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Abstract 

A new simulated annealing schedule has been developed; 
its application to the standard cell placement and the 
traveling salesman problems results in a two to twenty- 
four times speedup over annealing schedules currently 
available in the literature. Since it uses only statistical 
quantities, the annealing schedule is applicable to general 
combinatorial optimization problems. 

1. Introduction 

The ground states of a complex physical system can 
be reached by heating the system up to some high 
temperature and then cooling it down slowly. The 
simulated annealing technique, first proposed by 
Kirkpatrick el al. [l], exploits this analogy to solve 
general combinatorial optimization problems. In this 
technique, the configuration space of the optimization 
problem is explored by a controlled hill climbing search in 
which the control parameter, T, plays the role of the 
temperature in a physical system. By slowly decreasing 
the temperature according to a properly chosen annealing 
schedule, one can show that the globally optimal 
solutions can be reached with probability one [2]. 

In practical applications to problems such as 
standard cell placement in integrated circuit layout, 
simulated annealing gives excellent results at the expense 
of massive computation time. To remedy this 
inefficiency, various approaches have been proposed that 
fall into three categories: parallel implementations of 
simulated annealing [3,4,5], carefully controlled move 
generation strategies [6] and efficient annealing schedules 
[2,7,8]. This paper belongs to the last category. 

In 1984, White [9] proposed to group solutions 
according to their costs and to analyze them as groups. 
This approach is extended in this paper to obtain a new 
annealing schedule; not only solutions are grouped 
according to their costs, but also models are introduced 
to clescribe their properties. From these models, we 
arrive at the new annealing schedule and the conditions 
on move generation strategies that give good run-time 
performance. 

We outline the derivation of our annealing schedule 
in Section 2 and discuss its application to the standard 
cell placement and the traveling salesman problems in 
Section 3. Implementation of the new annealing schedule 
and comparison with the annealing schedule by Huang et 
al. [8] are also presented in Section 3. In Section 4, we 
discuss practical aspects of our implementation. 

2. New simulated annealing schedule 

The simulated annealing heuristic is based on the 
observation that annealing is successful if the system is 
kept close to thermal equilibrium as the temperature is 
lowered. However, to keep the system in equilibrium at 
all times requires that the temperature decrements be 
infinitesimal; a long time would have passed before the 
system is frozen and annealing is stopped. From a 
practical standpoint, a good annealing schedule must, 
therefore, achieve a compromise between the quality of 
the final solution and the computation time. Since it is 
difficult to determine if a system is in thermal 
equilibrium, we introduce an approximate equilibrium 
criterion: a system is in D-equilibrium (deterministic 
equilibrium) if the D-condition 

P(S ) - Ao(s ) < E 5 /.I(s ) + Xo(s ) 

is satisfied, where c is the average cost of the system, 
P(S) and u(s) are, respectively, the steady state mean and 
standard deviation of the cost if the system is in thermal 
equilibrium at inverse temperature s E l/T. (For ease of 
presentation, we use s instead of T .) The user specified 
constant ?7 controls the trade-off between the 
computation time and the quality of the final solution; a 
smaller X leads to a better approximation of thermal 
equilibrium, a higher quality of the final solution, and a 
longer computation time. For a given X, we can show 
that our annealing schedule gives the fastest decrease in 
temperature while satisfying the D-condition. 

The evolution of the average cost, Z, is not a 
function of the temperature alone; it also depends on the 
type of moves employed. In order to study the effect of 
different move generation strategies on E, we need to 
characterize the properties of these strategies. We model 
the conditional probability density function of the 
proposed new cost, C,, given the current cost, C, as 

FJ(C+IC)=e -B’Ac’Q(C+, C) 
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(the move generation model), where AC = C, - c is the 

proposed cost change. The value of the parameter p 
depends on the move generation strategy while the factor 
& (C,, C) is a function of the cost density (the probability 
density function of the cost), P(C). (For large p, 
Q (C,, C) is proportional to Jp (C+)/p (C).) The factor 
Q (C,, C) models the belief that the frequency with which 
a cost is proposed depends on the number of solutions 
possessing that cost: the more solutions with a given cost, 
the more likely that cost is to be proposed. The factor 
e -BIAc t models the belief that the difference between the 
proposed cost and the current cost influences the 
frequency: the closer is a given cost to the current cost, 
the more likely it is to be proposed. 

