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Abstract

The main aim of the current study was to present the abilities of widely used crop models to
simulate four different field crops (winter wheat, spring barley, silage maize and winter oilseed
rape). The 13 models were tested under Central European conditions represented by three
locations in the Czech Republic, selected using temperature and precipitation gradients for
the target crops in this region. Based on observed crop phenology and yield from 1991 to
2010, performances of individual models and their ensemble were analyzed. Modelling of
anthesis and maturity was generally best simulated by the ensemble median (EnsMED) com-
pared to the ensemble mean and individual models. The yield was better simulated by the best
models than estimated by an ensemble. Higher accuracy was achieved for spring crops, with
the best results for silage maize, while the lowest accuracy was for winter oilseed rape accord-
ing to the index of agreement (IA). Based on EnsMED, the root mean square errors (RMSEs)
for yield was 1365 kg/ha for winter wheat, 1105 kg/ha for spring barley, 1861 kg/ha for silage
maize and 969 kg/ha for winter oilseed rape. The AQUACROP and EPIC models performed
best in terms of spread around the line of best fit (RMSE, IA). In some cases, the individual
models failed. For crop rotation simulations, only models with reasonable accuracy (i.e. with-
out failures) across all included crops within the target environment should be selected.
Application crop models ensemble is one way to increase the accuracy of predictions, but
lower variability of ensemble outputs was confirmed.

Introduction

Process-based crop models are commonly used to simulate growth, development, yield and other
characteristics of field crops as well as related soil processes such as the soil, water and nitrogen
balances. These models simulate such interconnected soil–plant–atmosphere system that is

https://doi.org/10.1017/S0021859621000216 Published online by Cambridge University Press

https://www.cambridge.org/ags
https://doi.org/10.1017/S0021859621000216
https://doi.org/10.1017/S0021859621000216
mailto:phlavinka@centrum.cz
https://creativecommons.org/licenses/by/4.0/
https://orcid.org/0000-0002-5604-5502
https://orcid.org/0000-0002-3742-7062
https://orcid.org/0000-0002-9791-5658
https://orcid.org/0000-0001-8761-028X
http://crossmark.crossref.org/dialog?doi=https://doi.org/10.1017/S0021859621000216&domain=pdf
https://doi.org/10.1017/S0021859621000216


influenced by agronomic practices (e.g. Ritchie, 1981; Jones et al.,
2003). The use of different crop models for assessing possible future
climate change impacts, including analyses oriented to derive adap-
tation strategies, is increasing (Corbeels et al., 2018; Rötter et al.,
2018). Due to the nature of modelling, there is always a certain
degree of uncertainty (e.g. due to the need for certain simplification
against the real system) within results which may raise doubts about
the reliability of the results (Rötter et al., 2011). The use of crop
model ensembles (against only one model with its specifics) is
among the recommended approaches (Martre et al., 2015;
Wallach et al., 2016) enabling estimation of the range of outputs,
leading to more robust predictions and the possibility of reducing
uncertainties. Several studies that applied model ensembles across
different conditions have shown that the ensemble median
(EnsMED) or mean (EnsAVG) provide more robust assessments
than individual models (e.g. Rötter et al., 2012; Asseng et al.,
2013). Simultaneously, compliance of individual models can be
shown from ensemble simulations in relation to monitored vari-
ables (e.g. Palosuo et al., 2011). Usually, model ensembles were
tested only for one individual crop, for example, the ensemble of
23 corn models presented by Bassu et al. (2014), the ensemble of
eight models for winter wheat by Palosuo et al. (2011) or the
ensemble of 11 models for spring barley (Salo et al., 2016). The
focus on individual crops separately is due to the fact that ensemble
modelling is a technical and time-demanding procedure concerning
data availability, technical aspects and personnel requirements. On
the other hand, model ensemble evaluation focused simultaneously
on several crops, is desired as the first step to enable simulating crop
sequences and crop rotations by an ensemble approach. The simu-
lations of crop sequences or rotations are closer to real-world
conditions, with higher relevance of results (Kollas et al., 2015),
because carry-over effects between seasons can be considered. At
the same time, the long-term effects of weather, cultivated crops
and agronomic management on soil properties can be assessed
(Kersebaum, 2007; Hlavinka et al., 2014), or climate change adap-
tation options can be tested (Hlavinka et al., 2015). However, there
is generally lower availability of data for model calibration from
uninterrupted observations within crop rotation experiments. To
cover the sufficient number of samples of each individual crop
(or certain cultivars) of rotations, this could be alternatively solved
through the data from individual crops experiments under defined
conditions, which was applied in the current study.

The current paper focuses on simultaneous modelling of four
separate crops (winter wheat, spring barley, silage maize and winter
oilseed rape) based on field experiments with comparable method-
ology and compares 13 crop growth models. These comparisons
were made under contrasting climatic conditions represented by
three different sites in Central Europe. The main objective of the
current study was to identify potentially best-performing models
and to compare them with the ensemble approach, which could
be used, for example, for impact and adaptation measures assess-
ment studies both under present and expected climatic conditions.
The present study is an essential first step for selecting the most
proper models that would be suitable for modelling uninterrupted
crop sequences or rotations by ensemble or individual models.

Materials and methods

Models

The current study included 13 crop growth models varying in
complexity and functionality. Concurrently, two models were

operated by different users and were independently evaluated.
The DAISY model was operated by two independent modelling
groups (marked as DAISY_1 and DAISY_2) and the DSSAT
model was operated by three independent modelling groups
(marked as DSSAT_1, DSSAT_2 and DSSAT_3). Specifically, 28
modellers from 10 countries participated in the study. The models
that were used and their appropriate references are listed in
Table 1, and the major characteristics of the participating models
are summarized in Table 2.

Experimental sites and crop selection

The test sites selected in the current study (spatial locations in
Fig. 1) represent substantial temperature and precipitation gradi-
ents for winter wheat, spring barley, silage maize and winter oil-
seed rape cultivation within the Czech Republic, and the sites are
also representative of wider Central European conditions. The
Lednice experimental site represents a warm and relatively dry
region, Věrovany is a production area with a fertile soil, where
warm and mostly sufficient rainy conditions prevail and
Domanínek is characterized as a colder and wetter production
area (Table 3).

Selected crops represent more than 0.6 of arable land in the
Czech Republic and are crucial also within neighbouring coun-
tries. Winter wheat (variety Samanta), spring barley (variety
Tolar), silage maize (variety Cefran in Lednice and Věrovany
and variety Cingaro in Domanínek) and winter oilseed rape (var-
iety Artus) were selected as representative varieties for each
experimental site:

• Samanta (registration 2006) ranks among the semi-early winter
wheat varieties with medium-grain and medium tillering.
Resistance to overwintering and tolerance to late sowing are
advantages of this variety.

• Spring barley variety Tolar (registration 1997) represents the
semi-early malting variety preferred by malt-houses to produce
Czech beer. For the warmer production area, Tolar has moder-
ately high grain yield. The plants have medium to high heights
and medium resistance to lodging (CISTA 2007).

• The Cefran variety (registration 2003) is a medium-late maize
hybrid suitable for silage within the warm production area.
The high yield and starch content in total dry matter are an
advantage of Cefran (CISTA 2004). The variety Cingaro (regis-
tration 2006) is among the very early hybrids achieving above-
average dry matter yield. Cingaro is resistant to cold weather,
and its fibre is well digestible (Dobos, 2004).

• The Artus variety (registration 1999) of winter oilseed rape is a
medium early hybrid variety. Plant height is medium to high,
which causes the crop to have low to medium resistance to
lodging. It tolerates overwintering and is characterized by
high grain yield and very low glucosinolate content (CISTA
2006).

