
Performance of a New Annealing Schedule

Jimmy Lam+, Jean-Marc Delosmett
‘Department of Computer Science

++Department of Electrical Engineering
Yale TJniversity

New Haven, CT 06520

Abstract

A new simulated annealing schedule has been developed;
its application to the standard cell placement and the
traveling salesman problems results in a two to twenty-
four times speedup over annealing schedules currently
available in the literature. Since it uses only statistical
quantities, the annealing schedule is applicable to general
combinatorial optimization problems.

1. Introduction

The ground states of a complex physical system can
be reached by heating the system up to some high
temperature and then cooling it down slowly. The
simulated annealing technique, first proposed by
Kirkpatrick el al. [l], exploits this analogy to solve
general combinatorial optimization problems. In this
technique, the configuration space of the optimization
problem is explored by a controlled hill climbing search in
which the control parameter, T, plays the role of the
temperature in a physical system. By slowly decreasing
the temperature according to a properly chosen annealing
schedule, one can show that the globally optimal
solutions can be reached with probability one [2].

In practical applications to problems such as
standard cell placement in integrated circuit layout,
simulated annealing gives excellent results at the expense
of massive computation time. To remedy this
inefficiency, various approaches have been proposed that
fall into three categories: parallel implementations of
simulated annealing [3,4,5], carefully controlled move
generation strategies [6] and efficient annealing schedules
[2,7,8]. This paper belongs to the last category.

In 1984, White [9] proposed to group solutions
according to their costs and to analyze them as groups.
This approach is extended in this paper to obtain a new
annealing schedule; not only solutions are grouped
according to their costs, but also models are introduced
to clescribe their properties. From these models, we
arrive at the new annealing schedule and the conditions
on move generation strategies that give good run-time
performance.

We outline the derivation of our annealing schedule
in Section 2 and discuss its application to the standard
cell placement and the traveling salesman problems in
Section 3. Implementation of the new annealing schedule
and comparison with the annealing schedule by Huang et
al. [8] are also presented in Section 3. In Section 4, we
discuss practical aspects of our implementation.

2. New simulated annealing schedule

The simulated annealing heuristic is based on the
observation that annealing is successful if the system is
kept close to thermal equilibrium as the temperature is
lowered. However, to keep the system in equilibrium at
all times requires that the temperature decrements be
infinitesimal; a long time would have passed before the
system is frozen and annealing is stopped. From a
practical standpoint, a good annealing schedule must,
therefore, achieve a compromise between the quality of
the final solution and the computation time. Since it is
difficult to determine if a system is in thermal
equilibrium, we introduce an approximate equilibrium
criterion: a system is in D-equilibrium (deterministic
equilibrium) if the D-condition

P(S) - Ao(s) < E 5 /.I(s) + Xo(s)

is satisfied, where c is the average cost of the system,
P(S) and u(s) are, respectively, the steady state mean and
standard deviation of the cost if the system is in thermal
equilibrium at inverse temperature s E l/T. (For ease of
presentation, we use s instead of T .) The user specified
constant ?7 controls the trade-off between the
computation time and the quality of the final solution; a
smaller X leads to a better approximation of thermal
equilibrium, a higher quality of the final solution, and a
longer computation time. For a given X, we can show
that our annealing schedule gives the fastest decrease in
temperature while satisfying the D-condition.

The evolution of the average cost, Z, is not a
function of the temperature alone; it also depends on the
type of moves employed. In order to study the effect of
different move generation strategies on E, we need to
characterize the properties of these strategies. We model
the conditional probability density function of the
proposed new cost, C,, given the current cost, C, as

FJ(C+IC)=e -B’Ac’Q(C+, C)

Paper 22.1
306

25th ACM/IEEE Design Automation Conference@’

CH2540-3/88/0000/0306$0~ .OO 0 1988 IEEE

(the move generation model), where AC = C, - c is the

proposed cost change. The value of the parameter p
depends on the move generation strategy while the factor
& (C,, C) is a function of the cost density (the probability
density function of the cost), P(C). (For large p,
Q (C,, C) is proportional to Jp (C+)/p (C).) The factor
Q (C,, C) models the belief that the frequency with which
a cost is proposed depends on the number of solutions
possessing that cost: the more solutions with a given cost,
the more likely that cost is to be proposed. The factor
e -BIAc t models the belief that the difference between the
proposed cost and the current cost influences the
frequency: the closer is a given cost to the current cost,
the more likely it is to be proposed.