The results of a test of our model on a loo-city 
Traveling Salesman Problem (TSP) are displayed in Fig. 
la-lb. The five inverse temperatures at which the test 
was performed are indicated on the annealing curve in 
Fig. la. A typical result of the test is depicted in Fig. lb 
in which the solid curve represents the computed 
p (C, 1 C) and the histogram represents the measured 
p (C, 1 C). The computation of p (C, 1 C) is based on 
estimated p and measured Q(C+, C). The interested 
reader is referred to [lo] for the details of the experiment. 
From these figures, we observe that the curves agree well 
with the histograms throughout the entire temperature 
range. This suggests that our model, although simple, 
captures the essence of move generation strategies. 
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Figure la: Inverse temperatures at 
which the test was performed. 
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Figure lb: Testing the move generation model. 
Measured p (C, ( C), histogram. 

Computed p (C+ 1 C ), solid curve. 

To use our model effectively, we need to compute p 
and Q (c,, c ). Expressions for both of these quantities 
can be found by introducing another model for the cost 
density: 

p(C)= p:hiG(uti,v)+go 
i=O 

(the cost density model), where G(u ,v) is a gamma 
density function, 

vu - -cu-le-vC, G(u>v) - r(u) 

Any probability density function with a bounded left tail 
can be represented by this model. The accuracy of the 
resulting representation improves as the number of terms 
in the model increases. 

Keeping the D-condition in mind and using both 
models, we obtain the new annealing schedule [lo]: 

s+=s +A 
4a(l - CY)” 

s 2(2 - a)2c73( s ) ’ 

where s+ is the new inverse temperature and rr is the 
acceptance ratio. Note that s is updated after every 
move. The temperature decreases most rapidly when 
a = 0.44. Since we want to decrease the temperature as 
fast as possible while satisfying the D-condition, (I = 0.44 

is our target acceptance ratio. 

The formula for the acceptance ratio is 

2p-s 

a=zp. 

This expression relates the acceptance ratio to fl and, 
consequently, to the move generation strategy. If the 
move generation strategy can be modified dynamically 
(see Section 3 for an example), we can control move 
generation and, hence, ,L% The effect of our control can be 
observed from the measured acceptance ratio, &. If 8 is 
less than 0.44, we modify the move generation strategy so 
that p and, therefore, a increases. If & is greater than 
0.44, we modify the move generation strategy so that p 
and, therefore, (x decreases. Thus, the move generation 
strategy, the parameter p and the measured acceptance 
ratio constitute a closed loop control. 

The derivation of the new annealing schedule 
embodies a number of guidelines suggested by various 
authors. First, the derived target acceptance ratio of 0.44 
is similar to the suggestion by Binder [12, p.ll] that the 
magnitude of the proposed cost change should be chosen 
such that a = 0.5. Second, the new schedule can be 
rewritten as 

where H(S) is the specific heat. This is consistent with 
the belief that the larger is the specific heat, the slower 
should be the cooling. 

3. Applications 

The computational formulas for the new annealing 
schedule are listed in Table 1. During the initialization 

Paper 22.1 
307 



Temperature updating formulas 1 = 1,~ ‘5 1 I,,.. 

1 
sl= 26(o) 

1 
F(G) = - 

As, + B 

St+1 = St + &-.-wish)2 
sty2 - cq2cT3(s,) 

1 b(St) = - 
Ds, + E 

Parameter initialization formulas 
=I 

E=+ 
0 I 

Parameter updating formulas i = 0, r, 27 1 I... 

f(l)f(+) - f(s 1 

A = f(l)f(sz) - f(s )f(s 1 

dl)d~~ - ds M$) 

D = !7(l)!ds2) - ds MST 

B= 

fO)f($ - Af(s 1 dlM+ - Ws 1 

f(l) 
E= 

dl) 

Measurement formulas i = i-r+l, i-r+2,..., t 

Table 1: Computational formulas for the 
new annealing schedule. 

phase, the inverse temperature, sO, is set to O. The 
system is allowed to run until it is randomized and 
accurate estimations of the mean, co, and the standard 

. . 
deviation, BO, can be made. These estimates are used to 
compute the initial values of the parameters A, B, D, 

and E using the initialization formulas. Then, the new 
inverse temperature is computed using the temperature 
updating formulas after every move, and the parameters 

A, B, D, and E are adjusted using the parameter 
updating formulas after every r moves. ,This process is 
repeated until i? remains unchanged for the last kr 

moves. At this point, the system is considered frozen and 
annealing is stopped. Note that the measured acceptance 
ratio, &‘, is recomputed after every 7 moves. 

