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Abstract

Anemia management, based on erythropoiesis stimulating agents (ESA) and iron supple-

mentation, has become an increasingly challenging problem in hemodialysis patients. Main-

taining hemodialysis patients within narrow hemoglobin targets, preventing cycling outside

target, and reducing ESA dosing to prevent adverse outcomes requires considerable atten-

tion from caregivers. Anticipation of the long-term response (i.e. at 3 months) to the ESA/

iron therapy would be of fundamental importance for planning a successful treatment strat-

egy. To this end, we developed a predictive model designed to support decision-making

regarding anemia management in hemodialysis (HD) patients treated in center. An Artificial

Neural Network (ANN) algorithm for predicting hemoglobin concentrations three months

into the future was developed and evaluated in a retrospective study on a sample popula-

tion of 1558 HD patients treated with intravenous (IV) darbepoetin alfa, and IV iron (sucrose

or gluconate). Model inputs were the last 90 days of patients’medical history and the subse-

quent 90 days of darbepoetin/iron prescription. Our model was able to predict individual var-

iation of hemoglobin concentration 3 months in the future with a Mean Absolute Error (MAE)

of 0.75 g/dL. Error analysis showed a narrow Gaussian distribution centered in 0 g/dL; a

root cause analysis identified intercurrent and/or unpredictable events associated with hos-

pitalization, blood transfusion, and laboratory error or misreported hemoglobin values as

the main reasons for large discrepancy between predicted versus observed hemoglobin

values. Our ANN predictive model offers a simple and reliable tool applicable in daily clinical

practice for predicting the long-term response to ESA/iron therapy of HD patients.
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Introduction

In normal people, kidneys produce the hormone erythropoietin (EPO) in response to hypoxia;

then, EPO stimulates the bone marrow (EPO target organ), to generate new blood cells. In

chronic kidney disease (CKD) patients, as the degenerative and fibrosis process progresses,

erythropoietin production is reduced and secondary anemia ensues. Besides low or inadequate

circulating levels of erythropoietin, other conditions associated to chronic disease stage and to

dialysis treatment (where present), such as uremic toxicity, iron deficiency, inflammation, mal-

nutrition, or increased bleeding events exacerbate the level of anemic in these patients. Correc-

tion of anemia in dialysis patients represents a major target of treatment adequacy to reduce

the functional symptomatology and burden of chronic kidney disease [1]. Over the last 20

years, erythropoiesis stimulating agents (ESA) and intravenous iron compounds have revolu-

tionized the management of anemia in dialysis patients [2,3]. In the majority of cases, the cor-

rection of anemia is achieved easily contributing to significant improvement in the quality of

life of dialysis patients, increasing physical capacity, and reducing blood transfusion require-

ments [4]. Anemia management in dialysis patients has been refined over time, and hemoglo-

bin targets have been adjusted according to major interventional studies outcomes [5,6]. The

most recent best practice guidelines strongly recommend partial correction of anemia and

maintaining hemoglobin (Hb) concentrations in the range of 10 to 12 g/dL [7,8]. Tighter Hb

targets have caused physicians to dose-adjust more frequently, with a consequent increase in

Hb cycling, and there is some debate about whether or not this may lead to increased morbidity

and mortality [9–13]. Preventing large hemoglobin fluctuations and frequent or prolonged

excursions in a higher Hb range is now recommended by international guidelines to reduce

additional cardiovascular insults [14]. Resistance to ESA action is associated with increased

costs and poor outcome in dialysis patients [15]. Indeed, the cost effectiveness of anemia treat-

ment in chronic kidney disease patients has been recently questioned [16].