The results of a test of our model on a loo-city
Traveling Salesman Problem (TSP) are displayed in Fig.
la-lb. The five inverse temperatures at which the test
was performed are indicated on the annealing curve in
Fig. la. A typical result of the test is depicted in Fig. lb
in which the solid curve represents the computed
p (C, 1 C) and the histogram represents the measured
p (C, 1 C). The computation of p (C, 1 C) is based on
estimated p and measured Q(C+, C). The interested
reader is referred to [lo] for the details of the experiment.
From these figures, we observe that the curves agree well
with the histograms throughout the entire temperature
range. This suggests that our model, although simple,
captures the essence of move generation strategies.

x10-1
1.3

1.3

1.2

w C)
1.2

1.2

1.1
-9.4 -8.1 -6.8 -5.5 -4.1 -2

bds 1
a

Figure la: Inverse temperatures at
which the test was performed.

x10-3
p = 1.7e-3, s = 2.&-3, c = l.Oe 5.

4.8

2.4

0.0
-3.2 -0.3 2.6

Figure lb: Testing the move generation model.
Measured p (C, (C), histogram.

Computed p (C+ 1 C), solid curve.

To use our model effectively, we need to compute p
and Q (c,, c). Expressions for both of these quantities
can be found by introducing another model for the cost
density:

p(C)= p:hiG(uti,v)+go
i=O

(the cost density model), where G(u ,v) is a gamma
density function,

vu - -cu-le-vC, G(u>v) - r(u)

Any probability density function with a bounded left tail
can be represented by this model. The accuracy of the
resulting representation improves as the number of terms
in the model increases.

Keeping the D-condition in mind and using both
models, we obtain the new annealing schedule [lo]:

s+=s +A
4a(l - CY)”

s 2(2 - a)2c73(s) ’

where s+ is the new inverse temperature and rr is the
acceptance ratio. Note that s is updated after every
move. The temperature decreases most rapidly when
a = 0.44. Since we want to decrease the temperature as
fast as possible while satisfying the D-condition, (I = 0.44

is our target acceptance ratio.

The formula for the acceptance ratio is

2p-s

a=zp.

This expression relates the acceptance ratio to fl and,
consequently, to the move generation strategy. If the
move generation strategy can be modified dynamically
(see Section 3 for an example), we can control move
generation and, hence, ,L% The effect of our control can be
observed from the measured acceptance ratio, &. If 8 is
less than 0.44, we modify the move generation strategy so
that p and, therefore, a increases. If & is greater than
0.44, we modify the move generation strategy so that p
and, therefore, (x decreases. Thus, the move generation
strategy, the parameter p and the measured acceptance
ratio constitute a closed loop control.

The derivation of the new annealing schedule
embodies a number of guidelines suggested by various
authors. First, the derived target acceptance ratio of 0.44
is similar to the suggestion by Binder [12, p.ll] that the
magnitude of the proposed cost change should be chosen
such that a = 0.5. Second, the new schedule can be
rewritten as

where H(S) is the specific heat. This is consistent with
the belief that the larger is the specific heat, the slower
should be the cooling.

3. Applications

The computational formulas for the new annealing
schedule are listed in Table 1. During the initialization

Paper 22.1
307

Temperature updating formulas 1 = 1,~ ‘5 1 I,,..

1
sl= 26(o)

1
F(G) = -

As, + B

St+1 = St + &-.-wish)2
sty2 - cq2cT3(s,)

1 b(St) = -
Ds, + E

Parameter initialization formulas
=I

E=+
0 I

Parameter updating formulas i = 0, r, 27 1 I...

f(l)f(+) - f(s 1

A = f(l)f(sz) - f(s)f(s 1

dl)d~~ - ds M$)

D = !7(l)!ds2) - ds MST

B=

fO)f($ - Af(s 1 dlM+ - Ws 1

f(l)
E=

dl)

Measurement formulas i = i-r+l, i-r+2,..., t

Table 1: Computational formulas for the
new annealing schedule.