Model calibration and criteria for evaluation

The results of models and their ensemble were evaluated on the
basis of acquired available data sets from rainfed variety trials
conducted by the Central Institute for Supervising and Testing
in Agriculture (CISTA). Data from the period 1991 to 2010 for
the three selected experimental sites and for each crop (winter
wheat, spring barley, silage maize and winter oilseed rape) were
used. There was the comparable experimental protocol along all
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sites. Moreover, constant cultivars of selected crops were included
throughout the whole period, so the technological trend did not
have to be considered. The observed experimental data that
were available included the dates of sowing and harvest, amounts
of seeds sown per m2, observed phenological phases (emergence,
tillering, shooting, heading, flowering and maturity), the number
of tillers per m2, the weight of 1000 seeds, fertilizer application
data (timing and amount fully representing real field experiment
management) and information on the previous crop.
Additionally, the information about texture, bulk density, total
pores, hydrolimits (field capacity, wilting point), the content of
organic carbon, total nitrogen and pH for defined layers of

included soil profiles (one specific soil profile for each station)
were available. Not known from the trials was information on till-
age and was thus not available to the modellers. Initial conditions
for the available soil water (% volumetric) at depths of 0.0–0.4 and
0.4–1.5 m and soil mineral nitrogen contents (kg N/ha) at depths
0.0–0.4 and 0.0–0.8 m were set. For winter oilseed rape, the
initial conditions were defined on 1 August, for winter wheat
1 September, for spring barley and silage maize 1 November of
each year (constant dates within the years for individual crops).
As soil moisture was not observed, the SoilClim model
(Hlavinka et al., 2011) was used to estimate soil water content
at the beginning of each simulation based on preceding

Table 1. List of models, their abbreviations used in the current study and references

Model Version Abbreviation References

AGROTOOL 3.4 AG Poluektov et al. (2002)

APSIM 7.7 AP Holzworth et al. (2014)

AQUACROP 6.0 AQ Steduto et al. (2009)

CROPSYST 3.04 CS Stöckle et al. (2003)

DAISY_1 5.24 DA1 Hansen et al. (1990)

DAISY_2 4.1 DA2 Hansen et al. (1990)

DSSAT_1 4.5, 4.6 DS1 Jones et al. (2003), Hoogenboom et al. (2015)

DSSAT_2 4.6 DS2 Jones et al. (2003), Hoogenboom et al. (2015)

DSSAT_3 4.6 DS3 Jones et al. (2003), Hoogenboom et al. (2015)

EPIC 0801 EP Williams et al. (1989)

FASSET 2.1 FA Olesen et al. (2000)

HERMES 4.26 HE Kersebau. (2007)

MONICA 1.2.9 MO Nendel et al. (2011)

In the case of DAISY_1 and DAISY_2, the same model was used, but the simulations were performed by two different modelling teams. Analogously, in the case of DSSAT_1 (v4.5: spring

barley, winter wheat, silage maize, v4.6 winter oilseed rape), DSSAT_2 and DSSAT_3, the simulations were performed by three separate teams.

Table 2. Parameters and modelling approaches of the included models

Parameters

Models – Abbreviation

AG AP AQ CS DA1, DA2
DS1, DS2,

DS3 EP FA HE MO

Leaf area,

development and LIa
S S S S D S S D D D

Light utilizationb P-R RUE TE RUE P-R RUE RUE RUE P-R P-R

Crop phenologyc T, O T, DL, V, O T, O, V T, DL, V T, DL, V T, DL, V T, DL T, DL T, DL, V, O T, DL,V, O

Yield formationd B Prt HI, B HI, B Prt HI(Gn), B HI, B HI,B Prt Prt

Water dynamicse R C C C R C C C C C

Evapo-transpirationf mPM PT PM PT PM PT PM Mak PM PM

Soil CN-modelg CN, P(3) CN, P(3) C, P(5), B N CN, P(6), B CN, P(4), B CN, P(5) CN, P(6), B N, P(2) CN, P(6), B

aLeaf area development and light interception: S – simple or D – detailed approach.
bLight utilization/biomass growth: RUE (simple approach) – Radiation use efficiency, P-R (detailed approach) – Gross photosynthesis minus respiration, and TE – transpiration efficiency

biomass growth.
cCrop phenology is a function of T – temperature, DL – photoperiod (day length), V – vernalization, and O – other water (nutrient) stress effect considered.
dYield formation depending on HI – harvest index, B – total (above-ground) biomass, Gn – number of grains, and Prt – partitioning during reproductive stages.
eWater dynamics approach (app.): C – capacity app. and R – Richards app.
fEvapo-transpiration estimation methods: P – Penman, PM – Penman-Monteith, PT – Priestley-Taylor, Mak – Makking, and mPM – modified Penman-Monteith.
gSoil CN model, C – C model, N – N model, P(x) – x = organic matter pools number, and B – microbial biomass.
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meteorological conditions. Further, the observed initial soil min-
eral nitrogen content was not available. It was alternatively esti-
mated from the average of the measured amounts at each of
included sites and from parallel CISTA field experiments focused
on nitrogen balance, ranging from 85 to 140 kg of mineral N in
the soil per hectare. The sowing dates within the database differed
from year to year according to the suitability of the current wea-
ther conditions and soil moisture. The mean date of sowing was
on 28 August for winter oilseed rape, on 2 October for winter
wheat, on 3 April for spring barley and 30 April for silage maize.

The concept of the study was not in the form of a classical div-
ision into a calibration part of the database and a subsequent val-
idation on an independent data sample. Rather only a minimal
calibration concept was adopted with subsequent evaluation of
results based on the whole data set (without independent data
sample). This approach was used due to the absence of more
detailed observations (such as the development of aboveground
biomass, leaf area, nitrogen content in biomass, measured initial

soil conditions before sowing, etc.), which would be required
for a detailed calibration (Kersebaum et al., 2015). This mimics
the typical situation of a regional parameter adjustment and
assumed, that models were already parameterized for the specific
crop and require only a minimum adjustment to reflect the
regional varieties. This procedure was already applied by several
model ensemble studies on climate change impacts (e.g. Asseng
et al., 2013; Bassu et al., 2014). So, it was an adjustment of tem-
perature sums to mimic the phenological development of an
included variety of each crop, cultivar coefficients (i.e. in case of
DSSAT models), adjustment of the assimilates partitioning and
harvest index. In the case of the DSSAT and DAISY models,
the parameter settings differed from group to group, as each
was calibrated independently. Each crop was represented by a
constant cultivar throughout the whole period and therefore,
there was a requirement to use only one parameter set per
crop/cultivar by each model. The results of each model after min-
imum calibration were evaluated on the basis of observed

Fig. 1. Right: The Czech Republic within Europe (in red). Left: Locations of the Lednice, Věrovany and Domanínek experimental sites in the Czech Republic.

Table 3. Experimental sites’ characteristics (the reference period for the average annual temperature and precipitation is 1981–2010)

Characteristics

Locality (latitude/longitude)

Lednice (48°48′N/ 16°48′E) Věrovany (49°28′N/17°17′E) Domanínek (49°31′N/16°14′E)

Altitude (m a. s. l.) 171 210 560

Soil type Chernozem Chernozem Dystric cambisol

Soil plant available water (mm per 1.5 m soil depth) 260 269 180

Mean soil wilting point (%) 15.5 15.0 13.1

Mean soil field capacity (%) 32.9 32.9 25.1

Average annual temperature (°C) 9.9 9.0 7.2

Average annual precipitation (mm) 527 553 626
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phenological phases (namely, anthesis and maturity) and to fit
observed average levels and variability of yearly crop yield.
Because specific additional observations were not available such
as for leaf area index and total aboveground biomass, the range
of outputs for these variables were evaluated on the basis of rea-
sonable range.

To evaluate the simulations, three statistical indexes were used.
Mean bias error (MBE; Addiscott and Whitmore 1987) indicates
positive and negative deviations (i.e. average systematic error).
Root mean square error (RMSE, Fox 1981) is the standard devi-
ation of residuals or prediction errors and describes the spread
of residuals. If the RMSE values are lower, the simulations are
concentrated around the best-fit line. Index of agreement (IA;
Willmott 1982) can detect additive and proportional differences
in the observed and simulated means and variances (Legates
and McCabe, 1999). IA evaluates modelling interpretation results
in a range between 0 and 1. An IA closer to 1 indicates a better
simulation quality, similar to the coefficient of determination
(Davies and McKay, 1988).

MBE =
∑

n

i=1

Si − Oi

n
(1)

RMSE =

�����������������

∑n
i=1 (Si − Oi)

2

n

√

(2)

IA = 1−

∑n
i=1 (Si − Oi)

2

∑n
i=1 (|Si −

�O| + |Oi − �O|)
2 (3)

where Si is the simulated value of the variable, Oi is the observed
value of the variable, �O is the mean value of the observed data and
n is the number of pairs of observed/estimated values.

In addition to the evaluations of individual models, the
median (abb. EnsMED) and the mean (abb. EnsAVG) from all
model simulations for each combination of crop, year, station
and output parameters were analyzed as separate indicators.