Optimizing anemia management in dialysis patients has become an increasingly complex

problem for nephrologists [17–20]. On one hand, correction of anemia is associated with poor

outcomes when target hemoglobin levels are not achieved, while on the other hand there may

be untoward effects when Hb or ESA dose are exceeded [21–27]. Hyporesponsiveness to ESA

and/or its corollary (high ESA dose) have been recognized as a risk factor in hemodialysis

patients [28–30]. Individualized anemia management with customized Hb targets is strongly

recommended to reduce variability and potential side effects of ESA use [31]. Availability of

ESAs presenting with various pharmacokinetic and pharmacodynamic profiles (long versus

short acting agents, role of administration route—IV vs SC) has created an additional level of

complexity in managing renal anemia [2]. Recently, a bundled payment system of anemia

treatment in dialysis patients in the US has added greater complexity for care givers [32].

Recognizing the complexity of treating anemia in dialysis patients, several tools facilitating

anemia management have been developed [33]. Preliminary studies have underlined the bene-

fits of expert systems providing paper-based guided protocols and algorithms in facilitating

and individualizing anemia management [34–36]. More sophisticated ESA modeling tech-

niques using computer based decision tools accounting for personal characteristics and tempo-

ral changes in ESA sensitivity have shown potential benefits in dose adjustment [37–39]. In

addition, protocol-driven management (including ESA and iron supplementation) based on

electronic support has also identified staff-saving time and cost-saving potential in treating

anemia in dialysis patients [40]. More recently, more refined anemia modeling using artificial

neural networks has proved to be powerful and reliable tools for anemia management in dialy-

sis patients [41–44].
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The point of weakness of the previous studies on anemia management models was the lim-

ited statistical reliability for a general CKD population, due to the use of small validation test

samples, often comprising tens of patients [38,41–47].

Furthermore, the key point of an anemia management model was its ability to predict accu-

rately the hemoglobin patient level considering all the main patient features influencing ane-

mia; this point is not deeply explored in the previous works.

The aim of this study was to develop an accurate model that in a large cohort of dialysis

patients is able to predict the long-term (3 months in the future) Hb response to IV darbepoe-

tin and iron administration as a function of patients’ characteristics. The model has been

derived by means of an Artificial Neural Network (ANN) design taking into account erythro-

cyte dynamic and darbepoetin kinetic.

Methods

Study target and design

A retrospective observational study (from 2006 to 2010) on prevalent End Stage Kidney Dis-

ease (ESKD) patients undergoing hemodialysis (HD) in NephroCare clinics in Portugal was

performed with the aim of developing a model able to predict the long-term Hb response to IV

darbepoetin and iron therapy; an ESKD patient is considered prevalent if he/she has been in

hemodialysis for at least 90 days. For this study the data were extracted from an international

network clinical database (EuCliD) [48]. All patients consented in writing to the use of their

anonymized data for scientific research. This observational study was not submitted to an eth-

ics committee. No ethical approval was needed because this study was a retrospective study

and purely observational (non-interventional) in nature. However, this study was revised and

specifically approved by the Medical Board of Fresenius Medical Care and was conducted

according to the principles expressed in the Declaration of Helsinki on anonymized data.

In the selected dialysis clinics, all dialysis parameters are recorded at each session and stored

in a central database together with the results of routine laboratory analyses and periodical

medical examination. This comprehensive database offers a dynamic clinical picture of patients

with regular updated biochemical indicators and detailed pharmacological treatment, includ-

ing dosage frequency of each medicine.

Patient inclusion criteria were as follows: patients who received at least one dose of intrave-

nous (IV) darbepoetin alfa, and did not receive any other ESA or non-IV iron; patients having

at least 6 months of follow up, that is, they received dialysis treatments in our clinics for at least

6 months; patients for whom administered darbepoetin and iron doses were in the usual ranges

for dialysis patients (patients with a darbepoetin dose> 400 μg or iron dose> 300 mg were

excluded as these values are deemed not reasonable). The 6-month constraint is required

because 3 months of patient data before prediction date are used as model input, whereas the

Hb measurement 3 months after prediction date is the target output used to train the model.

The initial cohort was composed of 2050 patients and after excluding patients with less than

6 months of follow up 1558 patients remained for analysis (Fig 1).