The weight factors 4 and b in the parameter 
updating formulas are computed using 4 = z,, / (L,-T), 

and b = Lb / (hb-r), where L, and Lb am the memory 
lengths of the adaptive estimators for the mean and the 
standard devia.tion of the system, respectively. Smaller 
memory lengths give larger weight factors which, in turn, 
make the system forget its history faster. Finite memory 
lengths are desirable because our models are imperfect. 
By selecting different memory lengths, we allow the 
model parameters to vary at different speeds as annealing 
proceeds. 

The settings of the parameters for the TSP are 
XL, = 600, ,iLb = 3000, T= 100, k = 5 and the settings for 
the standard cell placement problem are X6, = 60, 

AL, = 300, T = 100, k = 5. The test results given below 
were measured on a Sun 3/280-s8 with MC68881 floating 
point option. Unless stated otherwise, they are average 
results of eight ezecutions. All programs were 
implemented in the C programming language. 

3.1. Standard cell placement problem 
3.1.1. Test results 

We tested our annealing schedule in TimberWolfSC 
version 4.1 [ll], a standard cell placement program. 
Given a set of standard cells of constant height and 
variable width, and a net list of interconnections among 
cells, the objective of TimberWolfSC is to place the cells 
in a layout so that the total length of the interconnecting 
wires is minimized. The test results of eight instances of 
the standard cell placement problem with size (the total 
number of cells) ranging from 183 to 2965 are shown in 
Table 2. The subscripts 1 and 0 are used to indicate 
results from TimberWolfSC’s annealing schedule and the 
new annealing schedule, respectively. The quantities TV 
(the speedup factor) and WI are defined as 

T,= 2 and Wl’wl, 
wo 

where i represents the CPU time and UJ represents the 
total wire length. The test results for sda and ha&a are 
average results of four executions while the test results 
for the others are average results of eight executions. We 
observe that our annealing schedule gives a speedup of 
1.03 to 1.66 when compared with TimberWolfSC’s. The 
test cases ic and &a& give a much smaller speedup than 
the others. This is due to two reasons. The first and the 
most important one is the very good initial placement of 
sda.~. The initial temperature of TimberWolfSC is set at 

Name Size 
Wl 

example 183 1.01 
8870 286 1.02 
ic 347 1.00 
sda2 469 1.00 
SPl 752 1.01 
5655 800 1.01 
sda 2357 0.99 
harris 2965 1.09 

Table 2: Comparison with TimberWolfSC’s annealing schedule. 
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500; this is not high enough to destroy the structure of 
the initial placement. Consequently, a good initial 
solut,ion helps TimberWolfSC give a better final 
placement. To test this hypothesis, we performed an 
experiment in which a randomized placement of sdaa was 
used as the initial solution. Instead of giving an average 
result of 262,318, TimberWolfSC gave an average of 
267,250. Though the difference is only 2%, it is 
significant since our annealing schedule runs 20% to 30% 
faster if an average of 267,250 is considered sufficient. 
The second reason has to do with the aspect ratios of ic 
and sdaL. We observe from the x:y column of Table 4 
that the ratios of the width of the desired placement (x) 
over the height of the desired placement (y) are less for 
ic and s&z than for the rest. The move generation 
controller, which will be discussed later, works better 
when the set of values it can control is larger. Since 
standard cells are placed on rows, their y-positions can 
only take on discrete values imposed by the y-positions of 
the rows. Their x-positions, however, can take on any 
integral value-a much larger set. Therefore, a smaller 
x:y ratio gives less freedom for the controller to work 
with. This hinders the operation of our annealing 
schedule. 

We tested annealing schedules from Huang et al. [S], 
Aarts and Van Laarhoven [7], and Mitra et al. [2] on the 
TSP. The cities in the test are uniformly distributed and 
their number ranges from 100 to 400. The annealing 
schedule from Huang et al. gave significantly better 
results, and was used to compete with ours. Table 3 
shows the test results where subscript 2 indicates results 
from Huang’s annealing schedule. From this table, we 
observe that our annealing schedule gives a speedup of 
0.98 to 1.61 with solutions that are 14% to 42% better 
than those obtained with Huang’s annealing schedule. 

iterations and changes temperature after every iteration; 
within each iteration, a fixed number of moves depending 
on the problem size is proposed. Since the new annealing 
schedule runs faster than TimberWolfSC’s annealing 
schedule, it executes less iterations than TimberWoLfSC’s. 
In order to arrive at similar values of c(i), we need to 
modify the way the c (i)'s are computed. This was done 
by making an educated guess of the last iteration number 
for the new annealing schedule and scaling the values of 
e (i)‘s accordingly. Table 4 shows the settings of the last 
iteration number, i, for both the new annealing schedule 
and Huang’s annealing schedule. 