Results

Anthesis

The simulations for winter wheat anthesis across all the sites
showed (see Table 4 and Fig. 2) that CROPSYST and DAISY_1
simulated anthesis very well, with an IA of 0.96, followed by all
other models whose results were satisfactory (IA varied from
0.84 to 0.95, except -FASSET with an IA of 0.37). Regarding
the absolute error, CROPSYST and DAISY_1 achieved RMSEs
equal to 2.9 days across all the sites, and the remaining models
(except FASSET, which had an RMSE equal 12.6 days) achieved
RMSEs ranging from 3.2 to 8.3 days. Fully comparable results
with the best models for all sites together were achieved by
EnsMED (IA = 0.97, MBE = 0.8 days, and RMSE = 2.9 days).
EnsAVG showed a slightly lower accuracy (IA = 0.96, MBE = 1.2
days, and RMSE = 3.2 days).

For spring barley anthesis, the best agreement was achieved by
AQUACROP (all sites considered), with an IA of 0.96, MBE of 1.6
days and RMSE of 4.0 days. Models CROPSYST, DAISY_2,
DSSAT_2, DSSAT_3, EPIC and MONICA achieved very similar

IAs (0.95). Again, the FASSET model gave the least precise results
for spring barley, but was more accurate than for winter wheat,
with an IA equal to 0.77, an RMSE of 9.5 days, and simulated
anthesis was systematically 7.6 days earlier (based on MBE and
across all sites). EnsMED and EnsAVG provided results compar-
able to the best models for spring barley (IAs = 0.96, MBEs −0.6
and 0.0 days, respectively, RMSEs 4.0 and 3.7 days, respectively).

For silage maize anthesis, the AQUACROP and DAISY_1
models had the highest IA of 0.98 for all the sites. The remaining
models (except FASSET) also had very satisfactory results, with
IAs varying from 0.97 to 0.94 (for all the sites). The lowest
value of IA (0.85) corresponded to the FASSET model. The sys-
tematic error MBEs varied from −3.0 to 1.6 days, and the absolute
errors (RMSE) varied from 2.8 to 9.1 days based on individual
models and considering all the sites together. EnsMED and
EnsAVG had the highest indexes of agreement, 0.98 and 0.99,
respectively, considering all the sites, with systematic errors of
0.1 and −0.2 days, respectively, and RMSEs of 3.0 and 2.7 days,
respectively.

Although flowering was successfully estimated for the previous
three crops (except for FASSET in the case of winter wheat), for
winter oilseed rape, lower accuracy was generally achieved, either
in terms of individual models or based on EnsMED and EnsAVG.
For all the sites, the highest IAs were achieved by MONICA
(0.91), AQUACROP (0.90) and FASSET (0.89). AGROTOOL
had the lowest accuracy, with an IA equal to 0.38 and systematic
and absolute errors of ∼1 month. The general feature was a later
estimate of the time of flowering (more pronouncedly in the
cooler location of Domanínek). Only in the case of winter oilseed
rape did EnsMED and EnsAVG produce worse results than the
best individual models. Using EnsMED and EnsAVG, the indexes
of the agreement were 0.76 and 0.73, respectively, the MBEs were
7.7 and 9.2 days, respectively, and the RMSEs were 9.8 and 11.5
days, respectively (considering all the sites).

Generally, the anthesis dates for winter wheat, spring barley
and winter rape were overestimated (later than observed) in the
case of the coolest station, Domanínek.

Maturity

In terms of winter wheat maturity, the highest IA (equal to 0.98)
was achieved for model DAISY_1, with a low MBE at 1.1 days and
an RMSE of 3.9 days (see Table 5). The IAs for the remaining
models, except FASSET, which in this case also provided the
least accurate results, varied from 0.86 to 0.96 (MBEs from −7.0
to 5.9 days and RMSEs from 4.6 to 10.8 days). Repeatedly, the
FASSET model showed the poorest agreement (IA = 0.42,
MBE =−16.5 days and RMSE = 24.2 days). EnsMED and
EnsAVG had IAs of 0.96, MBEs in the range of −0.6 to −1.6
days and RMSEs from 4.8 to 5.0 days, respectively. Both EnsMED
and EnsAVG were also able to produce reasonable values when
obvious model outliers appeared (see Fig. 2, winter wheat).

Similar results were achieved for the simulations of spring bar-
ley maturity but with more accurate results in the case of FASSET
(against winter wheat). Regarding the IA, the APSIM and
CROPSYST models achieved the highest values (0.96) for all the
sites. AQUACROP along with DSSAT_2, DSSAT_3 and
MONICA reached IAs equal to 0.95. The least accurate results
were attained by DSSAT_1, with an IA of 0.77 connected with
a systematically later prediction of anthesis (MBE = 6.4 days)
and high absolute error (RMSE = 14.0 days). The high values of
MBE (11.9 days) and RMSE (14.4 days) were also achieved by
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Table 4. The evaluation according to the statistical parameters MBE (mean bias error), RMSE (root mean square error) and IA (index of agreement) for anthesis dates of winter wheat, spring barley, silage maize and

winter oilseed rape

Crop

Anthesis

Models

Lednice Věrovany Domanínek All sites

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

Winter wheat AGROTOOL −6.1 7.1 0.61 −3.1 5.1 0.78 3.6 5.7 0.82 −2.3 6.1 0.89

APSIM 2.2 4.6 0.81 5.3 6.2 0.75 10.6 11.5 0.52 5.6 7.6 0.84

AQUACROP −0.5 3.6 0.82 5.0 7.3 0.69 1.2 5.3 0.86 1.9 5.6 0.88

CROPSYST −1.6 3.0 0.88 0.1 2.3 0.94 2.1 3.6 0.85 0.0 2.9 0.96

DAISY_1 0.6 2.4 0.92 2.3 3.1 0.91 2.5 3.2 0.91 1.7 2.9 0.96

DAISY_2 −4.1 7.0 0.62 −1.8 7.9 0.52 2.6 4.7 0.76 −1.4 6.8 0.85

DSSAT_1 −2.1 5.5 0.79 2.6 5.4 0.84 12.6 12.9 0.49 3.7 8.3 0.85

DSSAT_2 −1.4 3.6 0.80 0.6 2.4 0.93 0.6 3.5 0.87 −0.1 3.2 0.95

DSSAT_3 −5.1 7.3 0.70 −0.4 4.8 0.86 9.2 9.8 0.57 0.6 7.4 0.87

EPIC −0.6 4.5 0.83 0.2 3.6 0.90 4.0 5.5 0.79 1.0 4.5 0.93

FASSET 1.9 3.5 0.83 17.6 18.0 0.37 −11.5 11.9 0.52 3.6 12.6 0.37

HERMES 1.1 2.9 0.89 2.8 3.8 0.85 4.9 7.6 0.65 2.8 4.9 0.91

MONICA −3.2 4.2 0.81 −0.8 2.8 0.92 0.2 3.5 0.87 −1.4 3.5 0.95

EnsMED −1.2 2.8 0.90 1.4 2.3 0.94 2.8 3.6 0.88 0.8 2.9 0.97

EnsAVG −1.4 2.9 0.90 2.3 2.9 0.92 3.3 3.8 0.87 1.2 3.2 0.96

Spring barley AGROTOOL 4.6 6.4 0.83 5.7 9.1 0.61 13.0 13.1 0.50 7.9 10.0 0.81

APSIM −7.4 7.9 0.78 −6.1 7.8 0.75 0.6 1.4 0.99 −4.2 6.4 0.92

AQUACROP 2.9 5.0 0.91 1.1 4.1 0.90 1.0 2.4 0.96 1.6 4.0 0.96

CROPSYST −1.8 3.6 0.93 −1.4 5.6 0.79 3.6 4.4 0.91 0.0 4.6 0.95

DAISY_1 −1.4 4.7 0.85 −2.4 5.6 0.79 −0.3 2.1 0.97 −1.4 4.4 0.94

DAISY_2 −0.8 4.5 0.87 −1.6 5.1 0.82 1.3 2.5 0.96 −0.3 4.2 0.95

DSSAT_1 −0.6 4.3 0.88 13.2 14.1 0.51 2.6 3.2 0.93 5.3 8.8 0.81

DSSAT_2 −3.1 4.9 0.89 −2.8 5.6 0.84 3.6 3.9 0.90 −0.7 4.9 0.95

DSSAT_3 −1.1 3.3 0.94 −0.9 4.9 0.84 4.2 4.5 0.88 0.8 4.3 0.95

EPIC −3.9 4.7 0.89 −3.5 6.1 0.79 1.6 2.4 0.96 −1.9 4.7 0.95

FASSET −9.4 10.7 0.62 −2.6 6.2 0.73 −10.4 10.6 0.59 −7.6 9.5 0.77

HERMES 1.9 5.5 0.82 0.7 5.4 0.80 2.3 4.3 0.90 1.6 5.1 0.93

MONICA −2.3 4.1 0.90 −3.3 5.8 0.80 0.5 1.8 0.98 −1.7 4.2 0.95
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EnsMED −1.4 3.8 0.92 −1.8 5.3 0.81 1.4 2.3 0.96 −0.6 4.0 0.96