Data collection

From the complete clinical database, we identified specific patient information known to affect

individual anemia therapy response. Patients’ general information is recorded at the time of

the first clinic admission and is updated periodically. Laboratory tests are performed once per

month or quarterly, depending on the biomarker (Hb is performed monthly). Blood samples

are extracted before the dialysis session. At each treatment, the darbepoetin alfa and iron dose

administrations are recorded by the nurses, as well as usual parameters assessing dialysis
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performance delivery and patient clinical conditions (time, weight, blood pressure, heart rate,

blood flow, dialysate flow, ionic Kt/V).

After cleaning the database and applying the exclusion criteria, 1558 patients and 35307

hematological measurements (Hb) were included in the analysis. Baseline characteristics of the

studied population are presented in Table 1. Anemia management profile and Hb concentra-

tions over the study period are shown in Table 2.

Development of a predictive model for erythropoiesis based on artificial neural network

and erythropoietin pharmacodynamics: theory and model assumptions. The aim of this

study was to develop a model able to predict long-term Hb fluctuations, i.e. an algorithm that,

given the Hb concentration at time t predicts the Hb concentration at time t + 3 months (Fig

2). Predictive modeling was performed combining well-established machine learning (ML)

techniques with careful feature engineering guided by the principles of actual drug kinetics to

long-acting ESA therapy, specific biological dynamics and patient physiologic parameters.

When given intravenously, darbepoetin alpha shows a half-life of about 24h and it remains in

circulation for few days at decreasing concentrations [49]. After administration, darbepoetin

alpha stimulates the RBC maturation process. Erythrocyte development requires about 13 days

to be completed within the bone marrow; afterwards, immature reticulocytes are released into

the bloodstream for becoming mature Hb-laden RBCs that usually survive for about 60–90

days in End Stage Renal Disease (ESRD) patients. We therefore modeled our ML algorithm

considering that the present Hb levels may be influenced (with declining potency) by darbe-

poetin alpha doses administered during the previous 3 months [50]. This time lapse includes

erythropoiesis and erythrocyte lifespan.

All the experiments were performed by means of Statistical toolbox and Neural Networks

toolbox of Matlab, R2013b.

Available data were split into two dataset, one holding 60% of the records and used to train

the model, while the remaining 40% of records were used to test it. Best results have been

obtained by means of an Artificial Neural Network (ANN) with 2 layers of 10 neurons each

[51]. ANNs are relatively flexible and use nonlinear regression tools with an architecture that is

Fig 1. Patients’ inclusion criteria.

doi:10.1371/journal.pone.0148938.g001
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Table 1. Baseline patient characteristics.

