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Abshuct-Results on the modeling of interference in a radio 
communication network and performance measures for the link 
as a function of distance are presented. It is assumed that a 
transmitter-receiver pair in a radio network is affected by a set 
of interferers, using the same modulation and power, whose 
positions are modeled as a Poisson field in the plane. Assuming 
a l / r Y  propagation power loss law, the probability distributions 
for the noise at the receiver are found to be the stable distribu- 
tions. Results are given for the probability of symbol error and 
link capacity as a function of the distance between the transmit- 
ter and receiver for direct sequence and frequency hopping 
spread spectrum schemes. It is found that the frequency hop- 
ping schemes are inherently superior and their performance is 
not dependent on the synchronization of the hopping times for 
the different users. 

Zndex Terms-Spread spectrum, multiple access, frequency 
hopping, radio networks, stable distributions. 

I. INTRODUCTION 

ANY PROBLEMS arise in radio network research M where the distribution of network self-interference 
needs to be obtained [1]-[4]. In a typical situation a 
terminal transmits a packet to a destination at a distance 
R and we need to evaluate the probability that the trans- 
mission is successful. The success of the transmission 
depends on two factors: first, since there is a limit on the 
number of signals that a receiver can receive simultane- 
ously, the receiver must have an open channel (or port) 
that can receive the packet; second, the interference at 
the receiver must be sufficiently low, in some sense. In 
order to account for the second factor we must character- 
ize the interference at the receiver. The interference at a 
location in the network is composed of two components: 
network self-interference, or interference due to other 
transmitting terminals; and external interference such as 
thermal noise and interference from other systems. The 
interference signals at all points of the network may be 
collectively modeled as a time varying stochastic field in 
some region of the plane (for planar networks.) Hence, to 
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fully characterize the interference we would have to fully 
specify this stochastic field. 

Two fundamental processes drive the network self-in- 
terference component of the stochastic field: 1) the posi- 
tions of network terminals and 2) the transmission charac- 
teristics of each terminal. Terminal transmissions are ei- 
ther due to external requests or to retransmissions re- 
quired in the relaying of messages. In most research work, 
the external messages are assumed to arrive according to 
a Poisson process, if a continuous time model of the 
system is used, or according to a Bernoulli process for a 
discrete time model. The process describing the terminal 
positions is typically unknown and is beyond the control of 
the network designer. In many cases, the terminals are 
highly mobile and the set of terminal positions is time 
varying, and in other cases, we would like to obtain 
average performance for a class of random networks. In 
the case of bursty traffic, the set of interferers is not 
predictable for a given packet transmission. One way to 
handle all of these cases is to assume that the terminal 
positions are completely random and are distributed ac- 
cording to a Poisson point process in the plane. The 
Poisson process is a fundamental point process that is 
easy to handle analytically and its use leads to interfer- 
ence noise models that are more general than the Gauss- 
ion model and better suited to the network interference 
environment. 

In this paper, we characterize the distribution of net- 
work self-interference for an idealized infinite network on 
the plane and obtain the probability of error as a function 
of the distance of a typical link for the spread spectrum 
schemes, direct sequence with binary phase shift keying 
(DS/BPSK), frequency hopping with M-ary frequency 
shift keying (FH/MFSK), and frequency hopping with 
on-off keying (FH/OOK), where a sinusoidal tone is 
transmitted as the “on” symbol. The results obtained will 
be relevant to the understanding of ground radio packet 
networks with mobile terminals and bursty traffic, or to 
the understanding of dense networks whose terminals 
have a low transmission duty cycle. 

11. MODEL 

We assume a radio network whose terminals are dis- 
tributed on the plane and we wish to determine the 
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average performance of a link as a function of its dis- 
tance. Many stochastic parameters need to be modeled in 
such a network; among them we have those related to the 
set of terminal positions, signaling waveforms, transmis- 
sion times, uncertainty in terminal clocks, and signal prop- 
agation characteristics. All of these parameters will have 
some effect on the distribution of the interference at the 
receiver of interest. Perhaps the most important of these 
is the set of terminal positions. In our model the basic 
unit of time is the slot, which is equal to the packet 
transmission time. We assume that all terminals are syn- 
chronized at the slot level; no finer synchronization is 
assumed. With all of the random parameters that we will 
introduce to describe various system characteristics we 
assume independence from slot to slot. During a particu- 
lar slot, we assume that the set of transmitting terminals 
(the set of interferers) forms a Poisson point process on 
the plane. Quantitatively, for a region zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAR with area A the 
number of transmitting terminals in the region has a 
Poisson distribution with parameter AA, i.e., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

e-  ( AA) 
P [ k  in R ]  = 

k !  ' 

where A is the expected number of terminals per unit 
area. 