phase, the inverse temperature, sO, is set to O. The
system is allowed to run until it is randomized and
accurate estimations of the mean, co, and the standard

. .
deviation, BO, can be made. These estimates are used to
compute the initial values of the parameters A, B, D,

and E using the initialization formulas. Then, the new
inverse temperature is computed using the temperature
updating formulas after every move, and the parameters

A, B, D, and E are adjusted using the parameter
updating formulas after every r moves. ,This process is
repeated until i? remains unchanged for the last kr

moves. At this point, the system is considered frozen and
annealing is stopped. Note that the measured acceptance
ratio, &‘, is recomputed after every 7 moves.

The weight factors 4 and b in the parameter
updating formulas are computed using 4 = z,, / (L,-T),

and b = Lb / (hb-r), where L, and Lb am the memory
lengths of the adaptive estimators for the mean and the
standard devia.tion of the system, respectively. Smaller
memory lengths give larger weight factors which, in turn,
make the system forget its history faster. Finite memory
lengths are desirable because our models are imperfect.
By selecting different memory lengths, we allow the
model parameters to vary at different speeds as annealing
proceeds.

The settings of the parameters for the TSP are
XL, = 600, ,iLb = 3000, T= 100, k = 5 and the settings for
the standard cell placement problem are X6, = 60,

AL, = 300, T = 100, k = 5. The test results given below
were measured on a Sun 3/280-s8 with MC68881 floating
point option. Unless stated otherwise, they are average
results of eight ezecutions. All programs were
implemented in the C programming language.

3.1. Standard cell placement problem
3.1.1. Test results

We tested our annealing schedule in TimberWolfSC
version 4.1 [ll], a standard cell placement program.
Given a set of standard cells of constant height and
variable width, and a net list of interconnections among
cells, the objective of TimberWolfSC is to place the cells
in a layout so that the total length of the interconnecting
wires is minimized. The test results of eight instances of
the standard cell placement problem with size (the total
number of cells) ranging from 183 to 2965 are shown in
Table 2. The subscripts 1 and 0 are used to indicate
results from TimberWolfSC’s annealing schedule and the
new annealing schedule, respectively. The quantities TV
(the speedup factor) and WI are defined as

T,= 2 and Wl’wl,
wo

where i represents the CPU time and UJ represents the
total wire length. The test results for sda and ha&a are
average results of four executions while the test results
for the others are average results of eight executions. We
observe that our annealing schedule gives a speedup of
1.03 to 1.66 when compared with TimberWolfSC’s. The
test cases ic and &a& give a much smaller speedup than
the others. This is due to two reasons. The first and the
most important one is the very good initial placement of
sda.~. The initial temperature of TimberWolfSC is set at

Name Size
Wl

example 183 1.01
8870 286 1.02
ic 347 1.00
sda2 469 1.00
SPl 752 1.01
5655 800 1.01
sda 2357 0.99
harris 2965 1.09

Table 2: Comparison with TimberWolfSC’s annealing schedule.

Paper 22.1
308

500; this is not high enough to destroy the structure of
the initial placement. Consequently, a good initial
solut,ion helps TimberWolfSC give a better final
placement. To test this hypothesis, we performed an
experiment in which a randomized placement of sdaa was
used as the initial solution. Instead of giving an average
result of 262,318, TimberWolfSC gave an average of
267,250. Though the difference is only 2%, it is
significant since our annealing schedule runs 20% to 30%
faster if an average of 267,250 is considered sufficient.
The second reason has to do with the aspect ratios of ic
and sdaL. We observe from the x:y column of Table 4
that the ratios of the width of the desired placement (x)
over the height of the desired placement (y) are less for
ic and s&z than for the rest. The move generation
controller, which will be discussed later, works better
when the set of values it can control is larger. Since
standard cells are placed on rows, their y-positions can
only take on discrete values imposed by the y-positions of
the rows. Their x-positions, however, can take on any
integral value-a much larger set. Therefore, a smaller
x:y ratio gives less freedom for the controller to work
with. This hinders the operation of our annealing
schedule.