Variables Values

Patient characteristics

Age (years) 62 ± 15

Gender (female, %) 39

Height (cm) 163 ± 8.8

Body Mass Index (kg/m2) 25.21 ± 4.42

Pre-dialysis weight (kg) 69 ± 13

Post-dialysis weight (kg) 67.8 ± 13

Dialysis vintage (years) 3.1 ± 4.2

Pre-dialysis systolic blood pressure (mmHg) 142.4 ± 26.5

Pre-dialysis diastolic blood pressure (mmHg) 69.7 ± 15.3

Nephropathy and causes of CKD5

Diabetic (%) 25

Hypertension + vascular (%) 15

Chronic glomerulonephritis (%) 5

Polycystic kidney disease (%) 6

Others, miscellaneous (%) 41

Undetermined (%) 8

Comorbidities

Diabetes (%) 32

Ischemic heart disease (%) 19

Heart failure (%) 13

Peripheral artery disease (%) 31

Stroke/cerebrovascular accident) (%) 20

Chronic respiratory diseases (%) 9

Others (%) 99

Renal replacement therapy

*Treatment modality (LFHD/HFHD/HDF; %) 1/41/58

Vascular access type (Fistula/Graft/Catheter; %) 60/15/25

Dialysis duration time per session (min) 226 ± 14

Number of dialysis sessions per week (%) 95

**eKt/V 1.38 ± 0.39

***spKt/V 1.60 ± 0.43

Anemia therapy

Absence of ESA (%) 13

ESA dose (μg/month) 33.7 ± 34

ESA dose (μg/kg/month) 0.52 ± 0.54

IV iron dose (mg/month) 45.2 ± 40.9

Selected laboratory values

Hemoglobin (g/dL) 12 ± 1.5

Ferritin (μg/L) 363 ± 263

TSAT (%) 26.2 ± 16.3

Albumin (g/dL) 4.0 ± 1.5

Phosphate (mg/dL) 4.9 ± 1.5

CRP (log value; mg/L) 1.5 ± 1.49

* LFHD: low flux hemodialysis, HFHD: high flux hemodialysis, HDF: hemodialfiltration

** eKt/V: estimate Kt/V where K stands for urea clearance, t stands for treatment time, and V stands for

urea volume distribution

*** spKt/V: single pool Kt/V

doi:10.1371/journal.pone.0148938.t001
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inspired by the structure of the human brain. During the training phase the ANN is presented

with a collection of input-output pairs and learns, by example, to approximate the relation

between such pairs; to do so, it iteratively adjusts the weights of its connections. Through this

process ANNs are capable to discover and learn relationships encoded in the data and general-

ize them. Models are then validated on unseen examples (test phase) to assure the generaliza-

tion capability. Our algorithm was designed to reproduce erythropoiesis kinetics considering

that present Hb concentrations were reflecting the darbepoetin alfa doses administered IV dur-

ing the previous 3 months–this time lapse includes erythropoiesis and erythrocyte lifespan

[52].

Due to the different frequency of parameters sampling (e.g., Hb concentrations are mea-

sured once per month while dialysis treatment-related parameters are collected thrice per

week), a merging logic combining the relevant parameters into a consistent temporal series of

patient records was created. The natural choice for the timeline driver was the Hb measure-

ment, meaning that for a given patient, a distinct record was built whenever a new Hb value

was available.

Darbepoetin and iron doses administered IV during the previous 3 months and prescribed

in the subsequent 3 months are calculated for each Hb record. Steps involved in the develop-

ment and validation of the ANN anemia modeling are summarized in Fig 3.

Additional factors contributing to Hb concentration fluctuations (e.g., inflammation mark-

ers, iron availability indicators, dialysis treatment adequacy, etc.) were included in the algo-

rithm. Last available laboratory measurements performed during the considered period were

taken, while for dialysis parameters collected at each session (e.g. Online Clearance Monitor

Kt/V and weight) their mean values were calculated. The complete list of features included in

the model is listed in Table 3. It is remarked that, as the study was retrospective, for each exam-

ple the exact amount of darbepoetin and iron in the next 90 days is known. In real applications

this information would be computed as the optimal prescription to match the target

hemoglobin.

We also performed an analysis to identify the main causes of large prediction errors (abso-

lute error> 1.5 g/dL) by the developed model. To this end, adverse events, defined as hospitali-

zations, transfusions, and intercurrent events during dialysis treatment (i.e. blood loss,

Table 2. Anemiamanagement profile and hemoglobin concentrations.

Laboratory Median Range Quartiles

Hemoglobin (g/dL) 11.9 5.5:21.6 11.2‐11.9‐12.7

Ferritin (μg/L) 405 7:4300 278‐405 ‐553

ESA and iron therapy Median Range Quartiles Administration route
(IV)

Darbepoietin α weekly dose 20 0‐330 10‐20‐35 100%

ERI 4.93 0‐144 2.1‐4.93‐9.1

Iron weekly dose 33 0‐300 0‐33‐50 100%

Hemoglobin variation at 3 months*

Std Median Range Quartiles

1.62 0 -11.5 ‐11.7 -0.9 ‐0 ‐0.9

Ebben classification [14]: 10–13 g/dL (No. of 6 months Hb sequence: 27896)

Constantly low Constantly in Constantly high LAL LAH HA

<1% 42% 2% 13% 35% 9%

* For each patient, Hb variation is computed as the difference between the Hb measure in a certain month and the measure performed three months after

doi:10.1371/journal.pone.0148938.t002
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hypotension episodes, and episodes of systemic infection), were isolated. For each record with

a large prediction error in the training and test set, we checked whether an adverse event

occurred between the time when a prediction is made (i.e. when Hb(t) is observed) and the

time the prediction can be validated (i.e. when Hb(t+3) is observed).

