

Performance modelling for system-level design

Citation for published version (APA):
Theelen, B. D. (2004). Performance modelling for system-level design. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR581220

DOI:
10.6100/IR581220

Document status and date:
Published: 01/01/2004

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 23. Aug. 2022

https://doi.org/10.6100/IR581220
https://doi.org/10.6100/IR581220
https://research.tue.nl/en/publications/bf6fd370-d8d9-4714-9d78-29b39ad5e845

Performance Modelling

for

System-Level Design

PROEFSCHRIFT

ter verkrijging van de graad van doctor aan de
Technische Universiteit Eindhoven, op gezag van
de Rector Magnificus, prof.dr. R.A. van Santen,

voor een commissie aangewezen door het College
voor Promoties in het openbaar te verdedigen op

donderdag 25 november 2004 om 16.00 uur

door

Bartholomeus Desiderius Theelen

geboren te Heerlen

Dit proefschrift is goedgekeurd door de promotoren:

prof.ir. M.P.J. Stevens, prof.dr.ir R.H.J.M. Otten

en

prof.dr. H. Corporaal

Copromotor:

dr.ir. J.P.M. Voeten

c© Copyright 2004 B.D. Theelen

All rights reserved. No part of this publication may be reproduced, stored in a re-
trieval system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording, or otherwise, without the prior written permission from
the copyright owner.

Cover design: R.W.C. Theelen

Printed by: Universiteitsdrukkerij Technische Universiteit Eindhoven

CIP-DATA LIBRARY TECHNISCHE UNIVERSITEIT EINDHOVEN

Theelen, Bartholomeus D.

Performance Modelling for System-Level Design / by Bartholomeus Desiderius
Theelen. - Eindhoven : Technische Universiteit Eindhoven, 2004.

Proefschrift. - ISBN 90-386-1633-3

NUR 992

Trefw.: systeemanalyse / ingebedde systemen / object-georienteerd modelleren /
Markov-ketens / stochastische simulatie.

Subject headings: performance evaluation / hardware-software codesign /
modelling / Markov processes / discrete event simulation.

Summary

Industry faces the challenge of designing hardware/software systems of increasing
complexity within ever-shortening design times. Commonly, the design process in-
volves the consideration of several design alternatives for realising the desired func-
tionality. Early in the design process, the choice for a specific design alternative may
have a deep impact on the performance of the final implementation. To assist the
designer in taking well-founded design decisions, system-level design methods can
be applied. System-level design methods are frameworks for structuring the earliest
phases of the design process with the intention to find a feasible design within min-
imal time. They focus on constructing models that allow the analysis of functional
and non-functional properties before actually realising the system in hardware and
software. This thesis contributes to developing such a system-level design method
and focuses on aspects of performance modelling and performance evaluation.

Markov chains are mathematical structures for which classical techniques exist that
allow both analytical computation and simulation-based estimation of long-run av-
erage performance metrics. These techniques are however not directly applicable
to more common performance metrics, which requires taking the occurrence of a
certain event into account. The reduction technique proposed in this thesis allows
evaluating conditional long-run averages based on applying the classical techniques
to a reduced version of the Markov chain that formalises the behaviour of a sys-
tem. An important advantage of using the reduction technique is that performance
evaluation speed is improved considerably in case of simulation-based estimation.

Many performance metrics for industrial hardware/software systems concern al-
gebraic combinations of several long-run averages. Both analytical computation
and simulation-based estimation of such complex long-run averages can be accom-
plished by first evaluating the constituent long-run averages and then combining
their results. For the case of simulation-based estimation, this thesis proposes an
algebra of Confidence Intervals that also allows analysing the accuracy of point es-
timates for complex long-run averages. This algebra is an alternative to the compli-
cated process of directly deriving point estimators for complex long-run averages.

Although Markov chains form a suitable basis for evaluating performance proper-
ties, their construction does not match with the compositional way designers reason
about the working of hardware/software systems. System-level design methods use
expressive modelling languages such as the Parallel Object-Oriented Specification
Language (POOSL) to construct models. A prerequisite for obtaining credible per-
formance results based on models developed with a modelling language is that the

ii

models are amenable to Markov-chain based performance analysis techniques. The
semantics of a POOSL model defines a probabilistic timed labelled transition system,
which can be transformed into a Markov chain. Based on this result, a framework
for reflexive performance analysis with POOSL is proposed, which involves extend-
ing a POOSL model with additional variables and behaviour to define performance
monitors. By simulating the extended model, such performance monitors enable
reasoning about the behaviour of the system, which is specified in that same model.

Although the framework for reflexive performance analysis provides a sound basis
for obtaining credible performance results, a practical problem arises when apply-
ing the Markov-chain based performance analysis techniques for simulation-based
estimation. The problem is related to the requirement of identifying a recurrent state
of the system. Checking whether the currently visited state is equal to a previously
visited state commonly requires too much compute time. Two different solutions
are proposed. The first utilises knowledge that a designer may have about the re-
occurrence of a starting point in the local behaviour of a component. The second
is more generally applicable and matches a commonly used approach for simula-
tion. Based on these approaches, POOSL library classes have been developed, which
assist in defining performance monitors for (complex) long-run averages. They al-
low user-friendly application of the proposed mathematical techniques for accuracy
analysis and contribute to obtaining credible performance results.

Originally, POOSL was introduced for the Software/Hardware Engineering (SHE)
method. This system-level design method is extended in this thesis with guide-
lines for performance modelling. Performance modelling with SHE is structured
in three stages. In the formulation stage, the concepts and requirements for a system
are documented with various diagrams expressed in the Unified Modelling Lan-
guage (UML). These diagrams comply with an intuitively applicable UML profile
for SHE. This UML profile facilitates utilisation of POOSL in the formalisation stage,
where the UML diagrams are unified into an executable POOSL model. Several
useful modelling patterns are presented, which focus on making adequate abstrac-
tions with respect to performance properties. In addition, guidelines are provided
for utilising the POOSL library classes for accuracy analysis. These guidelines as-
sist in extending a POOSL model with performance monitors in accordance with the
performance properties that are to be evaluated. In the evaluation stage, the actual
evaluation of the performance properties is performed. The obtained analysis re-
sults then enable to judge whether the proposed concepts for realising the desired
functionality satisfy the performance requirements.

The applicability of the proposed techniques and performance modelling framework
has been investigated with several case studies. Two of them are briefly discussed
in this thesis. The first was performed in cooperation with Alcatel Bell Antwerp
and concerns the performance modelling of an Internet Router. The second is con-
cerned with the performance modelling of a network processor and was performed
in cooperation with IBM Research Laboratory Zürich. These case studies have pro-
vided valuable experiences with the proposed performance modelling framework
and proved its suitability for analysing the performance of very complex systems.

Samenvatting

De industrie staat voor de uitdaging hardware/software systemen van toenemende
complexiteit te ontwerpen in steeds kortere ontwerptijd. Tijdens het ontwerpproces
worden gewoonlijk verschillende ontwerpalternatieven voor het realiseren van de
gewenste functionaliteit tegen elkaar afgewogen. De keuze voor een bepaald ont-
werpalternatief, welke vroeg in het ontwerpproces wordt genomen, kan een grote
invloed hebben op de uiteindelijke prestatie van het systeem. Om de ontwerper te
ondersteunen in het nemen van weloverwogen ontwerpbeslissingen kunnen
systeemniveau ontwerpmethoden worden toegepast. Dit zijn raamwerken om de
vroegste fasen van het ontwerpproces te structureren met als doel een geschikt ont-
werp te vinden in minimale tijd. Zulke ontwerpmethoden concentreren zich op
de ontwikkeling van modellen waarmee functionele en niet-functionele eigenschap-
pen kunnen worden geanalyseerd voordat het systeem wordt gerealiseerd in hard-
ware en software. Dit proefschrift draagt bij aan de ontwikkeling van een dergelijke
systeemniveau ontwerpmethode en concentreert zich op aspecten omtrent het ont-
wikkelen van modellen voor prestatieanalyse en de prestatieanalyse zelve.

Markov ketens zijn wiskundige structuren waarvoor klassieke technieken bestaan
om lange-termijn gemiddelden zowel analytisch te berekenen als te schatten met be-
hulp van simulatie. Deze technieken zijn echter niet direct toepasbaar voor de meer
gebruikelijke vorm van prestatiemetrieken waarbij rekening moet worden gehouden
met het optreden van een bepaalde gebeurtenis. Dit proefschrift introduceert een
reductietechniek die het mogelijk maakt om conditionele lange-termijn gemiddelden
te evalueren door het toepassen van de klassieke technieken op een gereduceerde
versie van de Markov keten die het gedrag van een systeem formaliseert. Een be-
langrijk voordeel van deze techniek is een sterke afname van de tijd die nodig is voor
het schatten van prestatiemetrieken met behulp van simulatie.

Veel prestatiemetrieken voor industriële hardware/software systemen bestaan uit
een algebraı̈sche combinatie van verschillende conditionele lange-termijn gemiddel-
den. Zowel analytische berekening als het schatten met behulp van simulatie van
zulke complexe lange-termijn gemiddelden kan worden uitgevoerd door eerst de
individuele conditionele lange-termijn gemiddelden separaat te bepalen en dan de
resultaten te combineren. Voor het geval van simulatie maakt de in dit proefschrift
geı̈ntroduceerde algebra van Betrouwbaarheidsintervallen het nu ook mogelijk om
de nauwkeurigheid van puntschattingen voor complexe lange-termijn gemiddelden
te analyseren. Deze algebra is een alternatief voor het ingewikkelde process van het
direct afleiden van puntschatters voor complexe lange-termijn gemiddelden.

iv

Hoewel Markov ketens een geschikte basis vormen voor het evalueren van prestatie-
eigenschappen, komt de manier waarop ze gespecificeerd moeten worden niet over-
een met de compositionele manier waarop ontwerpers redeneren over de werk-
ing van systemen. Systeemniveau ontwerpmethoden gebruiken expressieve mo-
delleertalen zoals de Parallel Object-Oriented Specification Language (POOSL) om
modellen te ontwikkelen. Een voorwaarde om betrouwbare prestatieresultaten te
krijgen bij het gebruik van een modelleertaal, is dat de ontwikkelde modellen ge-
schikt zijn voor het toepassen van prestatieanalysetechnieken die op Markov ketens
zijn gebaseerd. De semantiek van een POOSL model definieert een door stocha-
sticiteit en tijd gekenmerkt transitiesysteem, dat kan worden omgezet in een Markov
keten. Op basis van dit resultaat wordt een raamwerk voor reflexieve prestatieana-
lyse met POOSL geı̈ntroduceerd. Dit raamwerk gaat uit van het uitbreiden van een
POOSL model met extra variabelen en gedrag om prestatiemonitoren te definiëren.
Door het uitgebreide model te simuleren, kunnen de prestatiemonitoren uitspraken
doen over het gedrag van het systeem dat in datzelfde model is gespecificeerd.

Alhoewel het raamwerk voor reflexieve prestatieanalyse een goede basis is voor het
verkrijgen van betrouwbare prestatieresultaten, is er een praktisch probleem in het
geval van schatting met behulp van simulatie. Het probleem betreft de noodzaak
om een toestand te identificeren waarin het systeem terugkeert. Het kost vaak te
veel rekentijd om gedurende een simulatie te bepalen of de huidig bezochte toestand
gelijk is aan een eerder bezochte toestand. Er worden twee oplossingen voorgesteld.
De eerste maakt gebruik van kennis die een ontwerper heeft over een terugkerend
startpunt in het lokale gedrag van een component. De tweede oplossing is meer
generiek toepasbaar en komt overeen met een aanpak die veelal wordt gebruikt voor
simulatie. Op basis hiervan zijn POOSL bibliotheekklassen ontwikkeld die de ont-
werper assisteren in het definiëren van prestatiemonitoren voor (complexe) lange-
termijn gemiddelden. Deze klassen maken een gebruiksvriendelijke toepassing van
de voorgestelde wiskundige technieken voor nauwkeurigheidsanalyse mogelijk en
dragen bij tot het verkrijgen van betrouwbare prestatieresultaten.

POOSL is oorspronkelijk geı̈ntroduceerd voor de Software/Hardware Engineering
(SHE) methode. Dit proefschrift breidt deze systeemniveau ontwerpmethode uit
met richtlijnen voor het ontwikkelen van modellen voor prestatieanalyse. SHE struc-
tureert de ontwikkeling van zulke modellen in drie fasen. In de formulatie fase wor-
den de concepten en eisen voor een systeem gedocumenteerd met verschillende dia-
grammen die uitgedrukt worden in de Unified Modelling Language (UML). Deze
diagrammen zijn in overeenstemming met een intuı̈tief UML profiel voor SHE. Dit
UML profiel vergemakkelijkt het gebruik van POOSL in de formalisatie fase, waarin
de UML diagrammen verenigd worden tot een uitvoerbaar POOSL model. Dit proef-
schrift reikt een aantal praktische modelleerpatronen aan die nadruk leggen op het
maken van adequate abstracties met betrekking tot prestatie-eigenschappen. Daar-
naast worden richtlijnen gegeven voor het gebruik van de POOSL bibliotheekklassen
voor nauwkeurigheidsanalyse. Deze richtlijnen assisteren in het uitbreiden van een
POOSL model met prestatiemonitoren. De daadwerkelijke evaluatie van prestatie-
eigenschappen vindt plaats in de evaluatie fase. De resultaten daarvan onderbou-
wen de beoordeling of de voorgestelde concepten voor het realiseren van de gewen-
ste functionaliteit leiden tot een systeem dat voldoet aan de prestatie-eisen.

De toepasbaarheid van de besproken technieken en het raamwerk voor het ontwik-

v

kelen van modellen voor prestatieanalyse is onderzocht met een aantal casussen. Dit
proefschrift beschrijft twee daarvan in meer detail. De eerste casus is uitgevoerd in
samenwerking met Alcatel Bell in Antwerpen en betreft de prestatieanalyse van een
Internet Router. De tweede casus betreft de prestatieanalyse van een netwerkproces-
sor en is uitgevoerd in samenwerking met IBM Research Laboratory in Zürich. De
casussen hebben de geschiktheid aangetoond van de in dit proefschrift geı̈ntrodu-
ceerde theoriën voor het analyseren van de prestatie van zeer complexe systemen.

vi

Acknowledgement

Completing my PhD project with writing this thesis would not have been possible
without the support of my supervisors, many colleagues, friends and my family.

First of all, I would like to thank my first promotor Mario Stevens for giving me
the opportunity to perform research in a very enthusiastic research group. Unfortu-
nately, doctors diagnosed a terminal disease about three and a half months before
my PhD defence. Although he still tried to support me in finishing this thesis, his
condition rapidly declined. On 17 September 2004, he died at the age of 60. My
colleagues and I miss his joyful conversations and his great enthusiasm in working
with young people. I wish his family strength in dealing with the loss of a great
husband, father and grandfather.

Next to Mario Stevens, my PhD project was supported by Ad Verschueren, Jeroen
Voeten and Piet van der Putten. I am thankful to all of them for the many use-
ful suggestions they gave. Especially the discussions with Jeroen Voeten were very
inspiring and I am really grateful for being coached by him. His enthusiasm and
ingeniousness helped a lot in solving many of the theoretical issues. Furthermore, I
thank Marc Geilen, Leo van Bokhoven, Frank van Wijk and Mark Verhappen for the
many discussions we had on all kinds of topics that are more or less related to this
thesis. I also thank Marc Geilen and especially Leo van Bokhoven for further devel-
oping the SHESim and Rotalumis tools based on the requirements for my project.
Rian van Gaalen is thanked for her support as secretary of our research group.

I thank Mario Stevens, Jeroen Voeten, Piet van der Putten for their efforts to arrange
the case studies performed in cooperation with Alcatel Bell and IBM Research Labo-
ratory. These case studies profoundly contributed to the identification of theoretical
deficiencies of classic performance analysis techniques and helped in focussing on
the applicability of the solutions proposed in this thesis. I would like to thank Alex
Niemegeers from Alcatel Bell and Gjalt de Jong, who is now affiliated to Research
in Motion, for granting the case studies on the Internet Router and Dataflow System
and for explaining the working of these system. From IBM Research Laboratory, I
owe gratitude to Ton Engbersen, Patricia Sagmeister and Andreas Herkersdorf (who
is now at the University of Munich) for their support in the Network Processor case
study. It was really interesting to share experiences with people from industry.

The last part of my PhD project was funded by PROGRESS through the ”Mod-
elling and Performance Analysis of Telecommunication Systems” project. Within
this project, I worked together with Zhangqin Huang, Ana Sokolova and Erik de
Vink. I thank them for the discussions on both practical and theoretical topics. Fur-

viii

thermore, I thank Jinfeng Huang, who worked on a related PROGRESS project, for
his interest in my work and for the discussions we had. Thanks go to two of my mas-
ter students, Arjan van Ewijk and Rene Kramer, for their assistance in developing the
performance models of the Dataflow System and Network Processor respectively.

The sudden death of Mario Stevens had impact on the final stages of my PhD project
and caused some delay. I thank Ralph Otten for his immediate decision to take care
and for his willingness to succeed Mario Stevens as my first promotor. I am really
grateful to the members of the reading committee including Henk Corporaal, Jeroen
Voeten, Onno Boxma and Andreas Herkersdorf for their willingness to sacrifice their
leisure time in order to read and judge the final draft of this thesis. I thank the
other committee members Martin Rem, Hans de Stigter and Johan Lukkien for their
interest in my work and for the discussions we had.

Finally, I would like to thank my family and all my friends for their mental support.
I am grateful to the Limburgse Mini Freaks for being patience with me when I did
not spend the time that I should have spent in my task as the club’s secretary.

Bart Theelen, September 2004

The research presented in this thesis is partly supported by PROGRESS, the
Program for Research on Embedded Systems and Software of the Dutch

organisation for Scientific Research NWO, the Dutch Ministry of Economic Affairs
and the Technology Foundation STW through the funding of project EES.5202

”Modelling and Performance Analysis of Telecommunication Systems”

Contents

Summary i

Samenvatting iii

Acknowledgement vii

1 Introduction 1

1.1 Design of Hardware/Software Systems 2

1.1.1 System-Level Design . 2

1.1.2 Exploring Design Alternatives 3

1.1.3 Performance Modelling . 5

1.2 On Formalisms, Techniques, Methods and Tools 6

1.2.1 Modelling Languages . 7

1.2.2 Property Specification Languages 8

1.2.3 Performance Analysis Techniques 10

1.2.4 System-Level Design Methods 11

1.2.5 Design Tools . 12

1.3 Objectives and Contributions . 13

1.4 Thesis Overview . 15

2 Mathematical Techniques for Performance Evaluation 17

2.1 Performance Evaluation with Markov Chains 18

2.1.1 Markov Chains . 18

2.1.2 State Classification . 22

2.1.3 Classical Performance Analysis Techniques 23

2.2 Evaluating Conditional Long-Run Sample Averages 30

2.2.1 Markov Chain Reduction . 30

2.2.2 Preservation of Performance Results 34

2.2.3 Reduction and Analytical Computation 38

2.2.4 Simulation-Based Estimation . 44

2.2.5 Related Research . 47

x Contents

2.3 Accuracy Analysis of Complex Long-Run Averages 48

2.3.1 Common Complex Long-Run Averages 49

2.3.2 Algebra of Confidence Intervals 52

2.3.3 Related Research . 57

2.4 Conclusions . 58

3 Reflexive Performance Analysis with POOSL 61

3.1 Framework for Reflexive Performance Analysis 62

3.1.1 Specifying Markov Chains . 62

3.1.2 Defining Reward Functions . 71

3.1.3 Related Research . 73

3.2 Approximation of Recurrence Condition 75

3.2.1 Exploiting Local Recurrence . 76

3.2.2 Batch-Means Approach . 79

3.2.3 Related Research . 81

3.3 Performance Monitors . 82

3.3.1 Library Classes for Accuracy Analysis 82

3.3.2 On Tool Extensions . 92

3.4 Quality Assessment . 93

3.4.1 Experiment . 93

3.4.2 Results . 96

3.5 Conclusions . 99

4 Extending the SHE Method for Performance Modelling 103

4.1 Exploring Design Alternatives with SHE 104

4.1.1 Formulation, Formalisation and Evaluation 104

4.1.2 Discussion . 107

4.2 UML Profile for SHE . 109

4.2.1 Data, Process and Cluster Classes 110

4.2.2 Behaviour of Objects . 112

4.3 Performance Modelling with POOSL . 116

4.3.1 Modelling Patterns . 117

4.3.2 Extending Models for Performance Analysis 133

4.3.3 Model Validation . 137

4.3.4 Related Research . 140

4.4 Conclusions . 141

5 Case Studies 145

5.1 Internet Router . 146

5.2 Network Processor . 158

5.3 Conclusions . 164

Contents xi

6 Conclusions 165

6.1 Contributions . 165

6.2 Future Research . 168

A Mathematical Preliminaries 169

A.1 Sets, Functions, Operations and Algebras 169

A.2 Probability . 171

A.3 Random Variables . 172

A.4 Stochastic Processes . 173

A.5 Estimation of Expectation and Variance 175

B Parallel Object-Oriented Specification Language 177

B.1 Syntax . 177

B.2 Semantics . 182

B.3 Tool Support . 184

Bibliography 189

Glossary of Symbols 203

Index 205

Curriculum Vitae 207

xii Contents

Chapter 1

Introduction

Hardware/software systems have become an essential backbone of human society.
Well-known examples are telecommunication systems like telephony systems and
computer networks allowing more and more people to communicate, automated
control systems improving the efficiency of machinery, monitoring systems that ob-
serve the status of patients in a hospital and multi-media systems enhancing our
ways of entertainment. The increasing amount of functionality that is to be per-
formed by such systems with more stringent performance requirements has made
their design an extremely complex task. Distributing functionality over a larger and
often more heterogeneous set of components and a higher degree of dynamism in
the data that is to be processed are examples of aspects causing an increasing diffi-
culty in understanding and specifying the desired behaviour of a system. In order to
remain competitive, industry faces the challenge of managing this difficulty within
ever-shortening design times.

The growing design complexity, the increasing implementation costs, and the time-
to-market imperative have urged the need for frameworks that structure and largely
automate the design process. Such design methods intend to eliminate the risk of
expensive design/implementation iterations by assisting designers in constructing
models. A model enables to analyse the properties of a proposed design solution for
a system before actually realising it in hardware and software. Based on evaluation
results obtained for alternative design solutions, it can be decided which solution
will serve as a basis for realising the system. Working out a design solution into a
complete implementation with hardware and software, which then turns out not to
have the desired performance, can bankrupt a company these days [148].

This thesis contributes to the development of a design method that allows the assess-
ment of alternative concepts for realising a system during the earliest phases of its
design. Particular focus is on the area of performance modelling, which concerns the
construction of models for the purpose of evaluating performance properties. The
next section introduces the problem domain of designing hardware/software sys-
tems in more detail and section 1.2 identifies several aspects that are to be considered
when developing design methods. Section 1.3 elaborates on the issues addressed in
this thesis, while an overview of the thesis structure is given in section 1.4.

2 Introduction

1.1 Design of Hardware/Software Systems

The trajectory from product idea to tangible system involves the development of a
desirable but a priori unknown realisation based on an initial specification. Such a
specification prescribes in a comprehensible, precise and verifiable way the require-
ments for a system, its functional behaviour and other characteristics [86]. Often, a
number of alternative solutions can be proposed for realising the desired function-
ality. Such design alternatives may differ in various ways, ranging from differently
partitioning the system in components to using other algorithms for performing a
certain functionality. Also, other values for system parameters like the size of a mem-
ory or the bandwidth of a communication medium imply different design alterna-
tives. The virtually unlimited number of all possible design alternatives that can be
realised with known technology is usually referred to as the design space.

Only a limited number of designs in the design space can satisfy all requirements
for a system. These include functional and non-functional requirements. Functional
requirements concern the correctness of the behaviour exposed by a system. An
example of a desirable correctness property is the absence of deadlock. Not succeed-
ing in meeting functional requirements may result in failures. A design is said to be
correct if it satisfies all functional requirements. Non-functional requirements are re-
lated to the remaining characteristics of a system. Examples are cost, maintainability
and performance properties like latency and throughput. A correct design that also
satisfies all non-functional requirements will be called a feasible design. The design
process can be described as the search for a feasible design. The next sections outline
how this search can be structured and indicate the role of performance modelling.

1.1.1 System-Level Design

A common approach for managing the complexity of designing hardware/software
systems is to distinguish a number of design phases. Consecutive design phases
focus on refining the amount of detail with which the question of how to realise the
specified functionality such that the desired non-functional properties are satisfied is
answered. It is also common to say that the level of abstraction from implementation
details decreases. The relation between design phases and levels of abstraction is
often explicitly indicated by using the term design level instead of design phase.

At each design level, several options can be considered for adding details on how
to realise certain functionality. This implies the need for exploring design alterna-
tives and deciding which one most likely leads to satisfying the requirements (in an
optimal way). Figure 1.1 shows a 3D-version of the abstraction pyramid originally
introduced in [110]. It illustrates how design decisions taken at consecutive levels may
lead from the initial specification for a system to its realisation. The main concepts
for realising the functionality thought of when starting from the initial specification
immediately restrict the number of designs that can result from the design process.
This is because certain designs are based on main concepts that are not considered
during the first level. Decisions taken during consecutive levels continue to restrict
the number of possible resulting designs until a single realisation is found.

Design decisions taken earlier in the design process have in general a bigger impact

Design of Hardware/Software Systems 3

D e s i g n S p a c e

C o r r e c t D e s i g n s

F e a s i b l e D e s i g n s

D
e
s
ig
n
 T
im

e

I n i t i a l S p e c i f i c a t i o n

L
o
w

 L
e
v
e
l
o
f
A
b
s
tr
a
c
ti
o
n

H
ig
h

L
o
w

 I
m
p
a
c
t
o
f
D
e
s
ig
n
 D
e
c
is
io
n
s

H
ig
h

F i n a l R e a l i s a t i o n

Figure 1.1: Exploring alternatives and taking decisions at different design levels.

on the properties of the final realisation than those taken during later phases [138].
For example, wrongly choosing between concepts like a bus-based architecture or
a switch-based architecture when designing a router for some communication sys-
tem can have more serious consequences in not satisfying the performance or cost
requirements compared to choosing wrong physical dimensions of the system’s out-
put connectors. One reason for the high impact of wrong design decisions made at
higher levels is that a higher reduction in the number of possible resulting designs
is obtained due to these early decisions. Notice also that in case a wrong decision
is made, there may be no feasible designs attainable anymore. Correction of these
design errors is particularly expensive when they occurred early in the design process
and remain undetected until later design phases [131]. This is due to the necessity of
redoing (parts of) the design steps performed after taking the wrong decision.

This thesis concentrates on system-level design, which is an umbrella term for the
earliest design phases. System-level design is concerned with developing the main
concepts for a system and with evaluating whether these concepts will lead to the
satisfaction of all requirements. Structured approaches for performing system-level
design are of utmost importance for tackling the difficulty of making the right deci-
sions during the earliest design phases and hence, for minimising design time.

1.1.2 Exploring Design Alternatives

Each design phase involves developing one or more alternatives for realising cer-
tain functionality. To investigate the feasibility of design alternatives, models can
be used. A model is an approximate or abstract representation of a system, which is

4 Introduction

C o n c e p t s & R e q u i r e m e n t s

M o d e l s o f D e s i g n A l t e r n a t i v e s

D e s i g n D e c i s i o n s

E x p l o r a t i o n R e s u l t s

V
a
lid
a
tio

n

R e f i n e m e n t o f S p e c i f i c a t i o n

I n t e r p r e t a t i o n

Im
p
ro
v
e
m
e
n
ts
 R

e
q
u
ire

d

M o d e l l i n g

P r o p e r t y E v a l u a t i o n

Figure 1.2: Exploring design alternatives based on models.

intended for the analysis of certain properties [177]. Hence, models allow investigat-
ing the implications of new ideas before actually realising the system according to
these ideas. The evaluation results obtained based on models enable to judge what
design alternative satisfies the requirements (in an optimal way).

A general approach for structuring the development of design alternatives and eval-
uating their properties based on models is shown in figure 1.2. Starting from some
specification of the desired functionality, designers may come up with several con-
cepts for realising this functionality such that the specified requirements are expected
to be satisfied. To investigate whether the effects of the proposed concepts are indeed
as expected, models are developed. The construction of models during the design
process inherently involves making abstractions from implementation details since
these details cannot be known in advance. Hence, modelling involves checking the
adequacy of such abstractions in order to become convinced that those details that
are thought to be essential for investigating the properties of interest are captured
by a model. Moreover, a model must be validated against the proposed concepts for
realising the specified functionality to ensure that they are adequately represented.

After evaluating the properties of interest, interpretation of the exploration results
allows properly founding design decisions. In case all requirements are satisfied for
certain design alternatives, these alternatives may serve as a basis for realising the
system. A specific alternative may be favourable if it satisfies the requirements in a
better way compared to other alternatives. Choosing for a feasible alternative leads
to refining the design. However, if not all requirements are met, improvements for
the proposed concepts are required or other concepts need to be thought of. In this
case, certain steps in the involved design phase need to be redone, see also figure 1.2.

Design of Hardware/Software Systems 5

This thesis focuses on developing a framework for structuring the exploration of de-
sign alternatives during system-level design. Generally, the actual modelling of such
alternatives and the evaluation of their properties is less time consuming at higher
levels than at lower levels. This originates from the smaller number of implementa-
tion details that are taken into account during higher levels when developing models
and evaluating properties. Although such abstraction is indispensable for handling
the system’s complexity, it also causes system-level design to be very difficult since
the designer must be convinced that the used abstractions are adequate.

1.1.3 Performance Modelling

Models are intended for investigating only specific aspects of a system. The con-
struction of models for the evaluation of performance properties is called performance
modelling. The actual assessment of performance properties is known as performance
evaluation or performance analysis. Although performance analysis is sometimes
considered to be a part of verifying that a system has certain desirable properties,
the term verification will be primarily used in the context of evaluating correctness
properties. This thesis focuses on performance modelling for system-level design
and the accompanying evaluation of performance properties. An illustrative perfor-
mance modelling example is given below.

Example 1.1 Consider the example of figure 1.3, where N Internet-traffic sources send pack-
ets independently from each other to a shared buffer in a telecommunication system. The total
bandwidth B for receiving packets into the buffer is fixed by the environment in which the
telecommunication system will operate. The bandwidth for removing packets from the buffer,
which is a factor M larger than B, is a parameter of the system and its value depends on the
used implementation technology. The size S of the buffer is also a parameter and the design
task is to find a feasible combination of M and S such that the probability of loosing a packet
(which occurs in case the buffer is full) is smaller than a certain bound p without implying a
too costly implementation (which might for example be the case if M is much larger than 1).

N = Number of Sources

B = Input Bandwidth

S = Buffer Size

M = Output Bandwidth Factor

w

i

 = Weight Factor for Source i due to Arbitration Mechanism

Source 1

Source 2

Source N

Independent bursts of

variable-size packets

Bandwidth for

individual connections

w

1

·
B

w

2

·
B

w

N

·
B

Buffer

S

M
·
B

Figure 1.3: Buffering packets from independent Internet-traffic sources.

Experienced designers will recognise that implementing the shared buffer requires using some
arbitration mechanism (a weighted round robin scheduler for example). Such an arbitration

6 Introduction

mechanism determines the order in which the sources access the buffer for storing a certain
amount of data. The implementation of the arbitration mechanism accomplishes this by as-
signing a number of access time-slots to each source, which corresponds to the weight factor
for that source. The effect is that bandwidth B is subdivided into bandwidths for the indi-
vidual connections. During system-level design, the exact details of how and in what order
access time-slots are assigned is of less importance for analysing whether the loss probability
is smaller than p. What is essential are the weights for subdividing B. Decisions on the
exact implementation of the arbitration mechanism should be postponed until designing the
buffer in more detail. To evaluate the loss probability for alternative combinations of M and
S, a performance model can be developed that takes the weight factors for subdividing B into
account without the necessity of specifying how this is accomplished (example 4.4 on page
126 illustrates how such a model may look like). Possibly, the evaluation results reveal that
different combinations of M and S will satisfy the performance requirements. After deciding
which combination will be used as a starting point for realising the system, the exact details
of how the arbitration mechanism subdivides B can be defined in a next design phase.

1.2 On Formalisms, Techniques, Methods and Tools

This thesis contributes to the development of a system-level design method that pro-
vides a framework for constructing performance models during the earliest phases
of the design. The following areas of design methodology, which is the science that
studies the way in which design problems can be solved, are involved:

• The research area of formalisms examines notations for writing down models,
the desired properties of a system and their semantics. Formalisms used for
constructing models are called modelling languages. A formalism for capturing
the properties of a system will be called a property specification language.

• Research on techniques concerns the investigation of mathematically founded
ways to transform or analyse models. Examples include techniques for model
refinement, simulation of models, verification and performance evaluation.

• Structured frameworks for applying formalisms and techniques are studied in
the research area of design methods. Design methods assist the designer in de-
veloping feasible designs by providing a number of design steps that have to
be completed in a certain order. Each design step is supported by guidelines,
which capture experience with applying certain formalisms and techniques.
Determining which formalisms and techniques are suitable for a design pro-
cess therefore forms an essential starting point for developing a design method.

• Research on (design) tools investigates how user-friendly computer support can
be provided to enable effective and efficient application of formalisms, tech-
niques and design methods.

The suitability of formalisms, techniques, methods and tools is subject to the char-
acteristics of the application domain and to the design level. This section identifies
some general prerequisites for these aspects in the context of performance modelling
for system-level design. In addition, the state of the art is briefly discussed.

On Formalisms, Techniques, Methods and Tools 7

1.2.1 Modelling Languages

Models developed during system-level design should be:

• Abstract Developing models involves abstraction from characteristics that are
not relevant for analysing the properties of interest and/or from implementa-
tion details that are still unknown at the time of contriving the main concepts
for the system. Important advantages of abstraction are the prospect of gaining
insight in the working of a system more quickly and faster simulation com-
pared to executing a description including all implementation details. How-
ever, the main advantage is that it allows postponing design decisions related
to details of the final implementation [172] (see also example 1.1).

• Adequate A model is said to be adequate in case all essential details necessary
for properly evaluating the properties of interest are captured by the model.

• Intuitive To accelerate the validation of a model, it should be intuitive. In-
tuitiveness is important in the context of minimising the time needed for ex-
plaining how a system operates. This means that any designer contributing to
the construction of a model should be able to understand quickly the intended
interpretation of the model and how the proposed concepts for realising the
desired functionality are expected to satisfy the requirements.

• Executable Models can be categorised in non-executable and executable. Exe-
cutable models enable a structured and automatic application of techniques for
analysing the properties of interest by means of (simulation) tools.

The requirements for models constructed during system-level design have impor-
tant implications for modelling languages. They should be:

• Expressive The expressive power of a modelling language determines how in-
tuitively, succinctly and readable the provided primitives enable representing
the characteristics of hardware/software systems. Intuitiveness, succinctness
and readability are indispensable for accelerating the validation of models and
for checking the adequacy of abstractions. Important aspects that determine
the expressive power of a modelling language include the following:

– To capture the characteristics of hardware/software systems, a modelling
language should provide primitives for expressing architectural structure,
concurrency of behaviour, time, data, and communication [58, 172], without
the necessity to specify all implementation details. For modelling the un-
certainty in the dynamism of the behaviour of a system, modelling lan-
guages should also allow expressing non-determinism [77] and stochastic-
ity. Stochasticity, as opposed to non-determinism, requires the designer
to have knowledge about the probability that certain behaviour occurs.

– Another aspect affecting the expressive power is compositionality. The
primitives of a modelling language are called compositional if they can be
combined in an orthogonal fashion such that they do not influence each
others semantics [134, 79]. Supporting compositionality results in a small
set of powerful primitives, which greatly improves expressive power.

8 Introduction

• Formal In this thesis, a modelling language is called formal in case the seman-
tics of its primitives is defined mathematically [145, 7, 134]. A formal semantics
advances the compositionality of primitives because the semantics of combi-
nations of them can be mathematically derived from the semantics of the indi-
vidual primitives. A formal semantics has two essential advantages:

– A formal semantics enables rigorous reasoning about the properties of
a model [57]. If no formal semantics is available, only verbal reasoning
about the working of a system is possible. Verbal reasoning is insufficient
for analysing the properties of interest due to the difficulty of taking the
effects of all relevant aspects into account. A more credible evaluation is
achievable in case a formal modelling language is used because its seman-
tics allows mathematically relating models to analysis techniques.

– A formal modelling language allows for unambiguous execution of mod-
els based on a mathematical framework that is derived from the seman-
tics [28, 48, 30]. In case the semantics of a modelling language is defined
informally, ambiguities may arise about the precise meaning of certain
combinations of primitives [134] and hence, it is difficult to guarantee that
no semantical freedom exists when executing models. If such freedom ex-
ists, compilers or execution engines may interpret certain combinations of
primitives differently [163]. Hence, this semantical freedom may result in
obtaining different analysis results. Instead of bothering the designer with
the way possible ambiguities are resolved, a formal semantics defines the
meaning of any possible combination of primitives unambiguously [145].

State of the Art In recent years, much research has been performed on modelling
languages for hardware/software systems. It revealed the difficulty of defining an
expressive language with a formally defined semantics. Different choices for ex-
pressing the characteristics of hardware/software systems like the used paradigm
for modelling concurrency of behaviour (see for example [145, 22, 172]) have re-
sulted in a large diversity of modelling languages. Some well-known examples are
UML1 [149] and SystemC 2.0 [68]. Although providing support for expressing many
characteristics of hardware/software systems, such de facto applied modelling lan-
guages often lack a mathematically defined semantics. Academic modelling lan-
guages like LOTOS [29] do have a formal semantics but are less often used for de-
signing industrial hardware/software systems due to a lack of expressive power.
The modelling languages SDL [88] and POOSL [145, 28] are examples that combine
excellent expressive power with a formal semantics.

1.2.2 Property Specification Languages

To enable evaluating the feasibility of a design, it is necessary to specify the proper-
ties that are to be satisfied by the resulting system. Property specification languages
for denoting correctness and performance properties should be:

1It is remarked that UML models are in principle not executable. Nevertheless, UML tools often allow
supplementing UML models with executable code using a host language such as C++.

On Formalisms, Techniques, Methods and Tools 9

• Formal A property specification language may have a syntax that is similar
to the syntax of a natural language or programming language. The evaluation
of correctness and performance properties is commonly based on mathemati-
cal analysis techniques, which require the properties to be expressed in terms
of mathematical formulae. A property specification language is called formal
in case its semantics is mathematically defined. Only a formal property spec-
ification language allows to rigorously match property specifications with the
mathematical formulae based on which the analysis techniques can be applied.

• Expressive The expressive power of a property specification language de-
pends on how intuitively, succinctly and readable the provided primitives can
denote a wide range of properties.

Specifying desired properties leads to defining monitors. A monitor observes the
behaviour of a system and gathers information about a certain property of the sys-
tem. Figure 1.4 illustrates the two approaches that can be identified for specifying
monitors:

M o d e l
S y s t e m

B e h a v i o u r
M o n i t o r s

C o n c e p t s R e q u i r e m e n t s

R e s u l t s

M o d e l
S y s t e m

B e h a v i o u r
M o n i t o r s

C o n c e p t s R e q u i r e m e n t s

R e s u l t s

Model-Checking Approach Reflexive Approach

Figure 1.4: Approaches for specifying monitors.

• Model-Checking Approach With this approach, the model only represents the
behaviour of the system. Monitors are specified separately from the model, see
figure 1.4. Together, the model and monitor define a mathematical structure
that allows analysing the properties of interest. The model-checking approach
is often used in the context of formal verification of correctness properties.

• Reflexive Approach If the modelling language is sufficiently expressive, a
model can be explicitly extended with additional behaviour to define monitors
within the model. The extended model enables analysing the properties of in-
terest in a reflexive way, i.e., by reasoning about its own behaviour. An impor-
tant disadvantage is that the original model is polluted with behaviour which
is only needed for evaluating the properties of interest but which has nothing
to do with the inherent behaviour of the system. Hence, it becomes more diffi-
cult to validate the model. The reflexive approach is often used for evaluating
performance and correctness properties by means of simulating models.

Although the model-checking approach is favorable, only a few formalisms exist that
allow separately specifying monitors for evaluating performance properties. Unfor-

10 Introduction

tunately, these formalisms lack the power to express many common performance
properties. Consider for example the average latency of transferring packets through
the system of example 1.1. Formalisms like temporal rewards [180] cannot associate
the time at which a packet left the system with the time at which that packet entered
the system. Due to this lack of expressive power, it is common to use the reflexive
approach for specifying monitors, taking the pollution of the model for granted.

State of the Art Research on formalisms for specifying performance and correct-
ness properties has followed different paths. Much research has been performed
on logics for denoting correctness properties. Examples of these mathematical nota-
tions, which are usually applied in accordance with the model-checking approach,
are LTL [112] and several real-time temporal logics [74]. The research on expres-
sive formalisms for specifying performance properties is initiated more recently. An
example is the already mentioned formalism of temporal rewards [180], which al-
lows computing performance properties analytically in accordance with the model-
checking approach. On the other hand, modelling languages that support a reflexive
way of performance analysis exist in abundance. Nevertheless, they usually lack a
formal semantics. An example is the modelling language UML [149] for which the
UML profile for performance specification [130] can be used to specify monitors.

1.2.3 Performance Analysis Techniques

Properly analysing the performance of hardware/software systems requires the ap-
plication of mathematical analysis techniques. Such performance analysis techni-
ques can be categorised as follows:

• Analytical Computation Techniques for computing the performance of a sys-
tem analytically are exhaustive in the sense that all possible behaviours of the
system are taken into account. The advantage is that exact performance results
are obtained. However, such performance results can only be credible if:

– the model is adequate;

– the model is amenable to mathematical analysis techniques.

A practical problem of this approach is that existing techniques for comput-
ing the performance analytically are often not suitable for industrial hard-
ware/software systems. This is due to the exponential growth in possible be-
haviours when complexity increases (the state-space explosion problem [126]).

• Simulation-Based Estimation Simulation (or execution) of a model allows to
investigate a limited number of all possible behaviours of a system. As a conse-
quence, the obtained performance results are estimates of the true performance
of the system. Such performance results can only be credible if:

– the model is adequate;

– the model is amenable to mathematical analysis techniques;

– the model is executed unambiguously;

On Formalisms, Techniques, Methods and Tools 11

– the accuracy of the performance estimation results [135, 136, 171] is pro-
vided, which indicates how close the results are to the true performance;

– the used simulation tool relies on good random number generators2 [136]
for emulating the dynamism expressed as probabilistic behaviour.

State of the Art Many techniques exist for both analytical computation and simula-
tion-based estimation of performance properties. Commonly, they require the be-
haviour of the system to be modelled using mathematical structures like queueing
networks [5, 102], Petri nets [113, 114] or Markov processes [78, 175]. To enable com-
puting performance properties analytically, such mathematical structures usually
support only exponential distributions for expressing probabilistic behaviour. How-
ever, the imperative of using exponential distributions sometimes yields inadequate
performance models. In addition, techniques for computing performance proper-
ties often do not scale with the complexity of industrial hardware/software systems.
Due to these limitations, simulation-based estimation of performance properties is
used more often [160]. Performance estimation is based on statistical analysis of sim-
ulation results [105, 3]. Unfortunately, estimation techniques are commonly applied
without rigorously matching the model to the mathematical structure required for
using these techniques. Moreover, the accuracy of simulation results is rarely indi-
cated [136] and often bad random number generators are used [136, 47].

1.2.4 System-Level Design Methods

System-level design methods structure the design of hardware/software systems in
a number of design steps. These design steps include the aspects of capturing the
concepts and requirements, constructing and validating models, actually evaluating
the properties of interest and making design decisions. Each design step is accompa-
nied with guidelines that assist the designer in achieving the ultimate goal of devel-
oping a feasible design. Most of such guidelines strongly depend on the provided
modelling languages, property specification languages and analysis techniques. An
example of a more conceptual choice for design methods concerns principally sepa-
rating the application from the architecture when developing models, like in [98, 99].
Another conceptual choice is supporting either or both analytical computation and
estimation of either or both functional and non-functional properties.

To assist the designer in constructing models, system-level design methods provide
guidelines for applying certain modelling language(s). Such guidelines include for
example modelling patterns. Modelling patterns are templates for modelling typical
aspects of systems with a specific modelling language [177]. Other guidelines as-
sist in validating the constructed models and in defining monitors for analysing the
properties of interest with the provided analysis techniques. The actual application
of those techniques should not require the designer to be an expert on the underlying
mathematical details. In case the analysis results are obtained by means of simula-
tion, the designer should also not be bothered with any detail of how the compiler or
execution engine operates. Regarding the final design decision making, guidelines
should be provided that assist in properly interpreting the analysis results.

2Detailed research on random number generation to facilitate simulation-based estimation is beyond
the scope of this thesis. Appendix B briefly discusses the approach used for executing POOSL models.

12 Introduction

State of the Art Many different system-level design methods have been developed
[186, 115, 67]. In a purely industrial context, design methods often merely concern a
brief documentation of the design process for a specific hardware/software system.
Design methods developed in an academic context do tend to bundle discovered
guidelines in separate documents that can be consulted when designing other sys-
tems. Some examples of system-level design methods that have such reference doc-
uments are the Y-chart approach [99], the POLIS framework [12], the design space
exploration framework in [174], the SpecC-based method in [53], the Artemis frame-
work [137], the SystemC 2.0 method in [68] and the SHE [145, 58] method. Opposed
to the numerous guidelines for applying certain modelling languages, guidelines for
the validation of models, the specification of requirements, the application of analy-
sis techniques and the interpretation of analysis results are usually much scarcer.

1.2.5 Design Tools

(Partly) automating the application of modelling languages, property specification
languages and analysis techniques in accordance with the guidelines provided by a
design method largely accelerates the design process. The following prerequisites
can be identified for tools that provide computer support for design methods:

• Of essential importance is that tools comply with the formalisms, techniques
and guidelines provided by the design method. For example, to obtain credible
analysis results, tools should act according to the mathematical framework that
underlies models and analysis techniques. This also implies that if a model is
considered to be inadequate, then it should not be possible to influence the
behaviour of that model by adapting the execution engine. Instead, the model
should be changed. To support this, tools should clearly separate the code that
represents the system behaviour from the execution engine [160].

• Tools for constructing models should provide sufficient means for validating
such models. For example, informative feedback that allows validating whe-
ther a model appropriately represents the proposed ideas for realising the de-
sired functionality, may be provided automatically.

• In the case of using the reflexive approach for defining monitors, tools should
support isolating the code that models the system behaviour from the code
denoting monitor behaviour (see also section 1.2.2).

• Tools allowing automated analysis of performance properties should execute
models efficiently. The efficiency can for example be expressed in how well the
execution scales for different values of the system parameters (in example 1.1,
execution speed depends for example on the number of sources).

• Finally, to ease the use of tools, they should have intuitive user-interfaces.

State of the Art The need for suitable system-level design tools has been addressed
before [44]. Recently developed commercial tools like the Simulink tool suite [116],
the System Designer and System Verifier tools [42], the Virtual Component Code-
sign (VCC) tool [37], the System Studio tool suite [164] and RoseRT [146] offer very

Objectives and Contributions 13

sophisticated user-interfaces. However, such tools are usually based on modelling
languages that do not have a formal semantics and hence, they do not execute mod-
els according to a mathematical framework. Some of such tools, which for example
rely on programming languages such as C++, even do not prohibit to adapt the exe-
cution engine when resolving inadequacies in a model. Examples of academic tools
are SPADE [110], Metropolis [13], EXPO [174] and Rotalumis [28]. Academic tools
are sometimes based on modelling languages with a formal semantics but they are
rarely applied for designing industrial systems due to a lack of customer support
and steep learning curves. Most modern design tools provide one or more ways to
validate models, ranging from simple debugging facilities to graphical visualisation
of an executing model. Defining monitors is usually based on the reflexive approach
but code for monitors is rarely strictly separated from the code representing system
behaviour. In efforts to reduce design time, simulation efficiency is a key selling
point of many commercial tools. Some academic tools, like Rotalumis, have similar
execution performance and scalability characteristics as commercial tools.

1.3 Objectives and Contributions

Evaluating performance properties without a proper mathematical foundation is in-
sufficient for obtaining credible performance results. Many expressive modelling
languages lack a formal semantics on which a mathematical framework for apply-
ing performance analysis techniques and for executing models can be based. On the
other hand, existing performance analysis techniques do not scale with the complex-
ity of today’s hardware/software systems. This thesis contributes to decreasing the
gap between existing performance analysis techniques and models constructed with
expressive modelling languages. Hence, the first objective is to provide a mathe-
matical framework for obtaining credible performance results based on models de-
veloped with an expressive modelling language. Relying on this framework, the
second objective is to provide a system-level design method that assists the designer
in constructing adequate performance models with that modelling language.

Figure 1.5 shows an overview of the mathematical framework proposed in this thesis
to achieve the first objective. A suitable mathematical structure for evaluating per-
formance properties are Markov chains [175]. They capture all possible behaviours
of a system in a probabilistic way by means of a probability space [39]. Based on the
relation between Markov chains and probability spaces, classical performance anal-
ysis techniques for both analytical computation and simulation-based estimation of
performance properties have been defined. Hence, extending these classical tech-
niques in order to make them more suitable for handling complex systems requires
to take the relation between Markov chains and probability spaces into account.

Relying on the relation between Markov chains and probability spaces, this thesis
extends the classical performance analysis techniques in two ways. First, it is recog-
nised that many common performance properties require to take the occurrence of
a certain event into account. A simple example of such a conditional performance
metric is the average duration that a packet is in the buffer of example 1.1. Only
when a packet is removed from the buffer, the value of the variable denoting the
storage time of the most recently removed packet must be taken into account. The

14 Introduction

P O O S L

M o d e l

V e r i f i c a t i o n
T r a n s i t i o n

S y s t e m
M a r k o v C h a i n

S i m u l a t i o n

C o m p u t a t i o n

P r o b a b i l i t y

S p a c e

C h a p t e r 3 & A p p e n d i x BC h a p t e r 2 & A p p e n d i x A

Figure 1.5: Relation between models and analysis techniques proposed in this thesis.

classical techniques cannot evaluate this metric efficiently by requiring to consider
the value of the variable in all states of the system. Chapter 2 introduces a technique
that allows applying the classical techniques to evaluate the average storage time
without the necessity to take all the states into account. This technique is applicable
in both the case of analytical computation and simulation-based estimation of the
average storage time. A second observation is that common performance properties
can be expressed as an algebraic combination of simple performance metrics. An ex-
ample is the average occupancy of the buffer in example 1.1, which requires to take
the duration of each occurring occupancy into account. Although analytical compu-
tation of the average occupancy can be accomplished with the classical techniques,
no general technique exists for analysing the accuracy of estimation results for such
complex performance metrics obtained by simulation. Chapter 2 introduces a gener-
ally applicable technique that allows applying the classical techniques for analysing
the accuracy of estimation results for complex performance metrics. The proposed
techniques improve the applicability of the classical techniques for complex systems.

Directly specifying the behaviour of a hardware/software system as a Markov chain
requires to identify the states of the system and possible transitions between the
states explicitly. Considering that the state is amongst others determined by the
value of all variables, this approach is rather impractical for complex systems. In-
stead, it is more convenient to use a modelling language, which allows to specify the
complex behaviour of a system by combining several components that expose some
simple behaviour. In this thesis, the expressive Parallel Object-Oriented Specification
Language (POOSL) [145, 28] is presumed to be used for constructing models. This
formal modelling language has proven to be very suitable for modelling industrial
hardware/software systems (see for example [111, 171, 172]) by its capability to ex-
press their characteristics in an intuitive and succinct way. A detailed comparison of
POOSL with other modelling languages can for example be found in [172] and [58].

Based on the formal semantics, a POOSL model defines a transition system (see fig-
ure 1.5). This mathematical structure forms the basis for unambiguously executing a
POOSL model [57, 28], for formal verification of correctness properties as presented
in [57] and for performance analysis. In [180], it is shown how the transition sys-
tem defined by a POOSL model can be transformed into a Markov chain in order to

Thesis Overview 15

compute performance properties in accordance with the model-checking approach.
Unfortunately, actually performing this transformation is often infeasible for indus-
trial hardware/software systems due to their complexity. Relying on the relation
between POOSL models and Markov chains, chapter 3 introduces a framework for
the estimation of performance properties by means of simulating a POOSL model
(indicated with the dotted arrow in figure 1.5). This framework involves extending
a POOSL model with monitors in accordance with the reflexive approach. The use
of the simulation-based estimation techniques proposed in chapter 2 for four com-
mon types of performance metrics is implemented in POOSL library classes. These
performance monitor templates enable user-friendly application of the performance
analysis techniques without the necessity to know all their mathematical details.

Performance modelling with an expressive modelling language like POOSL can be a
complicated task. This is because it is often not immediately clear which combination
of primitives can be used to specify the desired behaviour. For achieving the second
objective of this thesis, the general approach for structuring the evaluation of design
alternatives during system-level design (shown in figure 1.2) is refined. To assist
designers in constructing adequate performance models with POOSL, the proposed
refinement should fit the Software/Hardware Engineering (SHE) [145] method for
which POOSL was originally developed. This system-level design method offers
several diagram types that facilitate discussions on proposed concepts and that fa-
cilitate the use of POOSL for developing executable models. Since the Unified Mod-
elling Language (UML) [149] is a de facto standard for the first purpose, chapter 4
defines a profile for stereotyping UML diagrams, which enables to replace the orig-
inal SHE diagram types. In addition, generally applicable modelling patterns for
constructing adequate performance models are presented as well as guidelines for
validating them against the stereotyped UML diagrams. Furthermore, guidelines are
supplied for extending a model with monitors (by using the performance monitor
templates for example), which ensure preserving the intuitiveness of the model.

The proposed extensions to SHE assist in how POOSL can be used for construct-
ing performance models of design alternatives during system-level design. Chapter
5 assesses the applicability of the proposed performance analysis techniques and
system-level design method by means of representative industrial case studies.

1.4 Thesis Overview

This thesis consists of six chapters, which consecutively discuss the following topics:

1. Introduction This chapter introduces the problem domain of performance
modelling for system-level design and identifies the prerequisites for formal-
isms, techniques, methods and tools that ensure obtaining credible perfor-
mance results. In addition, an overview of the objectives of this thesis is given.

2. Mathematical Techniques for Performance Evaluation Chapter 2 gives an in-
troduction on the relation between Markov chains and probability spaces and
discusses classical performance analysis techniques for both analytical com-
putation and simulation-based estimation of long-run average performance

16 Introduction

metrics. To improve applicability of these classical techniques, a technique for
evaluating the more common conditional form of such performance metrics
is introduced. It aims at reducing the number of states that has to be taken
into account. Moreover, a technique is introduced for analysing the accuracy
of simulation results obtained for combinations of long-run averages. Four dif-
ferent types of such complex performance metrics are identified. With these, a
large range of frequently required performance properties can be expressed.

3. Reflexive Performance Analysis with POOSL Chapter 3 discusses how mod-
els constructed with the modelling language POOSL relate to Markov chains.
Based on this relation, a framework is defined for extending a POOSL model
with monitors. The framework forms the basis of evaluating performance
properties by means of simulating the extended POOSL model. Performance
monitor templates in the form of POOSL library classes are introduced, which
allow accuracy analysis of simulation results obtained for the four types of
common complex performance metrics identified in chapter 2. Finally, the
quality of the accuracy obtained using these POOSL library classes is assessed.

4. Extending the SHE Method for Performance Modelling Chapter 4 extends
the system-level design method SHE with guidelines for performance mod-
elling. Starting with developing UML models, guidelines for constructing and
validating POOSL models are given. To facilitate the construction of POOSL
models, a UML profile and several generally applicable modelling patterns are
presented. Furthermore, guidelines for extending a POOSL model with mon-
itors are given, which aim at preserving the intuitiveness of the model when
applying for example the POOSL library classes of chapter 3.

5. Case Studies To assess the proposed performance analysis techniques and
system-level design method, chapter 5 elaborates on two industrial case stud-
ies. The first has been performed in cooperation with Alcatel Bell Antwerp
and concerned the performance modelling of a backbone Internet Router. The
second case study is about the performance modelling of a network processor
and has been performed in cooperation with IBM Research Laboratory Zürich.

6. Conclusions Chapter 6 summarises the conclusions of this thesis in relation to
the objectives presented in chapter 1 and discusses directions for future work.

In addition, two appendices are included:

A. Mathematical Preliminaries To make this thesis self-contained, appendix A
gives an overview of the mathematical concepts of set theory, probability the-
ory and statistics.

B. Parallel Object-Oriented Specification Language To ease understanding of
the numerous examples of performance models given in chapters 3, 4 and 5,
appendix B gives an introductory overview of the POOSL modelling language.
Next to presenting the syntax, both the semantical framework and the frame-
work for executing POOSL models are discussed. Moreover, some aspects of
the tools for creating, validating and executing POOSL models are presented.

Chapter 2

Mathematical Techniques for
Performance Evaluation

A prerequisite for reasoning about the properties of a system using mathematical
analysis techniques is formalising the system’s behaviour with a mathematical struc-
ture. Such mathematical structures often regard the behaviour as a collection of
states between which transitions can occur. Stochastic processes, which assume that
transitions occur with certain probabilities, provide a suitable means for formalising
the behaviour of a system for the purpose of performance evaluation. Appendix A
rehearses several aspects of stochastic processes and underlying probability theory,
which are presumed to be understood before reading this chapter.

The mathematical techniques for performance evaluation developed in this chapter
presume the behaviour of a system to be formalised with a Markov chain, which is a
particular type of stochastic process. Markov chains can be used for analysing the be-
haviour initially exposed after starting it up [3, 78] and its long-run behaviour. This
thesis focuses on evaluating performance properties for the long-run behaviour of
hardware/software systems, which are expressed as long-run average performance
metrics. Simple examples of such performance metrics are the latency of transfer-
ring data through a system and the probability of loosing data due to an unreliable
transmission medium. The next section summarises essential properties of Markov
chains and discusses classical performance analysis techniques that allow both ana-
lytical computation as well as accuracy analysis for simulation-based estimation of
simple long-run average performance metrics.

Many long-run average performance metrics for industrial hardware/software sys-
tems require to take a certain condition on the states into account. An example is
the condition of receiving data when evaluating the probability of loosing such data
due to a full buffer. Although conditional long-run average performance metrics can
in principle be evaluated with the classical performance analysis techniques, directly
applying them does not benefit from the commonly relatively small number of states
for which the condition holds. Section 2.2 presents a technique for indirect appli-
cation of the classical performance analysis techniques, which allows disregarding
states for which the condition is invalid. It is furthermore shown that the proposed

18 Mathematical Techniques for Performance Evaluation

technique may reduce the computational complexity of such an evaluation.

Next to simple (conditional) long-run average performance metrics, more complex
ones are often defined for industrial hardware/software systems. Examples are the
variance in the latency of transferring data through a system, the average utilisa-
tion of a processor and the variance in the occupation of a buffer. Section 2.3 shows
that many of these complex (conditional) long-run average performance metrics can
be expressed as an algebraic combination of simple (conditional) long-run average
performance metrics and can therefore be computed analytically using the classi-
cal performance analysis techniques. Accuracy analysis of simulation results for
such performance metrics is however less straightforward. Section 2.3 presents a
technique for analysing the accuracy of simulation results obtained for performance
metrics that are composed of simple (conditional) long-run performance metrics.

2.1 Performance Evaluation with Markov Chains

Markov processes are named after the Russian A.A. Markov, who introduced the
concept in 1907. A Markov process is a stochastic process satisfying the Markovian
property, which states that the future behaviour of a system merely depends on the
current state of the system. The case where the number of states is countable, which
was launched by the Russian A.N. Kolmogorov in 1936, is also referred to as Markov
chain. The techniques for analysing performance properties presented in this chapter
are developed for discrete-time Markov chains, where the set of all time-epochs at
which state transitions occur is countable. This section presents preliminaries on
Markov-chain based performance evaluation inspired by [39, 24, 175] and [43].

2.1.1 Markov Chains

Consider a discrete-time stochastic process {Xi | i ≥ 1} on an appropriate probabil-
ity space (Ω,F ,P), where each random variable1 Xi is discrete and assumes values
in a countable set of states S. Set S is called the state space of {Xi | i ≥ 1} and for
each S ∈ S, P(Xi = S) indicates the probability that {Xi | i ≥ 1} is in S or visits S at
time-epoch i. If for all i ≥ 1 and S1, . . . , Si+1 ∈ S

P(Xi+1 = Si+1 | Xk = Sk for all 1 ≤ k ≤ i) = P(Xi+1 = Si+1 | Xi = Si) (2.1)

then {Xi | i ≥ 1} is said to satisfy the Markovian property and is called a discrete-time
Markov chain. For any S, T ∈ S, the probability P(Xi+1 = T | Xi = S) = PS,T (i)
is called the (one-step) transition probability from S to T and indicates the probability
that discrete-time Markov chain {Xi | i ≥ 1} transfers from S to T at time-epoch i.

Of special interest are time-homogeneous discrete-time Markov chains, for which tran-
sition probability PS,T (i) is independent of i for all S, T ∈ S. If PS,T (i) = PS,T (j)
for any two time-epochs i, j and all S, T ∈ S , then the discrete-time Markov chain is

1Strictly speaking, the Xi’s are no random variables in the sense of appendix A because S is not a
subset of R̄. This is however immaterial since a complete function can be defined, which uniquely assigns
an element of R̄ to each element of S.

Performance Evaluation with Markov Chains 19

said to have stationary transition probabilities. In that case, PS,T is defined as

PS,T = P(Xi+1 = T | Xi = S)

for all time-epochs i ≥ 1 and S, T ∈ S. For any fixed enumeration of the states in S,
the matrix P = (PS,T) with S, T ∈ S is called the transition matrix of {Xi | i ≥ 1}.
Denoting P(X1 = S) with IS for S ∈ S, the n-dimensional joint probabilities of a
time-homogeneous discrete-time Markov chain {Xi | i ≥ 1} can be written as

P(Xi = Si for all 1 ≤ i ≤ n) = IS1
·

n−1
∏

i=1

PSi,Si+1

The probability IS is called the initial probability of S and indicates the probability that
{Xi | i ≥ 1} departs from state S. The distribution I of initial probabilities over S is
referred to as the initial distribution of {Xi | i ≥ 1}. In this thesis, time-homogeneous
discrete-time Markov chains are conveniently called Markov chains.

Definition 2.1 (Markov Chain) A Markov chain is a discrete-time stochastic process
{Xi | i ≥ 1}, where each discrete random variable Xi assumes values in a countable state
space S such that, for each time-epoch i ≥ 1, the transition probabilities

P(Xi+1 = Si+1 | Xk = Sk for all 1 ≤ k ≤ i) = P(Xi+1 = Si+1 | Xi = Si)

are independent of i, for any S1, . . . , Si+1 ∈ S .

An important theorem in Markov theory is the existence theorem [39, 24]. It states
that for any countable set of states S, sequence {IS | S ∈ S} and matrix (PS,T) with
S, T ∈ S, satisfying respectively

IS ≥ 0 and
∑

S∈S

IS = 1

PS,T ≥ 0 and
∑

T∈S

PS,T = 1

there exists a probability space (Ω,F ,P) and a Markov chain {Xi | i ≥ 1} defined
on it with state space S, initial distribution I and transition matrix P = (PS,T). As a
result, the Markov chain {Xi | i ≥ 1} is completely determined by the triple (S, I,P),
with which it is therefore often conveniently represented. If the state space S is
finite, the Markov chain can be visualised as a graph. Each state in S is represented
as a node labelled with the corresponding name of the state. For every non-zero
transition probability PS,T , a directed arrow is drawn from the node representing
S to the node representing T , labelled with transition probability PS,T . For any
state S ∈ S with non-zero initial probability, a symbol > directed towards the node
representing S is drawn, labelled with initial probability IS . In case IS = 1 for state
S, the label 1 to the symbol > is usually omitted. This is illustrated with an example.

Example 2.1 Let (S, I,P) represent a Markov chain, where S = {A,B, C}, I is defined as
IA = 1, IB = IC = 0, and where the transition matrix P is given by

P =





PA,A PA,B PA,C

PB,A PB,B PB,C

PC,A PC,B PC,C



 =





0 1
3

2
3

0 1
2

1
2

0 1 0





20 Mathematical Techniques for Performance Evaluation

1 / 2

1 / 3

1 1 / 2

2 / 3 C

B

A

Figure 2.1: Visualisation of a Markov chain as a graph.

A graphical representation of this Markov chain is depicted in figure 2.1.

Probability Space The remainder of this section elaborates on the probability space
(Ω,F ,P) on which a Markov chain {Xi | i ≥ 1} represented by (S, I,P) is defined.

The sample space Ω is the set of all infinite sequences S = (S1, S2, . . .), where Si ∈ S
for all i ≥ 1. Hence, Ω is the set S∞ of all infinite state sequences. A cylinder of rank n
is a subset Cn of Ω of the form Cn = {S ∈ Ω | S1..n ∈ A} where A ⊆ Sn. In case A
is a singleton set {S}, the set {T ∈ Ω | T 1..n = S}, which is denoted by S , is called
a thin cylinder of rank n. The σ-algebra F is the σ-algebra generated by the set of
cylinders and the probability measure P is defined as

P(S 1..n) = IS1 ·
n−1
∏

i=1

PSi,Si+1

for each thin cylinder S 1..n ∈ F with S = (S1, S2, . . .) in Ω. Since any cylinder Cn

can be written as a countable union of disjoint thin cylinders of the same rank,

P(Cn) =
∑

S 1..n⊆Cn

P(S 1..n)

by the property of countable additivity. Furthermore, it can be shown that any subset
C of Ω can be written as a countable intersection of cylinders in F . For example,

{S} =

∞
⋂

n=1

S 1..n

for any S ∈ Ω. Since F is closed under countable intersection, it follows that C ∈ F .
As a result F = 2

Ω, which implies that any discrete random variable defined on
(Ω,F ,P) is measurable. For brevity, the probability P({S}) on a singleton set {S} ∈
F is also denoted by P(S).

