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Nowadays, automation is present in every aspect of our daily life and has some

benefits. Nonetheless, empirical data suggest that traditional automation has many

negative performance and safety consequences as it changed task performers into task

supervisors. In this context, we propose to use recent insights into the anatomical and

neurophysiological substrates of actionmonitoring in humans, to help further characterize

performancemonitoring during system supervision. Error monitoring is critical for humans

to learn from the consequences of their actions. A wide variety of studies have shown that

the error monitoring system is involved not only in our own errors, but also in the errors

of others. We hypothesize that the neurobiological correlates of the self-performance

monitoring activity can be applied to system supervision. At a larger scale, a better

understanding of system supervision may allow its negative effects to be anticipated

or even countered. This review is divided into three main parts. First, we assess the

neurophysiological correlates of self-performance monitoring and their characteristics

during error execution. Then, we extend these results to include performance monitoring

and error observation of others or of systems. Finally, we provide further directions in

the study of system supervision and assess the limits preventing us from studying a

well-known phenomenon: the Out-Of-the-Loop (OOL) performance problem.

Keywords: Performance monitoring, error-related negativity, feedback-related negativity, neuroergonomics, error
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1. AUTOMATION AND SUPERVISION DIFFICULTY

In the past decades, automation has become increasingly present in our daily life. Whether at
work or at home, we interact more and more with sophisticated automated computer systems
and software designed to assist us in our daily activities. More radical changes are anticipated in
the future, as computers grow in power, speed and “intelligence”. We have usually focused on
the perceived benefits of automation. Automation has enabled processes to become faster (e.g.,
traveling by plane), easier (e.g., in industrial production lines) and safer (e.g., automated processes
in cars) to use (Kaber et al., 2000). However, these advances mask the fact that automation does
not replace human activity, but rather modifies it, often in ways unintended and unanticipated
by system designers (Carmody and Gluckman, 1993; Parasuraman et al., 2000). People who
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were previously performing manual activities have now moved
on to more supervisory tasks (Sheridan, 1992, 1997), requiring
high levels of awareness over long periods of time (Sheridan and
Parasuraman, 2005). Bainbridge (1983) stated that There are two
general categories of task left for an operator in an automated
system [. . . ] to monitor [. . . ] or to take over.” This change in
activity has led to new cognitive dysfunctions: a loss of operator
situational awareness with respect to the automated system
(Endsley, 1996), over-reliance toward highly reliable automated
systems (the complacency phenomenon; Parasuraman et al.,
1993), a decrease in vigilance (Moray and Inagaki, 2000; Sheridan
and Parasuraman, 2005) and a decline in human performance
(e.g., decision biases and failures of monitoring; Wiener, 1988;
Parasuraman and Riley, 1997). This set of difficulties is called
the Out-Of-the-Loop (OOL) phenomenon. Given the role
of supervision in human-system interactions, and the fact
that it triggers new dysfunctions, research about performance
monitoring in an automated environment seems relevant.

The performance monitoring system is critical for successful
goal directed behavior, given that human beings learn from
the consequences of their actions (Holroyd and Coles, 2002).
It was defined recently as “[. . . ] a set of cognitive and
affective functions determining whether adaptive control is
needed and, if so, which type and magnitude is required.”
(Ullsperger et al., 2014b). Thus, it has been widely studied using
several experimental protocols–the Eriksen flanker attention
task (Falkenstein et al., 2000; Scheffers and Coles, 2000; Roger
et al., 2010), d2 selective attention test (Ora et al., 2015),
Stroop task (Carter and van Veen, 2007), Go/NoGo paradigm
(Vidal et al., 2000; Bates et al., 2005), Simon task (Bonini
et al., 2014; Amiez et al., 2016), video watching (Desmet et al.,
2014), and time estimation task (Miltner et al., 1997)–and
using various measurement methods, including reaction time
(Rabbitt, 1966a,b), electroencephalography (EEG; Falkenstein
et al., 1991; Gehring et al., 1993; Ullsperger et al., 2014b),
functional magnetic resonance imaging (fMRI; Botvinick et al.,
1999; Carter and van Veen, 2007) and eye-tracking (Braem et al.,
2015).

Self-performance monitoring is a process that is well
understood in theory (Botvinick et al., 1999; Holroyd and Coles,
2002; Alexander and Brown, 2011) and is applied in varied
contexts, such as aviation (Shappell et al., 2007), or medicine
(Gehring et al., 2000; Taylor et al., 2007). In contrast, we have
little knowledge about the processes involved in error monitoring
of others’ actions (van Schie et al., 2004) and in error monitoring
of a system’s actions (i.e., system supervision; Padrão et al., 2016).
They are no less important to our interactions with the outside
world, since they allow us to anticipate others behavior and react
to it.

The purpose of this review is to summarize our knowledge
on performance monitoring (see Taylor et al., 2007; Hoffmann
and Falkenstein, 2012; Johnson and Gulbinaite, 2013, for other
reviews) and, more specifically, as it relates to system supervision.
Automation supervision becomes a daily routine for a lot of
people, but after decades of research (from Bainbridge, 1983 to
Baxter et al., 2012), the neural bases of this process have not
been fully characterized and the cognitive deficits associated with
system performance monitoring are still unclear.

2. PERFORMANCE MONITORING: A
WELL-KNOWN MECHANISM

2.1. Performance Monitoring System: First
Evidence with the Error-Related Negativity
(ERN) Component
The existence of an internal process associated with monitoring
our own errors was first suggested by Rabbitt (1966a). He showed
that external cues had no effect on error-correction latencies in a
10-choice reaction task, and that subjects were still able to correct
their own errors with a 100% rate without needing any feedback:
even without error feedback, they knew that it was an erroneous
trial.