We make the assumption that as a signal propagates its 
power decreases according to the function g ( r )  = l / r y ,  
where r is the distance from the transmitter. We will 
generally work with the amplitude of a signal rather than 
the power, and define the amplitude loss function as 

1 
a ( r )  = - r Y / 2  

We are only interested in the behavior of the amplitude 
loss function with distance and do not account for any 
proportionality constant since it would scale all signals in 
the network by the same factor. This function is a far field 
approximation and suggests that the power of the signal 
becomes infinite as r approaches zero. As a result in [5 ]  
the authors use the truncated function 

a , ( r )  = min(r-Yl2,s) ,  ( 3 )  

for some s > 0. However, in our case the use of (2) will 
result in the interference signal having a stable distribu- 
tion, thus making the analysis tractable. We will give an 
example to indicate typical values of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAs for which the 
above two functions give approximately equal results. 

The interference at a point will depend on the form of 
the transmitted signals in the network. Examples of these 
are tones at various frequencies such as in a FH/MFSK 
system, and random looking signals such as in a direct 
sequence spread spectrum system [6]. We will assume the 
standard correlator receiver for DS/BPSK and the stan- 
dard non-coherent receiver employing a bank of envelope 
detectors and a decision rule that selects the symbol 
corresponding to the maximum envelope in the case of 
FH/MFSK. For OOK, a threshold detector with optimum 

threshold is used. In the case of direct sequence, we 
assume random spreading codes. For FH/MFSK we as- 
sume that there are Q orthogonal tones which are grouped 
into groups of M tones, where Q = qM and q is the 
number of hopping slots. Note that for OOK Q = q. We 
denote the set of hopping frequencies as i f , ,  f,,:.*,,f,>. 
One symbol is transmitted per hop and the hopping 
frequencies are random subject to the constraint that a 
sequence may not take the same value for two consecutive 
hops; i.e., if we denote the frequencies used at times k 
and k + 1 as f k  and f k + '  respectively, then P[ fk "  = 

& I f k  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= A ]  = l / ( q  - 1 )  if i zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA# J  and zero otherwise. This is 
the same random hopping model that is used for example 
in [7]. 

111. DISTRIBUTION OF INTERFERENCE 

In the following, we find the probability density of the 
interference signal at a point in a Poisson field of interfer- 
ers. For the signaling schemes that we are considering the 
set of terminals actually contributing to the interference 
can be obtained by splitting the original Poisson process 
and hence also forms a Poisson process with parameter 
which we denote as A,. In the case of DS/BPSK all 
terminals contribute to the interference hence A, = A. For 
the moment we assume that the terminals are symbol 
synchronized. In the case of FH/MFSK, the set of termi- 
nals contributing to the interference at a particular tone 
forms a Poisson process with parameter A, = A/Q, and in 
the case of FH/OOK, the parameter is A, = A/(2Q), 
assuming that the transmitted symbols are equiprobable. . 
The interference at the receiver, which we assume to be 
at the origin, is composed of a sum of components from 
each of the interferers. In the case of MFSK or OOK 
these components are sinusoids and in the case of 
DS/BPSK the components are random variables equal to 
the correlations of two DS signals. When conditioned on 
the transmission time offsets these random variables have 
a Gaussian probability density function in the case of 
large processing gain [SI. 

A. General Procedure 

In some cases, we are interested in determining the 
probability of symbol error for some M-ary scheme. In 
other cases, we want to compute packet error probability 
assuming hard decision detection on each symbol, an 
error correcting block code, and dependent symbol errors; 
where the dependence arises due to the fact that the 
interferer configuration is constant over a packet. 