Next to the probability on infinite state sequences, the probability on finite state se-
quences is frequently used in this chapter. Although probability measure P is only
defined for (sets of) infinite state sequences, the notation P(S) is also used for any
finite state sequence S ∈ Sn, which is justified by defining that P(S) = P(S), and
is referred to as the probability on finite state sequence S.

Performance Evaluation with Markov Chains 21

a)

b)

c)

S
1

S
n

S
1

S
n

T
1

T
n

Figure 2.2: Visualisation of different cylinder types. a) Thin cylinder S 1..n of rank n.
b) Cylinder of rank n. c) Generalised cylinder.

Now, a generalisation of the probability on cylinders is introduced. Let U be a set
of finite state sequences (possibly of different lengths). Set U will be called proper if
there exists no state sequence in U that is a prefix of any other state sequence in U .
In case U is proper, the probability P(U) on U is defined as P(U) = P(U), where

U =
⋃

S∈U

S

Such a set U will be called a generalised cylinder. Figure 2.2 illustrates the differ-
ences between thin cylinders, cylinders and generalised cylinders.

A proper set of finite state sequences U will be called an initial set if all the state
sequences in U have the same initial state. For initial set U , P∗(U) is defined as

P∗(U) =
1

IS1

∑

S∈U

P(S)

and will be referred to as the conditional probability on U . Intuitively, P∗(U) denotes
the sum of the probabilities on the state sequences S in U conditional on departing
from state S1. A proper set of finite state sequences U is called a final set if all state
sequences in U have the same final state.

Consider a final set of finite state sequences U and an initial set of finite state se-
quences V such that the initial state of the state sequences in V is equal to the final

22 Mathematical Techniques for Performance Evaluation

state of the state sequences in U . Then the concatenation of U and V , denoted by U ◦V ,
is defined as

U ◦ V = {(S1, . . . , Sn−1, Sn = T1, T2, . . . , Tm) | (S1, . . . , Sn) ∈ U, (T1, . . . , Tm) ∈ V }
Because both U and V are proper, the concatenation U ◦ V is also proper. Hence,
P(U ◦ V) = P(U) ·P∗(V). If U is also an initial set, then P∗(U ◦ V) = P∗(U) ·P∗(V).

It can now be observed that the initial probability IS = P(X1 = S) indicating that
the Markov chain {Xi | i ≥ 1} departs from state S represents in fact the probability
P((S)) on the finite state sequence (S). On the other hand, the probability PS,T =
P(Xi+1 = T | Xi = S) indicating that the Markov chain {Xi | i ≥ 1} transfers
from state S to state T (at any time-epoch i ≥ 1) represents in fact the probability
P∗((S, T)) on the finite state sequence (S, T) by the property of time-homogeneity.

2.1.2 State Classification

For any two states S and T of a Markov chain defined on probability space (Ω,F ,P),
let ZT

S represent the initial and final set of finite state sequences of lengths greater
than 0 with initial state S and final state T and without any intermediate visits to T .
The probability that the Markov chain ever makes a transition to T conditional on
departing from S is equal to P∗(ZT

S). In case P∗(ZT
S) > 0, then state T is said to be

reachable from state S with probability P∗(ZT
S).

Definition 2.2 (Reachable State) A state T is said to be reachable from state S with prob-
ability P∗(ZT

S) in case P∗(ZT
S) > 0.

An important aspect of Markov chains is that states may be repeatedly visited at
different time-epochs. If a state Sr is visited more than once with probability 1 (i.e.,

P∗(ZSr

Sr
) = 1) state Sr is called recurrent. Any non-recurrent state is called transient.

Definition 2.3 (Recurrent State) A state Sr is called recurrent if Sr is reachable from Sr

with probability 1.

The sequentially visited states or behaviour of a Markov chain with recurrent state Sr

is said to be regenerated after revisiting Sr. The time span between two visits of Sr

is called a (regenerative) cycle. The behaviour exposed during a cycle through Sr is
independent from the behaviour exposed in any previous cycle through Sr [39].

Of special interest are recurrent states for which the expected time until revisiting

them is finite. Consider for any recurrent state Sr, the initial and final set ZSr

Sr
. The

expected time until revisiting Sr or expected recurrence time of Sr is equal to the ex-

pected length of the state sequences in ZSr

Sr
, which is given by 2

∑

S∈ZSr
Sr

|S| ·P∗(S) (2.2)

2Notice that equation 2.2 does not really express the expected value of a random variable. Let X :
Ω → R be the discrete random variable that assigns to each S ∈ Ω the absolute difference between the
time-epochs of the first two visits to recurrent state Sr if the first visit of Sr occurs at time-epoch 1 and
the second visit to Sr exists, and X(S) = 0 otherwise. Then, it can be shown that equation 2.2 represents
in fact the conditional expectation [5] of X(S) given that S

1
= Sr .

Performance Evaluation with Markov Chains 23

If the result of (2.2) is finite, Sr is called a positive recurrent state, which will be
abbreviated to positive state. A Markov chain with a positive state that is reachable
from any other state with probability 1 is called ergodic [5].

Definition 2.4 (Positive State) A recurrent state Sr is called a positive state if the expected
recurrence time of Sr is finite.

Definition 2.5 (Ergodic Markov Chain) A Markov chain is said to be ergodic if it has a
positive state that is reachable from any other state with probability 1.

Ergodic Markov chains have several interesting properties. The state space of an er-
godic Markov chain can be partitioned in a set of positive states and a set of transient
states. By the definition of ergodic Markov chains, each positive state is reachable
from any transient state. As a result, ergodic Markov chains visit transient states
only finitely many times with probability 1, whereas all positive states are visited
infinitely many times with probability 1.

Another important property of ergodic Markov chains is that they have a unique
equilibrium distribution. For an ergodic Markov chain with state space S and transi-
tion matrix P , the equilibrium probability πT of a state T ∈ S is defined as

πT =
∑

S∈S

πS · PS,T such that
∑

S∈S

πS = 1

For any S ∈ S, the equilibrium probability πS represents the long-run fraction of
time-epochs that the Markov chain is in S. As a result, if S is a positive state, the
equilibrium probability πS equals the reciprocal of the expected recurrence time of
S, whereas if S is a transient state then πS = 0 [39, 175]. Finally, the expected number
of visits to a state S ∈ S between two visits to a positive state Sr ∈ S equals πS

multiplied by the expected recurrence time of Sr, which is equal to πS

πSr
[175].

2.1.3 Classical Performance Analysis Techniques

Markov chains enable analysing performance properties based on information that
is contained in the states. Such information is assigned by reward functions. The idea
is that each time a state is visited, the reward value as specified by the reward function
is earned. Performance properties can be expressed as a certain combination of such
reward values, which are referred to as performance metrics, and can be evaluated by
analysing the behaviour of the Markov chain.

Definition 2.6 (Reward Function) A function r : S → R defined for a Markov chain
with state space S is called a reward function.

This thesis focuses on evaluating performance metrics that can be expressed as a
certain long-run average of reward values. Consider a Markov chain {Xi | i ≥ 1} on
probability space (Ω,F ,P) for which reward function r is defined. For each n ≥ 1,

1

n

n
∑

i=1

r(Xi) (2.3)

24 Mathematical Techniques for Performance Evaluation

is a discrete random variable on (Ω,F ,P) assuming values in a countable subset of
R. The elementary form of long-run average performance metrics is the long-run
sample average of r, which is defined as 3

lim
n→∞

1

n

n
∑

i=1

r(Xi) (2.4)

Performance metric (2.4) is the long-run average of the reward values r(Xi) weighted
over the number of visited states. Since the discrete random variables Xi are not
independent (due to the transition probabilities of the Markov chain), the discrete
random variables r(Xi) are not independent either. As a consequence, the strong
law of large numbers and the central limit theorem are not directly applicable for
analysing almost sure convergence or convergence in distribution of (2.3) respec-
tively. The remainder of this section presents classical performance analysis tech-
niques that indirectly apply these limit theorems to allow both analytical computa-
tion and simulation-based estimation of long-run sample averages. An intuitive in-
terpretation of some theoretical details from [39] and [43] is included to indicate the
origin of the conditions that need to be satisfied when applying these techniques.

Analytical Computation To investigate computing long-run sample averages ana-
lytically, some additional notation is introduced. Consider an ergodic Markov chain
{Xi | i ≥ 1} with state space S and equilibrium distribution π, for which reward
function r is defined. Let (Ω,F ,P) denote its probability space and let Sr be a re-
current state in S. Define for i ≥ 1, the functions vi

Sr
from Ω to N as the number of

times that Sr was visited up to but not including time-epoch i. Furthermore, let for
k ≥ 0, the functions tkSr

from Ω to {1, 2, . . .} denote the time-epoch of the kth visit to
Sr, where t0Sr

is set to 1. Notice that because the Markov chain is ergodic, Sr is in fact
a positive state such that each infinite state sequence S ∈ Ω incorporates infinitely
many visits to Sr with probability 1. As a result, the functions vi

Sr
and tkSr

are prop-
erly defined discrete random variables on (Ω,F ,P) when discarding the null set of
infinite state sequences in Ω that do not visit Sr infinitely often [39].

Now, define for k ≥ 1, the discrete random variables Y k
Sr

on (Ω,F ,P) as

Y k
Sr

=

tk+1
Sr

−1
∑

i=tk
Sr

r(Xi)

which presents the sum of reward values earned during the kth cycle through Sr

based on reward function r. Since the behaviour exposed during a cycle through Sr

is independent from any other cycle through Sr, the discrete random variables Y k
Sr

are independent and identically distributed (i.i.d.) [39]. The expected value E[YSr
]

of the discrete random variables Y k
Sr

equals (see also a remark at the end of section
2.1.2)

E[YSr
] =

∑

S∈S

πS

πSr

· r(S) (2.5)

3The limit notation used in equation 2.4 refers to almost sure convergence unless explicitly stated that
convergence in distribution is meant, see also appendix A.

Performance Evaluation with Markov Chains 25

With the introduced notation, for any recurrent state Sr, the long-run sample average
of r as defined in (2.4) can be rewritten as

lim
n→∞









1

n

t1Sr
−1

∑

i=1

r(Xi) +
1

n

vn
Sr

−1
∑

k=1

Y k
Sr

+
1

n

n
∑

i=t
vn

Sr
Sr

r(Xi)









(2.6)

To enable computing long-run sample averages, almost sure convergence of (2.6)
is investigated. The first term in (2.6) concerns the addition of reward values r(Xi)
until visiting Sr for the first time, which may therefore include reward values earned
during the visit of transient states. Since Sr is a positive state, the time-epoch at
which Sr is visited for the first time t1Sr

is finite with probability 1. Hence,

1

n

t1Sr
−1

∑

i=1

r(Xi)
a.s.−→ 0

The second term in (2.6) can be rewritten as

vn
Sr

− 1

n
· 1

vn
Sr

− 1

vn
Sr

−1
∑

k=1

Y k
Sr

which converges almost surely to πSr
· E[YSr

] by the strong law of large numbers in
case the discrete random variables Y k

Sr
∈ L1. This can be understood by realising

that 1
n
· (vn

Sr
−1) converges almost surely to the long-run fraction of time-epochs that

Markov chain is in Sr. In order to investigate the last term in (2.6), define for k ≥ 1,
the i.i.d. discrete random variables Uk

Sr
on probability space (Ω,F ,P) as

Uk
Sr

=

tk+1
Sr

−1
∑

i=tk
Sr

|r(Xi)|

which represents the sum of absolute reward values earned during the kth cycle
through Sr. In [39], it is proven that

1

n

n
∑

i=t
vn

Sr
Sr

r(Xi)
a.s.−→ 0

provided that the expected value E[USr
] of the discrete random variables Uk

Sr
is fi-

nite4. Notice that this condition is stronger than requiring that the discrete random
variables Y k

Sr
∈ L1, which is equivalent to requiring that E[|YSr

|] < ∞.

As each term of (2.6) individually converges almost surely, performance metric (2.4)
converges almost surely as well. The final result, which is known as the ergodic the-
orem, is that if a Markov chain {Xi | i ≥ 1} with state space S is ergodic and its

4When considering convergence in probability [95] of equation (2.3), this condition can be relaxed [39].

26 Mathematical Techniques for Performance Evaluation

equilibrium distribution is denoted by π, then for a reward function r defined on
{Xi | i ≥ 1}

1

n

n
∑

i=1

r(Xi)
a.s.−→

∑

S∈S

πS · r(S) (2.7)

provided thatE[USr
] < ∞ or equivalently [39] that the series in (2.7) converges abso-

lutely. The ergodic theorem is suitable for computing the long-run sample average
analytically after determining the equilibrium distribution of {Xi | i ≥ 1}. This
requires solving a system of |S| + 1 linear equations as illustrated in example 2.2.

Example 2.2 Consider again the Markov chain of example 2.1 on page 19 and let reward
function r be defined for this Markov chain by r(A) = −1, r(B) = −2 and r(C) = 3. Of
interest is the long-run sample average of r.

Because the Markov chain is ergodic, its equilibrium distribution can be determined by solv-
ing the system of linear equations

πA = πA · PA,A + πB · PA,B + πC · PA,C

πB = πA · PB,A + πB · PB,B + πC · PB,C

πC = πA · PC,A + πB · PC,B + πC · PC,C

πA + πB + πC = 1

which gives that πA = 0, πB = 2
3 and πC = 1

3 . Application of the ergodic theorem gives
that the long-run sample average of r equals πA · r(A) + πB · r(B) + πC · r(C) = − 1

3 .

Simulation-based Estimation Consider an ergodic Markov chain {Xi | i ≥ 1} de-
fined on probability space (Ω,F ,P) with state space S. Let a reward function r be
defined such that the long-run sample average µs of r exists. If |S| is large, deter-
mining the equilibrium distribution of {Xi | i ≥ 1} for computing µs analytically
can be prohibitively complex. In case |S| = ∞, computing µs is in general even im-
possible. In such cases, µs can however be estimated using simulation. Simulation of
{Xi | i ≥ 1} concerns the generation of a finite state sequence S for which S ∈ Ω.
Simulation tools support the latter by their capability of generating traces. A trace is a
finite sequence of consecutively visited states in accordance with positive transition
probabilities starting from a state with a positive initial probability.

Definition 2.7 (Trace) A finite state sequence S = (S1, . . . , Sn) for a Markov chain repre-
sented by (S, I,P) is called a trace, if IS1 > 0 and PSi,Si+1 > 0 for each 1 ≤ i < n.

To investigate simulation-based estimation of µs, some more notation is introduced.
Let Sr be a recurrent state in S. For k ≥ 1, let the functions Lk

Sr
from Ω to {1, 2, . . .}

indicate the length of the kth cycle through Sr by defining Lk
Sr

= tk+1
Sr

−tkSr
. Similarly

as argued for Y k
Sr

, the functions Lk
Sr

are i.i.d. discrete random variables on (Ω,F ,P).

Notice that the expected value E[LSr
] of the discrete random variables Lk

Sr
is equal

to the expected recurrence time of Sr (which equals 1
πSr

, see the remark at the end of

section 2.1.2). Hence, by equation (2.5) and the ergodic theorem,

µs =
E[YSr

]

E[LSr
]

(2.8)

Performance Evaluation with Markov Chains 27

for any recurrent state Sr. As a result, estimation of µs can be based on estimating
the quotient of expected values (2.8). The expected values E[YSr

] and E[LSr
] can be

estimated using the strongly consistent (and unbiased) point estimators

YSr
(n) =

1

n

n
∑

k=1

Y k
Sr

and LSr
(n) =

1

n

n
∑

k=1

Lk
Sr

(2.9)

respectively. Hence,

µ̂s =
YSr

(n)

LSr
(n)

(2.10)

is a strongly consistent point estimator for µs if Y k
Sr

∈ L1. Notice that the necessary

conditions of Lk
Sr

∈ L1 and E[LSr
] > 0 are satisfied by the ergodicity of the Markov

chain. Unfortunately, the classical point estimator for µs defined in (2.10) is biased in
general. Several other point estimators such as the Beale, Jacknife, Fieller and Tin
point estimators [87] were proposed in an effort to reduce the bias of the classical
point estimator. Nevertheless, the classical point estimator is the easiest one to inte-
grate in simulation tools, making it an attractive candidate for estimating µs [43].

Although any trace generated during simulation may serve as a basis for estimating
µs, it is necessary to indicate the accuracy of an obtained point estimate µ̄s for µs

because traces are finite. The accuracy of a point estimate µ̄s is defined as 1 minus the
relative error of µ̄s with respect to µs. This relative error is defined as

∣

∣

∣

∣

µ̄s − µs

µs

∣

∣

∣

∣

Point estimates generally become more accurate for longer traces (longer simula-
tions). It is however difficult to determine in advance how long a simulation should
run to ensure accurate point estimates. By specifying a desired accuracy bound, a sim-
ulation can be terminated automatically in case the relative error of an obtained point
estimate becomes smaller than 1 minus that bound.

To determine the accuracy of a point estimate µ̄s based on the classical point estima-
tor µ̂s, a Confidence Interval is derived for µs. For this purpose, define for k ≥ 1, the
i.i.d. discrete random variables Zk

Sr
= Y k

Sr
−µs ·Lk

Sr
on (Ω,F ,P). Notice that the ex-

pected value E[ZSr
] equals 0. E[ZSr

] can be estimated using the (strongly consistent
and unbiased) point estimator

ZSr
(n) =

1

n

n
∑

k=1

Zk
Sr

=
1

n

n
∑

k=1

Y k
Sr

− µs ·
1

n

n
∑

k=1

Lk
Sr

= YSr
(n) − µs · LSr

(n)

In case the discrete random variables Zk
Sr

∈ L2 (or equivalently E[|ZSr
|2] < ∞) and

their variance τ2 = var[ZSr
] > 0, application of the central limit theorem gives that

√
n

τ
· ZSr

(n)
d.−→ N(0, 1)

28 Mathematical Techniques for Performance Evaluation

This means that for sufficiently large n and every κ ∈ R

P
(

−κ ≤
√

n

τ
· ZSr

(n) ≤ κ

)

=

P
(

YSr
(n)

LSr
(n)

− κτ√
n
· 1

LSr
(n)

≤ µs ≤ YSr
(n)

LSr
(n)

+
κτ√

n
· 1

LSr
(n)

)

is approximately 2R(κ) − 1. Hence, the stochastic interval

[

µ̂s −
κτ√

n
· 1

LSr
(n)

, µ̂s +
κτ√

n
· 1

LSr
(n)

]

is an (approximate) 2R(κ) − 1 Confidence Interval for µs. To obtain a confidence
interval based on this Confidence Interval, the variance τ2 must be known. With
simulation, τ2 can be estimated using the (unbiased) point estimator

1

n − 1

n
∑

k=1

(Y k
Sr

− µs · Lk
Sr

)2

in which µs can be replaced by point estimator µ̂s since µ̂s
a.s.−→ µs. Hence,

τ̂2 =
1

n − 1

n
∑

k=1

(Y k
Sr

− µ̂s · Lk
Sr

)2

=
1

n − 1

n
∑

k=1

(Y k
Sr

)2 − 2µ̂s ·
1

n − 1

n
∑

k=1

(Y k
Sr

· Lk
Sr

) + µ̂2
s ·

1

n − 1

n
∑

k=1

(Lk
Sr

)2
(2.11)

is a strongly consistent point estimator for τ2. By Slutsky’s theorem [95],

√
n

τ̂
· ZSr

(n)
d.−→ N(0, 1)

and hence, the stochastic interval
[

µ̂s −
κτ̂√

n
· 1

LSr
(n)

, µ̂s +
κτ̂√

n
· 1

LSr
(n)

]

(2.12)

is an (approximate) 2R(κ) − 1 Confidence Interval for µs.

The bounds of Confidence Interval (2.12) for µs have an important property. Let

ϕ1 = µ̂s −
κτ̂√

n
· 1

LSr
(n)

and ϕ2 = µ̂s +
κτ̂√

n
· 1

LSr
(n)

Since

lim
n→∞

κτ̂√
n

= 0

both ϕ1
a.s.−→ µs and ϕ2

a.s.−→ µs. Hence, the bounds of a confidence interval obtained
based on [ϕ1, ϕ2] tend to µs for longer traces (longer simulations).

Notice that if τ2 = 0, the central limit theorem cannot be applied. For τ2 = 0, it
follows by lemma A.2 that ZSr

= E[ZSr
] = 0 and hence YSr

(n) = µs · LSr
(n). As

Performance Evaluation with Markov Chains 29

a result, stochastic interval (2.12) reduces to [µs, µs], which is still a valid 2R(κ) − 1
Confidence Interval for µs according to definition A.1. Therefore, the condition τ2 >
0 for obtaining valid confidence intervals based on (2.12) can and will be discarded.

Based on Confidence Interval (2.12), a 2R(κ) − 1 confidence interval [ϕ̄1, ϕ̄2] can be
determined for µs during simulation with

ϕ̄1 = µ̄s −
κτ̄√
N

· 1

LSr
(N)

and ϕ̄2 = µ̄s +
κτ̄√
N

· 1

LSr
(N)

where N denotes the number of completed regenerative cycles. Now, if µs ∈ [ϕ̄1, ϕ̄2],
then an upper bound for the relative error of point estimate µ̄s is given by

∣

∣

∣

∣

µ̄s − µs

µs

∣

∣

∣

∣

≤











ϕ̄2−ϕ̄1

2ϕ̄1
if 0 < ϕ̄1 < ∞

ϕ̄1−ϕ̄2

2ϕ̄2
if −∞ < ϕ̄2 < 0

∞ otherwise

(2.13)

Notice that because |ϕ1 − ϕ2| a.s.−→ 0 by the property that the bounds of Confidence
Interval (2.12) converge almost surely to µs, the upper bound (2.13) for the relative
error for µ̄s tends to 0 for longer traces (longer simulations) if µs 6= 0.

From the derivation above, it is concluded that simulation-based estimation of the
long-run sample average µs using point estimator (2.10) and Confidence Interval
(2.12) requires that E[|YSr

|] < ∞ and E[|ZSr
|2] < ∞. The latter condition is satisfied

if both E[|YSr
|2] < ∞ and E[|LSr

|2] < ∞. Since E[|YSr
|2] < ∞ implies E[|YSr

|] < ∞,
the conditions reduce to requiring that E[|YSr

|2] < ∞ and E[|LSr
|2] < ∞.

Summary of Conditions Let r be a reward function defined for an ergodic Markov
chain with recurrent state Sr. Computing the long-run sample average of r analyti-
cally using the ergodic theorem (2.7) requires that E[USr

] < ∞. On the other hand,
simulation-based estimation of the long-run sample average of r using point estima-
tor (2.10) and Confidence Interval (2.12) requires E[|YSr

|2] < ∞ and E[|LSr
|2] < ∞.

In this thesis, r is called proper if all three conditions are satisfied for both analytical
computation and simulation-based estimation of the long-run sample average of r.

Definition 2.8 (Proper Reward Function) Let r be a reward function defined for an er-
godic Markov chain {Xi | i ≥ 1} with a recurrent state Sr. If E[USr

] < ∞, E[|YSr
|2] < ∞

and E[|LSr
|2] < ∞, then r is called proper for {Xi | i ≥ 1}.

Although definition 2.8 indicates the precise conditions for a reward function r that
enable both analytical computation and simulation-based estimation of the long-run
sample average of r, it is sometimes convenient to use slightly stronger conditions.
Instead of requiring thatE[USr

] < ∞ andE[|YSr
|2] < ∞, the conditionE[|USr

|2] < ∞
(or equivalently USr

∈ L2) can be used. When doing so, the three conditions in def-
inition 2.8 can be replaced by E[|USr

|2] < ∞ and E[|LSr
|2] < ∞. It is remarked

that reward values for performance metrics of industrial hardware/software sys-
tems usually are all non-negative, in which case YSr

= USr
and hence the condition

E[|USr
|2] < ∞ then boils down to requiring that E[(YSr

)2] < ∞.

30 Mathematical Techniques for Performance Evaluation

2.2 Evaluating Conditional Long-Run Sample Averages

The classical performance analysis techniques discussed in section 2.1.3 provide am-
ple means for analytical computation and simulation-based estimation of long-run
sample averages. However, long-run average performance metrics for industrial
hardware/software systems are generally conditional in the sense that reward values
must only be taken into account in case a certain condition is satisfied.

Example 2.3 Consider a telecommunication system that receives variable-sized packets from
a network environment before processing them. Of interest is the evaluation of the expected
packet size. A common performance modelling approach for this evaluation is to define a
variable r, which holds the size of the last packet received, and assign a new value to r each
time a new packet is received. When formalising the behaviour of the telecommunication
system with a Markov chain, the values of variable r represent the result of a reward function
that assigns the size of the last packet received to each state of the Markov chain. Now, directly
applying the classical performance analysis techniques will not yield the desired expected
packet size since the condition that the value of r should only be included for those states of
the Markov chain where a new packet is received, is not taken into account.

This section investigates the evaluation of conditional long-run sample averages by
developing a performance analysis technique that allows taking only those states of a
Markov chain into account for which the condition is satisfied. This so-called reduc-
tion technique, which was initially introduced in [142], involves deriving a Markov
chain with a reduced state space from the original Markov chain that formalises the
behaviour of a hardware/software system. By preserving ergodicity and long-run
average performance results, the proposed reduction technique enables applying the
classical performance analysis techniques on the obtained reduced Markov chain for
computing or estimating conditional long-run sample averages.

Because formalising the behaviour of industrial hardware/software systems using
Markov chains easily results in huge5 state spaces [171], considering a reduced num-
ber of states may additionally alleviate rapid evaluation of performance proper-
ties. Therefore, the potential of increasing performance evaluation speed when ap-
plying the reduction technique is investigated for both analytical computation and
simulation-based estimation of conditional long-run sample averages.

2.2.1 Markov Chain Reduction

Consider a Markov chain {Xi | i ≥ 1} with state space S for which reward function
r is defined. Long-run sample averages for which a certain condition must be taken
into account are long-run average performance metrics of the form

lim
n→∞

n
∑

i=1

r(Xi) · c(Xi)

n
∑

i=1

c(Xi)

(2.14)

5A small 10× 10 Internet router has already a control space of at least 10100 states, see also section 5.1.

Evaluating Conditional Long-Run Sample Averages 31

where c is a reward function c : S → {0, 1}. A reward function that assigns reward
value 0 or 1 to the states of a Markov chain will be called a conditional reward func-
tion. Conditional reward functions can be used to define the condition for which
a reward value r(Xi) must be taken into account or not by taking c(Xi) = 1 if the
condition holds and c(Xi) = 0 otherwise. Observe that the condition of whether a
new packet is received in example 2.3 can be formalised with this approach. Per-
formance metric (2.14) is referred to as the conditional long-run sample average of r
(with condition c) and can be explained as the long-run average of r weighted over
the number of visited states at which the condition is satisfied.

Definition 2.9 (Conditional Reward Function) A function c : S → {0, 1} defined for
a Markov chain with state space S is called a conditional reward function. State S ∈ S is
called relevant (with respect to c) if c(S) = 1 and irrelevant (with respect to c) otherwise.

Notice that performance metric (2.14) is equivalent to the long-run sample average
(2.4) in case all states of the Markov chain are relevant. The following theorem iden-
tifies the conditions for directly computing (2.14) based on the ergodic theorem.

Theorem 2.1 Let r be a proper reward function and let c be a conditional reward function
defined for an ergodic Markov chain {Xi | i ≥ 1} with state space S and equilibrium
distribution π. If this Markov chain has a recurrent state that is relevant with respect to c,
then the conditional long-run sample average of r (with respect to c) is equal to

∑

S∈S

πS · r(S) · c(S)

∑

S∈S

πS · c(S)

Proof Because r is a proper reward function, it follows from definition 2.8 and a
remark to the ergodic theorem (2.7) that6

∑

S∈S

πS · |r(S) · c(S)| ≤
∑

S∈S

πS · |r(S)| < ∞

Hence, by the ergodic theorem,

1

n

n
∑

i=1

r(Xi) · c(Xi)
a.s.−→

∑

S∈S

πS · r(S) · c(S)

On the other hand, for conditional reward function c,
∑

S∈S

πS · |c(S)| ≤ 1

and hence, a second application of the ergodic theorem gives that

1

n

n
∑

i=1

c(Xi)
a.s.−→

∑

S∈S

πS · c(S)

6Observe that it would actually be sufficient to require that r · c is proper.

32 Mathematical Techniques for Performance Evaluation

Now, since there exists a recurrent state Sr ∈ S for which c(Sr) = 1,

∑

S∈S

πS · c(S) > 0

Hence, the final result is that

n
∑

i=1

r(Xi) · c(Xi)

n
∑

i=1

c(Xi)

a.s.−→

∑

S∈S

πS · r(S) · c(S)

∑

S∈S

πS · c(S)

The application of theorem 2.1 is illustrated with an example.

C

BA D

E

F

1

G

1 / 2

1 / 2

1 / 4

1

3 / 4 1 / 3

1 / 6

1 / 2

1 / 2

1 / 3

2 / 3

1 / 2

r (A) = 1 c (A) = 0

r (B) = - 2 c (B) = 1

r (C) = 3 c (C) = 0

r (D) = - 1 c (D) = 1

r (E) = 4 c (E) = 1

r (F) = - 2 c (F) = 0

r (G) = 2 c (G) = 1

Figure 2.3: Example of a Markov chain.

Example 2.4 Consider the Markov chain with state space S = {A,B,C, D,E, F, G} de-
picted in figure 2.3. For this ergodic Markov chain, reward function r and conditional re-
ward function c are defined as indicated. The equilibrium probabilities for this Markov chain
are πA = 0, πB = 0, πC = 12

26 , πD = 6
26 , πE = 3

26 , πF = 2
26 , πG = 3

26 . Appli-
cation of theorem 2.1 gives πA · r(A) · c(A) + πB · r(B) · c(B) + πC · r(C) · c(C) +
πD · r(D) · c(D) + πE · r(E) · c(E) + πF · r(F) · c(F) + πG · r(G) · c(G) = 12

26 and
πA · c(A) + πB · c(B) + πC · c(C) + πD · c(D) + πE · c(E) + πF · c(F) + πG · c(G) = 12

26 .
Hence, the conditional long-run sample average of r equals 1.

Theorem 2.1 shows that a conditional long-run sample average merely depends on
the reward values earned in relevant states. It makes sense to investigate whether
conditional long-run sample averages can be evaluated without considering irrele-
vant states and whether such an approach increases performance evaluation speed.

Consider a Markov chain {Xi | i ≥ 1} on probability space (Ω,F ,P) for which
reward function r and conditional reward function c are defined. In case the state

Evaluating Conditional Long-Run Sample Averages 33

space of this Markov chain is denoted by S, the set of states that are relevant with
respect to c is represented by S↾c and is defined by S↾c = {S ∈ S | c(S) = 1}. In this

section, a Markov chain {X↾ci | i ≥ 1} with state space S↾c is introduced, which is
defined on the same probability space (Ω,F ,P) as the Markov chain {Xi | i ≥ 1}. To

this end, define for each i ≥ 1 and S ∈ Ω, the functions X↾ci from Ω to S↾c as

X↾ci (S) =

{

the ith state in S that is relevant with respect to c if it exists

⊥ otherwise

Notice that {X↾ci | i ≥ 1} is not necessarily a discrete-time stochastic process, let

alone a Markov chain, because the functions X↾ci are in general not complete. How-

ever, the following lemma states that {X↾ci | i ≥ 1} is a discrete-time stochastic
process in case {Xi | i ≥ 1} is ergodic and if it has a relevant recurrent state.

Lemma 2.2 Let conditional reward function c be defined for an ergodic Markov chain {Xi |
i ≥ 1}. If this Markov chain has a recurrent state that is relevant with respect to c, then

{X↾ci | i ≥ 1} is a discrete-time stochastic process.

Proof Assume that the Markov chain {Xi | i ≥ 1} is defined on probability space
(Ω,F ,P) and that its state space is denoted by S. Let Sr ∈ S be a recurrent state
that is relevant with respect to c. Since the Markov chain is ergodic, Sr is a positive
state. Each infinite state sequence S ∈ Ω therefore incorporates infinitely many visits
to Sr with probability 1. When discarding the null event of infinite state sequences
not including infinitely many visits to Sr [39], the ith state in S that is relevant with

respect to c exists for all i ≥ 1 and S ∈ Ω. Hence, the functions X↾ci : Ω → S↾c are
defined for all i ≥ 1.

It remains to be shown that the functions X↾ci are discrete random variables for all
i ≥ 1. However, this follows immediately from the fact that any set of infinite state
sequences is measurable according to probability measure P.

The following theorem states that the discrete-time stochastic process {X↾ci | i ≥ 1}
satisfies both the Markovian property and the property of time-homogeneity for the

same conditions as in lemma 2.2, such that {X↾ci | i ≥ 1} is actually a Markov chain.

Theorem 2.3 (Reduction Theorem) Let conditional reward function c be defined for an
ergodic Markov chain {Xi | i ≥ 1}. If this Markov chain has a recurrent state that is relevant

with respect to c, then {X↾ci | i ≥ 1} is also a Markov chain.

Proof Assume that the state space of the Markov chain {Xi | i ≥ 1} is denoted
by S. Define for any T ∈ S↾c, the final set X T of finite state sequences with final
state T , for which all preceding states are irrelevant with respect to c. Notice that
XT 6= ∅. P(X T) is the probability that the first relevant state visited by the Markov
chain {Xi | i ≥ 1} is T . Furthermore, define for any S ∈ S and T ∈ S↾c, the initial
and final set X T

S of finite state sequences of lengths greater than 0 with initial state
S and final state T , for which all intermediate states are irrelevant with respect to c.

34 Mathematical Techniques for Performance Evaluation

P∗(X T
S) is the probability that the Markov chain {Xi | i ≥ 1} ever makes a transition

to state T on the condition of departing from state S.

By lemma 2.2, {X↾ci | i ≥ 1} is a discrete-time stochastic process, where each discrete

random variable X↾ci assumes values in S↾c. To prove that {X↾ci | i ≥ 1} is a Markov
chain, the Markovian property

P(X↾ci+1 = Si+1 | X↾c1 = S1, . . . , X
↾c
i = Si) = P(X↾ci+1 = Si+1 | X↾ci = Si) (2.15)

must be satisfied for each time-epoch i and all possible values of S1, . . . , Si+1 ∈ S↾c.
Using the definitions of X T and X T

S , the left hand side of (2.15) can be rewritten as

P(X↾ci+1 = Si+1 | X↾c1 = S1, . . . , X
↾c
i = Si) =

P(X↾c1 = S1, . . . , X
↾c
i+1 = Si+1)

P(X↾c1 = S1, . . . , X
↾c
i = Si)

=
P(XS1 ◦ XS2

S1
◦ . . . ◦ XSi

Si−1
◦ XSi+1

Si
)

P(XS1 ◦ XS2

S1
◦ . . . ◦ XSi

Si−1
)

=
P(XS1 ◦ XS2

S1
◦ . . . ◦ XSi

Si−1
) ·P∗(XSi+1

Si
)

P(X S1 ◦ XS2

S1
◦ . . . ◦ XSi

Si−1
)

= P∗(X Si+1

Si
)

Similarly, the righthand side of (2.15) can be rewritten as

P(X↾ci+1 = Si+1 | X↾ci = Si) =
P(X↾ci = Si, X

↾c
i+1 = Si+1)

P(X↾ci = Si)

=
P(XSi ◦ XSi+1

Si
)

P(XSi)

=
P(XSi) ·P∗(XSi+1

Si
)

P(X Si)

= P∗(X Si+1

Si
)

Hence, (2.15) holds for each time-epoch i and all possible values S1, . . . , Si+1 ∈ S↾c.

The second condition that has to be satisfied is the property of time-homogeneity;

the one-step state transition probabilities P(X↾ci+1 = T | X↾ci = S) must, for each

S, T ∈ S↾c, be independent of time-epoch i. However, this follows immediately from

the fact that P(X↾ci+1 = T | X↾ci = S) = P∗(X T
S) is independent from time-epoch i.

For an ergodic Markov chain {Xi | i ≥ 1} having a relevant recurrent state (with

respect to c), the Markov chain {X↾ci | i ≥ 1} is frequently referred to as the reduced
Markov chain (with respect to c).

2.2.2 Preservation of Performance Results

Section 2.2.1 revealed that the reduction of an ergodic Markov chain with a relevant
recurrent state yields another Markov chain. To enable an investigation on whether

Evaluating Conditional Long-Run Sample Averages 35

conditional long-run sample averages can be evaluated by considering only the rel-
evant states, some properties of the reduced Markov chain must be known. The
following theorem states that reduction preserves ergodicity.

Theorem 2.4 (Preservation of Ergodicity) Let conditional reward function c be defined
for an ergodic Markov chain {Xi | i ≥ 1}. If this Markov chain has a recurrent state that is

relevant with respect to c, then the reduced Markov chain {X↾ci | i ≥ 1} is ergodic.

Proof Assume that the state space of the original Markov chain {Xi | i ≥ 1} is
denoted by S and let Sr be a recurrent state that is relevant with respect to c. Since
the original Markov chain is ergodic, Sr is a positive state of this Markov chain. The
proof involves showing that Sr is also a positive state of the reduced Markov chain

{X↾ci | i ≥ 1} and that it is reachable from any other state in S↾c with probability 1.

According to definition 2.2, state Sr is reachable from any other state in S ∈ S↾c if

P∗(ZSr

S) > 0. But this is obviously true since P∗(ZSr

S) > 0 holds for the original
Markov chain. Moreover, since Sr is a recurrent state of the original Markov chain,

P∗(ZSr

Sr
) = 1. Hence, Sr is also a recurrent state of the reduced Markov chain.

To show that Sr is a positive state of the reduced Markov chain, let |S|↾c denote the

number of states in S ∈ ZSr

Sr
that is relevant with respect to c minus 1. It must be

shown that
∑

S∈ZSr
Sr

|S|↾c ·P∗(S) < ∞

Because Sr is a positive state in the original Markov chain

∑

S∈ZSr
Sr

|S| ·P∗(S) < ∞

and since |S|↾c ≤ |S| for any S ∈ ZSr

Sr
,

∑

S∈ZSr
Sr

|S|↾c ·P∗(S) ≤
∑

S∈ZSr
Sr

|S| ·P∗(S) < ∞

Hence, Sr is also a positive state of the reduced Markov chain.

Lemma 2.5 Let reward function r and conditional reward function c be defined for an er-
godic Markov chain {Xi | i ≥ 1} with state space S. If r is proper and {Xi | i ≥ 1} has a
recurrent state Sr that is relevant with respect to c, then

E[U ↾cSr
] < ∞ (2.16)

where U ↾cSr
denotes the sum of absolute reward values earned during a cycle of the reduced

Markov chain {X↾ci | i ≥ 1} through Sr.

Proof Because reward function r is proper, the expected sum of absolute reward
values E[USr

] earned during a cycle of the original Markov chain {Xi | i ≥ 1}

36 Mathematical Techniques for Performance Evaluation

through Sr is finite (see definition 2.8). This can be expressed as

E[USr
] =

∑

S∈Z
Sr
Sr

P∗(S) ·
|S|
∑

i=1

|r(Si)| < ∞

Expectation E[U ↾cSr
] equals the expected sum of absolute reward values earned in the

relevant states that are visited during a cycle of the original Markov chain {Xi | i ≥
1} through Sr. Hence,

E[U ↾cSr
] =

∑

S∈Z
Sr
Sr

P∗(S) ·
|S|
∑

i=1

|r(Si) · c(Si)|

Since
∑

S∈Z
Sr
Sr

P∗(S) ·
|S|
∑

i=1

|r(Si) · c(Si)| ≤
∑

S∈Z
Sr
Sr

P∗(S) ·
|S|
∑

i=1

|r(Si)|

it follows that equation (2.16) holds indeed.

From the proof of lemma 2.5, it can be concluded that (2.16) also holds in case r · c
is proper. Observe furthermore that (2.16) also holds when requiring the stronger
condition E[|USr

|2] < ∞ for the original Markov chain (see also section 2.1.3).

Now, the following main theorem can be proven. It states that a conditional long-
run sample average for a Markov chain evaluates to the same result as the long-run
sample average for the reduced Markov chain.

Theorem 2.6 (Preservation of Long-Run Averages) Let proper reward function r and
conditional reward function c be defined for an ergodic Markov chain {Xi | i ≥ 1}. If this
Markov chain has a recurrent state that is relevant with respect to c, then

n
∑

i=1

r(Xi) · c(Xi)

n
∑

i=1

c(Xi)

a.s.−→ µ if and only if
1

n

n
∑

i=1

r(X↾ci)
a.s.−→ µ

Proof Observe first that the conditional long-run sample average of r for {Xi | i ≥
1} exists by theorem 2.1. On the other hand, the long-run sample average of r exists

for {X↾ci | i ≥ 1} by theorem 2.4, lemma 2.5 and the ergodic theorem.

Assume that the Markov chain {Xi | i ≥ 1} is defined on probability space (Ω,F ,P).
Let S = (S1, S2, . . .) be an infinite state sequence in Ω that includes infinitely many
visits to relevant states (the null event of infinite state sequences that do not include
infinitely many visits to relevant states is discarded [39]). Then,

lim
n→∞

n
∑

i=1

r(Xi(S)) · c(Xi(S))

n
∑

i=1

c(Xi(S))

= lim
n→∞

n
∑

i=1

r(Si) · c(Si)

n
∑

i=1

c(Si)

Evaluating Conditional Long-Run Sample Averages 37

Since c(Si) = 1 if and only if Si is relevant with respect to c, this expression equals

lim
m→∞

m
∑

i=1

r(ith state in S that is relevant with respect to c)

m
= lim

m→∞

1

m

m
∑

i=1

r(X↾ci (S))

which completes the proof.

Theorem 2.6 provides the means for evaluating conditional long-run sample aver-
ages by considering relevant states only. In the remainder of this thesis, evaluating
conditional long-run sample averages based on the application of theorems 2.3 and
2.6 is referred to as the reduction technique.

Although focussing on conditional long-run sample averages, the reduction tech-
nique is applicable for combinations of such long-run average performance metrics
as well. Of special interest are quotients of conditional long-run sample averages.
Consider a Markov chain {Xi | i ≥ 1} for which reward functions g and h and con-
ditional reward function c are defined. The following corollary generalises the result
of theorem 2.6 by considering performance metrics of the form

lim
n→∞

n
∑

i=1

g(Xi) · c(Xi)

n
∑

i=1

h(Xi) · c(Xi)

(2.17)

Performance metric (2.17) can be explained as the quotient of cumulated reward
values g(Xi) and h(Xi) for those states that are relevant with respect to c.

Corollary 2.7 Let proper reward functions g, h and conditional reward function c be defined
for an ergodic Markov chain {Xi | i ≥ 1}. If this Markov chain has a recurrent state that is
relevant with respect to c, while

1

n

n
∑

i=1

g(X↾ci)
a.s.−→ µ and

1

n

n
∑

i=1

h(X↾ci)
a.s.−→ λ

with λ 6= 0, then the quotient in (2.17) converges almost surely to µ
λ

.

Proof The result follows immediately from theorem 2.6 by considering that

n
∑

i=1

g(Xi) · c(Xi)

n
∑

i=1

c(Xi)

a.s.−→ µ and

n
∑

i=1

h(Xi) · c(Xi)

n
∑

i=1

c(Xi)

a.s.−→ λ

38 Mathematical Techniques for Performance Evaluation

2.2.3 Reduction and Analytical Computation

Application of the reduction technique relies on the relation that exists between a
conditional long-run sample average defined for a Markov chain and the accompa-
nying long-run sample average for the reduced Markov chain. Analytically comput-
ing a conditional long-run sample average can be accomplished indirectly by apply-
ing the ergodic theorem for the accompanying long-run sample average defined for
the reduced Markov chain. However, this requires knowing the equilibrium distri-
bution of the reduced Markov chain. Two different approaches can be identified for
obtaining this equilibrium distribution, see also [142]. The first approach derives it
directly from the equilibrium distribution of the original Markov chain. The second
approach is indirect and computes it after constructing the reduced Markov chain.

Direct Computation of Equilibrium Distribution To compute the equilibrium dis-
tribution of the reduced Markov chain, the following theorem establishes the relation
between the equilibrium distributions of the original and reduced Markov chains.

Theorem 2.8 Let conditional reward function c be defined for an ergodic Markov chain
{Xi | i ≥ 1} with state space S and equilibrium distribution π. If this Markov chain has a
recurrent state that is relevant with respect to c, then the equilibrium distribution π↾c of the

reduced Markov chain {X↾ci | i ≥ 1} is given by

π↾cT =
πT

∑

S∈S↾c

πS

for all T ∈ S↾c

Proof Let T be a state that is relevant with respect to c. Define reward function rT

as rT (S) = 1 if S = T and rT (S) = 0 for any S ∈ S \ {T}. Notice that rT is proper
and that rT (S) · c(S) = rT (S) for all S ∈ S. By theorem 2.1,

lim
n→∞

n
∑

i=1

rT (Xi) · c(Xi)

n
∑

i=1

c(Xi)

=

∑

S∈S

πS · rT (S)

∑

S∈S

πS · c(S)
=

πT
∑

S∈S↾c

πS

On the other hand, by theorem 2.4 and the ergodic theorem

lim
n→∞

1

n

n
∑

i=1

rT (X↾ci) =
∑

S∈S↾c

π↾cS · rT (S) = π↾cT

The result now follows directly from theorem 2.6.

Analytical computation of conditional long-run sample averages using the reduction
technique and theorem 2.8 is illustrated with the following example.

Example 2.5 Recall the Markov chain of example 2.4 on page 32. Satisfying the conditions
of theorem 2.3, this Markov chain can be reduced with respect to conditional reward function

Evaluating Conditional Long-Run Sample Averages 39

c. The state space of the reduced Markov chain is S↾c = {B,D, E, G}. By theorem 2.8, the

equilibrium distribution of the reduced Markov chain can be computed as π↾cB = 0, π↾cD = 1
2 ,

π↾cE = 1
4 , π↾cG = 1

4 . By theorem 2.6 and the ergodic theorem, the conditional long-run sample

average of r equals π↾cB · r(B) + π↾cD · r(D) + π↾cE · r(E) + π↾cG · r(G) = 1. Opposed to the
approach in example 2.4, the result is now obtained by considering the reward values of the
relevant states only.

Although the combination of the reduction technique and theorem 2.8 allows an-
alytical computation of conditional long-run sample averages in a way that only
reward values earned in states for which the condition is satisfied must be taken into
account, the computationally complex task of determining the equilibrium distribu-
tion of the original Markov chain is still required. It can therefore be concluded that
no improvement in evaluation speed is obtained with this approach compared to
directly computing conditional long-run sample averages by means of theorem 2.1.

Construction Method Using the reduction technique in combination with theorem
2.8 to compute conditional long-run averages is not a constructive approach in the
sense that the transition matrix and initial distribution of the reduced Markov chain
are not determined. In case the reduced Markov chain is constructed, its equilib-
rium distribution can be computed in the classical way of solving a system of linear
equations.

Consider an ergodic Markov chain represented by (S, I,P) for which conditional
reward function c is defined. The transition matrix of the Markov chain obtained
after reduction with respect to c is denoted by P↾c and its initial distribution by
I↾c. Similar to the original Markov chain, the reduced Markov chain is completely
determined by the set of states S↾c, the initial distribution I↾c and transition matrix
P↾c. Therefore, it is also represented by the triple (S↾c, I↾c,P↾c) or alternatively by

(S, I,P)
↾c.

To relate the transition matrix of the reduced Markov chain with the transition matrix
of the original Markov chain, matrix M is introduced. For any S ∈ S and T ∈ S↾c,
define MS,T as the probability that the original Markov chain ever makes a transition
to T conditional on departing from S such that any intermediately visited state is

irrelevant with respect to c. Notice that for S ∈ S↾c, MS,T equals the probability P↾cS,T

that the reduced Markov chain transfers from S to T .

Theorem 2.9 Let conditional reward function c be defined for an ergodic Markov chain
with state space S and transition matrix P . Then the elements MS,T of matrix M satisfy the
system of linear equations

MS,T = PS,T +
∑

Q∈S\S↾c

PS,Q · MQ,T for all S ∈ S and T ∈ S↾c (2.18)

Proof It follows from the proof of theorem 2.3 that the probability MS,T that the
Markov chain ever transfers to any state T ∈ S↾c under the condition of departing
from any state S ∈ S is equal to P∗(X T

S), where X T
S is the initial and final set of finite

state sequences of lengths greater than 0 with initial state S and final state T , for
which all intermediate states are irrelevant with respect to c. Set X T

S can be written

40 Mathematical Techniques for Performance Evaluation

as the disjoint union of the set of state sequences in X T
S of length 1, which is singleton

set {(S, T)}, with the set of state sequences in X T
S of lengths greater than 1. So,

X T
S = {(S, T)} ∪

⋃

Q∈S\S↾c

{(S, Q)} ◦ X T
Q

and hence
P∗(X T

S) = PS,T +
∑

Q∈S\S↾c

PS,Q ·P∗(X T
Q)

which completes the proof. Remark that for a fixed state T ∈ S↾c, the probabilities

P∗(X T
S) do not depend on the probabilities P∗(XQ

S) with Q 6= T for all S ∈ S.

Theorem 2.9 states that the transition probabilities of the reduced Markov chain are
a solution of the system of linear equations (2.18). However, (2.18) has in general
no unique solution due to the recursive definition of these linear equations. The
following theorem states that in case the conditions of the reduction theorem are
satisfied, then the system of linear equation (2.18) has a unique bounded solution (see
appendix A for a definition).

Theorem 2.10 Let conditional reward function c be defined for an ergodic Markov chain
with state space S and transition matrix P . If this Markov chain has a recurrent state that
is relevant with respect to c, then the system of linear equations (2.18) has a unique bounded
solution.

Proof By theorem 2.9 there exists a solution for the system of linear equations
(2.18). This solution is bounded (by 1). To prove that this bounded solution is unique,
fix a state T ∈ S↾c and assume for any fixed enumeration of the states in S that the
sequence BS1,T , BS2,T , . . . is a bounded solution of the system of linear equations
(2.18). It is first remarked that the countable sum in each of the linear equations

BS,T = PS,T +
∑

Q∈S\S↾c

PS,Q · BQ,T (2.19)

converges absolutely for all S ∈ S. Consequently, the countable sum in (2.19) con-
verges and the order in which the terms of the sum are added is irrelevant.

It has to be shown that BS,T = P∗(X T
S) for all S ∈ S, where X T

S is the initial and final
set of finite state sequences of lengths greater than 0 with initial state S and final
state T , for which all intermediate states are irrelevant with respect to c (see proof of
theorem 2.9). To this end, define Un

S,T and V n
S,T for all n ≥ 1 and S ∈ S as

Un
S,T =











PS,T if n = 1
∑

Q∈S\S↾c

PS,Q · Un−1
Q,T otherwise

V n
S,T =















∑

Q∈S\S↾c

PS,Q · BQ,T if n = 1

∑

Q∈S\S↾c

PS,Q · V n−1
Q,T otherwise

Evaluating Conditional Long-Run Sample Averages 41

Intuitively, Un
S,T denotes the conditional probability of the set of all finite state se-

quences in X T
S of length n. V n

S,T indicates the conditional probability of the set of

all finite state sequences in X T
S of lengths greater than n. Remark that both Un

S,T

and V n
S,T are well defined because the terms Un−1

Q,T and V n−1
Q,T respectively in their

definitions above are bounded by 1 for all n > 1.

It is first proven by induction on n that the right hand side of (2.19) can be written as
(

n
∑

i=1

U i
S,T

)

+ V n
S,T (2.20)

for all n ≥ 1. For n = 1, equation (2.20) reduces to

U1
S,T + V 1

S,T = PS,T +
∑

Q∈S\S↾c

PS,Q · BQ,T

which equals BS,T by (2.19). Now assume that BS,T equals (2.20) for some n ≥ 1.
Then for n + 1, it follows that

n+1
∑

i=1

U i
S,T + V n+1

S,T = U1
S,T +

n
∑

i=1

U i+1
S,T +

∑

Q∈S\S↾c

PS,Q · V n
Q,T

= PS,T +

n
∑

i=1





∑

Q∈S\S↾c

PS,Q · U i
Q,T



 +
∑

Q∈S\S↾c

PS,Q · V n
Q,T

= PS,T +
∑

Q∈S\S↾c

PS,Q ·
n

∑

i=1

U i
Q,T +

∑

Q∈S\S↾c

PS,Q · V n
Q,T

= PS,T +
∑

Q∈S\S↾c

PS,Q ·
(

n
∑

i=1

U i
Q,T + V n

Q,T

)

= PS,T +
∑

Q∈S\S↾c

PS,Q · BQ,T

which again equals BS,T by (2.19). This completes the inductive proof and hence,

BS,T = lim
n→∞

(

n
∑

i=1

U i
S,T

)

+ V n
S,T (2.21)

To prove that (2.19) is a unique bounded solution for the system of linear equations
(2.18), it will be shown that the right hand side of equation (2.21) equals P∗(X T

S)
for all S ∈ S. Observe first that for any n ≥ 1 and S ∈ S , Un

S,T is the conditional

probability of the set {S ∈ X T
S | |S| = n}. Hence,

lim
n→∞

(

n
∑

i=1

U i
S,T

)

= P∗(

∞
⋃

i=1

{S ∈ X T
S | |S| = i}) = P∗(X T

S)

and thus, it follows from (2.21) that

BS,T = P∗(X T
S) + lim

n→∞
V n

S,T

42 Mathematical Techniques for Performance Evaluation

As a result, it remains to be shown that

lim
n→∞

V n
S,T = 0 (2.22)

To proof (2.22), define Wn
S for all n ≥ 1 and S ∈ S as

Wn
S =















∑

Q∈S\S↾c

PS,Q if n = 1

∑

Q∈S\S↾c

PS,Q · Wn−1
Q otherwise

Remark that Wn
S is well defined for each n ≥ 1. It can be shown by induction on

n (and using the boundedness of (2.19)) that −bWn
S ≤ V n

S,T ≤ bWn
S for all n ≥ 1.

Hence, to prove (2.22), it suffices (by the squeeze law) to show that

lim
n→∞

Wn
S = 0

Observe that Wn
S equals, for all n ≥ 1 and S ∈ S, the conditional probability of the

set Wn
S of infinite state sequences S for which the initial state is S and Si ∈ S \ S↾c

for i = 2, 3, . . . , n + 1. Since W1
S ⊇ W2

S ⊇ . . . is a decreasing sequence of events,

lim
n→∞

P∗(Wn
S) = P∗(

∞
⋂

i=1

Wi
S)

The countable intersection of sets Wn
S is the set of all infinite state sequences for

which the initial state is S and all other states are irrelevant with respect to c. In case
the conditional probability on the countable union of the sets Wn

S would be greater
than 0, then the probability that some relevant recurrent state Sr is reached from S
would be strictly smaller than 1. However, this contradicts the assumption that the
Markov chain has such a relevant recurrent state Sr, which is reachable from any
other state with probability 1. Hence,

P∗(

∞
⋂

i=1

Wi
S) = 0

and therefore (2.22) holds. This completes the proof of theorem 2.10.

Notice that theorem 2.10 implies that (2.18) has a unique solution in case the state
space is finite. The application of theorem 2.9 for computing conditional long-run
sample averages using the reduction technique is illustrated with example 2.6.

Example 2.6 Recall the Markov chain of example 2.4 on page 32. Applying theorem 2.9
gives that matrix M equals

M =





















MA,B MA,D MA,E MA,G

MB,B MB,D MB,E MB,G

MC,B MC,D MC,E MC,G

MD,B MD,D MD,E MD,G

ME,B ME,D ME,E ME,G

MF,B MF,D MF,E MF,G

MG,B MG,D MG,E MG,G





















=





















1 0 0 0
1
2

1
2 0 0

0 1 0 0
0 1

2
5
12

1
12

0 1 0 0
0 0 1

2
1
2

0 0 1
6

5
6





















Evaluating Conditional Long-Run Sample Averages 43

where for instance the computation of MC,D follows from solving MC,D = PC,D + PC,C ·
MC,D = 1

4 + 3
4 · MC,D. Other examples of equations that need to be solved for obtaining

matrix M are MD,G = PD,G+PD,F ·MF,G = 1
6 ·MF,G and MG,G = PG,G+PG,F ·MF,G =

2
3 + 1

3 ·MF,G. The transition matrix P↾c of the reduced Markov chain is derived from matrix

M by using that P↾cS,T = MS,T for any S, T ∈ S↾c. Omitting the indication of initial
probabilities, figure 2.4 depicts a graphical representation of this reduced Markov chain.

B

1 / 2

1 / 2

5 / 6

1 / 2

1 5 / 1 2

E

D 1 / 1 2

1 / 6

G

Figure 2.4: Reduced Markov chain corresponding to the Markov chain in figure 2.3.

After computing the equilibrium distribution of the reduced Markov chain using transition
matrix P↾c, the conditional long-run sample average of r can be computed by applying the
ergodic theorem, similarly as in example 2.5.

Although the initial distribution of the reduced Markov chain is not needed for
computing conditional long-run sample averages, constructing the reduced Markov
chain requires deriving it. The following theorem enables computing the initial dis-
tribution of the reduced Markov chain based on the initial distribution of the original
Markov chain and the transition matrix of the reduced Markov chain.

Theorem 2.11 Let conditional reward function c be defined for an ergodic Markov chain
represented by (S, I,P). If this Markov chain has a recurrent state that is relevant with
respect to c, then the initial distribution I↾c of the reduced Markov chain is given by

I↾cT = IT +
∑

Q∈S\S↾c

IQ · MQ,T for all T ∈ S↾c

Proof From the proof of theorem 2.3, it follows that the probability I↾cT that the
reduced Markov chain initially resides in state T ∈ S↾c equals P(X T), where X T is
the final set of finite state sequences with final state T and for which all preceding
states are irrelevant with respect to c. The result follows from writing X T as

X T = {(T)} ∪
⋃

Q∈S\S↾c

{(Q)} ◦ X T
Q

where X T
Q is the initial and final set of finite state sequences of lengths greater than

0 with initial state Q and final state T and for which all intermediate states are irrel-
evant with respect to conditional reward function c.

44 Mathematical Techniques for Performance Evaluation

Example 2.7 Let the initial distribution of the Markov chain in example 2.4 on page 32 be
defined as IA = 3

4 , IC = 1
4 and IS = 0 for S ∈ {B, D, E, F, G}. After deriving matrix M as

shown in example 2.6, the initial distribution of the reduced Markov chain can be computed

as I↾cB = IB + IA ·MA,B = 3
4 , I↾cD = ID + IC ·MC,D = 1

4 , I↾cE = IE + IF ·MF,E = 0 and

I↾cG = IG + IF · MF,G = 0.

Combining the reduction technique with the construction method allows analyti-
cal computation of conditional long-run sample averages in such a way that only
reward values earned in states for which the condition holds must be taken into ac-
count. By deriving the equilibrium distribution of the reduced Markov chain after
constructing it, a system of |S↾c|+ 1 (which is commonly much smaller than |S|+ 1)
lineair equations has to be solved. Nevertheless, by the remark to the proof of theo-
rem 2.9, constructing the reduced Markov chain requires solving |S↾c| independent
systems of |S| linear equations for deriving its transition probabilities from those of
the original Markov chain. As a consequence, there is in general no improvement
in performance evaluation speed when applying this approach compared to directly
computing conditional long-run sample averages by means of theorem 2.1.

In some cases, an improvement in performance evaluation speed can be obtained7.
For example 2.4, applying theorem 2.1 requires solving a system of linear equations
to determine the equilibrium distribution of the original Markov chain. This system
includes five (non-trivial) recursively defined equations (namely, πC = PE,C · πE +
PC,C · πC , πD = PC,D · πC + PD,D · πD, πE = PD,E · πD + PF,E · πF , πF =
PD,F · πD +PG,F · πG and πG = PF,G · πF +PG,G · πG). On the other hand, deriving
the transition probabilities of the corresponding reduced Markov chain as shown
in example 2.6 involves solving only a single (trivial) recursively defined equation
(namely, MC,D = PC,D + PC,C · MC,D). As a result, using the reduction technique
with the construction method is less complex than applying theorem 2.1 in this case.
From this example, it can be concluded that the degree in which the linear equations
are entangled seems to affect the profit of using the reduction technique.

2.2.4 Simulation-Based Estimation

Consider an ergodic Markov chain {Xi | i ≥ 1} on probability space (Ω,F ,P) with
state space S. Let a conditional reward function c be defined and let Sr ∈ S be a
recurrent state that is relevant with respect to c. Furthermore, let a proper reward
function r be defined such that the conditional long-run sample average of r ex-
ists and equals µcs. By the reduction technique, µcs is equal to the accompanying

long-run sample average µ↾cs defined for the reduced Markov chain {X↾ci | i ≥ 1}.
Hence, estimation of µcs can be accomplished using the classical point estimator for

µ↾cs . To examine this approach, define for all k ≥ 1, the random variables Y k
Sr

↾c
on

(Ω,F ,P) as the sum of reward values r(X↾ci) earned during the kth cycle of the re-

duced Markov chain through Sr and let the random variables Lk
Sr

↾c
on (Ω,F ,P)

7Hence, using the reduction technique may enable computing conditional long-run sample averages
for Markov chains with larger state spaces than what would be feasible in case of applying theorem 2.1.

Evaluating Conditional Long-Run Sample Averages 45

denote the length of that cycle. Then, the classical point estimator µ̂↾cs given by

µ̂↾cs =
Y ↾cSr

(n)

L↾cSr
(n)

(2.23)

where

Y ↾cSr
(n) =

1

n

n
∑

k=1

Y k
Sr

↾c
and L↾cSr

(n) =
1

n

n
∑

k=1

Lk
Sr

↾c

can be used to estimate µcs. To analyse the accuracy of a point estimate µ̄cs, Confi-
dence Interval

[

µ̂↾cs − κτ̂ ↾c√
n

· 1

L↾cSr
(n)

, µ̂↾cs +
κτ̂ ↾c√

n
· 1

L↾cSr
(n)

]

(2.24)

where

(τ̂ ↾c)2 =
1

n − 1

n
∑

k=1

(Y k
Sr

↾c − µ̂↾cs · Lk
Sr

↾c
)2

can be used for obtaining a 2R(κ)− 1 confidence interval for µcs. The conditions for

using (2.23) and (2.24) require that E[|Y ↾cSr
|2] < ∞ and E[|L↾cSr

|2] < ∞.

Notice that point estimator (2.23) and Confidence Interval (2.24) are expressed in ran-
dom variables defined for the reduced Markov chain. Straightforwardly applying
these estimators requires simulation of the reduced Markov chain, which would be
impractical if it had to be constructed explicitly in order to do so. Since the reduced
Markov chain is defined on the same probability space as the original Markov chain,
µcs can also be estimated based on simulation of {Xi | i ≥ 1} by expressing (2.23)
and (2.24) in random variables defined for the original Markov chain.

Observe that the sum of reward values r(X↾ci) earned during the kth cycle of the re-
duced Markov chain through Sr is equal to the sum of reward values r(Xi) · c(Xi)
earned during the kth cycle of the original Markov chain through Sr. Similarly, the
length of the kth cycle of the reduced Markov chain through Sr equals the sum of re-
ward values c(Xi) earned during the kth cycle of the original Markov chain through
Sr. Using tkSr

to denote the time-epoch of the kth visit of the original Markov chain
to Sr, it follows that

Y k
Sr

↾c
=

tk+1
Sr

−1
∑

i=tk
Sr

r(Xi) · c(Xi) and Lk
Sr

↾c
=

tk+1
Sr

−1
∑

i=tk
Sr

c(Xi) (2.25)

Equations (2.25) can easily be evaluated during simulation of {Xi | i ≥ 1} by per-
forming an addition with r(Xi) respectively 1 only in case the condition holds.

To estimate µcs by simulation of the original Markov chain, it has to be investigated
what conditions have to be imposed on the original Markov chain in order to satisfy

E[|Y ↾cSr
|2] < ∞ andE[|L↾cSr

|2] < ∞. The following theorem states that these conditions
hold in case reward function r is proper for the original Markov chain.

46 Mathematical Techniques for Performance Evaluation

Theorem 2.12 Let reward function r and conditional reward function c be defined for an
ergodic Markov chain {Xi | i ≥ 1}. If r is proper and {Xi | i ≥ 1} has a recurrent state Sr

that is relevant with respect to c, then

E[|Y ↾cSr
|2] < ∞ and E[|L↾cSr

|2] < ∞ (2.26)

Proof It will first be shown that E[|Y ↾cSr
|2] < ∞. Because reward function r is

proper, E[|YSr
|2] < ∞ by definition 2.8. This means that

∑

S∈ZSr
Sr

P∗(S) · |
|S|
∑

i=1

r(Si)|2 < ∞

Using (2.25), it follows for E[|Y ↾cSr
|2] that

E[|Y ↾cSr
|2] =

∑

S∈ZSr
Sr

P∗(S) · |
|S|
∑

i=1

r(Si) · c(Si)|2 ≤
∑

S∈Z
Sr
Sr

P∗(S) · |
|S|
∑

i=1

r(Si)|2 < ∞

For proving that E[|L↾cSr
|2] < ∞, observe that since reward function r is proper,

E[|LSr
|2] < ∞ by definition 2.8. This means that

∑

S∈ZSr
Sr

|S|2 ·P∗(S) < ∞

Now, let |S|↾c denote the number of states in the finite state sequence S ∈ ZSr

Sr
that is

relevant with respect to c minus 1. Notice that

|S|↾c =

|S|
∑

i=1

c(Si)

and hence

E[|L↾cSr
|2] =

∑

S∈ZSr
Sr

P∗(S) · |
|S|
∑

i=1

c(Si)|2 ≤
∑

S∈ZSr
Sr

|S|2 ·P∗(S) < ∞

From this proof, it can be concluded that (2.26) also holds if r · c is proper. Observe
furthermore that (2.26) also holds when requiring the stronger conditionsE[|USr

|2] <
∞ and E[|LSr

|2] < ∞ for the original Markov chain (see also section 2.1.3).