The range limiter was also modified. In 
TimberWolfSC, rows are divided into rectangular regions 
called bins. A move is proposed by first picking a cell, 
say cell A, randomly. Then a window, whose size is 
independent of the cell and is equal to 
2 mean-cell-width + 6 *standard-deviation by 3 rows, is 
centered around cell A. A bin is picked randomly within 
that window. If the bin contains no cell, a single cell 
movement is proposed; if the bin contains one or more 
cells, a cell is picked randomly within that bin and a 
pairwise exchange is proposed. Instead of picking a bin 
this way, we modified the range limiter by allowing the 
window size to change dynamically and picking a bin 
according to the formulas, 

d, = zk r, *log(RAND ) and dY = i rv *log(RAND ). 

Here, RAND is a random number between 0 and 1, d, 
and dy are, respectively, the I and y distances of the new 
bin from cell A, and r, and r, are the control parameters. 
If bins are picked this way, the probability that a bin is 
picked is proportional to ,-4’r* in the x-direction, and 
e-5’5 in the y-direction; therefore, bins that are closer to 
cell A have a higher probability of being picked. The 

CPI 

1, 
630 

1396 
1521 
2091 
5145 
4433 

Jl 

t - 

;ime (sec.> I Wi 

to TZ wz 
437 1.44 251567 
881 1.58 202731 

l-i- 

1550 0.98 98842 
2034 1.03 371500 
3187 1.61 1235140 
3318 1.34 1154030 

e length 

WO 

216285 
177399 

83027 
262427 
974308 
946914 

Table 3: Comparison with Huang’s annealing schedule. 

3.1.2. Implementation details 

Implementation of the new annealing schedule in 
TimberWolfSC involves four modifications. We replaced 
TimberWolfSC’s annealing schedule by ours and also 
modified the coefficient of the penalty function, c(i), the 
range limiter [6], and the number of bins in a row. The 
first modification is necessary because the cost function, 

Cost = total_wireJength + c (i)*penalty , 

depends on c (i), which is a function of the current 
iteration number, i. TimberWolfSC always executes 104 

Name 

example 
8870 
ic 
sda2 

SPl 
5655 I - 

aral 

i2 
104 
104 
104 
104 
104 
104 

!ters 

AL- 
0.03 
0.014 
0.01 
0.013 
0.009 
0.008 

Table 4: Parameters for Huang’s annealing schedule 
and the new annealing schedule. 
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control parameters r, and rV are adjusted after every 7 
moves. If d is less than 0.44, the values of rZ and rv are 
lowered; if 8 is greater than 0.44, the values of r, and rY 
are raised. The parameter r, is allowed to vary from 
mean-cell-widih + 3*standard_deviation to the maximum row 
width, while rv is allowed to vary from 0.75 row to the 
maximum number of rows. 

The last modification was to change the number of 
bins in a row. In TimberWolfSC the total number of 
bins is roughly equal to the number of standard cells. 
Since the new annealing schedule starts at {tnfinite 
temperature, all proposed moves will be accepted 
indiscriminately. Whenever a single cell movement is 
proposed, the number of empty bins can only be 
decreased. This is because when a cell is moved from a 
bin occupied by more than one cell, the number of vacant 
bins decreases by one. And there is no way to get a 
vacant bin back! Since single cell movements are 
proposed only when empty bins are found, the percentage 
of single cell movements proposed at later temperatures 
will be small. On the other hand, TimbcrWolfSC starts 
at an initial temperature of 500. At this temperature, 
not all proposed moves are accepted so that typically 
10% to 20% of the bins remain empty. In order to allow 
the new annealing schedule to propose single cell 
movements at a higher rate, we increase the number of 
bins by decreasing the bin size. Different total numbers 
of bins had been tried; we settled on a ratio of 1.5 for the 
total number of bins to the total number of cells,. This 
guarantees a 33% chance for single cell movements to be 
proposed. 

Huang’s annealing schedule was implemented as in 
[8]. The results quoted in Table 3 for this annealing 
schedule were obtained using TimberWolfSC’s range 
limiter. Due to the difference in range limiters between 
this version of TimberWolfSC and the older version used 
in [8], a few maximum generation limits had been tried. 
We settled on a value of 5,5+no_of,ce/k, which 

corresponded roughly to the number of possible moves 
when the range limiter was used. 