EnsAVG −1.7 3.8 0.92 −0.2 4.7 0.85 1.8 2.3 0.96 0.0 3.7 0.96

Silage maize AGROTOOL 0.0 3.6 0.91 −1.0 5.4 0.78 1.9 7.5 0.66 0.2 5.5 0.95

APSIM −0.1 3.2 0.90 −0.8 3.4 0.85 3.0 5.6 0.77 0.5 4.1 0.97

AQUACROP 1.8 3.4 0.90 1.9 3.8 0.84 −0.4 2.1 0.97 1.2 3.2 0.98

CROPSYST 0.6 3.3 0.92 1.8 3.7 0.88 2.3 5.9 0.96 1.5 4.6 0.96

DAISY_1 −0.2 2.6 0.93 0.3 2.9 0.84 0.4 3.2 0.93 0.1 2.8 0.98

DAISY_2 2.2 5.5 0.69 0.5 4.1 0.67 2.0 3.6 0.91 1.6 4.6 0.95

DSSAT_1 1.5 4.8 0.86 0.5 2.6 0.92 −1.3 4.8 0.84 0.4 4.3 0.96

DSSAT_2 0.8 4.9 0.84 −1.4 4.0 0.87 −0.1 5.3 0.79 −0.1 4.8 0.96

DSSAT_3 1.7 4.8 0.84 0.5 2.4 0.94 9.4 11.5 0.65 0.6 3.9 0.97

EPIC 0.6 2.7 0.94 −2.0 3.1 0.89 −2.7 5.2 0.86 −1.1 3.7 0.97

FASSET −6.8 10.7 0.38 8.3 9.1 0.61 5.6 6.7 0.69 −1.6 9.1 0.85

HERMES −3.9 5.8 0.82 −3.3 5.0 0.82 22.7 23.2 0.36 −3.0 5.8 0.94

MONICA −1.8 3.2 0.93 −2.5 3.5 0.89 2.6 4.7 0.84 −2.7 4.2 0.96

EnsMED 0.2 2.7 0.94 0.4 2.6 0.92 −0.4 3.8 0.89 0.1 3.0 0.98

EnsAVG −0.3 2.2 0.96 0.2 2.1 0.95 −0.5 3.7 0.91 −0.2 2.7 0.99

Winter oil seed
rape

AGROTOOL 20.3 20.6 0.18 – – – 41.3 41.4 0.24 31.6 33.4 0.38

APSIM −0.7 5.2 0.62 – – – 12.1 15.1 0.39 6.2 11.6 0.69

AQUACROP −0.2 1.1 0.94 – – – 1.7 7.8 0.83 0.8 5.8 0.90

CROPSYST 16.8 17.3 0.23 – – – 25.6 25.9 0.32 21.5 22.3 0.47

DAISY_1 19.4 19.7 0.19 – – – 22.7 23.0 0.35 21.2 21.5 0.46

DAISY_2 4.6 6.5 0.52 – – – 17.0 17.3 0.44 11.3 13.4 0.67

DSSAT_1 −21.6 25.0 0.15 – – – 6.3 9.0 0.74 −6.6 18.2 0.60

DSSAT_2 −12.6 16.4 0.24 – – – 11.0 12.5 0.60 0.1 14.5 0.69

DSSAT_3 −18.6 23.0 0.17 – – – 9.4 11.5 0.65 −3.5 17.8 0.62

EPIC 7.4 9.4 0.35 – – – 11.4 12.1 0.55 9.6 10.9 0.71

FASSET 0.3 3.0 0.80 – – – 5.6 6.7 0.69 3.1 5.3 0.89

HERMES 19.1 19.6 0.19 – – – 22.7 23.2 0.36 21.0 21.6 0.47

MONICA 2.6 3.4 0.72 – – – 2.6 4.7 0.84 2.6 4.1 0.91

EnsMED 3.1 4.4 0.65 – – – 11.7 12.7 0.53 7.7 9.8 0.76

EnsAVG 2.8 5.4 0.55 – – – 14.6 14.8 0.50 9.2 11.5 0.73

The evaluation involves individual experimental sites Lednice, Věrovany, Domanínek (abb. LED, VER, and DOM), respectively, and results from all the sites together. The medians (abb. EnsMED) and means (abb. EnsAVG) derived from all the model

results were compared with observed data as well. Winter oilseed rape simulations within Věrovany were unavailable. When the RMSE of a model for all sites is higher than the mean RMSE plus 1.5 times the standard deviation for a certain crop, the

name of a model is written in italics.
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the AGROTOOL model. Using EnsMED and EnsAVG, the IAs
were 0.95 and 0.94, the MBEs were 1.1 and 1.7 days, and the
RMSEs were 6.5 and 7.1 days, respectively (considering all the
sites); this indicates slightly lower accuracy, as in the case of
anthesis. A majority of the models and, consequently, the
ensemble tools had problems reproducing very late spring bar-
ley maturity dates in the case of Domanínek (see Fig. 2 and
Supplement 6).

In contrast to anthesis, winter oilseed rape maturity was bet-
ter estimated by the models. For CROPSYST, the IA was 0.98,
and for DAISY_1, DAISY_2, EPIC, HERMES and MONICA,
the IAs was equal to 0.97 considering all the sites together.
The other models IA ranged from 0.62 to 0.93. For most of
the models, the MBEs varied from −6.0 to 3.0 days, and the
RMSEs from 3.3 to 9.3 days (considering all the sites).
AGROTOOL, APSIM and FASSET presented systematic errors
ranged from −18.9 to 18.8 days, and absolute errors ranged

from 14.5 to 20.4 days. Using EnsMED and EnsAVG, the IAs
of 0.98 for both methods were achieved with MBEs of 0.0 and
0.3 days and RMSEs from 3.2 to 3.7 days, respectively. The
observed date of maturity for maize was unavailable because
it was harvested for silage.

Yield

The yields were simulated with considerably lower accuracy
(compared to phenology) by both the models and the ensemble
methods, as is apparent from Fig. 3 and Table 6. For the winter
wheat yield, the models reached IAs ranging from 0.24 to 0.60
considering all sites together, where the highest value was
recorded for the AQUACROP model and the lowest IA by
MONICA (0.24). The MBEs varied from −1274 kg/ha
(AGROTOOL) to 1057 kg/ha (DAISY_2), whereas the lowest
MBE was achieved by CROPSYST at a level of −4 kg/ha.

Fig. 2. Comparisons of observed and estimated anthesis (circles) and maturity (crosses) in days of the year (JD). The results based on individual model simulations

are depicted in grey (or are apparent from Supplements 1–7), while the medians (EnsMED) and means (EnsAVG) from all the models for specific site-year combina-

tions are in blue and yellow, respectively. Maturity for silage maize was not considered.
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Table 5. The evaluation of models according to the statistical parameters MBE (mean bias error), RMSE (root mean square error) and IA (index of agreement) for the maturity of winter wheat, spring barley and winter

oilseed rape

Crop

Maturity

Models

Lednice Věrovany Domanínek All sites

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

MBE

(days)