We assume that the receiver consists of a set of correla- 
tors that produce a set of n samples that we denote by the 
n-dimensional vector 2. These samples are input to the 
detector/decoder. To compute the probability of error we 
need to determine the joint probability density function 
for the n-vector 2. As an example, for DS/BPSK the 
receiver consists of one correlator. To compute the proba- 
bility of symbol error, we consider one output sample 
from the correlator, i.e., n = 1. To compute the probabil- 
ity of packet error we take zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAII consecutive samples from 
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the correlator, where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn is equal to the packet length. The 
resulting vector is the sum of a set of random vectors 
(referred to as influence functions) that account for the 
statistical dependence of bit errors in a packet. In the case 
of FH/MFSK, the receiver consists of a set of 2 M corre- 
lators. Thus, to compute the probability of symbol error 
we need the probability density function for the vector zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZ 
whose components are the correlator outputs ( n  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= 2M) .  
In the case of FH/OOK, the basic envelope detector 
receiver uses two correlators, hence to compute the sym- 
bol error probability we need to obtain the probability 
density function for a random vector with two compo- 
nents, i.e., n = 2. 

The received signal is given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
z ( t >  = 4 t )  + zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAC a ( r O x , ( t ) ,  (4) 

1 

where s ( t )  is the signal of interest and the sum is the 
interference signal. The summation is taken over all the 
interfering terminals, which form a Poisson process in the 
plane with parameter A,. The attenuation of the signals 
with distance has been explicitly included so that x , ( t )  is 
independent of the distance of the interferer to the re- 
ceiver, r ( ,  and is proportional to the transmitted signal. In 
computing the various correlations, the receiver performs 
a set of inner products with the set of basis functions 
(qk(t))F, to obtain 

Z = S + Y ,  ( 5 )  

where S is the signal component, 

Y = C a ( r , ) X , ,  
I 

and the kth component of X, is the correlation of x , ( t )  
with the function of qk(t).  In other words, at the receiver 
the signal from the ith interferer, x , ( t )  is converted (pro- 
jected) to the n-dimensional vector X,. We assume that 
the random vectors X, are independent and identically 
distributed, and that the distribution of X, is independent 
of rr.  When referring to one of these random vectors 
generically we will drop the subscript and simply denote it 
as X .  The distribution of X will depend on the modula- 
tion that is being used, the carrier phase of the interferer 
with respect to that of the signal, and the symbol starting 
time relative to that of the signal. We assume that all 
second order moments of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX exist and are infinite, and 
that X has zero-mean. In this paper, we neglect back- 
ground noise. 

Our task is to find the probability density function of Y.  
Towards this end we compute the characteristic function 

(&(") B e"6J) = E(exp ( jwTY)) ,  (7) 

where the superscript T denotes the transpose, and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$ ( a )  

has been defined as the logarithm of the characteristic 
function. To obtain +(.)we use a procedure that was used 
in [91, [lo] in a packet radio context, and has since been 
traced back to Holtsmark who used it in 1919 to find the 
probability density of the electric field strength due to a 
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random distribution of ions in a gas, and subsequently to 
Chandrasekhar [ l l ]  who used it to determine the proba- 
bility density of the gravitational field of a random con- 
stellation of stars. A general framework for this type of 
problem is given in [12, pp. 31-481, where the random 
variable U = a( r )X  is called an influence function. In this 
paper, we refer to X as the influence function. To com- 
pute the characteristic function, the sum in (6) is first 
restricted to all terminals in a disk centered at the re- 
ceiver and having radius b, D,; then we let b + m. We 
may calculate the previous expectation by conditioning on 
the number of terminals in D,. For a Poisson point 
process, given that there are k terminals in a region, the 
positions are independent and have a uniform distribu- 
tion. Thus, we have 

CO 

where the expectation is over the random variables X and 
r corresponding to the contribution to the total interfer- 
ence from a generic interferer. Now, using (1) we may 
compute the log-characteristic function as 

$(w)  = lim A,7ib2(/o b E(exp(ja(r)w'X)IR = r )  

b - r m  

where the expectation is over the random vector X and 
fR(.) is the probability density of the distance r. The 
probability density of the distance to the origin, r ,  of a 
point whose position has the uniform distribution' in a disk 
of radius b is 

elsewhere. ( 0 ,  

Thus, (9) becomes 

$(U) = lim At7ib2 
b - r m  

where @(.I is the characteristic function of X .  Integrating 
the above by parts, letting b + w, and noting that 
lim,,,b2(@(a(b)o) - 1) = 0, we obtain' 

where CY = 4/y.  At this point we impose the restriction 
that the random vector X has a spherically symmetric 
probability density function. The characteristic function is 

This limit is equivalent to l imx+ [@o(xy/211wll) - l]/xz. The result 
follows from the application of L'Hopital's rule and the assumption that 
X has zero-mean and finite second-order moments. 
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then also spherically symmetric and we may write it as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
@(CO) = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@o(llo~l)7 where 1 1 .  II is the Euclidean norm. As a 
result, we may simply (12) to 

We note that the integral in (13) is independent of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAo. 
Thus, the effect of the distribution of X is merely to scale 
the total interference, and 

@(o) = - ( T l l ~ l l a ,  (14) 

where (T = PA, and 

Equation (14) is the log-characteristic function for the 
spherically symmetric stable distribution of exponent zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa. 