We tested annealing schedules from Huang et al. [S],
Aarts and Van Laarhoven [7], and Mitra et al. [2] on the
TSP. The cities in the test are uniformly distributed and
their number ranges from 100 to 400. The annealing
schedule from Huang et al. gave significantly better
results, and was used to compete with ours. Table 3
shows the test results where subscript 2 indicates results
from Huang’s annealing schedule. From this table, we
observe that our annealing schedule gives a speedup of
0.98 to 1.61 with solutions that are 14% to 42% better
than those obtained with Huang’s annealing schedule.

iterations and changes temperature after every iteration;
within each iteration, a fixed number of moves depending
on the problem size is proposed. Since the new annealing
schedule runs faster than TimberWolfSC’s annealing
schedule, it executes less iterations than TimberWoLfSC’s.
In order to arrive at similar values of c(i), we need to
modify the way the c (i)'s are computed. This was done
by making an educated guess of the last iteration number
for the new annealing schedule and scaling the values of
e (i)‘s accordingly. Table 4 shows the settings of the last
iteration number, i, for both the new annealing schedule
and Huang’s annealing schedule.

The range limiter was also modified. In
TimberWolfSC, rows are divided into rectangular regions
called bins. A move is proposed by first picking a cell,
say cell A, randomly. Then a window, whose size is
independent of the cell and is equal to
2 mean-cell-width + 6 *standard-deviation by 3 rows, is
centered around cell A. A bin is picked randomly within
that window. If the bin contains no cell, a single cell
movement is proposed; if the bin contains one or more
cells, a cell is picked randomly within that bin and a
pairwise exchange is proposed. Instead of picking a bin
this way, we modified the range limiter by allowing the
window size to change dynamically and picking a bin
according to the formulas,

d, = zk r, *log(RAND) and dY = i rv *log(RAND).

Here, RAND is a random number between 0 and 1, d,
and dy are, respectively, the I and y distances of the new
bin from cell A, and r, and r, are the control parameters.
If bins are picked this way, the probability that a bin is
picked is proportional to ,-4’r* in the x-direction, and
e-5’5 in the y-direction; therefore, bins that are closer to
cell A have a higher probability of being picked. The

CPI

1,
630

1396
1521
2091
5145
4433

Jl

t -

;ime (sec.> I Wi

to TZ wz
437 1.44 251567
881 1.58 202731

l-i-

1550 0.98 98842
2034 1.03 371500
3187 1.61 1235140
3318 1.34 1154030

e length

WO

216285
177399

83027
262427
974308
946914

Table 3: Comparison with Huang’s annealing schedule.

3.1.2. Implementation details

Implementation of the new annealing schedule in
TimberWolfSC involves four modifications. We replaced
TimberWolfSC’s annealing schedule by ours and also
modified the coefficient of the penalty function, c(i), the
range limiter [6], and the number of bins in a row. The
first modification is necessary because the cost function,

Cost = total_wireJength + c (i)*penalty ,

depends on c (i), which is a function of the current
iteration number, i. TimberWolfSC always executes 104

Name

example
8870
ic
sda2

SPl
5655 I -

aral

i2
104
104
104
104
104
104

!ters

AL-
0.03
0.014
0.01
0.013
0.009
0.008

Table 4: Parameters for Huang’s annealing schedule
and the new annealing schedule.

Paper 22.1
309

control parameters r, and rV are adjusted after every 7
moves. If d is less than 0.44, the values of rZ and rv are
lowered; if 8 is greater than 0.44, the values of r, and rY
are raised. The parameter r, is allowed to vary from
mean-cell-widih + 3*standard_deviation to the maximum row
width, while rv is allowed to vary from 0.75 row to the
maximum number of rows.

The last modification was to change the number of
bins in a row. In TimberWolfSC the total number of
bins is roughly equal to the number of standard cells.
Since the new annealing schedule starts at {tnfinite
temperature, all proposed moves will be accepted
indiscriminately. Whenever a single cell movement is
proposed, the number of empty bins can only be
decreased. This is because when a cell is moved from a
bin occupied by more than one cell, the number of vacant
bins decreases by one. And there is no way to get a
vacant bin back! Since single cell movements are
proposed only when empty bins are found, the percentage
of single cell movements proposed at later temperatures
will be small. On the other hand, TimbcrWolfSC starts
at an initial temperature of 500. At this temperature,
not all proposed moves are accepted so that typically
10% to 20% of the bins remain empty. In order to allow
the new annealing schedule to propose single cell
movements at a higher rate, we increase the number of
bins by decreasing the bin size. Different total numbers
of bins had been tried; we settled on a ratio of 1.5 for the
total number of bins to the total number of cells,. This
guarantees a 33% chance for single cell movements to be
proposed.