RMSE

(days) IA

Winter wheat AGROTOOL 2.0 4.5 0.85 −0.6 5.2 0.87 6.0 11.5 0.52 2.4 7.6 0.92

APSIM 4.0 6.3 0.78 −6.8 53.7 0.65 6.5 8.2 0.81 5.9 8.0 0.91

AQUACROP −3.8 8.1 0.68 −12.8 14.4 0.56 −4.3 8.9 0.83 −7.0 10.8 0.86

CROPSYST 0.8 4.0 0.87 1.6 5.0 0.83 −2.3 4.6 0.84 0.3 4.6 0.96

DAISY_1 0.5 3.1 0.93 0.8 4.8 0.86 2.1 3.6 0.96 1.1 3.9 0.98

DAISY_2 −3.4 6.6 0.77 −0.3 11.8 0.30 0.2 4.8 0.93 −1.2 8.3 0.90

DSSAT_1 −8.9 10.8 0.61 −5.8 8.6 0.74 −3.0 5.5 0.90 −6.0 8.6 0.91

DSSAT_2 0.7 4.3 0.85 1.9 5.4 0.78 −1.9 5.5 0.87 0.3 5.1 0.95

DSSAT_3 −3.9 7.2 0.75 −0.8 6.3 0.82 2.4 5.1 0.91 −0.9 6.3 0.95

EPIC 3.4 5.6 0.83 2.5 6.8 0.76 1.3 4.6 0.93 2.5 5.8 0.95

FASSET −12.7 13.4 0.52 4.9 10.0 0.54 −36.6 37.5 0.31 −16.5 24.2 0.42

HERMES −2.5 4.9 0.86 −0.6 5.7 0.81 −1.3 4.7 0.93 −1.5 5.1 0.96

MONICA −2.8 4.9 0.85 −0.8 6.0 0.78 −2.4 5.3 0.91 −2.0 5.4 0.95

EnsMED −1.6 4.6 0.86 0.5 5.5 0.80 −0.6 4.3 0.93 −0.6 4.8 0.96

EnsAVG −2.0 4.7 0.86 −0.4 5.4 0.82 −2.5 4.8 0.91 −1.6 5.0 0.96

Spring barley AGROTOOL 12.3 14.3 0.59 14.3 15.3 0.49 9.1 13.5 0.64 11.9 14.4 0.81

APSIM 2.2 5.1 0.91 3.0 5.0 0.86 −1.0 8.1 0.81 1.4 6.3 0.96

AQUACROP 5.7 8.1 0.78 −1.0 2.8 0.94 −3.2 7.8 0.85 0.3 6.6 0.95

CROPSYST 1.3 5.7 0.87 1.1 2.9 0.95 −2.3 8.3 0.85 0.2 5.9 0.96

DAISY_1 3.1 5.4 0.88 0.6 2.8 0.94 −8.1 12.0 0.69 −1.6 7.8 0.92

DAISY_2 5.0 7.3 0.79 1.9 3.7 0.90 −7.4 11.9 0.68 −0.3 8.4 0.90

DSSAT_1 4.4 9.1 0.70 19.5 20.3 0.41 −4.8 9.2 0.78 6.4 14.0 0.77

DSSAT_2 2.1 5.2 0.90 2.1 4.7 0.87 −2.4 8.7 0.79 0.6 6.5 0.95

DSSAT_3 2.3 5.9 0.86 2.2 3.7 0.90 −3.5 9.2 0.76 0.3 6.7 0.95

EPIC 6.7 8.4 0.77 5.6 6.5 0.80 1.8 8.7 0.79 4.6 7.9 0.93

FASSET −4.3 7.5 0.81 7.8 9.3 0.48 −14.0 16.1 0.63 −5.8 12.1 0.83

HERMES 3.3 7.9 0.74 3.8 6.1 0.78 −3.3 8.1 0.84 1.2 7.4 0.93

MONICA 2.8 6.3 0.84 1.6 3.8 0.89 −2.4 8.5 0.80 0.5 6.6 0.95

(Continued )
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Table 5. (Continued.)

Crop

Maturity

Models

Lednice Věrovany Domanínek All sites

MBE
(days)

RMSE
(days) IA

MBE
(days)

RMSE
(days) IA

MBE
(days)

RMSE
(days) IA

MBE
(days)

RMSE
(days) IA

EnsMED 3.2 5.9 0.87 3.1 4.8 0.85 −2.8 8.6 0.79 1.1 6.5 0.95

EnsAVG 3.6 6.5 0.84 4.9 5.9 0.80 −3.3 8.7 0.79 1.7 7.1 0.94

Winter oil seed
rape

AGROTOOL 3.4 5.3 0.86 – – – 18.1 19.2 0.36 11.3 14.5 0.82

APSIM 18.2 19.5 0.46 – – – 19.3 21.1 0.31 18.8 20.4 0.62

AQUACROP 3.1 5.6 0.79 – – – −4.0 8.2 0.76 −0.7 7.1 0.91

CROPSYST −1.1 4.0 0.91 – – – −0.3 2.6 0.94 −0.7 3.3 0.98

DAISY_1 −0.8 3.3 0.93 – – – −0.6 5.1 0.79 −0.7 4.3 0.97

DAISY_2 −5.8 6.8 0.83 – – – 0.0 3.3 0.92 −2.7 5.2 0.97

DSSAT_1 −9.3 11.4 0.66 – – – −3.3 7.1 0.74 −6.0 9.3 0.90

DSSAT_2 −3.9 7.9 0.77 – – – 1.3 7.3 0.72 −1.1 7.6 0.93

DSSAT_3 −3.6 8.1 0.77 – – – 4.4 8.5 0.66 0.7 8.3 0.92

EPIC 5.6 6.1 0.85 – – – 0.7 2.1 0.97 3.0 4.4 0.97

FASSET −17.6 18.0 0.51 – – – −20.0 20.2 0.39 −18.9 19.2 0.68

HERMES 1.6 4.2 0.90 – – – −1.9 3.9 0.90 −0.3 4.1 0.97

MONICA 2.3 3.8 0.92 – – – −1.0 3.2 0.94 0.5 3.5 0.97

EnsMED 0.1 2.6 0.96 – – – −0.2 3.6 0.90 0.0 3.2 0.98

EnsAVG −0.6 3.5 0.93 – – – 1.1 3.9 0.89 0.3 3.7 0.98

The evaluation involved individual experimental sites Lednice, Věrovany and Domanínek (abb. LED, VER and DOM, respectively) and the results from all the sites together. The medians (abb. EnsMED) and means (abb. EnsAVG) derived from all the

model results were compared with observed data as well. Winter oilseed rape simulations for the Věrovany site were unavailable. When the RMSE of a model for all sites is higher than the mean RMSE plus 1.5 times the standard deviation for a certain

crop, the name of a model is written in italics.
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The RMSEs varied from 1326 kg/ha (AQUACROP) to 2828 kg/ha
(DAISY_2). Six out of all 13 models achieved greater or equal IAs
with respect to EnsMED (IA = 0.48). The IA for EnsAVG was
0.46. Thus, from the perspective of MBE and RMSE, EnsMED
and EnsAVG still performed reasonably and are comparable to
the best models (MBEs of 88 and 141 kg/ha, RMSEs of 1365
and 1439 kg/ha for EnsMED and EnsAVG, respectively).
Although the individual runs resulted in highly variable winter
wheat yield outputs (∼10 tons/ha based on the difference between
the minimal and maximal values of all runs) compared to the
observed variability (about 7 t/ha), using EnsMED and EnsAVG
for the seasonal yield resulted in an even lower variability of
∼3 t/ha. This feature is similar for all crops, as can be seen in
Fig. 4, where a comparison of the observed yield variability
with each model and its ensemble (both as EnsAVG and
EnsMED) can be seen. This figure shows that the higher variabil-
ity of simulated yields (when considering all runs together) is
mainly due to the differences between individual models than
to the variability within the outputs of the single models.

For spring barley yield, the models achieved better estimates
than for winter wheat (Table 6); the AQUACROP model obtained
the highest IA (0.87), with an MBE equal to −151 kg/ha and an

RMSE equal to 807 kg/ha when all the sites are considered. The
lowest IA was observed for the MONICA model, i.e. 0.32. For
the other models, the IAs varied from 0.36 to 0.74 for all the
sites. Three models (AQUACROP, EPIC, CROPSYST) achieved
better results for annual yield estimates with respect to using
EnsMED, which had an IA of 0.64. The IA for EnsAVG was
0.61. The ensemble MBEs were −148 and −190 kg/ha, the
RMSEs ranged from 1105 to 1136 kg/ha.

For silage maize yield, large differences also existed among the
models, as is apparent from Table 6. Specifically, the
AQUACROP model provided the highest value of IA, which
was equal to 0.93 if all the sites were considered together. The
other models had IAs ranging from 0.32 (AGROTOOL) to 0.84
(CROPSYST), MBE varied from −6784 to 716 kg/ha, and the
RMSEs varied from 1355 to 7674 kg/ha. Among the individual
localities, the AQUACROP model simulated Domanínek very
accurately (IA = 0.96; MBE = 216 kg/ha, and RMSE = 1325 kg/ha).
On the other hand, almost all the models underestimated the
observed highest yield (Fig. 3) from the most fertile station,
Věrovany. Based on IA, two of the models were better than
EnsMED, and seven of the models were better than EnsAVG.
Based on the IA, the ensemble models were able to most

Fig. 3. Comparisons of observed and simulated yield (in kg/ha) within 13 crop growth models for winter wheat, spring barley, silage maize and winter oilseed rape.