If instead of (2 )  we use (3) as the amplitude loss 
function then the log-characteristic function is the same 
as before except that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp is dependent on o as follows: 

For a fixed s the difference between the two log-char- 
acteristic functions approaches zero rapidly as lloll -+ m. 

For small ((oil the difference approaches zero as s -+ 0. 
As an example let A, = 1 (this amounts to choosing a 
scale for r), a = 1, and X = (cos 8,  sin e>, then the two 
log-characteristic functions are practically indistinguish- 
able if s < 0.1. For s = 0.1 the expected number of inter- 
ferers in the region where r s s (the “flat region”) is 
equal to ~ / 1 0 0 .  

For the integral in (13) to converge at 0, excluding the 
trivial case of zero second-order moments of X we must 
have (Y < 2; also since @h(O) = 0 and @.l;(O) exists the 
convergence at 0 holds for all 0 < (Y < 2. Convergence at 
the upper limit holds for a > 0. The symmetric stable 
distributions are characterized by the parameter 0 < a I 
2. Thus, depending on y we obtain any of the stable 
distributions except the Gaussian distribution ( a  = 2). 
The corresponding restriction on y is y > 2. Thus the 
case of free space propagation cannot be included in this 
framework. 

We are mainly interested in the case of ground wave 
propagation where a commonly assumed value, resulting 
from a two-ray propagation model [13, pp. 81-831, is 
y = 4. For such a value we have a = 1. The resulting 
distribution is the n-variate Cauchy distribution with pa- 
rameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAU whose density is given by 

In Table I, we give p values for five different univariate 
distributions. The p value is a measure of the spread of 
the distribution (similar to the standard deviation). The 
last row contains the compound Gaussian distribution 

TABLE I 
p VALUES FOR SOME DISTRIBUTIONS 

Density Characteristic Function p p/u, 

Bernoulli ( p  = 1/2) cos w P2/2 4.935 
cos 8 , o  unif. on [0,2.nl J,( w )  rr 4.443 

sin (w/2) 
Uniform on [ - 1/2,1/21 P 2 / 8  4.274 

Normal e - w  /2 3.937 

- uw2 
I, = [A2 + (1 - A)’] cos2 8 /I exp ( ~ ) f ~ ( u )  du 2.034 3.524 

“<2 

Compound Gaussian 

with conditional variance V. The random variables A, 8 
have the uniform distribution on [O, 11 and [O, 27r1, respec- 
tively. This compound Gaussian random variable occurs in 
the modeling of the interference in a direct sequence 
spread spectrum multiple access system with a large pro- 
cessing gain where the spreading code chips are assumed 
to be non-synchronized, and the chips have a rectangular 
pulse shape, n(t) = 1 if It1 < 1/2, 0 otherwise. 

B. Specific Cases 

The distributions in Table I may be applicable for 
different signaling schemes. As an example for a direct 
sequence spread spectrum system with a large processing 
gain and chip synchronization among all the users, we 
may model the noise at the detector due to each inter- 
ferer as a Gaussian random variable. Thus, if we are 
considering one symbol ( n  = 11, the resulting noise distri- 
bution, assuming a l / r 4  power loss law, is Cauchy with 
parameter cr = PA, where p = 3.9370~~ and a; is the 

standard deviation of X .  
In the case of frequency hopping, the interference 

consists of sinusoidal tones. Thus, to compute the proba- 
bility density of the envelope we need to obtain the joint 
probability density for the in-phase and quadrature corre- 
lator outputs. In this case, X = (cos 8, sin 13) where 8 is 
assumed to be uniformly distributed in [0, 27rl. This 
density is spherically symmetric (in two dimensions) and 
gives the value p = T. Thus, the probability density of Y 
is the bivariate Cauchy with parameter U = TA,, i.e., 

For the performance of an envelope detector, we are 
also interested in the distribution of the envelope of the 
signal zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

w = IlYll. (19) 

The probability density of the envelope is 

otherwise. 