The first EEG evidences associated with an internal error-
monitoring system were reported by Gehring et al. (1990,
1993) and Falkenstein et al. (1991). In event-related potential
(ERP) studies, these authors identified a component associated
with participants’ errors during choice reaction tasks: the error
negativity (Ne; Falkenstein et al., 1991), or more commonly
called the error-related negativity (ERN; Gehring et al., 1993).
The ERN is a negative ERP time-locked to the participant’s
response errors, which starts around 6 ms before the response
and peaks in the fronto-central region (maximum at FCz) around
80 ms after the erroneous response–or around 100 ms after
electromyographic onset of response error (Dehaene et al., 1994;
Vidal et al., 2000; Ullsperger et al., 2014a). The amplitude
of the ERN varies positively with a speed-accuracy gradient:
the more the participant is asked to be accurate (less speed)
the more the amplitude of the ERN increases–and vice versa
(Gehring et al., 1993). This is the speed-accuracy trade-off. The
amplitude of the ERN is also correlated with correction speed,
probability of correction, future errors and post-error slowing
(Rodríguez-Fornells et al., 2002; Debener, 2005). Based on these
results, the ERN is thought to reflect an automatic mismatch
between the overt response and the outcome of the response
selection process, and is an important neurophysiological marker
of online performance monitoring (Falkenstein et al., 1991;
Gehring et al., 1993). In addition, Gehring et al. (1993) suggested
that the ERN represents error compensation and correction,
and may play a role in stopping errors from happening
while they are happening: it brakes the erroneous response.
However, using electromyography in an Eriksen flanker task,
Rodríguez-Fornells et al. (2002) showed the onset of corrective
movements to precede the ERN and start around 68 ms before
response. The ERN is a robust marker of error monitoring
and it is systematically observed after an error in a variety of
tasks conducted under laboratory conditions (Hoffmann and
Falkenstein, 2012; Iannaccone et al., 2015; Ora et al., 2015),
under more ecological conditions (Padrão et al., 2016), and in
situations where the stimulus, and therefore the error, is more or
less complex to decipher (Scheffers and Coles, 2000).

2.2. Performance Monitoring System:
Other ERP Components
2.2.1. Correct-Related Negativity (CRN)
Interestingly, an ERN-like negative ERP peak has also been found
in correct trials: the correct-related negativity (CRN). The CRN
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peaks at the same latency—around 100 ms after EMG response
or 80 ms after button pressing—and has approximately the
same fronto-central distribution as the ERN, but its amplitude
is smaller than that of the ERN (Vidal et al., 2000). The CRN
is often ignored because performance monitoring-related ERPs
are usually measured by differentiating ERP waves of correct and
erroneous trials. It was first observed by Hohnsbein et al. (1991),
in a choice reaction task (called the N-CR, for Negativity-Choice
Reactions), and then replicated on several occasions in other
tasks (Falkenstein et al., 2000; Scheffers and Coles, 2000; Luu and
Tucker, 2001; Allain et al., 2004; Gentsch et al., 2009; Hoffmann
and Falkenstein, 2012).

According to several studies, the CRN represents a
comparison process that happens both for correct and incorrect
trials and the greater amplitude of the ERN (in comparison
with the CRN) may correspond to the sum of an error-related
activity and of the CRN (Falkenstein et al., 2000). Figure 1
shows the time course of the ERN (after errors) and CRN
(after correct responses), in monopolar recording and after
a Laplacian transformation. Falkenstein (2004) assumes a
common superficial cerebral source for both components—ERN
and CRN—to which a deeper source is added in erroneous
trials. This hypothesis is supported by two studies carried out by
Vidal et al. (2003, 2000), who showed a similarity in topographic
distributions of the ERN and CRN components using a source
derivation method based on the surface Laplacian of the electric
potential. Thus, the CRN seems to be part of the performance
monitoring system, and is elicited irrespective of the subject
performance.

2.2.2. Error positivity (Pe)
In addition to the ERN, a positive-going deflection named
error positivity (Pe) was identified in centro-parietal locations
(maximum at the CPz electrode in the 10–20 system) around
350ms after an erroneous response (Falkenstein et al., 1991). This
potential is linked to the ERN, although it only appears after overt
errors (Vidal et al., 2000). In this context, some authors argue
that the Pe corresponds to a P3b component specific to errors
(Ridderinkhof et al., 2009). Interestingly, the Pe is influenced by
both the person’s affect (negative or positive) and the saliency of
the error-inducing stimulus (Leuthold and Sommer, 1999) but
not by the amplitude of the error (Overbeek et al., 2005). These
studies also show that genuine errors elicit greater amplitude
error positivity than intentional ones. Furthermore, it appears
to be consistently modulated by awareness and motivational
salience of errors. Regarding these feature differences between
the Pe and the ERN, several works suggest that Pe corresponds
to a different aspect of error monitoring relying on conscious
and volitional processes (Herrmann et al., 2004; Padrão, 2014).
Figure 1C shows the time-course and topography of the error
positivity.

2.2.3. Feedback-Related Negativity (FRN)
Finally, associated with feedback stimuli following the
participants’ responses, a negative deflection known as feedback
related negativity (FRN) is observed. The FRN appears around
250 ms after a “worse-than-expected” feedback onset in the

fronto-central regions (electrode FCz with topography similar to
that of the ERN and CRN) and interrupts a positive-going wave
(most likely the P300; Donkers et al., 2005; Miltner et al., 2004).
Figure 1D shows the time-course and topography of the FRN.