The results based on individual model simulations are depicted in grey (or are apparent from Supplements 8–11), while the medians (EnsMED) and means (EnsAVG)

from all the models for specific site-year combinations are in blue and yellow, respectively.
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Table 6. Model evaluation according to the statistical parameters MBE (mean bias error), RMSE (root mean square error) and IA (index of agreement) for yields of winter wheat, spring barley, silage maize and winter

oilseed rape

Crop

Yields

Models

Lednice Věrovany Domanínek All sites

MBE
(kg/ha)

RMSE
(kg/ha) IA

MBE
(kg/ha)

RMSE
(kg/ha) IA

MBE
(kg/ha)

RMSE
(kg/ha) IA

MBE
(kg/ha)

RMSE
(kg/ha) IA

Winter wheat AGROTOOL −1064 1837 0.54 −2001 2304 0.39 −707 1719 0.28 −1274 1977 0.42

APSIM 498 1486 0.72 251 1462 0.37 568 1652 0.25 435 1534 0.55

AQUACROP 326 1321 0.77 −83 1178 0.44 683 1473 0.33 300 1326 0.60

CROPSYST −501 1510 0.70 −396 1376 0.26 1140 1868 0.33 −4 1573 0.48

DAISY_1 573 1888 0.58 −1110 2030 0.55 1949 2722 0.30 436 2239 0.40

DAISY_2 791 2364 0.64 59 1614 0.49 2322 3975 0.16 1057 2828 0.39

DSSAT_1 −215 1569 0.66 −702 1366 0.46 187 1623 0.34 −253 1520 0.52

DSSAT_2 1376 2679 0.33 −66 1577 0.48 −360 2152 0.20 308 2172 0.39

DSSAT_3 284 2133 0.46 314 1467 0.45 −129 1592 0.37 160 1749 0.50

EPIC −309 1708 0.63 22 914 0.57 835 1728 0.42 179 1488 0.55

FASSET 3 1737 0.30 −205 1361 0.55 −71 1369 0.27 −93 1497 0.46

HERMES 1086 2144 0.36 292 1197 0.53 398 2428 0.09 585 1980 0.34

MONICA −195 1848 0.29 −375 1088 0.50 869 2004 0.20 90 1684 0.24

EnsMED 41 1542 0.57 −230 1068 0.52 474 1455 0.21 88 1365 0.48

EnsAVG 204 1544 0.59 −318 1095 0.53 567 1640 0.20 141 1439 0.46

Spring barley AGROTOOL 109 959 0.56 −2596 2789 0.40 −483 1330 0.66 −1068 1926 0.44

APSIM 807 1234 0.49 −325 986 0.66 921 1430 0.58 422 1214 0.62

AQUACROP −158 467 0.95 −436 786 0.85 215 1086 0.57 −151 807 0.87

CROPSYST 303 769 0.84 −251 1217 0.46 1698 2245 0.49 444 1427 0.65

DAISY_1 −1171 1616 0.46 −1506 1897 0.41 −631 1529 0.39 −1135 1702 0.52

DAISY_2 −389 1560 0.27 −1953 2494 0.37 285 1065 0.65 −769 1858 0.36

DSSAT_1 154 1592 0.26 −786 1473 0.42 881 1508 0.39 21 1524 0.37

DSSAT_2 569 1851 0.12 −809 1276 0.67 921 1516 0.65 163 1557 0.55

DSSAT_3 −89 1695 0.23 −1199 1465 0.65 127 890 0.82 −436 1410 0.62

EPIC 726 1190 0.58 −474 943 0.67 −62 1042 0.71 48 1060 0.74

FASSET 136 1157 0.41 −1410 2243 0.47 361 1495 0.59 −370 1724 0.47

HERMES 713 1079 0.66 −404 996 0.64 879 1733 0.50 348 1283 0.63

MONICA 629 1304 0.32 −1217 1475 0.59 1028 1482 0.55 63 1422 0.32
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EnsMED 242 1027 0.46 −959 1240 0.63 428 1006 0.70 −148 1105 0.64

EnsAVG 180 1014 0.53 −1033 1317 0.61 448 1015 0.68 −190 1136 0.61

Silage maize AGROTOOL −5346 5688 0.31 −10 894 11 040 0.26 −4346 5349 0.48 −6784 7674 0.32

APSIM −2294 2663 0.55 −3749 4359 0.38 −2434 3876 0.52 −2780 3591 0.57

AQUACROP −474 993 0.91 −882 1753 0.77 216 1325 0.96 −414 1355 0.93

CROPSYST −910 2199 0.71 −643 2104 0.74 −249 1896 0.87 −580 2083 0.84

DAISY_1 −400 1780 0.65 −1039 1802 0.66 2340 3259 0.71 141 2280 0.68

DAISY_2 −720 1985 0.78 −6117 6577 0.33 973 2660 0.78 −1925 4109 0.47

DSSAT_1 23 1554 0.82 −610 1923 0.76 −478 3505 0.51 −307 2338 0.77

DSSAT_2 754 1757 0.64 −540 2874 0.46 243 2649 0.72 218 2395 0.67

DSSAT_3 479 2499 0.58 829 2662 0.47 959 3091 0.79 716 2719 0.75

EPIC 406 2104 0.68 −1620 2802 0.66 −929 2515 0.79 −577 2448 0.77

FASSET −2137 3335 0.30 −873 4200 0.27 1478 2822 0.69 −775 3504 0.48

HERMES 379 2121 0.61 −2883 3930 0.52 −1754 3361 0.55 −1199 3114 0.63

MONICA −56 2710 0.58 −1542 2760 0.38 3479 4510 0.57 100 3305 0.48

EnsMED −830 1503 0.80 −1756 2394 0.58 −201 1661 0.91 −946 1861 0.83

EnsAVG −1818 2202 0.66 −3298 3624 0.51 −936 2378 0.75 −2036 2760 0.67

Winter oil seed

rape

AGROTOOL 219 953 0.77 – – – 1325 1640 0.35 815 1366 0.53

APSIM −62 1416 0.08 – – – −861 1211 0.37 −492 1310 0.29

AQUACROP 158 1329 0.40 – – – −435 922 0.46 −161 1128 0.46

CROPSYST 22 1402 0.35 – – – 843 1446 0.32 464 1426 0.31

DAISY_1 −163 1340 0.32 – – – 796 979 0.61 353 1159 0.44

DAISY_2 −1148 1645 0.56 – – – 23 673 0.52 −518 1221 0.54

DSSAT_1 −230 1275 0.32 – – – 255 1003 0.24 31 1137 0.27

DSSAT_2 1074 1567 0.46 – – – −731 1254 0.38 102 1407 0.47

DSSAT_3 225 1778 0.00 – – – −472 1134 0.40 −151 1466 0.20

EPIC 40 731 0.84 – – – 103 708 0.39 74 719 0.74

FASSET 58 1134 0.40 – – – 127 989 0.23 95 1058 0.32

HERMES 713 1422 0.38 – – – 7 895 0.40 333 1168 0.42

MONICA −230 1180 0.41 – – – 244 947 0.16 25 1061 0.29

EnsMED −50 1170 0.35 – – – 39 754 0.31 −2 969 0.33

EnsAVG 52 1150 0.41 – – – 94 823 0.21 75 987 0.35

The evaluation involved the individual Lednice, Věrovany and Domanínek (abb. LED, VER and DOM, respectively) experimental sites and results from all the sites together. Median (abb. EnsMED) and mean (abb. EnsAVG) derived from all the model

results were compared with observed data as well. When the RMSE of a model for all sites is higher than the mean RMSE plus 1.5 times the standard deviation for a certain crop, the name of a model is written in italics.
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accurately simulate (compared to all the tested crops) silage maize
yield.

The winter oilseed rape yield results are shown in Table 6 and
Figs 3 and 4. Across all the sites, the highest value of IA was
recorded for the EPIC model (0.74). On the other hand, the
DSSAT_3 model had the lowest overall value of IA (0.20).
Among the individual sites, the Lednice experimental site, espe-
cially when using the EPIC model, achieved the highest value of
IA (0.84). The MBE and RMSE for the EPIC model and
Lednice were 40 and 731 kg/ha, respectively. Generally, MBE
and RMSE, based on individual models, varied from −518 to
815 kg/ha and from 719 to 1466 kg/ha, respectively (all sites con-
sidered together). Although the variabilities among the models
are clear, EnsMED and EnsAVG produced quite narrow and
low variable estimates close to 4 t/ha on average (see Fig. 4 for
winter oilseed rape). Based on IA, the lowest agreements between
the simulated (both by individual models and ensemble products)
and observed yield were achieved for winter oilseed rape. For win-
ter wheat, spring barley and silage maize, EnsMED produced
more accurate yield estimates than EnsAVG (based on MBE,
RMSE and IA). For winter oilseed rape, a lower IA for
EnsMED was achieved (against EnsAVG) but also with lower
MBE and RMSE.