Results

Accuracy of model prediction

Overall ANN anemia modeling performances in training and test phases are presented in

Table 4.

The accuracy of model prediction was evaluated by analyzing the errors distribution

between predicted and observed Hb concentrations during the training and test phase. This is

presented in Fig 4, left and right panel respectively. A relatively narrow Gaussian error distribu-

tion centered on 0 was observed in both cases, indicating a remarkably conformity of the simu-

lation outcome with the actual response of the population, and minimal bias in the predictions.

The robustness of the model prediction outcomes was also confirmed by using usual metrics

as shown in Table 4. Bland-Altman analysis was performed to assess the discrepancy of

observed versus predicted Hb concentrations over the complete spectrum of mean Hb values

of the cohort population. This analysis is reported in Fig 5. The data show a positive slope

(p<0.001) due to a smoothing effect on predictions when actual Hb values tend to get to the

extremes. This effect also shows when computing the mean signed prediction error for Hb

quartiles (-0.98, 0.02, -0.003, and 0.94, respectively), as compared to the one measured over all

(-0.007).

Clinical accuracy and predictive value of the modeling approach: clinical
cases

Two typical examples of non-conformity to the predictive model are reported here: one patient

had a sudden Hb increase from 6.7 g/dL to 12.4 g/dL, and on checking this patient’s file it

became apparent that he had received blood transfusions. Another patient had a sudden drop

Fig 2. Predictive anemia modeling based on ANN. At time t the model predicts the Hb variation between time t and time t+3 months using the patient past
history and the subsequent 3 months of darbepoetin and iron prescription.

doi:10.1371/journal.pone.0148938.g002
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of Hb from 12.1 to 6.5 g/dL, then went back and plateaued at 13.7 g/dL over three consecutive

months without any changes in anemia management or documented event, suggesting an aber-

rant Hb value due to laboratory or data handling error. Other causes of large errors are hospi-

talizations–focusing on predictions with absolute error greater than 1.5 g/dL, 1029 (642 in

training dataset and 387 in test) of them occurred after documented hospitalizations, blood

transfusion (102 cases) and intercurrent events during dialysis sessions (117 cases), specifically

blood loss, hypotension episodes with dry weight adjustment, and episodes of systemic infec-

tion. Main causes of errors in model predictions are presented in Table 5.

Among the 1558 HD patients, three have been selected and reported as typical examples of

Hb concentrations behavior over time (Figs 6–8). At each time step (corresponding to monthly

lab tests, on the x-axis), the Hb variation predicted by the model over the next three months

(i.e., Hb(t+3)–Hb(t), on the y-axis) is plotted in solid line and compared with the actual varia-

tion observed over the same time interval (plotted in dashed line). In particular, Fig 6 reports

the case of a patient for whom the model displayed an average performance, i.e. where the

Mean Absolute Error (MAE) is close to the sample population mean (in this specific case,

MAE = 0.74 g/dL). Simulation and real outcome display very similar trends and, although the

prediction not always exactly corresponds to the actual Hb value, the model was always able to

Fig 3. Steps involved in the development and validation of the Artificial Neural Network anemia modeling.

doi:10.1371/journal.pone.0148938.g003
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maintain the same tendency as the real data. Fig 7 describes a patient for whom the model dis-

played a better performance with respect to the sample population mean and very high preci-

sion in anticipating quarterly Hb variations; in fact, MAE resulted below the average

(MAE = 0.45 g/dL), as clearly illustrated by the proximity of the predicted and the observed Hb

values. Finally, Fig 8 shows a simulation where MAE = 0.83 g/dL, that is below the average

model performance. Although the MAE is above the average, still the model is able to predict

the tendency of the Hb variation over time.