Several studies have noted the similarity between the FRN
and the ERN and described the FRN as an ERN-like process
(Miltner et al., 1997). Until 2003 (Luu et al., 2003), this
ERP was called a feedback ERN (fERN) and several groups
still use this term (Holroyd et al., 2006; Kam et al., 2012)1.
First, both the ERN—with its counterpart the CRN—and the
FRN are observed, respectively, for all response and feedback
types - positive (correct/gain), negative (error/loss) and neutral
(uninformative/no loss-no gain) (Holroyd et al., 2006). Second,
both components correspond to theta-frequency waves in the
spectral domains of EEG activity (Luu and Tucker, 2001;
Cavanagh and Frank, 2014). In addition, several authors show
that the ERN and FRN originate from the same brain region, as
isolated by independent component analysis (ICA): using back
projection after an independent component analysis, Gentsch
et al. (2009) find both potentials to be elicited by the same set
of independent components. This result is supported by other
EEG studies (Luu et al., 2003; Nieuwenhuis et al., 2004). Other
source localization analyses not based on ICA also identify one
or two different generators situated roughly in the same locations
for both components (Dehaene et al., 1994; Miltner et al., 1997).
Although the latency differs between the ERN (80 ms post-
response) and the FRN (250 ms post-feedback), it could be due
to the time necessary to process the feedback stimulus in the
case of the FRN. The literature often suggests that the ERN and
FRN are elicited by the same evaluative system: one when an
action is produced, and the other one when one observes the
consequence of such action. Nevertheless, this conclusion is still
debated. One counter-argument was presented by Donkers et al.
(2005), who showed that the ERN and FRN recorded respectively
in a modified flanker task and a time estimation task, were not
statistically correlated.

Interestingly, several authors claim that both the ERN and
the FRN depend neither on the stimulus nor on the modality
of the effector (Holroyd and Coles, 2002; Ullsperger et al.,
2014b). However, this last point is controversial: other authors
claim that the amplitude of the FRN is modulated by the
output modalities—somatosensory, visual, auditory (Miltner
et al., 1997)—and the attributes of the (feedback) stimulus, as
opposed to the amplitude of the ERN (Holroyd and Coles,
2002; Elton et al., 2004; Liu and Gehring, 2009; Gehring et al.,
2011). This last effect could be explained by a difference in
the processing duration of different modalities or attributes of
the feedback stimulus. Table 1 summarizes the characteristics of
all of the ERPs associated with performance monitoring, and
Figure 1 reflects their time course and topographies.

The various components of the performance monitoring
system have been studied extensively, and this led to the
characterization of a wide range of ERP features. Nevertheless,
the relationship between the various ERP components remains

1To avoid any confusion, we will use the term FRN in this paper and not fERN.
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FIGURE 1 | Time course of the event-related potentials (ERP) related to error execution–Adapted from Van der Borght et al. (2016) and Ullsperger et al. (2014b) with

their permission. Left panel: (A) Grand average ERP waveforms of the CRN (plain line) and ERN (dashed line) at electrode FCz after response execution (time point

0 ms) during a forced choice task depending on two levels of difficulty. The ERN is a clearly identifiable negative component, peaking around 80 ms after error

commission. The CRN associated with correct response is masked by a positive wave. (B) Laplacian transformed grand average ERP waveforms of the CRN (plain

line) and ERN (dashed line) at electrode FCz after response execution (time point 0 ms) during forced choice task depending on two levels of difficulty. The Laplacian

transformation removes the positive wave and allows both negative peaks around 80 ms after correct and erroneous response to be shown. Right panel: Schematic

time-courses of regression weights of models, based on a probabilistic learning paradigm and a flanker-task performed by the same subjects, and their topographies

for performance monitoring for erroneous (C) response generation, and (D) feedback evaluation as revealed by single-trial EEG multiple regression analysis. Both

waveforms show a rapid negative potential followed by a frontal positivity and a later more posterior positivity. ERN+Pe time course for erroneous response can be

likened to the FRN+P3 time course for negative feedback. RPE* indicates the Reward Prediction Error, multiplied by −1 for better comparability showing correlations

with unfavorable outcomes as negative.

TABLE 1 | Comparison of the characteristics of performance monitoring ERPs.

Characteristics CRN ERN FRN Pe

Latency 50–100 ms post-response 50–100 ms post-response 250–300 ms post-feedback 350–500 ms post-response

Valence Negative Negative Negative Positive

Maximum amplitude (absolute value) 5 µV 15 µV 15 µV 10 µV

Peak activity in the 10–20 system FCz FCz FCz CPz

Underlying frequency θ wave θ wave θ wave δ wave

Hohnsbein et al., 1991;

Vidal et al., 2000; Luu and

Tucker, 2001

Falkenstein et al., 1991;

Gehring et al., 1993; Luu

and Tucker, 2001

Miltner et al., 1997; Donkers

et al., 2005; Cavanagh and

Frank, 2014

Falkenstein et al., 1991;

Overbeek et al., 2005

unclear. Studying more specifically the brain activity underlying
these ERP may help to further characterize such processes.

2.3. Performance Monitoring System:
Neural Bases
The discovery of the ERN was rapidly followed by studies
focusing on the localization in the brain of the performance
monitoring system using various source analysis methods

(Grandori et al., 1990)2. Several studies performed with EEG
(intracranial EEG: Bonini et al., 2014; surface EEG: van Schie
et al., 2004; Roger et al., 2010), with fMRI (Ullsperger et al.,
2007; Desmet et al., 2014; Cracco et al., 2016) or coupled EEG-
fMRI (Debener, 2005; Iannaccone et al., 2015) suggest that
the brain source of the ERN component is located within the

2For a meta-analysis on the generators of the ERN, see Cieslik et al. (2015).
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pMFC (posterior Medial Frontal Cortex). More specifically, the
Rostral Cingulate Zone (RCZ), which spreads over the Anterior
Cingulate Cortex (ACC–involved in autonomic and higher-level
functions) and the pre-Supplementary Motor Area (preSMA–
involved in volitional stimulus-cued movements), would be the
most likely source for this component during self-monitoring
of error response3. In addition to the ACC, the anterior insula
and/or frontal operculum have also been shown to play a role in
performancemonitoring andmight be involved in the generation
of the ERN (Ullsperger et al., 2010; Amiez et al., 2016; Bastin et al.,
2017).