Based on the reduction theorem and equations (2.25), the conditional long-run sam-
ple average µcs equals the expected sum of reward values obtained in relevant states
visited during a cycle of the original Markov chain through Sr divided by the ex-
pected number of relevant states visited during such a cycle. By theorem 2.12, this
quotient of expectations can be estimated with point estimator (2.23) and Confidence
Interval (2.24) in case the conditions of the reduction theorem are satisfied. With
(2.25), the estimation can be based on simulation of the original Markov chain with-
out the necessity to take irrelevant states into account. Only in case the condition
holds, intermediate estimation results for (2.23) and (2.24) have to be updated.

Evaluating Conditional Long-Run Sample Averages 47

Without utilising the reduction technique, estimation of µcs by simulation of the
original Markov chain can be based on a point estimator and Confidence Interval
for the quotient of expectations mentioned above. However, deriving an unbiased
point estimator and suitable Confidence Interval for a quotient of expectations is
rather difficult (see also section 2.1.3). Another approach is to estimate the numera-
tor and denominator separately and derive the estimation result for µcs by dividing
the obtained point estimates for the numerator and denominator. For this approach,
the algebra of Confidence Intervals presented in section 2.3 can be used to enable
analysing the accuracy of the estimation result for µcs. However, compared with
applying the reduction technique, this approach yields a smaller confidence level of
the obtained confidence intervals. Another disadvantage of both these approaches
is that they require to update intermediate estimation results in all states visited dur-
ing simulation of the original Markov chain. Because the number of relevant states
is commonly much smaller than the total number of states, performance evaluation
speed may improve considerably when applying the reduction technique. Hence, a
larger portion of all possible behaviours can be simulated in the same amount of sim-
ulation time as would be feasible if the reduction technique is not applied. Applying
the reduction technique therefore gives a more accurate estimation of µcs.

2.2.5 Related Research

Several other approaches for improving the applicability of Markov-chain based
analysis techniques have been proposed. Many focus on reducing the complexity
of applying classical analysis techniques, just as the reduction technique does.

Analytical Computation An interesting technique is the algorithm proposed inde-
pendently in [66] and [158] for computing equilibrium distributions. It constructs a
sequence of stochastic matrices, each concerning the transition matrix of a Markov
chain with a state space that is one state smaller than that of its predecessor. Basi-
cally, the technique is a variant of Gaussian elimination for solving a system of lin-
ear equations [75]. In [120], another variant of Gaussian elimination was proposed,
which presumes the transition matrix to have certain properties that are believed to
be common in the context of performance analysis of telecommunication networks.
Although the reduction technique requires to compute an equilibrium distribution,
this computation is not accelerated. The techniques of [66, 158] or [120] can however
be combined with the reduction technique to accelerate computation of conditional
long-run sample averages compared to when using standard Gaussian elimination.

Other approaches for reducing the state space propose techniques for lumping states
into aggregate states [34, 162]. In [35] and [16] for example, states are lumped in
accordance with the use of symmetrical or equal components in the system under
investigation. States can also be lumped based on the reward values assigned to
them, see for example [18] and [76]. The idea is that properties like egodicity and
long-run averages are preserved such that the long-run averages can be computed
based on the lumped Markov chain with reduced state space. Although reducing the
state space as well, the reduction technique does not take the reward values them-
selves into account. Lumpability of Markov chains can however be combined with
the reduction technique to accelerate computation of conditional long-run averages.

48 Mathematical Techniques for Performance Evaluation

Instead of assuming particular properties for the Markov chain or reward values, the
reduction technique is intended for evaluating a certain form of long-run average
performance metrics. It enables evaluating conditional long-run sample averages
by means of applying the classical performance analysis techniques on a Markov
chain with reduced state space. The transition matrix of the reduced Markov chain
specifies the probabilities of visiting a relevant state when starting from a relevant
state but without intermediate visits to relevant states, see section 2.2.3. These tran-
sition probabilities can also be expressed with taboo probabilities. The general form
of taboo probabilities is explained in [39], where they are in fact used to describe
the classical technique for analytical computation of long-run sample averages. Op-
posed to [39], this chapter uses state sequences with certain properties for that pur-
pose. Such state sequences are used for developing the reduction technique as well,
which is useful in the context of simulation-based estimation of conditional long-run
sample averages.

Simulation-Based Estimation Several approaches have been proposed to acceler-
ate simulation-based performance estimation. Many focus on improving the statisti-
cal efficiency of the classical analysis techniques by means of reducing the variance of
the point estimator for a performance metric, without disturbing its expected value
[101, 27]. Such variance reduction techniques allow to obtain more accurate results
(smaller confidence intervals) for the same simulation time or, alternatively, achieve
a predefined accuracy within less simulation time [105]. However, the suitability of a
variance reduction technique and its potential effect on the performance evaluation
speed usually depends on the system under investigation. The variance reduction
techniques of stratified sampling [101] and importance sampling [40, 61] require for
example to give reward values certain weights and involve more computational in-
tensive updates of intermediate estimation results. Although more generally appli-
cable variance reduction techniques exist (for example the one of common random
numbers [105]), they all require some knowledge about the behaviour of the system.
Opposed to variance reduction techniques, the reduction technique allows a consid-
erable improvement in performance evaluation time without any knowledge about
the system’s behaviour based on reducing the amount of computer time needed for
updating intermediate estimation results for conditional long-run sample averages.

2.3 Accuracy Analysis of Complex Long-Run Averages

The reduction technique presented in the preceding section provides a means for
both analytical computation and simulation-based estimation of conditional long-
run sample averages. However, many long-run average performance metrics for
industrial hardware/software systems are more complex.

Example 2.8 Consider a telecommunication system that sends packets over some commu-
nication medium after processing them. The (fixed) bandwidth B of the communication
medium indicates the maximum number of packets that can be communicated per time unit.
Of interest is the expected utilisation (throughput) of the communication medium. When
formalising the telecommunication system with a Markov chain, a reward function r can be
defined, which assigns the current utilisation of the communication medium (either 0 if it is

Accuracy Analysis of Complex Long-Run Averages 49

not used or B if it is in use) to each state of the Markov chain. Observe that the condition of
taking reward values for r into account is a change in using the communication medium. The
expected utilisation is however not equal to the long-run sample average of r (which equals
1
2B) because the duration of each occurring utilisation is not taken into account.

Section 2.3.1 identifies various forms of complex conditional long-run averages that
are common for industrial hardware/software systems. These performance metrics
are algebraic combinations of several conditional long-run sample averages. In case
all conditions are satisfied, such a performance metric can be evaluated (either by
analytical computation or by simulation-based estimation) with the reduction tech-
nique by separately determining the constituent conditional long-run sample aver-
ages and then combining the obtained results. However, in case of simulation-based
estimation, it is unclear how the accuracy of a point estimate for a complex condi-
tional long-run average obtained by combining point estimates for the constituent
conditional long-run sample averages, could be analysed. Section 2.3.2 discusses a
technique for analysing the accuracy of point estimates of complex conditional long-
run averages. It is based on a number of operations defined on Confidence Intervals
for estimating conditional long-run sample averages. Combined with the reduction
technique, this algebra of Confidence Intervals, which was initially introduced in
[173], allows analysing the accuracy of estimated complex conditional long-run av-
erages using the classical performance analysis technique of section 2.1.3.

2.3.1 Common Complex Long-Run Averages

Conditional Long-Run Sample Variances Let proper reward function r and con-
ditional reward function c be defined for an ergodic Markov chain {Xi | i ≥ 1}. If
this Markov chain has a recurrent state that is relevant with respect to c, then the
conditional long-run sample average µcs of r (with condition c) exists. Now, the
conditional long-run sample variance of r (with condition c) is defined as

lim
n→∞

n
∑

i=1

(r(Xi) − µcs)
2 · c(Xi)

n
∑

i=1

c(Xi)

(2.27)

which can be rewritten8 as

lim
n→∞

n
∑

i=1

r(Xi)
2 · c(Xi)

n
∑

i=1

c(Xi)

− µ2
cs (2.28)

by using the definition of conditional long-run sample average (2.14). As a result,
performance metric (2.27) is equal to the conditional long-run sample average of r2

minus the square of the conditional long-run sample average of r. Evaluating (2.27)
with the reduction technique therefore requires r2 to be proper.

8Notice that (2.28) matches the classical way in which a variance can be rewritten (see appendix A).

50 Mathematical Techniques for Performance Evaluation

Example 2.9 Recall the Markov chain of example 2.4 on page 32. Assume analytical com-
putation of the conditional long-run sample variance of r. Using the results of example 2.5
on page 38, application of the reduction technique (which is allowed since r2 is proper) gives

that the conditional long-run sample average of r2 equals π↾cB · r2(B) + π↾cD · r2(D) + π↾cE ·
r2(E) + π↾cG · r2(G) = 7

2 . Because the conditional long-run sample average of r is 1 (see
example 2.5), the conditional long-run sample variance of r equals 5

2 .

Example 2.10 Consider a video system that processes video frames and the time needed for
processing a video frame depends on its content. Of interest are the expected processing
time as well as the variance in processing time. When formalising the behaviour of the video
system with a Markov chain, a reward function r can be defined, which assigns the process-
ing time of the last processed video frame to each state of the Markov chain. The expected
processing time can be expressed as the conditional long-run sample average of r, while the
variance in processing time can be formalised as the conditional long-run sample variance
of r. For both these long-run average performance metrics, the condition for taking reward
values obtained with r into account is the termination of processing of a video frame.

Conditional Long-Run Time Averages An important class of complex conditional
long-run averages concerns conditional long-run time averages. Let reward function
r and conditional reward function c be defined for an ergodic Markov chain {Xi |
i ≥ 1} with state space S. Define reward function ⊤ : S → [0,∞) such that ⊤(S) is
the progress in model time9 in state S ∈ S. Furthermore, define for any time-epoch
i ≥ 1, the reward function ∆ as

∆(Xi) =































0 if c(Xj) = 0 for all j = 1, . . . , i

⊤(Xi) if c(Xi) = 1
i

∑

k=j

⊤(Xk) if c(Xj) = 1 for j < i and

c(Xk) = 0 for all k = j + 1, . . . , i

(2.29)

The definition of reward function ∆ is illustrated in figure 2.5. ∆ equals 0 until c
evaluates to 1 for the first time. For any time-epoch at which c evaluates to 1, ∆ is
equal to the current progress in model time. In all other cases, ∆ equals the total
progress in model time since the last time-epoch at which c evaluated to 1.

Now, the conditional long-run time average of r (with respect to ∆ and condition c) is
defined as

lim
n→∞

n
∑

i=2

r(Xi−1) · ∆(Xi−1) · c(Xi)

n
∑

i=2

∆(Xi−1) · c(Xi)

(2.30)

Performance metric (2.30) can be explained as the long-run average of r weighted
over the duration of each occurring reward value. Observe that the expected utilisa-
tion (throughput) of the communication medium in example 2.8 is of this form.

9The model time is an instance in the time domain of a model (presumed to be the non-negative real
numbers) and may differ from the time domain of the underlying Markov chain, see also section 3.1.2.

Accuracy Analysis of Complex Long-Run Averages 51

time-epoch

r
e

w

a

r
d

v

a

l
u

e

10

20

30

1
 5

0

15
10

i 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
r(Xi) 0 22 22 32 32 32 32 10 10 10 20 20 15 15 15
c(Xi) 0 1 0 1 0 1 1 1 0 0 1 0 1 1 0
⊤(Xi) 2 0 1 3 2 0 0 0 2 0 0 2 3 4 0
∆(Xi) 0 0 1 3 5 0 0 0 2 2 0 2 3 4 4

Figure 2.5: Illustration of reward function ∆.

To enable rewriting (2.30) as a combination of conditional long-run sample averages,
a previous-reward operator Θ is introduced similarly as in [180]. For any reward func-
tion r and Markov chain {Xi | i ≥ 1}, previous-reward operator Θ is defined as

Θ(r(Xi)) =

{

0 if i = 1

r(Xi−1) otherwise

With this notation, performance metric (2.30) can be rewritten as

lim
n→∞

n
∑

i=1

Θ(r(Xi)) · Θ(∆(Xi)) · c(Xi)

n
∑

i=1

Θ(∆(Xi)) · c(Xi)

(2.31)

which is the conditional long-run sample average of Θ(r) ·Θ(∆) or Θ(r ·∆) divided
by the conditional long-run sample average of Θ(∆). Remark that only requiring
{Xi | i ≥ 1} to have a recurrent state that is relevant with respect to c and that both
Θ(r·∆) and Θ(∆) are proper is in general not sufficient for evaluating the conditional
long-run time average of r. This is because, for any reward function r, the evaluation
of Θ(r) in a state S ∈ S depends on the reward value of r in a state S′ ∈ S that is
visited before S. The problem is that S may have more than one such preceding state
with different values for r. In [180], a technique is introduced for evaluating Θ(r)
based on an extended Markov chain that does not suffer from this problem. Each
state of this extended Markov chain encodes the previous state from which it was
entered. This allows in fact defining Θ as a reward function on the extended Markov

52 Mathematical Techniques for Performance Evaluation

chain. In case certain mild conditions for {Xi | i ≥ 1} are satisfied, the technique
for deriving the extended Markov chain preserves ergodicity and long-run averages
[180]. Hence, applying the reduction technique after applying the technique of [180]
allows evaluating the constituent conditional long-run sample averages of (2.30).
To compute (2.30) analytically, corollary 2.7 can then be used. It is remarked that
the condition for applying corollary 2.7 (there must exist a time-epoch i for which
Θ(∆(Xi)) · c(Xi) > 0) is commonly satisfied for models that include timing aspects.

Conditional Long-Run Time Variances Let reward function r and conditional re-
ward function c be defined for an ergodic Markov chain {Xi | i ≥ 1}. Furthermore,
let reward function ∆ be defined as in equation (2.29). Assuming that all conditions
for applying the technique presented in [180], the reduction technique and corol-
lary 2.7 are satisfied, the conditional long-run time average µct of r exists. Now, the
conditional long-run time variance (with respect to ∆ and condition c) is defined as

lim
n→∞

n
∑

i=2

(r(Xi−1) − µct)
2 · ∆(Xi−1) · c(Xi)

n
∑

i=2

∆(Xi−1) · c(Xi)

(2.32)

which can be rewritten as

lim
n→∞

n
∑

i=2

r(Xi−1)
2 · ∆(Xi−1) · c(Xi)

n
∑

i=2

∆(Xi−1) · c(Xi)

− µ2
ct (2.33)

by using the definition of conditional long-run time average (2.30). Hence, perfor-
mance metric (2.32) is equal to the conditional long-run time average of r2 minus
the square of the conditional long-run time average of r (both with respect to ∆). To
evaluate (2.32) using the reduction technique, it is required that Θ(r2 · ∆) is proper.

Example 2.11 The video system of example 2.9 may include some buffer for queueing video
frames before processing them. To evaluate the expected buffer occupancy and the variance
in buffer occupancy, the duration of each occurring buffer occupancy must be taken into
account. When formalising the behaviour of the video system with a Markov chain, a reward
function r can be defined, which assigns the current buffer occupancy to each state of the
Markov chain. In addition, reward function ∆ can be defined in accordance with equation
(2.29), which assigns the duration of the current buffer occupancy to each state of the Markov
chain. The expected buffer occupancy can then be formalised as the conditional long-run
time average of r, while the variance in the buffer occupancy is the conditional long-run time
variance of reward function r. For both these complex conditional long-run averages, the
condition for taking reward values for r into account is a change in the buffer occupancy.

2.3.2 Algebra of Confidence Intervals

Section 2.3.1 illustrated common complex conditional long-run averages that are
composed of several conditional long-run sample averages. After separately esti-

Accuracy Analysis of Complex Long-Run Averages 53

mating these constituent conditional long-run sample averages, a point estimate can
easily be derived for the complex conditional long-run average. To enable analysing
the accuracy of point estimates obtained in such a way, this section defines a number
of operations on the set of Confidence Intervals (see appendix A). These operations
allow combining the Confidence Intervals for the constituent conditional long-run
sample averages similarly to the way in which point estimates are combined, result-
ing in a Confidence Interval for the complex conditional long-run average.

Unary Operators The negation, square and reciprocal operations are defined on
the set of Confidence Intervals according to theorems 2.13, 2.14 and 2.15 respectively.

Theorem 2.13 (Negation) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval for
µ, then the stochastic interval [−ϕ2,−ϕ1] is a γ Confidence Interval for −µ.

Proof Let (Ω,F ,P) denote the probability space on which the random variables
ϕ1 and ϕ2 are defined. For any ω ∈ Ω, it follows that −ϕ2(ω) ≤ −µ ≤ −ϕ1(ω) if and
only if ϕ1(ω) ≤ µ ≤ ϕ2(ω). Hence,

P({ω ∈ Ω | −µ ∈ [−ϕ2(ω),−ϕ1(ω)]) = P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]) ≥ γ

Theorem 2.14 (Square) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval for µ,
then the stochastic interval [ψ1, ψ2] is a γ Confidence Interval for µ2, where

ψ1, ψ2 =











ϕ2
1, ϕ

2
2 if ϕ1 ≥ 0

0, max(ϕ2
1, ϕ

2
2) if ϕ1 < 0 and ϕ2 ≥ 0

ϕ2
2, ϕ

2
1 if ϕ2 < 0

Proof Let (Ω,F ,P) denote the probability space on which the random variables
ϕ1 and ϕ2 are defined. For any ω ∈ Ω, one of the following three cases holds:

1. ϕ1(ω) ≥ 0. Then, ϕ2
1(ω) ≤ µ2 ≤ ϕ2

2(ω) if and only if ϕ1(ω) ≤ µ ≤ ϕ2(ω);

2. ϕ1(ω) < 0 and ϕ2(ω) ≥ 0. Now, 0 ≤ µ2 ≤ max(ϕ2
1(ω), ϕ2

2(ω)) if 0 ≤ |µ| ≤
max(|ϕ1(ω)|, |ϕ2(ω)|), which holds if ϕ1(ω) ≤ µ ≤ ϕ2(ω);

3. ϕ2(ω) < 0. In this case, ϕ2
2(ω) ≤ µ2 ≤ ϕ2

1(ω) if and only if −ϕ2(ω) ≤ −µ ≤
−ϕ1(ω), which holds if and only if ϕ1(ω) ≤ µ ≤ ϕ2(ω).

As a final result,

P({ω ∈ Ω | µ2 ∈ [ψ1(ω), ψ2(ω)]}) ≥ P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]}) ≥ γ

Theorem 2.15 (Reciprocal) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval
for µ 6= 0, then the stochastic interval [ψ1, ψ2] is a γ Confidence Interval for 1

µ
, where

ψ1, ψ2 =































1
ϕ2

, 1
ϕ1

if ϕ1 > 0
1

ϕ2
,∞ if ϕ1 = 0 and ϕ2 > 0

−∞,∞ if ϕ1 < 0 and ϕ2 > 0

−∞, 1
ϕ1

if ϕ1 < 0 and ϕ2 = 0
1

ϕ2
, 1

ϕ1
if ϕ2 < 0

54 Mathematical Techniques for Performance Evaluation

Proof Let (Ω,F ,P) denote the probability space on which the random variables
ϕ1 and ϕ2 are defined. For any ω ∈ Ω, one of the following five cases holds:

1. ϕ1(ω) > 0. Then, 1
ϕ2(ω) ≤ 1

µ
≤ 1

ϕ1(ω) if and only if ϕ1(ω) ≤ µ ≤ ϕ2(ω);

2. ϕ1(ω) = 0 and ϕ2(ω) > 0. Now, 1
ϕ2(ω) ≤ 1

µ
≤ ∞ if ϕ1(ω) ≤ µ ≤ ϕ2(ω) by the

extended rules of arithmetic for the division operation on R̄;

3. ϕ1(ω) < 0 and ϕ2(ω) > 0. Then, −∞ ≤ 1
µ
≤ ∞ if ϕ1(ω) ≤ µ ≤ ϕ2(ω) by the

extended rules of arithmetic for the division operation on R̄;

4. ϕ1(ω) < 0 and ϕ2(ω) = 0. Now, −∞ ≤ 1
µ
≤ 1

ϕ1(ω) if ϕ1(ω) ≤ µ ≤ ϕ2(ω) by the

extended rules of arithmetic for the division operation on R̄;

5. ϕ2(ω) < 0. In this case, 1
ϕ2(ω) ≤ 1

µ
≤ 1

ϕ1(ω) if and only if ϕ1(ω) ≤ µ ≤ ϕ2(ω).

Hence,

P({ω ∈ Ω | µ2 ∈ [ψ1(ω), ψ2(ω)]}) ≥ P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]}) ≥ γ

Binary Operators The binary operations defined on the set of Confidence Intervals
are the addition, subtraction, multiplication and division operations. The addition
and subtraction operations are defined according to theorem 2.16 and corollary 2.17.

Theorem 2.16 (Addition) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval for
µ and the stochastic interval [φ1, φ2] is a δ Confidence Interval for λ, then the stochastic

interval [ϕ1 + φ1, ϕ2 + φ2] is a (γ + δ)
.− 110 Confidence Interval for µ + λ.

Proof Let (Ω,F ,P) denote the probability space on which the random variables
ϕ1, ϕ2, φ1 and φ2 are defined. For any ω ∈ Ω, it follows that ϕ1(ω)+φ1(ω) ≤ µ+λ ≤
ϕ2(ω) + φ2(ω) if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω). As a result,

P({ω ∈ Ω | µ + λ ∈ [ϕ1(ω) + φ1(ω), ϕ2(ω) + φ2(ω)]}) ≥
P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]} ∩ {ω ∈ Ω | λ ∈ [φ1(ω), φ2(ω)]})

Hence, by lemma A.1,

P({ω ∈ Ω | µ + λ ∈ [ϕ1(ω) + φ1(ω), ϕ2(ω) + φ2(ω)]}) ≥
P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]}) +P({ω ∈ Ω | λ ∈ [φ1(ω), φ2(ω)]}) − 1

which is greater or equal to (γ + δ)
.− 1

Corollary 2.17 (Subtraction) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval
for µ and the stochastic interval [φ1, φ2] is a δ Confidence Interval for λ, then the stochastic

interval [ϕ1 − φ2, ϕ2 − φ1] is a (γ + δ)
.− 1 Confidence Interval for µ − λ.

10The monus operation allows taking into account the case that the confidence level of a Confidence
Interval obtained after performing the addition operation would be less than 0. Notice that Confidence
Intervals with confidence level 0 are not useful for deciding whether estimation results are credible.

Accuracy Analysis of Complex Long-Run Averages 55

Proof The result follows from adding [ϕ1, ϕ2] with the negation of [φ1, φ2].

Finally, the multiplication and division operations are defined in accordance with
theorem 2.18 and corollary 2.19 respectively.

Theorem 2.18 (Multiplication) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence In-
terval for µ and the stochastic interval [φ1, φ2] is a δ Confidence Interval for λ, then the

stochastic interval [ψ1, ψ2] is a (γ + δ)
.− 1 Confidence Interval for µ · λ where

ψ1, ψ2 =















































































ϕ1 · φ1, ϕ2 · φ2 if ϕ1 ≥ 0 and φ1 ≥ 0

ϕ2 · φ1, ϕ2 · φ2 if ϕ1 ≥ 0, φ1 < 0 and φ2 ≥ 0

ϕ2 · φ1, ϕ1 · φ2 if ϕ1 ≥ 0 and φ2 < 0

ϕ1 · φ2, ϕ2 · φ2 if ϕ1 < 0, ϕ2 ≥ 0 and φ1 ≥ 0

min(ϕ1 · φ2, ϕ2 · φ1), if ϕ1 < 0, ϕ2 ≥ 0, φ1 < 0 and φ2 ≥ 0

max(ϕ1 · φ1, ϕ2 · φ2)

ϕ2 · φ1, ϕ1 · φ1 if ϕ1 < 0, ϕ2 ≥ 0 and φ2 < 0

ϕ1 · φ2, ϕ2 · φ1 if ϕ2 < 0 and φ1 ≥ 0

ϕ1 · φ2, ϕ1 · φ1 if ϕ2 < 0, φ1 < 0 and φ2 ≥ 0

ϕ2 · φ2, ϕ1 · φ1 if ϕ2 < 0 and φ2 < 0

Proof Let (Ω,F ,P) denote the probability space on which the random variables
ϕ1, ϕ2, φ1 and φ2 are defined. For any ω ∈ Ω, one of the following nine cases holds:

1. ϕ1(ω) ≥ 0 and φ1(ω) ≥ 0. Then, ϕ1(ω) · φ1(ω) ≤ µ · λ ≤ ϕ2(ω) · φ2(ω) if and
only if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

2. ϕ1(ω) ≥ 0, φ1(ω) < 0 and φ2(ω) ≥ 0. Now, ϕ2(ω) ·φ1(ω) ≤ µ ·λ ≤ ϕ2(ω) ·φ2(ω)
if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

3. ϕ1(ω) ≥ 0 and φ2(ω) < 0. In this case, ϕ2(ω) · φ1(ω) ≤ µ · λ ≤ ϕ1(ω) · φ2(ω) if
both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

4. ϕ1(ω) < 0, ϕ2(ω) ≥ 0 and φ1(ω) ≥ 0. If so, ϕ1(ω) · φ2(ω) ≤ µ · λ ≤ ϕ2(ω) · φ2(ω)
in case both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

5. ϕ1(ω) < 0, ϕ2(ω) ≥ 0, φ1(ω) < 0 and φ2(ω) ≥ 0. Now, min(ϕ1(ω) ·φ2(ω), ϕ2(ω) ·
φ1(ω)) ≤ µ · λ ≤ max(ϕ1(ω) · φ1(ω), ϕ2(ω) · φ2(ω)) if both ϕ1(ω) ≤ µ ≤ ϕ2(ω)
and φ1(ω) ≤ λ ≤ φ2(ω);

6. ϕ1(ω) < 0, ϕ2(ω) ≥ 0 and φ2(ω) < 0. In this case, ϕ2(ω) · φ1(ω) ≤ µ · λ ≤
ϕ1(ω) · φ1(ω) if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

7. ϕ2(ω) < 0 and φ1(ω) ≥ 0. If so, ϕ1(ω) · φ2(ω) ≤ µ · λ ≤ ϕ2(ω) · φ1(ω) in case
both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

8. ϕ2(ω) < 0, φ1(ω) < 0 and φ2(ω) ≥ 0. Now, ϕ1(ω) ·φ2(ω) ≤ µ ·λ ≤ ϕ1(ω) ·φ1(ω)
if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω);

56 Mathematical Techniques for Performance Evaluation

9. ϕ2(ω) < 0 and φ2(ω) < 0. In this case, ϕ2(ω) · φ2(ω) ≤ µ · λ ≤ ϕ1(ω) · φ1(ω) if
and only if both ϕ1(ω) ≤ µ ≤ ϕ2(ω) and φ1(ω) ≤ λ ≤ φ2(ω).

As a result,

P({ω ∈ Ω | µ · λ ∈ [ψ1(ω), ψ2(ω)]}) ≥
P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]} ∩ {ω ∈ Ω | λ ∈ [φ1(ω), φ2(ω)]})

Hence, by lemma A.1,

P({ω ∈ Ω | µ · λ ∈ [ψ1(ω), ψ2(ω)]}) ≥
P({ω ∈ Ω | µ ∈ [ϕ1(ω), ϕ2(ω)]}) +P({ω ∈ Ω | λ ∈ [φ1(ω), φ2(ω)]}) − 1

which is greater or equal to (γ + δ)
.− 1

The square operation is preferred over the multiplication operation if the operands
for the multiplication operation are the same. The reason is that the square operation
does not reduce the confidence level, whereas the multiplication operation does.

Corollary 2.19 (Division) If the stochastic interval [ϕ1, ϕ2] is a γ Confidence Interval for
µ and the stochastic interval [φ1, φ2] is a δ Confidence Interval for λ 6= 0, then the stochastic

interval [ψ1, ψ2] is a (γ + δ)
.− 1 Confidence Interval for µ/λ where

ψ1, ψ2 =































































































































ϕ1

φ2
, ϕ2

φ1
if ϕ1 ≥ 0 and φ1 > 0

ϕ2

φ2
,∞ if ϕ1 ≥ 0, φ1 = 0 and φ2 > 0

−∞,∞ if ϕ1 ≥ 0, φ1 < 0 and φ2 > 0

−∞, ϕ1

φ1
if ϕ1 ≥ 0, φ1 < 0 and φ2 = 0

ϕ2

φ2
, ϕ1

φ1
if ϕ1 ≥ 0 and φ2 < 0

ϕ1

φ1
, ϕ2

φ1
if ϕ1 < 0, ϕ2 ≥ 0 and φ1 > 0

−∞,∞ if ϕ1 < 0, ϕ2 ≥ 0, φ1 = 0 and φ2 > 0

−∞,∞ if ϕ1 < 0, ϕ2 ≥ 0, φ1 < 0 and φ2 > 0

−∞,∞ if ϕ1 < 0, ϕ2 ≥ 0, φ1 < 0 and φ2 = 0
ϕ2

φ2
, ϕ1

φ2
if ϕ1 < 0, ϕ2 ≥ 0 and φ2 < 0

ϕ1

φ1
, ϕ2

φ2
if ϕ2 < 0 and φ1 > 0

−∞, ϕ2

φ2
if ϕ2 < 0, φ1 = 0 and φ2 > 0

−∞,∞ if ϕ2 < 0, φ1 < 0 and φ2 = 0
ϕ2

φ1
,∞ if ϕ2 < 0, φ1 < 0 and φ2 = 0

ϕ2

φ1
, ϕ1

φ2
if ϕ2 < 0 and φ2 < 0

Proof Using the extended rules of arithmetic for the multiplication operation on
R̄, the result follows from multiplying [ϕ1, ϕ2] with the reciprocal of [φ1, φ2].

The set of Confidence Intervals together with the negation, square, reciprocal, addi-
tion, subtraction, multiplication and division operations as defined above is in this
thesis referred to as the algebra of Confidence Intervals.

Accuracy Analysis of Complex Long-Run Averages 57

Estimating Common Complex Long-Run Averages Let [ϕ1, ϕ2] be a Confidence
Interval for a conditional long-run sample average µcs defined according to equation
(2.24) on page 45. An important property for this stochastic interval is that both

ϕ1
a.s.−→ µcs and ϕ2

a.s.−→ µcs (see also section 2.1.3). Of interest is whether the algebra
of Confidence Intervals preserves this property of the convergence of the bounds.

Consider for example the addition of Confidence Interval [ϕ1, ϕ2] for µ with Confi-

dence Interval [φ1, φ2] for λ. It is easy to see that ϕ1+φ1
a.s.−→ µ+λ and ϕ2+φ2

a.s.−→ µ+λ
and hence, the addition preserves the property of almost sure convergence of the
bounds. Without further proof it is stated that the other operations also preserve this
property. The crux of such a proof regarding for example the reciprocal of Confi-
dence Interval [ϕ1, ϕ2] for µ is that either the first or last case in theorem 2.15 will
eventually hold for long traces. It is easy to show that for these cases, both the upper
and lower bound of the resulting Confidence Interval converge to 1

µ
and hence, the

reciprocal operation preserves the property of the convergence of the bounds.

Theorem 2.20 The operations defined on the set of Confidence Intervals preserve almost
sure convergence of the bounds of a Confidence Interval to the involved long-run average.

Now, let Confidence Interval [ϕ1, ϕ2] for some complex long-run average µ be de-
termined based on the algebra of Confidence Intervals. Then, for any x, y ∈ R with

x + y 6= 0, it follows that 1
x+y

(x · ϕ1 + y · ϕ2)
a.s.−→ µ since ϕ1

a.s.−→ µ and ϕ2
a.s.−→ µ by

theorem 2.20. Therefore, any 1
x+y

(x ·ϕ1+y ·ϕ2) with x+y 6= 0 is a strongly consistent

(but generally biased) point estimator for µ. Instead of deriving a point estimate for
a complex long-run average by combining point estimates of the constituent condi-
tional long-run sample averages, the result can be derived from a confidence inter-
val obtained for the complex long-run average based on application of the algebra of
Confidence Intervals. To minimise simulation time before automatically terminating
it (see also section 2.1.3), the point estimator that yields the smallest upper bound for
the relative error should be used. Notice that this is point estimator 1

2 (ϕ1 + ϕ2).

2.3.3 Related Research

Accuracy analysis of long-run average performance metrics has mainly focussed on
deriving an unbiased point estimator and accompanying Confidence Interval for a
quotient of expectations. This is because the elementary performance metric (long-
run sample average) is of that form, see equation (2.8) on page 26. Although differ-
ent point estimators (like the Jacknife estimator [87, 105]) and Confidence Intervals
(such as bootstrap Confidence Intervals [38]) have been proposed, these are only
applicable for estimating a single long-run sample average. Notice that since a long-
run sample average is a quotient of expectations that can be estimated separately,
the algebra of Confidence Intervals could even be used for analysing the accuracy
of long-run sample averages. Nevertheless, this approach would give a less precise
Confidence Interval than the Confidence Interval derived in section 2.1.3. Compared
to the other approaches, the algebra of Confidence Intervals is however more gener-
ally applicable in the sense that it also provides a means for analysing the accuracy
of complex combinations of long-run sample averages, like long-run time variances.

58 Mathematical Techniques for Performance Evaluation

Traditionally, estimating a complex long-run average performance metric involves
deriving a point estimator and a Confidence Interval. Although this is often a very
complicated task, a straightforwardly derived point estimator and Confidence Inter-
val exists for some complex long-run averages. In [125] for example, estimation of
the subtraction of two long-run sample averages and the division of two long-run
sample variances are discussed as well as estimation of long-run sample variances.
Point estimation of the first two performance metrics is accomplished by combining
the point estimates of the constituent performance metrics, while long-run sample
variances are estimated based on the standard sample variance. Accuracy analysis of
point estimates obtained with these point estimators can be accomplished by using
the Confidence Intervals of [125]. These Confidence Intervals are derived based on
the distribution to which the combined point estimators of these complex long-run
averages converge. Although being more precise than the Confidence Intervals that
would be the result of using the algebra of Confidence Intervals, the Confidence In-
tervals of [125] are only applicable for the indicated performance metric types. The
algebra of Confidence Intervals, on the other hand, provides a means for deriving a
Confidence Interval for any complex long-run average performance metric.

2.4 Conclusions

The classical Markov-chain based performance analysis techniques provide ample
means for evaluating long-run sample averages. This chapter extended these tech-
niques to enable both analytical computation and simulation-based estimation of
various common forms of more complex long-run average performance metrics.

With the reduction technique, long-run sample averages can be evaluated, for which
a certain condition on the states must be taken into account. The reduction tech-
nique bases the evaluation of such a conditional long-run sample average on defin-
ing a reduced Markov chain that includes only those states for which the condition
holds. The reduction technique matches conditional long-run sample averages for
the original Markov chain with corresponding long-run sample averages defined
for the reduced Markov chain. As a result, it allows evaluating conditional long-run
sample averages based on applying the classical performance analysis techniques to
the reduced Markov chain. Using the reduction technique requires that the origi-
nal Markov chain is ergodic and that it has a recurrent state for which the condition
holds. In addition, the reward function based on which reward values are obtained
must be proper. These rather mild conditions are the same for both analytical com-
putation and simulation-based estimation of conditional long-run sample averages.

In case of analytical computation of a conditional long-run sample average with the
reduction technique, two approaches are identified for determining the equilibrium
distribution of the reduced Markov chain. This equilibrium distribution is needed by
the classical performance analysis technique to compute the corresponding long-run
sample average defined for the reduced Markov chain. The first approach is based
on the relation that exists between the equilibrium probabilities of the original and
reduced Markov chains. Compared to directly computing a conditional long-run
sample average based on the original Markov chain, this approach does not yield
an improvement in performance evaluation speed. The second approach involves

Conclusions 59

explicit construction of the reduced Markov chain, which is based on the relation
between the transition and initial probabilities of the original and reduced Markov
chains. Although applying this approach for computing a conditional long-run sam-
ple average does not improve performance evaluation speed in general, there are
cases for which performance evaluation speed does improve.

The reduction technique enables estimating conditional long-run sample averages
by means of simulating the original Markov chain. This approach is based on updat-
ing intermediate estimation results for a long-run sample average only in those states
for which the condition holds. An important advantage of applying the reduction
technique over straightforwardly estimating conditional long-run sample averages
is avoidance of the difficulty of deriving a suitable point estimator and Confidence
Interval for the quotient of expectations that a conditional long-run sample average
is. Straightforwardly estimating a conditional long-run sample average with such a
point estimator and Confidence Interval would also require to update intermediate
estimation results in all states visited during simulation. Hence, performance eval-
uation speed improves considerably when applying the reduction technique and
therefore more accurate results can be obtained in the same simulation time.

Next to conditional long-run sample averages, a number of more complex forms of
long-run average performance metrics are identified. They concern algebraic com-
binations of conditional long-run sample averages. Analytical computation of such
complex long-run averages can be accomplished by first determining the constituent
conditional long-run sample averages with the reduction technique and then com-
bining their results. A similar approach can be applied in case of simulation-based
estimation. After obtaining a point estimate for the constituent conditional long-run
sample averages using the reduction technique, a point estimate for the complex
long-run average can be derived. The accuracy of such a point estimate can be anal-
ysed based on the proposed algebra of Confidence Intervals. It provides a number
of operations on Confidence Intervals that allow combining confidence intervals ob-
tained for the constituent conditional long-run sample averages to determine a con-
fidence interval for the complex long-run average. Some of the operations reduce
the confidence level for the resulting Confidence Interval. Hence, if a certain confi-
dence level is desired for a complex long-run average, it is necessary to estimate the
constituent conditional long-run sample averages with a greater confidence level.

60 Mathematical Techniques for Performance Evaluation

Chapter 3

Reflexive Performance Analysis
with POOSL

Using Markov chain-based techniques for evaluating the performance of a system
requires formalising its behaviour in terms of states and transitions. However, the
complexity of industrial hardware/software systems often hinders directly writing
down their states and transitions due to the state-space explosion problem [126].
A more convenient way of specifying behaviour, which matches closely the way
designers reason about the working of systems, is offered by modelling languages. A
modelling language provides primitives for specifying how the complex behaviour
of a system is composed of the simple behaviours of its components. To use Markov
chain-based performance analysis techniques in this case, the behaviour specified in
the model must be mapped onto the states and transitions of a Markov chain.

Next to formalising the behaviour of a system with a Markov chain, the performance
properties of interest need to be formalised as reward functions. When applying the
model-checking approach for evaluating performance properties, defining a reward
function involves specifying a reward value for each state separately. If the number
of states is large, this way of assigning reward values is impractical. For an infinite
number of states, specifying reward values for all states is in general even impossi-
ble. With reflexive performance analysis on the other hand, reward functions can be
defined by adding variables to a model. By extending the behaviour of the model,
reward values can be assigned to such variables in accordance with the occurrence
of events that affect the performance property. To apply Markov chain-based per-
formance analysis techniques in this case, the introduced variables must be matched
with reward functions that assign reward values to the states of a Markov chain.

An important advantage of modelling languages with a formal semantics is that
models constructed with them implicitly define a certain mathematical structure.
An example of such a formal modelling language is the Parallel Object-Oriented
Specification Language (POOSL) [145, 28]. The semantics of a POOSL model defines
a timed probabilistic labelled transition system [28] that can be transformed into a
Markov chain [180]. After constructing the Markov chain, reward values can be as-
signed to the states separately and then the performance properties of interest can be

62 Reflexive Performance Analysis with POOSL

evaluated. As illustrated in [180], this model-checking approach enables analytical
computation of the system’s performance using classical Markov-chain based per-
formance analysis techniques. In section 3.1, the results of [180] are used to found
a framework for reflexive performance analysis with POOSL. This framework al-
lows estimation of the system’s performance by executing (simulating) the POOSL
model. Appendix B includes an introductory overview of the syntax and semantics
of POOSL, which are presumed to be understood before reading this chapter.

Although the framework for reflexive performance analysis with POOSL provides
a sound basis for obtaining credible performance results, a practical problem arises
when applying the simulation-based estimation techniques discussed in chapter 2. It
concerns the necessity of identifying a recurrent state. Visiting such a recurrent state
marks the beginning of a regenerative cycle of independent behaviour. Determin-
ing whether a state visited during simulation is equal to a previously visited state
if often prohibitively complex. Section 3.2 elaborates on two approaches for defin-
ing a condition to enforce the beginning of a regenerative cycle. These approaches
allow applying the simulation-based estimation techniques in the form of perfor-
mance monitors. The implementation of such performance monitors by means of
library classes for POOSL is discussed in section 3.3. Section 3.4 investigates the
quality of the accuracy results that are obtained when using these library classes.

3.1 Framework for Reflexive Performance Analysis

3.1.1 Specifying Markov Chains

As discussed in more detail in appendix B, the formal semantics of a POOSL model
M defines a unique timed probabilistic labelled transition system of the form:

M = (C, Cs,A, { a−→⊆ C ×D(C) | a ∈ A}, T , { t−→⊆ C × C | t ∈ T +}) (3.1)

where C denotes the set of configurations with initial configuration Cs ∈ C, A is the

set of actions, T is the time domain and finally { a−→⊆ C×D(C) | a ∈ A} and { t−→⊆
C × C | t ∈ T +} denote the sets of action transitions and time transitions respectively.
Transition system M can be visualised as a graph. The nodes of this graph represent
the configurations of M. The initial configuration Cs is identified with a symbol >

directed towards the node. For any action transition relation C
a−→ π with π ∈ D(C),

a directed double (multi) arrow is drawn from node C to all nodes C ′ to which the
system can transit with positive probability π(C ′). The first part of the double (multi)
arrow is a directed arrow labelled with action a and the second part is a fan-out of
directed arrows labelled with the probabilities π(C ′) [28]. For any time transition

relation C
t−→ C ′, a directed arrow is drawn from node C to node C ′, which is

labelled with t. Since time transitions denote the maximal amount of time that the
model is willing to wait before continuing performing action transitions, t is either a
(positive) number or ∞. Example 3.1 illustrates visualisation of the transition system
corresponding to the behaviour specified by one process method.

Example 3.1 Generating bursts of (fixed-size) packets can be specified with the process
method GenerateTraffic in figure 3.1. In line 1, a local variable p of type Packet

Framework for Reflexive Performance Analysis 63

is declared. The actual behaviour specification of GenerateTraffic starts in line 2 with
the creation of a new instance of data class Packet. After creating the new packet, its iden-
tifier is set to PacketNumber. In line 3, PacketNumber is incremented to ensure that
the identifier of the generated packet is unique. The braces in lines 2 and 3 specify that the
enclosed expressions are to be executed as one indivisible action. The send statement in line
4 specifies sending p through port Out. The duration of sending p, which equals the size
PacketSize of a packet divided by the (fixed) rate Bandwidth with which packets are
sent, is modelled with the delay-statement in line 5. Line 6 models the probability of insert-
ing a period without traffic after sending p. To this end, a sample is drawn from the Bernoulli
distribution InsertIdleTime. If sending another packet must be postponed, the delay-
statement in line 7 is executed. The exact time to wait depends on a sample drawn from the
discrete uniform distribution IdleTimeDistribution. Infinite repetition of sending a
packet and inserting an idle period is modelled with tail-recursion in line 9.

1 GenerateTraffic()() |p: Packet|

2 {p := new(Packet) withNumber(PacketNumber);

3 PacketNumber := PacketNumber + 1};
4 Out!Packet(p);
5 delay(PacketSize / Bandwidth);
6 if (InsertIdleTime yieldsSuccess) then

7 delay(IdleTimeDistribution sample)
8 fi;
9 GenerateTraffic()().

Figure 3.1: Generating bursts of packets.

When abstracting from the actual values of p and PacketNumber, the timed probabilis-
tic labelled transition system defined by method GenerateTraffic can be visualised as
shown in figure 3.2. The initial configuration C1 reflects the behaviour specified by the ex-
pressions of lines 2 and 3. The internal action transition from C1 to C2 originates from
creating a new packet and incrementing PacketNumber in lines 2 and 3 together (because
of the braces) and is performed with probability 1. The send statement in line 4 specifies the
send action transition from configuration C2 to C3. Remark that send action Out!Packet
denotes a synchronisation with the environment. If the environment is not prepared to par-
ticipate in performing a matching receive action, execution of Out!Packet is postponed
until the environment is ready to receive the packet. Hence, the send statement also specifies
the time transition from C2 to C2 labelled with ∞, which denotes the willingness to wait for
an arbitrary amount of time before performing send action Out!Packet.

The time transition from configuration C3 to C4 originates from the delay-statement in
line 5 of figure 3.1. The label 7

2 is obtained by assuming that PacketSize equals 140
data units and the rate Bandwidth of sending packets is 40 data units per time unit. The
if-statement in line 6 results in an internal action with branches to configurations C5 and
C6. Assuming that the Bernoulli distribution InsertIdleTime yields success with prob-
ability 1

8 , the system transits to C5 if no idle period has to be inserted and to C6 other-
wise. From configuration C5, the fix action transition to C1 reflects the tail-recursive call
of method GenerateTraffic. On the other hand, the part of the transition system in
figure 3.2 regarding configurations C6 to C18 is the result of the delay-statement in line
7. This delay-statement illustrates how probabilistic timing behaviour can be specified in
POOSL. Its execution first involves evaluating the amount of time to wait [28]. Suppose that

64 Reflexive Performance Analysis with POOSL

C
1

C
7

C
8

C
1 2

C
1 3

C
1 4

C
1 8

4

5

9

C
6

1 / 6

1 / 6

f

1 / 6

1

f

1

f

f
1

C 4

C
3

C
5

t

7 / 8

1 / 8

C
2

t

1

¥

1

7 / 2

f

O u t ! P a c k e t

1

Figure 3.2: Visualisation of a timed probabilistic labelled transition system.

IdleTimeDistribution is a discrete uniform distribution assuming the values 4, 5, 6,
7, 8 and 9. Then, the resulting fix action has branches to 6 different configurations, which
are all entered with the same probability. From these configurations, the time can pass for
an amount equal to the involved sample of IdleTimeDistribution and after that the
system resides in the corresponding configuration C13 to C18. Finally, the fix actions from
these configurations to C1 reflect the tail-recursive call of method GenerateTraffic.

Composition of Transition Systems The transition system derived in example 3.1
reflects the behaviour of only a single activity. Based on using the par-statement,
processes may however include a number of activities that operate concurrently. The
behaviour of each concurrent activity can be studied in isolation by separately de-
riving its transition system (as in example 3.1). Such a transition system may express
dependencies on behaviour of other activities within the process, originating from
using guards on data objects shared with the other activities. Instead of studying the
activities in isolation, the behaviour of the composition of all concurrent activities
within a process can be studied as a whole. The composite transition system for the
process is then defined in accordance with the semantical rules for the par-statement
[28]. The configurations of this composite transition system are determined by the
combination of the local configurations of the individual concurrent activities.

Similar to how processes may include a number of concurrent activities, a complete
model or a cluster may include several concurrently operating processes. The be-
haviour of each process can be studied in isolation by deriving its transition system
as explained above. The transition systems of the individual processes may express
behavioural dependencies with other processes in the model or cluster due to the
use of the statements for sending and receiving messages. Instead of studying the
processes in isolation, the behaviour of the composition of all processes in a model or
cluster can be studied. The composite transition system is then defined based on the
semantical rules for parallel composition of processes, channel hiding and channel
relabelling for POOSL [28], which are similar to those defined for CCS [122].

Framework for Reflexive Performance Analysis 65

A transition system can be interpreted as being closed (self-contained) or open. In-
terpreting a transition system as closed excludes the possibility of interacting with the
environment [57]. In this case, action transitions that depend on the environment are
blocked, while all other action transitions are not blocked. Interpreting a transition
system as open allows the possibility of interacting with the environment. When
assuming that the environment is capable of participating in any such interactions
at any time, no action transition is blocked. Interpreting for example the transition
system of a single process as open allows assuming that its environment is always
willing to participate in any send or receive action transition specified for it.

The tools for executing POOSL models (see also appendix B) interpret the transition
system of a complete model as closed. As a consequence, analysing the performance
of a complex hardware/software system in practice requires to include a model of
both the system and the environment with which it interacts.

Transforming POOSL Models into Markov Chains The timed probabilistic la-
belled transition system defined by a POOSL model can be transformed into (time-
homogeneous discrete-time) Markov chain in three steps [180] as follows:

Transformation Step 1: Assuming Maximal Progress

The transition system defined by a POOSL model may include configurations from
which both communication action transitions and time transitions can be performed
(like configuration C2 in example 3.1). Since all the involved action transitions de-
pend on the environment, interpreting the transition system as closed disables per-
forming any of these blocked action transitions. On the other hand, when interpret-
ing the transition system as open, an assumption must be made about the willing-
ness of the environment to participate in the communication action transitions.

To study the behaviour of a concurrent activity or process in isolation and taking any
interaction with its environment into account, it is practical to interpret the involved
transition system as open and assume that the environment is always willing to par-
ticipate in any communication action that the transition system wants to perform.
This means that the activity or process will make maximal progress. Maximal progress
implies the removal of the time transitions from configurations allowing both com-
munication action transitions and time transitions. After applying the assumption of
maximal progress, the remaining time transitions are interpreted slightly different.
Instead of indicating the maximal amount of time that the model is willing to wait be-
fore continuing performing actions, time transitions now present the exact amount
of time that must pass1.

Transformation Step 2: Resolving Non-Determinism

A transition system may include configurations from which several (non-blocking)
action transitions can be performed. Such non-determinism must be resolved in or-
der to transform the transition system into a Markov chain. This is achieved by using
an (external) scheduler [176] (also called rule or policy in the theory of Markov deci-
sion processes [45]) for determining the actual order in which the involved actions
are performed. Notice that different schedulers may execute these actions in dif-

1It is noted that when interpreting a transition system as closed, time transitions also denote the exact
amount of time that must pass. This common interpretation is necessary to actually execute models.

66 Reflexive Performance Analysis with POOSL

ferent orders. As a consequence, the actual sequence of visited configurations may
differ for different schedulers and therefore different results could be obtained for
a specific performance metric. Hence, in case non-determinism is not resolved, a
performance metric gives rise to a collection of results. Only after resolving non-
determinism, performance metrics are given by a single result.

When using a modelling language that supports non-determinism (see for example
[23, 51, 71] and [91]), one is often not aware of the presence of non-determinism.
Tools for executing models developed with such modelling language commonly re-
solve non-determinism implicitly, without knowing the exact policy for doing so.
Although resolving non-determinism is a common aspect of discrete-event simula-
tion, it is rarely recognised as a possible cause of unrealistic performance results.

As indicated in appendix B, the tools for executing POOSL models include a sched-
uler that resolves non-determinism explicitly based on a uniform distribution over
the set of next possible action transitions. It is remarked that if no formal semantics
would have been available, resolving non-determinism in such a fair way is difficult
to guarantee. Future research includes an investigation on other approaches for re-
solving non-determinism and their effects on the obtained performance results. It
is also possible to not resolve non-determinism. In this case, a POOSL model can
be transformed into a Markov decision process. More research is needed for de-
veloping techniques that allow determining the complete collection of results for a
performance metric when the behaviour is formalised as Markov decision process.

After resolving the non-determinism in a POOSL model, a new timed probabilistic
labelled transition system is obtained. This transition system is of the form:

(C, Cs,A, { a,p
=⇒ ⊆ C × C | a ∈ A, p ∈ [0, 1]}, T , { t

=⇒⊆ C × C | t ∈ T +}) (3.2)

where C, Cs, A and T denote again the set of configurations, the initial configuration,

the set of actions and the time domain respectively. The sets { a,p
=⇒⊆ C×C | a ∈ A, p ∈

[0, 1]} and { t
=⇒ ⊆ C × C | t ∈ T +} indicate the action transitions and time transi-

tions respectively after resolving non-determinism. When residing in configuration

C, relation C
a,p
=⇒ C ′ holds if configuration C ′ can be entered with probability p after

performing action a. Observe that this implies that there is at most one action tran-

sition
a,p
=⇒ leading from C to C ′. The relations

a,p
=⇒ are straightforwardly determined

from the relations
a−→ of transition system (3.1) and the scheduler, see example 3.2.

Example 3.2 The piece of POOSL code in figure 3.3 specifies the non-deterministic selection
of three different behaviours. The corresponding (partial) transition system defined based on
the semantics is depicted in the bottom left corner of figure 3.3. The skip-statement in line
2 results in the internal action transition from A to B. Assuming that InsertIdleTime
in line 4 is the same Bernoulli distribution as in example 3.1, the if-statement defines an
internal action transition from A with branches to configurations C and D. The method call
in line 7 results in the fix action from A to E. After resolving non-determinism based on a
uniform distribution over the next possible action transitions, the (partial) transition system
depicted at the bottom right of figure 3.3 is obtained. Because three different actions can be
performed when residing in A, the scheduler executes each of the corresponding actions with
probability 1

3 . The resulting probability of residing in B, C, D or E after A therefore equals
1
3 times the probability of performing the corresponding action.

Framework for Reflexive Performance Analysis 67

...
1 sel

2 skip; ...
3 or

4 if (InsertIdleTime yieldsSuccess) then ...
5 else ... fi; ...
6 or

7 Method()()
8 les;

...

A

C

D

E

B

t

1 / 8

7 / 8

A

C

D

E

B

t , 1 / 2 4

t , 7 / 2 4

t , 1 / 3

f , 1 / 3

f

1

t

1

Figure 3.3: Resolving non-determinism in a probabilistic way.

When residing in configuration C, relation C
t

=⇒ C ′ holds if configuration C ′ can be
entered after waiting for the (positive) amount t of time. Because of assuming maxi-

mal progress, C
t

=⇒ C ′ holds if C
t−→ C ′ and no action transitions can be performed

from C. The latter is ensured by transformation step 1. Since time transitions are
deterministic (see appendix B), they are considered to be taken with probability 1.

Transformation Step 3: Shifting Action and Time Information into States

The final transformation step boils down to shifting the action and time labels of the
transitions into the nodes of the graph representing transition system (3.2). This is
similar to the approach implicitly used in for example [129]. The result is a (time-
homogeneous discrete-time) Markov chain, where information about the actual oc-
currence of actions and passage of time can be deduced from the states (from tran-
sition system (3.2), it can only be concluded that an action or time transition can
occur). Hence, action and time information can be encoded as reward values, which
is necessary for evaluating performance metrics depending on such information.

The state space S of the Markov chain obtained after shifting the action and time
information is defined as a subset of the set C × (A∪T + ∪{−}). In general, C × (A∪
T +∪{−}) is uncountable due to the cardinality of time domain T , which may be the

non-negative real numbers. However, since C is countable, the sets { a,p
=⇒ ⊆ C × C |

a ∈ A, p ∈ [0, 1]} and { t
=⇒⊆ C×C | t ∈ T +} are countable and hence, S is countable.

If |C| is finite, then |S| equals the number of action and time transitions with different
label/target-configuration combinations for transition system (3.2) plus 1.

The interpretation of a state in S of the form (C, a) with a ∈ A is that C is entered
after having performed action a. A state (C, t) with t ∈ T + is interpreted as entering
C after having performed a time transition labelled with t, while (C,−) denotes

68 Reflexive Performance Analysis with POOSL

the entrance of C without having performed any action or time transition. Remark
that only the initial configuration Cs of transition system (3.2) is entered without
performing a transition. The initial distribution I of the obtained Markov chain is
defined as

I(C,α) =

{

1 if C = Cs and α = −
0 otherwise

Notice that the sum of all initial probabilities equals 1. For any α, β ∈ A∪T + ∪ {−},
the probability P(C,α),(C′,β) of transferring from state (C, α) to (C ′, β) is defined as

P(C,α),(C′,β) =















p if β ∈ A and C
β,p
=⇒C ′

1 if β ∈ T + and C
β

=⇒C ′

0 otherwise

Because either action transitions or a time transition can be performed, it follows that
for any C ∈ C and α ∈ A ∪ T + ∪ {−},

∑

C′∈C, β∈A∪T +∪{−}

P(C,α),(C′,β) = 1

Hence, the conditions for the existence of a Markov chain (see section 2.1) with state
space S, initial distribution I and transition matrix P are satisfied.

Example 3.3 Consider transforming the transition system of example 3.1 into a Markov
chain. By transformation step 1, the ∞-labelled time transition from C2 to C2 in figure
3.2 is removed. The resulting transition system does not include any non-determinism and
hence, transformation step 3 can be performed immediately. When shifting the action and
time information into the states, the Markov chain depicted in figure 3.4 is obtained. The
state (C1,−) corresponds to the initial configuration C1 before performing any action or
time transitions. State (C1, f) also originates from configuration C1, but now indicates that
a fix action was performed before entering it. State (C3,Out!Packet) indicates entering
C3 in figure 3.2 after having performed the send action. And, as a final example, (C13, 4)
originates from entering configuration C13 after the time passed for 4 time units.

Let {Xi | i ≥ 1} denote the Markov chain that is obtained after transforming the
transition system defined by the semantics of a POOSL model. An important issue
for applying Markov-chain based performance analysis techniques is the question
whether {Xi | i ≥ 1} is ergodic. Unfortunately, {Xi | i ≥ 1} is in general not er-
godic. Examples of models that do not result in an ergodic Markov chain are those
which include a non-deterministic selection between two infinitely repeating activi-
ties. This is because these models imply a state space where certain recurrent states
cannot be reached from other recurrent states. Nevertheless, most models in practice
do imply ergodic Markov chains [175]. More research is needed to identify the exact
conditions for which POOSL models transform into ergodic Markov chains. In this
thesis, it is assumed that the Markov chain defined based on a POOSL model of any
realistic hardware/software system satisfies all conditions (including ergodicity) for
applying the performance analysis techniques discussed in chapter 2.

Framework for Reflexive Performance Analysis 69

(C
1
, -)

1

1

1

1

1 / 6

1 / 6

1 / 6

1

1

1

1 / 81

1

11

(C
1
, f)

(C
2
, t)

(C
1 3
, 4)

(C
1 4
, 5)

(C
1 8
, 9)

(C
7
, f)

(C
8
, f)

(C
1 2
, f)

(C
6
, t)

(C
4
, -)7
2

(C
5
, t)

7 / 8

(C
3
, O u t ! P a c k e t)

Figure 3.4: Markov chain corresponding to the transition system of figure 3.2.

After transforming a POOSL model into a Markov chain, reward functions can be
defined separately to allow performance metrics to be computed analytically. This
model-checking approach is exploited in [180]. Explicitly constructing the Markov
chain can also be used for estimating performance metrics by simulating the Markov
chain. Transforming a POOSL model into a Markov chain can however be pro-
hibitively complex. An approach that is often more suitable for industrial hard-
ware/software systems is reflexive performance analysis. It is based on extending a
model with variables to define reward functions, see also section 3.1.2. When adding
monitor behaviour that specifies the actual evaluation of performance metrics by
performing operations on these variables, execution of the extended model allows
estimation of performance metrics without the necessity to construct the Markov
chain. Based on the mathematical relation between a POOSL model and a Markov
chain, execution of the model corresponds to generating a trace from the underly-
ing Markov chain. The number of action and time transitions execution of a POOSL
model equals the current time-epoch of the underlying Markov chain minus 1.

Section 1.2.2 notes that extending a model with additional variables and behaviour
to specify monitors results in polluting the representation of the system’s behaviour,
which may decrease the intuitiveness of the model. Notice that such extensions may
however also affect the behaviour of the system itself if no precautions are taken.
Section 4.3.2 elaborates on how POOSL models can be extended for reflexive per-
formance analysis such that non-intrusive monitor behaviour is obtained and the
intuitive understanding of the model is maintained.

Library Classes for Distributions The probabilistic interpretation of POOSL mod-
els originates from using data objects that are derived from instances of data class
RandomGenerator. Such data objects are the basis for determining the transi-
tion probabilities of the underlying Markov chain. The precise value of these tran-

70 Reflexive Performance Analysis with POOSL

sition probabilities depends on the distribution denoted by the involved data ob-
ject. The instance variables InsertIdleTime and IdleTimeDistribution in
example 3.1 present for example a Bernoulli distribution and a discrete uniform
distribution respectively. Data classes for such distributions can be derived from
RandomGenerator in accordance with the approaches proposed in [105].

To assist the designer in constructing models that include probabilistic behaviour, a
library of data classes for representing different types of distributions (Bernoulli,
DiscreteUniform, Exponential, Normal and Uniform) has been developed.
Figure 3.5 depicts a class diagram of this library in accordance with the UML profile
for SHE, see section 4.2. Although the superclass Distribution can be used to
create an instance of any of the distribution types included in the library (based on
method ofType), such instances can also be created by using the corresponding
library data class directly. After creating a distribution, method withParameter
or withParameters initialises the parameter(s). Methods withParameter and
withParameters call method initialise of the superclass Distribution to
create an instance of data class RandomGenerator, which is used to derive random
numbers for the distribution. To ensure that different sequences of random numbers
are generated when having multiple instances of the same distribution type (see also

<<data>>

Bernoulli

<<instance variables>>

SuccessProbability: Real

<<methods>>

help() : Object

printString() : String

sample() : Boolean

withParameter(SP: Real) : Bernoulli

yieldsSuccess() : Boolean

<<data>>

Distribution

<<instance variables>>

Random: RandomGenerator

<<methods>>

help() : Object

initialise() : Distribution

ofType(Type:String) : Distribution

printString() : String

<<data>>

Uniform

<<instance variables>>

IntervalLength: Real

LowerBound: Real

<<methods>>

help() : Object

printString() : String

sample() : Real

withParameters(LB, UB: Real) :

 Uniform

<<data>>

Exponential

<<instance variables>>

Lambda: Real

<<methods>>

help() : Object

printString() : String

sample() : Real

withParameter(L: Real) :

 Exponential

<<data>>

Normal

<<instance variables>>

Mean: Real

StandardDeviation: Real

<<methods>>

help() : Object

printString() : String

sample() : Real

withParameters(M, V: Real) :

 Normal

<<data>>

DiscreteUniform

<<instance variables>>

IntervalLength: Integer

LowerBound: Integer

<<methods>>

help() : Object

printString() : String

sample() : Integer

withParameters(LB, UB: Integer) :

 DiscreteUniform

Figure 3.5: Library classes for distributions.

Framework for Reflexive Performance Analysis 71

appendix B), the seeds of the different instances of RandomGenerator are ran-
domised. For obtaining a random number that is in accordance with a certain dis-
tribution, method sample can be used2. The different sample methods actually
implement the approaches proposed in [105]. More information about the use of the
library classes is given in the help methods, which do not perform any operations.
A method printString is available for each of the classes, which allows display-
ing information about the type and parameter(s) of a distribution when inspecting it
with the SHESim tool (see also appendix B).

Example 3.4 Assume that method GenerateTraffic in example 3.1 is of process class
Source. The Bernoulli distribution InsertIdleTime and discrete uniform distribu-
tion IdleTimeDistribution are instance variables of class Source. These distribu-
tions can be initialised using the library of data classes by the initial method for Source
as depicted in figure 3.6. In lines 2 - 3, a new instance of data class Bernoulli is cre-
ated and the parameter of the Bernoulli distribution is set to 1

8 , after which it is assigned to
variable InsertIdleTime. Lines 4 - 5 indirectly initialise IdleTimeDistribution
as a discrete uniform distribution over interval [4, 9] by using method ofType of super-
class Distribution. After initialising InsertIdleTime and IdleTimeDistri-

bution, generating bursts of packets starts by calling method GenerateTraffic.

1 Init()()

2 InsertIdleTime := new(Bernoulli)
3 withParameter(1/8);
4 IdleTimeDistribution := new(Distribution)
5 ofType("DiscreteUniform") withParameters(4,9);
6 GenerateTraffic()().

Figure 3.6: Different ways of initialising distributions.

3.1.2 Defining Reward Functions

The framework for reflexive performance analysis with POOSL involves extending a
model with additional variables to define reward functions for the implicitly defined
Markov chain. Let a model M define the ergodic Markov chain {Xi | i ≥ 1} with
state space S ⊆ C × (A ∪ T + ∪ {−}), where C is the set of configurations, A the set
of actions and T the time domain of M. Reward functions for {Xi | i ≥ 1} are to be
defined as complete functions from S to R, see section 2.1.1. As a result of relation
S ⊆ C × (A ∪ T + ∪ {−}), reward functions may be defined in terms of the (contents
of) configurations or in terms of the occurrence of action and time transitions.

Each configuration (B, I) in C includes the specification of behaviour B that is to be
executed in the context of information I, see also appendix B. I captures the variables
context of model M and the values that are assigned to the variables. When adding a
variable R to M, the variables context is extended with R and hence, the information
included in all configurations is extended. Since S ⊆ C× (A∪T + ∪{−}), a complete
function can be defined on S, which retrieves the values of R from the variables

2For data class Bernoulli, method yieldsSuccess is equivalent to method sample.

72 Reflexive Performance Analysis with POOSL

context and assigns them as reward values to the states. In case variable R assumes
values inR, such a function is an implicitly defined reward function for {Xi | i ≥ 1}.

Recall that applying the Markov-chain based performance analysis techniques dis-
cussed in chapter 2 requires reward functions to be proper. It is reasonable to assume
that this is indeed the case for reward functions implicitly defined by adding vari-
ables to a model based on the remarks succeeding definition 2.8 on page 29 and the
consideration that in practice models never involve assignments of ∞ to variables.

Although adding a variable R to model M implies a reward function r for {Xi | i ≥
1}, specification of the exact reward values that are to be assigned to the states in
S requires explicitly assigning elements of R to R. Commonly, such an assignment
is specified based on the occurrence of a certain event that affects the performance
metric. Instead of defining long-run average performance metrics as (combinations
of) long-run sample averages, it is useful to define them as (combinations of) con-
ditional long-run sample averages, where the condition is an explicit assignment to
any of the variables. This approach allows to estimate long-run average performance
metrics without the necessity to take the corresponding reward values into account
for all states, see section 2.2.4. The semantics of assignments (which are expressions)
imply (internal or fix) action transitions [28]. To take the condition of an explicit
assignment to R into account, a conditional reward function can be defined, which
equals 1 if action transitions are performed that include an explicit assignment to R
and 0 otherwise. It is assumed that for each reward function defined by adding a
variable, such an accompanying conditional reward function is defined implicitly.