We may also consider the case of DS/BPSK where no 
assumption on the chip synchronization is made. In the 
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case of a rectangular pulse shape and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn = 1, the resulting 
probability density for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAX is the compound Gaussian den- 
sity whose zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp value is the last entry in Table I. We note 
that this zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP value is smaller than that for the Gaussian 
law, hence the lack of chip synchronization tends to result 
in less interference. 

In the case of Gaussian or compound Gaussian proba- 
bility, laws for X the p values are not dependent on n 
and the previous examples easily generalize to the multi- 
variate case, or the case where the joint probability den- 
sity over all the symbols of a packet is required. In fact we 
may consider the general n-variate symmetric compound 
Gaussian density which may be viewed as an n-variate 
Gaussian with random variance zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAI/ having probability den- 
sity function fv (u) .  We assume that the random "vari- 
ance" is normalized so that E ( V )  = 1. The characteristic 
function is then zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

@(U) = J" - Dllwl12/2fv(v) du. 
0 

Note that the n-variate normal distribution is a special 
case of the n-variate compound Gaussian distribution for 
which f v (u )  = N u  - 1). We may obtain the p parameter 
for the general compound Gaussian distribution as fol- 
lows: 

where pN is the /3 parameter for the n-variate normal 
distribution. From (22) we see that the p parameter is 
reduced by a factor equa1,to E ( f l ) .  Under the constraint 
E ( V )  = 1 this factor attains the maximum value of 1 for 
f v ( u )  = N u  - 1) and is less than 1 for all other distribu- 
tions. On the other hand, there is no nonzero lower 
bound for E(@) .  If we choose the distribution f v (u )  = 

(1 - l /n)6(u) + ( l / n ) 6 ( u  - n), then E(#) --f 0 as n 
+ m. 

C. Nonsynchronized Frequency Hopping 

Up to now we assumed that in the case of frequency 
hopping the hops of the different users were synchro- 
nized. We now drop this assumption. With nonsynchro- 
nized hopping it is not possible to keep the different tones 
strictly orthogonal as in the case of synchronized hopping. 
An interferer can interfere with a signal tone (a frequency 
slot) in one of two ways. When the same tone is transmit- 
ted we call it a hit, when a different tone is transmitted 
we call it a splash. In both cases the interference can be 
constructive or destructive depending on the sign of the 
interference component at the detector output. The 
strength of a splash depends mainly on the frequency 
separation between the two tones and on the pulse shape. 
Our notion of a hit is the same as in previous analysis of 
frequency hopping multiple access, however we treat its 
effect more accurately since we work with the actual 
signal levels at the detector output. Due to intractability, 
the effect of splashes has been neglected in previous 

analysis. In our case, the effect could be included more 
easily due to our framework of a Poisson field of interfer- 
ers. However, in many cases the result would be a slight 
increase in the p parameter; hence we also neglect it so 
as not to unnecessarily obscure the analysis. 

We assume that the hopping time is normalized to unity 
and the hopping sequence of the ith interferer is out of 
phase with the sequence of the signal of interest by the 
amount A, ,  where At is a random variable with uniform 
distribution on the interval [O, 11. The probability that an 
interfering tone overlaps fully the signal of interest is 
zero. If the time interval of the j th  hop of the signal is [ j ,  
j + 11 then we say that the ith interferer hits the signal on 
the left if it uses the same frequency slot as the signal and 
its hop interval is [ j  - A,, j + 1 - A,]; the interferer hits 
the signal on the right if it uses the same frequency slot as 
the signal and its j t h  hop interval is [ j  + 1 - A, ,  j + 2 - 
A,]. If the ith interferer hits the signal of interest in a 
given slot then it will hit on the left, or on the right, but 
not both due to the fact that the hopping frequency must 
change at every hop. Let HI and H, be the indicator 
functions of the events corresponding to hits by the ith 
interferer on the left and right respectively. The random 
variables (H,, H,) have the joint probabilities P[H,  = 1, 
H, = 01 = P[H, = 0, H, = 11 = l /Q and P[H,  = 1, H, = 

111 = 0. Dropping the interferer index i, the influence 
function then becomes2 

X = U(cos 0,sin e) ,  (23) 

where U = H,R,(l - A )  + H,R,(A),  and where R,(T) 
= /"m(t)m(t + T )  dt is the autocorrelation function of 
the baseband pulse shape function, m(t). 