Huang’s annealing schedule was implemented as in
[8]. The results quoted in Table 3 for this annealing
schedule were obtained using TimberWolfSC’s range
limiter. Due to the difference in range limiters between
this version of TimberWolfSC and the older version used
in [8], a few maximum generation limits had been tried.
We settled on a value of 5,5+no_of,ce/k, which

corresponded roughly to the number of possible moves
when the range limiter was used.

3.2. Traveling salesman problem

We also tested our annealing schedule on the TSP in
which the cities are uniformly distributed on a grid of
10,000 by 10,000, and the cost is the length of the tour.
In this implementation, each city maintains a list of up to
250 neighboring cities sorted according to their dj.stances
from that city in ascending order. A move is proposed by
picking two cities A and B, and modifying the tour as
shown in Fig. 2. City A is always picked randomly while
city B is picked using one of the two following methods.
In the first method called uniform control, city B is
picked randomly from the first d cities on the ordered list
of city A. The control parameter d is allowed to clecrease
as a function of the inverse temperature, 8,

Figure Z: How to modify a tour in the TSP.

where N is the total number of cities. In the second
method called exponential control, city B is the dth entry
on the ordered list of city A with

d = - r+log(RAND),

where RAND is a random number between 0 and 1, and
r , a control parameter between 2 to N, is adjusted based
on the measured acceptance ratio in a similar fashion as
in the standard cell placement problem.

We performed tests on the TSP with the number of
cities ranging from 100 to 400. The experimental results
are displayed in Table 5 in which 6, representing the
quality of the final solution, is the percentage of the cost
above the estimated best cost. To find this estimated
best cost, we carried out a sequence of careful annealings
with the run-time doubled after every eight executions
until the average cost was stabilized. Then, the best cost
in the sequence was used as the estimated best cost.
Along each column in Table 5, the speedups associated
with a particular 6 as the number of cities increases are
shown, while along each row the speedups associated with
a particular problem size as the quality of the solution
improves are shown. The speedups are defined as the
ratio of the CPU time with Huang’s annealing schedule
using uniform control over the CPU time with the new
annealing schedule using exponential control. Although
our annealing schedule is 10% slower per move than
Huang’s, we still observe a speedup of up to 24 for the
400-city TSP!

Table 5: Comparison with Huang’s annealing
schedule for the TSP.

To isolate the effect of exponential control, we
experimented on both annealing schedules with uniform
and exponential controls. The speedups, computed as the
CPU time using uniform control over the CPU time using
exponential control on the new annealing schedule, are
displayed in Table 6, while the speedups, computed as
the CPU time of Huang’s annealing schedule over the
CPU time of the new annealing schedule when both were
using exponential control, are displayed in Table 7. We

Paper 22.1
310

Size
Speedup

6 = 3.6% 1 6 = 2.9% 1 6 = 2.2% 1 6 = 1.5%

100 1.74 I 3.27 I 3.43 I 3.87

Table 6: Comparison of uniform and exponential controls
(with the new annealing schedule) for the TSP.

Acknowledgements

The authors would like to acknowledge Carl Sechen
and Kai Win Lee from the Department of Electrical
Engineering at Yale University for many helpful
discussions on TimberWolfSC. This research was
supported by the Army Research Office under contract
DAAL03-86-K-0158 and by the Office of Naval Research
under contract N00014-85-K-0461.

Size
Speedup

6 = 3.6% 1 6 = 2.9% 1 6 = 2.2% 1 6 = 1.5%

100 1 1.95] 1.99] 2.04] 2.21

Table 7: Comparison with Huang’s annealing schedule
enhanced with exponential control for the TSP.

observe that the use of exponential control speeds up the
new annealing schedule by a factor of up to five.
However, even when the same control met hod is
employed with both annealing schedules, our annealing
schedule still out-performs Huang’s by a factor of up to
three. For comparisons with other heuristics like Lin and
Kernighan [13] for the TSP and Fiduccia and Mattheyses
[14] for the graph partition problem, the interested reader
is referred to [15].