Special Reward Functions Section 2.3.1 introduced reward functions ⊤ and ∆ to
enable expressing conditional long-run time averages and variances. Let a model M
define the ergodic Markov chain {Xi | i ≥ 1} with state space S ⊆ C×(A∪T +∪{−}),
where C, A and T are the set of configurations, the set of actions and the time domain
for M respectively. Now, reward function ⊤, which assigns the progress in model
time to each state of {Xi | i ≥ 1}, is implicitly defined as

⊤(C,α) =

{

α if α ∈ T +

0 otherwise

for all C ∈ C and α ∈ A. Notice that ⊤ is defined based on the actual occurrence
of time transitions. Before defining reward function ∆, recall that POOSL offers the
statement currentTime. It returns the current model time of an executing model
(see appendix B). Hence, currentTime can be considered to be a reward function
currentT ime : S → R defined as

currentT ime(Xn) =

n
∑

i=1

⊤(Xi)

for any time-epoch n of the Markov chain {Xi | i ≥ 1}. Now, let c be the conditional
reward function for a reward function r that is defined based on adding a variable to
M. Then, reward function ∆ defined by equation (2.29) on page 50, which denotes

Framework for Reflexive Performance Analysis 73

the duration of each value of r, can be written as

∆(Xi) =



















0 if c(Xj) = 0 for all j = 1, . . . , i

0 if c(Xi) = 1

currentT ime(Xi)− if c(Xj) = 1 for j < i and

currentT ime(Xj) c(Xk) = 0 for all k = j + 1, . . . , i

(3.3)

by using the property that if action transitions are performed, the model time does
not increase. Hence, the conditional long-run time average and variance of r can
be evaluated by adding a variable to model M and using statement currentTime.
Sections 3.3.1 and 4.3.2 discuss in more detail how this can be accomplished.

3.1.3 Related Research

Specifying Markov Chains The benefits of model-based approaches for defining
Markov chains have been emphasised by other authors. Several formalisms have
been developed and exploited, often focussing on the specification of continuous-
time Markov chains [39, 175]. An example are queueing networks [102, 5], which
require the behaviour of a system to be described in terms of service facilities that
are interconnected by (store-and-forward) queues. Depending on how such queues
and service facilities are interconnected and on the properties of the behaviour of
both the environment and the service facilities, a queueing model implies a special
Markov chain. This Markov chain is known as the birth-death process [5]. Examples
of assumptions that make queueing networks mathematically tractable are the use of
exponentially distributed inter-arrival times for the items that need to be processed
by the service facilities as well as exponentially distributed service times. Although
queueing networks are very useful for analysing congestion problems when access-
ing shared resources, applying these assumptions for modelling complete industrial
hardware/software systems might lead to inadequate performance models.

In [124], stochastic Petri nets are used as a basis for performance analysis. Petri nets
assume the behaviour of a system to be modelled in terms of places and transitions.
Places may contain tokens and depending on the availability of tokens, transitions
are performed. The numbers of tokens in all places reflect the marking (state) of the
system. [124] extends this basic formalism by associating exponentially distributed
random variables to all transitions in order to express their duration. Instead of
such a tight coupling of time to actions, other types of Petri nets distinguish action
and time transitions in a similar way as POOSL does. An example are generalised
stochastic Petri nets [114], where exponentially distributed random variables are as-
sociated to time transitions, whereas immediate transitions take no time. Originally,
generalised stochastic Petri nets lacked a mechanism for specifying the behaviour of
a system in a compositional way, similarly as was the case for Markov chains. The
ideas for extending Petri nets presented in [90] now do allow a hierarchical compo-
sition of generalised stochastic Petri nets, see [33]. Nevertheless, the imperative of
using only exponential distributions in such Petri nets may be too restrictive for ad-
equately performance modelling a complete industrial hardware/software system.

The difficulty of directly specifying Markov chains also triggered researchers in the
area of process algebras [32, 96]. Process algebras are mathematical theories that

74 Reflexive Performance Analysis with POOSL

allow modelling hardware/software systems in a compositional way and provide
a means for reasoning about the (structural and behavioural) properties of a system
based on equivalence relations. Traditional process algebras like CCS [122], CSP [77],
ACP [10] and LOTOS [29] have been extended in many different ways to enable ex-
pressing time or stochasticity, see for example [96, 70, 181]. Restricting ourselves to
process algebras that combine the modelling concept of asynchronous concurrency
with synchronous message passing (as in POOSL), only a few offer both time and
stochasticity. In [76], the stochastic process algebra PEPA is introduced, which asso-
ciates exponentially distributed random variables to actions for denoting their dura-
tion. The stochastic process algebras EMPA [21] and TIPP [65] are also based on the
approach that actions take exponentially distributed time. PEPA and EMPA models
can be transformed either into stochastic Petri nets [147] and generalised stochas-
tic Petri nets [20] respectively or directly into continuous-time Markov chains. Also
TIPP models can be transformed into continuous-time Markov chains. Although im-
proving the compositional way in which Markov chains can be specified, the men-
tioned stochastic process algebras still have insufficient expressive power to ade-
quately model industrial hardware/software systems. This insufficiency originates
amongst others from using only exponential distributions, the impossibility of mod-
elling the data that is to be processed by a system, the lack of behavioural constructs
and the restricted capabilities of expressing non-determinism3. Furthermore, design-
ers often consider a mathematical syntax such as the ones of PEPA, EMPA and TIPP
to be less intuitive than the lightweight notations provided by modelling languages
like UML [149], SystemC [68] and POOSL.

To improve the expressive power of process algebras, recent research in this area
concentrates on integrating the possibility of using various types of distributions to
specify probabilistic timing behaviour. In [19] for example, EMPA is extended such
that the duration of actions had a general distribution. Similarly, the process alge-
bras4 ♠ [96] and SPADES [71] were introduced as formalisms supporting the appli-
cation of Markov chain-based performance analysis in the context of discrete event
simulation. The used underlying mathematical structure for these process algebras
is that of generalised semi-Markov processes [157]. The formal definition of a gen-
eralised semi-Markov process is in terms of a discrete-time Markov chain where the
transitions are triggered by the occurrence of events. Associated with each event is a
clock (timer) that records the remaining time until the event is scheduled to trigger
a state transition. A number of events may occur at a certain state, but what event
actually occurs depends on the speed at which the timers expire. The timers can be
set in accordance with any distribution, thereby improving the expressive power.

To define a generalised semi-Markov chain, the process algebra SPADES in [71] ex-
tends CCS and separates action and time transitions under the assumption of action
urgency. Also POOSL is based on an extension of CCS, separates action and time
transitions and adopts action urgency (see also appendix B). SPADES [71] is how-
ever less expressive than POOSL, which emerges amongst others from the fact that
designers have to resolve non-determinism in models constructed with SPADES by
themselves. Furthermore, POOSL offers two levels of concurrency (concurrent activ-
ities and processes), whereas SPADES offers only one. SPADES also lacks the possi-

3For example, PEPA, EMPA and TIPP do not allow complete models to contain non-determinism [4].
4Although [96] and [71] use the same acronym (SPADES), different formalisms are involved.

Approximation of Recurrence Condition 75

bility of modelling the data processed by a system and it provides no primitives for
interruption and abortion of behaviour. Finally, SPADES has a mathematical syntax,
which is more difficult to interpret compared to the lightweight notation of POOSL.

Specifying Performance Properties Opposed to the numerous formalisms for de-
noting correctness properties (examples are LTL [112], CTL [49], FTL [8] and PSL [2]),
only a few formalisms exist for specifying performance metrics. Most of these for-
malisms are developed in the context of continuous-time Markov chains. In [9, 11]
for example, the temporal logic CSL is introduced, which allows the specification of
various types of performance properties. In [41] and [17], formalisms are provided
that enable specifying reward functions for Markov chains derived from PEPA and
EMPA models respectively. The formalism of experiments in [4] can be used for
specifying long-run average performance metrics in the context of Markov decision
processes [45]. To define reward function ∆ in equation (2.29), the formalism of tem-
poral rewards proposed in [180] is used. Temporal rewards allow expressing various
types of long-run average performance metrics for discrete-time Markov chains. A
disadvantage of using the mentioned formalisms is the necessity to first construct the
involved Markov chain or Markov decision process. Then, the performance metrics
of interest are to be specified, usually by means of mathematical formulae that are
often difficult to interpret. Next to suffering from the state-space explosion problem
[126] when constructing the Markov chain, these formalisms cannot express many of
the common performance metrics. An example is the average latency of transferring
data through a system, which requires to associate the time at which a specific data
item left the system with the time at which that data item entered the system.

The proposed reflexive approach of specifying reward functions is similar to the
traditional way designers tend to extend a model with variables and behaviour for
validation purposes. Validation is by definition an informal process (i.e., not mathe-
matically founded) that is concerned with checking whether the developed formal-
isation of the system’s behaviour complies with the informally specified ideas for
realising its functionality. On the other hand, extending a model with the applica-
tion of Markov-chain based performance analysis techniques in mind requires math-
ematically relating the variables added to a model with reward functions. Although
reflexive performance analysis with POOSL follows the familiar approach for ex-
tending models, the model and its extension are implicity related with a Markov
chain and reward functions to enable obtaining credible performance results.

3.2 Approximation of Recurrence Condition

The relation between POOSL models and their extensions with Markov chains and
reward functions provides a sound basis for evaluating the performance of industrial
hardware/software systems. As discussed in section 3.1, such performance anal-
ysis is accomplished by executing the (extended) POOSL model and relies on the
simulation-based estimation techniques for evaluating conditional long-run aver-
ages presented in chapter 2. Direct application of these techniques, which is referred
to as the technique of regenerative cycles [43], requires the specification of a relevant re-
current state (i.e., a recurrent state in which reward values have been assigned to the

76 Reflexive Performance Analysis with POOSL

variables regarding the involved performance metric). Visiting such a relevant re-
current state marks the beginning of a regenerative cycle of independent behaviour
for the Markov chain defined by a POOSL model and the accompanying reduced
Markov chain. Although any relevant recurrent state can serve as a basis for apply-
ing the technique of regenerative cycles, the states and transitions of these implicitly
defined (but not constructed) Markov chains are unknown prior to simulating the
model. Hence, it is also unknown whether a state is transient or recurrent.

Since it is not possible to identify a recurrent state in advance, one would like to iden-
tify a recurrent state during simulation. Recall that by the ergodicity of the Markov
chain implied by a POOSL model, only states that are visited infinitely often with
probability 1 are of interest (see also sections 2.1.2 and 3.1.1). Notice that this prop-
erty cannot be determined with a (finite number of) finite simulation(s). Hence, it
is only possible to assume that a state, which is revisited during a simulation, is a
recurrent state. Detecting the revisiting of a state during simulation can be accom-
plished with the following straightforward approach. After each simulation step, it
is checked whether the newly entered state is relevant by observing whether a re-
ward value has been assigned to the variable that implies the reward function of
interest. If so, compare the newly entered relevant state with all previously visited
relevant recurrent states. If a match is found, the state is revisited. Unfortunately, the
sketched approach is fairly impractical for industrial hardware/software systems be-
cause the number of states that have to be compared is extremely large and the states
themselves are very complex (large variables context for example). Consequently,
detecting the revisiting of a state during simulation is often too time-consuming.

Instead of trying to identify the properties that mark the beginning of a regenera-
tive cycle, it is more practical to predefine some condition for enforcing the start of
a new cycle. Such a recurrence condition concerns a relatively simple property that is
considered to form a suitable basis for obtaining regenerative cycles of (nearly) inde-
pendent behaviour. This section presents two approaches for defining a recurrence
condition. The first exploits the re-occurrence of a certain known point in the lo-
cal behaviour of a component. The second approach is based on approximating the
independence of regenerative cycles based on a sufficiently large fixed cycle length.

3.2.1 Exploiting Local Recurrence

Performance metrics are often defined in relation to a specific component of a system.
Examples are the throughput of some communication resource (like an on-chip bus),
the expected occupancy of a storage resource (such as a queue for buffering data) and
the expected time needed to process data on some processor. The actual result for
such a performance metric depends on the behaviour exposed by the component as
a reaction to its local state combined with the interaction with its environment.

Consider a POOSL model M that defines the ergodic Markov chain {Xi | i ≥ 1}
with state space S. Let M include a variable R implying reward function r and ac-
companying conditional reward function c for {Xi | i ≥ 1} as discussed in section
3.1.2. Moreover, assume the evaluation of some conditional long-run average per-
formance metric M expressed in terms of r and c, which is defined in relation to a
specific component. To enable applying the simulation-based estimation techniques

Approximation of Recurrence Condition 77

discussed in chapter 2, a recurrent state that is relevant with respect to c must be
specified. Whether a state in S is relevant for evaluating M merely depends on the
actual assignment of a reward value to R. Such an assignment is specified based on
the occurrence of specific events that affect the behaviour of the component. As a

result, the reduced Markov chain {X↾ci | i ≥ 1} will reflect behaviour of only this

specific component. On the other hand, whether a state of {X↾ci | i ≥ 1} is recurrent
depends on the behaviour and variables context of the complete model M.

A practical approach for enforcing the beginning of regenerative cycles is to define
a recurrence condition based on a certain local property. Sometimes, the assignment
of a specific reward value v to R is known to re-occur due to specific events that
affect the behaviour of the component. If the assignment of v to R is known to be
reflected in only one recurrent state5, this specific assignment can serve as recurrence
condition. Sometimes, such recurrence condition can be recognised easily.

Example 3.5 Consider a system that includes several buffers with FIFO policy for temporar-
ily storing data items. Of interest is the evaluation of the average occupancy of one particular
buffer B, which has a capacity of N . Let {Xi | i ≥ 1} denote the Markov chain defined by
a POOSL model M of the system and that the variable R stores the current occupancy of
B. Similar as in example 2.11 on page 52, the average occupancy of B can be expressed as
the conditional long-run time average of the reward function implied by R, where the con-
dition is an assignment to R. Assume that the inter-arrival time of data items to store in B

and the duration of storing data items in B are exponentially distributed. If, in this case,
the storing of data items into B and the retrieving of data items from B is performed by two
independent activities, then there is exactly one recurrent state in the reduced Markov chain6

of {Xi | i ≥ 1} for each possible occupancy of B. Hence, detecting the beginning of a regen-
erative cycle for {Xi | i ≥ 1} can be based on the property of B having a specific occupancy
o. Notice that checking whether o is assigned to R is easy to perform during simulation.

Defining a recurrence condition based on local properties generally results in more
updates of intermediate estimation results for the same simulation time compared
to when requiring that the behaviour and variables context of the complete model
is taken into account. Hence, the proposed approach may considerably reduce the
time until automatically terminating a simulation without harming the accuracy of
the obtained estimation results. Nevertheless, the requirement of having specific
knowledge about the behaviour of a component hinders its applicability.

Rare Events A performance metric may express the probability of the occurrence of
a certain event. Such performance metrics are useful if they are related to rare events.
A rare event is an event that occurs only occasionally, but which may strongly affect
the behaviour of a system (many special operations can for example be needed to
deal with such an event) and therefore its performance. Commonly, designers tend
to minimise the occurrence of rare events [156] that have a negative effect on the
system’s performance. An example is the loss of data due to a full storage resource,

5Notice that there may exist several states reflecting the assignment of v to R. Without proof, it is stated
that if the Markov chain is finite, then the mentioned requirement can be relaxed in case those states are
recurrent and equivalent in the sense of being ordinarily lumpable [34, 162] based on equal reward values.

6This Markov chain represents a M/M/1/N queue [5] with each state identifiable by the value of R.

78 Reflexive Performance Analysis with POOSL

where it is desirable to reduce the probability of loosing data as much as possible but
without increasing the storage resource capacity too much.

Remark that the probability on a specific event equals the sum of the equilibrium
probabilities of the states in which this event occurs. Simulation-based estimation
can be accomplished by defining the probability of the event as a long-run average
performance metric. For example, the above loss probability can be expressed7 as
the conditional long-run sample average of the reward function that is implied by
a variable to which reward value 1 is assigned if data is lost and 0 otherwise. The
condition for this performance metric is the reception of data that should be stored.

In case of estimating a performance metric for a specific component, which depends
on known re-occurring events, the knowledge about the existence of each of these
events may be used to define a recurrence condition. However, if one of the events
is rare, then special precautions are needed to ensure a credible estimation result.
The following example illustrates the importance of properly defining a recurrence
condition when an estimation result depends on a rarely re-occurring event.

Example 3.6 Let figure 3.7 represent the Markov chain that is obtained after reducing the
Markov chain defined by some POOSL model. Consider estimating the long-run sample
average µ of a reward function r, for which the reward values in the relevant states are as
indicated. Using the approach shown in example 2.2 on page 26, it can be shown that µ is
approximately equal to 1002

3 . When choosing the visit to state A or B as recurrence condition,
intermediate estimation results are updated within two simulation steps with a probability
that almost equals 1. As a consequence, it is very likely that intermediate estimation results
for µ converge very rapidly, without taking the reward value for C into account. The simu-
lation may therefore be terminated too soon by on concluding that a result of approximately
2
3 for µ is accurate. On the other hand, when using the visit to C as recurrence condition, it
is ensured that the reward values for all states are taken into account in accordance with the
weights defined by the equilibrium distribution. In this case, a simulation will continue to
run until it is (correctly) decided that a result of approximately 1002

3 for µ is accurate.

B

r (A) = 0

r (B) = 1

r (C) = 1 · 1 0 9

1 · 1 0
- 6

1 / 21 - 1 · 1 0 - 6

1

B

A

C

1 / 2

Figure 3.7: Markov chain with a rarely visited recurrent state.

Based on the observations in example 3.6, it is concluded that the occurrence of a
known rare event can be a suitable recurrence condition for estimating performance
metrics that depend on that event. Hence, the actual loss of data due to a full storage
resource is a suitable recurrence condition for estimating the data loss probability.

7A proof for expressing the probability on an event in the this way can be based on theorem 2.1.

Approximation of Recurrence Condition 79

3.2.2 Batch-Means Approach

A popular statistical technique for estimating the expected value of the random vari-
ables that defined a covariance-stationary stochastic process (see appendix A) is the
technique of (non-overlapping) batch means [106, 105, 3]. This section investigates the
possibility of applying this classic batch-means technique for estimating conditional
long-run sample averages defined for the Markov chain underlying a POOSL model.

Classic Batch Means Consider the covariance-stationary stochastic process {Ri |
i ≥ 1} with E[Ri] = µ for all i ≥ 1. The batch-means technique involves grouping a
prefix of R1, R2, . . . obtained after simulation of n time-epochs in k batches of size m
(assume that n = km). The kth so-called batch mean, denoted by Bk, is defined as

Bk =
1

m

km
∑

i=(k−1)m+1

Ri

The expected valueE[B] of the discrete random variables Bk equalsE[B] = µ, which
can be estimated using the strongly consistent (and unbiased) point estimator

B(n) =
1

n

n
∑

i=1

Bk

Based on this result, the batch-means technique involves using B(n) to estimate µ.

To determine the accuracy of a point estimate µ̄ obtained with B(n), the batch-means
technique gives rise to deriving a Confidence Interval based on the following reason-
ing. In case m is sufficiently large, it can be shown that (for relatively mild condi-
tions) the random variables Bk are approximately uncorrelated [106]. Now, suppose
that m can be chosen large enough such that the batch means are jointly normally
distributed [132] (see also appendix B). Then, the random variables Bk are indepen-
dent and normally distributed [105]. Since {Ri | i ≥ 1} is covariance-stationary, the
batch means can actually be treated as independent random variables with identical
normal distribution N(µ, σ2), where σ2 denotes var[B]. Based on these observations,
a Confidence Interval can be derived for µ as follows. For k ≥ 1, define the normally
distributed discrete random variables Hk as Hk = Bk−µ. Notice that their expected
value E[H] is equal to 0. E[H] can be estimated using the (strongly consistent and
unbiased) point estimator

H(n) =
1

n

n
∑

k=1

Hk =
1

n

n
∑

k=1

Bk − µ = B(n) − µ

Furthermore, the discrete random variables Hk are in L2 because Bk ∈ L2 for all
k ≥ 1 as a result of {Ri | i ≥ 1} being covariance-stationary. Notice that var[H] =
var[B] = σ2. If σ2 > 0, then the assumption of the batch means being independent
allows the application of the central limit theorem, which gives that

√
n

σ
H(n)

d.−→ N(0, 1)

80 Reflexive Performance Analysis with POOSL

Hence, for sufficiently large n and every κ ∈ R,

P
(

−κ ≤
√

n

σ
H(n) ≤ κ

)

= P
(

B(n) − κσ√
n
≤ µ ≤ B(n) +

κσ√
n

)

is approximately 2R(κ)− 1. To use this result for defining a Confidence Interval, the
variance σ2 must be known. It can be estimated with the (unbiased) point estimator

σ̂2 =
1

n − 1

n
∑

k=1

(Bk − µ)2

in which µ can be replaced by B(n) since B(n)
a.s.−→ µ. Hence, the stochastic interval

[

B(n) − κσ̂√
n

,B(n) +
κσ̂√

n

]

where σ̂2 =
1

n − 1

n
∑

k=1

(Bk − B(n))2 (3.4)

is an (approximate) 2R(κ)−1 Confidence Interval for µ that can be used for analysing
the accuracy of a point estimate µ̄ obtained with B(n). Remark that interval estima-
tion of µ with the batch-means technique heavily relies on the assumption that m is
sufficiently large. A major cause of error is therefore to take m too small, which may
result in a high correlation between the batch means and a severely biased σ̂2 [105].

Batch-Means Estimation for Markov Chains Let the proper reward function r be
defined for the ergodic Markov chain {Xi | i ≥ 1} such that the long-run sam-
ple average of r equals µs. It will be shown that (for appropriate assumptions and
conditions) estimating µs with the batch-means technique using batch size m is com-
parable to applying the technique of regenerative cycles with a fixed cycle length of
m. To this end, assume temporarily that {Xi | i ≥ 1} is covariance-stationary.

For k ≥ 1, define tk as the time-epoch at which a cycle with a fixed length of m starts,
where t1 is set to 1. Denoting the sum of reward values earned during the kth cycle
with Y k and their length with Lk (instead of Y k

Sr
and Lk

Sr
respectively as in section

2.1.3 where a cycle is through a recurrent state Sr of {Xi | i ≥ 1}), it follows that

Y k =

tk+1−1
∑

i=tk

r(Xi) =

km
∑

i=(k−1)m+1

r(Xi) and Lk = tk+1 − tk = m

Notice that the expected value E[Y] of the random variables Y k is equal to m · µs,
while the expected value E[L] obviously is m. Hence, the classical point estimator

µ̂s =
Y (n)

L(n)
with Y (n) =

1

n

n
∑

k=1

Y k and L(n) =
1

n

n
∑

k=1

Lk = m

is also a strongly consistent point estimator for µs when the cycle length is fixed.
Notice that µ̂s can now be rewritten as follows

µ̂s =
Y (n)

m
= B(n)

where B(n) is the point estimator for estimating µs with the batch-means technique.

Approximation of Recurrence Condition 81

A Confidence Interval for analysing the accuracy for a point estimate µ̄s obtained
with µ̂s is determined based on the random variables Zk = Y k − µs · Lk defined for
k ≥ 1 with expected value E[Z] = 0. Similarly as for the classic batch-means tech-
nique, it is now assumed that m is sufficiently large such that the random variables
Zk can be treated as independent and normally distributed with N(0, τ2), where
τ2 = var[Z]. The resulting (approximate) 2R(κ) − 1 Confidence Interval obtained
after applying the central limit theorem (assuming τ2 > 0) is (see also section 2.1.3)

[

µ̂s −
κτ̂√

n
· 1

L(n)
, µ̂s +

κτ̂√
n
· 1

L(n)

]

where τ̂2 =
1

n − 1

n
∑

k=1

(Y k − µ̂s · Lk)2 (3.5)

Recall that the Confidence Interval for the classic batch-means technique in equation
(3.4) was determined based on random variables Hk = Bk −µs with Bk = 1

m
Y k and

var[H] = σ2. Remark that Zk = Y k − µs · Lk = m · (1
m

Y k − µs) = m ·Hk and hence,
τ2 = m2σ2. As a result, the Confidence Interval in equation (3.5) can be rewritten as

[

Y (n)

m
− κτ̂√

n
· 1

m
,
Y (n)

m
+

κτ̂√
n
· 1

m

]

and hence as

[

B(n) − κσ̂√
n

,B(n) +
κσ̂√

n

]

which is the Confidence Interval derived for the batch-means technique in equation
(3.4). Hence, fixing the cycle length for the technique of regenerative cycles is com-
parable to using the batch-means technique. Finalising a batch of reward values is
therefore a suitable recurrence condition if the involved assumptions are satisfied.

Next to the assumption of a sufficiently large batch size, estimating a long-run sam-
ple average µs defined for an ergodic Markov chain {Xi | i ≥ 1} using the batch-
means technique involves the assumption that {Xi | i ≥ 1} is covariance-stationary.
In general, {Xi | i ≥ 1} is not covariance-stationary since a particular simulation of
{Xi | i ≥ 1} usually starts from a specific state with probability 1 [105, 121] (this
is always the case for the Markov chain derived from POOSL models). However,
for some simulations, Xt, Xt+1, . . . will become approximately covariance-stationary
from a certain time-epoch t if this t is sufficiently large [105]. The period until t is
then called the initial transient or warm-up period of the simulation [135]. Several ap-
proaches have been proposed to detect the end of the warm-up period during sim-
ulation, including Welch’s procedure [182] and the algorithm by Schruben in [152].
A thorough discussion of the theoretical details behind these procedures and on ap-
proaches for choosing a sufficiently large batch size is beyond the scope of this thesis.

3.2.3 Related Research

Knowledge about the re-occurrence of certain local behaviour is not often recog-
nised as a means for improving the applicability of the technique of regenerative
cycles. On the other hand, knowledge about the behaviour of the system is known
to be substantial for applying variance reduction techniques [105, 101]. These tech-
niques improve the statistical efficiency of the used point estimator and hence, they
allow to achieve a predefined accuracy within less simulation time [27]. Especially
the variance reduction technique of importance sampling [40, 61] is commonly ap-
plied for quickly estimating the probability on a rare event, see for example [161, 72]
and [93]. Importance sampling relies on simulating a Markov chain with a different

82 Reflexive Performance Analysis with POOSL

probability measure, which emphasises the occurrence of the event, and then appro-
priately unbiasing the obtained estimation result [93]. Future research includes an
investigation on the possibility of using the knowledge required for exploiting local
recurrence as a basis for applying the technique of importance sampling as well.

The difficulties of straightforwardly applying the technique of regenerative cycles
has initiated research on several other approaches next to the classic batch-means
technique. Some variants of the classic batch-means technique have been proposed,
including overlapped batch means [119, 3], weighted batch means [25] and repli-
cated batch means [6]. Another approach is that of replication/deletion [3, 105],
which assumes performing a number of independent simulation runs (using other
seeds for the random number generators) to derive a Confidence Interval. Not only
these approaches, but also the autoregressive method [52] and the method of spec-
trum analysis [73] involve the same assumption as the batch-means technique re-
garding the covariance-stationarity of the underlying stochastic process. Similarly
as for the classic batch-means technique, all these approaches also rely on certain
additional assumptions [105, 3]. The standardised time series method [153] requires
even stronger conditions to be satisfied for the underlying stochastic process. Due to
these conditions, all these approaches suffer from the problem of detecting the end of
the warm-up period [105, 3]. Extensions to the classical batch-means technique have
been proposed as well. They intend to minimise the correlation between the batch
means. An example of such an approach is discussed in [50], where the correlation
between the batches is estimated during simulation and depending on the results, a
minimal batch size for the final estimation of the performance metric is determined.

3.3 Performance Monitors

To provide user-friendly support for analysing long-run average performance met-
rics with POOSL, the simulation-based estimation techniques presented in chapter 2
have been implemented in a library of data classes. This library provides templates
for monitors that shield the designer from the mathematical details of the techniques
and rely on the results of sections 3.1 and 3.2 to enable applying these techniques.

3.3.1 Library Classes for Accuracy Analysis

To ease the accuracy analysis of common complex (conditional) long-run average
performance metrics (see section 2.3.1) with POOSL, a library of six data classes has
been developed. The classes named LongRunSampleAverage, LongRunSample-
Variance, LongRunTimeAverage and LongRunTimeVariance present the ac-
tual performance monitor classes, while data class PerformanceMonitor is their
superclass. It includes instance variables denoting common aspects like the confi-
dence level and the obtained confidence interval. Such confidence intervals are rep-
resented by instances of data class ConfidenceInterval. Before elaborating on
the actual performance monitor classes, the latter class is discussed in more detail.

Implementing the Algebra of Confidence Intervals Figure 3.8 shows a class dia-
gram of ConfidenceInterval (see also section 4.2). Instance variables Lower-

Performance Monitors 83

Bound and UpperBound are used for storing the lower and upper bound respec-
tively of the represented confidence interval. Recall that the bounds of a confidence
interval are in R̄. Since only the lower bound can be −∞ and only the upper bound
can be ∞, it is possible to represent both −∞ and ∞ with the elementary data ob-
ject nil8. Hence, LowerBound and UpperBound can be instances of Real, while
any operations on them are implemented in the methods of ConfidenceInterval
(see also table 3.2 below). The instance variable ConfidenceLevel stores the con-
fidence level of the represented confidence interval. Method withParameters ini-
tialises the LowerBound, UpperBound and ConfidenceLevel of a new instance.

<<data>>

ConfidenceInterval

<<instance variables>>

ConfidenceLevel: Real

LowerBound: Real

UpperBound: Real

<<methods>>

- (CI: ConfidenceInterval) : ConfidenceInterval

+ (CI: ConfidenceInterval) : ConfidenceInterval

* (CI: ConfidenceInterval) : ConfidenceInterval

/ (CI: ConfidenceInterval) : ConfidenceInterval

accurate(Accuracy: Real) : Boolean

extendedLowerGreaterEqualZero() : Boolean

extendedLowerLessZero() : Boolean

extendedMax(x, y: Real) : Real

extendedMin(x, y: Real) : Real

extendedNegate(x: Real) : Real

extendedPlus(x, y: Real) : Real

extendedReciprocal(x: Real) : Real

extendedTimes(x, y: Real) : Real

extendedUpperGreaterZero() : Boolean

extendedUpperLessZero() : Boolean

getConfidenceLevel() : Real

getLowerBound(x, y: Real) : Real

getRelativeError() : Real

getUpperBound() : Real

help() : Object

logHeading() : String

logStatistics() : String

negate() : ConfidenceInterval

printHeading() : String

printStatistics() : String

printString() : String

reciprocal() : ConfidenceInterval

sqr() : ConfidenceInterval

withParameters(Lower, Upper, Level: Real) :

 ConfidenceInterval

Figure 3.8: Data class ConfidenceInterval.

Recall that a confidence interval may be obtained based on a Confidence Interval
that is derived from other Confidence Intervals using operations of the algebra of
Confidence Intervals (see section 2.3.2). Class ConfidenceInterval implements
the negation, square, reciprocal, addition, subtraction, multiplication and division
operations of this algebra in the methods negate, sqr, reciprocal, +, -, * and /
respectively. The implementation of the subtraction and division operations is based
on the proofs given for corollaries 2.17 and 2.19. To implement the square, reciprocal
and multiplication operations, it is necessary to determine which cases in theorems
2.14, 2.15 and 2.18 respectively are actually involved. For this purpose, the meth-
ods shown in table 3.1 are introduced. These methods enable to check the indicated

8An additional requirement is that the results returned by the methods in table 3.2 are used in an un-
ambiguous way. This is ensured by the implementation of the operations defined on Confidence Intervals.

84 Reflexive Performance Analysis with POOSL

Method Property Checked
extendedLowerGreaterEqualZero LowerBound ≥ 0.0
extendedLowerLessZero LowerBound < 0.0
extendedUpperGreaterZero UpperBound > 0.0
extendedUpperLessZero UpperBound < 0.0

Table 3.1: Checking properties of lower and upper bounds.

property, taking into account that LowerBound and UpperBound may be nil and
following the property that −∞ < x < ∞ for all x ∈ R (see also appendix A). It is not
difficult to demonstrate that methods extendedLowerGreaterEqualZero and
extendedUpperLessZero provide sufficient means for determining which case
in theorems 2.14 and 2.18 (see pages 53 and 55 respectively) is actually involved. To
show that the methods in table 3.1 are also sufficient for implementing the reciprocal
operation, consider the methods listed in table 3.2. These methods are defined for
computing the bounds of the confidence interval resulting from the different oper-
ations and basically implement the extended rules of arithmetic for R̄ in [95]. For
the reciprocal operation, the new bounds for the first and last two cases in theorem
2.15 (see page 53) can be computed with extendedReciprocal, which returns
nil if its parameter is 0. Hence, if extendedLowerLessZero and extended-
UpperGreaterZero are not both true, then extendedReciprocal can be used.

Method Result Used for Computing
extendedNegate(x) −x Lower and Upper Bounds
extendedReciprocal(x) 1

x
Lower and Upper Bounds

extendedMax(x,y) max(x, y) Upper Bounds Only
extendedMin(x,y) min(x, y) Lower Bounds Only
extendedPlus(x,y) x + y Lower and Upper Bounds
extendedTimes(x,y) x ∗ y Lower and Upper Bounds

Table 3.2: Computing new lower and upper bounds.

Figure 3.9 shows the use of the methods in tables 3.1 and 3.2 to implement the re-
ciprocal operation in method reciprocal. The expression in line 2 denotes a check
on the third case in theorem 2.15. For this case, the lower and upper bound of the
resulting confidence interval are −∞ and ∞ respectively. In the other cases, the new
bounds can be computed with extendedReciprocal as explained above. To de-

1 reciprocal() : ConfidenceInterval |Lower, Upper: Real|

2 if (self extendedLowerLessZero) & (self extendedUpperGreaterZero) then

3 Lower := nil; Upper := nil

4 else

5 Lower := self extendedReciprocal(UpperBound);
6 Upper := self extendedReciprocal(LowerBound)
7 fi;
8 return(new(ConfidenceInterval) withParameters(Lower, Upper, ConfidenceLevel)).

Figure 3.9: Implementation of the reciprocal method.

Performance Monitors 85

1 +(CI: ConfidenceInterval) : ConfidenceInterval |Lower, Upper, Level: Real|

2 Lower := self extendedPlus(LowerBound, CI getLowerBound);
3 Upper := self extendedPlus(UpperBound, CI getUpperBound);
4 Level := ConfidenceLevel + CI getConfidenceLevel - 1;
5 return(new(ConfidenceInterval) withParameters(Lower, Upper, Level)).

Figure 3.10: Implementation of the + method.

termine the new bounds and confidence level in case a binary operation is involved,
methods getLowerBound, getUpperBound and getConfidenceLevel are de-
fined. Their use is illustrated in figure 3.10, which shows the implementation of +.

Data class ConfidenceInterval includes the methods getRelativeError and
accurate. The implementation of these methods is shown in figure 3.11. Assuming
that the actual value of the long-run average being estimated is in the represented
confidence interval, getRelativeError returns the upper bound for the relative
error of a point estimate for this long-run average as defined by equation (2.13) on
page 29. In case the upper bound is ∞, nil is returned. Method accurate deter-
mines whether the estimation result for the monitored long-run average is accurate
according to an accuracy bound Accuracy, which is a parameter of accurate.

1 getRelativeError() : Real |Lower, Upper: Real|

2 if (LowerBound = nil) | (UpperBound = nil) then

3 return(nil)
4 else if LowerBound > 0.0 then

5 return((UpperBound - LowerBound) / (2 * LowerBound))
6 else if UpperBound < 0.0 then

7 return((LowerBound - UpperBound) / (2 * UpperBound))
8 else

9 return(nil)
10 fi fi fi.

11 accurate(Accuracy: Real) : Boolean |RelativeError: Real|

12 RelativeError := self getRelativeError;
13 if RelativeError = nil then return(false)
14 else return(RelativeError <= 1 - Accuracy) fi.

Figure 3.11: Implementation of getRelativeError and accurate.

To provide information about a long-run average during validation with the SHESim
tool, a printString method is defined (see also appendix B). It uses the strings
constructed by printHeading and printStatistics. printHeading gives a
heading for the actual estimation results returned by printStatistics. Next to
the confidence interval itself and its confidence level, printStatistics returns
the relative error as computed by getRelativeError and a point estimate for the
monitored long-run average. This point estimate is determined as the center of the
represented confidence interval (if any of the bounds is nil, then the point estimate
is not specified), which is consistent with the remarks at the end of section 2.3.2.
The methods logHeading and logStatistics are similar to printHeading and

86 Reflexive Performance Analysis with POOSL

printStatistics respectively, but they produce a slightly different layout and are
intended for logging the estimation results to file. Method help does not specify any
behaviour but provides some information on the use of ConfidenceInterval.

Estimating Common Complex Long-Run Averages The performance monitors for
common long-run averages are implemented in the classes depicted in the class dia-
gram of figure 3.12, which is in accordance with the UML profile for SHE (see section
4.2). Instance variables Accuracy, ConfidenceLevel and IntervalEstima-
tion of superclass PerformanceMonitor store respectively the desired accuracy
bound, the desired confidence level and the obtained confidence interval. The confi-
dence interval can be determined with the technique of regenerative cycles by ex-
ploiting local recurrence or by fixing the length of cycles in accordance with the
batch-means technique. For the latter case, the instance variable BatchSize stores
the fixed cycle size. Finally, LogFile refers to the file in which the estimation results
for the monitored long-run average are to be logged.

Although superclass PerformanceMonitor can be used to create an instance of
any of the monitor types included in the library (based on method ofType), such
instances can also be created using the corresponding monitor data class directly. Af-
ter creating a monitor, the method withParameters of the corresponding subclass
must be used to initialise it with the desired accuracy bound and confidence level.
Before actually doing so, it is first checked whether the accuracy bound and confi-
dence level are in (0, 1) and [0, 1) respectively. Notice that an accuracy bound less
then or equal to 0 makes no sense and that an accuracy bound of 1 is in general only
attainable for infinite simulation runs. Moreover, confidence levels must be in [0, 1]
according to definition A.1, while a confidence level of 1 is in general only attainable
for infinite simulation runs. If the conditions are not satisfied, an error is generated
by calling method error (see appendix B). To actually check (during simulation)
whether the estimation results for the monitored long-run average are accurate, the
method accurate can be used. To this end, it simply calls method accurate of
data class ConfidenceLevel on the instance variable IntervalEstimation.

When initialising a monitor, its instance variable BatchSize is set to a default value
by calling method setDefaultBatchSize of superclass PerformanceMonitor.
In case a different batch size is desired, the method setBatchSize of the corre-
sponding subclass can be used. Notice that for classes LongRunSampleVariance,
LongRunTimeAverage and LongRunTimeVariance, the method SetBatchSi-
ze sets the batch size for the constituent long-run sample averages to the same
value. To initialise the file LogFile in which the estimation results must be logged,
the method logTo should be used. Actually logging (intermediate) estimation re-
sults to this file is accomplished by calling method log. For validation purposes, a
printString method (see also appendix B) is defined for PerformanceMonitor,
which relies on the methods printHeading of the corresponding monitor class and
printStatistics. The implementation of printStatistics relies on calling
method printStatistics of class ConfidenceInterval on IntervalEsti-
mation. Finally, each of the monitor data classes in the library includes a method
help, which does not specify any behaviour but provides information on their use.

Now, consider subclass LongRunSampleAverage in more detail. Its instance vari-
ables CurrentLength, CurrentSum and NumberOfCycles store respectively the

Performance Monitors 87

<<data>>

LongRunSampleAverage

<<instance variables>>

AverageLength: Real

AverageSum: Real

AverageSumLengthProduct: Real

AverageSquaredLength: Real

AverageSquaredSum: Real

Constant: Real

CurrentLenth: Integer

CurrentSum: Real

NumberOfCycles: Integer

TransientMode: Boolean

<<methods>>

calculateInverseErfC(y: Real) : Real

getCurrentLength() : Integer

getIntervalEstimation() : ConfidenceInterval

help() : Object

logTo(Name: String) : LongRunSampleAverage

rewardBM(Reward: Real) : LongRunSampleAverage

rewardRC(Reward: Real; RecurrenceCondition:

 Boolean) : LongRunSampleAverage

setBatchSize(m: Integer) : LongRunSampleAverage

printHeading() : String

withConfidenceLevel(CL : Real) :

 LongRunSampleAverage

withParameters(A, CL: Real) :

 LongRunSampleAverage

<<data>>

PerformanceMonitor

<<instance variables>>

Accuracy: Real

BatchSize: Integer

ConfidenceLevel: Real

IntervalEstimation: ConfidenceInterval

LogFile: FileOut

<<methods>>

accurate() : Boolean

help() : Object

log() : PerformanceMetric

ofType(Type:String) : PerformanceMonitor

printStatistics() : String

printString() : String

setDefaultBatchSize() : PerformanceMonitor

<<data>>

LongRunTimeVariance

<<instance variables>>

AverageReward: LongRunTimeAverage

AverageSquaredReward: LongRunTimeAverage

<<methods>>

help() : Object

logTo(Name: String) : LongRunTimeVaraince

printHeading() : String

rewardBM(Reward, CurrentTime: Real) :

 LongRunTimeVariance

rewardRC(Reward, CurrentTime: Real;

 RecurrenceCondition: Boolean) :

 LongRunTimeVariance

setBatchSize(m: Integer)

withParameters(A, CL: Real) : LongRunTimeVariance

<<data>>

LongRunTimeAverage

<<instance variables>>

AverageTime: LongRunSampleAverage

AverageTimeRewardProduct: LongRunSampleAverage

PreviousReward: Real

LastTime: Real

<<methods>>

getCurrentLength() : Integer

getIntervalEstimation() : ConfidenceInterval

help() : Object

logTo(Name: String) : LongRunTimeAverage

printHeading() : String

rewardBM(Reward, CurrentTime: Real) :

 LongRunTimeAverage

rewardRC(Reward, CurrentTime: Real;

 RecurrenceCondition: Boolean) :

 LongRunTimeAverage

setBatchSize(m: Integer) : LongRunTimeAverage

withConfidenceLevel(CL: Real) :

 LongRunTimeAverage

withParameters(A, CL: Real) :

 LongRunTimeAverage

<<data>>

LongRunSampleVariance

<<instance variables>>

AverageReward: LongRunSampleAverage

AverageSquaredReward: LongRunSampleAverage

<<methods>>

help() : Object

logTo(Name: String) : LongRunSampleVaraince

printHeading() : String

rewardBM(Reward: Real) : LongRunSampleVariance

rewardRC(Reward: Real; RecurrenceCondition:

 Boolean) : LongRunSampleVariance

setBatchSize(m: Integer)

withParameters(A, CL: Real) :

 LongRunSampleVariance

Figure 3.12: Performance monitors for common long-run averages.

88 Reflexive Performance Analysis with POOSL

length of the current cycle through some predefined recurrent state, the sum of re-
ward values obtained in the current cycle and the number of cycles that have been
completed. TransientMode indicates whether the recurrent state has not been yet
visited for the first time. Instance variable AverageLength is introduced for storing
the point estimate for the expected cycle length, which is obtained according to the
second point estimator in equation (2.9) on page 27. Similarly, AverageSum stores
the point estimate for the expected sum of the reward values earned during a cycle,
which is obtained through the first point estimator in equation (2.9). Recall that the
quotient of the point estimates stored in AvrageSum and AverageLength gives
the point estimate for the monitored long-run sample average, see equation (2.10).
To derive a confidence interval for this point estimate by equation (2.12) on page
28, the result for the point estimator in equation (2.11) must be determined. To ease
computing this point estimate, the results for the three constituent point estimators
recognisable in the last line of equation (2.11) are computed and stored separately
in the instance variables AverageSquaredLength, AverageSumLengthProduct
and AverageSquaredSum respectively. Instance variable Constant is introduced
for storing the value of κ if the desired confidence level is 2R(κ) − 1.

The method withParameters of class LongRunSampleAverage actually only ini-
tialises Accuracy and then calls method withConfidenceLevel to initialise the
other instance variables (except for logFile) to 0. The method withConfidence-
Level initialises Constant based on a standardised implementation of the inverse

complementary error function (often denoted with erfc−1) in the method calcula-
teInverseErfC. The complementary error function erfc [1] is defined as

erfc(z) =
2√
π

∫ ∞

z

e−x2

dx

and hence, it can be derived that

R(κ) = 1 − 1

2
erfc(

κ√
2
)

As a result, for a confidence level γ = 2R(κ)−1, it follows that κ =
√

2 ·erfc−1(1−γ).

The actual use of monitor class LongRunSampleAverage is as follows. To eval-
uate a long-run sample average with the technique of regenerative cycles, method
rewardRC is provided. Figure 3.13 shows how rewardRC implements the inter-
val estimation of a long-run sample average using equation (2.12). In line 3, it is
checked whether a new cycle through some predefined recurrent state, which is
identifiable by the RecurrenceCondition being true, has started. If so and if
TransientMode was still true, then this recurrent state is visited for the first time
and hence, setting TransientMode to false in line 5 indicates that only recurrent
states will be visited in the sequel. In case the predefined recurrent state was al-
ready visited before, lines 7 - 28 update the confidence interval. To this end, lines 9
- 17 first update the point estimates obtained with the point estimators that consti-
tute equation (2.12). The actual update of IntervalEstimation in lines 19 - 27
can only be performed if two or more cycles have been completed since only then
StandardDeviation exists. Notice the use of the primitive method asReal to
convert the Integer stored in NumberOfCycles to a Real such that its square
root can be determined. Finally, in lines 30 and 31, the reward value obtained for the

Performance Monitors 89

1 rewardRC(Reward: Real, RecurrenceCondition: Boolean) : LongRunSampleAverage

2 |PointEstimation, StandardDeviation, Factor, HalfWidth: Real|

3 if RecurrenceCondition then

4 if TransientMode then

5 TransientMode := false

6 else

7 NumberOfCycles := NumberOfCycles + 1;
8 Factor := (NumberOfCycles - 1) / NumberOfCycles;
9 AverageSum := (Factor * AverageSum) + (CurrentSum / NumberOfCycles);
10 AverageLength := (Factor * AverageLength) +
11 (CurrentLength / NumberOfCycles);
12 AverageSquaredSum := (Factor * AverageSquaredSum) +
13 (CurrentSum sqr / NumberOfCycles);
14 AverageSquaredLength := (Factor * AverageSquaredLength) +
15 (CurrentLength sqr / NumberOfCycles);
16 AverageSumLengthProduct := (Factor * AverageSumLengthProduct) +
17 ((CurrentSum * CurrentLength) / NumberOfCycles);
18 if NumberOfCycles > 1 then

19 PointEstimation := AverageSum / AverageLength;
20 StandardDeviation := ((1 / Factor) * (AverageSquaredSum -
21 (2 * PointEstimation * AverageSumLengthProduct) +
22 (PointEstimation sqr * AverageSquaredLength))) sqrt;
23 HalfWidth := (Constant * StandardDeviation) /
24 (AverageLength * (NumberOfCycles asReal sqrt));
25 IntervalEstimation := new(ConfidenceInterval)
26 withParameters(PointEstimation - HalfWidth,
27 PointEstimation + HalfWidth, ConfidenceLevel)
28 fi

29 fi;
30 CurrentSum := Reward;
31 CurrentLength := 1
32 else

33 if TransientMode not then

34 CurrentSum := CurrentSum + Reward;
35 CurrentLength := CurrentLength + 1
36 fi

37 fi;
38 return(self).

39 rewardBM(Reward: Real) : LongRunSampleAverage

40 self rewardRC(Reward, (CurrentBatchLength = 0) |
41 (CurrentBatchLength = BatchSize));
42 return(self).

Figure 3.13: Registering reward values for estimating long-run sample averages.

newly started cycle is stored in CurrentSum and the length of the cycle is reset to 1.
In case the RecurrenceCondition was false, the sum of rewards and the length
of the current cycle must be updated (but only if TransientMode is false).

Instead of evaluating a long-run sample average with the technique of regenerative
cycles, method rewardBM of LongRunSampleAverage can be used to estimate it
with the batch-means technique. The implementation of rewardBM relies on calling
rewardRC, see figure 3.13. The recurrence condition parameter is set to the result of
CurrentLength = 0 | CurrentLength = BatchSize. This condition holds
each time a cycle of length BatchSize is completed and at the moment of register-
ing the first reward value. Hence, the effect of the warm-up period is not taken into

90 Reflexive Performance Analysis with POOSL

account. Future research includes an investigation on implementing the detection of
the end of the warm-up period as proposed in for example [182] or [152].

Recall from section 2.3.1 that a long-run sample variance can be rewritten as the
long-run sample average of squared reward values minus the square of the long-run
sample average of reward values. To evaluate long-run sample variances based on
this result, monitor class LongRunSampleVariance includes the instance variables
AverageSquaredReward and AverageReward. They store estimation results ob-
tained for the long-run sample average of squared reward values and the long-
run sample average of reward values respectively. Method withParameters of
LongRunSampleVariance initialises AverageSquaredReward and Average-
Reward as monitors of class LongRunSampleAverage. The confidence level for
both these constituent long-run sample averages is set (using method withConfi-
denceInterval of LongRunSampleAverage) to 1

2 (CL + 1), where CL is the de-
sired confidence level for estimating the long-run sample variance. The reason for
increasing the confidence levels of the constituent long-run sample averages is to
(evenly) compensate for the effect of the subtraction operator of the algebra of Confi-
dence Intervals on the confidence level. This operator forms the basis of determining
IntervalEstimation in the methods withParameters and rewardRC.

Figure 3.14 depicts how method rewardRC of LongRunSampleVariance imple-
ments the interval estimation of long-run sample variances with the technique of
regenerative cycles. After updating the point estimates for the constituent long-run
sample averages in lines 2 and 3, it is checked whether the confidence interval stored
in IntervalEstimation must be updated. If so, this update is performed in lines
5, 6 by methods - and sqr of class ConfidenceInterval conform the definition
of long-run sample variances. Remark the use of method getIntervalEstima-
tion of LongRunSampleAverage to obtain the confidence intervals for the con-
stituent long-run sample averages. Figure 3.14 also shows how the implementation
of method rewardBM (which allows the estimation of a long-run sample variance
with the batch-means technique) relies on method rewardRC in a similar way as for
monitor class LongRunSampleAverage. Notice the use of method getCurrent-
Length of class LongRunSampleAverage to obtain the length of the current batch.

1 rewardRC(Reward: Real, RecurrenceCondition: Boolean) : LongRunSampleVariance

2 AverageReward rewardRC(Reward, RecurrenceCondition);
3 AverageSquaredReward rewardRC(Reward sqr, RecurrenceCondition);
4 if RecurrenceCondition then

5 IntervalEstimation := AverageSquaredReward getIntervalEstimation -
6 (AverageReward getIntervalEstimation sqr)
7 fi;
8 return(self).

9 rewardBM(Reward: Real) : LongRunSampleVariance

10 self rewardRC(Reward, (AverageReward getCurrentLength = 0) |
11 (AverageReward getCurrentLength = BatchSize));
12 return(self).

Figure 3.14: Registering reward values for estimating long-run sample variances.

Performance Monitors 91

Now, consider class LongRunTimeAverage. Recall from section 2.3.1 that a long-
run time average can be written as a quotient of the long-run sample average of pre-
vious reward values times their durations and the long-run sample average of pre-
vious durations. The instance variables AverageTimeRewardProduct and Ave-
rageTime are introduced to store estimation results for these constituent long-run
sample averages. Initialisation of these monitors by withParameters relies on
method withConfidenceInterval. Instead of explicitly implementing the pre-
vious-reward operator Θ to enable obtaining the previous reward value and its dura-
tion, instance variables PreviousReward and LastTime are defined. Previous-
Reward stores the previously registered reward value, while LastTime is used for
storing the most recent model time at which a reward value was registered. Recall
that equation (3.3) on page 73 allows to determine the previous duration based on
statement currentTime. Hence, the model time returned by currentTime must
be a parameter for the methods that update the intermediate estimation results.

1 rewardRC(Reward, CurrentTime: Real, RecurrenceCondition: Boolean) :
2 LongRunTimeAverage

3 if LastTime != nil then

4 AverageRewardDurationProduct rewardRC(PreviousReward *
5 (CurrentTime - LastTime), RecurrenceCondition);
6 AverageDuration rewardRC(CurrentTime - LastTime, RecurrenceCondition)
7 fi;
8 PreviousReward := Reward;
9 LastTime := CurrentTime;
10 if RecurrenceCondition then

11 IntervalEstimation := (AverageRewardDurationProduct getIntervalEstimation) /
12 (AverageDuration getIntervalEstimation)
13 fi;
14 return(self).

15 rewardBM(Reward, CurrentTime: Real) : LongRunTimeAverage

16 self rewardRC(Reward, CurrentTime, (AverageTime getCurrentLength = 0) |
17 (AverageTime getCurrentLength = BatchSize));
18 return(self).

Figure 3.15: Registering reward values for estimating long-run time averages.

Figure 3.15 presents how method rewardRC enables to estimate long-run time aver-
ages with the technique of regenerative cycles. When calling rewardRC, parameter
CurrentTime must be set to the model time as returned by currentTime. As a re-
sult, the previous duration can be determined by CurrentTime - LastTime, see
also equation (3.3). However, if no reward value was registered before, LastTime is
undefined (nil). Hence, an additional check is needed before updating the estima-
tion results for the constituent long-run sample averages. This check is performed
in line 3. If LastTime is not nil, then AverageRewardDurationProduct and
AverageDuration can be updated, see lines 4 - 6. Then, the new reward value and
time at which this reward value is obtained are stored in lines 8 and 9. Finally, if the
recurrence condition holds, the confidence interval for the long-run time average is
updated (lines 11, 12). This update is based on method / of class ConfidenceIn-
terval conform the definition of long-run time averages. Figure 3.15 additionally

92 Reflexive Performance Analysis with POOSL

shows how method rewardBM allows interval estimation of long-run time averages
with the batch-means technique in a similar way as for the other monitor classes.

The estimation of long-run time variances is accomplished by using an instance of
class LongRunTimeVariance. Recall that a long-run time variance can be rewritten
as the long-run time average of the squared reward values minus the square of the
long-run time average of reward values. To store the estimation results for these con-
stituent long-run time averages, instance variables AverageSquaredReward and
AverageReward are introduced. Figure 3.16 shows the implementation of meth-
ods rewardRC and rewardBM, which enable interval estimation of long-run time
variances with the technique of regenerative cycles and the batch-means technique
respectively. Notice that rewardRC relies on using the - and sqr method of class
ConfidenceInterval conform the definition of long-run time variances.

1 rewardRC(Reward, CurrentTime: Real, RecurrenceCondition: Boolean) :
2 LongRunTimeVariance

3 AverageReward rewardRC(Reward, CurrentTime, RecurrenceCondition);
4 AverageSquaredReward rewardRC(Reward sqr, CurrentTime, RecurrenceCondition);
5 if RecurrenceCondition then

6 IntervalEstimation := (AverageSquaredReward getIntervalEstimation) -
7 ((AverageReward getIntervalEstimation) sqr)
8 fi;
9 return(self).

10 rewardBM(Reward, CurrentTime: Real) : LongRunTimeVariance

11 self rewardRC(Reward, CurrentTime, (AverageReward getCurrentLength = 0) |
12 (AverageReward getCurrentLength = BatchSize));
13 return(self).

Figure 3.16: Registering reward values for estimating long-run time variances.

3.3.2 On Tool Extensions

Superclass PerformanceMonitor of the monitor data classes discussed in section
3.3.1 includes a method accurate that returns a Boolean indicating whether the
estimation result for the monitored long-run average is accurate. Often, a POOSL
model is extended with several monitors. If the estimation results for all monitored
performance metrics are accurate, then the simulation can be terminated. Currently,
the tools for executing POOSL models do not offer sufficient features for a user-
friendly way of terminating a simulation. As a consequence, checking whether the
estimation results for all monitored performance metrics are accurate requires ex-
tending the original POOSL model with some activity that registers the accuracy
status of all monitored performance metrics (see also section 4.3.2). The only way
currently available for actually terminating a simulation is to enforce deadlock. This
can be accomplished by aborting the behaviour of all processes. Future research in-
cludes an investigation on how the accuracy status of the monitored performance
metrics can be used as a more direct means for the tools to terminate a simulation.

Quality Assessment 93

3.4 Quality Assessment

A suitable approach for evaluating the quality of estimation results obtained with
the library classes for accuracy analysis presented in section 3.3.1 is to analyse the
coverage of the underlying Confidence Intervals [118]. The coverage of a Confidence
Interval is defined as the frequency with which confidence intervals obtained for a
certain performance metric contain the true value of the performance metric. Notice
that the coverage of a Confidence Interval should converge to at least its confidence
level when the number of obtained confidence intervals becomes large.

Coverage analysis is limited to systems for which performance metrics can also be
computed analytically [118]. The well-known M/M/1 queueing system [5, 102]
forms a suitable basis for determining the coverage of the Confidence Intervals un-
derlying all four types of performance metrics for which the library classes provide
monitors. The performance modelling of the M/M/1 queueing system is discussed
in the next section, while the coverage results are presented in section 3.4.2.

3.4.1 Experiment

The M/M/1 queueing system consists of an unbounded queue for storing received
tokens and a single server to process these tokens. Assume that the parameter for the
exponentially distributed inter-arrival time of the tokens is λ and that the parameter
for the exponentially distributed processing time is µ. Then, for λ < µ, the M/M/1
queueing system implies an ergodic (embedded) Markov chain of which all states
are recurrent [102]. Now, let N denote the number of tokens in the system, i.e.,
the number of tokens in the unbounded queue plus the one being processed by the
server. Two important performance metrics for the M/M/1 queueing system are
E[N] and var[N], which are given by [5, 102]

E[N] =
λ

µ − λ
=

ρ

1 − ρ
and var[N] =

µλ

(µ − λ)2
=

ρ

(1 − ρ)2

where ρ = λ
µ

is called the load. Two other important performance metrics for the

M/M/1 queueing system are related to the sojourn time w for tokens. The so-
journ time of a token is the time between entering the queue and leaving the sys-
tem after being processed by the server and hence, it equals the time that the token
spends waiting in the queue plus its processing time. Due to the exponentially dis-
tributed inter-arrival and processing times, the sojourn time is again exponentially
distributed and the parameter of this exponential distribution is µ(1−ρ) [31]. Hence,
the expected value E[w] and variance var[w] of the sojourn time are given by

E[w] =
1

µ − λ
=

1

µ(1 − ρ)
and var[w] =

1

(µ − λ)2
=

1

µ2(1 − ρ)2

respectively. Table 3.3 shows some numerical performance results for different loads.

To analyse the coverage of the Confidence Intervals underlying the POOSL library
classes for accuracy analysis, a model of the M/M/1 queueing system has been de-
veloped. A screen dump of this model in the SHESim tool is depicted in figure 3.17.

94 Reflexive Performance Analysis with POOSL

λ µ ρ E[N] var[N] E[w] var[w]
1 10 0.1 1/9 10/81 1/9 1/81
1 5 0.2 1/4 5/16 1/4 1/16
3 10 0.3 3/7 30/49 1/7 1/49
2 5 0.4 2/3 10/9 1/3 1/9
1 2 0.5 1 2 1 1
3 5 0.6 3/2 15/4 1/2 1/4
7 10 0.7 7/3 70/9 1/3 1/9
4 5 0.8 4 20 1 1
9 10 0.9 9 90 1 1

Table 3.3: True performance of the M/M/1 queueing system for different λ and µ.

The model includes the processes Sender, Buffer and Receiver. After creating
a new token, the Sender waits with actually sending it to the Buffer until having
delayed for a time that is exponentially distributed with parameter λ. To this end, the
Sender includes an instance variable of data class Exponential from the library
for modelling distributions, see section 3.1.1. The Buffer process, which models the
M/M/1 queueing system, contains an instance variable of a container data class (see
also section 4.3.1) Queue, which represents an unbounded queue. The behaviour of
Buffer is defined by two independent concurrent activities as proposed in example
3.5 on page 77. One activity is concerned with receiving tokens from the Sender
and putting them in the Queue. Whenever there is a token in the Queue, the other
activity models the processing of it by delaying for an exponentially distributed time
with parameter µ. Only after having delayed, this activity removes the token from
the Queue and sends it to the Receiver. To model the processing time, Buffer
also contains an instance variable of class Exponential. The actual sending and
receiving of tokens by the concurrent activities is performed instantaneously.

Because of keeping the tokens in the Queue while they are being processed, the
occupancy of the Queue equals the number of tokens in the system. Hence, the
time-average Queue occupancy and the time-variance in the Queue occupancy con-

Figure 3.17: Model of the M/M/1 queueing system in SHESim.

Quality Assessment 95

verge almost surely to E[N] and var[N] respectively. Observe that these perfor-
mance metrics concern a conditional long-run time average and variance respec-
tively, where the condition for both is putting or removing a token from the Queue
(see also example 2.11 on page 52). Moreover, the sample-average duration of being
in the Queue and the sample-variance in this duration converges almost surely to
E[w] and var[w] respectively. These performance metrics concern a conditional long-
run sample average and variance respectively, where the condition for both is the
completion of the processing of a token (see also example 2.10 on page 50). Remark
that an alternative for this condition is the removal of a token from the Queue.

To estimate the identified performance metrics, the POOSL model is extended with
eight performance monitors. Each of the four performance metrics is estimated with
both the technique of regenerative cycles and the batch-means technique. To ap-
ply the technique of regenerative cycles, the situation of the Queue being empty
is used as recurrence condition for all performance metrics. Notice that this recur-
rence condition is appropriate for estimatingE[N] and var[N] (see also example 3.5).
However, using the emptiness of the Queue as recurrence condition for estimating
E[w] and var[w] is actually not advisable. This is because the emptiness of the Queue
does not represent the completion of processing a token that took a specific time and
hence, the state in which Queue is empty does not necessarily imply a relevant re-
current state for the implied reduced Markov chain (i.e., the Markov chain that is
obtained after reducing the Markov chain defined by the POOSL model with respect
to the condition of completing the processing of a token). Nevertheless, the empti-
ness of the Queue is still used as recurrence condition because it is not evident which
processing time is suitable for defining a recurrence condition. For the batch-means
technique, a default batch size as provided by the monitor classes is used.

To obtain a number of confidence intervals for each of the eight performance mon-
itors (with which the coverage of their underlying Confidence Intervals can be es-
timated), some further extensions to the model are needed. These extensions allow
to reset the M/M/1 queueing system by re-initialising the Queue, all performance
monitors and both instances of Exponential. Recall that initialising an instance
of Exponential involves the creation of a random number generator. Since the
library classes for distributions rely on randomiseSeed to initialise such random
number generators, the simulation subruns will be independent (see also appendix B).

The actual coverage analysis is performed for each of the combinations of λ and µ
indicated in table 3.3 as follows. Each coverage metric can be considered as a condi-
tional long-run sample average, where the reward value is 1 if the true performance
value is indeed in the obtained confidence interval and 0 if it is not. The condition for
this metric is the completion of a simulation subrun. Since the simulation subruns
are independent, this condition may also serve as recurrence condition for applying
the technique of regenerative cycles. Hence, an additional eight performance moni-
tors of class LongRunSampleAverage are introduced, which will be referred to as
the coverage monitors. A reward value (0 or 1) is registered for a coverage monitor
with method rewardRC at the moment that the estimation results for the accom-
panying performance metric are being considered accurate for the first time9. If all
estimation results are considered to be accurate, then the current simulation subrun
is terminated and the M/M/1 queueing system is reset as described above. The cri-

9If a model contains only one monitor, this is would be the criterium for terminating the simulation.

96 Reflexive Performance Analysis with POOSL

terium for terminating a simulation subrun is that all eight performance monitors
have an accuracy of at least 0.95 (for a confidence level of 0.95). Each time a simula-
tion subrun is terminated, the intermediate coverage results are logged to file as well.
When a minimum of 500 simulation subruns have been performed10 and all cover-
age results are considered to be accurate, then the coverage analysis is completed.
The decision of whether the coverage results are accurate is based on initialising all
eight coverage monitors with a desired confidence level and accuracy bound of 0.95.

3.4.2 Results

As indicated in section 3.4.1, the coverage analysis for each load in table 3.3 is com-
pleted when a minimum of 500 simulation subruns have been performed and the
coverage results for all eight performance monitors become accurate. However, for
the loads of 0.8 and 0.9, this approach turned out to imply exceptionally long ex-
ecution times (over 12 days on a Mobile Intel Pentium 4 M running at 1.8 GHz).
Therefore, the coverage analysis for these loads was terminated prematurely. Table
3.4 shows the number of simulation subruns that have been performed for each load.
The coverage results that were obtained after performing the indicated numbers of
simulation subruns have been documented in eight graphs, which are discussed be-
low. These graphs plot the coverage results against the different loads. Vertical error
bars are used to indicate the confidence intervals accompanying the coverage results.

ρ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Number of subruns 836 775 802 665 735 789 818 500 250

Table 3.4: Actual numbers of simulation subruns that were performed.

Figures 3.18 and 3.19 show the coverage results that were obtained when estimating
E[N] and var[N] respectively with the technique of regenerative cycles, where an
empty Queue served as recurrence condition. Recall that estimatingE[N] and var[N]
with this approach is regarded as very appropriate and hence, good coverage results
are expected. Indeed, the coverage results forE[N] are larger than the initialised con-
fidence level of 0.95 for all loads. Moreover, the coverage results for var[N] are 1 for
all loads. So, all confidence intervals obtained for var[N] contained its true value. It
can be concluded that estimatingE[N] and var[N] using the Confidence Intervals un-
derlying the monitor classes LongRunTimeAvarage and LongRunTimeVariance
respectively as described here yields excellent coverage results.