To validate the clinical relevance of the predictive ANN modeling we performed analyses at

patient level during both training and test phases. As shown in Table 6, average error on pre-

dicted Hb concentrations during training and test phases was less than 1 g/dL in 78 and 87%

respectively. Knowing that intra-individual laboratory Hb concentration variability is ± 0.5 g/

dL and that fluctuations of volemia (weight gain and weight loss) may significantly affect the

Table 3. List of features included in the model.

Feature

Age

Gender

Height

Pre-dialysis weight

Post-dialysis weight

Dialysis vintage

Diabetes

Treatment modality

Vascular access type

Dialysis duration time per session

Number of dialysis sessions per week

eKt/V (mean, SD)

IV ESA doses

IV iron doses

Ferritin

TSAT

Albumin

Phosphate

CRP

doi:10.1371/journal.pone.0148938.t003

Table 4. ANN anemia modeling performances in training and test phases.

Model Outcomes

Training Test

No. of Hb measures 22859 12467

Mean Absolute Error (g/dL) 0.76 0.75

-1.5 g/dL < errors < 1.5 g/dL 88% 89%

Absolute Errors Quartiles 0.28 ‐ 0.60 ‐ 1.06 0.26 ‐ 0.59 ‐ 1.06

Errors Quartiles g/dL -0.55 ‐ 0.06 ‐ 0.66 -0.58 ‐ 0.02 ‐ 0.59

Median Error (g/dL) 0.06 0.02

Errors Range (g/dL) -6.5 ‐ 10 -6.5 ‐ 6.7

doi:10.1371/journal.pone.0148938.t004
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precision of Hb measurements, this suggest that our ANNmodel provides a clinically-accept-

able tool for guiding anemia management in HD patients.

Interestingly, most largely invalid predictions (i.e. absolute error higher than 1.5 g/dL) were

often caused not by the model itself but by intercurrent events or hemoglobin dosage errors

occurring within the time interval of interest as described above.

Fig 4. Histogram of the Hb error distribution in the training phase (left panel). Histogram of the Hb error distribution in the test phase (right panel).

doi:10.1371/journal.pone.0148938.g004

Fig 5. Bland-Altman analysis of observed/predicted Hb values.

doi:10.1371/journal.pone.0148938.g005
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Discussion

This study as well as some previous work demonstrates that a predictive modeling approach

might be a useful tool for clinical guidance in optimizing anemia management of hemodialysis

patients [45]. In practical terms, the model might be used as a medical decision support tool to

estimate the optimal dose of ESA/iron for achieving a desired hemoglobin variation. The main

concerns with previous anemia modeling methods were the limited number of patients

involved, the selection of patients, the limited available data, and the incomplete correspon-

dence between predicted and observed Hb values [46]. In our study, the size and the diversity

of the considered ESKD HD population has been essential to derive a general and reliable

model for the long-term prediction of ESA/iron therapy response. Indeed, the dimension of

the population under study allowed training the algorithm on different randomizations

Table 5. Main causes of large errors and discrepancies (absolute error > 1.5 g/dL) in the anemia model prediction are events that occurred in the
time period of a prediction. Considered intercurrent events during the dialysis session are mainly blood loss, hypotension episodes and episodes of sys-
temic infection.

Event No. of predictions with |error| > 1.5 g/dL in training dataset No. of predictions with |error| > 1.5 g/dL in test dataset

Hospitalization 642 387

Intercurrent events 105 12

Transfusion 52 50

doi:10.1371/journal.pone.0148938.t005

Fig 6. Predicted vs. Actual Hb variations for a patient characterized by a prediction error close to the mean absolute error on test set. At each time
step (corresponding to monthly lab tests, on the x-axis), the Hb variation predicted by the model over the next three months (i.e., Hb(t+3)–Hb(t), on the y-axis)
is plotted in solid line and compared with the actual variation observed over the same time interval (plotted in dashed line). Time steps are counted starting
from the first month for which an Hb prediction for the patient was possible.

doi:10.1371/journal.pone.0148938.g006
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showing stable or even improved performances in the test set, which means that the model was

able to well generalize the learned patterns and thus able to perform reliable prediction also on

the unseen examples of the test set. Now, when compared to a similar concept reported by

Gaweda et al. on a selected and restricted HD population (40–60 patients) our results com-

pared favorably [45,47].