A few maximum generation limits for Huang’s
annealing schedule had also been tried; we settled on a
value of N*~/z which corresponded to the number of
possible moves when uniform control was used.

4. Practical considerations

We observe from Table 1 that our annealing
schedule uses floating point computations heavily. To
reduce the number of floating point operations, we
approximate our annealing schedule by computing the
new inverse temperature after every ten steps instead of
one:

st+uJ = St + 1OA
4o(l - a)*

sty2 - a)W(st) .

This speeds up our annealing schedule by a few percents
without degrading the quality of the final solutions.

We also pre-compute the value of exponentials and
logarithms. Their values are looked up when needed.
Since the evaluation of exponentials and logarithms
occurs quite often, a significant portion of run-time is
typically saved.

Care must be taken in designing exponential
controls; the number of possible moves at any time
should not be too small. Consider the TSP example. If
the value of r in the exponential control is too close to 0,
the value of d will be restricted to a small set. This is
undesirable since the number of possible moves is so small
that annealing may stop prematurely.

References

PI

PI

131

(41

[51

PI

PI

PI

PI

PO1

Pll

[I21

[I31

[I41

b51

S. Kirkpatrick, C. Gel&t Jr. and M.P. Vecchi,
“Optimization by Simulated Annealing,” Science, Vol. 220,
671-680, 1983.

D. Mitra, F. Romeo and A.L. Sangiovanni-Vincentelli,
“Convergence and Finite-time Behavior of Simulated
Annealing,” Proceedings of the 24th Conference on Decision
and Control, 761-767, 1985.

S. Kravitz and Ft. Rutenbar, “Multiprocessor-Based
Placement by Simulated Annealing,” Proceedings of the
23rd IEEE Design Automation Conference, 567-573, 1986.

E. Aarts, F. de Bont, E. Habers and P. van Laarhoven,
“Parallel Implementations of the Statistical Cooling
Algorithm,” INTEGRATION, the VLSI journal, Vol. 4,
209-238, 1986.

P. Banerjee and M. Jones, “A Parallel Simulated Annealing
Algorithm for Standard Cell Placement on a Hypercube
Computer,” Proceedings of the IEEE International
Conference on Computer-Aided Design, 3437, 1986

C. Sechen and A. Sangiovanni-Vincentelli, “The
TimberWolf Placement and Routing Package,” IEEE

Journal of Solid-State Circuits, Vol. 20, No. 2, 510-522,
1985.

E. Aarts and P. Van Laarhoven, “Statistical Cooling: a
General Approach to Combinatorial Optimization
Problems,” Philips Journal of Research, Vol. 40, No. 4,
193-226, 1985.

M. Huang and A. Sangiovanni-Vincentelli, “An Efficient
General Cooling Schedule for Simulated Annealing,”
Proceedings of the IEEE International Conference on

Computer-Aided Design, 381-384, 1986.

S. White, “Concepts of Scale in Simulated Annealing,”
Proceedings of the IEEE International Conference on
Computer Design, 646-651, 1984.

J. Lam and J-M. Delosme, “An Adaptive Annealing
Schedule,” Report 8608, Department of Electrical
Engineering, Yale University, Sept. 1986.

C. Sechen and K.W. Lee, “TimberWolfSC Version 4.1
Program Source,” 1987.

K. Binder, Monte Carlo Methods in Statistical Physics, 2nd
Edition, Springer-Verlag, 1986.

S. Lin and B. Kernighan, “An Effective Heuristic Algorithm
for the Traveling Salesman Problem,” Operations Research,
Vol. 21, 498-516, 1973.

C. Fiduccia and R. Mattheyses, “A Linear-Time Heuristic
for Improving Network Partitions,” Proceeding of the 19th
IEEE Design Automation Conference, 175-181, 1982.

J. Lam, “An Efficient Simulated Annealing Schedule,”
Ph.D. Dissertation, Department of Computer Science, Yale
University, Fall 1988.

Paper 22.1
311