The coverage results that were obtained for the case of estimating E[w] and var[w]
with the technique of regenerative cycles are depicted in figures 3.20 and 3.21 re-
spectively. Recall that the used recurrence condition (emptiness of the Queue) is not
considered to be ideal for estimating E[w] and var[w]. Hence, using this approach
may result in unrealistic estimation results even though these results are regarded
as accurate when terminating a simulation subrun. Obviously, the coverage results
may suffer from improperly estimating E[w] and var[w]. As shown in figure 3.20,
the coverage results for E[w] are indeed less than the initialised confidence level of

10It is necessary to perform a minimum number of simulation subruns to ensure that the coverage
analysis is not terminated prematurely when all estimation results happen to be accurate immediately.

Quality Assessment 97

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.18: Coverage results when estimating E[N] using rewardRC.

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.19: Coverage results when estimating var[N] using rewardRC.

0.95 for all loads. Considering that the Confidence Interval used in class LongRun-
SampleVariance is derived from the one use in LongRunSampleAverage, it is
rather surprising that the coverage results for var[w] are 1 for all loads (see figure
3.21). This suggests that using the presumably inappropriate recurrence condition
of an empty Queue may not be so bad after all for estimating E[w]. More research
is needed to identify the exact reason for obtaining excellent coverage results when
estimating var[w] using class LongRunSampleVariance as described here.

Figures 3.22 and 3.23 depict the coverage results that were obtained when estimating
E[N] and var[N] respectively with the batch-means technique (using a default batch
size of 10000). Recall that the implementation of the batch-means technique (see sec-
tion 3.3.1) does not take the warm-up period of a simulation subrun into account. As
a consequence, the estimation results for E[N] and var[N] may be unrealistic even
though they are regarded as being accurate when terminating a simulation subrun.
Clearly, the coverage results for E[N] and var[N] may suffer from this deficiency.
As shown in figure 3.22, the coverage results for E[N] are less than the initialised
confidence level of 0.95 for all loads. Repeating the estimation of E[N] with much
larger batch sizes than the default did not improve the coverage results significantly,
thereby ruling out the possible cause of using a too small batch size. Based on the
commonly high influence of the warm-up period, much better coverage results are

98 Reflexive Performance Analysis with POOSL

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.20: Coverage results when estimating E[w] using rewardRC.

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.21: Coverage results when estimating var[w] using rewardRC.

expected in case this warm-up period would have been taken into account according
to for example Welch’s procedure [182] or the algorithm by Schruben in [152]. Some-
what surprising is that the coverage results for estimating var[N] are larger than 0.95
for all loads except 0.1 and 0.2 when considering that the Confidence Interval us-
ing in monitor class LongRunTimeVariance is derived from the one used in class
LongRunTimeAverage. This suggests that the influence of the warm-up period
may not be too high after all for these cases. More research is needed to identify the
exact reason for obtaining reasonable coverage results when estimating var[N] using
performance monitor class LongRunTimeVariance as described here.

The coverage results that were obtained for estimating E[w] and var[w] with the
batch-means technique (using a default batch size of 10000) are presented in figures
3.24 and 3.25 respectively. The coverage results for E[w] are less than 0.80 for all
loads, which is rather bad. In addition, the coverage results for var[w] are only larger
than 0.95 for the highest loads. The possible cause of using a too small batch size is
ruled out by having repeated the experiment using much larger batch sizes than the
default, which did not improve the coverage results significantly. A likely cause for
getting bad coverage results is the fact that the current implementation of the batch-
means technique does not take the warm-up period into account.

Now, a comparison can be made between the coverage results obtained for a perfor-

Conclusions 99

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.22: Coverage results when estimating E[N] using rewardBM.

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.23: Coverage results when estimating var[N] using rewardBM.

mance metric when using the technique of regenerative cycles and those obtained for
that metric when using the batch-means technique. For all performance metrics, it
can be seen that for the performed experiment and the current implementation of the
performance monitor classes, using the technique of regenerative cycles is favorable.

3.5 Conclusions

The modelling language POOSL enables to specify the behaviour of a system in a
way that is more convenient than directly writing down the states and transitions of
a Markov chain. After explicitly transforming the timed probabilistic labelled tran-
sition system defined by the semantics of a POOSL model into a Markov chain and
separately specifying reward functions, Markov chain-based performance analysis
techniques can be applied. This existing model-checking approach is supplemented
in this chapter with a framework for reflexive performance analysis. Relying on the
mathematical relation between POOSL models and their extensions with Markov
chains and reward functions, the framework provides a sound basis for simulation-
based estimation of performance metrics by executing the extended POOSL model.

The labelled transition system defined by a POOSL model distinguishes action tran-

100 Reflexive Performance Analysis with POOSL

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.24: Coverage results when estimating E[w] using rewardBM.

0 , 6 0

0 , 7 0

0 , 8 0

0 , 9 0

1 , 0 0

0 , 0 0 0 , 1 0 0 , 2 0 0 , 3 0 0 , 4 0 0 , 5 0 0 , 6 0 0 , 7 0 0 , 8 0 0 , 9 0 1 , 0 0

L o a d

C
o
v
e
ra
g
e

Figure 3.25: Coverage results when estimating var[w] using rewardBM.

sitions and time transitions. Action transitions have a probabilistic interpretation,
which is reflected in the transition probabilities of the implicitly defined Markov
chain. The precise values of these transition probabilities are determined by the dis-
tributions denoted by data objects that are derived from instances of class Random-
Generator. A library of data classes for representing different types of distributions
has been developed to assist the designer in expressing probabilistic behaviour.

The actual transformation of a POOSL model into a Markov chain involves three
steps: assuming maximal progress, resolving non-determinism and shifting action
and time information into states. The second step is concerned with resolving non-
deterministic choices that exists between next possible action transitions. Resolv-
ing non-determinism is a common aspect of discrete-event simulation and is usu-
ally performed by some scheduler. Different schedulers may have different policies
for choosing between the next possible action transitions and hence, different per-
formance results may be obtained. Not resolving non-determinism therefore gives
rise to a collection of results for a performance metric. Only after resolving non-
determinism, a single result is obtained for the performance metric. To ensure ob-
taining realistic performance results with POOSL, the tools for executing POOSL
models resolve non-determinism in a fair way by using a uniform distribution over
the next possible action transitions.

Conclusions 101

Extending a POOSL model with variables and behaviour to evaluate performance
properties yields the definition of reward functions for the underlying Markov chain.
Specification of the exact reward values for the states of this Markov chain involves
the explicit assignment of these values to the corresponding variables in the model.
Such assignment is usually specified on basis of the occurrence of a certain event.
Hence, for each variable there is an implicitly defined conditional reward function
that indicates whether an assignment to the variable occurred. Based on the reduc-
tion technique, long-run average performance metrics can therefore be estimated by
using the classical Markov-chain based performance analysis techniques and the al-
gebra of Confidence Intervals. The estimation of long-run average performance met-
rics that depend on the duration of reward values can rely on the use of statement
currentTime to determine this duration.

Straightforwardly applying the classical Markov-chain based analysis techniques in
practice suffers from the difficulty of identifying a (relevant) recurrent state of the
Markov chain. Two approaches are proposed for predefining a recurrence condition
that enforces the beginning of a cycle of (nearly) independent behaviour. The first
approach utilises that performance metrics are commonly defined in relation to a
specific component of the system. In case the assignment of a specific reward value
for such a performance metric is known to re-occur, this assignment may serve as re-
currence condition for the technique of regenerative cycles. Although this approach
is theoretically sound, the requirement of having knowledge about the behaviour of
the system hinders its applicability. The second approach is referred to as the batch-
means technique. It approximates the independence of regenerative cycles based on
a sufficiently large fixed cycle length. Next to the difficulty of determining a suitable
cycle length (batch size), the batch-means technique suffers from the fact that the
Markov chain underlying a POOSL model is in general not covariance-stationary
during the warm-up period of the simulation. Despite these theoretical deficiencies,
the batch-means technique is generally applicable.

To assist the designer in constructing monitors for estimating complex long-run av-
erage performance metrics, a library of POOSL classes has been developed. These
performance monitor classes enable accuracy analysis of four types of long-run aver-
ages based on implementing the algebra of Confidence Intervals. The estimation of
such performance metrics can be performed by using either the technique of regen-
erative cycles with a certain local recurrence condition or the batch-means technique.
The quality of the estimation results obtained with the performance monitor classes
has been assessed with an experiment. The experiment involved analysing the cov-
erage of the Confidence Intervals underlying the four long-run average performance
metric types. The experiment showed that for the current implementation of the per-
formance monitor classes, the technique of regenerative cycles is preferable over us-
ing the batch-means technique. The coverage results obtained with the batch-means
approach may however improve considerable when adding a technique for disre-
garding reward values obtained during the warm-up period to the monitor classes.

102 Reflexive Performance Analysis with POOSL

Chapter 4

Extending the SHE Method for
Performance Modelling

Mathematically founding performance analysis with a modelling language such as
the Parallel Object-Oriented Specification Language (POOSL) supports obtaining
credible performance results. The use of such an expressive modelling language
facilitates the construction of intuitive models that abstract from many implementa-
tion details. However, due to the expressive power, it is sometimes unclear how
the available primitives can be combined such that the behaviour of a system is
modelled adequately. To assist the designer in constructing models with a certain
modelling language, design methods provide guidelines. These guidelines include
templates for adequately modelling typical aspects of hardware/software systems.

The modelling language POOSL was developed as a part of the system-level design
method called Software/Hardware Engineering (SHE) [145]. Originally, SHE mainly
provided guidelines for capturing the concepts and requirements for a system based
on object-oriented analysis techniques and several diagram types. In [57], mathe-
matical techniques for the verification of correctness properties and a few guidelines
for their application in the context of POOSL are discussed. Furthermore, [57, 58]
and [28] introduced tools for the construction, validation and execution of POOSL
models. This chapter focuses on extending the SHE method with guidelines that as-
sist in constructing adequate performance models. To this end, the next section first
introduces a framework for structuring the exploration of design alternatives with
SHE. This framework allows integrating the performance modelling guidelines with
the existing techniques, guidelines and tools.

An important aspect of the SHE method is to derive POOSL models from several di-
agrams that capture the concepts and requirements for a system. An emerging stan-
dard modelling language for expressing this information is the Unified Modelling
Language (UML) [149]. To allow replacing the original diagrams, section 4.2 dis-
cusses a profile for stereotyping UML diagrams in the context of SHE. Such stereo-
typed UML diagrams accelerate the construction of POOSL models after applying
the object-oriented analysis techniques of [145, 185]. To this end, section 4.2 also
discusses deriving POOSL models from the stereotyped UML diagrams.

104 Extending the SHE Method for Performance Modelling

Section 4.3 introduces some generally applicable modelling patterns that allow the
construction of adequate performance models with POOSL. In addition, guidelines
are provided for extending a POOSL model with monitors, which ensure preserv-
ing the intuitive understanding of the working of a system from the model. Finally,
section 4.3 presents some guidelines for validating POOSL models against the stereo-
typed UML diagrams that capture the concepts and requirements for a system. Al-
though being centered around the use of POOSL, most of the provided guidelines
are expected to be useful in the context of other modelling languages as well.

4.1 Exploring Design Alternatives with SHE

As discussed in section 1.1, designing hardware/software systems is usually subdi-
vided in a number of design phases. Each phase intends to refine the design by incre-
menting the amount of detail with which the question of how to realise the desired
functionality such that the non-functional properties are satisfied is answered. In
general, several options can be proposed for doing so and hence, each phase entails
exploring such design alternatives. This section elaborates on developing design
alternatives and evaluating their properties during system-level design with SHE.

4.1.1 Formulation, Formalisation and Evaluation

The proposed framework for developing design alternatives and investigating their
properties with SHE is depicted in figure 4.1. It involves the stages of formulation,
formalisation and evaluation. These three stages are discussed in more detail below.

Formulation The development of a feasible design starts with brainstorm sessions
and/or discussions on possible concepts for realising the desired system. Such con-
cepts are proposed based on their potential of satisfying the functional and non-
functional requirements. Design experience and design decisions taken in the past
affect the outcome of the discussions. For example, by immediately rejecting con-
cepts that are thought not to lead to satisfying the requirements. On the other hand,
designers may come up with alternative concepts that are believed to form the basis
of a feasible design. The outcome of the discussions is an agreement on which ones
of these design alternatives should be investigated further.

Since brainstorm sessions and discussions have a rather unstructured and undocu-
mented character, a process of formulation is needed. Formulation concerns docu-
menting proposed design alternatives and accompanying requirements to empower
more detailed discussions on them during later stages of the design. Proposed con-
cepts for realising the desired functionality are formulated in concept models. A
concept model documents the desired behaviour of a system using diagrams and
texts. It may include for example a sketch of a system architecture together with a
specification of the order in which certain information must be exchanged between
components. Proposing concepts for realising the desired functionality may imply
additional requirements for the system or its components. An example of such a
requirement is a maximum on the process time of a specific component to ensure

Exploring Design Alternatives with SHE 105

satisfying some overall latency requirement. The requirements that have to be sat-
isfied by a design are documented as desired properties, again using diagrams and
texts. Notice that the desired properties basically reflect the design issues that are
to be addressed. The result of the formulation stage is a structured but informal
documentation of concepts and accompanying requirements as concept models and
accompanying desired properties, which present the deliverable at milestone A.

Concepts & Requirements

Concept

Models

Desired

Properties

Executable

(POOSL)

Models

Monitors

Requirements Satisfied?

Formulation

Evaluation

FormalisationValidation Formalisation

Milestone A

Milestone C

Milestone B

F
o
rm

u
la

ti
o
n

F
o
rm

a
lis

a
ti
o
n

E
v
a
lu

a
ti
o
n

Yes

No

Exploration Results

Interpretation

Figure 4.1: Framework for exploring design alternatives with the SHE method.

The SHE method provides support for the formulation stage in the form of numerous
guidelines for applying object-oriented analysis techniques, see [145, 185]. Although
any form of diagram or any language (plain English for example) can in principle be
used to denote concept models, it is advised to apply the UML profile for SHE dis-

106 Extending the SHE Method for Performance Modelling

cussed in section 4.2. Using UML diagrams that are stereotyped in accordance with
this profile accelerates deriving POOSL models in the formalisation stage (see be-
low). Notice that it is still required to include a textual explanation of how the UML
diagrams should be interpreted. Similarly as for concept models, the accompanying
desired properties can be explained in any language. It is however recommended
to annotate the UML diagrams regarding the involved concept model. Such anno-
tations can express both functional and non-functional desired properties. Future
research includes an investigation on using the recently developed profile for speci-
fying schedulability, performance and time in [130, 154] to annotate UML diagrams.

Formalisation Concept models developed as a result of the formulation stage can
only be used for (non-automated) verbal reasoning about the properties of proposed
design alternatives. Verbal reasoning is however less suited for properly analysing
the properties of interest due to the difficulty of taking the effects of all relevant
aspects into account. To enable an automated and more credible evaluation, con-
cept models have to be formalised into (formal) executable models that are amenable to
the automated application of mathematical analysis techniques. SHE provides the
modelling language POOSL to construct such executable models. A smooth formal-
isation of concept models into POOSL models is supported by the UML profile for
SHE. Section 4.3.1 presents several modelling patterns for the construction of POOSL
models, which adequately capture essential performance-related aspects.

Concept models are expressed using a (modelling) language with an informally de-
fined semantics, whereas executable models are required to be expressed with a for-
mal modelling language. Hence, deriving POOSL models from concept models can
not be automated based on mathematical techniques. To ensure that a POOSL model
appropriately captures the concepts for realising the desired functionality, a process
of validation is needed. Section 4.3.3 presents some guidelines that assist the de-
signer in validating POOSL models against concept models documented with the
UML profile for SHE.

Next to formalising the concept model, the desired properties have to be formalised
into mathematical formulae that are tractable by the provided analysis techniques.
Such formulae lead to the definition of monitors. The SHE method supports ana-
lytical computation1 as well as simulation-based estimation of both correctness and
performance properties. Computation of correctness properties is based on defining
monitors separately from POOSL models as presented in [56, 57]. Such a model-
checking approach is also applied in case of computing performance properties ac-
cording to [180]. Simulation-based estimation of performance properties is based on
the framework for reflexive performance analysis discussed in section 3.1, which in-
volves explicitly extending a POOSL model with monitors. In this case, monitors for
analysing common long-run average performance metrics can be based on using the
library classes presented in section 3.3.1. Section 4.3.2 discusses how POOSL models
can be extended with monitors without decreasing their intuitiveness.

The result of the formalisation stage is a structured and formal documentation of the

1Remark that computation of correctness and performance properties according to [56, 57] and [180]
respectively first requires to construct the appropriate mathematical structure from the POOSL model. In
case of computing performance properties, this mathematical structure is the implicitly defined Markov
chain, see also section 3.1. Furthermore, the correctness or performance properties of interest must first
be expressed in the temporal logic of [57] or the formalism of temporal rewards in [180] respectively.

Exploring Design Alternatives with SHE 107

proposed concepts and accompanying requirements as executable (POOSL) models
and monitors, which presents the deliverable at milestone B (see figure 4.1).

Evaluation The final stage is concerned with evaluating the actual properties of the
proposed design alternatives and making design decisions. Correctness properties
are evaluated based on the techniques discussed in [57], while long-run average per-
formance metrics are evaluated according to the techniques presented in chapter 2.

Based on the exploration results, it can be concluded which ones of the proposed de-
sign alternatives satisfy the requirements. Design alternatives satisfying all require-
ments are designated to be feasible, others are infeasible. The deliverable at mile-
stone C documents the evaluation results of all design alternatives and the founda-
tion for judging the designs to be feasible or infeasible. For infeasible designs, the
deliverable at milestone C clearly pinpoints why the requirements are not satisfied.
In case no feasible design is found, improvements for the original concepts or new
concepts for realising the desired functionality have to be developed2. The infor-
mation on why the requirements were not satisfied may then help in improving the
original concepts or developing new concepts. Notice that all three stages have to be
repeated in this case to investigate whether the proposed changes indeed result in
satisfying the requirements. On the other hand, if there are feasible designs, it can be
concluded which alternative is favorable. This alternative can then be selected as the
one that will be used to realise the system. This design decision and why the specific
alternative is favourable is documented in the deliverable at milestone C. The infor-
mation on the selected alternative documented in all three deliverables suffices for
refining the design of the system towards a realisation.

Tool Support The SHE method is not yet accompanied with a full tool suite. Cur-
rently, SHE relies on the use of commercial tools for drawing stereotyped UML di-
agrams during the formulation stage3. The construction of POOSL models based
on such UML diagrams during the formalisation stage is performed by hand. Con-
structing and validating POOSL models is supported with the graphical SHESim
tool [58]. SHESim is also used when explicitly extending a POOSL model with mon-
itors. In the evaluation stage, the textual Rotalumis tool [28] for high-speed execution
of POOSL models can be used. Both SHESim and Rotalumis execute a POOSL model
unambiguously based on a mathematical structure that is derived from the formal
semantics of the model. Appendix B discusses several aspects of the SHESim and
Rotalumis tools in some more detail. Future research includes an investigation on a
tool that integrates support for all three stages of the SHE method.

4.1.2 Discussion

The flow of steps performed during the exploration of design alternatives as de-
picted in figure 4.1 is an idealisation of what may actually happen in practice:

• Formulating the concepts and accompanying requirements may involve sev-
eral iterations. The brainstorm sessions and discussions held during the for-

2Sometimes, it is possible to adapt the requirements such that the original concepts can still be used.
3The UML diagrams in this thesis are drawn with a drawing tool and not with a UML tool.

108 Extending the SHE Method for Performance Modelling

mulation stage lead to proposing concepts for realising the desired system.
Actually documenting such concepts and their accompanying requirements
may trigger the need to elaborate on some more details about their working
and expected effects. This is the case, for example, when discovering unclar-
ities, inconsistencies or missing information in the initial specification of the
system that is to be designed. Designers may start additional discussions to
reveal such information before finalising the formulation of the concepts and
accompanying requirements as concept models and desired properties.

• The formalisation of a concept model into a POOSL model and their validation
may involve some iterations because POOSL models are usually developed in
an incremental way. After constructing an initial version of a model, its vali-
dation may expose several aspects revealing that the concept model is not rep-
resented appropriately. These aspects trigger the development of an improved
version of the POOSL model, which must then be validated again.

• Similar to validating POOSL models against concept models, formalising the
desired properties into mathematical formulae involves validating whether
these formulae appropriately represent the desired properties. Moreover, it
must be checked whether the resulting monitors gather information about the
desired properties in an appropriate way. In case of having the intention to
apply the library classes for evaluating long-run averages presented in section
3.3.1, it is necessary to ensure that a property of interest is indeed one of the
long-run average types for which the library provides monitors.

• The framework for exploring design alternatives as it is depicted in figure 4.1
may suggest that the formulation and formalisation of concepts into POOSL
models can be performed in parallel with the formulation and formalisation of
requirements into monitors. It is however not recommended to do so because
these processes dependent on each other. Moreover, the formulation and for-
malisation of the concepts is usually much more difficult than formulating and
formalising the requirements. Hence, formulation of the requirements into de-
sired properties is to be performed after formulating the concepts into concept
models. Similarly, the formalisation of desired properties into monitors must
be performed after formalising a concept model into a POOSL model. Remark
that the formulation and formalisation stages for different design alternatives
can of course be performed in parallel, although it is sometimes possible to
capture several design alternatives in one parameterised model.

• During the construction of a POOSL model, it is possible to already evaluate
certain properties before actually entering the evaluation stage. When doing
so and if the prematurely obtained evaluation results are unrealistic, then the
model either does not capture the concepts for realising the desired functional-
ity appropriately or inadequate abstractions are made. It is advised to evaluate
some easy-to-check properties already during the formalisation stage to help
improving the model (see also section 4.3.3). An example of an easy-to-check
property is that a certain throughput does not exceed the available bandwidth.

• Evaluating easy-to-check properties during the formalisation stage may al-
ready reveal deficiencies in the originally proposed concepts. Such deficiencies

UML Profile for SHE 109

may lead to immediate improvements for a POOSL model without adapting
the concept model. In case such improvements are made, the deliverable at
milestone B must contain the detected deficiencies and the applied solutions.

Separation of Application and Architecture Various methods for exploring de-
sign alternatives during system-level design clearly separate the application from
the architecture in accordance with the Y-chart approach presented in [98, 99]. Two
examples of such methods are the design space exploration framework in [174] and
the Artemis framework [137]. This thesis does not make the conceptual choice of
whether to separate application from architecture because both approaches are sup-
ported. Separating application from architecture is considered to be a set of ad-
ditional guidelines for performing the actual formulation of concepts into concept
models and formalisation of concept models into POOSL models. In many of the
case studies performed with the SHE method, the application and architecture are
simply intertwined in a single model, see for example [171, 165, 172, 80, 82] and chap-
ter 5. In [184, 183], several guidelines are presented for clearly separating application
and architecture when developing performance models with POOSL.

4.2 UML Profile for SHE

Documenting the proposed concepts for realising the desired functionality and the
accompanying requirements involves the use of diagrams. To assist the designer in
this formulation process, [145] defined 5 diagram types for the SHE method, which
perfectly match the use of POOSL when constructing executable models. Around the
same time, UML was introduced [149]. The first versions of UML provided diagram
types that are particularly suitable for documenting software systems. The UML
community worked on making it suitable for system design as well, which resulted
in the development of UML 2.0 [26]. This latest version of UML extends the original
UML with primitives that enabled defining a total of 12 diagram types4. Four of
these diagram types represent views on the static structure of a system; five reflect
views on the dynamic behaviour of a system and three express ways to organise
and manage (the software of) systems. Several UML diagram types of especially the
first two categories are very similar to the original SHE diagram types. This section
investigates the replacement of the SHE diagram types with UML diagram types.

Models expressed in UML are in principle not executable due to the incompleteness
of the behavioral semantics of UML. Although UML defines actions as the basic
unit of behaviour, which can be arranged into activities, their exact semantics is not
defined. The UML community has made an effort to define an (informal) action
semantics [69] but it still leaves too much semantical freedom for executing models.
To extend or restrict the meaning of its primitives, UML offers the mechanism of
profiles, which are based on constraints, tagged values and stereotypes [149, 26]. Profiles
can therefore be used to adapt UML in accordance with a host language like SDL or
SystemC for making UML models executable. Using UML 2.0 as starting point, this
section presents the main ideas for developing a UML profile for the SHE method
(where the host language is POOSL), which were initially introduced in [167].

4This thesis adopts the diagram types as defined by the Object Management Group (OMG).

110 Extending the SHE Method for Performance Modelling

4.2.1 Data, Process and Cluster Classes

Similar to a suggestion in [130], SHE distinguishes two types of resources for hard-
ware/software systems. Active resources are components of a system that may take
the initiative to perform certain functionality without involving any other resource.
Active resources can often be arranged according to a hierarchical structure. For
example, a system may incorporate several concurrently operating interconnected
components that are composed of smaller concurrent units, etcetera. Passive re-
sources, on the other hand, present information or data that is generated, exchanged,
interpreted, modified or consumed by other resources. Figure 4.2 depicts5 examples
of the classes that the SHE method distinguishes to specify different resource types.

N
a
m
e

N
a
m
e

N
a
m
e

A
tt
ri
b
u
te
s

M
e
th
o
d
s

M
e
s
s
a
g
e
s

A
tt
ri
b
u
te
s

A
tt
ri
b
u
te
s

M
e
th
o
d
s

M
e
s
s
a
g
e
s

< < d a t a > >

P a c k e t

< < i n s t a n c e v a r i a b l e s > >

D e s t i n a t i o n : I n t e g e r

S i z e : I n t e g e r

< < m e t h o d s > >

g e t D e s t i n a t i o n () : I n t e g e r

s e t S i z e (S : I n t e g e r) : P a c k e t

< < p r o c e s s > >

S w i t c h _ C o r e

< < i n s t a n t i a t i o n p a r a m e t e r s > >

S w i t c h D e l a y : R e a l

< < i n s t a n c e v a r i a b l e s > >

P : P a c k e t

< < m e t h o d s > >

I n i t () ()

T r a n s f e r P a c k e t (I D : I n t e g e r) ()

< < i n i t i a l m e t h o d c a l l > >

I n i t () ()

< < m e s s a g e s > >

I n ? P a c k e t (P a c k e t)

O u t ! P a c k e t (P a c k e t)

< < c l u s t e r > >

I n t e r n e t _ R o u t e r

< < i n s t a n t i a t i o n p a r a m e t e r s > >

S w i t c h D e l a y : R e a l

M
e
s
s
a
g
e
s < < m e s s a g e s > >

Figure 4.2: Illustration of the class symbols for SHE.

Data Classes SHE offers data objects, which are instances of data classes, for mod-
elling passive resources. Figure 4.2 shows that the class symbol for data classes
consists of three compartments. The stereotype <<data>> in the name compart-
ment denotes that a class is a data class. The attributes of a data class are specified
as instance variables, which is indicated by stereotyping the corresponding compart-
ment with <<instance variables>>. The behavior of data objects is described
with (data)6 methods. Execution of such a method is initiated by sending an equally
named message to the data object. Upon completion of executing the method, the
result of some calculation or the data object itself is returned. The class symbol in-
cludes the headers of all methods (with the declaration of input parameters and
the result type) in the methods/messages7 compartment, which is stereotyped with
<<methods>>. The header of the primitive methods for the predefined data classes
Object, Boolean, Integer, Real, String, Nil, Array, FileIn, FileOut and
RandomGenerator (see appendix B) are preceded by stereotype <<primitive>>.

5The labelled arrows are not a part of the actual class symbols but indicate the compartment names.
6Prefixing methods by the word data or process is omitted when this is clear from the context.
7Notice that UML uses the term operations compartment. A different terminology is introduced for SHE

in order to deal with the differences between methods and messages for process (and cluster) classes.

UML Profile for SHE 111

Data classes must inherit from a single other data class (except for data class Object
from which all other data classes eventually inherit). In class diagrams8, such a rela-
tion is drawn as a generalisation/specialisation relation using a triangle at the border
of the superclass. Based on the stereotypes defined for the class symbol and the in-
heritance relation, POOSL skeleton code can be derived easily for any data class (this
may be automated by a future tool). The remainder of formalising a data class with
POOSL then concerns defining the actual behaviour of all (non-primitive) methods.

Process Classes To model the basic (non-composite) active resources of hardware/
software systems, SHE provides process objects or processes. The precise difference
between basic and composite active resources depends on the modelling approach.
Sketches of possible system architectures drawn during brainstorm sessions and dis-
cussions on concepts for realising the system reflect the (hierarchical) way in which a
system is composed of components. A suitable modelling approach is often to define
process classes for those active resource that are drawn as non-subdivided blocks in
such sketches. Notice that these components may still expose concurrent behaviour.

As shown in figure 4.2, the name compartment of the class symbol for process classes
is stereotyped with <<process>>. The attributes of process classes include instance
variables and instantiation parameters. The difference is that instantiation parame-
ters allow parameterising the behavior of a process at instantiation. The attributes
compartment in the class symbol separates the instance variables from the instan-
tiation parameters with a dashed line and stereotypes the sub-compartments with
<<instantiation parameters>> and <<instance variables>>.

The behaviour of processes is described with (process) methods, which may include
the specification of sending or receiving messages (see also appendix B). The start
behavior of a process is defined by the initial method call. The methods compart-
ment of the class symbol includes the specification of both the methods and the
initial method call. They are separated from each other by a dashed line and the
sub-compartments are stereotyped with <<methods>> and <<initial method
call>> respectively. The <<methods>> sub-compartment includes the headers of
all methods (with the declaration of input and output parameters). The <<initial
method call>> sub-compartment specifies the actual call of one of those methods.

To describe the services available from classes, UML defines two kinds of interfaces.
Provided interfaces describe services offered by a class, while required interfaces denote
services that must be provided by other classes in order to operate properly [26]. A
set of provided and required interfaces can be grouped into a port. In the UML profile
for SHE, the UML concept of ports is matched to the concept of the ports through
which processes (or clusters) may communicate messages9. Correspondingly, re-
quired interfaces are related to messages that processes (or clusters) can send, while
provided interfaces are related to messages that can be received. An important dif-
ference between interfaces and messages is that messages are not directly coupled
to process methods (services or operations), see also appendix B. A separate com-
partment in the class symbol, which is stereotyped with <<messages>>, specifies

8Class diagrams are sometimes also called static structure diagrams.
9Consequently, services provided or required by data classes are not expressible with ports and inter-

faces. Such information can however be expressed by for example relations, dependencies or associations.

112 Extending the SHE Method for Performance Modelling

all messages that can be sent or received. Such a specification includes the actually10

involved port, the symbol ! or ? for message send (required interface) and message
receive (provided interface) respectively, the message name and parameters.

Process classes may have an inheritance relation with a single other process class.
In class diagrams, this is drawn as a generalisation/specialisation relation. Based
on the stereotypes defined for the class symbol and the inheritance relation, POOSL
skeleton code can be derived easily for any process class (this may be automated by
a future tool). Notice that the information in the messages compartment of the class
symbol suffices for deriving both the port interface and message interface in POOSL (see
also appendix B). Hence, the remainder of formalising a process class concerns defin-
ing the actual behaviour of the methods in the <<methods>> sub-compartment.

Cluster Classes To model composite active resources, SHE provides clusters. Clus-
ters are instances of cluster classes and group a set of processes and clusters (of other
cluster classes). Similar ways of grouping are also allowed in UML, but an impor-
tant restriction is that a cluster does not extend the behaviour of its constituents11. In
addition, cluster classes cannot inherit from any other class. The need for defining a
cluster class emerges for example from aggregation or composition relations in class
diagrams between classes that represent active resources. Figure 4.2 shows the use
of stereotype <<cluster>> to denote that a class is a cluster class. The attributes
of cluster classes include only instantiation parameters, which are indicated in the
corresponding compartment with stereotype <<instantiation parameters>>.
Messages of encapsulated processes (or clusters) that may pass the boundary of an
instance of the cluster class through its ports are specified in the messages compart-
ment, which is stereotyped with <<messages>>. The information in the message
compartment suffices for deriving both the port interface and message interface in
POOSL. The remainder of defining a cluster class involves specifying the composi-
tion of processes and clusters using instance structure diagrams, see section 4.2.2.

4.2.2 Behaviour of Objects

Data Methods Data methods basically reflect algorithmic operations on the pas-
sive resources modelled by the data class. UML and SHE provide only little support
for specifying the effect of such algorithmic operations. The need for a data method
emerges for example from relations with data classes in class diagrams other than
generalisation/specialisation or aggregation. Although proper naming of a method
and its input parameters should give an idea of what the method is about, it is ad-
vised to use notes for describing the pre and post conditions of a method. Such infor-
mation should at least be documented in the deliverable at milestone A of the SHE
method. Notice that this deliverable should only contain the effect of a method and
not how the method’s behaviour is to be formalised with expressions in POOSL.

Process Methods UML 2.0 allows expressing information on the behaviour of ac-
tive resources in 9 different diagram types: class diagrams, object diagrams, component
diagrams, deployment diagrams, use case diagrams, sequence diagrams, activity diagrams,

10POOSL supports dynamic port naming, see also appendix B.
11Consequently, the class symbol for cluster classes do not include a methods compartment.

UML Profile for SHE 113

collaboration diagrams and statechart diagrams12. The use of class, object, component
or deployment diagrams is however limited to representing a certain static view on
the behaviour. The (dynamic) flow of behaviour to perform can only be captured
by diagrams of the other 5 types. Guidelines on when to use which diagram type
for what purpose can be found in many text books on UML such as [149, 63, 143]
but also in SHE-related publications like [144]. If certain information is expressed in
different diagram types, then the involved diagrams are presumed to be consistent.
Commonly, UML tools are capable of performing the necessary consistency checks.

As discussed in section 3.1.1, the tools for executing POOSL models interpret such
models as being closed. Consequently, the SHE method requires modelling the envi-
ronment of a system as well [145]. UML provides actors to specify the interaction of a
system with its environment in use case diagrams. The concept of actors is however
not adopted for the SHE method since actors are basically active resources (of the en-
vironment), which can therefore be modelled with processes and clusters. SHE does
provide a similar concept as use cases, which is called scenarios [145, 58]. Different
sets of (consistent) diagrams may be used to formulate the behaviour that is to be
exposed for different scenarios. Constructing a POOSL model from these diagram
sets involves unifying the different behaviours of a passive or active resource that
take part in various scenarios into a single data object, process or cluster.

An important aspect of active resources in hardware/software systems is that they
exchange information (passive resources). The SHE method especially adopts the
use of sequence diagrams and collaboration diagrams as a means to formulate the
communication of messages between processes and clusters. An important restric-
tion is however that communicating objects (processes and clusters) cannot be cre-
ated or destructed. Next to parameterising messages with data objects, it is al-
lowed to annotate messages with a note specifying a condition that must be satis-
fied in order to perform the actual communication. Such notes are stereotyped with
<<condition>> and imply the use of a condition for the receive statement in the re-
sulting POOSL model. Messages can also be annotated with the time at which they
should be exchanged. Finally, [145] defined various message types together with
special symbols. These are added13 to the UML profile for SHE. Since POOSL only
includes a statement for synchronous message passing (see appendix B), modelling
patterns are defined for formalising the other message types, see [144].

Statechart diagrams and activity diagrams are very suitable for formulating the dy-
namic behaviour of processes. Basically, SHE supports these diagrams in the way
they are defined originally, but with some restrictions and extensions. The interpre-
tation of the diagram elements in the context of SHE can best be explained by relating
them to POOSL, which also involves clarifying some terminological mismatches:

• Actions in UML do not match with actions in POOSL. What is called an ac-
tion in UML matches only with a non-communication statement that concerns
atomically evaluated expressions (The syntax of such statements is given by
the first line of table B.2 in appendix B). These statements can only imply inter-
nal or fix action transitions in the timed probabilistic transition system defined

12These are all the diagram types in the first two categories indicated at the beginning of section 4.2.
13Instead of adding the symbols introduced in [145] to the UML profile as proposed here, one could

also define a stereotype for each message type.

114 Extending the SHE Method for Performance Modelling

by an activity or process (see also section 3.1.1). Activities in UML are matched
with activities in POOSL and concern a sequence of statements. Activities may
relate to any sequence of action and time transitions in the transition system.
Hence, activity states in UML match with process statements in POOSL.

• States in UML are related to the state of a process during the execution of a
POOSL model. Hence, a state refers to a configuration in the timed probabilis-
tic labelled transition system defined by an activity or process. Consequently,
the initial state in UML diagrams refers to the initial configuration for such a
transition system. A final state in UML diagrams refers to a configuration in
the transition system from which no transitions to other configurations than
itself can be performed. Hence, it is allowed to have multiple final states for
a single activity or process. A composite state can be formalised by defining a
method that abstracts from the statements grouped by that method. Concurrent
composite states UML diagrams can be formalised by using the par-statement.

• Transitions in UML are similar to the transitions in the timed probabilistic la-
belled transition system of an activity or process. Transitions are either action
transitions or time transitions. A restriction is that if one specifies transitions of
both types to leave from a state, the action transitions must reflect the sending
or receiving of messages (see also section 3.1.1). Time transitions model the
passage of time and are annotated with a positive real number preceded by
stereotype <<delay>>. Time transitions imply a delay-statement in POOSL.
In case only action transitions leave from a state14, they can be annotated with
a real number between 0 and 1 preceded by stereotype <<probability>>
specifying the probabilities with which the transitions are performed. Notice
that the sum of these probabilities must equal 1. If, in case of multiple outgoing
action transitions, no probabilities are specified, then the choice of which tran-
sition will be performed depends either on the event triggering the transition or
it is chosen non-deterministically. Examples of possible events are the sending
or receiving of a message. In UML, transitions may also be triggered based on
guard conditions, which are formalised in POOSL using guarded commands.

• UML enables to specify that activities, which may be formalised with sepa-
rate process methods in POOSL, perform their behaviour concurrently. This
involves the use of fork transitions in UML, which can be formalised with the
par-statement if it concerns the creation of concurrent activities15. In this case,
joint transitions match the termination of a par-statement. However, if fork
and joint transitions denote synchronisation moments between objects (pro-
cesses or clusters) in different swimlines, then their formulation requires using
message send and receive statements (they can be conditional, in which case
they are to be annotated with stereotype <<condition>>).

• UML provides branches to denote choices between performing transitions to
alternative activities or states. For the SHE method, such branches are cate-
gorised in (probabilistic) choices or (non-deterministic) selections. Choices are
decisions between alternative activities and lead to the use of an if-statement
in POOSL. In such case, the branch is stereotyped with <<choice>> and the

14It is not necessary in SHE to define guard conditions in case of multiple outgoing action transitions.
15Instead of concurrent activities, which was introduced for SHE, UML uses the term concurrent threads.

UML Profile for SHE 115

involved transitions may be annotated with a probability by using stereotype
<<probability>>, similarly as above. Branches denoting a selection are
stereotyped with <<selection>> and imply the use of a sel-statement. If
a branch is a selection, then the choice of which alternative transition is per-
formed is made non-deterministically. Notice that merges in UML now match
with the termination of either an if or sel-statement.

Example 4.1 To formalise deterministic choices between (mutual-exclusive) alterna-
tive transitions, both the if-statement and the sel-statement can be used. For both
cases, the same guard conditions must be specified in for example activity diagrams, see
figure 4.3. Notice however that using the if may result in a different behaviour then
when using the sel-statement because of their semantical differences: if-statements
are evaluated only once, whereas the guarded commands in the sel-statement are
evaluated until one of them evaluates to true. Using the stereotypes <<choice>>
and <<selection>> distinguishes these interpretations.

< < c h o i c e > >

[O p t i o n B][O p t i o n A]

A c t i v i t y BA c t i v i t y A

< < s e l e c t i o n > >

[O p t i o n B][O p t i o n A]

A c t i v i t y BA c t i v i t y A

if OptionA then

ActivityA()()
else if OptionB then

ActivityB()()
fi fi.

sel

[OptionA] ActivityA()()
or

[OptionB] ActivityB()()
les.

Figure 4.3: Two ways to specify deterministic choices.

• SHE allows interrupting or aborting behaviour based on using the interrupt
and abort-statements respectively in POOSL. Such preemptions can be spec-
ified in UML diagrams as abnormal exits. Abnormal exits causing the interrup-
tion or abortion of the behaviour reflected by an activity state or activity are
stereotyped with <<interrupt>> and <<abort>> respectively.

• An action transition can represent empty behaviour by stereotyping it with
<<skip>>. Such an action transition implies using the skip-statement.

Despite the above guidelines for using sequence, collaboration, statechart and activ-
ity diagrams in the formulation stage, deriving a POOSL model from the information

116 Extending the SHE Method for Performance Modelling

in such diagrams is not a straightforward task. This is due to the fact that the ele-
ments of the diagrams cannot always be mapped in a one-to-one way on (a template
of) POOSL statements. To illustrate this, consider the following simple example.

Example 4.2 Statechart and activity diagrams may formulate (possibly non-terminating)
repetitive behaviour. Such loops can be formalised in POOSL using the while-statement,
tail-recursive method calls16 or by methods that call each other in a tail-recursive way. Which
formalisation approach should be chosen depends on the actual interpretation of a loop.

Notice that the different ways in which stereotyped diagrams can be formalised with
POOSL complicates automating the generation of POOSL code for process methods.
As a consequence, validating a POOSL model against the information specified in
sequence, activity, collaboration and statechart diagrams is of great importance.

Behaviour and System Specifications Originally, SHE introduced instance struc-
ture diagrams [145] to formulate (and formalise) the static structure of how processes
and clusters are interconnected by channels (see also appendix B). Such channels are
similar to connectors in UML. The need for channels originates from the possibility
of communicating messages between active resources in any scenario. For clusters,
SHE adopts both the white and black box views as defined in UML on instance struc-
ture diagrams, while only the black box view is supported for processes.

Various aspects of the information in instance structure diagrams are also reflected in
class, object, component, deployment, collaboration and sequence diagrams. Class
and object diagrams denote aggregation or composition relations between active re-
sources, which are reflected in the use of clusters in instance structure diagrams.
All the mentioned diagram types include information on the exchange of messages
between active resources, which results in introducing channels. Instance structure
diagrams are a unification of such information for active resources (instances of pro-
cess and cluster classes) in all scenarios. Nevertheless, instance structure diagrams
cannot be derived straightforwardly from class, object, component, deployment, col-
laboration and sequence diagrams because channels can be introduced in several
ways in order to formalise the possibility of communicating messages. For exam-
ple, one can use a separate channel for each message communicated between active
resources or a single channel can be introduced for exchanging all those messages.

4.3 Performance Modelling with POOSL

Together with the object-oriented analysis techniques in [145, 185], the UML pro-
file for SHE assists the designer in efficiently completing the formulation stage. Al-
though this profile also provides some assistance in deriving POOSL models during
the formalisation stage, guidelines for constructing adequate models for the specific
purpose of performance analysis are missing. This section focuses on how adequate
performance models can be constructed with POOSL and how such models can be
extended with performance monitors without decreasing their intuitiveness. More-
over, validating POOSL models against stereotyped UML diagrams is discussed.

16A tail-recursive method call is only allowed if the involved method has no output parameters.

Performance Modelling with POOSL 117

4.3.1 Modelling Patterns

During system-level design, developing abstract models that adequately represent
implementation details, which are essential in the context of performance analy-
sis, is difficult. This is due to the fact that not all of these details can be known
in advance. Design experience and knowledge about the implementation of exist-
ing hardware/software systems are important ingredients for developing adequate
models. Modelling patterns capture such knowledge in order to accelerate the explo-
ration of design alternatives for future systems [177].

Modelling Pattern 1: Synchronising Concurrent Activities Modelling languages
offer different ways to express concurrent behaviour [22, 172]. With the modelling
concept of synchronous concurrency, concurrent behaviour is performed in a lock-step
fashion, starting at synchronisation moments indicated by some master controller
(a clock for example). Hence, the execution of functions is tightly coupled to the
time. On the other hand, when using the modelling concept of asynchronous concur-
rency, concurrent behaviour is performed independently from each other (at their
own speed). As opposed to synchronous concurrency, there is no master controller
indicating moments at which all concurrent behaviours synchronise. Recall that con-
current activities and processes in POOSL behave asynchronously concurrent.

An important consequence of asynchronous concurrency is the difficulty of synchro-
nising concurrent behaviour. Since there is no master controller that indicates such
synchronisation moments, synchronisation has to be modelled explicitly by using
communication. As argued in [58] and [166], a modelling language based on asyn-
chronous concurrency should include primitives for synchronous communication. Syn-
chronous communication can be accomplished by blocking the behaviour initiating

<<process>>

ProcessClassName

<<instantiation parameters>>

<<instance variables>>

NumberOfSentPackets: Integer

Semaphore: Boolean

<<methods>>

ActivityA()()

ActivityB()()

Init()()

<<initial method call>>

Init()()

<<messages>>

Out!Packet

Init()()

NumberOfSentPackets := 0;
par ActivityA()() and ActivityB()() rap.

ActivityA()() |p: Packet|

...
p := new(Packet);

Out!Packet(p){Semaphore := true};
...
ActivityA()().

ActivityB()()

...
[Semaphore]

NumberOfSentPackets := NumberOfSentPackets + 1;
...
Semaphore := false;
...

ActivityB()().

Figure 4.4: Example of synchronising concurrent activities.

118 Extending the SHE Method for Performance Modelling

the communication until some partner is ready to communicate. POOSL offers syn-
chronous communication between processes based on message send and receive
statements. Synchronisation of concurrent activities within processes can be accom-
plished by using guarded commands combined with the sharing of data objects as
illustrated in figure 4.4. The concurrent activities specified by methods ActivityA
and ActivityB are synchronised using the shared data object Semaphore. Incre-
menting the NumberOfSentPackets by ActivityB is postponed until Activi-
tyA sends a packet as specified by the send statement (which blocks until another
process is ready to communicate based on a matching receive statement).

Modelling Pattern 2: Data Abstraction An essential aspect of constructing models
during system-level design is the abstraction from data. Data abstraction concerns
using a coarser granularity of data units in a model of a system compared to the
elementary data unit used in a realisation of that system (often being a bit or byte).
For example, Internet packets actually consist of a number of bytes, which are trans-
mitted individually over some communication medium. Abstraction of the Internet
packets concerns considering such packets as elementary data elements, which have
certain properties like size (expressed in bytes), destination and identifier. The data
class Packet in figure 4.5 can be used as an abstraction of Internet packets.

<<data>>

Packet

<<instance variables>>

Destination: Integer

Number: Integer

Size: Integer

<<methods>>

getDestination() : Integer

getSize() : Integer

printString() : String

setDestination(D: Integer) : Packet

setSize(S: Integer) : Packet

withNumber(N: Integer) : Packet

Figure 4.5: Example data class for modelling Internet packets.

The essential advantage of abstraction is the possibility of discarding implementa-
tion details like the way in which the content of an Internet packet is coded as a
sequence of bytes. However, abstraction may imply difficulties in ensuring the ad-
equacy of models. Due to using a coarse granularity of data units, the duration
of generating, exchanging, interpreting, modifying or consuming data is also of a
coarser granularity then for the realised system. Such timing information is often
important for evaluating performance properties. Therefore, modelling patterns are
needed that assist in developing abstract performance models that still are adequate.

Algorithmic operations on data are formalised in POOSL with expressions. The for-
mal semantics of an expression specifies an action transition for the timed probabilis-
tic labelled transition system that is defined by the corresponding activity or process
(see also section 3.1.1). As a consequence, in case the actual duration of executing an
algorithmic operation is relevant for obtaining credible performance results, this du-
ration must be modelled explicitly. This can be achieved by using a delay-statement
after the expression that formalises the algorithmic operation17.

17Notice that it is required to have an accurate estimation of the duration available to enable obtaining

Performance Modelling with POOSL 119

Adequately modelling the communication of data between processes is slightly more
complicated. Let d denote some data object. Communicating d between two pro-
cesses is formalised in POOSL using the message send and receive statements. The
formal semantics of these statements specifies communication action transitions for
the transition systems of the processes. To take the duration E of communicating
d into account, waiting before performing other behaviour has to be formalised ex-
plicitly. Figure 4.6 shows three different approaches to accomplish this. Approaches
A and C use communication actions to synchronise the behaviour of the Sender
and Receiver processes both at the beginning and ending of communicating d. In
approach B, the Sender and Receiver are synchronised at the beginning of the
communication, while the termination of the delay-statements marks finalising it.
For approaches A and C, only one of the processes must know E, whereas for ap-
proach B, both processes have to know E. Notice that E may have to be derived from
the properties of d and the bandwidth of the involved communication medium.

:Receiver

p

:Sender

p

:Sender
 :Receiver

begin(d)

end(d)

<<delay>>

E

:Sender
 :Receiver

begin(d)

<<delay>>

E

:Sender
 :Receiver

begin(d)

end(d)

<<delay>>

E

Approach A Approach B Approach C

Sender Receiver Sender Receiver Sender Receiver

...

p!begin(d);

delay(E);

p!end(d);

...

...

p?begin(d);

p?end(d);

...

...

p!begin(d);

delay(E);

...

...

p?begin(d);

delay(E);

...

...

p!begin(d);

p?end(d);

...

...

p?begin(d);

delay(E);

p!end(d);

...

Figure 4.6: Patterns for modelling the communication of data.

To evaluate the time-average occupancy of a storage resource, the duration of stor-
ing data in that resource must be taken into account. Consider a store-and-forward
buffer for temporarily storing (fixed-size) packets. Figure 4.7 illustrates how the oc-
cupancy of a store-and-forward buffer in hardware may change in time, when trans-
ferring packets on a byte-by-byte basis. At ta, the head of a packet (its first byte) has
arrived and after some time ts − ta, the packet is received completely (including its
last byte). From ts on, the packet may be removed again from the buffer to forward
it to another component. Assume that sending the head of the packet is started at
tr ≥ ts and that it is completely sent at time te. Then tr − te equals the duration of
sending the packet. Notice that tr−te does not necessarily equal ts−ta if the packets
are put into/removed from the buffer at different speeds.

credible performance results. Usually, such timing values are not available during system-level design.
To cope with this general issue, designers often use timing values that are expected to be realistic.

120 Extending the SHE Method for Performance Modelling

O
c
c
u
p
a
n
c
y

T i m et
a

t
s

t
r

t
e

O p t i o n S
1

O p t i o n S
2

O p t i o n R
1

O p t i o n R
2

A c t u a l b u f f e r o c c u p a n c y i n t h e i m p l e m e n t a t i o n d u e t o b y t e - b y - b y t e t r a n s f e r

O p t i o n s f o r m o d e l l i n g t h e s t o r i n g a n d r e t r i e v i n g o f d a t a w h e n u s i n g a b s t r a c t i o n

Figure 4.7: Changes in buffer occupancy during storage of a packet.

The store-and-forward buffer can be modelled with a process that has two concur-
rent activities changing the properties (including the occupancy) of a shared data
object Buffer (a FIFO queue). An input handler activity stores the received packets
into the Buffer, while sending the packets after removing them from the Buffer is
performed by an output handler activity. To obtain an adequate model for evaluating
the time-average buffer occupancy, the output handler should only start sending a
Packet after it was stored completely. This availability of a complete Packet in the
Buffer can only be indicated by the input handler. Hence, the input and output
handler activities should synchronise on this availability, which can be achieved by
using the modelling pattern for synchronising concurrent activities, see figure 4.4.

The issue of adequately modelling the store-and-forward buffer when abstracting
from the individual bytes of packets is the question at what moment during period
[ta, te] a Packet should be stored into and removed from the Buffer. Figure 4.7
shows that there are two options (S1 and S2) for storing a Packet and two options
(R1 and R2) for retrieving that Packet. One may choose to disregard the storage of
parts of the packet during [ta, ts] and [tr, te] (i.e., taking options S2 and R2). When
doing so, then in case ts = tr, synchronising the input and output handlers at ts
yields the model to remove the Packet from the Buffer just after having it stored
and hence, a unrealistic time-average occupancy would be obtained. If this result
would be used to found a decision on dimensioning the buffer capacity, one may end
up with a much higher probability of loosing data in the final implementation than
was expected. To overcome this problem, it is often useful to develop conservative
performance models. Conservative performance models give rise to slightly worse
performance results compared to the true performance, whereas optimistic perfor-
mance models lead to slightly better performance results than the true performance.

To develop a conservative performance model of the store-and-forward buffer, the
use of storage resources during [ta, ts] and [tr, te] should be taken into account. It
should therefore be assumed that the buffer is occupied with the complete packet
during the whole period [ta, te] (i.e., taking options S1 and S2 in figure 4.7). This
modelling approach can be interpreted as follows. At ta, the necessary amount of
storage resources for a complete packet is reserved (if there are still enough stor-
age resources available, otherwise the packet should be discarded), while actually
putting the packet in the Buffer at ts. Putting the packet in the Buffer may trigger

Performance Modelling with POOSL 121

<<process>>

StoreAndForwardBuffer

<<instantiation parameters>>

BufferSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

<<instance variables>>

Buffer: FIFOQueue

Occupation: Integer

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Packet

1 Init()()

2 Occupation := 0; Buffer := new(FIFOQueue);
3 par HandleInput()() and HandleOutput()() rap.

4 HandleInput()() |p:Packet, NotFull: Boolean|

5 In?Packet(p)

6 {NotFull := (Occupation < BufferSize);
7 if NotFull then

8 Occupaction := Occupation + 1 fi};
9 delay(p getSize / InputBandwidth);
10 if NotFull then Buffer put(p) fi;
11 HandleInput()().

12 HandleOutput()() |p: Packet|

13 [Occupation > 0] p := Buffer inspect;
14 Out!Packet(p);
15 delay(p getSize / OutputBandwidth);

16 {Buffer remove; Occupation := Occupation - 1};
17 HandleOutput()().

Figure 4.8: Handling the input and output of a store-and-forward buffer.

the output handler to start removing and forwarding it to another component. While
doing so, the output handler does not deallocate the reserved storage resources. It
does deallocate the storage resources at te since then the packet is sent completely.

Figure 4.8 shows how the proposed modelling approach can be formalised with
POOSL. BufferSize denotes the maximum number of packets that can be stored
in the buffer. After creating the Buffer and initialising its Occupation, the method
Init creates the concurrent input handler and output handler activities, which are
defined by methods HandleInput and HandleOutput respectively. Consider the
input handler first. When receiving a packet p, it checks whether the Buffer is
not yet full in line 6. Modelling approach B in figure 4.6 is used to model the dura-
tion of completely receiving p. This duration is derived from the size of p and the
(fixed) bandwidth InputBandwidth of the communication medium over which p
is received. After termination of the delay-statement in line 9, p is stored in the
Buffer and Occupation is incremented (but only in case the Buffer was not yet
full at the time of receiving the head of p). Tail-recursion is used to model the re-
ception of the next packet. Now, consider the output handler. It synchronises with
the input handler by means of the shared data object Occupation. Only in case
Occupation is larger than 0, which denotes that at least one complete packet is
available in the buffer, such synchronisation occurs. In case the guard condition
holds, the first packet to be removed from the Buffer is assigned to p by a data
method inspect and is then forwarded. Approach B in figure 4.6 is again used to
model waiting until p is sent completely. The duration of sending p is derived from
the size of p and the (fixed) bandwidth OutputBandwidth of the communication
medium over which p is sent. Only after completely sending p, which is represented
by the termination of the delay-statement in line 15, packet p is actually removed

122 Extending the SHE Method for Performance Modelling

from the Buffer and Occupation is decremented in line 16.

Recall that the behaviour of concurrent activities is executed in an interleaved (non-
deterministic) fashion (see also appendix B). To specify the necessary atomic execu-
tion of the expressions after the receive statement and in the statement of lines 5 − 8
and also the statement in line 16, braces are used. They ensure that the other con-
current activity does not change the shared data objects Buffer and Occupation
during the execution of these sequences of expressions.

Modelling Pattern 3: Container Data Classes As indicated in section 4.2.1, aggre-
gation or composition relations between active resources result in defining cluster
classes. Sometimes, aggregation and composition relations can also be identified for
passive resources. Such relations imply data classes that model complex data struc-
tures. A container data class is a data class that models a number of the data structures
exclusively used by instances of a single process class. Using container (data) objects
(instances of container data classes) enables to write very compact code for process
methods. It is advised to use container objects if it improves the intuitiveness of the
process part of a model. The reason is that the process part reflects the most complex
aspects of the model’s behaviour and is therefore the most difficult part to interpret.

The use of container objects is illustrated for the store-and-forward buffer example
of figure 4.8. The StoreAndForwardBuffer process class has an instance variable
Buffer of data class FIFOQueue and a separate instance variable Occupation de-
noting the current occupancy of the Buffer. These aspects of the store-and-forward
buffer can be modelled with an instance of the container data class in figure 4.9.

<<data>>

BufferContainer

<<instance variables>>

Buffer: FIFOQueue

BufferSize: Integer

Occupation: Integer

<<methods>>

allocate() : Boolean

inspectPacket() : Packet

isNotEmpty() : Boolean

ofSize(S: Integer) :

 BufferContainer

removePacket() : Packet

storePacket(p: Packet) :

 BufferContainer

1 ofSize(S: Integer) : BufferContainer

2 Buffer := new(FIFOQueue);
3 BufferSize = S; Occupation := 0; return(self).

4 storePacket(p: Packet) : BufferContainer

5 Buffer put(p); return(self).

6 inspectPacket() : Packet

7 return(Buffer inspect).

8 allocate() : Boolean |NotFull: Boolean|

9 NotFull := (Occupation < BufferSize);
10 if NotFull then Occupaction := Occupation + 1 fi; return(NotFull).

12 removePacket() : Packet

13 Occupation := Occupation - 1; return(Buffer remove).

Figure 4.9: Container data class for modelling a store-and-forward buffer.

Performance Modelling with POOSL 123

When using the container data class of figure 4.9, the model of the store-and-forward
buffer in figure 4.8 can be replaced by the model in figure 4.10. Although defining
container data class BufferContainer involves writing more code, the code of the
new process class StoreAndForwardBuffer is more succinct compared to that
in figure 4.8. Especially in case the processes model very complex behaviour, such
succinctness is useful for understanding the working of the system from the model.

<<process>>

StoreAndForwardBuffer

<<instantiation parameters>>

BufferSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

<<instance variables>>

Buffer: BufferContainer

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Packet

1 Init()()

2 Buffer := new(BufferContainer)
3 ofSize(BufferSize);
4 par HandleInput()() and HandleOutput()() rap.

5 HandleInput()() |p:Packet, NotFull: Boolean|

6 In?Packet(p){NotFull := Buffer allocate};
7 delay(p getSize / InputBandwidth);
8 if NotFull then Buffer storePacket(p) fi;
9 HandleInput()().

10 HandleOutput()() |p: Packet|

11 [Buffer isNotEmpty] p := Buffer inspectPacket;
12 Out!Packet(p);
13 delay(p getSize / OutputBandwidth);
14 Buffer removePacket;
15 HandleOutput()().

Figure 4.10: Succinctly modelling a store-and-forward buffer.

Modelling Pattern 4: Parameterising Instance Structures Hardware/software of-
ten include several active resources of the same kind. An example is a memory sys-
tem that consists of a number of memory banks. In case it must be investigated how
many memory banks should be used to satisfy certain performance requirements, it
is useful to take the number of memory banks as a parameter of the system. Instance
structure diagrams in POOSL statically interconnect processes and cluster. It is not
possible to create processes, clusters or channels during the execution of a POOSL
model. Consequently, modelling memory banks with (for example) a proces class
requires to instantiate processes for all memory banks individually in the SHESim
tool. This approach is very time-consuming if the number of memory banks is large.

The SHESim tool offers another way of parameterising instance structures. It allows
instantiating multiple instances of a process or cluster class at once. Such a multi-
ple is a single graphical representation for a fixed number of instances of a process
or cluster class as specified by the designer when instantiating it. Multiples in the
SHESim tool are similar to multi-objects in UML. Notice that multiples do not ex-
tend the syntax or semantics of POOSL. As a consequence, the number of processes
or clusters represented by a multiple cannot be determined with an expression (see
also appendix B). Moreover, the number of processes or clusters represented by a
multiple cannot change during the execution of a model. Hence, if a multiple should

124 Extending the SHE Method for Performance Modelling

represent a different number of active resources in order to investigate design alter-
natives, that number must be explicitly changed in the instance structure diagram.

A more flexible way of parameterising instance structures is based on creating a
number of similar concurrent activities. In figure 4.11, the initial method call dynam-
ically creates N concurrent activities that are specified by method Activity. In line
3 of method InitialiseActivity, the activity with identity ID is created, while
the if-statement checks whether another activity must be created. A disadvantage
of this modelling approach is that the concurrent activities share the ports of the em-
bedding process. To ensure obtaining an intuitive model in this case, the identity ID
of the activity can be added as parameter to communicated messages.

<<process>>

ProcessClassName

<<instantiation parameters>>

N: Integer

<<instance variables>>

<<methods>>

Activity(ID: Integer)()

InitialiseActivity(ID: Integer)()

<<initial method call>>

InitialiseActivity(N)()

<<messages>>

1 InitialiseActivity(ID: Integer)()

2 par

3 Activity(ID)()
4 and

5 if (ID > 1) then

6 InitialiseActivity(ID - 1)()
7 fi

8 rap.

Figure 4.11: Initialising N similar concurrent activities.

Example 4.3 Recall the buffer system of example 1.1 on page 5. To investigate the feasibility
of alternative combinations of output bandwidth factor M and buffer size S for different num-
bers (N) of Internet-traffic sources, it is useful to apply the modelling pattern of figure 4.11
to model the Internet-traffic sources. To this end, introduce a process class named Sources
with a method InitialiseSource that is similar to InitialiseActivity in figure
4.11 and with a method GenerateTraffic that replaces the method Activity. For
method GenerateTraffic, a modified version of the method in example 3.1 on page 62 is
used in this example18. The resulting model is shown in figure 4.12.

The modification of GenerateTraffic includes an input parameter for identifying the
source activity and a parameter for sending packets via the shared port Out in line 17. Instead
of having an instance variable PacketNumber for process class Sources as in example
3.1 on page 62, the container object TrafficSources of a data class SourcesContai-
ner (not shown) is used. Method generatePacket of this data class returns a new
instance of data class Packet (see figure 4.5) and increments the number of generated
packets, which is an instance variable of SourcesContainer in this example. To ob-
tain variable-sized packets with different destinations for each source activity, the Size and
Destination of a Packet generated by generatePacket are set according to certain
probability distributions. Notice that all source activities share the InsertIdleTime and
IdleTimeDistribution distributions (see also example 3.4), which ensures indepen-
dency between the parallel sequences of random numbers (see also appendix B).

18Remark that the methods Init and GenerateTraffic in figure 4.12 do not yield an appropriate
generation of Internet-traffic. A more adequate model of Internet-traffic sources is discussed in [169].

Performance Modelling with POOSL 125

<<process>>

Sources

<<instantiation parameters>>

Bandwidth: Real

N: Integer

<<instance variables>>

IdleTimeDistribution:

 DiscreteUniform

InsertIdleTime: Bernoulli

TrafficSources:

 SourceContainer

<<methods>>

Init()()

InitialiseSource(ID: Integer)()

Source(ID: Integer)()

<<initial method call>>

Init()()

<<messages>>

Out!Packet

1 Init()()

2 TrafficSources := new(SourcesContainer)
3 forNumberOfSources(N);
4 InsertIdleTime := new(Bernoulli)
5 withParameter(1/8);
6 IdleTimeDistribution := new(DiscreteUniform)
7 withParameters(4, 9);
8 InitialiseSource(N)().

9 InitialiseSource(ID: Integer)()

10 par

11 GenerateTraffic(ID)();
12 and

13 if (ID > 1) then InitialiseSource(ID - 1)() fi

14 rap.

15 GenerateTraffic(ID: Integer)() |p: Packet|

16 p := TrafficSources generatePacket;
17 Out!Packet(ID, p)
18 delay(p getSize / Bandwidth);
19 if (InsertIdleTime yieldsSuccess) then

20 delay(IdleTimeDistribution sample)
21 fi;
22 GenerateTraffic(ID)().

Figure 4.12: Modelling the Internet-traffic sources of example 1.1.

Modelling Pattern 5: Abstraction from Arbitration Mechanisms Hardware/soft-
ware systems often include components that share resources such as processors,
memories or communication media. Implementing the sharing of resources requires
the use of some arbitration mechanism that determines in what order the different
components may access a shared resource and for how long. This is usually accom-
plished by assigning a number of access time-slots to a component, which allows it to
communicate a certain amount of data to the shared resource. The effect is that the
total bandwidth for accessing the shared resource is subdivided in bandwidths for
the individual components. These individual bandwidths are usually proportional
to certain weight factors that determine the bandwidth shares.

During system-level design, the details of how and in which order access time-slots
are assigned by an arbitration mechanism can be less important. Such implementa-
tion details might even be unknown at the time of developing the system concepts.
In these cases, it is merely essential that some arbitration mechanism is needed but
not how the sharing of bandwidth is realised. An adequate model that abstracts from
the implementation details of arbitration mechanisms can be based on the ideal (but
unimplementable) scheduling policy of generalised processor sharing explained in [97].
Generalised processor sharing serves the accesses to a shared resource as if there
were separate logical connections with the appropriate bandwidth shares. By ex-
ploiting asynchronous concurrency, generalised processor sharing can be modelled
in POOSL by receiving the data from all components with (independent) concurrent
activities [172]. Each component sends its data to the shared resource at a speed

126 Extending the SHE Method for Performance Modelling

matching the bandwidth share that would have been the result of a suitable arbitra-
tion mechanism. Notice that with this approach, the model of the shared resource
may receive data from more than one component at the same time.

Example 4.4 Consider again the buffer system of example 1.1 on page 5 and assume that the
weight factors for all individual connections is 1

N
. Modelling the N Internet-traffic sources

can be based on the model in example 4.3 by initialising instance parameter Bandwidth
with B

N
. Figure 4.13 shows how the input and output handlers of the store-and-forward

buffer in figure 4.10 are adapted in order to model the buffer of example 1.1. Of interest are the
modifications to the input handler, which allow the model of the buffer to concurrently receive
data from different sources. After receiving a packet p from the concurrent source activity
in Sources with identity SourceID, the input handler creates an activity for actually
storing packet p (see lines 9 and 10 in figure 4.13). In addition, an activity is created for
handling another packet, which may originate from a source activity with an identity different
from SourceID. Next to abstracting from the arbitration mechanism that is needed for
implementing the sharing of the buffer, the model dynamically creates concurrent activities
only in case they are really needed. This in contrast to the modelling pattern in figure 4.11.
Notice that the creation of concurrent activities is limited by the blocking receive statement.