By using a tool that combines machine learning principles with drug kinetics and specific

biological dynamics, exploiting collected patient characteristics and precise treatment features

(route, dose and frequency of erythropoiesis stimulating agent and iron administration) over

the prior 3 months, it has been possible to forecast Hb concentration values and Hb behavior

over the next three months. Interestingly, this computational approach provides a way to

reproduce individually and accurately kinetic and dynamic profiles of erythropoiesis over time

in a large cohort of hemodialysis patients. The analysis indicates that the mean absolute error

between predicted and observed Hb concentrations was less than 0.5 g/dL for a large part of

the patients (66%). This remarkable low difference in predicted versus observed Hb values is

acceptable in the clinical management of HD patients considering the usual fluctuations of Hb

values due to extracellular fluid variation and laboratory uncertainties.

In the Bland-Altman analysis, a positive slope was found: this is due to the smoothing effect

of the predictive model, whereby as observed Hb values get much smaller or larger than the

mean (which also corresponds to more rarely observed cases), predicted values tend to get

more conservative; this ensures that prediction performance is optimized over the whole popu-

lation. Still, the model shows the ability to predict the direction of Hb variation also for these

extreme cases–which, oftentimes, are driven by factors other than ESA administrations. Even

though this smoothing effect is acknowledged, it cannot be corrected, as this would require the

Fig 7. Predicted vs. Actual Hb variations for a patient characterized by low prediction error.

doi:10.1371/journal.pone.0148938.g007
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model to know beforehand the value of the future Hb that it is trying to predict. The Bland-Alt-

man analysis also shows that outliers represent a small percentage of observations, again

underpinning confidence in the predictive value of the model. As illustrated by some typical

clinical cases, predicted Hb values and Hb behavior trend over the three month forecast were

closely aligned to the actual measured Hb concentrations.

It is also interesting to note that, in cases of large or unexpected discrepancy between pre-

dicted versus observed Hb values, the root cause analysis as presented in Table 5 identified

intercurrent and/or unpredictable events associated with hospitalization, blood transfusion,

and laboratory error or misreported Hb values [53]. From a clinical perspective, this observa-

tion reinforces the interest for clinicians of using predictive anemia modeling in practice:

firstly, it confirms that in stable hemodialysis patients, Hb concentrations follow the trend

identified by the ANNmodel, mainly driven by the kinetics of erythropoiesis under the action

Table 6. Predicting performances of ANNmodeling at patient level.

Patients mean absolute prediction error: Hb |measured—predicted|
Training Phase

0 ‐

0.5
0.5‐
1

1‐
1.5

>1.5

No. of patients 376 794 279 57

% of patients 25% 53% 18% 4%

Patients mean of absolute prediction error: Hb |measured—predicted|
Test Phase

0‐0.5 0.5‐
1

1‐
1.5

>1.5

No. of patients 990 322 88 106

% of patients 66% 21% 6% 7%

doi:10.1371/journal.pone.0148938.t006

Fig 8. Predicted vs. Actual Hb variations for a patient characterized by high prediction error.

doi:10.1371/journal.pone.0148938.g008
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of ESA and iron supplementation, while erythrocyte loss remains constant; secondly, it indi-

cates that significant discrepancy (> 1.5 g/dL) between predicted and observed Hb values

should be considered by the attending physician as a clinical warning situation (hospitalization,

intercurrent events and transfusion) and not an error in the model prediction. In this case,

attention of the physician is required to identify the reason (false alarm due to laboratory error,

or true alarm in relation to an intercurrent event), which may require individualized manage-

ment depending on the underlying diagnosis.