The orbito-frontal cortex (OFC) has also been proposed as
a putative generator of the ERN (Brázdil et al., 2002; Turken
and Swick, 2008). Using intracranial recordings, these studies
show that neuronal assemblies in the OFC generated the same
type of error potentials as the scalp ERN. Moreover, in the study
by Turken and Swick (2008), the ERN amplitude appears to be
reduced when the OFC is damaged after a lesion. Nevertheless,
these results have also been questioned by Ullsperger et al. (2002),
who observed no difference in the ERN amplitude or topography
in an OFC-lesioned group, when compared to an age-matched
control group.

Finally, although the brain source of the Pe ERP component
(maximum in centro-parietal regions at CPz) is still debated,
most studies converge toward a generation of the error positivity
in the rostral part of the ACC (rACC; Falkenstein et al., 2000;
Van Veen and Carter, 2002), which is an area that is often
involved in affective processing. Although close in location, this
brain source would be different from that generating the ERN and
FRN.

The fact that the functional characteristics of the ERP
components associated with performance monitoring are
different, whereas their anatomical substrates seem to be similar,
raises the question of the functional role of each of these in
performance monitoring.

2.4. Performance Monitoring System:
Functional Theories
The role of the ACC in high-level cognitive processing and the
functional characteristics of the ERN have led several authors to
define various functional theories to explain this ERP. A short
description of those theories is presented hereafter (for more
details, see Rodríguez-Fornells et al., 2002; Gehring et al., 2011;
Ullsperger et al., 2014a).

The first theoretical model proposed is the Mismatch
hypothesis or Comparator model. It asserts that the ERN is not
correlated to sensory or proprioceptive information resulting
from the initial erroneous movement. Instead, the ERN would
involve an efferent copy of the motor command (central
monitoring as opposed to information from the moving limb)
and would be elicited whenever there is a mismatch between
the intended, correct response and the actual, incorrect response
(Cooke and Diggles, 1984; Falkenstein et al., 1991; Gehring et al.,
1993). The issue with this theory is that we also know that there

3For a proper description and illustration of these different areas, see Ridderinkhof

et al. (2004).

are ERN-like components for correct trials and after feedback:
respectively, the CRN and FRN described earlier. Thus, an ERN-
like component is also present when there is no mismatch
between the correct and the actual response of the participant.

To take into account these results, Holroyd and Coles
(2002) proposed an extension of the mismatch hypothesis:
the Reinforcement-learning theory (RL). This theory states that
motor controllers (such as nociceptive or limbic sources) process
the stimulus and send information to the ACC, which acts as a
control filter for planning and executing motor behavior. While
this process is taking place, the activity of ACC and motor
controllers would be modulated by mesencephalic dopaminergic
neurons from basal ganglia. The signal would be either positive
or negative (respectively, if an event is better or worse than
expected) and would correspond to increases or decreases in the
phasic activity of the dopaminergic neurons. A negative signal
would correspond to an ERN. The mesencephalic dopaminergic
neurons would also auto-regulate themselves by sending negative
feedback to the basal ganglia4.

While the RL theory can now explain the presence of the
FRN, it does not account for the signal observed for correct
responses (the CRN component). Thus, another extension to the
theory was recently proposed: the Prediction of Response Outcome
theory (PRO; Alexander and Brown, 2011). This theory does
not assume a comparison of expected responses with efferent
motor output, but rather relies on an actor-critic framework
of prediction based on past experience. The major difference
with the previous theories is the absence of valence (positive
or negative signal). This theory can thus account for a negative
deflection for correct responses (the CRN component). Both
RL and PRO theories explain the functional significance of the
ERN and FRN components, which would represent error signals
that could trigger learning to avoid repeating the same errors
(Holroyd and Coles, 2002). Further study tends to support this
assumption and shows that the FRN is elicited when a feedback
stimulus deviates from expectations or predictions and when
that deviation corresponds to the worst case scenario: a positive
feedback can lead to an FRN (Donkers et al., 2005; Holroyd et al.,
2006).

Other theories have also been proposed. After the RL theory,
one of the most widely accepted theories is the conflict-
monitoring theory. This theory asserts that the ERN is elicited
whenever there is information processing conflict. The ACC
would cancel out the expected brain response and the ERN
would correspond to cases in which the incorrect response is
not successfully overridden by the ACC (Botvinick et al., 1999,
2001). This theory explains well the CRN and most of the error-
related experimental results. However, experimental studies show
nomodulation of the ERNwith the level of conflict (Scheffers and
Coles, 2000). Moreover, this theory was shown as unfit by Burle
et al. (2008) in a study in which they compared experimental
results with simulated ones obtained using an artificial neural
network based on the conflict-loop theory5.

4For more information concerning this theory, see Holroyd and Coles (2002), and

see Figure 1 of their article for a schematic model.
5For a description of this theory, see Carter and van Veen (2007).
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Although no consensus has been reached yet, several theories
also attempt to explain the functional role of the error positivity
(Pe). The first theory assumes that the Pe component reflects a
delayed parietal P300 wave related to the amount of information
extracted from the error, or would correspond to a late P3b
specific to the error (Leuthold and Sommer, 1999). This theory
is supported by several experimental results, such as the fact
that the amplitude of the Pe, as for the P300, is the same
between childhood and early adulthood but is reduced during
late adulthood (Overbeek et al., 2005). However, Falkenstein et al.
(2000) discarded this hypothesis by showing that, in some cases,
the P300 amplitude is modified without any impact on the Pe.