<<process>>

StoreAndForwardBuffer

<<instantiation parameters>>

B: Real

N: Integer

M: Real

S: Integer

<<instance variables>>

Buffer: BufferContainer

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Packet

1 Init()()

2 Buffer := new(BufferContainer) ofSize(S);
3 par HandleInput()() and HandleOutput()() rap.

4 HandleInput()()

|SourceID: Integer, p:Packet, NotFull: Boolean|
5

6 In?Packet(SourceID, p)

7 {NotFull := Buffer allocate};
8 par

9 delay((p getSize * N) / B);
10 if NotFull then Buffer storePacket(p) fi

11 and

12 HandleInput()()
13 rap.

14 HandleOutput()() |p: Packet|

15 [Buffer isNotEmpty] p := Buffer inspectPacket;
16 Out!Packet(p);
17 delay(p getSize / (M * B));
18 Buffer removePacket;
19 HandleOutput()().

Figure 4.13: Modelling the buffer of example 1.1.

Modelling Pattern 6: Dynamically Changing Bandwidth Components of hard-
ware/software systems may communicate data in accordance with a dynamically
changing bandwidth. This is for example the case if the arbitration mechanism for
accessing a shared resource assigns other bandwidth shares to the components that

Performance Modelling with POOSL 127

access it during the operation of the system. Abstraction from the arbitration mech-
anism can still be done in a similar way as explained above. However, the effect
of the changes in the bandwidth for the individual connections must now be taken
into account. The difficulty of modelling this effect in POOSL lies in the fact that the
amount of time to wait before continuing performing other behaviour as specified in
a delay-statement cannot change during the execution of that delay-statement. In
case the moment of the bandwidth change is known, then time until the bandwidth
change can be computed and used in the delay-statement. Hence, at each band-
width change, the remainder of the time to wait can be recomputed in accordance
with the new bandwidth. On the other hand, if the moment of the bandwidth change
is not known, another approach should be used. It relies on aborting the waiting for
the previously specified amount of time and then continuing with waiting for the
remaining time computed in accordance with the new bandwidth. This modelling
approach is illustrated in the next example.

Example 4.5 Recall the example of the store-and-forward buffer in figure 4.10. Instead of
having a fixed bandwidth OutputBandwidth with which packets are sent through port
Out, this bandwidth may now change during the operation of the buffer. The bandwidth
change is notified to the buffer by a message NewBandwidth carrying the new bandwidth
as parameter. The time of receiving this message (through port FlowControl) is unknown.

<<process>>

FlowControlledBuffer

<<instantiation parameters>>

BufferSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

<<instance variables>>

Buffer: BufferContainer

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

BandwidthChange

 (RemainingSize: Real)()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!HeadOfPacket

Out!TailOfPacket

FlowControl?NewBandwidth

1 HandleOutput()()

2 |p: Packet, TimeOfSendingHead: Real|

3 [(Buffer isNotEmpty) & (OutputBandwidth > 0)]
4 p := Buffer inspectPacket;
5 Out!HeadOfPacket(p)

6 {TimeOfSendingHead := currentTime};
7 abort delay(p getSize / OutputBandwidth) with

8 BandwidthChange(p getSize - (currentTime -
9 TimeOfSendingHead) * OutputBandwidth)();
10 Out!TailOfPacket(p);
11 Buffer removePacket;
12 HandleOutput()().

12 BandwidthChange(RemainingSize: Real)()

13 |TimeOfBandwidthChange: Real|
14

15 FlowControl?NewBandwidth(OutputBandwidth)

16 {TimeOfBandwidthChange := currentTime};
17 if OutputBandwidth > 0 then

18 abort delay(RemainingSize / OutputBandwidth)
19 with BandwidthChange(RemainingSize -
20 (currentTime - TimeOfBandwidthChange) *
21 OutputBandwidth)()
22 else BandwidthChange(RemainingSize)() fi.

Figure 4.14: Modelling dynamically changing bandwidth.

Figure 4.14 shows the model of the described flow-controlled buffer. The output handler
activity specified by method HandleOutput starts forwarding a packet p when at least one
packet is available in the buffer and OutputBandwidth is positive, see line 3. Atomically

128 Extending the SHE Method for Performance Modelling

with sending the head of the packet in line 5, the current model time is stored in the local
variable TimeOfSendingHead. Then, waiting for the duration of communicating packet
p in accordance with the current OutputBandwidth is initiated. The delay-statement in
line 7 is however aborted when the receive statement of method BandwidthChange can be
executed, which occurs if a new output bandwidth is received via the FlowControl port.
If such an abortion does not happen, the delay-statement in line 7 terminates normally,
which reflects that the sending of p is completed. This event is indicated to the receiver of p
by an explicit communication as proposed by approach A in figure 4.6. On the other hand,
if the delay-statement in line 7 is aborted, then it must be determined how much of p has
already been sent since the head of p was sent in order to compute the duration of sending the
remainder of p according to the new bandwidth. Method BandwidthChange has an input
parameter indicating the remaining amount of data that still has to be sent after a bandwidth
change. It uses a similar approach as method HandleOutput to anticipate on any other
bandwidth changes that may occur during sending the remainder of a packet.

Modelling Pattern 7: Buffering Data Streams Hardware/software systems some-
times include buffers to convert an incoming type of data into another type of data.
An example is the reception of video frames in a video system, which have to be
converted into blocks of pixels. One option for achieving such a conversion is to
first receive a video frame completely into a store-and-forward buffer and then start
generating pixel blocks from it. A more common approach is to already start the gen-
eration of a pixel block when enough pixels of a video frame have been received but
not necessarily the complete video frame. The idea of this streaming buffer approach
is to minimise the buffer size and to minimise the latency for the data conversion.

The difficulty of developing an adequate model of a streaming buffer is that the
boundaries for the different data granularities are in general not aligned. Since ab-
straction from both data types is desirable, using a single FIFO queue for separately
storing the bytes of the data is not a suitable approach. Instead, the streaming buffer
can be modelled with two subsequent FIFO queues: one for storing data of the in-
coming type and one for storing data of the outgoing type. What remains is to deter-
mine the moment of moving (converting) data from the first queue to the other. This
moment equals the moment at which sufficient data is stored in the buffer to gener-
ate a data item of the outgoing type. Figure 4.15 sketches the proposed approach.

S t r e a m i n g B u f f e r

F r a m e B u f f e rP a c k e t B u f f e r

P a c k e t s F r a m e s

T r i g g e r C o n v e r s i o n W h e n e v e r

S u f f i c i e n t D a t a i n P a c k e t B u f f e r

Figure 4.15: Schematic overview for modelling a streaming buffer.

Figure 4.16 shows a container data class for modelling a streaming buffer as pro-
posed. It assumes the reception of packets of PacketSize bytes into the streaming
buffer and the forwarding of frames of FrameSize bytes, where PacketSize and
FrameSize are fixed such that PacketSize ≥ FrameSize. The two FIFO queues

Performance Modelling with POOSL 129

<<data>>

BufferContainer

<<instance variables>>

BufferSize: Integer

Occupation: Integer

FrameSize: Integer

FrameQueue: FIFOQueue

PacketSize: Integer

PacketQueue: FIFOQueue

PacketQueueOccupation: Integer

BytesToTransferOfFirstPacket:

 Integer

TimeOfLastUpdate: Real

<<methods>>

forDataSizes(IDS,ODS: Integer) :

 BufferContainer

getTimeOfLastUpdate() : Real

hasPartOfPacketAvailable() :

 Boolean

inspectFrame() : Frame

isNotEmpty() : Boolean

isNotFull() : Boolean

ofSize(S: Integer) :

 BufferContainer

removeFrame() : Frame

storePacket(p: Packet) :

 BufferContainer

transferData(T: Real) :

 BufferContainer

1 isNotFull() : Boolean

2 return(Occupation + PacketSize <= BufferSize).

3 hasPartOfPacketAvailable() : Boolean

4 return(PacketQueue isNotEmpty).

5 getTimeOfLastUpdate() : Boolean

6 return(TimeOfLastUpdate).

7 isNotEmpty() : Boolean

8 return(FrameQueue isNotEmpty).

9 inspectFrame() : Frame

10 return(FrameQueue inspect).

11 removeFrame() : Frame

12 return(FrameQueue remove).

13 forDataSizes(IDS, ODS: Integer) : BufferContainer

14 PacketSize := IDS; FrameSize := ODS; return(self).

15 ofSize(S: Integer) : BufferContainer

16 PacketQueueOccupation := 0; Occupation := 0; TimeOfLastUpdate := 0.0; Buffer-
17 Size := S; FrameQueue := new(FIFOQueue); PacketQueue := new(FIFOQueue); self.

18 storePacket(p: Packet) : BufferContainer

19 if PacketQueueOccupation = 0 then

20 BytesToTransferOfFirstPacket := PacketSize fi;
21 PacketQueueOccupation := PacketQueueOccupation + PacketSize;
22 Occupation := Occupation + PacketSize; PacketQueue put(p); return(self).

23 transferData(T: Real) : BufferContainer

24 PacketQueueOccupation := PacketQueueOccupation - FrameSize;
25 if FrameSize < BytesToTransferOfFirstPacket then

26 BytesToTransferOfFirstPacket := BytesToTransferOfFirstPacket - FrameSize
27 else PacketQueue remove; BytesToTransferOfFirstPacket := PacketSize -
28 (FrameSize - BytesToTransferOfFirstPacket) fi;
29 FrameQueue put(new(Frame)); TimeOfLastUpdate := T; return(self).

Figure 4.16: Container data class for modelling a streaming buffer.

130 Extending the SHE Method for Performance Modelling

are represented by the instance variables PacketQueue and FrameQueue. Instance
variable BufferSize denotes the total size of the streaming buffer in bytes and
PacketQueueOccupation and Occupation indicate the actual number of bytes
in the PacketQueue and in the streaming buffer respectively.

Of interest are the methods storePacket and transferData in figure 4.16. After
checking that the buffer is not yet full (with method isNotFull), the use of method
storePacket enables to store a complete instance p of the data class Packet in fig-
ure 4.5 into the streaming buffer by putting it into the PacketQueue and increasing
the occupancies of the PacketQueue and the streaming buffer with PacketSize
bytes. The method transferData allows to move FrameSize bytes from the
PacketQueue to the FrameQueue. It does so by generating an instance of data class
Frame, which presents an abstraction of frames, and putting it in the FrameQueue.
In order to adapt the contents of the PacketQueue, instance variable BytesTo-
TransferOfFirstPacket stores the number of bytes of the first packet in the
PacketQueue that still have to be converted and transferred to the FrameQueue at
the moment T of invoking transferData. In case the number of bytes to transfer
(FrameSize) is larger than the remaining part of the first packet in the Packet-
Queue (see lines 27, 28), transfer of this packet to the FrameQueue is completed and
BytesToTransferOfFirstPacket is set to the remaining bytes to transfer of the
next packet in the PacketQueue. Notice that method storePacket requires an
if-statement for taking into account the case in which PacketSize equals an inte-
ger multiple of FrameSize, since transferData will then assign 0 to BytesTo-
TransferOfFirstPacket if the transfer of a packet is completed, see lines 19, 20.

The use of the container data class in figure 4.16 is shown in figure 4.17. Process class
StreamingBuffer has instance variables InputBandwidth and OutputBand-
width denoting the (fixed) bandwidths of receiving packets and sending frames re-
spectively. After initialising data object Buffer, which models the streaming buffer,
method Init initialises MinimalTimeToWait with the time needed to receive suf-
ficient bytes of a packet to form a frame (see line 4). Then, it creates concurrent
activities for handling the input of packets, handling the output of frames and up-
dating the status of the buffer. The output handler activity, specified by method
HandleOutput is similar to that of the store-and-forward buffer in figure 4.10.

When receiving the head of a packet p, the input handler atomically checks whether
the buffer is not full (see line 13). If so, the packet is immediately stored into the
PacketQueue and the occupancy of the Buffer is incremented with PacketSize.
The delay-statement in line 15 models the duration of completing the reception of
p, which is performed in accordance with approach B in figure 4.6. The crux of the
modelling pattern in figure 4.17 lies in method UpdateStatus. The corresponding
update activity waits until enough bytes have been received into the buffer to gen-
erate a frame that can be forwarded. In POOSL, waiting on an event can often be
formalised using guards. It is however not allowed to use currentTime in a guard
expression [28]. The guard in method UpdateStatus in line 19 synchronises the
activity for updating the status of the buffer with the input handler in case a packet
is available in the PacketQueue of the Buffer. Notice that this may even occur
at the moment that only the head of a packet is received. The update activity must
wait until enough bytes are received such that a frame can be generated. To enable
the use of a delay-statement, it must be known how much time should pass until

Performance Modelling with POOSL 131

this event occurs. The time that passed since the last update of the buffer status (i.e.,
transferring data from the PacektQueue to the FrameQueue) is used as a reference.
In case too little time has passed to initiate the generation of a frame, the time until
enough bytes have been received must be delayed (see lines 22, 23, 24). Then, data
method transferData is invoked to update the status of the buffer. Subsequently,
the output handler is allowed to forward the frame that was just generated.

<<process>>

StreamingBuffer

<<instantiation parameters>>

BufferSize: Integer

FrameSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

PacketSize: Integer

<<instance variables>>

Buffer: BufferContainer

MinimalTimeToWait: Real

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

UpdateStatus()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Frame

1 Init()()

2 Buffer := new(BufferContainer) ofSize(BufferSize)
3 forDataSizes(PacketSize, FrameSize);
4 MinimalTimeToWait := FrameSize / InputBandwidth;
5 par

6 HandleInput()()
7 and

8 UpdateStatus()()
9 and

10 HandleOutput()()
11 rap.

12 HandleInput()() |p: Packet|

13 In?Packet(p){if Buffer isNotFull then

14 Buffer storePacket(p) fi};
15 delay(PacketSize / InputBandwidth);
16 HandleInput()().

17 UpdateStatus()()

18 |TimePassedSinceLastUpdate: Real|

19 [Buffer hasPartOfPacketAvailable]
20 TimePassedSinceLastUpdate := currentTime -
21 Buffer getTimeOfLastUpdate;
22 if TimePassedSinceLastUpdate < MinimalTimeToWait
23 then delay(MinimalTimeToWait -
24 TimePassedSinceLastUpdate) fi;
25 Buffer transferData(currentTime);
26 UpdateStatus()().

27 HandleOutput()() |f: Frame|

28 [Buffer isNotEmpty] f := Buffer inspectFrame;
29 Out!Frame(f);
30 delay(FrameSize / OutputBandwidth);
31 Buffer removeFrame;
32 HandleOutput()().

Figure 4.17: Buffering data streams.

Modelling Pattern 8: Replacement of Guards Concurrent activities within a pro-
cess may synchronise on shared data objects by using guards. To check whether the
statement after a guard can be executed, the framework for executing POOSL models
(see also appendix B) evaluates before each time transition whether the expression
in blocking guards evaluate to true. As a consequence, execution speed can slow

132 Extending the SHE Method for Performance Modelling

down rapidly in case there are a large number of guards that remain false for a
long time. Sometimes, it is possible to replace guards by a construction that creates
the blocked concurrent activity at the moment that the event on which it should syn-
chronise occurs. This approach of creating concurrent activities only in case they are
really needed is considered to be an optimisation for execution speed. Since the use
of guards often yields a more intuitive model compared to the creating concurrent
activities dynamically, it is advised to postpone such a replacement of guards until
the construction of an intuitive model.

The replacement of guards is illustrated for the store-and-forward buffer in figure
4.10, where the output handler activity synchronises with the input handler activity
by using a guard on the event of having at least one complete packet in the buffer.
Figure 4.18 shows the result of adapting the model in figure 4.10. Now, process class

<<process>>

StoreAndForwardBuffer

<<instantiation parameters>>

BufferSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

<<instance variables>>

Buffer: BufferContainer

OutputHandlerIsActive: Boolean

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Packet

1 Init()()

2 Buffer := new(BufferContainer)
3 ofSize(BufferSize);
4 OutputHandlerIsActive := false;
5 HandleInput()().

6 HandleInput()()

7 |p: Packet, NotFull, StartOutputHandler: Boolean|

8 In?Packet(p){NotFull := Buffer allocate};
9 delay(p getSize / InputBandwidth);

10 {StartOutputHandler := false;
11 if NotFull then

12 Buffer storePacket(p);
13 if OutputHandlerIsActive not then

14 StartOutputHandler := true;
15 OutputHandlerIsActive := true

16 fi

17 fi};
18 par

19 if StartOutputHandler then HandleOutput()() fi

20 and

21 HandleInput()()
22 rap.

23 HandleOutput()() |p: Packet; Continue: Boolean|

24 {Continue := Buffer isNotEmpty;
25 if Continue not then

26 OutputHandlerIsActive := false

27 else

28 p := Buffer inspectPacket

29 fi};
30 if Continue then

31 Out!Packet(p);
32 delay(p getSize / OutputBandwidth);
33 Buffer removePacket;
34 HandleOutput()()
35 fi.

Figure 4.18: Using dynamic creation of concurrent activities to replace guards.

Performance Modelling with POOSL 133

StoreAndForwardBuffer includes an instance variable OutputHandlerIs-
Active to denote whether the output handler is activated. When receiving the head
of a packet p, the input handler atomically checks whether p can still be put into the
buffer, see line 8. After having received packet p, which is the case when the delay-
statement in line 9 terminates, the local variable StartOutputHandler is first set
to false. It is then determined whether the output handler activity should be cre-
ated. In case p is put into the buffer, there is at least one packet in the buffer. So,
if the output handler was not yet active, an activity for handling the output must
be started. Notice that the assignment of true to OutputHandlerIsActive indi-
cates that an activity for handling the output will be started. The actual creation of
the concurrent output handler activity is done by the if-statement in line 19.

The output handler activity first checks whether there are still packets available in
the buffer by using the local variable Continue, see line 24. If this is not the case,
the activity should be terminated. Termination of the output handler is indicated
by assigning false to OutputHandlerIsActive in line 26, which ensures that
the input handler knows that the output handler is not active anymore. Otherwise,
the first packet in the buffer has to be sent. The if-statement in line 30 initiates the
actual sending of the first packet in the buffer if the buffer was not empty.

4.3.2 Extending Models for Performance Analysis

The approach of reflexive performance analysis proposed in chapter 3 involves ex-
tending a POOSL model with performance monitors. Such addition of variables and
behaviour may however decrease the intuitiveness of the model because a clear dis-
tinction between code representing the behaviour of the system and code reflecting
the monitors is often difficult to obtain [171, 180]. This section proposes an approach
for extending POOSL models, which preserves the intuitiveness of a model by defin-
ing subclasses for those classes that require to be extented.

Data Classes Because monitors gather, store and process information about certain
properties of the system, adding monitors to a model may have a profound impact
on its data layer. Gathering, storing and processing such information is specified
by expressions on certain data objects. These data objects are either introduced espe-
cially for the purpose of monitoring or are similar to data objects that already existed
in the original model. In the first case, new data classes are needed. To distinguish
such new data classes from data classes representing behaviour of the system, it is
recommended to use a distinguishable postfix (such as PA) in their class names. In
the other case, extending an existing data class with additional variables and meth-
ods or with modifications to existing methods would be sufficient. Instead of doing
so, it is recommended to define a subclass of the data class with the additional vari-
ables and methods. Redefining methods is then based on method overriding and ex-
plicit calls to methods of the superclass. When defining a subclass for performance
analysis, it is recommended to use the name of the original data class extended with
a distinguishable postfix like PA.

Example 4.6 Assume the availability of a container data class BufferContainer that
models a store-and-forward buffer as shown in figure 4.9 on page 122. To analyse the average

134 Extending the SHE Method for Performance Modelling

buffer occupancy and the variance in the buffer occupancy, this container data class can be ex-
tended with performance monitors based on the library classes discussed in section 3.3.1. Fig-
ure 4.19 shows the subclass BufferContainer PA that extends BufferContainer
with the instance variables AverageOccupation and VarianceOccupation to mon-
itor the average occupancy and the variance in occupancy respectively. As illustrated in ex-
ample 2.11 on page 52, these performance metrics can be expressed as a (conditional) long-run
time average and variance respectively. The method ofSize of BufferContainer PA

overrides the method ofSize of its superclass to initialise the size of the buffer as well as the
parameters of the performance monitors AverageOccupation and VarianceOccu-

pation. The methods allocate and removePacket are also overridden. They update
the estimated average occupancy and the variance in occupancy after assigning the new oc-
cupancy to instance variable Occupation. Notice that the moment of changes in the occu-
pancy must be known in order to do so. Hence, allocate and removePacket have an
additional parameter for passing on this information19. Remark also that, for both performan-

<<data>>

BufferContainer_PA

<<methods>>

accurate() : Boolean

ofSize(S: Integer,

 AA, ACL, VA, VCL: Real)

removePacket(CurrentTime:

 Real) : Packet

allocate(CurrentTime: Real) :

 BufferContainer_PA

<<data>>

BufferContainer

<<instance variables>>

Buffer: FIFOQueue

BufferSize: Integer

Occupation: Integer

<<methods>>

allocate() : Boolean

inspectPacket() : Packet

isNotEmpty() : Boolean

ofSize(S: Integer) :

 BufferContainer

removePacket() : Packet

storePacket(p: Packet) :

 BufferContainer

<<instance variables>>

AverageOccupation:

 LongRunTimeAverage

VarainceOccupation:

 LongRunTimeVariance

1 ofSize(S: Integer, AA, ACL, VA, VCL: Real) :
2 BufferContainer_PA

3 Buffer := new(FIFOQueue);
4 BufferSize := S; Occupation := 0;
5 AverageOccupation := new(LongRunTimeAverage)
6 withParameters(AA, ACL);
7 VarianceOccupation := new(LongRunTimeVariance)
8 withParameters(VA, VCL); return(self).

9 allocate(CurrentTime: Real) : BufferContainer_PA

10 |NotFull: Boolean|

11 NotFull := self ˆallocate;
12 if NotFull then

13 AverageOccupation rewardRC(Occupation,
14 CurrentTime, false);
15 VarianceOccupation rewardRC(Occupation,
16 CurrentTime, false)
17 fi;
18 return(NotFull).

19 removePacket(CurrentTime: Real) : Packet

20 |p : Packet|

21 p := self ˆremovePacket;
22 AverageOccupation rewardRC(Occupation,
23 CurrentTime, Occupation = 0);
24 VarianceOccupation rewardRC(Occupation,
25 CurrentTime, Occupation = 0);
26 return(p).

27 accurate() : Boolean

28 return((AverageOccupation accurate) &
29 (VarianceOccupation accurate)).

Figure 4.19: Container data subclass with performance monitors.

19Recall that currentTime may not be used in the specification of a data method [28].

Performance Modelling with POOSL 135

ce metrics, the emptiness of the buffer is used as a condition for approximating the beginning
of a regenerative cycle (see also example 3.5). Finally, the method accurate is introduced,
which returns true in case the estimation results for both the average buffer occupancy and
variance in the buffer occupancy are accurate, see also section 3.3.1.

The use of a postfix in the names of data classes that are extended for performance
analysis simplifies recognising code representing the behaviour of the system and
code for evaluating performance properties. The names of the variables in the orig-
inal model, which become an instance of some extended data class when extending
the model with monitors, should however not be changed. This approach implies
minimal modifications to data or process methods referring to these variables.

Process Classes Similar as for data classes, certain process classes may need to be
extended in order to evaluate performance properties. This is especially the case if a
performance monitor requires knowledge about timing-related information because
such information can only be retrieved at the process layer. Instead of extending
the original process class with additional variables and methods or modifying its
methods, it is advised to define a subclass. Such a subclass then has the additional
variables and methods, while the redefinition of methods is based on method over-
riding. For naming such a subclass, it is recommended to use the name of the original
process class extended with a distinguishable postfix like PA. The instances of such
extended process classes should be named similarly as in the original model.

Example 4.7 Consider extending the process class StoreAndForwardBuffer in figure
4.10 on page 123 for evaluating the average buffer occupancy and the variance in buffer oc-
cupancy. Observe that this can be accomplished by using container data class BufferCon-
tainer PA of example 4.6. Figure 4.20 shows subclass StoreAndForwardBuffer PA

that extends StoreAndForwardBuffer for performance analysis. To apply the mon-
itoring capabilities of BufferContainer PA, all process methods need to be overrid-
den. Only minor changes are necessary for methods HandleInput and HandleOutput.
Lines 9 and 17 show how timing-related information is passed to the performance monitors.
The original method Init is overridden to enable instantiating Buffer as an instance
of BufferContainer PA. In addition, it initialises the parameters for the performance
monitors in line 3 (see also section 3.3.1). According to the abort-statement in lines 4 -
6, the behaviour of an instance of StoreAndForwardBuffer PA is terminated when the
estimation results for the average occupancy and the variance in occupancy become accurate.

Next to the need for defining subclasses of process classes, extending a model for
performance analysis may involve the introduction of new process classes. Such
additional process classes may for example represent behaviour to control the sim-
ulation of an extended model. Recall that performance metrics are often defined in
relation to a specific component of a system and hence, performance monitors may
be included in different processes. Only in case the estimation results for all perfor-
mance metrics have become accurate, a simulation may be terminated [171]. In order
to do so, information on the accuracy of all performance metrics must be collected
at some central location where it can then be decided whether to terminate a simula-
tion. To minimise modifications to processes that model the behaviour of the system,
it is advised to introduce a special process (and accompanying process class) to col-
lect the accuracy-related information. When the simulation should be terminated,

136 Extending the SHE Method for Performance Modelling

<<process>>

StoreAndForwardBuffer

<<instantiation parameters>>

BufferSize: Integer

InputBandwidth: Real

OutputBandwidth: Real

<<instance variables>>

Buffer: BufferContainer

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

In?Packet

Out!Packet

<<process>>

StoreAndForwardBuffer_PA

<<instantiation parameters>>

<<instance variables>>

<<methods>>

Init()()

HandleInput()()

HandleOutput()()

<<initial method call>>

Init()()

<<messages>>

1 Init()()

2 Buffer := new(BufferContainer_PA)
3 ofSize(BufferSize, 0.9, 0.95, 0.8, 0.9);
4 abort

5 par HandleInput()() and HandleOutput()() rap

6 with [Buffer accurate] skip.

7 HandleInput()() |p:Packet, NotFull: Boolean|

8 In?Packet(p)

9 {NotFull := Buffer allocate(currentTime)};
10 delay(p getSize / InputBandwidth);
11 if NotFull then Buffer storePacket(p) fi;
12 HandleInput()().

13 HandleOutput()() |p: Packet|

14 [Buffer isNotEmpty] p := Buffer inspectPacket;
15 Out!Packet(p);
16 delay(p getSize / OutputBandwidth);
17 Buffer removePacket(currentTime);
18 HandleOutput()().

Figure 4.20: Example of a process subclass with extensions for performance analysis.

this process can notify all other processes to abort performing their behaviour. In
order to identify this process as one that does not represent system behaviour, it is
recommended to use a distinctive name such as SimulationController for it.

Cluster Classes In order to group processes of extended process classes in a similar
way as in the original model, it may be necessary to redefine certain cluster classes.
Instead of modifying the original cluster classes, it is recommended to define new
cluster classes in case one of the processes in the original cluster class is to be re-
placed20. Similar naming conventions as for extended process classes are advised
for such new cluster classes. In fact, it is recommended to define a complete new set
of instance structure diagrams that incorporate the extended processes and clusters.
The reason for this is that this approach allows for a very clear distinction between
the original model and the extended model, which is supported by the SHESim tool.
SHESim has the capability to open additional system-level editor windows to spec-
ify different models based on the same set of data, process and cluster classes. This

20As POOSL does not support inheritance for cluster classes, defining cluster subclasses is not possible.

Performance Modelling with POOSL 137

capability allows to construct, simulate and inspect the extended model separately
from the original model without modifying this original model.

The guidelines for extending a POOSL model intend to clearly separate the orig-
inal model representing the system behaviour from the extended model that also
includes behaviour regarding performance monitors. Next to keeping the original
model intuitive (by not changing it), this separation aims at simplifying validation of
the extensions that are made. Such validation is necessary to ensure that the original
representation of the system’s behaviour does not change [180]. Especially minimis-
ing extensions to the process layer of a model, which is often the most difficult part
to validate, contributes to minimising the necessary additional validation efforts.

4.3.3 Model Validation

This section provides some guidelines that assist the designer in validating POOSL
models against concept models expressed in UML according to the UML profile for
SHE. These guidelines focus on three different aspects: the model’s static structure,
the represented dynamic behaviour and the adequacy of abstractions that are made.

Static Structure In the formulation stage of the SHE method, the application of
object-oriented analysis techniques results in identifying data objects, processes and
clusters and their accompanying classes. An important aspect for validation is to
ensure the intuitiveness of a model by using representative names for the items com-
posing the model. In [145], some naming conventions were introduced for develop-
ing intuitive models with the SHE method, which are extended here. An example
is that data objects, processes and clusters concern resources of a system, which are
named with nouns. The behaviour of data objects reflect operations on passive re-
sources. Hence, data methods specifying such behaviour should have names starting
with a verb. Data method names should be chosen such that the code of the process
methods where they are used is easy to understand. Naming of process methods is
more complicated. If a process method merely groups operations on data objects, it
seems reasonable to use a name starting with a verb. On the other hand, if a process
method represents a certain activity or (composite) state as they emerge in activity
and statechart diagrams, it is recommended to name it with the noun denoting that
activity or state. Finally, the names of messages exchanged between processes and
clusters should clearly reflect what kind of information is actually communicated.

Validating the static structure of a POOSL model concerns checking whether the
formalisation of data, process and cluster classes as well as scenarios matches with
the information formulated in class, object, component, deployment, use case, se-
quence and collaboration diagrams. Validating the static structure of data classes
mainly concerns checking that their instance variables, method headers and inheri-
tance relations as defined in the model match with those in class and object diagrams.
For process classes, the formalisation of instantiation parameters, instance variables,
method headers, initial method calls, port interfaces, message interfaces and inher-
itance relations must be validated against the information expressed in any of the
mentioned diagram types. Recall for example that inheritance relations for data and
process classes should match with specialisation/generalisation relations in class di-
agrams. Validating cluster classes includes checking the formalisation of their instan-

138 Extending the SHE Method for Performance Modelling

tiation parameters, port interfaces and message interfaces. Moreover, the validation
of how processes and cluster are interconnected by channels is needed because the
possibility of communicating messages between them as formulated in for example
sequence and collaboration diagrams cannot be formalised in POOSL automatically,
see section 4.2.1. Recall also that the need for cluster classes should be in accordance
with aggregation/composition relations between active resources.

Dynamic Behaviour Validating the dynamic behaviour of a POOSL model con-
cerns a check against the information expressed in especially use case, sequence,
activity, collaboration and statechart diagrams. It is based on either step-by-step or
trace-wise inspection of the POOSL model while executing it using the SHESim tool,
see also section 4.1.1 and appendix B. SHESim allows to inspect any data object,
process, cluster or message in any scenario [58]. When executing a POOSL model,
SHESim automatically generates interaction diagrams, which reflect the sequence of
messages communicated between processes and clusters. They support validation
of the model’s dynamic behaviour against sequence diagrams. On the other hand,
inspection of clusters shows the communication of messages between processes and
clusters in a similar way as expressed in collaboration diagrams. Furthermore, the
messages can be inspected to observe the involved parameters (if any). Zooming
into a process allows to validate its behaviour against activity and statechart dia-
grams by inspecting the provided graphical representation of the execution tree and
the highlighted statements that are to be executed. Also, data objects encapsulated
by a process and those communicated as parameters of messages can be inspected.
Such inspection can however be rather involved in case a data object presents a com-
plex data structure. It is recommended to define printString methods for any
data class, which allows to display the most relevant information by SHESim, see
also appendix B. Such a printString method is especially valuable for container
data objects and data objects that present monitors (as discussed in section 3.3.1).

Several aspects of validating a model’s dynamic behaviour require special attention:

• The behaviour that processes perform after starting a simulation may include
the creation of container data objects and/or concurrent activities. Remark that
this kind of behaviour is not a part of the actual system behaviour and may
therefore not be expressed in the concept model. Validation includes compar-
ing the behaviour that is initially performed by a process with what should
occur after the initial method call. In other words, it must be checked whether
the creation of container data objects and/or concurrent activities is successful.

• Generally, a system has to anticipate on certain events (occurring either in the
environment of the system or internally). The responses to such events may
be specified in isolation by means of a separate set of UML diagrams for the
use case or scenario involved. Validation is done by checking whether these re-
sponses also occur when executing the POOSL model. Since the POOSL model
unifies all events and responses in one model, it may be difficult to check the
response to a certain event independently from the occurrence of other events.
Validation includes discussions on whether such dependencies may exist in-
deed and if so, whether the response to the combination of events is as desired.

• Although the actual evaluation of correctness and performance properties has

Performance Modelling with POOSL 139

to be done at the evaluation stage, premature results for certain properties
may help in identifying formalisation errors. Often, the behaviour of a system
should satisfy certain easy-to-check properties. An example of such a property
is that decreasing some buffer size should result in an increase of the probabil-
ity to loose data at that buffer. As indicated in section 4.1.2, it is recommended
to use premature evaluation results for checking simple properties already dur-
ing the formalisation stage in order to improve the model.

• In line with the preceding two aspects lies the validation of responses to events
that occur only occasionally. Such rare events may greatly affect the behaviour
and performance of a system, see also section 3.2.1. Validation includes check-
ing whether the behaviour exposed by a POOSL model due to a rare event is
in accordance with what is formulated in the concept model.

Adequacy of Abstractions Next to checking the formalisation of a concept model
into a POOSL model, validating such a POOSL model may reveal inadequacies in
the abstractions that are made. Such inadequacies are often manifested by large dif-
ferences between the model’s behaviour and the intended behaviour of a possible re-
alisation of the system. Such expectations are based on knowledge of the behaviour
of existing systems. To prevent constructing an inadequate model, it is advised to:

• Make a log of any consideration regarding the adequacy of abstractions that are
made during both the formulation and formalisation stages. Several case stud-
ies have shown that certain abstractions that were considered to be adequate
when they were made, turned out to be inadequate later [170]. Considerations
on the adequacy of abstractions and any changes in abstractions made during
the formulation and formalisation stages should be documented in the deliv-
erables at the appropriate milestones of SHE (see figure 4.1 on page 105).

• Validate the behaviour of the model for known corner cases. It is sometimes
possible to identify special situations for which some performance properties
can easily be computed by hand. An example of such a corner case is the situ-
ation where all packets induced on the inputs of a router system are destined
for the same output. Other corner cases may reflect a situation where certain
stochasticity is removed from the model. An example is the case of inducing
fixed-size packets with a fixed rate, zero inter-arrival times and fixed destina-
tions into the mentioned router system.

• Postpone any optimisations in the code of a POOSL model in case improve-
ment of the model’s execution speed is desirable. During the formalisation
stage, one should first concentrate on appropriately formalising the concepts
for realising the system as represented in the concept model. Only after being
confident about the adequacy of a first (intuitive but slow) model, one may
consider modifying it to improve execution speed. The main reason for post-
poning making optimisations is that they usually reduce the intuitiveness of
the model, which makes its validation much more complicated.

The best chance on revealing inadequacies in a model is during the validation of the
dynamic behaviour of the constructed POOSL model as described above. Especially

140 Extending the SHE Method for Performance Modelling

unexpected premature evaluation results may lead to detecting inadequacies. It is
therefore useful to recall the log of considerations on the adequacy of abstractions
whenever investigating the cause of unexpected premature evaluation results.

4.3.4 Related Research

UML-Based Performance Modelling Much research has been performed on the
potentials of UML-based system-level design methods like the SHE method. This
research included an investigation on how the characteristics of time and stochastic-
ity can be expressed in UML. Recently, UML has been extended with profiles that
assist in expressing timing and performance related information [130, 154]. Never-
theless, these profiles do not specify the exact semantics of time and stochasticity
(the exact semantics of concurrency in UML is not defined either) such that tools for
executing UML models require to extend these tools using a programming language
like C++. A more appropriate approach is to develop a UML profile that defines the
semantics of its primitives in accordance with those of a modelling language.

Of special interest is the use of SDL [88] and ROOM [155] to derive executable models
from UML diagrams. For SDL, this procedure is standardised in [89]. SDL is a for-
mal modelling language that allows to evaluate both correctness [60, 159] and perfor-
mance properties [36, 14, 92]. In this respect, SDL is very similar to POOSL. However,
a mathematical basis for reflexive performance analysis with SDL is missing even
though stochastic behaviour can be specified using proper random number gener-
ators. A similar conclusion holds for ROOM. Another deficiency of ROOM is that
time is not an inherent characteristic of ROOM models and hence, tools for executing
these models like ObjectTime [155] or RoseRT [146] do not separate model time from
physical time. Consequently, system-level design methods based on ROOM suffer
from the problem that real-time behaviour cannot be modelled adequately [108, 81].

The need for deriving a mathematical structure from a UML model to support per-
formance analysis was also recognised in [141]. Another relevant conclusion of [141]
is the necessity to express probabilistic information in UML diagrams. Both [141] and
[151] suggest to develop an integrated framework for explicitly representing perfor-
mance related information in UML diagrams (as it is now standardised in [130]) and
the transformation of these UML diagrams into a mathematically tractable perfor-
mance model. An example of such an integrated framework is discussed in [94],
where the transformation to a queueing network is based on an intermediate textual
representation of the performance related information specified in UML diagrams.
The SHE method is similar to [94] in that it also uses an intermediate modelling
language (POOSL) to formalise a UML model.

In [141], several options are presented for generating queueing networks, (gener-
alised stochastic) Petri nets or Markov chains from UML diagrams. References [123],
[100] and [140] respectively briefly explain the ideas behind these options. In [123],
the structure of queueing networks is obtained from use case and deployment dia-
grams, whereas the behaviour of servers in these queueing networks is determined
by combining collaboration and statechart diagrams. Queueing networks impose
strong restrictions on the use of probability distributions to make them mathemati-
cally tractable. As a consequence, complete industrial hardware/software systems

Conclusions 141

can sometimes not be modelled adequately. The approach in [140] derives a Markov
chain from UML based on a process algebra. Both [141] and [140] provide ideas for
a sound basis to obtain credible performance results but do not work these ideas out
in much detail. Moreover, these approaches suffer from the state-space explosion
problem [126] as a consequence of generating the queueing network, generalised
stochastic Petri net and Markov chain explicitly. The SHE method involves using the
expressive modelling language POOSL to define a Markov chain implicitly, thereby
enabling the evaluation of design alternatives for very complex systems.

Modelling Patterns Modelling patterns are comparable to design patterns [15],
which capture recognisable design strategies that have demonstrated to yield good
and efficient hardware or software implementations. In [54] for example, design
patterns are discussed for the development of object-oriented software. The useful-
ness of documenting and reusing templates for modelling common aspects of hard-
ware/software systems with POOSL was also recognised in [177]. Opposed to spe-
cialising modelling patterns for a certain application domain as proposed in [177],
the modelling patterns discussed in section 4.3.1 are more generally applicable.

Model Validation Because models inherently involve abstraction from details that
are not essential for evaluating the properties of interest, it is of utmost importance
to check the validity of a model before taking design decisions based on it. Although
model validation is often identified as one of the most difficult and time-consuming
aspects of system-level design, only a few approaches provide specific guidelines
that assist a designer in the validation process. Often, the guidelines for the con-
struction of models (such as naming conventions) are considered to be sufficient for
assisting the designer in validating those models. In [150], some guidelines are pre-
sented that are specific for the validation of models. These guidelines can easily
be adopted by the SHE method. Similar as SHE, the system-level design method in
[128] also provides specific guidelines for validating executable models against UML
diagrams. Another approach for simulation-based evaluation of systems, which pro-
vides useful additional validation guidelines, is discussed in [107]. These guidelines
can easily be adopted by SHE because the method in [107] is rather similar to SHE
with respect to first formulating the design problem and the issues that are to be
investigated, then constructing and validating an executable model followed by the
actual evaluation of the properties of interest.

4.4 Conclusions

Originally, the SHE method mainly provided assistance in applying object-oriented
analysis techniques for capturing the concepts and requirements of hardware/soft-
ware systems. This chapter extended SHE to offer a complete approach for exploring
design alternatives during system-level design. Although focussing on how to con-
struct adequate performance models, the proposed framework integrates these per-
formance modelling guidelines with the existing techniques, guidelines and tools.

The SHE method distinguishes the stages of formulation, formalisation and evalua-
tion. During the formulation stage, the concepts and requirements for a system are

142 Extending the SHE Method for Performance Modelling

documented as a concept model and a set of desired properties respectively using
UML diagrams and explanatory texts. Such UML diagrams comply with a UML
profile that intends to smoothen the derivation of an executable POOSL model and
monitors from the concept model and the desired properties respectively during the
formalisation stage. The SHE method supports both the model-checking and reflex-
ive approaches for defining monitors in order to evaluate correctness and perfor-
mance properties either analytically or based on simulations. After completing the
formalisation stage with documenting the validated model and monitors, the actual
evaluation of the properties of interest is performed during the evaluation stage.
Based on the results, design decisions on the feasibility of design alternatives are
taken. The proposed framework is rather generic in the sense that many other de-
sign methods implicitly include stages of formulation, formalisation and evaluation
although they tend to have more detailed heuristics for guiding the formulation and
formalisation in accordance with a certain application domain or modelling style.

The UML profile for SHE distinguishes data, process and cluster classes to model
the resources of a system. It includes special class symbols for each of these class
types. Their compartments are stereotyped in accordance with all those aspects that
completely define the static structure of a POOSL model. Data classes are compara-
ble to classes in traditional object-oriented languages and hence, their class symbol
includes the usual compartments. The class symbols for process and cluster classes
have a non-standard number of compartments. Process classes have an additional
compartment to clearly separate messages from methods, which are not coupled as
is the case for data classes. Although the class symbol of cluster classes includes a
message compartment, it misses a method compartment. This originates from the re-
striction in SHE that clusters do not extend the behaviour of their constituents. Com-
pared to the restricted support that UML offers for specifying the behaviour of data
objects, information on the behaviour of processes can be expressed in various UML
diagram types. A straightforward mapping of this information onto statements in
POOSL is however not obvious, which hinders the development of a tool automat-
ing the generation of POOSL models from a set of stereotyped UML diagrams. The
behaviour of clusters is based on a special diagram type, which was originally intro-
duced for SHE. Various aspects of this diagram type are also reflected in a number
of UML diagram types.

Next to the provided guidelines for deriving POOSL models from stereotyped UML
diagrams, some generally applicable modelling patterns are presented. These mod-
elling patterns provide templates for developing abstract models of common aspects
in hardware/software systems, which are adequate with respect to the evaluation of
performance properties. Of special importance in this context is the impact of ab-
straction from data, which requires to thoroughly consider the adequacy of timing
behaviour in a model regarding the processing, communication and storing of data.

To evaluate performance properties according to the framework for reflexive perfor-
mance analysis with POOSL, the model representing the system’s behaviour must be
extended with monitors. Without taking precautions, such an extension reduces the
intuitiveness of the model. It is proposed to extend a model with monitors based on
defining subclasses and constructing the extended model in a separate system-level
editor window in the SHESim tool. This approach allows to clearly separate code
representing the system’s behaviour from code concerning the monitors. In addition

Conclusions 143

to the separation, it is proposed to minimise changes to the process layer of a model
because this layer is often considered to be the most difficult part to validate.

Validation of POOSL models against stereotyped UML diagrams is subdivided in
three categories. Validating the static structure of a POOSL model is rather straight-
forward and will become superfluous in case a future tool is capable of automatically
generating skeleton POOSL code from stereotyped UML diagrams. The dynamic be-
haviour of a POOSL model is more difficult to validate. An important reason for this
is the different ways in which the information expressed in UML diagrams may be
formalised with POOSL. Several guidelines are provided that assist in how a POOSL
model can be validated against the UML diagrams and what aspects of the behaviour
require special attention. Most complicated is to validate the adequacy of abstrac-
tions. A useful recommendation that may help in preventing the construction of in-
adequate models is to make a log of considerations on the adequacy of abstractions,
which should be consulted whenever investigating the cause of unexpected evalua-
tion results. Moreover, investigating the behaviour of a model for corner cases may
help in finding model inadequacies.

144 Extending the SHE Method for Performance Modelling

Chapter 5

Case Studies

To investigate performance modelling for system-level design by using the Parallel
Object-Oriented Specification Language (POOSL), various academic and industrial
case studies have been carried out. These case studies provided valuable input for
identifying the theoretical and practical issues that are involved when evaluating
performance properties and initiated the development of theory to cope with them.
Table 5.1 lists the performed industrial case studies.

Case Study Industrial Cooperation References
Internet Router Alcatel Bell Antwerp [171, 168, 169]
Dataflow System Alcatel Bell Antwerp [165, 50]
MA3 System TNO Industrial Technology Eindhoven [80]
Network Processor IBM Research Laboratory Zürich [172, 103]
DECT System TNO Industrial Technology Eindhoven [82]
PiP TV Application Philips Research Laboratory Eindhoven [183]

Table 5.1: Performance modelling with POOSL in industrial case studies.

In cooperation with Alcatel Bell in Antwerp, the performance of product variants of
a backbone Internet Router has been evaluated as well as the performance of design
alternatives for the memory arbitration mechanism in the Internet Router’s input
buffer subsystems (which is also called the Dataflow System). In cooperation with
TNO Industrial Technology in Eindhoven, the performance of a product assembler
machine called the MA3 System has been analysed as well as the performance of de-
sign alternatives for a special wireless communication system for hearing-impaired
students in a class room, which is based on a modified version of the DECT proto-
col. The performance of a Network Processor has been analysed in cooperation with
IBM Research Laboratory in Zürich. Finally, the performance of executing a Picture-
in-Picture (PiP) TV Application on a multi-processor platform has been evaluated in
cooperation with Philips Research Laboratory in Eindhoven.

Many of the case studies in table 5.1 were actually carried out while developing the
theories proposed in this thesis. To assess the newly developed performance anal-
ysis techniques, the framework for reflexive performance analysis with POOSL and

146 Case Studies

the extensions to the Software/Hardware Engineering (SHE) design method, the In-
ternet Router case study was selected for a re-evaluation. The next section elaborates
on this re-evaluation. The Network Processor case study was largely performed con-
form the proposed theories and section 5.2 discusses some aspects of this case study
in more detail.

5.1 Internet Router

The Internet Router investigated in this section is basically an input/output buffered
switch system protected by a flow-control mechanism [97]. It has a parameterisable
number of inputs and outputs and its purpose is to transfer Internet packets received
on the inputs to those outputs for which the packets are destined. This functionality
should be performed with a minimal loss of packets, a minimal latency for trans-
ferring packets through the system, and a maximal throughput at the outputs. No-
tice that minimising the packet latency implies reducing the buffer capacities, which
however conflicts with the requirement of minimising packet loss. Early in the de-
sign process, a certain flow-control mechanism was proposed, which was expected
to minimise buffer capacities while still being capable of yielding a small packet
loss and packet latency next to a high throughput. The design issue was to decide
whether the proposed flow-control mechanism implied a high performance for sev-
eral product variants of the system, which mainly differ in the number of inputs
and outputs. Hence, the Internet Router case study involved investigating the per-
formance of realistic product variants, determining suitable combinations of buffer
capacities and other system parameters, deciding whether the proposed flow-control
mechanism is appropriate and proposing improvements for it if necessary.

Formulation Figure 5.1 sketches1 the architecture platform of the Internet Router
together with an abstract view on its environment. During exploratory discussions
on concepts for correct high-performance packet transfer, this sketch was used as a
reference to explain how the flow control mechanism is supposed to minimise buffer
capacities while maximising performance.

As shown in figure 5.1, the Internet Router has an equal number N of inputs and out-
puts. The packets that are to be transferred are induced on the inputs by N groups
of M independent sources. Each of these sources generates Internet-traffic, where
variable-sized files alternate with periods of no traffic. A file is a sequence (burst) of
packets with the same destination. The packets have to be transferred in the same
order as they were received (notice that it is allowed to insert packets of other files).
For each output of the Internet Router, a sink deals with the traffic resulting from the
forwarding of packets. The Internet Router itself consists of a switch core, N input
buffers and N output buffers. Each input buffer receives and buffers the packets
originating from the equally numbered group of M sources. To overcome the prob-
lem of head-of-line blocking [97], each input buffer includes N FIFO queues (which
are to be implemented in a single physical memory): one for buffering the packets
destined for each of the outputs. The result is that each queue in an input buffer is

1Figure 5.1 depicts a logical view on the Internet Router. Physically, the input and output buffers for
equally numbered inputs and outputs are subsystems on the same rack-mountable printed circuit board.

Internet Router 147

1

N

1

N

1

N

1

N

1

M

1

M

1

N

1

N

Sources
Input

Buffers
Switch
Core

Output
Buffers

Sinks

Inputs Outputs

L

L

L

L

A·L

A·L

B·L

B·L

Ingress Ports Egress Ports

Figure 5.1: System architecture of the Internet Router.

virtually connected to the output for which the buffered packets are destined. The
switch core actually realises these virtual connections between the input and output
buffers. Physically, there is only a single connection available between an input or
output buffer and the switch core. These connections are called ingress and egress
ports respectively. Arbitration mechanisms ensure proper utilisation of these shared
ports. Finally, each of the output buffers includes a single FIFO queue to take care of
excessive transfer of packets to the corresponding output.

The (fixed) aggregate bandwidth with which packets are induced on an input is in-
dicated with L and equals the bandwidth of each output. To reduce a possible loss
of packets due to a full queue, the aggregate bandwidth available at each ingress
port is A · L and at each egress port B · L, where bandwidth factors A and B are
such that A ≥ 1 and B ≥ 1. The flow-control mechanism is concerned with ensuring
that the actual bandwidth assigned to each virtual connection is proportional to the
amount of data in the corresponding queues of the involved input buffer and output
buffer. Periodically updating the actual bandwidths of the virtual connections is sup-
posed to minimise the necessary buffer capacities for a certain packet loss probability
bound. Observe that minimising the buffer capacities also contributes to minimis-
ing the packet latency and maximising the throughput. On the other hand, such a
flow control mechanism requires knowledge about the occupancy of both input and
output buffers. The flow-control mechanism is therefore a distributed algorithm,
which involves exchanging flow-control data between the input and output buffers.
Such flow-control data is actually transferred by the switch core (not shown in fig-
ure 5.1). Remark that next to bandwidth factors A and B and the total capacities of
the input and output buffers, also the duration of transferring packets and/or flow-
control data through the switch core as well as the update period for the flow-control
mechanism are parameters for a performance model.

The above explanation of the Internet Router forms the basis of applying the UML
profile for SHE. From figure 5.1, it can be concluded that the basic active resources
of the Internet Router are the input buffers, the switch core and the output buffers,
while its environment is formed by the sources and sinks. Hence, it seems natural

148 Case Studies

to model each of these components as a separate instance of an appropriate process
class. However, the exact number of instances of such process classes depends on
the parameters N and M (which can be large). It is therefore useful to model similar
components of the system with similar concurrent activities within one process, see
modelling pattern 4 in section 4.3.1. Figure 5.2 and 5.3 depict2 the resulting instance
structure diagram and class diagram respectively. All N ·M sources are modelled as
concurrent activities within a single instance of the process class Sources. Similarly,
concurrent activities within a single instance of the process classes InputBuffers,
OutputBuffers and Sinks model the behaviour of all N input buffers, N output
buffers and N sinks respectively. The behaviour of process class SwitchCore rep-
resents the transfer of packets via all N2 virtual connections as actually realised by
the switch core. Finally, a cluster class named InternetRouter is defined to group
the processes that model the Internet Router’s components.

I n p u t s
O u t

I n t e r n e t R o u t e r : I n t e r n e t R o u t e r (�)

I n p u t B u f f e r s :

I n p u t B u f f e r s (. . .)

S o u r c e s :

S o u r c e s (�)

I n p u t B u f f e r s :

I n p u t B u f f e r s (. . .)

S w i t c h C o r e :

S w i t c h C o r e (. . .)
S i n k s : S i n k s

I n p u t s O u t p u t s O u t p u t s

E g r e s s

P o r t s

I n g r e s s

P o r t s

F C A F C B

I n

I n

I P s I P s E P s E P s O u t

O u t

I n

F C AF l o w C o n t r o l F C B F l o w C o n t r o l

Figure 5.2: Instance structure diagram for the Internet Router (white box view).

The instance structure diagram in figure 5.2 shows separate ports and channels for
transferring packets and flow-control data through the switch core. In the imple-
mentation of the Internet Router, these items will not be transferred through sep-
arate physical connections. The proposed modelling approach is considered to be
adequate since only the delay for transferring flow-control data through the switch
core is essential for evaluating the flow control mechanism. Remark that this aspect
is logged as a consideration regarding the adequacy of abstractions.

Next to using similar concurrent activities to model similar components, many other
modelling patterns of section 4.3.1 are applied. Data classes File and Packet are
introduced to model the files/packets generated by the Internet-traffic sources. In-
stances of data class Packet are considered to be the elementary unit of data in the
model. Communicating instances of Packet between the Sources and Input-
Buffers and between the OutputBuffers and Sinks is performed with fixed
bandwidths. So, it possible to use approach B of modelling pattern 2. For modelling
the transfer of packets through the switch core, possible changes in the bandwidth
for each virtual connection as imposed by the flow control mechanism must be taken
into account. This is accomplished by using a modified version of modelling pattern

2To limit the size of diagrams shown in this chapter, some information is omitted (indicated by dots).

Internet Router 149

<<process>>

SwitchCore

<<instance parameters>>

SwitchDelay: Real

<<instance variables>>

<<methods>>

Initialise()()

TransferFlowControlData()()

TransferHeadOfPacket()()

TransferTailOfPacket()()

<<initial method call>>

Initialise()()

<<messages>>

IPs?HeadOfPacket

 (Packet, Integer, Integer)

IPs?TailOfPacket

 (Packet, Integer, Integer)

EPs!HeadOfPacket

 (Packet, Integer, Integer)

EPs!TailOfPacket

 (Packet, Integer, Integer)

…

<<cluster>>

InternetRouter

<<instance parameters>>

A: Real

B: Real

InputBufferSize: Integer

L: Real

N: Integer

OutputBufferSize: Integer

SwitchDelay: Real

UpdatePeriod: Real

...

<<messages>>

In?Packet

 (Packet, Integer, Integer)

Out!Packet(Packet, Integer)

<<process>>

OutputBuffers

<<instance parameters>>

B: Real

L: Real

N: Integer

OutputBufferSize: Integer

<<instance variables>>

Queues: OutputQueues

<<methods>>

Initialise()()

FlowControl()()

HandleInput()()

HandleOutput(BufferID:

 Integer)()

<<initial method call>>

Initialise()()

<<messages>>

IPs?HeadOfPacket

 (Packet, Integer, Integer)

IPs?TailOfPacket

 (Packet, Integer, Integer)

Out!Packet(Packet, Integer)

...

<<process>>

Sinks

<<instance parameters>>

<<instance variables>>

<<methods>>

Sink()()

<<initial method call>>

Sink()()

<<messages>>

IP?Packet(Packet, Integer)

<<process>>

InputBuffers

<<instance parameters>>

A: Real

InputBufferSize: Integer

L: Real

N: Integer

UpdatePeriod: Real

...

<<instance variables>>

Queues: InputQueues

...

<<methods>>

Initialise()()

DispatchInput()()

FlowControl()()

HandleOutput(BufferID,

 QueueID: Integer)()

...

<<initial method call>>

Initialise()()

<<messages>>

In?Packet

 (Packet, Integer, Integer)

IPs!HeadOfPacket

 (Packet, Integer, Integer)

IPs!TailOfPacket

 (Packet, Integer, Integer)

…

<<process>>

Sources

<<instance parameters>>

L: Real

N: Integer

M: Integer

...

<<instance variables>>

TrafficGenerators:

 SourcesContainer

...

<<methods>>

Initialise()()

InitialiseLink(SourceID,

 LinkID: Integer)()

InitialiseSource(SourceID:

 Integer)()

...

<<initial method call>>

Initialise()()

<<messages>>

Out!Packet

 (Packet, Integer, Integer)

1
1
 1

1
 1
1

Figure 5.3: Cluster and process classes defined for the Internet Router.

150 Case Studies

5 for the InputBuffers. The communication of packets between the InputBuf-
fers and OutputBuffers is based on approach A of modelling pattern 2.

In accordance with using a parameterised number of similar concurrent activities to
model similar components, parameterised container data classes are introduced for
the Sources, InputBuffers and OutputBuffers processes. These data classes
provide methods for performing any data-related operation, see also figure 5.3. The
Sources process uses data object TrafficGenerators to determine the next file
of packets that is to be sent by any of the N · M source activities (similarly as in
example 4.3). The InputBuffers process relies on a data object Queues of class
InputQueues to represent all N2 input queues, while OutputBuffers uses a data
object Queues of class OutputQueues to represent all N output queues. The latter
two data classes also include methods to perform all computations regarding the
flow-control mechanism. Since no operations on data are to be performed by the
SwitchCore and Sinks, no container data classes are defined for these processes.

An important aspect of modelling the Internet Router is scalability. This scalability
refers to the relation between increasing the size of the system (expressed as N ×N)
and the resulting increase in the time needed to execute the model (under the as-
sumption of constraining the simulation time) [28]. Based on the observations sum-
marised in table 5.2, it can be concluded that the total number of concurrent activ-
ities in the Internet Router is of order O(N(N + M)). Although optimisations for
simulation speed should in general be postponed until completing the development
of an intuitive model, certain model optimisations are necessary to enable evaluat-
ing the flow-control mechanism for realistic values of N and M (which may give
over a million concurrent activities) within realistic simulation time. Therefore, an
initial executable model of the Internet Router was developed first, which already
included some optimisations for simulation speed. This initial model uses dynamic
creation and termination of concurrent activities for the SwitchCore and Sinks,
which is fairly easy to model in POOSL and is still very intuitive (see also below).
Moreover, the input handler activities for the InputBuffers and OutputBuffers
are created and terminated dynamically in a similar way as in example 4.4 on page
126. For the InputBuffers, method DispatchInput not only receives a packet
from any of the N · M sources and stores (dispatches) it into the appropriate input
queue, but is in addition always prepared to handle a packet from another source.
For OutputBuffers, a similar approach is used, but now in combination with ap-
proach B of modelling pattern 2 to take possible changes in the bandwidth of the
involved virtual connection into account3. In the initial model, the output handler
activities are created statically and guards are used to check the availability of pack-
ets. After validating this initial model, further optimisations were made to improve
scalability. These optimisations included the replacement of the guards by dynami-
cally created and terminated output handler activities, see modelling pattern 8.

Figure 5.4 shows two activity diagrams concerning the behaviour of the SwitchCo-
re process. The left-hand side activity diagram denotes the creation of concurrent
activities by method Initialise for transferring flow-control data and for trans-
ferring the messages for sending the head and tail of a packet. Notice that only a

3Notice that receiving the tail of a packet must be performed by the same activity that received the
head of that packet. This can be accomplished by matching the identifier of the virtual connection (a pair
of integers that are sent as parameters of the messages) and the identity of the output buffer involved.

Internet Router 151

Sources → N · M Traffic Generators
Input Buffers → N · M Input Handlers

→ N2 Output Handlers
Switch Core → N2 Virtual Connections
Output Buffers → N2 Input Handlers

→ N Output Handlers
Sink → N Traffic Receivers

Table 5.2: Number of concurrent activities in the Internet Router.

fork transition is drawn (and no joint transition), which indicates that the created ac-
tivities are not terminated by the Initialise method. The right-hand side activity
diagram in figure 5.4 shows the behaviour defined by method TransferHeadOf-
Packet. After receiving a message HeadOfPacket, an activity is created to forward
this message to the InputBuffers and another activity is created to handle any
other message HeadOfPacket that might be received (and which relates to a differ-
ent virtual connection). The time transition annotated with SwitchDelay models
the duration of propagating the head of the involved packet through the switch core.
After actually sending the message HeadOfPacket to the OutputBuffers, the ac-
tivity concerning the packet terminates. With this approach, the number of activities
for transferring a message HeadOfPacket equals 1 plus the number of virtual con-
nections that are actually in use. The blocking of POOSL’s receive statement ensures
that no unlimited amount of concurrent activities is created. Notice that this ap-
proach is just as intuitive as statically creating N2 activities that only perform the
behaviour expressed in the right hand path of the activity diagram.

Activity defined by Activity defined by method
method Initialise TransferHeadOfPacket

T r a n s f e r H e a d O f P a c k e t

I P s ? H e a d O f P a c k e t

E P s ! H e a d O f P a c k e t

< < d e l a y > >

S w i t c h D e l a y

T r a n s f e r F l o w C o n t r o l D a t a

T r a s f e r T a i l O f P a c k e t

T r a n s f e r H e a d O f P a c k e t

Figure 5.4: Two of the activities performed by the SwitchCore.

Next to documenting the concept model of the Internet Router by means of stereo-
typed UML diagrams and explanatory texts, a number of performance metrics is
defined for the Internet Router. From the text of the initial specification at the begin-
ning of this section, it can be concluded that the probability of loosing a packet, the

152 Case Studies

Component Performance Metric Type
Input Buffer Average Buffer Occupancy Long-run time average

Variance in Buffer Occupancy Long-run time variance
Loss Probability Long-run sample average
Maximum Occupancy Maximum

Output Buffer Average Buffer Occupancy Long-run time average
Variance in Buffer Occupancy Long-run time variance
Loss Probability Long-run sample average
Maximum Occupancy Maximum

Sink Latency Long-run sample average
Jitter Long-run sample variance
Throughput Long-run time average

Table 5.3: Performance metrics defined for the components of the Internet Router.

latency of transferring a packet through the system and the throughput are essen-
tial performance metrics. Since packets can be lost at many places (there are many
buffers that can be full) and since the latency and throughput can be determined
at several places in the system (e.g., at any of the outputs), it must be formulated
more precisely what the exact performance metrics are. Table 5.3 gives an overview
of the performance metrics defined for the individual components of the Internet
Router. The performance metrics for each of the input buffers are defined as aggre-
gate metrics for all the N input queues together. This is because loosing a packet for
example depends on the aggregate occupancy of the input queues together. Next to
evaluating the probability of loosing a packet at each input and output buffer, their
average occupancy and maximum occupancy as well as the variance in their occu-
pancy are to be evaluated. This evaluation gives more insight in the possibilities for
dimensioning the buffer sizes. At each sink, the average duration and the variance in
the duration of transferring a packet from an input to an output are evaluated (per-
formance metrics Latency and Jitter respectively). Finally, the average utilisation of
each output (throughput) is analysed at the corresponding sink.

Remark that each line in table 5.3 actually refers to N different performance metrics.
Hence, it is necessary to formulate more precisely what is actually meant by the loss
probability, latency and throughput of the Internet Router. Let pi denote the proba-
bility of loosing a packet at input buffer i and let po be the packet loss probability at
output buffer o. Then, the packet loss probability P of the Internet Router equals

P =
1

N

N
∑

i=1

pi +

(

1 − 1

N

N
∑

i=1

pi

)

· 1

N

N
∑

o=1

po

Moreover, the latency L of the Internet Router and the throughput T are defined as

L =
1

N

N
∑

i=1

Li and T =

N
∑

i=1

Ti

where Li and Ti denote the latency and throughput at sink i respectively.

Formalisation After formulating the concepts and requirements of the Internet
Router, the stereotyped UML diagrams are formalised into an executable POOSL

Internet Router 153

model. Formalisation of the static structure turned out to be fairly easy. Figure 5.5
shows a screendump of the formalised instance structure diagrams in the SHESim
tool. During the first attempts of formalising the dynamic behaviour, the model
was already extended with monitors to enable its validation based on premature
performance results as advised in section 4.3.3. The premature performance re-
sults showed unexpected high input buffer occupancies and high packet losses4.
A thorough investigation learned that changing the bandwidth for a virtual con-
nection by the flow-control mechanism did not take immediate effect. In case of
sending a packet with a previously assigned low bandwidth, the assignment of a
new higher bandwidth only took effect after completely sending the packet with the
lower bandwidth. This caused a delay in the removal of other packets in highly oc-
cupied buffers. According to the concept model, bandwidth changes should take
effect immediately. The solution to the improper formalisation eventually resulted
in modelling pattern 5 for adequately modelling dynamically changing bandwidth.

After concluding that the model represented the behaviour of the Internet Router in

Figure 5.5: POOSL model of the Internet Router in SHESim.

4Because of the symmetrical structure of the Internet Router, performance results for the input buffers,
output buffers or sinks are expected to be similar. The very first performance results obtained with the
SHESim tool showed an unbalance in the buffer occupancies. This was caused by an improper imple-
mentation of the random number generators, which was corrected at that time (see also appendix B).

154 Case Studies

a proper way, the model was fully optimised for simulation speed as explained
above. To illustrate the used combination of modelling patterns discussed in section
4.3.1, the OutputBuffers process of the optimised model is elaborated on. Next to
a concurrent activity concerning the flow-control mechanism, method Initialise
creates an activity for receiving packets from the SwitchCore and storing them in
the appropriate output queues. The behaviour of this activity is defined by method
HandleInput, which is depicted in figure 5.6. When receiving the head of a packet
P in line 3, 4, it is checked atomically whether P can still be stored in the appropriate
output buffer. If so, storage resources are reserved for P conform the modelling ap-
proach illustrated in figures 4.7 and 4.8 on pages 120 and 121 respectively. Then, two
concurrent activities are created. One for handling P further (lines 6 - 18) and one for
handling another packet (line 20). Notice that this other packet may be destined for
the same output as P is. The handling of P is completed after waiting until receiving
the tail of P. As noted above, only the concurrent activity that received the head of P
should continue with handling P, which is accomplished by means of the condition
in line 7. Atomically with receiving the tail of P, it is checked whether an output
handler activity is active for the output buffer involved. Notice that the container
data object Queues stores the information about which output handlers are active.
In case an output handler activity should be created, this is done so in line 17. The
formalisation of the output handler activity by method HandleOutput (see figure
5.6) relies on the removal of guards as proposed by modelling pattern 8.