We note that X has a spherically symmetric density. 
The p factor may be computed as before. For a = 1 the 
p factor is given by /3 = T / ~ ( R , ( T )  + R,(1 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA7)) d7. 
Thus, if m(t)  = n(t) then p = T, and if m(t)  is a cosine 
pulse (i.e., m(t)  = cos ( ~ t )  for It1 < 1/2, 0 otherwise) 
then p = 8 / m .  

We note that for the rectangular pulse there is no 
change in the p factor when compared to the case of 
synchronized hopping. For other pulse shaping functions 
the p factor is actually smaller with nonsynchronized 
hopping. We may, therefore, draw the important conclu- 
sion that, if the effect of splashes is not significant, then 
nonsynchronized hopping will not degrade the perfor- 
mance and may actually increase it, i.e., the probability of 
symbol error may even be lower. In fact, the lack of 
hopping time synchronization does not create extra de- 
pendencies in symbol errors. In past analysis of the multi- 
ple access capability of frequency hopping schemes, a 
combinatoric approach is taken to calculate the probabil- 
ity of symbol error due to hits. In this model, a hit is 
assumed to cause an error with a given probability regard- 
less of its degree of overlap. The results obtained lead to 

The waveform at the receiver is projected onto the two basis func- 
tions cp,( t )  = &m(t) cos ( w t )  and p2( t )  = &m(t) sin ( w t ) ,  where w is 
the frequency of the corresponding tone. 
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the conclusion that nonsynchronized hopping causes a 
significant degradation in performance if the number of 
symbols per hop is small (e.g., see (24) in [51). We note 
that in our case, under the assumption of a Poisson field 
of interferers, this degradation is not present, and depend- 
ing on the tone separation and pulse shape (i.e., effect of 
splashes) nonsynchronized hopping may result in im- 
proved performance over synchronized hopping. 

IV. SYMBOL ERROR PROBABILITY vs. DISTANCE 

In this section, we use the preceding results for the 
distribution of the total interference at a receiver to 
determine the probability of symbol error versus the link 
distance for the schemes FH/OOK, FH/MFSK, and 
DS/BPSK. Let R be the link distance. The quality of the 
link will depend on the distance and also on the expected 
density of terminals, A. We define the parameter N ,  which 
incorporates both of these, as 

Our results will be expressed in terms of the dimension- 
less parameter, N .  The parameter N is equal to the 
expected number of interferers that are closer to the 
receiver than the transmitter. 

A. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAFH zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA/ OOK 

Denote the symbol transmitted when the transmitter is 
on or off by “1” and “O”, respectively. We assume that the 
receiver processes the received waveform to obtain the 
two-dimensional random vector Z as in (5). To derive the 
minimum probability of error receiver we assume equi- 
probable binary signaling and let H ,  and H ,  be the 
hypothesis that a “0” and a “1” is transmitted respec- 
tively. Given the linear processing to obtain 2 the opti- 
mum receiver calculates the following maximum likeli- 
hood ratio 

and decides on a “0” or “1” if A is greater or less than 1, 
respectively. 

The conditional density fZIH,(.) is equal to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAfu(.) in (18). 
Assuming a l / r 4  power loss law, and letting Z = (Z , ,  
Z,), under the hypothesis H , ,  the random variable zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2, will 
have a signal component (cos 8)/R2 and Z ,  will have a 
signal component (sin O)/R2, where 8 is the phase angle 
of the signal, and is uniformly distributed on [O, 2n-I. 
Thus, 

cos 0 sin 0 
) d o .  (26) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

21 - R27z2 - - R2 

To simplify this expression let zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp = l l Z l l / ~ ~  and P~ = 

~ / ( A , ~ R ~ ) ,  or in terms of system parameters, let 

2Q 
Po = ” 

After some manipulation we can show that the likelihood 
ratio (25) becomes a function of the single variable p :  

where E,(.) is the complete elliptic integral of the second 
kind. 

E , ( k )  = /on’’dl - k 2  sin2 t dt.  (29) 

For the minimum probability of error receiver, we need 
the threshold p* where A( p * )  = 1. By numerical analysis 
we obtain the approximate relationship p* = 0 . 6 6 ~ ~  that 
holds for po > 4. 

