[21] “JMeter-Plugin,” https://jmeter-plugins.org/wiki/UltimateThreadGroup/,

2016.
[22] M. Harchol-Balter, Performance Modeling and Design of Computer

Systems: Queueing Theory in Action, 1st ed. New York, NY, USA:
Cambridge University Press, 2013.

[23] B. W. Matthews, “Comparison of the predicted and observed secondary
structure of T4 phage lysozyme,” Biochimica Et Biophysica Acta, vol.
405, no. 2, pp. 442–451, Oct. 1975.

[24] H. Aljazzar, M. Fischer, L. Grunske, M. Kuntz, F. Leitner-Fischer, and
S. Leue, “Safety Analysis of an Airbag System Using Probabilistic
FMEA and Probabilistic Counterexamples,” in Proceedings of the 2009
Sixth International Conference on the Quantitative Evaluation of Sys-
tems, ser. QEST ’09. Washington, DC, USA: IEEE Computer Society,
2009, pp. 299–308.

[25] V. Shmatikov, “Probabilistic Analysis of an Anonymity System,” J.
Comput. Secur., vol. 12, no. 3,4, pp. 355–377, May 2004.

[26] J. Heath, M. Kwiatkowska, G. Norman, D. Parker, and O. Tymchyshyn,
“Probabilistic Model Checking of Complex Biological Pathways,” in
Computational Methods in Systems Biology, ser. Lecture Notes in
Computer Science, C. Priami, Ed. Springer Berlin Heidelberg, Oct.
2006, no. 4210, pp. 32–47.

[27] V. A. d. S. Júnior and S. Tahar, “Time Performance Formal Evaluation of
Complex Systems,” in Formal Methods: Foundations and Applications,
ser. Lecture Notes in Computer Science, M. Cornélio and B. Roscoe,
Eds. Springer International Publishing, Sep. 2015, pp. 162–177.

[28] M. A. S. Netto, C. Cardonha, R. L. F. Cunha, and M. D. Assuncao,
“Evaluating Auto-scaling Strategies for Cloud Computing Environ-
ments,” in 2014 IEEE 22nd International Symposium on Modelling,
Analysis Simulation of Computer and Telecommunication Systems, Sep.
2014, pp. 187–196.

http://www.prismmodelchecker.org/files/ccgrid17/
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html#as-scaling-adjustment
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html#as-scaling-adjustment
http://docs.aws.amazon.com/autoscaling/latest/userguide/as-scale-based-on-demand.html#as-scaling-adjustment
https://github.com/GoogleCloudPlatform/python-docs-samples
https://github.com/GoogleCloudPlatform/python-docs-samples
https://aws.amazon.com/cloudwatch/
https://aws.amazon.com/cloudwatch/
http://jmeter.apache.org/
https://jmeter-plugins.org/wiki/UltimateThreadGroup/