Extending the POOSL model with performance monitors is performed in accordance
with the suggestions given in section 4.3.2. Since there are performance metrics to
be evaluated for the input buffers, output buffers and sinks, the behaviour of the
InputBuffers, OutputBuffers and Sinks processes must be extended. There-
fore, subclasses InputBuffers PA, OutputBuffers PA, Sinks PA are defined.
In addition, a cluster class InternetRouter PA is introduced to group an instance
of InputBuffers PA, SwitchCore and OutputBuffers PA in a similar way as
cluster InternetRouter in the original model. To minimise the differences be-
tween the classes InputBuffers PA and InputBuffers and between the classes
OutputBuffers PA and OutputBuffers, subclasses of the container data classes
InputQueues and OutputQueues are defined. Their subclasses InputQueues PA
and OutputQueues PA include the actual performance monitors for the input buf-
fers and output buffers. In addition, a container data class SinksContainer PA is
introduced to evaluate the performance metrics defined for the sinks.

The long-run average performance metrics in table 5.3 are evaluated by using mon-
itors of the POOSL library classes for accuracy analysis introduced in section 3.3.1.
The local recurrence condition of an empty buffer is used to evaluate the average oc-
cupancies and variances in occupancies of the input buffers and output buffers. For
the loss probabilities, the rare event of actually loosing a packet served as recurrence
condition (see also example 3.6). The performance metrics defined for the sinks are
estimated conform the batch-means technique. To enable evaluating the latencies at
the sinks, data class Packet is extended with an instance variable EntranceTime
that stores the time at which the head of a packet is received by an input buffer. The
latency for each packet then equals the time at which the head of the packet is sent to
a sink minus its EntranceTime. The maximum buffer occupancy metrics in table
5.3 are evaluated by a simple expression that tests the occupancy of the buffer for

Internet Router 155

1 HandleInput()() |P, PTail: Packet, FromInputBuffer, ToOutputBuffer,

2 BufferID: Integer, ReservationSucceeded, StartOutputHandler: Boolean|

3 EPs?HeadOfPacket(P, FromInputBuffer, BufferID)

4 {ReservationSucceeded := Queues checkOccupation(P, BufferID)};
5 par

6 EPs?TailOfPacket

7 (PTail, FromInputBuffer, ToOutputBuffer | PTail getNumber = P getNumber)

8 {StartOutputHandler := false;
9 if ReservationSucceeded then

10 Queues putPacket(P, BufferID);
11 if Queues outputHandlerIsNotActive(BufferID) then

12 Queues activateOutputHandler(BufferID);
13 StartOutputHandler := true

14 fi

15 fi};
16 if StartOutputHandler then

17 HandleOutput(BufferID)()
18 fi

19 and

20 HandleInput()()
21 rap.

22 HandleOutput(BufferID: Integer)() |P: Packet, Continue: Boolean|

23 {Continue := Queues isNotEmpty(BufferID);
24 if (Continue not) then

25 Queues deactivateOutputHandler(BufferID)
26 else

27 P := Queues inspectPacket(BufferID) setTransmissionBitRate(L)

28 fi};
29 if Continue then

30 Out!Packet(P, BufferID);
31 delay(P getSize / P getTransmissionBitRate);
32 Queues removePacket(BufferID);
33 HandleOutput(BufferID)()
34 fi.

Figure 5.6: Formalising the packet handling behaviour of the OutputBuffers.

being larger than the previously stored maximum occupancy. This test is performed
in case reserving buffer resources for storing a packet is successful.

Next to extensions for evaluating the performance metrics in table 5.3, behaviour is
added to enable automatic termination of a simulation run. For this purpose, a pro-
cess class SimulationController is introduced and a subclass Sources PA is
defined for Sources. Figure 5.7 shows a screendump of the extended POOSL model
in SHESim. When the estimation results at the InputBuffers, OutputBuffers
and Sinks are accurate, these processes send a message to the SimulationCon-
troller. SimulationController stores the overall accuracy status in a con-
tainer data object of class SimulationStatus PA. In case the results for all perfor-
mance metrics are accurate, then the Sources, InputBuffers, OutputBuffers
and Sinks are notified by the SimulationController to initiate the logging of
the estimation results. Then, the behaviour of all these processes is terminated. No-
tice the addition of the channels named Ctrl, which are used to exchange the mes-
sages regarding the accuracy status of estimation results and the termination of a
simulation.

156 Case Studies

Figure 5.7: Extended POOSL model of the Internet Router in SHESim.

To illustrate the extensions for automatically terminating a simulation in more detail,
figure 5.8 shows the method Initialise of process class OutputBuffers PA. Af-
ter creating and initialising the container data object Queues, the normal behaviour
of the OutputBuffers PA process is started. This normal behaviour consists of
an input handling activity (which starts other input handler and output handler
activities whenever necessary) in line 5 and an activity regarding the flow-control
mechanism in line 7. Concurrently with the normal behaviour, it is checked in line
9 whether the estimation results for the performance metrics are accurate. When the
guard evaluates to true, the SimulationController is notified by sending the
message OutputBuffersAccurate. The use of the abort-statement results in ter-
minating the normal behaviour in case a message StopOutputBuffers is received
from the StopController. Atomically with receiving this message, the estimation
results for the performance metrics are logged to file.

The behaviour of the SimulationController is defined by the two methods de-

Internet Router 157

1 Initialise()()

2 Queues := new(OutputBuffers_PA) init(N, B, L, BufferCapacity);
3 abort

4 par

5 HandleInput()()
6 and

7 FlowControl()()
8 and

9 [Queues accurate] Ctrl!OutputBuffersAccurate
10 rap

11 with

12 Ctrl?StopOutputBuffers{Queues stopSimulation}.

Figure 5.8: Method Initialise of process class OutputBuffers PA.

picted in figure 5.9. Method Initialise creates and initialises the container data
object SimulationStatus of class SimulationStatus PA (see also above). The
behaviour of checking the accuracy of all performance metrics as specified by me-
thod CheckAccuracy is aborted when all performance metrics are indeed accurate
(line 4). Then, the Sources, InputBuffers, OutputBuffers and Sinks are no-
tified to log the obtained estimation results and terminate their behaviour. Notice
the combination of tail-recursion and the sel-statement in the CheckAccuracy
method to express the reception of the accuracy status from all three processes In-
putBuffers, OutputBuffers and Sinks.

1 Initialise()()

3 SimulationStatus := new(SimulationStatus_PA) init;
4 abort CheckAccuracy()() with [SimulationStatus accurate] Ctrl!StopSources;
5 Ctrl!StopInputBuffers; Ctrl!StopOutputBuffers; Ctrl!StopSinks.

6 CheckAccuracy()()

7 sel

8 Ctrl?SinksAccurate{SimulationStatus sinksAccurate}
9 or

10 Ctrl?InputBuffersAccurate{SimulationStatus inputBuffersAccurate}
11 or

12 Ctrl?OutputBuffersAccurate{SimulationStatus outputBuffersAccurate}
13 les;
14 CheckConfidence()().

Figure 5.9: Terminating the simulation when estimation results become accurate.

Evaluation The extended POOSL model has been simulated for many different
configurations of N , M and other parameters of the Internet Router [169]. Although
the obtained estimation results allowed assessing the quality of the flow-control
mechanism and gave much information for dimensioning the buffer capacities, some
deficiencies were discovered for the applied estimation techniques. For many con-
figurations of N and M , loosing packets turned out to be really rare (as desired). Due
to using the loss of a packet as recurrence condition for estimating the loss probabil-
ities, it took unacceptably long to get accurate estimation results for these metrics.

158 Case Studies

Therefore, it was decided not to take the accuracy of the loss probabilities into ac-
count when terminating a simulation. This experience confirmed the need for future
work on efficiently estimating the probability on rare events as noted in section 3.2.

5.2 Network Processor

Network processors are flexible single-chip architectures for telecommunication sys-
tems, which are capable of processing packets at wire speed [59]. The network pro-
cessor considered in this section is based on the use of several existing components.
It includes an embedded PowerPC together with a similar on-chip bus architecture
as in [84] and network interface components from [83]. The design issue is to decide
whether the proposed combination of components and memories will yield a packet
processing system with a low latency and high throughput. Of special interest is the
identification of potential performance bottlenecks in the system, which may surface
due to the sharing of the on-chip busses or the limited capacities of memories.

Formulation The system architecture of the network processor is depicted in fig-
ure 5.10. It combines a compute part for high-speed packet processing and a periph-
eral part for interfacing to the network environment. In each part, a bus provides
the inter-component connectivity, while communication between the two parts is
based on bridges. The compute part includes the PowerPC core. It is connected to
the (high-performance) Processor Local Bus (PLB) for accessing an on-chip SRAM
memory and to a controller for off-chip SDRAM memory. The SDRAM memory
stores the packets that will be processed by the PowerPC, while the information on
where these packets are stored is available from the SRAM memory. The peripheral
part consists of the (low-performance) On-chip Peripheral Bus (OPB) and a num-
ber of Ethernet Communication Macros (EMAC) from [83], which form the interface
to the network environment. Each EMAC is capable of concurrently receiving and
transmitting packets from/to an Ethernet medium. The compute and peripheral
part are interconnected by the standard PLB-OPB and OPB-PLB bridges of [84] and
a specialised bridge called Memory Access Layer (MAL). The PLB-OPB and OPB-
PLB bridges are merely used during reconfiguration procedures for initialising the
EMACS. Transfer of packets between the compute part and peripheral part during
normal operation is performed by the MAL, which can concurrently access both PLB
and OPB busses. Together, the OPB and MAL can serve up to 32 EMACS. Finally, the
(low-speed) daisy-chained Device Control Register (DCR) bus is used during recon-
figuration procedures for exchanging configuration and status information between
the PowerPC processor core and all other components.

For analysing the performance of the network processor, the use of the PLB-OPB
and OPB-PLB bridges as well as the DCR bus during reconfiguration procedures is
not really relevant. Moreover, the actual content of the SDRAM memory is not rel-
evant for evaluating its occupancy since the SDRAM’s occupancy is a property that
the SDRAM controller must take into account. Based on these considerations, the
DRC bus, PLB-OPB and OPB-PLB bridges and the SDRAM memory are not mod-
elled. Next to these abstractions, many others were made. The available documenta-
tion of the existing components included a lot of implementation details and hence,

Network Processor 159

Processor Local Bus (PLB)

PowerPC

Processor Core

SRAM

SDRAM

Controller

O

n

-
C

h

i
p

P

e

r
i

p

h

e

r
a

l

B

u

s

(

O

P

B

)
PLB-OPB

Bridge

Memory Access

Layer (MAL)

OPB-PLB

Bridge

Ethernet

Communication

Macro (EMAC)

Ethernet

Communication

Macro (EMAC)

Device Control

Register (DCR)

Compute Part
 Peripheral Part

Figure 5.10: System architecture of the network processor.

a process of identifying the essential aspects for performance modelling had to be
performed. Eventually, several diagrams (not necessarily expressed in UML) and
explanatory texts documented the functionality of the system at a level of detail that
sufficed for developing an adequate performance model [103].

This section does not intend to discuss the formulation stage for the network pro-
cessor in much detail. Nevertheless, a brief overview of the working of the system
is given to enable explaining the application of some of the modelling patterns dis-
cussed in section 4.3.1. In case of receiving a new packet, the involved EMAC noti-
fies the PowerPC to set (in the SRAM memory) the location where the packet has to
be stored. Then, the EMAC requests the MAL to store the packet into the SDRAM
memory based on the location information in the SRAM memory. After completely
storing the packet, the MAL notifies the PowerPC that processing of the packet can
be started. Then, the PowerPC reads the packet from the SDRAM memory, pro-
cesses it and finally updates the SDRAM memory. Upon completion of processing
the packet, the EMAC concerning the destination output requests the MAL to fetch
it from the SDRAM memory for transmitting it over the Ethernet medium. After
transmitting the packet, its location information in the SRAM memory is cleared.

Concurrently receiving and transmitting packets over different Ethernet media in-
volves sharing many components (including the PLB, OPB and MAL) and buffer-
ing data before accessing a shared component. Several arbitration mechanisms are
required to handle accesses to these shared components. Since the input traffic is
stochastic, it cannot easily be deducted how these arbitration mechanisms affect the
overall performance of the network processor. To evaluate whether the arbitration
mechanisms perform sufficiently well under various conditions (such as the worst-
case condition where all EMACs constantly receive packets destined for a single
EMAC), a number of performance metrics have been defined. These include the
utilisation of the OPB and PLB busses as well as their throughput. In addition, the
average and maximum occupancy of all buffers in the EMACS and MAL and also
the average and maximum occupancy of the SDRAM are to be evaluated. Finally,
the latency of transferring a packet through the network processor as well as the
throughput at the network processor’s ports to the Ethernet media are of interest.

160 Case Studies

Formalisation Based on the concept model, an executable POOSL model has been
developed. Figure 5.11 depicts a screen dump of the SHESim tool showing this
model. The top window shows a cluster NP, which models the actual network pro-
cessor as depicted in figure 5.10. The cluster NetworkEnvironment represents the
network environment. Inspection of the NP cluster opens the bottom window in fig-
ure 5.11. It contains the clusters and processes that model the relevant components of
the system as indicated above. The EMACs are modelled using a multiple (see also
section 4.2.2) of EMAC clusters, which share the channels for communicating control
information to the MAL and PowerPC and packet data to the OPB respectively. Noti-

Figure 5.11: POOSL model of the network processor.

Network Processor 161

ce that the model has many more channels between the components than shown in
figure 5.10. This was a consequence of the decision to represent some more detail
in the model regarding the physical connections between the components to ease
discussions for validation purposes with the authors of the detailed documentation
available on the existing components.

The model of the network processor combines many of the modelling patterns pre-
sented in section 4.3.1, including abstraction from the details of packets. Also the im-
plementation details of the interfaces between the components were abstracted from;
only the conceptual Request and Grant messages resulting from protocols for ex-
changing information between components were modelled. On the other hand, the
model is intended for evaluating the bus arbitration mechanisms. These arbitration
mechanisms include several special features that complicate predicting their effect
on the division of the available bus bandwidth. Since this effect is essential for eval-
uating the performance, these arbitration mechanisms are modelled in more detail.

Consider the arbitration of requests for accessing the OPB. The OPB includes an
arbiter for granting access requests from connected master components. In the net-
work processor, the MAL is the only master on the OPB, while the EMACs are all
slave components. As a result, arbitration merely involves checking the presence of
an access request from the MAL and granting it. Nevertheless, the arbitration mech-
anism facilitates overlapped bus arbitration [85]. This feature concerns arbitration of
the next bus access concurrently with the final data transfer cycle of the current bus
access. EMACs indicate the final data transfer cycle of their bus access by sending a
data transfer acknowledgement to the OPB. The effect of overlapped bus arbitration
is a higher OPB utilisation because it saves one idle cycle per bus access. This effect
must be taken into account for developing an adequate performance model.

To model the effect of overlapped bus arbitration, access requests from the MAL are
received independently from receiving data transfer acknowledgements. The model
of the OPB is shown in figure 5.12. It includes the process named OPB ARBITER, re-

Figure 5.12: POOSL model of the OPB.

162 Case Studies

presenting the OPB arbiter. The behaviour of the OPB arbiter is modelled with three
concurrent activities, which are created by the method Init depicted in figure 5.13.
After creating a new container data object Status of class OPB STATUS and initial-
ising it by calling method clearAll, the par-statement is used to create the three
concurrent activities. Method ReceiveMALRequest models the reception of bus
access requests from the MAL and ReceiveXferAck represents the reception of
a data transfer acknowledgement. Method Arbitrate specifies the behaviour of
actually arbitrating between the available requests and granting them.

1 Init()()

2 Status := new(OPB_STATUS) clearAll;
3 par ReceiveMALRequest()() and ReceiveXferAck()() and Arbitrate()() rap.

Figure 5.13: Initialising the arbitration of OPB access requests.

Figure 5.14 presents the methods that specify the three concurrent activities in the
OPB ARBITER. They share container data object Status, which has (Boolean) in-
stance variables named ReqAvailable and AckReceived. These variables are
used to indicate whether a MAL request for bus access is received and whether a data
transfer acknowledgement from an EMAC is received respectively. The status of
ReqAvailable can be set, retrieved and cleared by the methods setReq, getReq
and clearReq of OPB STATUS. Similar methods are defined for AckReceived.
Method ReceiveMALRequest in figure 5.14 specifies the reception of an access re-
quest from the MAL. When such request is received, instance variable ReqAvaila-
ble of Status is atomically set to true. Method ReceiveXferAck atomically sets
AckReceived to true upon reception of a data transfer acknowledgement.

1 ReceiveMALRequest()()

2 Request?Request{Status setReq}; ReceiveMALRequest()().

3 ReceiveXferAck()()

4 XferAck?XferAck{Status setAck}; ReceiveXferAck()().

5 Arbitrate()()

6 [Status getReq]

7 Grant!Grant{Status clearReq};
8 [Status getAck]
9 Status clearAck;
10 Arbitrate()().

Figure 5.14: Synchronising concurrent activities via container data object Status.

In line 6, the status of ReqAvailable is retrieved (by using method getReg) in or-
der to determine whether to grant an access request for the MAL. As long as such a
request is not received, the send statement for granting the request in line 7 remains
blocked. In case of receiving a request from the MAL, the send statement is executed
and ReqAvailable is atomically reset to false. Since the OPB can handle only one

Network Processor 163

access at a time, arbitration of the next MAL request must wait until AckReceived
indicates that a data transfer acknowledgement is received. Notice that some time
may elapse between receiving an access request and the data transfer acknowledge-
ment for that access. The exact amount of time is unknown to the OPB arbiter be-
cause it depends on the responsiveness of the EMAC involved. When AckReceived
is set by the concurrent activity for receiving the data transfer acknowledgement, it
is cleared at the same moment in line 9. Then, method Arbitrate is called again to
handle the next MAL request. Notice that if the next MAL request is obtained while
receiving the data transfer acknowledgement, it is granted (at the same moment) by
the next call of Arbitrate. This adequately models overlapped bus arbitration.

The example of modelling the OPB arbiter illustrates the application of the mod-
elling pattern for synchronising concurrent activities. Notice that because of the
timeless execution of actions, receiving the next access request may happen at the
same moment (in model time) as receiving the data transfer acknowledgement for
the previous access. The exact order in which the corresponding messages are re-
ceived at such a moment is determined non-deterministically. Even if, at the same
moment, AckReceived is set to true before ReqAvailable is, the effect is still
overlapped bus arbitration (as intended). The final implementation of the network
processor requires synchronising all events with a clock, including receiving requests
and acknowledgements and granting requests. The model abstracts from this clock
by relying on the asynchronous concurrency and the possibility to synchronise con-
current activities in only those cases for which synchronisation is really required.

After validating the POOSL model, it was extended with several performance mon-
itors. To evaluate the utilisation of the OPB bus, the OPB arbiter model had to be
extended. Conform the suggestions in section 4.3.2, a subclass OPB ARBITER PA of
process class OPB ARBITER is defined. Since the utilisation of the OPB is actually a
long-run time average, an instance variable Utilisation of class LongRunTime-
Average from the library classes for accuracy analysis discussed in section 3.3.1 is
added to OPB ARBITER PA. Now, to estimate the utilisation of the OPB conform the
batch-means technique, method Arbitrate is extended as shown in figure 5.15.
Whenever a bus access request is granted, Utilisation is rewarded with value
1, while receiving a data transfer acknowledgement rewards Utilisation with
0. Notice that if overlapped bus arbitration occurs, Utilisation is updated twice
at the same moment (in model time). Nevertheless, this does not hinder properly
evaluating the utilisation of the OPB because it is a long-run time average.

1 Arbitrate()()

2 [Status getReq]

3 Grant!Grant{Status clearReq; Utilisation rewardBM(1, currentTime)};
4 [Status getAck]

5 {Status clearAck; Utilisation rewardBM(0, currentTime)};
6 Arbitrate()().

Figure 5.15: Extending method Arbitrate for performance evaluation.

Evaluation The extended model of the network processor has been simulated for
several types of input traffic [103]. Next to using similar Internet-traffic generators as
in the Internet Router case study (see section 5.1), sequences of packets transmitted

164 Case Studies

over a real-life Ethernet connection were used. This was performed by reading the
size of the successively transmitted packets from a file based on class FileIn (see
also appendix B). In addition, different conditions for determining the destination of
the packets were used. The obtained estimation results provided good insight in the
performance of the different components and the overall latency and throughput of
the network processor. In addition, the OPB was identified as a potential bottleneck
in the worst-case situation were all packets are destined for the same output [103].
Finally, suggestions for dimensioning the memories and buffers in several compo-
nents of the network processor were given to improve the performance.

5.3 Conclusions

The academic and industrial case studies that have been performed provided valu-
able input for identifying theoretical and practical issues involved in the area of
performance modelling. Many of the case studies were actually carried out while
developing the theories presented in this thesis. As a result, the applicability of the
proposed performance analysis techniques, the framework for reflexive performance
analysis with POOSL and the extensions to the SHE method were continuously of
concern. Re-evaluation of the Internet Router case study enabled to assess the ac-
tual applicability of the final theories. Although performance modelling with SHE
showed to be successful, several aspects were detected that need further attention.
Next to the aspects discussed in chapters 2, 3 and 4, some desirable extensions for
the SHESim and Rotalumis tools have been identified. An example is the need for
automatically simulating a model for different settings of the system parameters.

Chapter 6

Conclusions

The increasing complexity of hardware/software systems urged the need for system-
level design methods. Such frameworks for structuring the earliest phases of the
design rely on developing models in order to evaluate the properties of potentially
feasible design alternatives. Especially the performance of a design alternative of-
ten motivates deciding whether or not to use it as a basis for actually realising the
system. Evaluating the performance without a proper mathematical foundation is
insufficient for obtaining credible performance results. Modelling languages with
a formal semantics allow to define a rigorous framework for applying performance
analysis techniques and for unambiguously executing models. The latter is impor-
tant when estimating performance properties based on simulations. However, using
a formal modelling language is insufficient for assisting a designer in making design
decisions. Next to guidelines for developing adequate performance models, system-
level design methods should provide user-friendly modelling tools that largely au-
tomate the actual evaluation of design alternatives in order to minimise design time.

The contributions of this thesis provide ample means for obtaining credible perfor-
mance results during system-level design. In addition to extending classical per-
formance analysis techniques to enable handling the complexity of today’s hard-
ware/software systems, this thesis proposed a mathematical framework for apply-
ing them when using the formal modelling language POOSL (Parallel Object-Orien-
ted Specification Language). Furthermore, the system-level design method SHE
(Software/Hardware Engineering) is extended with a profile for UML (Unified Mod-
elling Language) and with several guidelines that ease the development of adequate
performance models with POOSL. The performed industrial case studies showed
the applicability of the developed techniques and design method for very complex
systems. An overview of the concrete contributions of this thesis is given in the next
section, while section 6.2 discusses some aspects that need further attention.

6.1 Contributions

The contributions of this thesis can be summarised as follows:

166 Conclusions

• An inventory of the research area of performance modelling for system-level
design has been made. This inventory identified the requirements for obtain-
ing credible performance results and revealed several deficiencies in state of art
performance analysis techniques, modelling languages, property specification
languages, as well as system-level design methods and tools. With the inven-
tory, it has become possible to identify where viable combinations of existing
techniques, formalisms, methods and tools need to be extended/modified to
ensure obtaining credible performance results during system-level design.

• Evaluating long-run average performance metrics often requires to take a cer-
tain condition into account. A simple example of such a conditional long-run
average is the average duration of processing packets by a telecommunica-
tion system. For this performance metric, the value of the variable denoting
the most recent processing time must only be taken into account when com-
pleting the processing of a packet. Nevertheless, straightforwardly applying
classical Markov-chain based performance analysis techniques in this case re-
quires to consider the value of the variable in all states of the system. With
the proposed reduction technique, it has become possible to immediately dis-
regard reward values in irrelevant states in the case of analytical computation
as well as simulation-based estimation of conditional long-run averages. Es-
pecially in the latter case, performance evaluation speed is improved consider-
ably, thereby greatly increasing the system complexity that can be handled.

• Many common long-run average performance metrics can be defined as an
algebraic combination of simple (conditional) long-run averages. Examples
of such complex performance metrics are the average occupancy of a buffer
and the throughput of an on-chip bus. Although classical Markov-chain based
performance analysis techniques provide ample means for computing these
performance metrics analytically, a general approach for deriving the accuracy
of estimation results obtained for complex long-run averages is missing. With
the proposed algebra of Confidence Intervals, the accuracy of estimation re-
sults for complex (conditional) long-run averages can be analysed without the
necessity to explicitly derive a Confidence Interval. Hence, the algebra of Con-
fidence Intervals has enabled analysing the accuracy of estimation results for
many common complex long-run averages for which this was not yet possible.

• Markov-chain based performance analysis techniques for estimating long-run
averages require to specify a state that determines the beginning of a regener-
ative cycle of independent behaviour. Usually, it is impossible to specify such
a recurrent state in advance and hence, it is desirable to identify a recurrent
state during simulation. One could base this identification on detecting the re-
visiting of a state. Unfortunately, this approach is often prohibitively complex
for industrial hardware/software systems and hence, it is more practical to
define a certain recurrence condition that enforces the beginning of a regenera-
tive cycle. Two approaches for defining such recurrence conditions have been
proposed. One approach is generally applicable and matches the commonly
used batch-means technique. This technique has however some theoretical
and practical deficiencies. The other approach relies on knowledge about the
behaviour of a specific component of the system, thereby yielding more credi-

Contributions 167

ble estimation results. With these approaches, it has become possible to apply
the simulation-based estimation techniques proposed in this thesis in practice.

• Instead of expressing the behaviour of a system in the form of a Markov chain,
it is more convenient to use an expressive modelling language such as POOSL.
To enable applying Markov-chain based performance analysis techniques in
this case, POOSL models have been mathematically related to Markov chains
in the context of a reflexive approach for specifying monitors. This framework
for reflexive performance analysis provides a sound basis for implicit applica-
tion of Markov-chain based performance analysis techniques while executing
a POOSL model that is extended with performance monitors. Hence, the pro-
posed framework has enabled a rigorous evaluation of performance metrics
based on models constructed with an expressive modelling language.

• Four (conditional) long-run average performance metric types have been iden-
tified as most common for hardware/software systems. Based on the frame-
work for reflexive performance analysis with POOSL, the proposed Markov-
chain based estimation techniques and the approaches for approximating the
beginning of regenerative cycles, library classes for analysing the accuracy
of the four performance metric types have been developed. With these per-
formance monitor classes, it has become possible to estimate long-run aver-
ages without knowing all details of the mathematical theories involved. The
credibility of estimation results obtained when using the performance monitor
classes has been assessed with an experiment. The experiment revealed that
for the estimated performance metrics (one of each type), utilising knowledge
about the re-occurrence of local behaviour to define a recurrence condition is
favorable over using the current implementation of the batch-means technique.

• The SHE method has been extended with a framework for constructing and
validating performance models with POOSL. This framework integrates sev-
eral performance modelling guidelines with the existing techniques, guidelines
and tools for SHE. The SHE method distinguishing the phases of formulation,
formalisation and evaluation. The applicability of the SHE method has been
improved by defining a UML profile that facilitates deriving POOSL models
from stereotyped UML diagrams in the formalisation phase. In addition, sev-
eral modelling patterns have been presented next to guidelines for extending
POOSL models with monitors and for their validation. With the proposed ex-
tensions to the SHE method, a system-level design method has become avail-
able that allows rigorous evaluation of the performance (and correctness) of
design alternatives for industrial hardware/software systems.

• A number of academic and industrial case studies has been performed. These
case studies were very valuable for identifying the theoretical and practical
issues involved in the area of performance modelling and also for assessing
the developed techniques and method. Next to successfully applying the pro-
posed performance analysis techniques and system-level design method, the
actual performance results for the different industrial case studies have been
valuable for thoroughly understanding the working of the involved systems
and for founding decisions between design alternatives for these systems.

168 Conclusions

6.2 Future Research

System-level design is an emerging research area that poses new challenges for anal-
ysis techniques, formalisms, design methods and tools. Performance analysis is an
essential aspect of system-level design because of its impact on taking design deci-
sions. Although this thesis proposed several performance analysis techniques and a
framework for applying them during system-level design, several aspects have been
identified that require further attention. These include the following:

• Analytical computation of long-run average performance properties remains
limited to systems with a relatively small state space. Hence, the performance
of most industrial hardware/software systems will be estimated based on sim-
ulations. However, application of Markov-chain based estimation techniques
suffers from the difficulty of detecting the beginning of a regenerative cycle
of independent behaviour. More research is needed to develop an efficient
and generally applicable approach for defining recurrence conditions that yield
Confidence Intervals with excellent coverage.

• Using a modelling language that allows to express non-determinism suffers
from the possibility of obtaining unrealistic performance results in case this
non-determinism is not resolved properly. Future research includes examin-
ing different options for resolving non-determinism and their effect on the ob-
tained performance results. Only after such an investigation, it can be decided
whether the currently used approach for resolving non-determinism when ex-
ecuting POOSL models is indeed favorable. The option of not resolving non-
determinism at all requires to develop techniques for deriving the complete
range of results that can be obtained for the performance metric involved.

• Although the SHESim and Rotalumis tools have proven to be very valuable,
several extensions are desirable. These extensions include possibilities for au-
tomatically terminating a simulation without the necessity to explicitly model
the behaviour of gathering all accuracy results and invoking deadlock. In other
words, all aspects related to ensuring that the estimation results for all perfor-
mance metrics are accurate when terminating a simulation should be part of
the tool instead of the model. Such tool extensions could rely on the accurate
methods in the performance monitor classes. Another very desirable extension
for SHESim and Rotalumis would be the possibility to have an automated way
of simulating a model for different settings of system parameters.

• To improve the applicability of the SHE method further, a tool should be devel-
oped that integrates support for all three phases of formulation, formalisation
and evaluation. An important aspect for developing such a tool is investigating
the possibilities of automatically generating POOSL models from stereotyped
UML diagrams. Although the proposed UML profile provides sufficient means
to automate generating the static structure of a POOSL model, guidelines are
needed for expressing the dynamic behaviour of a system in UML diagrams in
such a way that the tool can assist in deriving data and process methods.

Appendix A

Mathematical Preliminaries

This appendix establishes notation for several concepts of set theory and probability
theory. Based on that, a brief introduction to stochastic processes is given, together
with classical techniques for evaluating their long-run behaviour. An introductory
overview of some concepts of statistical analysis completes these mathematical pre-
liminaries. This appendix is inspired by [24, 95, 46, 105] and [104].

A.1 Sets, Functions, Operations and Algebras

Sets and Elements A set X is an unordered collection of items, which are referred
to as the elements of X . To indicate that item x is an element of X , x ∈ X is written.
The cardinality or size of X is represented with |X|; if the number of elements in X
is infinite, then |X| = ∞ is written. Set X is called countable in case the number of
elements in X is finite or denumerably infinite. A set with a single element is called
a singleton set. The set without any elements or empty set is denoted by ∅.

A set can be defined by enumerating all its elements like in {a, b} or {0, 1, 2, . . .}. The
dots in the latter example indicate that the enumeration of elements should be com-
pleted in a way that is evident from the listed elements. Another example is the set
{0, 1, . . . , 8, 9}, where the dots indicate that the enumeration of elements should be
completed until the last listed elements. The set of natural numbers {0, 1, 2, . . .} has
a denumerably infinite number of elements and is also denoted by N. R represents
the set of real numbers and contains an uncountable number of elements.

An alternative way of defining a set is by reference to elements of another set and
specifying a certain property that has to be satisfied by those elements. For example,
{n ∈ N | n is prime} defines the set of prime numbers by referring to those elements
ofN that satisfy the property of being prime.

Set Operations A set X is said to be a subset of set Y , denoted by X ⊆ Y , if every
element of X is also an element of Y . If X ⊆ Y , then Y is said to be a superset of X ,
which is also indicated with Y ⊇ X . The set containing all subsets of X is called the
powerset of X and is denoted by 2

X . The difference of X and Y , denoted by X \ Y ,

170 Mathematical Preliminaries

is the set of those elements in X that are not an element of Y . The union of the two
sets X and Y is indicated with X ∪ Y and their intersection with X ∩ Y . X and Y are
said to be disjoint in case X ∩ Y = ∅, while the sets X1, X2, . . . are pairwise disjoint if
Xi ∩ Xj = ∅ for every i 6= j.

Cartesian Product The Cartesian product of a set X with a set Y is denoted by X×Y
and indicates the set of all ordered pairs or ordered 2-tuples (x, y) with x ∈ X and y ∈ Y .
More generally, the n-dimensional Cartesian product X1 × . . . × Xn of sets X1, . . . , Xn

is the set of all ordered n-tuples (x1, . . . , xn) with xi ∈ Xi for all i. An ordered n-tuple
(x1, . . . , xn) ∈ X1 × . . .×Xn is also denoted by x, where xi is called the ith component
of x. The ith component of x is also often referred to by xi.

The n-dimensional Cartesian product of a set X is denoted by Xn. A sequence of
elements of X refers to an ordered n-tuple x ∈ Xn. A sequence x of elements in R
is called bounded (by b) if there exists a b ∈ R such that |xi| ≤ b for all i. A sequence
x ∈ Xn is called finite when n is finite. In case n is infinite instead, then x is called
infinite. The length of a sequence x is denoted by |x|. If sequence x ∈ Xn is finite then
|x| is defined as |x| = n − 1, whereas if n is infinite then |x| = ∞. A finite sequence
y ∈ Xn is called a prefix of sequence x ∈ Xm with m ≥ n if y

i
= xi for all i = 1, . . . , n.

In such case, y is also denoted by x1..n.

In accordance with conventions used in probability theory, a sequence is sometimes
denoted by {xi | i ∈ T }, where T denotes an ordered set of indices i.

Functions A function f from a set X to a set Y is a subset of X × Y , such that for
each x ∈ X there exists at most one y ∈ Y for which (x, y) ∈ f . If such a y exists,
then f(x) is said to be defined and y = f(x) denotes that f assigns y to x. On the
other hand, if such a y does not exist, f(x) is said to be undefined, which is denoted
by f(x) =⊥. The set {x ∈ X | f(x) 6=⊥} is called the domain of f . The range of f is
the set {y ∈ Y | y = f(x) with x ∈ X}. A function f from X to Y is called complete in
case the domain of f equals X . In such case, f : X → Y is written.

Operations An n-ary operation ⋆ on a set X is a function ⋆ : Xn → X , where the
number n is called the arity of ⋆. In such case, set X is said to be closed under ⋆.
An algebra is a set X accompanied with one or more n-ary operation(s) (with finite
n) defined on X . The terms unary and binary are used if the arity is 1 and 2 respec-
tively. The negation − is an example of an unary operation onR. Examples of binary
operations1 onR are the addition + and multiplication ·. In case x, y ∈ X and ⋆ is an
unary operation on X , the prefix notation y = ⋆x is often used to denote that y = ⋆(x).
Similarly, for x, y, z ∈ X and a binary operation ⋆ on X , the infix notation z = x ⋆ y is
commonly used to denote that z = ⋆(x, y).

In this thesis, the binary operation
.− (pronounced as monus) is defined on R as fol-

lows. For any x, y ∈ R,

x
.− y =

{

x − y if x > y

0 otherwise

1Notice that the division / is no binary operation onR but a complete function fromR×R\ {0} toR.

Probability 171

Extended Real Numbers The real number system refers to set R together with oper-
ations such as −, +, · and /. The extended real number system is derived from the real
number system and is based on the extended set of real numbers R̄, which is defined
as R̄ = R ∪ {−∞,∞} with −∞ < x < ∞ for all x ∈ R. To allow using similar
operations as those defined for R, the rules of arithmetic for the operations −, +, ·
and / are extended as presented in [95].

A.2 Probability

σ-Algebras Consider Ω as the non-empty set of all possible outcomes of an exper-
iment. The set Ω is often referred to as the sample space and the elements of Ω are
called samples or realisations. A set of subsets of Ω that contains Ω and is closed un-
der countable union and complement with respect to Ω is called a σ-algebra2 on Ω.
By the infinite form of De Morgan’s law, a σ-algebra is also closed under countable
intersection. The smallest possible σ-algebra on Ω is the set {∅, Ω} and the largest
possible is 2

Ω. A σ-algebra on Ω is said to be generated by a set A of subsets of Ω if it
is the intersection of all σ-algebras on Ω that contain A [24].

Events and Probability The elements of a σ-algebra F on sample space Ω are also
referred to as events to which probability can be assigned according to some prob-
ability measure. A probability measure P is a complete function that assigns a real
number in the interval [0, 1] to each event in F such that P(Ω) = 1 and

P(

∞
⋃

i=1

Xi) =

∞
∑

i=1

P(Xi)

for pairwise disjoint events X1, X2, . . . ∈ F . The latter is known as the property of
countable additivity.

If F is a σ-algebra on Ω and P is a probability measure on F , then the triple (Ω,F ,P)
is called a probability space and an event in F is also said to be measurable. For a
measurable event X , P(X) is called the probability of X . If P(X) = 0, then X is
called a null event. In case P(X) = 1, then X is said to be almost sure.

A useful result of the property of countable additivity is the following lemma, for
which a proof can be found in many text books on probability theory.

Lemma A.1 If X and Y are events in the σ-algebra F of a probability space (Ω,F ,P), then
P(X ∩ Y) ≥ P(X) +P(Y) − 1.

In accordance with conventions used in probability theory, the probability on the
countable intersection of events X1, X2, . . . ∈ F is often denoted by P(X1, X2, . . .).

Conditional Probability Let X,Y be events in the σ-algebra F of probability space
(Ω,F ,P). Provided that P(Y) > 0, the conditional probability on X given Y , denoted
by P(X | Y), is defined as

P(X | Y) =
P(X ∩ Y)

P(Y)

2Instead of σ-algebra, probability theory also uses the term σ-field.

172 Mathematical Preliminaries

which implies that P(X ∩ Y) = P(X | Y) ·P(Y).

A.3 Random Variables

Random Variables Consider the probability space (Ω,F ,P) where Ω = R̄ and F
is the σ-algebra3 generated by the set of intervals4 (a, b] with a, b ∈ R̄ and a < b. A
(real-valued) random variable on (Ω,F ,P) is a complete function X from Ω to R̄ such
that for any interval (a, b] with a, b ∈ R̄ and a < b, the set {ω ∈ Ω | X(ω) ∈ (a, b]}
is an event in F . Hence, the probability P({ω ∈ Ω | X(ω) ∈ (a, b]}), which is often
conveniently abbreviated to P(X ∈ (a, b]), exists.

The set of all random variables on (Ω,F ,P) is closed under the operations −, + and
· defined for R̄. Furthermore, if X and Y are random variables on (Ω,F ,P), then
X/Y is a random variable on (Ω,F ,P) provided that Y (ω) 6= 0 for all ω ∈ Ω [95].

Associated with every random variable is a distribution and distribution function.
The distribution of random variable X is the set of probabilities P(X ∈ (a, b]) with
a, b ∈ R̄ and a < b. The distribution function of random variable X is denoted by
FX : R̄ → [0, 1] and is defined as FX(b) = P(X ∈ (−∞, b]) for b ∈ R̄. A distri-
bution of special importance is the normal distribution. A random variable X with
parameters5 µ ∈ R and σ2 > 0 has a normal distribution, denoted by N(µ, σ2), if

FX(κ) =
1√

2πσ2

∫ κ

−∞

e−
(x−µ)2

2σ2 dx for κ ∈ R̄

A normally distributed random variable with parameters µ = 0 and σ2 = 1 is said
to have a standard normal distribution (denoted by N(0, 1)). The distribution function
FX(κ) of a random variable with N(0, 1) is commonly denoted by R(κ).

Independence For any finite n > 1, the random variables X1, . . . , Xn on probabil-
ity space (Ω,F ,P) are called independent if

P(

n
⋂

i=1

{ω ∈ Ω | Xi(ω) ∈ (ai, bi]}) =

n
∏

i=1

P(Xi ∈ (ai, bi])

for all intervals (ai, bi] with ai, bi ∈ R̄ and ai < bi. The random variables X1, X2, . . .
are independent if any finite number of them is independent. Random variables that
are independent and have the same distribution function are said to be independent
and identically distributed, which is abbreviated to i.i.d.

Discrete Random Variables A random variable X on probability space (Ω,F ,P)
is called discrete6 if there is a countable subset A of R̄ for which P(X ∈ A) = 1 [39].
Element a of A is called a possible value of X in case P(X ∈ {a}) > 0. The probability

3This σ-algebra is also known as the Borel σ-algebra on R̄.
4Notice that intervals refer to subsets of R̄. For example, interval (a, b] with a, b ∈ R̄ and a < b refers

to the set {x ∈ R̄ | a < x ≤ b}. In probability theory, such an interval is also called a Borel set.
5The parameters µ and σ2 of a random variable X with N(µ, σ2) denote the expectation and variance

of X respectively [95].
6Literature sometimes uses the term simple random variable instead of discrete random variable.

Stochastic Processes 173

P(X ∈ {a}) is also denoted by P(X = a). The distribution of X (over A) concerns
the probabilities P(X = a) for all a ∈ A [24].

Expectation and Variance The expectation or expected value of a discrete random
variable X on probability space (Ω,F ,P), denoted by E[X], is the weighted sum

E[X] =
∑

a∈A

a ·P(X = a)

For 1 ≤ i < ∞, the set of all discrete random variables X on (Ω,F ,P) for which
E[|X|i] < ∞ is denoted by Li. Notice that if random variable X ∈ Li+1, then also
X ∈ Li. In case X ∈ Li, the expected value of Xi is called the ith moment of X . The
first moment of X equals the expected value of X . The variance of a random variable

X ∈ L2, denoted by var[X], is defined as var[X] = E[(X −E[X])2] = E[X2]−E[X]
2.

The result of
√

var[X] is called the standard deviation of X and is denoted by std[X].

Lemma A.2 Let X be a discrete random variable in L2. In case var[X] = 0, then P(X =
E[X]) = 1.

Proof Assume that X is not equal to E[X] with probability 1. Then, there exists
an x 6= E[X] for which P(X = x) > 0. It has to be shown that var[X] > 0 in this case.
Indeed,

var[X] = E[(X −E[X])2] =
∑

a6=x

(a−E[X])2 ·P(X = a) + (x−E[X])2 ·P(X = x) > 0

since both (x −E[X])2 > 0 and P(X = x) > 0.

Covariance The covariance between two random variables X and Y in L2, denoted
by cov[X, Y], is defined as cov[X, Y] = E[(X − E[X])(Y − E[Y])] = E[XY] −
E[X]E[Y]. Provided that var[X] > 0 and var[Y] > 0, the correlation between X
and Y is defined as cov[X, Y]/

√

var[X]var[Y]. X and Y are said to be uncorrelated in
case cov[X, Y] = 0. If X and Y are independent, thenE[XY] = E[X]E[Y] and hence,
they are also uncorrelated. The other way around is in general not true. However,
if X and Y are jointly normally distributed (for a precise definition, see [132]) and
cov[X,Y] = 0, then they are independent [105].

A.4 Stochastic Processes

Stochastic Processes A discrete-time stochastic process on some probability space
(Ω,F ,P) is a sequence of random variables {Xi | i ∈ T }, where all random vari-
ables Xi are defined on (Ω,F ,P) and T = {1, 2, . . .}. The set T is referred to as the
time domain of the stochastic process and the elements of T are called time-epochs.
Instead of writing {Xi | i ∈ {1, 2, . . .}}, the notation {Xi | i ≥ 1} is often used.

For a discrete-time stochastic process {Xi | i ≥ 1} on (Ω,F ,P), where each random
variable Xi is discrete and assumes values in a countable set A, the probabilities of

174 Mathematical Preliminaries

all events in F are completely determined by the n-dimensional joint probabilities

P(X1 = a1, . . . , Xn = an) = P(

n
⋂

i=1

{ω ∈ Ω | Xi(ω) = ai}) =

P(X1 = a1) ·
n−1
∏

i=1

P({ω ∈ Ω | Xi+1(ω) = ai+1} |
i

⋂

k=1

{ω ∈ Ω | Xk(ω) = ak})

for all n ≥ 1 and ai ∈ A [39]. Often, this is conveniently rewritten to

P(X1 = a1) ·
n−1
∏

i=1

P(Xi+1 = ai+1 | Xk = ak for all 1 ≤ k ≤ i)

A discrete-time stochastic process {Xi | i ≥ 1} with Xi ∈ L2 for all i ≥ 1 is said
to be covariance-stationary (or weakly stationary) if both E[Xi] = E[Xj] and var[Xi] =
var[Xj] for all i, j ≥ 1 and cov[Xi, Xi+j] is independent of i for all j ≥ 1.

Long-run Behaviour Let X and X1, X2, . . . be random variables on some proba-
bility space (Ω,F ,P) that assume values in R. The sequence X1, X2, . . . is said to

converge almost surely to X , denoted by Xn
a.s.−→ X , if

P({ω ∈ Ω | lim
n→∞

Xn(ω) = X(ω)}) = 1

The set of all random variables on (Ω,F ,P) that converge almost surely is closed
under the negation, addition and multiplication operations defined on R [95]. The

sequence X1, X2, . . . is said to converge in distribution to X , denoted by Xn
d.−→ X , if

lim
n→∞

FXn
(b) = FX(b)

for all b ∈ R at which FX is continuous. In [95], it is proven that Xn
a.s.−→ X implies

Xn
d.−→ X , whereas it is also shown that the other way around is not necessarily

true.

The long-run behaviour of a discrete-time stochastic process {Xi | i ≥ 1}, where each
Xi assumes values in a countable subset of R, is denoted by

lim
n→∞

Xn = X

This notation refers to almost sure convergence of the sequence X1, X2, . . . unless
explicitly stated that another mode of convergence is meant.

Limit Theorems Several limit theorems exist for analysing the long-run behaviour
of discrete-time stochastic processes. Two of them are of special importance. The
strong law of large numbers states that if X1, X2, . . . are i.i.d. discrete random variables
in L1, then

1

n

n
∑

i=1

Xi
a.s.−→ E[X1]

Estimation of Expectation and Variance 175

The central limit theorem [24] states that in case X1, X2, . . . are i.i.d. discrete random
variables in L2 with expected value µ and variance σ2 > 0, then

√
n ·

1
n

n
∑

i=1

Xi − µ

σ

d.−→ N(0, 1)

A.5 Estimation of Expectation and Variance

For some n ≥ 1, let X1, . . . , Xn be i.i.d. random variables. Estimation concerns the
assessment of properties of the random variables X1, . . . , Xn such as expectation
and variance by means of statistical analysis. Statistical analysis involves the eval-
uation of a suitable (non-constant) function of the random variables X1, . . . , Xn for
computing plausible values of the property of interest from one or more realisations.
Such a function is called an estimator, while the evaluation result is called an estimate.
Estimates obtained for a certain property depend on the used realisations. Point esti-
mation intends to find the estimate that is as close as possible to the true value of the
property, while interval estimation aims at finding an interval of plausible values.

Point Estimation To ensure finding a point estimate θ̄ close to the true value θ of the
property that is being estimated, it is useful to require that the used point estimator

converges almost surely to θ. A point estimator θ̂ that converges almost surely to θ

is called strongly consistent7. Point estimator θ̂ is called unbiased in case its expected

value E[θ̂] is equal to the true value θ of the property being estimated. If the point

estimator θ̂ is not unbiased, the difference E[θ̂] − θ is called the bias of θ̂.

For some n ≥ 1, let X1, . . . , Xn be i.i.d. discrete random variables in L1 with expected
value µ and assume the objective is estimating µ. Then, the sample average µ̂ of the
random variables X1, . . . , Xn, defined as

µ̂ =
1

n

n
∑

i=1

Xi

is a strongly consistent point estimator for µ because µ̂
a.s.−→ µ by the strong law of

large numbers. Notice that sample average µ̂ is also unbiased since E[µ̂] = µ.

Now, for some n ≥ 1, let X1, . . . , Xn be i.i.d. discrete random variables in L2 with
expected value µ and variance σ2 and assume the objective is estimating σ2. Then
the sample variance σ̂2 of the random variables X1, . . . , Xn, defined as

σ̂2 =
1

n − 1

n
∑

i=1

(Xi − µ̂)2

is a strongly consistent point estimator for σ2 since σ̂2 a.s.−→ σ2 by the strong law of
large numbers. As shown in [46], sample variance σ̂2 is also unbiased.

7Notice that strong consistency is not a necessity for point estimators.

176 Mathematical Preliminaries

Interval Estimation To analyse how close a point estimate θ̄ is to the true value θ of
the property that is being estimated, confidence intervals can be used. A confidence
interval is an interval of plausible values for the property being estimated. The degree
of plausibility is specified with the confidence level. Confidence intervals are obtained
based on interval estimators for the property of interest. A γ interval estimator for θ is
a stochastic interval [ϕ1, ϕ2], for which the probabilityP(θ ∈ [ϕ1, ϕ2]) is greater than8

or equal to confidence level γ ∈ [0, 1]. Intuitively, this means that when repeatedly
performing estimations of θ, then in the long-run at least γ · 100% of the obtained
confidence intervals (realisations of [ϕ1, ϕ2]) wil indeed contain θ. In this thesis, a γ
interval estimator [ϕ1, ϕ2] for θ is also called a γ Confidence Interval for θ.

Definition A.1 (Confidence Interval) Let γ ∈ [0, 1] be a confidence level. A stochastic
interval [ϕ1, ϕ2], where the discrete random variables ϕ1 and ϕ2 assume values in R̄ such
that ϕ1 ≤ ϕ2, is called a γ Confidence Interval for µ ∈ R if P(µ ∈ [ϕ1, ϕ2]) ≥ γ. A
realisation [ϕ̄1, ϕ̄2] of the stochastic interval [ϕ1, ϕ2] is called a γ confidence interval for µ.

Confidence Intervals can sometimes be derived using the central limit theorem. For
some n ≥ 1, let X1, . . . , Xn be i.i.d. discrete random variables in L2 with expected
value µ and variance σ2 > 0. In case σ is known, then by the central limit theorem,

√
n · µ̂ − µ

σ

d.−→ N(0, 1)

which means that for every κ ∈ R

lim
n→∞

P
(

−κ ≤
√

(n) · µ̂ − µ

σ
≤ κ

)

= lim
n→∞

P
(

µ̂ − κσ√
n
≤ µ ≤ µ̂ +

κσ√
n

)

= 2R(κ) − 1

Hence, for a concrete point estimate µ̄ obtained with the sample average of the dis-
crete random variables X1, . . . , Xn, the interval estimate [ϕ̄1, ϕ̄2] with

ϕ̄1 = µ̄ − κσ√
n

and ϕ̄2 = µ̄ +
κσ√

n

is an (approximate) 2R(κ) − 1 confidence interval for µ.

Notice that for σ2 = 0, the central limit theorem cannot be applied. If σ2 = 0, then

µ̂ =
1

n

n
∑

i=1

Xi =
1

n

n
∑

i=1

µ = µ

by lemma A.2. Now, remark that [ϕ1, ϕ2] = [µ, µ] is still a valid 2R(κ)−1 Confidence
Interval for µ according to definition A.1. As a result, the condition σ2 > 0 for
obtaining valid confidence intervals can and will be discarded.

The collection of stochastic intervals satisfying the conditions in definition A.1 is also
referred to as the set of Confidence Intervals in this thesis.

8The classical definition of Confidence Intervals uses P(θ ∈ [ϕ1, ϕ2]) = γ, see [46].

Appendix B

Parallel Object-Oriented
Specification Language

To develop models of hardware/software systems for analysing their properties, the
Parallel Object-Oriented Specification Language (POOSL) can be used. Originally in-
troduced in [178, 179, 145], POOSL was extended in [55, 57] and [28] for expressing
time and stochasticity respectively, next to several other new features. POOSL is an
expressive modelling language with a small set of powerful primitives of which the
semantics is defined with mathematical axioms and rules. The formal semantics of
POOSL founds the application of model checking techniques for formal verification
of correctness properties [57] and Markov-chain based performance analysis tech-
niques [180]. It furthermore serves as a basis for unambiguous execution of models
with two different tools: SHESim and Rotalumis. This appendix gives an introduc-
tory overview of POOSL and briefly discusses accompanying tool support.

B.1 Syntax

This section summarises the most relevant aspects of the syntax of POOSL. The com-
plete syntax is defined in [28] using the Extended Backus-Naur Form (EBNF).

POOSL supports an object-oriented modelling approach and provides different ob-
ject classes for modelling data, processes and architectural structure in three layers.

Data Layer The data layer provides the use of data objects, which are instances of
data classes. Data objects are intended for modelling information that is generated,
interpreted, changed and consumed by the components of a system. Information
communicated between components is also modelled with data objects.

The definition of a data class involves a name, a single inheritance relation, instance
variables and instance methods. Every data class defined in POOSL eventually in-
herits from data class Object, which has no superclass. The instance variables or
global variables specify the attributes of a data object. Each data class inherits all

178 Parallel Object-Oriented Specification Language

instance variables of its superclass and may provide additional ones. The behaviour
of data objects, which is purely sequential, is defined by the instance methods or
(data)1 methods of the corresponding data class. Data classes inherit all methods de-
fined for their superclasses and may redefine methods or provide additional ones.
Data objects may receive a message from data objects or from processes, which leads
to the atomic execution of a method with the same name as the message. Upon
completion of executing a method, the result of a calculation or the data object itself
is returned. Hence, data objects are comparable to objects in traditional imperative
object-oriented programming languages such as Smalltalk [62] and Java [64].

Data methods are defined according to one of the following alternative forms:

m(p1 : Dp1 , . . . , pi : Dpi
) : Dr m(p1 : Dp1 , . . . , pi : Dpi

) : Dr

|l1 : Dl1 , . . . , lk : Dlk | |l1 : Dl1 , . . . , lk : Dlk |
E. primitive.

where m is the method name and Dr denotes the type2 of the returned object. The
lists p1 : Dp1 , . . . , pi : Dpi

and l1 : Dl1 , . . . , lk : Dlk denote respectively the declaration
of parameters and local variables for m. The body of a data method is either an
expression E or is provided by axioms in the semantics of POOSL, which is denoted
by the keyword primitive. Methods of the latter type are called primitive methods
and define behaviour that cannot be captured in terms of POOSL expressions.

Next to data class Object, for which primitive methods like =, !=, ==, deepCopy
and shallowCopy are defined, the data classes Boolean, Integer, Real, String
and Nil are predefined. Instances of data class Boolean evaluate to either true
or false, while data classes Integer and Real allow instantiating data objects
that represent integer and real numbers respectively. Various primitive methods
are defined for these classes that reflect standard operations. Instances of data class
String represent strings and the primitive methods of this class reflect standard
operations on strings. Data class Nil has only a single instance; the elementary data
object nil. Furthermore, data classes Array, FileIn, FileOut and RandomGene-
rator are predefined. Data class Array allows instantiating arrays of data objects
and includes primitive methods for modifying and retrieving the contents of arrays.
Data classes FileIn and FileOut include primitive methods for accessing files to
read or write data objects from/to files respectively. Instances of RandomGenera-
tor denote a uniform distribution over a bounded interval. Primitive method ran-
dom returns a Real according to a uniform distribution (0, 1), while primitive me-
thod randomInt, which has Integer parameter p, returns an Integer according
to a uniform distribution [0, p). The primitive method seed initialises the initial
value (seed) of the random number generator used for implementing random and
randomInt (see section B.3). Primitive method randomiseSeed initialises the seed
in an arbitrary way based on the real time at which randomiseSeed is evaluated.

The behaviour of non-primitive data methods is specified by expressions. Table B.1
summarises the syntax for the most relevant forms of expressions. Constant c refers
to an instance of data class Boolean, Integer, Real, String or Nil. Examples

1Prefixing methods by the word data or process is omitted when it is clear from the context what kind
of method is meant.

2If an object d is an instance of class D, then d is said to have type D [28].

Syntax 179

E = c constant
| x variable
| self reference self
| new(D) data object creation
| currentTime current model time
| x := E assignment
| E1;E2 sequential composition
| E ˆm(E1, . . . , Ei) (superclass) data method call
| if Ec then E1 else E2 fi choice
| while Ec do E od loop
| return E return

Table B.1: Expressions.

are true, 3.8 and "POOSL". The second expression evaluates to the object referred
to by variable x. The keyword self refers to the data object that is evaluating ex-
pression E. Evaluation of new(D) results in the creation of a new instance of data
class D3. Expression currentTime retrieves the current model time and can only be
used in the context of processes [28]. Expression x := E denotes the assignment of
the value to which E evaluates to variable x. Sequential composition of expressions
is denoted using a semicolon. Optional parenthesis enable to group expressions.

The next expression in table B.1 is the data method call. In case method m is de-
fined for a data class, expression E m(E1, . . . , Ei) denotes calling method m for the
instance of that data class to which E evaluates. Before actually evaluating such
a method call, expressions E and E1, . . . , Ei are evaluated from left to right. If
some data class D redefines or overrides a method m of its superclass by providing a
method m with the same number of parameters, E ˆm(E1, . . . , Ei) ensures explicitly
calling the method m of the superclass for the instance of D to which E evaluates.

Expression if Ec then E1 else E2 fi evaluates to the result of expression E1 in
case the condition Ec evaluates to true. Alternatively, when expression Ec evalu-
ates to false, the result is the result of expression E2. For loop while Ec do E od,
expression E is repeatedly evaluated as long as condition Ec evaluates to true. It
finishes when Ec evaluates to false. On completion of a data method call, expres-
sion return E returns the data object resulting from expression E.

Process Layer Hardware/software systems are usually considered as being com-
posed of concurrently operating components that communicate with each other. To
model the basic components, POOSL provides process objects or processes, which are
instances of process classes. Their behaviour is described in the process layer.

Defining a process class involves specifying a name, instantiation parameters and in-
stance variables, a port interface and message interface, instance methods, an initial
method call and an optional single inheritance relation. The instantiation parameters
and instance variables are the attributes of a process object. The difference between in-
stantiation parameters and instance variables is that instantiation parameters allow
parameterising the behaviour of a process at instantiation. Processes may commu-

3Instances of Boolean, Integer, Real and String are created by denoting their constant value.

180 Parallel Object-Oriented Specification Language

nicate (deepcopies of) their encapsulated data objects via ports. The port interface
lists the names of the ports via which instances of a process class may communi-
cate messages. The message interface lists the signatures of all possible messages and
includes for each message the port name, the symbol ! or ? for message send and
receive respectively, the message name and a (possibly empty) list of types of the
message parameters. The behaviour of processes is defined by the instance methods
or (process) methods of the corresponding process class. Methods may be called with
input parameters and may return results through output parameters. The starting
behaviour of a process is defined by the initial method call. In case an inheritance
relation is defined for a process class, it inherits the instantiation parameters and in-
stance variables, port interface and message interface as well as all the methods of
its superclass.

The behaviour defined by a process method is specified using the following syntax:

m(p1 : Dp1 , . . . , pi : Dpi
)(r1 : Dr1 , . . . , rj : Drj

)

|l1 : Dl1 , . . . lk : Dlk |
S.

where m is the method name and declarations p1 : Dp1 , . . . , pi : Dpi
, r1 : Dr1 , . . . , rj :

Drj
and l1 : Dl1 , . . . , lk : Dlk denote respectively the input parameters, output pa-

rameters and local variables for method m. The body of m is defined using the
(orthogonal) statements in table B.2.

S = E expression
| m(E1, . . . , Ei)(v1, . . . , vj) process method call
| par S1 and S2 and . . . and Sn rap parallel composition
| S1; S2 sequential composition
| Ep!m(E1, . . . , Ei){E} message send
| Ep?m(v1, . . . , vi | Ec){E} (conditional) message receive
| sel S1 or S2 or . . . Sn les non-deterministic selection
| [Ec]S guarded execution
| interrupt S1 with S2 interrupt
| abort S1 with S2 abort
| delay E time synchronisation
| if Ec then S1 else S2 fi choice
| while Ec do S od loop
| skip empty behaviour

Table B.2: Statements.

Most expressions are also valid statements [28] and using optional curly braces en-
forces atomic (indivisible) execution of E. Statement m(E1, . . . , Ei)(v1, . . . , vj) spec-
ifies that method m is called after expressions E1, . . . , Ei are evaluated from left to
right and bound to the input parameters of m. When completing execution of m, re-
sults are returned by binding the output parameters to variables v1, . . . , vj . Methods
without output parameters may be called tail-recursively. The statement for parallel
composition denotes the purely interleaved (non-deterministic) execution of state-
ments S1, . . . , Sn. With this statement, POOSL offers asynchronous concurrency
within processes next to the usual concurrency among processes. The behaviours

Syntax 181

specified with S1, . . . , Sn are called concurrent activities and share the data objects en-
capsulated by the owing process. Since operations on data objects are atomic, poten-
tial mutual exclusion problems are solved in a natural way. Sequential composition
of statements is denoted using a semicolon. Similar as for expressions, sequentially
composed statements can be grouped using the optional parenthesis.

The message send statement Ep!m(E1, . . . , Ei){E} denotes the synchronous sending
of message m to the port to which expression Ep evaluates. When a matching mes-
sage receive statement is available, parameters E1, . . . , Ei are evaluated from left
to right and deepcopies of their results are bound to the parameters of the corre-
sponding receive statement. The optional expression E between braces is evaluated
atomically after the message is sent. The complementary message receive statement
Ep?m(v1, . . . , vi | Ec){E} describes reception of message m on the port to which ex-
pression Ep evaluates. When a matching message send statement is available, the
parameters of the message are bound to variables v1, . . . , vi. However, such syn-
chronisation between a send statement and a receive statement can only occur if the
message names match, the number of parameters is equal and the optional reception
condition Ec (possibly depending on the received data objects) evaluates to true.
The receive statement may also be followed by an atomically evaluated expression.

Use of the statement sel S1 or S2 or . . . Sn les for non-deterministic selection
results in executing one of its non-blocking constituent statements S1, . . . , Sn. An
example of a statement that may block is the statement for guarded execution [Ec]S.
It blocks execution of S as long as the condition Ec evaluates to false.

The interrupt statement specifies that execution of S1 is suspended when statement
S2 executes. When S2 terminates, execution of S1 is resumed (and can be interrupted
by S2 again). The abort statement behaves similarly, but now S1 is terminated when
S2 executes. Statement delay E models postponing the execution of statements for
E units of time. It offers the only way to express quantitative timing behaviour. This
is sufficient since delay E can be combined with the interrupt and abort statements
to specify more intricate timing behaviour like time-outs or watchdogs [55]. It is
remarked that the time domain of a model can be discrete (then E may evaluate to
instances of Integer) or dense (then E may evaluate to instances of both Integer
and Real).

Statement if Ec then S1 else S2 fi results in executing statement S1 in case con-
dition Ec evaluates to true. If expression Ec evaluates to false, S2 is executed
instead. The loop while Ec do S od specifies repeated execution of statement S as
long as condition Ec evaluates to true. The skip statement provides a means for
specifying an (internal) action without an effect on the variables of a model.

Architecture Layer The architecture layer allows specification of the (hierarchical)
structure of components by providing the use of processes, clusters and channels.
Clusters are instances of cluster classes and group a set of processes and clusters (of
other cluster classes). The behaviour of clusters is defined by the parallel composi-
tion of the included processes and clusters and therefore does not extent their be-
haviour. Processes and clusters are statically interconnected via their ports by chan-
nels, over which messages can be communicated.

The definition of a cluster class involves a name, instantiation parameters, a port

182 Parallel Object-Oriented Specification Language

interface, a message interface and a behaviour specification. The instantiation param-
eters are the attributes of a cluster. The port interface and message interface are defined
in a similar way as for process classes. A behaviour specification defines how clusters
and processes are connected by channels using similar hiding and relabelling oper-
ators as in the process algebra CCS [122]. The behaviour specification also initialises
the instantiation parameters of processes and clusters with expressions [28].

Next to defining cluster classes, the architecture layer defines the system specification
of a model. The system specification includes a behaviour specification and a list of
all classes defined for a model. This behaviour specification defines how processes
and clusters are interconnected at the highest hierarchical level.

Although [145, 28] define a textual syntax for denoting behaviour specifications,
an intuitive graphical form of the syntax is defined as well in [145]. This thesis
merely uses the graphical form, which is exemplified in figure B.1. It shows the
behaviour specification of a cluster class C with parameters p1, . . . , pn, which en-
capsulates instances A and B of process classes P1 and P2. Their parameters are
initialised by expressions PE1, . . . , PEi and PE1, . . . , PEj respectively, which may
depend on p1, . . . , pn. Processes A and B may communicate via ports a and b re-
spectively over channel ch, which is also connected to port c of instances of C. The
textual representation of the behaviour specification of cluster class C is given by
(A : P1(PE1, . . . , PEi)[ch/a] ‖ B : P2(PE1, . . . , PEj)[ch/b])[c/ch]. Diagrams like
the one in figure B.1 are also called instance structure diagrams [145].

C (p
1
, � , p

n
)

c

c h

B : P
2
(P E

1
, � , P E

j
)

b

A : P
1
(P E

1
, � , P E

i
)

a

Figure B.1: Example of graphically denoting a behaviour specification.

B.2 Semantics

This section highlights some aspects of the semantics of POOSL defined in [28].
The denotational semantics of the data layer is based upon a probabilistic exten-
sion of traditional imperative object-oriented programming languages and supports
the object-oriented principles of encapsulation, single inheritance (including method
overriding) and polymorphism. The structural operational semantics of the process
and architecture layers is based on a probabilistic real-time extension [55, 57, 28] of
the process algebra CCS [122]. The probabilistic interpretation of statements speci-
fying the behaviour of processes originates from data objects that are derived from

Semantics 183

instances of the data class RandomGenerator [28]. For the process layer, the seman-
tics supports the object-oriented principles of encapsulation (of data objects) and
single inheritance (including method overriding), while for the architecture layer,
encapsulation (of processes and clusters) is supported.