The average probability of symbol error is computed as 

1 
p e  = x(P[Er ro r  IO] + P[Errorll]) .  (30) 

L 

The conditional probability of error given “0” can be 
obtained in closed form by using (20) as 

1 
. (31) - 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

4- - Jm P[Error IO] = 

The conditional probability P[Error/ 11 was obtained nu- 
merically. For po > 10, we have the following approxima- 
tions: 

1.5 0.41 

PO PO 
P[Error IO] = - , P[Error 111 = - 7 (32) 

and 

0.96 
Pe G’ (33) 

B. FH / MFSK 

We consider the case of M-ary frequency shift keying 
with synchronized hopping times. It can be shown, as 
previously, that the nonsynchronized case presents no 
major difficulties and leads to the same probability of 
symbol error. The receiver is a noncoherent receiver 
consisting of M envelope detectors and a decision rule 
that chooses the symbol corresponding to the envelope of 
maximum value. Let the outputs of the envelope detectors 
be WO, Wl,--.,WM-,. We can show that the K’s are 
independent random variables. We may do this by using 
the influence function 

X = (6, cos 8,, 6, sin 8,; 6, cos 8,, 6, sin 8,; ; 

t j M - l  COS zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOM-l, 6 M - 1  sin OM-l), (34) 
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where the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAOi’s are independent and identically distributed 
6.i.d.) random variables with uniform distribution on [O, 
271-1. The Si’s are random variables with values in the set 
{O, 1) and distribution given by zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP(S,;-., a,,,-,) = 1/M if 
exactly one of the arguments equals one, and zero other- 
wise. 

The random variables are obtained as follows: 

where 29’) = (ZI’), zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAZl’)),  ZiJ), and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA22) being the in-phase 
and quadrature integrator outputs for the j th  envelope 
detector. We assume that the signal tone is contained in 
the 0th-frequency slot. For LY = 1, the probability density 
function for Z( ’ )  is then a bivariate Cauchy given by (18). 
The probability density function for the y ,  j = l;.., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAM - 
1, is given by (20) with the appropriate A,.  To compute the 
probability of symbol error it is advantageous to view the 
standard n-variate Cauchy density (i.e., (17) with U = 1) 
as the following compound Gaussian density with random 
variance V: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf,(.) is the inverse Gaussian density given by 

We let 
- 1. Conditioned on the random variable 7,  the random 
variables y(j # 0) have Rayleigh distributions, and con- 
ditioned on Vo the random variable WO has a Rician 
distribution. 

be the conditional variance for Z ( j ) ,  j = O,... , M  

j = l;.., M - 1, (38) 

where r and pM are normalized values as in the previous 
section. Note that in this case, since each terminal always 
transmits a tone, we have 

We thus obtain the probability of symbol error as 
follows: 

p ,  = E(P[Error /vO>Vl?**.7vM-l]) 

= 1 - E(PIWl < Wo,W, < WO,..., 

WM-1 < WOlVl) 

where E( . )  is an expectation over the random variance 
vector 

This computation is straightforward once we realize 
that the conditional variances 7 are i.i.d. random vari- 
ables. We obtain 

where 

and the 7’s are a subset of the initial set of M variances 
that has been reindexed. The expectation is over the 
random variables VI ; * . ,  V,. 

To compute the pk’s we note that the random variable 
6 = l / V  has the density 

The sum 6 = E:;’ l /y  has a Gamma density. To 
perform the computation of pk we first take the expecta- 
tion with respect to Vo followed by the expectation with 
respect to and finally integrate with respect to r. After 
some substitutions we obtain 

(45) 

This integral may be computed directly for small values 
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of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAk to obtain for example 

1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
p l =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4“ 

2 
P3 = 

(4 + pL)3’2 ’ 

where p =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBApM/  4=, u = sin-’ d ( 1 -  p ) / ( l  + p )  , 

and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAb = d m .  The functions F(., -) and E(., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAe )  

are defined as 

1 

These are complements of elliptic integrals of the first 
and second kind, respectively. 