It was also proposed that the Pe component would reflect
the emotional or subjective error assessment (Van Veen and
Carter, 2002). Indeed, its amplitude is modulated by emotions:
for example, a negative affect decreases the amplitude of the
Pe (Hajcak et al., 2004). Moreover, some studies found that the
amplitude of the Pe varies with the number of participants’ errors.
This theory would be supported by the fact that participants
become less emotionally affected with an increasing number
of errors (Falkenstein et al., 2000; Mathewson et al., 2005). A
study by Stemmer et al. (2001, Figure 3) also shows that Pe
is only observed for genuine errors and not for intentional
errors. However, most of those results remain disputed, and some
studies showed contradictory results. The main consensus states
that the Pe component reflects error awareness (Nieuwenhuis
et al., 2001; Rigoni et al., 2015). Although this characteristic was
initially attributed to the ERN, Scheffers et al. (1996) and later
Vidal et al. (2000) showed that the Pe was a more adequate
candidate using EMG measures to record both overt errors (the
EMG is above the motor command threshold and the subject
presses the corresponding button), and covert errors (there is an
above-threshold EMG for the erroneous response, but the subject
actually chooses not to press the button and the error is not acted
upon). While the Pe component is only observed for overt errors,
the ERN is present for both types of errors.

2.5. Conclusive Remarks About
performance monitoring
In conclusion, the mechanisms underlying monitoring of self-
performance are well-documented. The large collection of
studies in various research fields provides us with an in-depth
understanding of this process. Several markers of performance
monitoring have been identified: (i) the error related negativity
(ERN), the principal component elicited for error execution; (ii)
the correct-related negativity (CRN), elicited for the performance
monitoring of correct actions; (iii) the feedback-related negativity
(FRN), elicited by any type of feedback and (iv) the error positivity
(Pe), an error-specific component that is only present for overt
errors.

More recently, several authors have tried to extend those
results and the associated theories to the monitoring of others’
performance, i.e., another human or artificial agent. Indeed,
by observing others, we are able to learn from their mistakes
(in the same way as babies learn by observing their parents)
and the Reinforcement-Learning theory (RL) can easily be

extended to include other agents. The following section reviews
our knowledge about error monitoring of human agents and
automated systems.

3. PERFORMANCE MONITORING AND
ERROR OBSERVATION

Two types of non-self agent supervision can be distinguished:
the supervision of a human agent, which may involve social and
emotional components, and the supervision of an artificial agent.
The state of the art for both types of interaction is described
below, and Figure 2 shows the event-related potentials’ time
course and topographies associated with error observations.

3.1. Human Agent Error
Detecting others’ errors is crucial for functions such as
anticipation of others’ actions, or teaching. The first
neurophysiological correlates of this cognitive process were
identified by Miltner et al. (2004), using experimental protocols
similar to those used for error execution monitoring (4-way
choice reaction tasks). They recorded a negative wave peaking
at around 230 ms after the observation of an error performed
by another participant, at central locations (electrode Cz).
Interestingly, this negative wave interrupts a positive-going wave
peaking at around 300 ms after observation of the error and
could therefore be likened to the feedback-related negativity
peak described previously.

This negative wave is called the “observation ERN” (oERN as
opposed to “response ERN”)6, it peaks at around 230–250 ms,
and has been reported in several studies with different tasks,
such as Eriksen flanker tasks (van Schie et al., 2004; Carp et al.,
2009; de Bruijn and von Rhein, 2012), gambling tasks (Yu
and Zhou, 2006; Marco-Pallarés et al., 2010) and, with earlier
latencies, Go/NoGo tasks (135–150 ms; Bates et al., 2005; Koban
et al., 2010). Figure 2 shows the time course of this potential in
various task configurations. Some studies also report a positivity
following this negative wave (Carp et al., 2009; Koban et al.,
2010). Like in the case of the oERNwith the ERN component, this
positive wave is similar to the Pe component. This component
is called the “observation Pe” (oPe as opposed to the “response
Pe”), it arises between 250 and 500 ms after the observation of the
agent’s error and has similar topographies to those of the Pe, as
suggested by Koban et al. (2010) (see Figure 2B for a comparison
of the Pe and oPe).

Finally, an oERN-like ERP has been found for correct trials:
this small negativity peaks at approximately the same latency
as the oERN (around 230 ms, −1.3µV) and with the same
topography (at fronto-central sites Fz, FCz, and Cz) as the
oERN/FRN (Carp et al., 2009). This negative component could
be related to the CRN component observed during the execution
of correct trials during self-monitoring.

The similarity between the components associated with the
monitoring of our own performance and the monitoring of
others’ performance is strengthened by an equivalent amplitude

6This ERP is also sometimes considered to be an FRN, but whether it is an oERN

or an FRN is undetermined yet. That is why we will use oERN/FRN in this review.
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FIGURE 2 | Task schematic, time course and topographies of the error-related potentials for correct responses and errors during other’s or system

supervision–Adapted from van Schie et al. (2004), Koban et al. (2010) and Padrão et al. (2016) with their permission. (A) Grand average ERP waveforms obtained

during execution (ERN) of an error and observation (oERN) of anothers error at Cz electrode when the observer is seated in front of the performer. There is a negative

wave peaking in both cases after an error is produced. Topographies are also similar. (B) Grand average ERP waveforms of the ERN/Pe and oERN/oPe at the FCz

electrode for execution and observation of errors and correct responses when the observer is seated next to the performer. Topographies are similar between the ERN

and the oERN, and between the Pe and the oPe. (C) Top left–Grand average ERP waveforms related to correct responses, performer errors and avatar error during a

1PP virtual reality monitoring task (Exp. 1, as represented by Illustration B), and grand average ERP waveforms related to observation of correct responses and errors

of an avatar during a 3PP virtual reality monitoring task (Exp. 2, as represented by Illustration C). Top right–We observe an ERN at the Fz electrode after error

commission compared to a correct response (blue difference wave) and an oERN after both avatar errors (i.e., system malfunctions) and 3PP observed errors (green

and red difference waves respectively). Bottom–Illustration of a 1PP (B) and a 3PP (C) virtual reality monitoring tasks.
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modulation of the ERN and oERN with the valence of responses
(Yu and Zhou, 2006; Marco-Pallarés et al., 2010). In addition,
no amplitude modulation of the FRN (self-monitoring) and the
oERN/FRN (others’ supervision) is observed with the value of
the gain or loss in gambling tasks (Yu and Zhou, 2006). Finally,
source localization in EEG and fMRI studies both locate the
generator of the oERN/FRN in the same brain area as that
identified for the ERN and FRN components (van Schie et al.,
2004; Desmet et al., 2014). In conclusion, the same performance
monitoring system seems to be involved during the monitoring
of self-executed errors and the monitoring of others’ errors.