Semantical Framework The semantics of POOSL is based on the two-phase execu-
tion model explained in [127]. The configuration (state) of a model can either change
by asynchronously performing actions or by synchronous consumption of time. Time
can only advance if there are no actions ready to be performed (action urgency).

The semantics of a POOSL model is given by a Plotkin-style [139] structural opera-
tional semantics and defines a timed probabilistic labelled transition system of the form

(C, Cs,A, { a−→⊆ C ×D(C) | a ∈ A}, T , { t−→⊆ C × C | t ∈ T +}) (B.1)

It includes a countable set C of configurations, each reflecting a possible state of the
model during its execution. The initial configuration Cs ∈ C represents the state of
the model at the start of its execution. A configuration (B, I) ∈ C includes4 the
specification of behaviour B that is to be executed in the context of information I. Be-
haviour B indicates the statements describing the (future) behaviour of an executing
model, while information I captures the data objects that are assigned to global and
local variables. The timed probabilistic labelled transition system (B.1) furthermore
includes a set A of actions, a time domain T and two sets of labelled transition rela-
tions. For A, three kinds of elements are distinguished:

• the internal action τ and fix action f , representing computations that are unob-
servable by the environment of an executing model5;

• communication actions of the following two forms. A send action p!m(v1, . . . , vn)
denotes sending message m with parameters v1, . . . , vn to port p, whereas the
receive action p?m(v1, . . . , vn) indicates receiving message m with parameters
v1, . . . , vn from port p.

The elements of the two sets of labelled transition relations are defined based on the
semantical rules and axioms for the statements in table B.2. The set { a−→⊆ C×D(C) |
a ∈ A} denotes the action transitions for a model, where D(C) is the set of distribution
functions6 over C;

D(C) = {π : C → [0, 1] |
∑

C∈C

π(C) = 1} (B.2)

When residing in configuration (B, I), relation (B, I)
a−→ π holds if action a ∈ A

can be performed, after which the model transits to configuration (B′, I ′) with prob-
ability π(B′, I ′), for each (B′, I ′) ∈ C. In case several (different) actions can be per-
formed, the choice of which action is actually executed is made non-deterministical-
ly. Then, a probabilistic choice determines the resulting configuration.

4Here, a simplification of the actual elements in a configuration is used. See [28] for a precise definition.
5For a discussion on the precise difference between internal action τ and fix action f , see [28].
6According to [28], the sum of probabilities �(C) for all C ∈ C can be less then 1 for some distribution

function � ∈ D(C) due to non-terminating loops. In this thesis, such loops are not considered.

184 Parallel Object-Oriented Specification Language

The set { t−→⊆ C×C | t ∈ T +} denotes the time transitions for a model. When residing

in configuration (B, I), relation (B, I)
t−→ (B′, I ′) holds if the time can pass for t ∈

T + units of time, where T + = {t ∈ T | t > 0}. Time transitions follow the concepts
presented in [181, 180]. A model only has time transitions for the maximal amount of
time that it is willing to wait before continuing with performing action transitions,
where it is implicitly understood that it is also willing to wait for a shorter time. As

a result, there is at most one t and (B′, I ′) for each (B, I) such that (B, I)
t−→ (B′, I ′)

holds. Hence, time transitions are deterministic (taken with probability 1).

Execution Framework Execution of a POOSL model is based on the execution
framework depicted in figure B.2. It includes a scheduler, a representation of all the
processes in a model and a representation of all the channels that interconnect them
(possibly through cluster boundaries). For each process, a virtual machine (VM) is
provided to execute the operations on data objects as specified with expressions. A
garbage collector (GC) automatically deletes any data object encapsulated by a pro-
cess, which has become unreachable or obsolete during execution.

VM
 GC

process

ET

VM
 GC

process

ET

channels

scheduler

Figure B.2: Framework for executing POOSL models (from [28]).

The semantics of the process and architecture layers guides the execution of a POOSL
model based on execution trees (ET) [57, 28]. Execution trees are data structures repre-
senting the configuration of processes and are derived from the model in accordance
with the semantical axioms and rules of the statements in table B.2. Depending on
its current configuration, a process issues requests for performing action and time
transitions. Requests for send and receive actions are submitted to the correspond-
ing channel. Channels combine complementary requests to single communication
requests, which are submitted to the scheduler. Requests for internal actions, fix ac-
tions and time actions go directly to the scheduler. In case requests for several action
transitions can be granted, the scheduler resolves the non-determinism in a proba-
bilistic way using a uniform distribution over the set of possible action transitions.

B.3 Tool Support

Currently, two different tools are available for executing POOSL models. SHESim
[58] is a graphical tool for incremental specification and modification of POOSL mod-

Tool Support 185

els that can be validated by interactive simulation, whereas the textual tool Rotalu-
mis [28] enables high-speed simulation after completing validating a POOSL model.

SHESim SHESim allows defining data and process classes with an intuitive graph-
ical user interface. The behaviour specification of the system specification and clus-
ter classes are defined by drawing instance structure diagrams. Figure B.3 shows a
snapshot that captures the editing of data, process and cluster classes with SHESim.

Figure B.3: Editing data, process and cluster classes with SHESim.

Next to the construction of POOSL models, SHESim supports their execution. With
the buttons at the bottom of the system-level editor window in figure B.3, a model
can be executed in different modes [58]. Several aspects of an executing model can
be visualised. Examples are scenario-based visualisation of the messages commu-
nicated over channels in both instance structure diagrams and interaction diagrams
[145], and the possibility to open inspectors on any data object, process, cluster or
channel during executing a model. Such inspectors show, for example, the data ob-
jects assigned to variables or the current configuration of a process. As illustrated in
figure B.4, the configuration of a process is reflected by a readable representation of
the involved execution tree, while statements that are to be executed are highlighted.

186 Parallel Object-Oriented Specification Language

Figure B.4: Simulation with SHESim.

SHESim is developed using the Smalltalk environment provided by VisualWorks
[58]. For automatic collection of obsolete data objects, SHESim relies on the garbage
collector incorporated in this environment. To enable a user-definable form of vi-
sualising data objects and to provide additional debugging facilities, SHESim offers
two additional primitive methods for data class Object. Method printString
has a String parameter, of which the value will be displayed when inspecting the
data object. Method error also has a String parameter and if error is called,
execution of the model is terminated and the parameter value is displayed.

Rotalumis Rotalumis is especially developed for high-speed execution of large
POOSL models. Whereas SHESim executes a POOSL model in an interpretive way,
Rotalumis compiles it into an intermediate byte code, which is executed on a vir-
tual machine implemented in C++. Compared to SHESim, this improves the execu-
tion speed by a factor of about 7 100. Obsolete data objects are deleted by a hybrid
garbage collector [28] based on reference counting and Baker’s Treadmill.

Figure B.5 depicts a snapshot of the screen output that Rotalumis produces during
execution of a model. Rotalumis merely displays information about the progress of a
simulation. For example, it indicates the running (or simulation) time (RT) of the ex-
ecution, the model (or simulated) time (ST) and the number of performed execution
steps (Steps) (action and time transitions in the timed probabilistic labelled transi-
tion system defined by a model, see also section B.2). Any simulation results that are
of interest can be logged to files by using the FileOut data class.

7The actual speedup factor depends on the ratio between the number of operations on data objects
(expressions) and the number of statements that have to be executed for a POOSL model.

Tool Support 187

**** Rotalumis high-speed execution engine.
*** Programmed by L.J. van Bokhoven. (c) 2001
** For more information visit: http://www.ics.ele.tue.nl/˜lvbokhov.
*

Garbage collector: incremental Baker’s treadmill.
Simulation time representation: 64-bit floating point.

Loading & compiling POOSL specification...

Running simulation...

RT: 0.22 Steps: 32769 ST: 0.0011098 GCCC: 0 VMC: 1.12746e+006
RT: 0.45 Steps: 65538 ST: 0.00194425 GCCC: 0 VMC: 2.21533e+006
RT: 0.66 Steps: 98307 ST: 0.00283991 GCCC: 0 VMC: 3.33673e+006
RT: 0.98 Steps: 131076 ST: 0.00377648 GCCC: 0 VMC: 4.44280e+006
RT: 1.24 Steps: 156434 ST: 0.00433246 GCCC: 0 VMC: 5.43233e+006

Figure B.5: High-speed execution with Rotalumis.

Random Number Generation To obtain random numbers for simulating proba-
bilistic behaviour, tools like SHESim and Rotalumis use random number generators.
A random number generator emulates drawing samples from the sample space of a
random variable in accordance with its distribution. This is accomplished by pro-
ducing a repetitive sequence of (pseudo) random numbers as described by a suit-
able algorithm. An essential issue for obtaining credible performance results is the
actual randomness of the generated random numbers [136]. This randomness de-
pends, amongst others, on the number of random numbers generated before repro-
ducing the sequence and the statistical independency of the generated random num-
bers [133]. Two random number generators with good properties are the Minimal
Standard [133], which was originally proposed in [109], and the recently developed
Mersenne Twister [117, 47]. The Minimal Standard repeatedly generates 231 − 1 dif-
ferent random number, while the Mersenne Twister has a periodicity of 219937 − 1.

POOSL allows the use of multiple instances of data class RandomGenerator to
model different distributions. To ensure the generation of nearly independent paral-
lel sequences of random numbers for the different instances of RandomGenerator,
two approaches can be distinguished:

• For each instance of RandomGenerator, a separate random number genera-
tor is used. Ensuring near independence of the parallel sequences with this
approach requires to initialise the random number generators with different
initial values (seeds) such that the parallel sequences of random numbers are
non-overlapping8. Choosing these seeds should not be done without properly
considering whether the parallel sequences are indeed non-overlapping [47].
Simply using another random number generator for producing the seeds is
generally insufficient for obtaining credible performance results [47].

• A single (master) random number generator produces the random numbers
for all instances of RandomGenerator. With this approach, each instance is
represented as a virtual random number generator that is nearly independent
from any other instance of RandomGenerator, thereby rendering the need for

8Notice that each random number generator uses the same algorithm for generating random numbers.

188 Parallel Object-Oriented Specification Language

initialising different seeds superfluous. The methods seed and randomise-
Seed may now initialise the seed of the master random number generator.

Notice that the second approach is preferred because it does not involve the difficult
task of proving that parallel sequences of random number are non-overlapping. Cur-
rently, both SHESim and Rotalumis base random number generation on the first ap-
proach using a separate Mersenne Twister for each instance of RandomGenerator.
The seeds are initialised automatically by another random number generator. Future
work includes implementing the second approach with the Mersenne Twister.

Next to generating random numbers for instances of RandomGenerator, SHESim
and Rotalumis require the use of a random number generator for probabilistically
resolving non-determinism in POOSL models. Both SHESim and Rotalumis use an
additional Mersenne Twister for this purpose. Its seed is fixed, which allows exact
reproduction of simulations9. For any simulation, it is assumed that the number
of random numbers needed for resolving non-determinism is much larger than the
number of random numbers required for instances of RandomGenerator. There-
fore, the random numbers generated for the different purposes are considered to be
nearly independent, which enables obtaining credible performance results.

9Exact reproduction of simulations requires that method randomiseSeed is not used in a model.

Bibliography

[1] M. Abramowitz and I.A. Stegun. Handbook of Mathematical Functions with For-
mulas, Graphs and Mathematical Tables. Dover Publications, New York (U.S.A.),
1965.

[2] Accellera. Property Specification Language Reference Manual. Available from:
http://www.accellera.org, April 2003. Version 1.01.

[3] C. Alexopoulos and A.F. Seila. Output Data Analysis for Simulations. In: B.A.
Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer (Eds.), Proceedings of the
Winter Simulation Conference (WSC’01), pp. 115–122. IEEE, Piscataway (U.S.A.),
2001.

[4] L. de Alfaro. How to Specify and Verify the Long-Run Average Behaviour of
Probabilistic Systems. In: Proceedings of the 13th IEEE Symposium on Logic in
Computer Science (Indianapolis, U.S.A., June 21–24), pp. 454–465, 1998.

[5] A.O. Allen. Probability, Statistics, and Queueing Theory; with Computer Science
Applications. Academic Press, San Diego (U.S.A.), 2nd edition, 1990.

[6] S. Andradóttir and N.T. Argon. Variance Estimation Using Replicated Batch
Means. In: B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer (Eds.), Pro-
ceedings of the Winter Simulation Conference (WSC’01), pp. 338–343. IEEE, Piscat-
away (U.S.A.), 2001.

[7] P.R. d’ Argenio, H. Hermanns, J.-P. Katoen, and R. Klaren. MoDeST – A Mod-
elling and Description Language for Stochastic Timed Systems. In: L. de Alfaro
and S. Gilmore (Eds.), Proceedings of the International Joint Workshop on Process
Algebra and Performance Modelling, Probabilistic Methods in Verification (PAPM-
PROBMIV’01) (Aachen, Germany, September 12-14), pp. 87–104. Springer-Verlag,
Berlin (Germany), 2001. LNCS 2165.

[8] R. Armoni, L. Fix, A. Flaisher, R. Gerth, B. Ginsburg, T Kanza, A. Landver,
S. Mador-Haim, E.Singerman, A. Tiemeyer, M.Y. Vardi, and Y. Zbar. The For-
Spec Temporal Logic: A New Temporal Property-Specification Language. In:
J.P. Katoen and P. Stevens (Eds.), Proceedings of the 8th International Conference
on Tools and Algorithms for the Construction and Analysis of Systems (TACAS’02),
pp. 296–311. Springer-Verlag, Berlin (Germany), 2002. LNCS 2280.

190 Bibliography

[9] A. Aziz, K. Sanwal, V. Singhal, and R. Brayton. Model-Checking Continuous-
Time Markov Chains. ACM Transactions on Computational Logic, 1 (1): pp. 162–
170, 2000.

[10] J.C.M. Baeten and W.P. Weijland. Process Algebra. Cambridge University Press,
1990.

[11] C. Baier, B. Haverkort, H. Hermanns, and J.P. Katoen. Automated Performance
and Dependability Evaluation Using Model Checking. In: M.C. Calzarossa
and S. Tucci (Eds.), Performance Evaluation of Complex Systems: Techniques and
Tools (Performance’02), pp. 261–289. Springer-Verlag, Berlin (Germany), 2002.
LNCS 2459.

[12] F. Balarin, E. Stentovich, M. Chiodo, H. Hsieh, B. Tabbara, A. Jurec-
ska, L. Lavagno, C. Passerone, K. Suzuki, and A. Sangiovanni-Vincentelli.
Hardware-Software Co-Design of Embedded Systems - The POLIS Approach. Kluwer
Academic Publishers, Dordrecht (The Netherlands), 1997.

[13] F. Balarin, Y. Wantanabe, H. Hsieh, L. Lavagno, C. Passerone, and A. Sangio-
vanni-Vincentelli. Metropolis: An Integrated Electronic System Design Envi-
ronment. IEEE Computer, 36 (4): pp. 45–52, 2003.

[14] N. Bauer. Deployment of SDL Systems Using UML. In: Proceedings of the 10th

International SDL Forum, pp. 107–122. Springer-Verlag, Berlin (Germany), 2001.
LNCS 2078.

[15] K. Beck, J.O. Coplien, R. Crocker, L. Dominick, G. Meszaros, F. Paulisch, and
J.M. Vlissides. Industrial Experience with Design Patterns. In: Proceedings
of the 18th International Conference on Software Engineering, pp. 103–114. IEEE
Computer Society, Los Alamitos (U.S.A.), 1996.

[16] P.D. Bergstrom, M.A. Ingram, A.J. Vernon, J.L.A. Hughes, and P. Tetali. A
Markov Chain Model for an Optical Shared-Memory Packet Switch. IEEE
Transactions on Communications, 47 (10): pp. 1593–1603, 1999.

[17] M. Bernardo. An Algebra-Based Method to Associate Rewards with EMPA
Terms. In: Proceedings of the 24th International Colloquium on Automata, Languages
and Programming (ICALP’97) (Bologna, Italy, July 7–11), pp. 358–368. Springer-
Verlag, Berlin (Germany), 1997. LNCS 1256.

[18] M. Bernardo and M. Bravetti. Reward Based Congruences: Can We Aggregate
More? In: L. de Alfaro and S. Gilmore (Eds.), Proceedings of the International
Joint Workshop on Process Algebra and Performance Modelling, Probabilistic Meth-
ods in Verification (PAPM-PROBMIV’01) (Aachen, Germany, September 12-14), pp.
136–151. Springer-Verlag, Berlin (Germany), 2001. LNCS 2165.

[19] M. Bernardo, M. Bravetti, and R. Gorrieri. Towards Performance Evaluation
with General Distributions in Process Algebra. In: D. Sangiorgi and R. de Si-
mone (Eds.), Proceedings of the 9th International Conference on Concurrency Theory
(CONCUR’98) (Nice, France, September), pp. 405–422. Springer-Verlag, Berlin
(Germany), 1998. LNCS 1466.

Bibliography 191

[20] M. Bernardo, N. Busi, and R. Gorrieri. A Distributed Semantics for EMPA
Based on Stochastic Contextual Nets. Computer Journal, 38 (7): pp. 492–509,
1995.

[21] M. Bernardo and R. Gorrieri. A Tutorial on EMPA: A Theory of Concurrent
Processes with Nondeterminism, Priorities, Probabilities and Time. Theoretical
Computer Science, 202 (1–2): pp. 1–54, 1998.

[22] G. Berry. The Esterel Language Primer (Version 5.20, Release 2.0). Ecole des Mines
and INRIA, Sophia-Antipolis (France), 1999.

[23] A.K. Bhattacharjee, S.D. Dhodapkar, and R.K. Shyamasundar. PERTS: An En-
vironment for Specification and Verification of Reactive Systems. Reliability
Engineering & System Safety, 71 (3): pp. 299–310, 2001.

[24] P. Billingsley. Probability and Measure. Wiley, New York (U.S.A.), 2nd edition,
1995.

[25] D.P. Bischak, W.D. Kelton, and S.M. Pollock. Weighted Batch Means for Con-
fidence Intervals in Steady-State Simulations. Management Science, 39 (8): pp.
1002–1019, 1993.

[26] M. Björkander and C. Kobryn. Architecting Systems with UML 2.0. IEEE
Software, 20 (4): pp. 57–61, 2003.

[27] A. Bohdanowicz and J.H. Weber. Simulations of Communication Systems via
Integrated Variance Reduction Techniques. In: Proceedings of the IEEE Semian-
nual Vehicular Technology Conference (VTC’03), pp. 22–25. IEEE, 2003.

[28] L.J. van Bokhoven. Constructive Tool Design for Formal Languages: From Seman-
tics to Executing Models. PhD thesis, Eindhoven University of Technology, Eind-
hoven (The Netherlands), 2002.

[29] T. Bolognesi and E. Brinksma. Introduction to the ISO Specification Language
LOTOS. Computer Networks and ISDN Systems, 14 (1): pp. 25–59, 1987.

[30] F. Boussinot and R. de Simone. The Esterel Language. Proceedings of the IEEE,
79 (9): pp. 1293–1304, September 1991.

[31] O.J. Boxma. Stochastic Performance Modelling. Eindhoven University of Tech-
nology, Eindhoven (The Netherlands), 2002. Lecture Notes.

[32] E. Brinksma and H. Hermanns. Process Algebra and Markov Chains. In:
E. Brinksma, H. Hermanns, and J.-P. Katoen (Eds.), Proceedings of the Inter-
national Workshop on Formal Methods and Performance Analysis (FMPA’00), pp.
183–231. Springer-Verlag, Berlin (Germany), 2001. LNCS 2090.

[33] P. Buchholz. Hierarchies in Colored GSPNs. In: M.A. Marsan (Ed.), Proceed-
ings of the 14th International Conference on Applications and Theory of Petri Nets
(Chicago, U.S.A., June 21–25), pp. 106–125. Springer-Verlag, Berlin (Germany),
1993. LNCS 691.

[34] P. Buchholz. Exact and Ordinary Lumpability in Finite Markov Chains. Journal
of Applied Probability, 31: pp. 59–75, 1994.

192 Bibliography

[35] P. Buchholz. Hierarchical Markovian Models: Symmetries and Reduction. Per-
formance Evaluation, 22: pp. 93–110, 1995.

[36] M. Bütow, M. Mestern, C. Schapiro, and P.S. Kritzinger. Performance Mod-
elling with the Formal Specification Language SDL. In: R. Gotzhein and
J. Bredereke (Eds.), Proceedings of the International Conference on Formal Descrip-
tion Techniques; Theory, Application and Tools, pp. 213–228. Chapman and Hall,
London (United Kingdom), 1996.

[37] Cadence. Virtual Component Codesign. Available from: http://www.caden-
ce.com.

[38] D. Choquet, P. l’ Ecuyer, and C. Léger. Bootstrap Confidence Intervals for
Ratios of Expectations. ACM Transactions on Modeling and Computer Simulation,
9 (4): pp. 326–348, October 1999.

[39] K.L. Chung. Markov Chains with Stationary Transition Probabilities. Springer-
Verlag, 2nd edition, 1967.

[40] C.E. Clark. Importance Sampling in Monte Carlo Analyses. Operations Re-
search, 9: pp. 603–620, 1961.

[41] G. Clark, S. Gilmore, and J. Hillston. Specifying Performance Measures for
PEPA. In: J.-P. Katoen (Ed.), Proceedings of the 5th International AMAST Work-
shop on Real-Time and Probabilistic Systems (Bamberg, Germany), pp. 211–227.
Springer-Verlag, Berlin (Germany), 1999. LNCS 1601.

[42] Coware. System Designer and System Verifier. Available from: http://
www.coware.com.

[43] M.A. Cranes and A.J. Lemoine. An Introduction to the Regenerative Method for
Simulation Analysis, volume 4 of Lecture Notes in Control and Information Sci-
ences. Springer-Verlag, 1977.

[44] J.A. Darringer, R.A. Bergamaschi, S. Bhattacharya, D. Brand, A. Herkersdorf,
J.K. Morrell, I.I Nair, P. Sagmeister, and Y. Shin. Early Analysis Tools for
System-on-a-Chip Design. IBM Journal of Research and Development, 46 (6): pp.
691–707, 2002.

[45] C. Derman. Finite State Markovian Decision Processes. Academic Press, New
York (U.S.A.), 1970.

[46] J.L. Devore. Probability and Statistics for Engineering and the Sciences. Brooks,
Monterey, California (U.S.A.), 1987.

[47] P. l’ Ecuyer. Software for Uniform Random Number Generation: Distinguish-
ing the Good and the Bad. In: B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W.
Rohrer (Eds.), Proceedings of the Winter Simulation Conference (WSC’01), pp. 95–
105. IEEE, Piscataway (U.S.A.), 2001.

[48] P. van Eijk. The Design of a Simulator Tool. In: P. van Eijk, C. Vissers, and
M. Diaz (Eds.), The Formal Description Technique LOTOS. North-Holland, Ams-
terdam (The Netherlands), 1989.

Bibliography 193

[49] E.A. Emerson and E.M. Clarke. Using Branching Time Temporal Logic to Syn-
thesize Synchronization Skeletons. Science of Computer Programming, 2 (3): pp.
241–266, 1982.

[50] A.J. van Ewijk. Performance Modeling of Hardware Systems with UML. Master’s
thesis, Eindhoven University of Technology, Eindhoven (The Netherlands),
August 2001.

[51] M. Fabian and B. Lennartson. Petri Nets and Control Synthesis: An Object-
Oriented Approach. In: P. Kopacek (Ed.), Proceedings of the IFAC Workshop
on Intelligent Manufacturing Systems (IMS’94), pp. 365–370. Pergamon, Oxford
(United Kingdom), 1994.

[52] G.S. Fishman. Principles of Discrete Event Simulation. John Wiley, New York
(U.S.A.), 1978.

[53] D.D. Gajski, J. Zhu, R. Dömer, A. Gerstlauer, and S. Zhao. SpecC: Specifica-
tion Language and Methodology. Kluwer Academic Publishers, Dordrecht (The
Netherlands), 2000.

[54] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of
Reusable Object-Oriented Software. Addison-Wesley, Reading (U.S.A.), 1995.

[55] M.C.W. Geilen. Real-Time Concepts for Software/Hardware Engineering. Master’s
thesis, Eindhoven University of Technology, Eindhoven (The Netherlands),
August 1996.

[56] M.C.W. Geilen. On the Construction of Monitors for Temporal Logic Proper-
ties. In: Proceedings of the 1st Workshop on Runtime Verification (RV’01) (Paris,
France, July 23), 2001.

[57] M.C.W. Geilen. Formal Techniques for Verification of Complex Real-Time Systems.
PhD thesis, Eindhoven University of Technology, Eindhoven (The Nether-
lands), 2002.

[58] M.C.W. Geilen, J.P.M. Voeten, P.H.A. van der Putten, L.J. van Bokhoven, and
M.P.J. Stevens. Object-Oriented Modelling and Specification Using SHE. Jour-
nal of Computer Languages, 27 (3): pp. 19 – 38, December 2001.

[59] L. Geppert. The New Chips on the Block. IEEE Spectrum, 38 (1): pp. 66–68,
January 2001.

[60] H. Giese, M. Kardos, and U. Nickel. Towards Design Verification and Valida-
tion at Multiple Levels of Abstraction. In: B. Kleinjohann, K.H. Kim, L. Klein-
johann, and A. Rettberg (Eds.), Proceedings If the 17th World Computer Congress
on Design and Analysis of Distributed Embedded Systems, pp. 71–80. Kluwer Aca-
demic Publishers, Norwell (U.S.A.), 2002.

[61] P.W. Glynn and D.L. Iglehart. Importance Sampling for Stochastic Simulations.
Management Science, 35 (11): pp. 1367–1392, 1989.

[62] A. Goldberg and D. Robson. Smalltalk-80: The Language. Addison-Wesley,
Reading, Massachusetts (U.S.A.), 1989.

194 Bibliography

[63] H. Gomma. Designing Concurrent, Distributed, and Real-Time Applications with
UML. Addison-Wesley, Reading, Massachusetts (U.S.A.), 2000.

[64] J. Gosling, B. Joy, and G. Steele. The Java Language Specification. Addison-
Wesley, Amsterdam (The Netherlands), 1996.

[65] N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and Distributed
System Design: The Integration of Functional Specification and Performance
Analysis Using Stochastic Process Algebras. In: E. Donatiello and R. Nelson
(Eds.), Performance Evaluation of Computer and Communication Systems (Perfor-
mance’93), pp. 121–146. Springer-Verlag, Berlin (Germany), 1993. LNCS 729.

[66] W.K. Grassmann, M.I. Taksar, and D.P. Heyman. Regenerative Analysis and
Steady-State Distributions for Markov Chains. Operations Research, 33 (5): pp.
1107–1116, 1985.

[67] M. Gries. Methods for Evaluating and Covering the Design Space during Early
Design Devlopment. Technical Report UCB/ERL/M03/32, Electronics Research
Laboratory, University of California at Berkeley, California (U.S.A.), August
2003.

[68] T. Grötker, S. Liao, G. Martin, and S. Swan. System Design with SystemC. Kluwer
Academic Publishers, Boston (U.S.A.), 2002.

[69] Object Management Group. OMG Unified Modeling Language Specification (Ver-
sion 1.5). Technical report, March 2003.

[70] H.A. Hanson. Time and Probabilities in Specification and Verification of Real-
Time Systems. In: Proceedings of the 4th Euromicro Workshop on Real-Time Sys-
tems, pp. 92–97. IEEE Computer Society, Los Alamitos (U.S.A.), 1992.

[71] P.G. Harrison and B. Strulo. SPADES - A Process Algebra for Discrete Event
Simulation. Journal of Logic Computation, 10 (1): pp. 3–41, 2000.

[72] P. Heidelberger. Fast Simulation of Rare Events in Queueing and Reliability
Models. Transactions on Modeling and Computer Simulation, 5 (1): pp. 43–85,
1995.

[73] P. Heidelberger and P.D. Welch. Simulation Run-Length Control in the Pres-
ence of an Initial Transient. Operations Research, 31 (6): pp. 1109–1144, 1983.

[74] T.A. Henzinger. It’s about Time: Real-Time Logics Reviewed. In: D. San-
giori and R. de Simone (Eds.), Proceedings of the 9th International Conference on
Concurrency Theory (CONCUR’98) (Nice, France, September 8–11), pp. 439–454.
Springer-Verlag, Berlin (Germany), 1998. LNCS 1466.

[75] D.P. Heyman. Accurate Computation of the Fundamental Matrix of a Markov
Chain. SIAM J. Matrix Anal. Appl., 16: pp. 954–963, 1995.

[76] J. Hillston. Compositional Markovian Modelling Using a Process Algebra. In:
W.J. Stewart (Ed.), Proceedings of the International Workshop on the Numerical So-
lutions of Markov Chains (Raleigh, U.S.A., January 16–18), pp. 177–196. Kluwer,
Boston (U.S.A.), 1995.

Bibliography 195

[77] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[78] R.A. Howard. Markov Models. Wiley, London (U.K.), 1971.

[79] J. Huang and J.P.M. Voeten. Predictability in Real-Time System Development
(1) Semantics Support from Development Languages. In: Proceedings of the
Forum on Specification and Design Languages (FDL’04) (Lille, France, September
14–17), pp. 264–277. ECSI, Gières, France, 2004.

[80] J. Huang, J.P.M. Voeten, P.H.A. van der Putten, A. Ventevogel, R. Niesten, and
W. van der Maaden. Performance Evaluation of Complex Real-Time Systems:
A Case Study. In: F. Karelse (Ed.), Proceedings of PROGRESS’02. STW Technol-
ogy Foundation, Utrecht (The Netherlands), 2002.

[81] J. Huang, J.P.M. Voeten, A. Ventevogel, and L.J. Van Bokhoven. Platform-
Independent Design for Embedded Real-Time Systems. In: E. Villar and
J. Mermet (Eds.), Languages for System Specification, Chapter 3. Kluwer Aca-
demic Publishers, Dordrecht (The Netherlands), 2004.

[82] Z. Huang, J.P.M. Voeten, A. Ventevogel, and R. Niesten. Performance Mod-
elling of the DECT Wireless Protocol. In: F. Karelse (Ed.), Proceedings
of PROGRESS’03, pp. 115–121. STW Technology Foundation, Utrecht (The
Netherlands), 2003.

[83] IBM. Blue Logic ASIC Cores. Available from: http://www.chips.ibm.com/
products/asics/products/cores.

[84] IBM. The CoreConnect Bus Architecture (White Paper). Available from:
http://www.chips.ibm.com/products/coreconnect, 1999.

[85] IBM. On-Chip Peripheral Bus; Architecture Specifications (Document SA-14-
2528-02). Available from: http://www-3.ibm.com/chips/techlib/techlib.nsf/
productfamilies/CoreConnect_Bus_Architecture, 2001.

[86] IEEE. Standard 830: IEEE Guide to Software Requirements Specification, April
1984.

[87] D.L. Iglehart. Simulating Stable Stochastic Systems, V: Comparison of Ratio
Estimators. Naval Research Logistics Quarterly, 22 (3): pp. 553–565, 1975.

[88] ITU-T. Recommendation Z.100: Specification and Description Language
(SDL), November 1999.

[89] ITU-T. Recommendation Z.109: SDL Combined with UML, November 1999.

[90] K. Jensen. Coloured Petri Nets: A High Level Language for System Design
and Analysis. In: G. Rozenberg (Ed.), Proceedings of the 10th International Confer-
ence on Applications and Theory of Petri Nets (Bonn, Germany, 1990), pp. 342–416.
Springer-Verlag, Berlin (Germany), 1991. LNCS 483.

[91] W.B. Joerg and K.T. Campbell. PSIM - A Simulator for Concurrent Execution
of Net-Based Programs. In: Proceedings of the IEEE Pacific Rim Conference on
Communications, Computer and Signal Processing 1995, pp. 517–520. IEEE, New
York (U.S.A.), 1995.

196 Bibliography

[92] G. de Jong. A UML-Based Design Methodology for Real-Time and Embedded
Systems. In: Proceedings of the Design, Automation and Test in Europe Conference
and Exhibition (DATE’02), pp. 776–779. IEEE Computer Society, Los Alamitos
(U.S.A.), 2002.

[93] S. Juneja and P. Shahabuddin. Fast Simulation of Markov Chains with Small
Transition Probabilities. Management Science, 47 (4): pp. 547–562, 2001.

[94] P. Kähkipuro. UML-Based Performance Modeling Framework for Com-
ponent-Based Distributed Systems. In: R. Dumke (Ed.), Proceeding of the 2th

International Conference on the Unified Modeling Language (UML’99), pp. 167–184.
Springer-Verlag, Berlin (Germany), 1999. LNCS 2047.

[95] A.F. Karr. Probability. Springer-Verlag, New York (U.S.A.), 1993.

[96] J.P. Katoen and P.R. d’ Argenio. General Distributions in Process Algebra.
In: Lectures on Formal Methods and Performance Analysis, pp. 375–429. Springer-
Verlag, New York (U.S.A.), 2001. LNCS 2090.

[97] S. Keshav. An Engineering Approach to Computer Networking; ATM Networks, the
Internet and the Telephone Network. Addison-Wesley, Reading, Massachusetts
(U.S.A.), 1998.

[98] K. Keutzer, S. Malik, R. Newton, J. Rabaey, and A. Sangiovanni-Vincentelli.
System Level Design: Orthogonalization of Concerns and Platform-Based De-
sign. IEEE Transactions on Computer-Aided Design of Circuits and Systems, 19
(12): pp. 1523–1543, 2000.

[99] B. Kienhuis, E.F. Deprettere, P. van der Wolf, and K. Vissers. A Methodology
to Design Programmable Embedded Systems - The Y-chart Approach. In: E.F.
Deprettere, J. Teich, and S. Vassiliadis (Eds.), Embedded Processor Design Chal-
langes: Systems, Architectures, Modeling and Simulation (SAMOS’02), pp. 18–37.
Springer-Verlag, Berlin (Germany), 2002. LNCS 2268.

[100] P.J.B. King and R.J. Pooley. Using UML to Derive Stochastic Petri Net Models.
In: N. Davies and J. Bradley (Eds.), Proceedings of the 15th UK Performance Engi-
neering Workshop (UKPEW’99) (Bristol, United Kingdom, July 22–23), pp. 45–56.
University of Bristol, Bristol (United Kingdom), 1999.

[101] J.P.C. Kleijnen. Statistical Techniques in Simulation (Part I), volume 9 of Statistics:
Textbooks and Monographs. Marcel Decker, New York (U.S.A.), 1974.

[102] L Kleinrock. Queueing Systems, Volume 1: Theory. Wiley Interscience, New York
(U.S.A.), 1975.

[103] R.D.J. Kramer. Performance Modelling of a Network Processor using POOSL. Mas-
ter’s thesis, Eindhoven University of Technology, Eindhoven (The Nether-
lands), January 2003.

[104] E. Kreyszig. Introductory Mathematical Statistics. John Wiley and Sons, 1970.

[105] A. Law and W. Kelton. Simulation Modeling and Analysis. McGraw-Hill, New
York (U.S.A.), 3rd edition, 2000.

Bibliography 197

[106] A.M. Law and J.S. Carson. A Sequential Procedure for Determining the Length
of a Steady-State Simulation. Operations Research, 27 (5): pp. 1011–1025, 1979.

[107] A.M. Law and M.G. McComas. How to Build Valid and Credible Simulation
Models. In: B.A. Peters, J.S. Smith, D.J. Medeiros, and M.W. Rohrer (Eds.),
Proceedings of the Winter Simulation Conference (WSC’01), pp. 22–29. IEEE, Pis-
cataway (U.S.A), 2001.

[108] S. Leue. Specifying Real-Time Requirements for SDL Specifications - A Tempo-
ral Logic-based Approach. In: P. Dembinski and M. Sredniawa (Eds.), Protocol
Specification, Testing and Verification XV, pp. 19–34. Chapman and Hall, London
(United Kingdom), 1997.

[109] P.A.W. Lewis, A.S. Goodman, and J.M. Miller. A Pseudo-Random Number
Generator for the System/360. IBM System’s Journal, 8: pp. 136–143, 1969.

[110] P. Lieverse, P. van der Wolf, K. Vissers, and E. Deprettere. A Methodology for
Architecture Exploration of Heterogeneous Signal Processing Systems. Journal
of VLSI Signal Processing Systems for Signal, Image and Video Technology, 29 (3):
pp. 197–207, 2001.

[111] G. Lopez. Modélisation, Simulation et Vérification d’un Protocole de Telecommuni-
cation. Master’s thesis, Eindhoven University of Technology, Eindhoven (The
Netherlands), 1998.

[112] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems.
Springer-Verlag, New York (U.S.A.), 1992.

[113] M.A. Marsan, A. Bobio, and S. Donatelli. Petri Nets in Performance Analysis:
An Introduction. In: W. Reisig and G. Rozenberg (Eds.), Lectures on Petri Nets
I: Basic Models, pp. 211–256. Springer-Verlag, Berlin (Germany), 1998. LNCS
1491.

[114] M.A. Marsan, G. Conte, and G. Balbo. A Class of Generalised Stochastic Petri
Nets for the Performance Evaluation of Multiprocessor Systems. ACM Trans-
actions on Computer Systems, 2 (2): pp. 93–122, 1984.

[115] P. Marwedel. Embedded System Design. Kluwer Academic Publishers, Dor-
drecht (The Netherlands), 2003.

[116] Mathworks. The Simulink Tool Suite. Available from: http://www.math-
works.com.

[117] M. Matsumoto and T. Nishimura. Mersenne Twister: A 623-dimensionally
Equidistributed Uniform Pseudorandom Number Generator. ACM Transac-
tions on Modeling and Computer Simulations: Special Issue on Uniform Random
Number Generation, 8 (1): pp. 3–30, January 1998.

[118] D.C. McNickle, K. Pawlikowski, and G. Ewing. Experimental Evaluation of
Confidence Interval Procedures in Sequential Steady-State Simulation. In:
J.M. Charmes, D.J. Morrice, D.T. Brunner, and J.J. Swain (Eds.), Proceedings of
the Winter Simulation Conference (WSC’96), pp. 382–389. SCS International, San
Diego (U.S.A.), 1996.

198 Bibliography

[119] M.S. Meketon and B. Schmeiser. Overlapping Batch Means: Something for
Nothing? In: S. Sheppard, U.W. Pooch, and C.D. Pegden (Eds.), Proceed-
ing of the Winter Simulation Conference (WSC’84), pp. 227–230. IEEE, New York
(U.S.A.), 1984.

[120] M. Meo, E. de Souze e Silva, and M.A. Marsan. Efficient Solution for a Class of
Markov Chain Models of Telecommunication Systems. Performance Evaluation,
27/28: pp. 603–625, 1996.

[121] S.P. Meyn and R.L Tweedie. Markov Chains and Stochastic Stability. Springer-
Verlag, Berlin (Germany), 1993.

[122] R. Milner. Communication and Concurrency. Prentice-Hall, Englewood Cliffs,
New Jersey (U.S.A.), 1989.

[123] R. Mirandola and V. Cortelessa. UML Based Performance Modeling of Dis-
tributed Systems. In: A. Evans, S. Kent, and B. Selic (Eds.), Proceedings of the 3rd

Conference on the Unified Modeling Language (UML’00), pp. 178–193. Springer-
Verlag, Berlin (Germany), 2000. LNCS 1939.

[124] M.K. Molloy. Performance Analysis using Stochastic Petri Nets. IEEE Transac-
tions on Computers, 31 (9): pp. 913–917, 1982.

[125] D.C. Montgomery and G.C. Runger. Applied Statistics and Probability for Engi-
neers. John Wiley and Sons, 1994.

[126] K. S. Namjoshi. Ameliorating the State Space Explosion Problem. PhD thesis,
University of Texas at Austin, 1998.

[127] X. Nicollin and J. Sifakis. An Overview and Synthesis on Timed Process Al-
gebras. In: K. Larsen and A. Skou (Eds.), Proceeding of the 3rd International
Workshop on Computer Aided Verification (CAV’91) (Ålborg, Denmark, July 1–4),
pp. 376–398. Springer-Verlag, Berlin (Germany), 1991.

[128] A. Niemegeers, G. de Jong, and M. de Langhe. Early System Co-Validation
Based on a Hierarchical Specification Flow. In: Proceedings of the 4th Interna-
tional High Level Design Validation and Test Workshop (HLDVT’99). IEEE Com-
puter Society, Los Alamitos (U.S.A.), 1999.

[129] W.D. Obal and W.H. Sanders. State-Space Support for Path-Based Reward
Variables. Performance Evaluation, 35 (3–4): pp. 233–251, 1999.

[130] OMG. UML Profile for Schedulability, Performance and Time Specification. OMG
Adopted Specification ptc/02-03-02, Object Management Group, March 2002.

[131] M. Rettelbach T. Ackermann P. Liggesmeyer, M. Rothfelder.
Qualitätssicherung Software-basierter technischer Systeme - Problembereiche
und Lösungsanzätze. Informatiek-Spektrum, 21 (5): pp. 249–258, 1998.

[132] A. Papoulis. Probability, Random Variables and Stochastic Processes. McGraw-
Hill, London (U.K.), 2nd edition, 1984.

[133] S.K. Park and K.W. Miller. Random Number Generators: Good Ones are Hard
to Find. Communications of the ACM, 31 (10): pp. 1192–1201, October 1988.

Bibliography 199

[134] B. Partee, A. ter Meulen, and R. Wall. Mathematical Methods in Linguistic.
Kluwer Academic Publishers, 1990.

[135] K. Pawlikowski. Steady-State Simulation of Queueing Processes: A Survey of
Problems and Solutions. ACM Computing Surveys, 22 (2): pp. 123–170, June
1990.

[136] K. Pawlikowski, H. D. J. Jeong, and J. S. R. Lee. On Credibility of Simulation
Studies of Telecommunication Networks. IEEE Communications Magazine, 40
(1): pp. 132–139, 2002.

[137] A.D. Pimentel, P. van der Wolf, E.F. Deprettere, L.O. Hertzberger, J.T.J Van
Eijndhoven, and S. Vassiliadis. The Artemis Architecture Workbench. In: J.P.
Veen (Ed.), Proceedings of PROGRESS’00 (Utrecht, The Netherlands, October 13),
pp. 69–78. STW Technology Foundation, Utrecht (The Netherlands), 2000.

[138] J. Plantin and E. Stoy. Aspects of System-Level Design. In: Proceedings of the 7th

International Workshop on Hardware/Software Codesign (CODES’99), pp. 209–210.
ACM, New York (U.S.A.), 1999.

[139] G.D. Plotkin. A Structural Approach to Operational Semantics. Technical Report
DAIMI FN-19, University of Aarhus, Aarhus (Denmark), 1981.

[140] R.J. Pooley. Using UML to Derive Stochastic Process Algebra Models. In:
N. Davies and J. Bradley (Eds.), Proceedings of the 15th UK Performance Engi-
neering Workshop (UKPEW’99) (Bristol, United Kingdom, July 22-23), pp. 23–34.
University of Bristol, Bristol (United Kingdom), 1999.

[141] R.J. Pooley and P.J.B. King. The Unified Modelling Language and Performance
Engineering. IEE Proceedings - Software, 146 (1): pp. 2–10, February 1999.

[142] Y. Pribadi, J.P.M. Voeten, and B.D. Theelen. Reducing Markov Chains for
Performance Evaluation. In: F. Karelse (Ed.), Proceedings of PROGRESS’01
(Utrecht, The Netherlands, October 18), pp. 173–179. STW Technology Founda-
tion, Utrecht (The Netherlands), 2001.

[143] M. Priestley. Practical Object-Oriented Design with UML. McGraw-Hill, London
(U.K.), 2nd edition, 2004.

[144] P.H.A. van der Putten. Specification of Complex Hardware/Software Systems. Eind-
hoven University of Technology, Eindhoven (The Netherlands), 2002. Lecture
Notes.

[145] P.H.A. van der Putten and J.P.M. Voeten. Specification of Reactive Hardware/Soft-
ware Systems. PhD thesis, Eindhoven University of Technology, Eindhoven
(The Netherlands), 1997.

[146] Rational. Rose Real Time (Also known as Rose Technical Developer). Available
from: http://www-3.ibm.com/software/awdtools/developer/technical.

[147] M. Ribaudo. Stochastic Petri Net Semantics for Stochastic Process Algebras.
In: Proceedings of the 6th International Workshop on Petri Nets and Performance
Models (Durham, U.S.A., October 3–6), pp. 148–157. IEEE Computer Society, Los
Alamitos (U.S.A.), 1995.

200 Bibliography

[148] C. Rowen. Reducing SoC Simulation and Development Time. IEEE Computer,
35 (12): pp. 29–34, December 2002.

[149] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, Amsterdam (The Netherlands), 1999.

[150] R.G. Sargent. Verification, Validation, and Accreditation of Simulation Models.
In: J.S. Joines, R.R. Barton, K.Kang, and P.A. Fishwick (Eds.), Proceedings of the
Winter Simulation Conference (WSC’00) (Orlando, Florida, December 10–13), pp.
50–59, 2000.

[151] A. Schmietendorf and E. Dimitrov. Possibilities of Performance Modelling
with UML. In: R. Dumke (Ed.), Proceedings of the 4th Conference on the Unified
Modeling Language (UML’01), pp. 78–95. Springer-Verlag, Berlin (Germany),
2001. LNCS 2047.

[152] L.W. Schruben. Detecting Initialization Bias in Simulation Output. Operations
Research, 30: pp. 569–590, 1982.

[153] L.W. Schruben. Confidence Interval Estimation using Standardized Time Se-
ries. Operations Research, 31 (6): pp. 1090–1108, 1983.

[154] B. Selic. The Real-Time UML Standard: Definition and Application. In:
B. Werner (Ed.), Proceedings of the Design, Automation and Test in Europe Confer-
ence and Exhibition (DATE’02), pp. 770–772. IEEE Computer Society, Los Alami-
tos (U.S.A.), 2002.

[155] B. Selic, G. Gullekson, and P. Ward. Real-Time Object-Oriented Modelling. Wiley
and Sons, New York (U.S.A.), 1994.

[156] P. Shahabuddin. Rare Event Simulation in Stochastic Models. In: C. Alexopou-
los, K. Kang, W.R. Lilegdon, and D. Goldsman (Eds.), Proceedings of the Winter
Simulation Conference (WSC’95), pp. 178–185. IEEE, New York (U.S.A.), 1995.

[157] G.S. Shedler. Regenerative Stochastic Simulation. Statistical Modeling and Deci-
sion Science. Academic Press Inc., London (U.K.), 1993.

[158] T.J. Sheskin. A Markov Partitioning Algorithm for Computing Steady-State
Probabilities. Operations Research, 33 (5): pp. 228–235, 1985.

[159] N. Sidorova and M. Steffen. Verifying Large SDL-Specifications Using Model
Checking. In: R. Reed and J. Reed (Eds.), Proceedings of the 10th International
SDL Forum, pp. 403–420. Springer-Verlag, Berlin (Germany), 2001. LNCS 2078.

[160] K. Skadron, M. Martonosi, D.I. August, M.D. Hill, D.J. Lilja, and V.S. Pai. Chal-
lenges in Computer Architecture Evaluation. IEEE Computer, 36 (8): pp. 30–36,
2003.

[161] P.J. Smith, M. Shafi, and H. Gao. Quick Simulation: A Review of Importance
Sampling Techniques in Communication Systems. Journal on Selected Areas in
Communications, 15 (4): pp. 597–613, 1997.

Bibliography 201

[162] A. Sokolova and E.P. de Vink. On Relational Properties of Lumpability. In:
F. Karelse (Ed.), Proceedings of PROGRESS’03 (Nieuwegein, The Netherlands, Oc-
tober 22). STW Technology Foundation, Utrecht (The Netherlands), 2003.

[163] B. Stroustrup. The C++ Programming Language. Addison-Wesley, Reading, Mas-
sachusetts (U.S.A.), 3rd edition, 1997.

[164] Synopsys. System Studio. Available from: http://www.synopsys.com.

[165] B.D. Theelen. Deliverable 2.1: Performance Modelling and Architecture Exploration
of the Dataflow System. Alcatel – TUE frame project: Structured System Design,
Eindhoven University of Technology, Eindhoven (The Netherlands), January
2002.

[166] B.D. Theelen. Deliverable 2.2: Guidelines for System-Level Methods on Abstrac-
tion and Refinement. Alcatel – TUE frame project: Structured System Design,
Eindhoven University of Technology, Eindhoven (The Netherlands), January
2002.

[167] B.D. Theelen, P.H.A. van der Putten, and J.P.M. Voeten. Using the SHE Method
for UML-based Performance Modelling. In: E. Villar and J. Mermet (Eds.), Sys-
tem Specification and Design Languages, Chapter 12, pp. 143–160. Kluwer Aca-
demic Publishers, Dordrecht (The Netherlands), 2003.

[168] B.D. Theelen and J.P.M. Voeten. Deliverable 1.1: Modelling the MPSR Switch
System using POOSL; Performance Analysis for System-Level Design. Alcatel –
TUE frame project: Performance Analysis, Technische Universiteit Eindhoven,
Eindhoven (The Netherlands), March 2000.

[169] B.D. Theelen and J.P.M. Voeten. Deliverable 1.2: Simulating the Evolved POOSL
Model of the MPSR Switch System; Performance Analysis for System-Level Design.
Alcatel – TUE frame project: Performance Analysis, Technische Universiteit
Eindhoven, Eindhoven (The Netherlands), May 2000.

[170] B.D. Theelen and J.P.M. Voeten. Deliverable 1.3: Guidelines for System-Level Meth-
ods and Tools; Performance Analysis for System-Level Design. Alcatel – TUE frame
project: Performance Analysis, Eindhoven University of Technology, Eind-
hoven (The Netherlands), June 2000.

[171] B.D. Theelen, J.P.M. Voeten, L.J. van Bokhoven, P.H.A. van der Putten, A.M.M.
Niemegeers, and G.G. Jong. Performance Modeling in the Large: A Case
Study. In: N. Giambiasi and C. Frydman (Eds.), Proceedings of the 13th European
Simulation Symposium (ESS’01) (Marseille, France, October 18–21), pp. 174–181.
SCS-Europe, Ghent (Belgium), 2001.

[172] B.D. Theelen, J.P.M. Voeten, and R.D.J. Kramer. Performance Modelling of a
Network Processor using POOSL. Journal of Computer Networks, 41 (5): pp.
667–684, April 2003.

[173] B.D. Theelen, J.P.M. Voeten, and Y. Pribadi. Accuracy Analysis of Long-run Av-
erage Performance Metrics. In: F. Karelse (Ed.), Proceedings of PROGRESS’01
(Veldhoven, The Netherlands, October 18), pp. 261–269. STW Technology Foun-
dation, Utrecht (The Netherlands), 2001.

202 Bibliography

[174] L. Thiele, S. Chakraborty, M. Gries, and S. Künzli. Design Space Explo-
ration of Network Processor Architectures. In: M.A. Franklin, P. Crowley,
H. Hadimioglu, and P.Z. Onufryk (Eds.), Network Processor Design: Issues and
Practices Volume, Chapter 4. Morgan Kaufman, 2002.

[175] H.C. Tijms. Stochastic Models; An Algorithmic Approach. John Wiley & Sons,
Chichester (England), 1994.

[176] M.Y. Vardi. Automatic Verification of Probabilistic Concurrent Finite-State Pro-
grams. In: Proceedings of FOCS’85, pp. 327–338. IEEE Computer Society Press,
1985.

[177] M. Verhappen, J.P.M. Voeten, and P.H.A. van der Putten. Traversing the Fun-
damental System-Level Design Gap Using Modelling Patterns. In: Proceedings
of the Forum on Specification and Design Languages (FDL) 2003 (Frankfurt, Ger-
many, September 23–26). Kluwer Academic Publishers, 2003.

[178] J.P.M. Voeten. POOSL: An Object-Oriented Language for the Analysis and Design
of Hardware/Software Systems. EUT report 95-E-290, Eindhoven University of
Technology, Eindhoven (The Netherlands), 1995.

[179] J.P.M. Voeten. Semantics of POOSL: An Object-Oriented Specification Language
for the Analysis and Design of Hardware/Software Systems. EUT report 95-E-293,
Eindhoven University of Technology, Eindhoven (The Netherlands), 1995.

[180] J.P.M. Voeten. Performance Evaluation with Temporal Rewards. Performance
Evaluation, 50 (2/3): pp. 189–218, November 2002.

[181] J.P.M. Voeten, M.C.W. Geilen, L.J. van Bokhoven, P.H.A. van der Putten, and
M.P.J. Stevens. A Probabilistic Real-Time Calculus for Performance Evaluation.
In: G. Horton, D. Möller, and U. Rüde (Eds.), Proceedings of the 11th European
Simulation Symposium (ESS’99) (Erlangen, Germany, October 26–28), pp. 608–617.
SCS-Europe, Delft (The Netherlands), 1999.

[182] P.D. Welch. The Statistical Analysis of Simulation Results. In: S.S. Lavenberg
(Ed.), The Computer Performance Modeling Handbook, pp. 267–329. Academic
Press, New York (U.S.A.), 1983.

[183] F.N. van Wijk. System-Level Modelling and Design-Space Exploration. PhD thesis,
Eindhoven University of Technology, to appear.

[184] F.N. Van Wijk, J.P.M. Voeten, and A.J.W.M. ten Berg. An Abstract Modeling
Approach Towards System-Level Design-Space Exploration. In: E. Villar and
J. Mermet (Eds.), System Specification and Design Languages, Chapter 22, pp.
267–282. Kluwer Academic Publishers, Dordrecht (The Netherlands), 2003.

[185] G.A.J. Willemse. Research on Design Methods for Hard/Software Systems; Use of
UML in the context of SHE. Master’s thesis, Eindhoven University of Technol-
ogy, Eindhoven (The Netherlands), March 2001.

[186] V.D. Živković and P. Lieverse. An Overview of Methodologies and Tools in the
Field of System-Level Design. In: Embedded Processor Design Challenges: Sys-
tems, Architectures, Modeling and Simulation (SAMOS’01), pp. 74–88. Springer-
Verlag, Berlin (Germany), 2002. LNCS 2268.

Glossary of Symbols

This glossary lists where some (non-standard) mathematical symbols are introduced.

Symbol Description Page

⊥ Undefined 170

x
.− y Monus Operator 170

R̄ Extended Reals 171
|X| Set Cardinality 169
2

X Powerset 169
P(X) Probability 171
P(X | Y) Conditional Probability 171
P∗(U) Conditional Probability 21
πT Equilibrium Probability 23
N(µ, σ2) Normal Distribution 172
N(0, 1) Standard Normal Distribution 172
R(κ) Distribution Function of N(0, 1) 172
vi

Sr
Random Variables 24

tkSr
Random Variables 24

Y k
Sr

Random Variables 24
Uk

Sr
Random Variables 25

Lk
Sr

Random Variables 26
Li Li Space 173
E[X] Expectation 173
var[X] Variance 173
std[X] Standard Deviation 173
cov[X] Covariance 173
θ̄ Point Estimate 175

θ̂ Point Estimator 175

X
a.s.−→ Y Almost Sure Convergence 174

X
d.−→ Y Convergence in Distribution 174

x Sequence 170
xi Component of Sequence 170
|x| Sequence Length 170
x1..n Sequence Prefix 170
x Thin Cylinder 20
U Generalised Cylinder 21

204 Bibliography

Symbol Description Page

ZT
S Set of State Sequences 22

U ◦ V Concatenation 22
X↾c Reduced to c 33
T Time Domain 173, 183
T + Positive Time 184
D(C) Set of Distribution Functions 183

C
a−→ π Action Transition 183

C
t−→ C ′ Time Transition 184

C
a,p
=⇒ C ′ Action Transition 66

C
t

=⇒ C ′ Time Transition 67
− No Transition 67
Θ Previous-Reward Operator 51
⊤ Progress in Model Time 50
currentT ime Current Model Time 72
∆ Duration in Model Time 50

Index

A
abstraction . 7
accuracy . 11, 27
action transition 62, 183
active resource 110
adequate . 7
algebra . 170
algebra of Confidence Intervals 56

B
batch-means technique 79
bounded . 170

C
central limit theorem 175
classical point estimator 27
cluster . 112, 181
cluster class112, 181
communication action 183
concept model 104
concurrent activity 181
Confidence Interval 176
confidence interval 176
container data class 122
container data object 122
correct design . 2
countable additivity 171
covariance-stationary 174
coverage . 93
cycle . 22
cylinder . 20

D
data abstraction 118
data class . 110, 177
data method 110, 178
data object 110, 177
design method . 6
design methodology 6
design space . 2

desired properties 105

E
ergodic theorem 25
evaluation. .107
executable model106
existence theorem 19
expression . 178
expressive power 7

F
feasible design. .2
final set . 21
fix action . 183
formal . 8, 9
formal semantics 8
formalisation . 106
formulation . 104

G
generalised cylinder 21
generalised processor sharing 125
guideline . 6

I
initial set . 21
instance structure diagram . . . 116, 182
interaction diagram 138, 185
internal action . 183
interval estimation 175
intuitive . 7

J
joint probability 174

L
labelled transition system

timed probabilistic 62, 183
long-run sample average 24

conditional 31
long-run sample variance

206 Index

conditional 49
long-run time average

conditional 50
long-run time variance

conditional 52

M
Markov chain . 19

ergodic . 23
reduced. .34

Markovian property 18
maximal progress 65
model . 3
model-checking . 9
modelling language 6
modelling pattern 11, 117
monitor . 9, 106
monus . 170
multiple . 123

P
passive resource 110
performance metric 23
performance modelling 5
point estimation 175
positive state . 23
previous-reward operator 51
primitive method 110, 178
probability . 171

conditional 21, 171
probability space 171
process . 111, 179
process class . 179
process method 111, 180
proper set . 21
property specification language 6

R
random number generator 187
random variable 172
rare event . 77
reachable state . 22
receive action . 183
recurrence condition.76
recurrent state . 22
reduction technique 37
reflexive . 9
regenerative cycle 22
relevant state . 31

reward function 23
conditional 31
proper . 29

S
sample average 175
sample variance 175
scheduler . 65
send action . 183
set of Confidence Intervals 176
σ-algebra .171
statement . 180
strong law of large numbers 174
strongly consistent 175
system-level design. 3

T
technique. .6
technique of regenerative cycles . . . 75
thin cylinder . 20
time transition 62, 184
time-epoch . 173
time-homogeneous 18
tool .6
transient state . 22

V
validation . 4
verification . 5

W
warm-up period 81

Curriculum Vitae

Bart Theelen was born on November 15, 1974 in Heerlen, the Netherlands. In 1993,
he received his Atheneum diploma from the Bisschoppelijk College Sittard.

From 1993, Bart Theelen studied Information Technology at the Department of Elec-
trical Engineering of the Eindhoven University of Technology in the Netherlands.
As a trainee, he did a project on concepts for a single-chip multi-processor plat-
form with an on-chip real-time operating system kernel and a project on the de-
tection of symmetries in data flow graphs to improve the efficiency of constraint-
analysis based design automation tools. Furthermore, he performed a project at the
Forschungszentrum Jülich in Germany, in which he contributed to the development
of a tool for analysing the communication of messages between the processors of
Cray T3E supercomputers. His graduation project was on modelling WDM net-
works and resulted in an extensive report on coherencies between several telecom-
munication standards of IEEE, ITU, ISO and ANSI. He received his M.Sc. degree in
Information Technology from the Eindhoven University of Technology in 1999.

Since 1999, Bart Theelen worked towards his Ph.D. degree on performance mod-
elling for system-level design at the Information and Communication Systems group
of the Eindhoven University of Technology. He contributed to the development of
techniques for performance analysis and proposed a method for applying them dur-
ing system-level design of hardware/software systems. In addition, he performed
three industrial case studies. In cooperation with Alcatel Bell in Antwerp, Belgium,
he analysed the performance of product variants of a backbone Internet Router and
the performance of design alternatives for the memory arbitration in the Internet
Router’s input buffer subsystems. In cooperation with IBM Research Laboratory
in Zürich, Switzerland, he contributed to analysing the performance of a network
processor. While obtaining his Ph.D. degree, he also performed various educational
tasks including the coaching of four graduate students and five trainees.

List of Refereed Publications

• B.D. Theelen, A.C. Verschueren, V.V. Reyes Suárez, M.P.J. Stevens, and A.
Nuñez. A Scalable Single-Chip Multi-Processor Architecture with On-Chip
RTOS Kernel. In: M. Edwards and L. Józwiak (Eds.), Journal on Systems Ar-
chitecture, 49 (12–15): pp. 619–639, December 2003.

• B.D. Theelen, P.H.A. van der Putten, and J.P.M. Voeten. Using the SHE Method
for UML-based Performance Modelling. In: E. Villar and J. Mermet (Eds.),

208 Index

System Specification and Design Languages, Chapter 12, pp. 143–160. Kluwer
Academic Publishers, Dordrecht (The Netherlands), 2003

• B.D. Theelen, J.P.M. Voeten, and R.D.J. Kramer. Performance Modelling of a
Network Processor using POOSL. Journal of Computer Networks, 41 (5): pp. 667–
684, April 2003.

• B.D. Theelen, P.H.A. van der Putten, and J.P.M. Voeten. Using the SHE Method
for UML-based Performance Modelling. In: F. Pourchelle (Ed.), Proceedings
of the Forum on Specification and Design Languages (FDL’02) (Marseille, France,
September 24–27). ECSI, Gieres (France), 2002.

• B.D. Theelen and A.C. Verschueren. Architecture Design of a Scalable Single-
Chip Multi-Processor. In: M. Edwards (Ed.), Proceedings of the Euromicro Sym-
posium on Digital System Design (DSD’02) (Dortmund, Germany, September 4–6),
pp. 132–139. IEEE Computer Society, Los Alamitos (U.S.A.), 2002.

• B.D. Theelen, J.P.M. Voeten, P.H.A. van der Putten, H.J.S. Dorren, and M.P.J.
Stevens. Concurrent Support of Higher-layer Protocols over WDM. Photonic
Network Communications, 4 (1): pp. 47–62, January 2002.

• B.D. Theelen, J.P.M. Voeten, L.J. van Bokhoven, P.H.A. van der Putten, A.M.M.
Niemegeers, and G.G. de Jong. Performance Modeling in the Large: A Case
Study. In: N. Giambiasi and C. Frydman (Eds.), Proceedings of the 13th European
Simulation Symposiom (ESS’01) (Marseille, France, October 18–21), pp. 174–181.
SCS Europe, Ghent (Belgium), 2001.

• B.D. Theelen, J.P.M. Voeten, and Y. Pribabi. Accuracy Analysis of Long-run Av-
erage Performance Metrics. In: F. Karelse (Ed.), Proceedings of PROGRESS’01
(Veldhoven, The Netherlands, October 18), pp. 261–269. STW Technology Foun-
dation, Utrecht (The Netherlands), 2001.

• B.D. Theelen, J.P.M. Voeten, L.J. van Bokhoven, G.G. de Jong, A.M.M. Nie-
megeers, P.H.A. van der Putten, M.P.J. Stevens, and J.C.M. Baeten. System-
Level Modelling and Performance Analysis. In: J.P. Veen (Ed.), Proceedings of
PROGRESS’00 (Utrecht, The Netherlands, October 13), pp. 141–147. STW Tech-
nology Foundation, Utrecht (The Netherlands), 2000.

• B.D. Theelen, J.P.M. Voeten, P.H.A. van der Putten, H.J.S. Dorren, and M.P.J.
Stevens. Modelling Optical WDM Networks using POOSL. In: J.P. Veen (Ed.),
Proceedings of ProRISC’99 (Mierlo, The Netherlands, November 24–26), pp. 503–
508. STW Technology Foundation, Utrecht (The Netherlands), 1999.

Stellingen

behorende bij het proefschrift

Performance Modelling for System-Level Design

van Bartholomeus Desiderius Theelen

1. In case a tool relies on a modelling language for which a rigorous framework
to compute performance metrics is missing (such as for C++ based languages),
simulation-based estimation with this tool cannot lead to credible results.

2. The hardest part of system-level design is making adequate abstractions when
developing models of design alternatives.

3. The success of a design method based on a new superior modelling language
does not only depend on the availability of accompanying user-friendly and
efficient tools, but also on the willingness to learn the new modelling language.

4. Moore’s Law is al lang geen gevolg van de technologische vooruitgang meer,
maar eerder een oorzaak.

5. Terminologie kan heel verhelderend werken maar kan net zo goed veel ver-
warring veroorzaken. Zo weten hardware en software ontwerpers goed wat er
met een ’architectuur’ wordt bedoeld, totdat ze met elkaar gaan praten.

6. Om de computers van morgen efficiënt te kunnen ontwerpen zouden we van-
daag al over de computers van overmorgen moeten beschikken.

7. Het onderbouwen van de kwaliteit en originaliteit van de ideeën die aan een
proefschrift ten grondslag liggen kost vaak meer tijd dan het bedenken van die
ideeën.

8. Het succes van een uitvinding is vooral te meten aan de eenvoud waarmee
deze een probleem oplost.

9. De Nederlandse regering zou als een goed gedirigeerd orkest moeten werken.
Helaas is het in de praktijk vaak te vergelijken met een rommelig toneelstuk
waarbij onduidelijk is waarvoor de acteurs staan.

10. Het zeen neet allein de vlaaj, het vouksleed, de väöle fiesten, en het sjoene
landjsjap det Limburgers oet Belsj en Holles mit ein vereinigt, mer veural de
sósjaal-kulturele versjille mit angere Vlaminge en Hollenjers.

	Summary
	Samenvatting
	Acknowledgement
	Contents
	1. Introduction
	2. Mathematical techniques for performance evaluation
	3. Reflexive performance analysis with POOSL
	4. Extending the SHE method for performance modelling
	5. Case studies
	6. Conclusions
	App. A: Mathematical preliminaries
	App. B: Parallel object-oriented specification language
	Bibliography
	Glossary of symbols
	Index
	Curriculum Vitae
	Stellingen