3.2. Traveling salesman problem 

We also tested our annealing schedule on the TSP in 
which the cities are uniformly distributed on a grid of 
10,000 by 10,000, and the cost is the length of the tour. 
In this implementation, each city maintains a list of up to 
250 neighboring cities sorted according to their dj.stances 
from that city in ascending order. A move is proposed by 
picking two cities A and B, and modifying the tour as 
shown in Fig. 2. City A is always picked randomly while 
city B is picked using one of the two following methods. 
In the first method called uniform control, city B is 
picked randomly from the first d cities on the ordered list 
of city A. The control parameter d is allowed to clecrease 
as a function of the inverse temperature, 8, 

Figure Z: How to modify a tour in the TSP. 

where N is the total number of cities. In the second 
method called exponential control, city B is the dth entry 
on the ordered list of city A with 

d = - r+log(RAND ), 

where RAND is a random number between 0 and 1, and 
r , a control parameter between 2 to N, is adjusted based 
on the measured acceptance ratio in a similar fashion as 
in the standard cell placement problem. 

We performed tests on the TSP with the number of 
cities ranging from 100 to 400. The experimental results 
are displayed in Table 5 in which 6, representing the 
quality of the final solution, is the percentage of the cost 
above the estimated best cost. To find this estimated 
best cost, we carried out a sequence of careful annealings 
with the run-time doubled after every eight executions 
until the average cost was stabilized. Then, the best cost 
in the sequence was used as the estimated best cost. 
Along each column in Table 5, the speedups associated 
with a particular 6 as the number of cities increases are 
shown, while along each row the speedups associated with 
a particular problem size as the quality of the solution 
improves are shown. The speedups are defined as the 
ratio of the CPU time with Huang’s annealing schedule 
using uniform control over the CPU time with the new 
annealing schedule using exponential control. Although 
our annealing schedule is 10% slower per move than 
Huang’s, we still observe a speedup of up to 24 for the 
400-city TSP! 

Table 5: Comparison with Huang’s annealing 
schedule for the TSP. 

To isolate the effect of exponential control, we 
experimented on both annealing schedules with uniform 
and exponential controls. The speedups, computed as the 
CPU time using uniform control over the CPU time using 
exponential control on the new annealing schedule, are 
displayed in Table 6, while the speedups, computed as 
the CPU time of Huang’s annealing schedule over the 
CPU time of the new annealing schedule when both were 
using exponential control, are displayed in Table 7. We 
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Size 
Speedup 

6 = 3.6% 1 6 = 2.9% 1 6 = 2.2% 1 6 = 1.5% 

100 1.74 I 3.27 I 3.43 I 3.87 

Table 6: Comparison of uniform and exponential controls 
(with the new annealing schedule) for the TSP. 

Acknowledgements 

The authors would like to acknowledge Carl Sechen 
and Kai Win Lee from the Department of Electrical 
Engineering at Yale University for many helpful 
discussions on TimberWolfSC. This research was 
supported by the Army Research Office under contract 
DAAL03-86-K-0158 and by the Office of Naval Research 
under contract N00014-85-K-0461. 

Size 
Speedup 

6 = 3.6% 1 6 = 2.9% 1 6 = 2.2% 1 6 = 1.5% 

100 1 1.95 ] 1.99 ] 2.04 ] 2.21 

Table 7: Comparison with Huang’s annealing schedule 
enhanced with exponential control for the TSP. 

observe that the use of exponential control speeds up the 
new annealing schedule by a factor of up to five. 
However, even when the same control met hod is 
employed with both annealing schedules, our annealing 
schedule still out-performs Huang’s by a factor of up to 
three. For comparisons with other heuristics like Lin and 
Kernighan [13] for the TSP and Fiduccia and Mattheyses 
[14] for the graph partition problem, the interested reader 
is referred to [15]. 

A few maximum generation limits for Huang’s 
annealing schedule had also been tried; we settled on a 
value of N*~/z which corresponded to the number of 
possible moves when uniform control was used. 

4. Practical considerations 

We observe from Table 1 that our annealing 
schedule uses floating point computations heavily. To 
reduce the number of floating point operations, we 
approximate our annealing schedule by computing the 
new inverse temperature after every ten steps instead of 
one: 

st+uJ = St + 1OA 
4o(l - a)* 

sty2 - a)W(st) . 

This speeds up our annealing schedule by a few percents 
without degrading the quality of the final solutions. 

We also pre-compute the value of exponentials and 
logarithms. Their values are looked up when needed. 
Since the evaluation of exponentials and logarithms 
occurs quite often, a significant portion of run-time is 
typically saved. 

Care must be taken in designing exponential 
controls; the number of possible moves at any time 
should not be too small. Consider the TSP example. If 
the value of r in the exponential control is too close to 0, 
the value of d will be restricted to a small set. This is 
undesirable since the number of possible moves is so small 
that annealing may stop prematurely. 
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