Interestingly, performance monitoring of others’ action is also
modulated by various psychosocial parameters. One parameter is
the intention which may be attributed to the person performing
the action. Desmet and Brass (2015) used an observational task
with three levels of intentions and show that the observation
of unusual intentional actions activates the anterior medial
prefrontal cortex (aMPFC) more, while the posterior medial
prefrontal cortex (pMPFC) is more active during the observation
of unusual accidental actions. Another modulating parameter
is interpersonal similarity, based on participants’ beliefs and
opinions, which correlates negatively with the oERN and
positively with the oPe (Carp et al., 2009). Moreover, other
parameters like the sense of agency, social context and empathy
toward the performer have an effect on the activation of the
posterior medial frontal cortex (pMFC)—including the RCZ and
pre-SMA—which is involved in the monitoring of others errors.
They also modulate the activation of both the anterior insula
and the cerebral network associated with error (Cracco et al.,
2016)7. Considering these various results, it is possible that the
performance monitoring system differs between supervision of a
human performer and supervision of an automated system.

3.2. System Error
Studies about system error/performance monitoring found in
the literature can be divided into two groups: (i) studies of
system malfunctions triggered by human agent actions (Gentsch
et al., 2009; Ullsperger et al., 2010; Padrão et al., 2016); and
(ii) studies about the observation of system errors without any
action required from the human agent (Desmet et al., 2014;
Pavone et al., 2016). The system used may be a computer,
a first-person perspective (1PP8) or third-person perspective
(3PP) virtual reality avatar (i.e., “[. . . ] computer generated visual
representations of people or bots”; Nowak and Rauh, 2005) or
a Brain-Computer Interface (BCI, i.e., systems “[. . . ] utilizing
the brain signals in a man-computer dialogue”; Vidal, 1973). In
all cases, several performance monitoring tasks, from the most
classical ones (e.g., the Eriksen flanker attention task, moving
cursor task) to more ecological ones (e.g., video clip observation,
object grasping) were used in fMRI studies (Ullsperger et al.,

7In this study, the observer stops a square from switching colors whenever he/she

wants. This color determines the degree of difficulty that the performer will have

to face in a flanker task.
8In this case the avatar is just the arm whose movement mimics the movement

of the subject’s arm. In other cases, the avatar may be seen from a third-person

perspective (3PP) where the subject sees the avatar facing him/her—see Figure 1

in the study by Pavone et al. (2016).

2007; Desmet et al., 2014) or EEG studies (Ferrez and Millán,
2005; Ferrez and Millán, 2008; Gentsch et al., 2009; Kreilinger
et al., 2012; Pavone et al., 2016).

Irrespective of the method used to study the monitoring of an
automated system’s performance, at least one of the two event-
related potentials classically obtained during the supervision of
others’ errors was observed in most studies, with similar latencies
and topographies: an oERN/FRN and an oPe peaking respectively
between 250 and 270 ms and between 350 and 450 ms post-error
in fronto-central regions (Ferrez and Millán, 2005; Ferrez and
Millán, 2008, see Figure 2C for the time course of these ERPs).
These electrical potentials are found to be extremely robust and
stable over time—when measured more than 600 days apart—
in Chavarriaga and Millán’s (2010) BCI study. In addition, based
on frequency band analyses, Pavone et al. (2016) showed that
the amplitude of oERN/FRN was positively correlated with an
increase in theta frequency bands, the same frequency band that
is involved in ERN and FRN generation. Interestingly, in most
studies (Ferrez and Millán, 2005; Chavarriaga and Millán, 2010;
Padrão et al., 2016; Pavone et al., 2016), the authors found a
new monitoring-related ERP: a negative wave peaking at fronto-
central locations between 400 and 550 ms after the observation
of a system error. This potential, initially called interaction Error-
related Potential (ErrP; Ferrez and Millán, 2005), is believed
to be related to the N400 ERP. The N400 is usually observed
when semantic aberrations occur and it peaks around 450 ms
after stimulus onset at centro-parietal locations (Kutas and
Hillyard, 1980). However, Balconi and Vitaloni (2014) showed
that this ERP is also observed after an incongruous ending in
a sequence of movements at more fronto-central and temporo-
parietal locations. The presence of the N400 in system error
monitoring is therefore not surprising.

Source localization of the ERPs generated during system
supervision points to pre-SMA and RCZ brain generators (Ferrez
and Millán, 2008). This result is supported by an fMRI study by
Ullsperger et al. (2007) who showed that the RCZ is similarly
activated during system error monitoring and monitoring of
our own errors. When comparing the two types of task, only
sensorimotor areas appear to be predominantly more activated
when we perform our own errors. In addition, a study by Desmet
et al. (2014) showed that the same brain regions—particularly
pre-SMA, but not RCZ—are activated during the supervision of
human and machine errors.

The theory that system performance monitoring is similar
to that of human agents, with no need for motor action, was
initially proposed by Holroyd et al.’s (2004) and tends to be
supported by an EEG study carried out by Yeung et al. (2004).
The authors used a gambling task in which an observer passively
monitored computer-generated outcomes (gain or loss). They
detected an FRN component for the observer after feedback, but
with no movement. Likewise, a follow-up study by Donkers et al.
(2005) showed a mediofrontal negativity (MFN) positively and
significantly correlated to the FRN in case of a slot-machine task,
with outcomes that are not contingent upon recent actions.