Table 7 depicts a general overview of the observed and simu-
lated yield of the four crops, including the ranges of errors,
indexes of agreement and best performing simulations/models
(based on all the statistical parameters individually). Overall and
considering RMSE and IA, AQUACROP performed best for

winter wheat, spring barley and silage maize, whereas EPIC per-
formed best for winter oilseed rape. Although these models per-
formed well overall, individual models outperformed the
obtained results for specific locations or different statistical
metrics. For example, considering MBE, CROPSYST performed
best overall for winter wheat, DSSAT1 performed best for spring
barley and MONICA performed best for silage maize and winter
oilseed rape.

Figure 5 depicts the arrangement of models in order of their
accuracies (considering average order based on RMSE and IA)
for phenology, yields and their combination. The most successful
models are AQUACROP and EPIC, but the best predictions were
based on ensemble products. Considering all parameters and
crops, EnsMED achieved the best results according to this evalu-
ation. This was true at each individual station (so regardless of the
climatic conditions) as well as considering all stations together.
The EnsAVG indicator was in the second place if all stations
are considered together, and in the individual stations, it was
twice in the second place (Lednice, Věrovany) and once on the
fourth place (Domanínek). CROPSYST is fine overall but not
for estimated winter oilseed rape yield, low leaf area and high har-
vest index (see Figs 6 and 7). The AGROTOOL model resulted in
less accurate results in general, and FASSET experienced some
difficulties when reproducing crop phenology. For some models
(AQUACROP, CROPSYST, DSSAT_3) a different behaviour
(lower order) was found in the case of winter oilseed rape yields
compared to the remaining crops in the case of the achieved
order of models (Fig. 5b).

Fig. 4. Boxplots for values of observed and estimated yields by the models and on the ensemble basis. The boxes delimit the medians and interquartile ranges (25–

75 percentiles), and the whiskers link the high and low extreme values.
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Although the study is not based on data from crop rotation
experiments, the 112 seasons (sum through all crops) with
observed yield bring the opportunity to evaluate the set of crops

and models under uniform methodology. In the current study,
IA was higher when simulating the development stages than
when simulating yield. In the case of anthesis, the timing was

Table 7. Observed and simulated ranges of yields for all the sites and seasons using mean and ± standard deviation and agreements between simulated and

observed yields using MBE, RMSE and IA

Field crops yields

Winter wheat Spring barley Silage maize Winter oilseed rape

Observed (kg/ha) 6117 ± 1371 5902 ± 1316 17 008 ± 2626 4134 ± 1035

Simulated (kg/ha) 6393 ± 1375 5703 ± 1137 15 918 ± 3081 4066 ± 844

MBE range (kg/ha) −1274 to 1057 −1135 to 444 −6784 to 716 −518 to 815

Best MBE (kg/ha) −4 (CS) 21 (DS1) 100 (MO) 25 (MO)

RMSE range (kg/ha) 1326 to 2828 807 to 1926 1355 to 7674 719 to 1466

The lowest RMSE (AQ) (AQ) (AQ) (EP)

IA 0.24 to 0.60 0.32 to 0.87 0.32 to 0.93 0.20 to 0.74

The highest IA (AQ) (AQ) (AQ) (EP)

The most precise models are indicated using abbreviations within brackets

Fig. 5. Arrangement of the crop model tools based on

RMSE and IA for phenology (a), yield (b) and combined

for both phenology and yields (c) through the tested

four crops and within the three experimental sites.
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simulated at similar levels of accuracy for winter wheat, spring
barley and silage maize but less satisfactory for winter oilseed
rape. On the other hand, IA for the maturity of winter oilseed
rape was higher. In the cases of winter wheat and spring barley,
the results were worse for maturity compared to anthesis. For
most of the crops, no significant feature was identified between
simulations, except at the Lednice station (warmer and drier),
where the models’ performances were better for the anthesis of
winter oilseed rape when compared to those for Domanínek
(colder and wetter).

Discussion

Crop yield prediction is at a less accurate level compared to phen-
ology. One of the reasons is that the yield formation process is
naturally more complex than phenology, as soil conditions and
processes as well as biomass production and allocation, including
root growth, which has large effects on water and nutrient avail-
ability, are estimated. One explanation for weaker model perfor-
mances in simulating interannual and site variabilities could be
related to the fact that crops within the experimental sites were
not always grown on exactly the same plots over the years.
Although the representative soil profiles for each trial site in the
current study used estimated initial conditions as inputs to the
crop growth models, slight deviations in the defined soil proper-
ties between years could affect the results. Moreover, spatial

variations of soil conditions could exist within plots affecting
the representation of soil model inputs. These factors can be
one source of uncertainty, which may partly explain the spread
of model outputs and correspondence with observed values. At
the same time, however, it can be said, that the quality of the
soil input data can be considered as completely appropriate to
the concept of minimum calibration, also with respect that they
are used by CISTA for description of field experiment conditions.
Furthermore, although some models responded very sensitively to
differences in site conditions, e.g. soil, water and nitrogen supply,
others are less sensitive (Zhao et al., 2016; Wallor et al., 2018).
Another point is that yield extremes, especially at the lower end,
are often caused by environmental conditions that most models
have no available algorithm to represent their impact. For
example, the influences of pests, diseases and other adverse con-
ditions such as lodging, harvest losses and damage caused by
rodents (e.g. Nendel et al., 2013; Gobin, 2018) were not directly
considered by the crop models. To understand some model over-
estimations, modellers need to have a good description or data-
base of how observed yield decreases can be explained. No
information or evidence was available in the study database on
the actual occurrence of phenomena such as lodging, hail, pest
and diseases, etc. which could cause some reduction in the
observed yield.

Considering yield combined for all sites, the best models (e.g.
AQUACROP, EPIC) produced higher IAs than EnsMED and

Fig. 6. Boxplots for maximum values of leaf area indexes during the season (LAImax) by the models. The comparisons include medians from single models, pro-

cessed data from all the simulations, and averages and medians of the model ensemble for all the crops. The boxes delimit the interquartile ranges (25–75 per-

centiles), and the whiskers link the high and low extreme values.
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EnsAVG. This is in agreement with Soltani and Sinclair (2015), as
simpler models tend to be more robust. The better results from
some individual models (against the ensemble outputs) are not
in line with the results of previous studies (e.g. Asseng et al.,
2015), which concluded that EnsMED is more accurate than
any individual member in simulating the response of crop (as
determined from experiments and observations across a wide
range of environments). In addition, Martre et al. (2015) found
both median and mean estimates to be better predictors than
any individual model outcomes. However, collecting a high num-
ber of members within the ensemble still does assure that certain
ensemble outcomes or their interpretation might not change if
some members were added or removed from the ensemble (e.g.
Rodriguez et al., 2018).

Another point to consider is model accuracy across all the sites
together or at each single site where other models may achieve
better results. For instance, for winter wheat at Věrovany, EPIC
can be ranked first (lowest RMSE and highest IA), whereas
AQUACROP’s IA is fourth lowest. Therefore, when it comes to
selecting the best model(s) or ensemble composition (based on
a set of models with the best performance) for specific conditions
or range of conditions, the priority between accuracy and robust-
ness (maintaining good performance in different environments)
should be resolved. This can be supported by a good calibration
and validation procedure, for which detailed and extensive data-
bases are absolutely essential. Especially in the case of more com-
plex models, this plays an important role, where detailed
information is crucial for calibration. Based on the results of glo-
bal large model ensemble studies, pre-selection of models would
not be possible due to their complexity and it is not always true

that higher complexity means higher accuracy. For example, a
model such as Aquacrop may be preferred when information is
limited (Confalonieri et al., 2016).

In addition to the models’ characteristics, the variation in
modellers’ knowledge, experiences, parametrization and subject-
ive approaches for study-specific conditions and target crops
could be factors affecting accuracy, as the same models
(DAISY_1 v. DAISY_2 and DSSAT_1 v. DSSAT_2 v. DSSAT_3)
did not produce the same phenology or yield (Figs 4 and 5).
The input data was the same, but the parameter settings differed
for each model. Generally, for phenology, lower differences
between the same models (except DAISY for winter oilseed
rape anthesis) resulted with respect to yield. The differences
between the same models are also evident within the maximum
estimated values of leaf area index (Fig. 6), especially for
DSSAT models. On the other hand, the harvest index results
were more stable between the same models as well as through
all the models (Fig. 7).