The strength and interest of this advanced predictive anemia modeling approach relies on

several features. Firstly, it is an integrated individual approach that includes features of patient

characteristics, actual anemia management, previous and individual response to anemia ther-

apy, and temporal variations of clinical and/or biological profiles of HD patients. In this con-

text, the reliability and accuracy of the anemia modeling is strengthened by the approximation

of erythrocyte kinetic as part of the machine learning process in the previous quarterly period,

which is used subsequently for predicting Hb behavior over the next quarterly period. In addi-

tion, the individual acquisition of these erythrocyte kinetic and dynamic parameters permits

the development of a true and individualized approach accounting for personal sensitivity to

ESA administration. Secondly, this approach provides a feedback control of anemia manage-

ment in a real clinical context, which uses the actual erythrocyte kinetics produced in response

to anemia therapy and probes the patient sensitivity to ESA action. By this means, it becomes

possible to customize ESA dosing and iron supplementation to individual patient needs includ-

ing temporal changes, without resorting to prespecified protocols relying on paper (package

insert) or computer-based (investigator) decision support systems that are mainly developed

for improving poor performing dialysis units or for reducing time spent in managing anemia.

Thirdly, by using this approach that provides feedback control of Hb concentrations almost in

real time, a more reliable and sustainable Hb target in dialysis patients can be reached more

easily and quickly, at the same time reducing Hb variability over time and decreasing ESA dose

[44]. All these aspects may improve the safety profile of ESA treatment in dialysis patients

already prone to cardiovascular complications. Fourthly, from a health economic perspective,

one might expect a cost reduction associated with an improvement of safety profile of ESA, but

a specific cost analysis should be performed to evaluate the economic impact of such system.

Three months future Hb prediction based on the patient’s medical history fitted accurately

with observed Hb behavior and values. In other words, our machine learning process and algo-

rithm definition represent a good approximation of erythropoietic kinetics of a given dialysis

patient; however the study intent was not to compare performances of physician prescriptions

to the ANNmodel. Potential future application of the derived model could be to use it for phy-

sician guidance and help him in managing anemia in hemodialysis patients.

The main limitations of this predictive anemia modeling approach are twofold: firstly, the

ANN analysis has been developed and tested in a retrospective cohort of hemodialysis patients;

secondly, the anemia predictive model was built with only one long-acting ESA (darbepoetin

alfa). Future studies of this kind should consider all ESA types. Additionally, it must be consid-

ered that the analyzed data come from a limited number of facilities acting within the same pri-

vate network; thus, the model still needs to be validated on other populations.

Another limitation regards the selection of patients with at least 6 months of follow up. The

model is not trained and validated on patients with less than six months of follow up in our

database (lost in follow up, transfer to another dialysis provider, death. . .). Therefore, in the

first 6 months since admission the performances and reliability of the model cannot be

ensured: in real clinical practice this constraint might suggest not to use the model in this situa-

tion. Although the set of predictors used by the model covers a large portion of factors known

to influence ESA response, it is necessarily not exhaustive; other variables that might affect
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ESA response, such as PTH [54], could not be included due to the sparse amount of available

measurements.

The potential interest and future of this predictive anemia modeling approach needs to be

evaluated in a dedicated and appropriately-designed prospective study. A pilot prospective

study has been implemented in selected clinics of NephroCare network to assess guidance and

provide value for physicians and caregivers with regards to anemia management. The study

explores the accuracy of predicted Hb values as well as the physiologic profile of Hb achieved

and ESA dose changes over extended periods of time. Based on this advanced ANN approach,

practice pattern differences and inter-facility differences in Hb concentrations and ESA con-

sumption may be reduced [55,56].

In summary, our predictive model using ANN offers a reliable tool for anemia management

in hemodialysis patients. Based on the automated and continuous past three months acquisi-

tion of anemia treatment characteristics, patient-specific data, and laboratory parameters,

ANN has the power to predict Hb concentrations 3 months into the future with high degree of

accuracy. To further explore the potential value and sustainability of this ANN approach in

managing anemia in hemodialysis patients, a prospective study in selected clinics of the

NephroCare network is underway.
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