Table 2 summarizes the results obtained in terms of electrical
potentials and localization for the supervision of another agent’s
errors, human or artificial. Altogether, the results that we have
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TABLE 2 | Comparison of ERP components and their generators for agent error supervision

Human agent error System error

Error observation System malfunction

Avatar BCI Computer

ERPs oERN/FRN Xvan Schie et al., 2004 XPavone et al., 2016 XPavone et al., 2016 XFerrez and Millán, 2008 XGentsch et al., 2009

oPe XCarp et al., 2009 XPadrão et al., 2016 XPadrão et al., 2016 XFerrez and Millán, 2008 ?

N400 ? XPavone et al., 2016 XPadrão et al., 2016 XFerrez and Millán, 2008 XPadrão et al., 2016

fMRI/Source

localization

preSMA XDesmet et al., 2014 XDesmet et al., 2014 ? XFerrez and Millán, 2008 X Ullsperger et al., 2007

RCZ X Desmet et al., 2014 X Desmet et al., 2014 ? XFerrez and Millán, 2008 XUllsperger et al., 2007

Legend–X: tested and found; X: tested and not found; ?: not tested

just reviewed seem to support Holroyd et al. (2004) hypothesis.
Nevertheless, further directions need to be addressed.

4. FURTHER DIRECTIONS

An interesting application of the role of performance monitoring
in system supervision stands in the out-of-the(-control)-loop
(OOL) performance problem (Endsley and Kiris, 1995). The
OOL performance problem represents a key challenge for system
designers as it is likely the cause of several accidents (Endsley,
1996; see other examples in Sparaco, 1995; Board, 1997; Lee and
Sanquist, 2000). One important behavioral aspect of the OOL
performance problem is the insufficient monitoring and checking
of automated functions by human operators (Kaber and Endsley,
1997). Interestingly, a recent study by Kam et al. (2012) showed
a smaller FRN when subjects were mind-wandering, thus not in
the control loop in a time-estimation task. This study shows for
the first time a relationship between the OOL phenomenon and
the performance monitoring functions. Regardless of the origins
of the monitoring performance dysfunction, there is a need to
characterize the OOL performance problem to better understand
and counteract this phenomenon. Studying the origins of
individuals’ errors, based on data and methodologies in cognitive
neurosciences would allow some aspects of system performance
monitoring in different task contexts to be generalized (Sarter
and Sarter, 2003; Fedota and Parasuraman, 2010; Johnson and
Gulbinaite, 2013). Although this is still being debated, some
studies suggest that the observation of our own errors (error
execution monitoring) and those of others (error observation
monitoring) would engage the performance monitoring system
in similar ways (Miltner et al., 2004; Carp et al., 2009; Jääskeläinen
et al., 2016, to cite a few). However, several limits remain to be
able to generalize such results to the supervision of system errors.
The following section will review the relevant literature in order
to better understand how one supervises a system, and whether
or not all of this knowledge may enable us to tackle monitoring
problems.

4.1. Artificial Agent and Performance
Monitoring
Although neural correlates of performance monitoring seem to
be similar during system error supervision, supervision of other

human agent’s errors and error execution monitoring, important
research remains to be done.

A first concern is the role of the motor component in the
performancemonitoring function. Research on error observation
has mainly focused on human agents or human-like agents
(avatars). In these studies, the movements performed by the
performer or avatar are biological movements. Likewise, the
BCI community went further into the study of performance
monitoring when they looked at the supervision of automated
systems. However, in every BCI study, the subject was still
either required to perform a movement or asked to imagine
it (Kreilinger et al., 2012). Therefore, the motor component
and/or its biological properties were still present. However,
one of the major differences between the current observation
studies and system supervision is the absence of movements.
When observing another human agent or avatar, observers may
relate to the agent’s movement. Also, the two main theories for
the ERN component—i.e., reinforcement learning and conflict
monitoring—both rely on motor activation: reinforcement
learning states that the input of the performance monitoring
system is a copy of motor plans, and conflict monitoring is based
on overriding motor response. Then, we also know that BCI
robots use simple anticipatorymovements that can be interpreted
by an observer according to kinematics laws. Also, it was shown
that one was able to anticipate whether another experimenter
was in cooperation or competition with him/her based not only
on real movement observation (video watching of a performer)
but also on simple point light movement observation based on
kinematics laws (Manera et al., 2011). Therefore, all systems
previously studied show anticipatory movements. However, in
the case of system supervision, anticipation of movements is
not applicable given that there are no movements performed by
the system. Finally, the source of the performance monitoring
system is assumed to be located in the RCZ, which spreads over
the pre-SMA and ACC (Ridderinkhof et al., 2004, see Figure 2),
and the role of the pre-SMA in various motor functions is well
documented.

A second critical concern relies on the psychosocial aspects of
the human-machine interaction. We have argued in the previous
sections that performance monitoring depends on the purpose as
well as on the emotions, affect, or social context that the operator
is immersed in. Several results point out discrepancies between
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observing the errors of another human agent and observing the
errors of a machine/automated system. For example, we know
that empathy acts on performance monitoring. Yet it was found
that the less a system, or a robot, is humanoid, the less we
feel empathy for it (Riek et al., 2009). Moreover, comparing
trust in humans and automated systems, Lewandowsky et al.
(2000) found that humans operators tend to trust task allocation
performed by an automated system more than task allocation
performed by a human collaborator. Such overconfidence can
affect the monitoring of the system’s outcome in the case of
human-machine interactions. More interestingly, several studies
show that authorship, as measured by agency, is attenuated in
the case of human-machine interaction, both because it is more
difficult to attribute intentionality to an artificial agent than it is
to another human agent (Wohlschläger et al., 2003; Crivelli and
Balconi, 2010) and because human-machine interaction creates
a diffusion of responsibility (Beyer et al., 2017). Such a decrease
in the sense of agency is reflected in the ERPs’ amplitude: there
is a lower FRN and P300 in the case of a bad outcome (Li
et al., 2010; Beyer et al., 2017). Even though the performance
monitoring system seems to be modified by the introduction
of another agent, the loop involving control, responsibility, and
monitoring is not clearly defined at the moment. These different
issues make the comparison between performance monitoring of
human agents and of automated systems uncertain.