Generally, the highest variability in modelled annual yield was
achieved considering individual models. For example, in our
study, simulated winter wheat yield ranged from 2164 to 12 185
kg/ha, whereas the observed yield range was narrower, 2442 to
9297 kg/ha, across all the sites. A similar trend was achieved by
Palosuo et al. (2011), in which the modelled winter wheat yield
results ranged from 1800 to 12 000 kg/ha compared against a
similar real yield range. Here, the same field experiments with
Samanta variety in Lednice and Věrovany were included. The dif-
ferent feature of the mentioned study was that several of their
models showed a larger yield range than the observed data.
Palosuo et al. (2011) also listed a wide range of IA (0.40–0.74)

Fig. 7. Boxplots for values of harvest indexes within the employed models. The comparisons include medians from the single models, processed data from all the

simulations, and the averages and medians of the model ensemble for all the crops. The boxes delimit the interquartile ranges (25–75 percentiles), and the whis-

kers link the high and low extreme values.
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and RMSE (1400–2300 kg/ha) for winter wheat and similarly
Rötter et al. (2012) for spring barley (RMSE from 1120 to 1940
kg/ha and IA from 0.31 to 0.63). However, the observed yield
was not known to the modellers for the model’s setting.

The feature about lower reported variability by EnsMED and
EnsAVG is not valid for phenology (Fig. 2), perhaps as an effect
of the higher accuracies of individual models in phenology simu-
lations compared to yield, where the errors of individual models
are equally reduced. Based on the IAs for winter wheat, spring
barley and silage maize, EnsMED produced more accurate esti-
mates than EnsAVG, whereas, in the case of winter oilseed
rape, that was reversed. The better performance of EnsMEDs is
in accordance with results from previous multimodel ensemble
studies and is reflected within the impact and adaptation studies
(Pirttioja et al., 2015; Ruiz-Ramos et al., 2018). In the case of an
ensemble based on verified and suitable models for target crops,
EnsAVG likely provides higher informative value, but when
there is uncertainty regarding some of the models, less experience
and a smaller number of studies for a crop, EnsAVG is more
prone to bias due to the higher impact of a model failure
(Wallach et al., 2018).

Using the ensemble, better yield results (IA-based) were
achieved for spring crops, and worse results were obtained for
winter crops. This is in contrast with Rötter et al. (2012) who
compared models for spring barley (represented by cultivar
Orbit from the Lednice and Věrovany experiments conducted
between 1984 and 1998) and concluded, using RMSE and IA,
that models performed slightly, but not significantly, better for
winter wheat. For instance, the worst results were achieved for
yield of winter oilseed rape. This could be explained by the influ-
ence of overwintering conditions and modelling of connected
impacts (low-temperature stresses, presence and influence of
snow cover). Moreover, modellers’ experience when simulating
winter oilseed rape is usually lower, and the amount of data for
calibration as well as the number of studies are much smaller
than for main staple crops, e.g. wheat and maize (see e.g. Kollas
et al., 2015) as it is obvious from the different number of studies
focused on modelling of individual field crops (e.g. Web of
Science, Orlandini et al., 2008). The relatively poor performance
of most models for oilseed rape yields indicates that the database
for many models for parameterizing oilseed rape was not suffi-
cient so far or important crop-specific responses, e.g. frost damage
and recovery, were not sufficiently considered in some models. In
principle, however, the experience of modellers can influence
simulation accuracy for all the crops involved, when the calibra-
tion procedure could by burdened to some extent due to the
user’s subjectivity. The example could be the possibility to simu-
late similar phenological development with different combina-
tions of cardinal temperatures and thermal sums or due to the
large variability in the values available in the literature for the
parameters involved (Confalonieri et al., 2016). In consequence,
extending research to less modelled crops such as winter oilseed
rape is strongly recommended (e.g. Rötter et al., 2018). In the
case of CROPSYST, the robustness of winter oilseed rape should
be reconsidered due to the very high harvest index results from
the current study (Fig. 7). On the other hand, errors within
some models under such conditions are quite surprising, and
their reparameterization or improvement should be considered.
Especially in the case of winter crops, the relative RMSEs (nor-
malized by the average observed yield) for a majority of the mod-
els exceeded 20%, which could be considered as a threshold for
successful calibration (e.g. Ruiz-Ramos et al., 2018).

The ability of models to explain yield variability could be
attributed to the differences within their characteristics
(Table 2). Consequences could be evident also from individual
growth outputs such as the simulated maximum values of leaf
area index during the season (LAIMAX) (Fig. 6). Relevant differ-
ences in leaf area index were reported for various models for win-
ter wheat in Palosuo et al. (2011) as well. On the other hand, the
reported harvest indexes by models were at a stable level (except
CROPSYST for winter oilseed rape) in the current study (Fig. 7).

In some cases, the individual models failed completely, even
for variables with known target values, e.g. FASSET for winter
crops maturity dates and AGROTOOL for silage maize yield.
Failure is defined here if the RMSE of a model to a specific target
variable is higher than the mean RMSE of all models plus 1.5
times of the standard deviation (as it is indicated within
Tables 4−6). This is another argument for preferring EnsMED
to EnsAVG (or use at least both of them) to avoid effects due
to simulated outliers in multi-model ensembles (Wallach et al.,
2018). Using EnsMED and EnsAVG for seasonal yield estimates
results in lower variability than the observed values. This is some-
what problematic in terms of the desired capability of model
ensembles to simulate extremely low yield under adverse condi-
tions (e.g. future droughts and heat stress). Simultaneously sim-
pler models could also bring important robustness, but it is
necessary to balance such approaches by the parallel use of
more complex models, which allows more processes to be ana-
lyzed. In some cases, the yields formation based on the harvest
index approach brings problems (e.g. in the case of winter oilseed
rape by CROPSYST), but a similar approach was also used within
the most successful of included models EPIC and AQUACROP
(see Table 2). Fronzek et al. (2018) provided insight into differ-
ences within wheat models behaviour and concluded about the
closer correspondence of sensitivity to temperature and precipita-
tion change in models using partitioning schemes for yield forma-
tion than in those using a harvest index approach.

Conclusions

The responses of the single models and the multi-model ensemble
were not found to be consistent through all the tested crops, pri-
marily because although there are countless calibration studies for
winter wheat, spring barley and silage maize, a smaller number of
studies have focused on winter oilseed rape, and modellers have
less experience with modelling this crop. Hence, further calibra-
tion works and connected research are recommended for crops,
that are less common for crop modellers. Also, such crops are
necessary for successful simulations of crop rotations and more
complex soil–atmosphere–crop–farmer interaction assessments.

It can be concluded that even in cases when yields are known,
there are significant differences in results between individual
models. In general, spring crop yield was simulated more satisfac-
torily than winter crops. The poorest results were obtained for
winter oilseed rape.

For correct ensemble crop rotation simulations, only models
with reasonable accuracy (i.e. without failures) across all included
crops and investigated variables within the target environment
(which is not automatic) should be selected and based on robust
calibration/verification studies. Modelling of anthesis and matur-
ity was generally best simulated by the ensemble compared to the
individual model results, whereas EnsMED is better than EnsAVG.
The yield was better estimated by the best models than by the
tested ensemble, which nevertheless provided robust results.
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Considering RMSE and IA, and all the sites together,
AQUACROP resulted in the best model for simulating the yield
of winter wheat, spring barley, and silage maize, and EPIC
resulted in the best model for winter oilseed rape. Regarding
the MBE metric, CROPSYST was best for winter wheat,
DSSAT1 was best for spring barley, and MONICAwas best for sil-
age maize and winter oilseed rape. Taking into account phenology
and yields together, EnsMED was identified as the most universal
predictor (compared to EnsAVG and individual crop models).
This was also proved within the individual stations, so across
the tested climatic conditions. This is despite ensemble compos-
ition and the inclusion of less accurate models. Some degree of
simulations uncertainty could be connected to the user´s subject-
ivity within the calibration process. Also, in this case, the ensem-
ble approach (including ensembles of the same models) can help
increase the accuracy and robustness of estimates and with quan-
tification of uncertainty. Achieved results together with the char-
acteristic lower variability of ensemble outputs against the
observed values can be used for planning and interpretation of
studies focused on the impacts of changed agrometeorological
conditions on individual crops as well as crop rotations.
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