4.2. Performance Monitoring and System
Supervision: Measurement Problem and
Ecological Validity
Measurement issues concerning performance monitoring must
be pointed out. Several performance monitoring studies are ERP
studies. The potentials recorded depend on several parameters,
defined by researchers based on their experience or on
conventions. One difficulty for the ERN and CRN is entailed by
the fact that they are response-locked fronto-centrally distributed
potentials. Thus, motor activity may interfere with their analysis
and, more precisely, with the definition of a baseline before the
response. Most studies have used conventional ERP baselines: 50,
100, or 500 ms prior response (Gehring et al., 1993; Scheffers and
Coles, 2000; van Schie et al., 2004; Koban et al., 2010; de Bruijn
and von Rhein, 2012; Padrão et al., 2016), and from 300 to 200ms
or 500 to 100 ms prior response (Bates et al., 2005; Burle et al.,
2008). These baselines are widely used for stimulus-locked ERP
analysis, but present the inconvenience of falling right into the
time period of motor activity for response-locked ERP studies.
This issue is particularly difficult to overcome in ecological
studies, like those found in the human-machine interaction field.
Indeed, the trigger for the response can be more or less precise in
these studies, and it can correspond to a time period rather than
a time point. Thus, other less conventional baselines should be
used. For example, Miltner et al. (2004) chose to set average ERPs
to 0µV at time point –50 ms for response ERPs and at time point
–200 ms for feedback ERPs. On another level, a few authors have
used frequency or time-frequency analyses (Luu and Tucker,
2001; Cavanagh and Frank, 2014; Padrão et al., 2015). These types
of studies give more information about the processes underlying

performance monitoring. Knowing the frequency of each ERP
wave can tell us whether or not they are related. It can also give a
better time-scale of the performance monitoring system, or help
us to give more complete functional theories about this system
(see the RL theory description). They are also interesting because
they can be used to study more complex errors with, for example,
several degrees of error (e.g., in aircraft or car simulations). The
study of performance-monitoring-related potentials time-locked
to a response (CRN, ERN, and Pe) or a stimulus (FRN, oERN,
and oPe) is quite restrictive, since it requires a special trigger in
time to identify these potentials.

Another issue arises from the use of a grand average to define
the difference wave in ERP analysis. People usually interact with
and supervise highly reliable systems. With such systems, only
a few errors are expected, and classical grand average is not
suitable. A solution to this limitation is reflected in the use
of trial-by-trial analysis. Such an analysis was performed by
Pardo-Vazquez et al. (2014) on performance monitoring ERPs.
Another limitation comes from the difference wave measure: it
is reductive and often masks processes going on, especially since
the ERN overlaps at least one, or more components (Gehring
et al., 2011, see Figure 10.21). We have mentioned previously
that the use of difference waves masked the CRN in correct
trials. Falkenstein et al. (2000), Luu et al. (2000) and Vidal et al.
(2000) were the first to show the existence of a negative peak
in correct trials. They compared erroneous and correct trials
using either an averaged reference or estimation of the surface
Laplacian. The CRN is masked by the conventional mastoid
referencing and the difference wave (see Figures 1A,B) for a
comparison between grand averages before and after Laplacian
transformation). These results led to functional re-evaluation
of the definition of the ERN (Vidal et al., 2003). The use
of the estimation of the Laplacian enabled a better spatio-
temporal analysis of the data. Moreover, using the CRN to assess
performance monitoring during reliable system supervision is an
interesting line of research. This potential is linked to correct
responses, yet corresponds to performance monitoring. The
study of its amplitude during automation supervision would
enable the difficulty of the small quantity of erroneous trials to
be overcome.

Finally, current studies on performance monitoring generally
use laboratory tasks. The exact nature of the performance
monitoring function in more ecological tasks remains unclear.
Although laboratory tasks are goal-directed, the goals are
often not comparable to those present in fully automated
environments. More ecological studies began to appear in the
BCI community for to assess other’s or system performance
monitoring. Ferrez and Millán (2008) and Desmet et al. (2014)
evaluated the role of social context in performance monitoring
using recordings of everyday life situations. These studies suggest
that the knowledge about performance monitoring can be
extended to ecological situations, but additional research is
needed in this area.

Using broader analyses allows us to free ourselves from several
constraints. Opening our minds to unconventional analyses
of brain waves and tasks is also an interesting line of study
that deserves further attention. Moreover, it can help to better
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understand how system supervision can function in applied
context, which is an essential next step in automation supervision
comprehension.

5. CONCLUSION

After half a century of research on performance monitoring,
some pieces of the puzzle are still missing. This vital cognitive
function has been studied extensively, enabling for a good
definition of its various components in a wide variety
of situations. Nevertheless, some aspects of performance
monitoring are still understudied, such as error detection in the
case of a human-automation interaction, in which the operator
supervises the system. Automation of systems and processes has
deeply modified our role as actors, and the way in which we
supervise systems and interpret their errors and performance.
A few open questions remain: is an action required to have
good performance monitoring? Does system opacity prevent
us from supervising it? Do we need to be socially involved
to monitor a system correctly? We need to better understand
the neurophysiological correlates underlying supervision,

in order to better tackle associated cognitive dysfunctions,
like the OOL phenomenon, that appear with increasing
automation.
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