In the previous examples, for large pM the parameter p 
approaches unity. In the expression for p2 the term con- 
taining the F function approaches zero as pM + m. In 
general, for large p M ,  pk - 1/&. As a result, we have 

M - 1  

P M  
P e  ~ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA9 PM* 1* (49) 

C. DS/BPSK 

We now consider DS/BPSK. We assume random 
spreading codes with L chips per data symbol; L is the 
processing gain. We assume a rectangular chip shape 
function n(t). Let A and 8 be the relative chip phase 
between the spreading code and carrier of the signal and 
a generic interferer respectively. We assume that these 
have uniform distributions in [O, 11 and [O, 2 ~ 1 ,  respec- 
tively. Conditioned on A and 8, for large L,  the interferer 
contributes an influence function X at the detector that 
has a Gaussian distribution [8] with variance 

minimizes the probability of error is zero, and the proba- 
bility of error is equal to the conditional probability of 
error (given “0” or “1”). Assuming that the link distance 
is R, the received signal value is L / R 2 .  The probability of 
error is then 

where Y is the interference and has a probability density 
given by (51). 

Solving (52), we obtain 

1 1  
pe = - -tan-‘ p D ,  

?r 

where 

(53) 

(54) 

For x s- 1, tan-’(x) = 7r/2 - l/x; hence (53) may be 
approximated by pe = l / ( ~ p ~ ) .  

V. CODED PERFORMANCE 

We assume a packet consisting of n symbols and a 
t-error correcting block code. In calculating packet error 
probability dependencies between error events must be 
taken into account. For the DS/BPSK, we have used a 
vector influence function to obtain the probability density 
for the interference over all of the symbols in the packet, 
hence these dependencies have been taken into account. 
Let Y be the interference noise vector over the n symbols 
of the packet. This noise vector has a probability density 
given by (17), where p = p , , a  as in (51) and cr = 

A , p d s K .  Let U = Y/u. The random vector U has the 
standard n-variate Cauchy distribution. Let and q be 
components of the previous noise vectors, and let p’ be 
the threshold on Y, for which a negative valued symbol is 
detected in error when the noise exceeds the threshold. 
From (52), we have p’ = L / R 2 ,  hence the threshold on q 
is p ’ / ( A , p d , a )  that reduces to pD as given by (54). 
Now, as in (36), the standard Cauchy density may be 
written as a compound Gaussian. Thus, the block error 
probability may be obtained by conditioning on the “vari- 
ance” as 

n - i  VI = L[A2 + ( 1  - A)’ ]  cos’ 8. (50) 1 
p , =  jffi 0 i = t + l  ( ~ ) ( 1 -  Ter.($)) 

The unconditional probability density is a compound 
Gaussian. Referring to the last entry of Table I, writing 
p d s  = 2.035, and noting that the p parameter is propor- 
tional to the standard deviation, we have in this case 
p = @,,a. The resulting interference due to all of the 
interferers is Cauchy distributed with parameter U = A, p d s  a. The probability density is 

As a result of symmetry the detector threshold which 

where f,(.) is given by (37) and where erfc(x) = 

(2 /  exp ( - t 2 )  dt. 
We would like to obtain an expression for the probabil- 

ity of packet error for larger packet sizes n under the 
assumption that an error-correcting code of error-cor- 
recting capability t is used. Such a result is difficult to 
obtain in closed form. We, therefore, find limiting values 
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as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAn --f zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW. Let n - w and t - in such a way that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt / n  is constant. The following limit is readily avail- 
able from (55): 

where erfc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( x )  = 1 - erfc (x). Note that for large zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, 
(pug s erfc-' ( 2 ~ ) )  we have P, = (l/p,) erfc-l ( 2 ~ ) .  
Thus, for a large n and a fixed amount of coding, the 
probability of packet error is inversely proportional to p, 
for large values of p,. We note that this result is different 
than that of a memoryless BSC channel where the limit- 
ing probability is either 0 or 1. Equation (56) has been 
plotted in Fig. 1 as a function of the threshold parameter 
p, for three different values of the parameter E .  The 
dependence between symbol errors due to the Cauchy 
distribution results in a smooth limiting probability of 
error curve; if the symbol errors were independent the 
curve would be a step function. 

In the case of frequency hopping, it is more difficult to 
account for dependencies between errors since we have 
not used a vector influence function, encompassing multi- 
ple symbols, in obtaining the distribution of the interfet- 
ence. In the case, where it is possible for an interferer to 
hit more than one symbol in a packet, symbol errors will 
generally be dependent. The degree of correlation be- 
tween errors depends on the parameters N and Q. For 
large Q and small N ,  the correlation between errors will 
be weak. However, if the hopping sequences are specifi- 
cally designed so that there is at most one hit between any 
two sequences during a packet transmission, then symbol 
errors will be independent and the packet error probabil- 
ity for a block code can easily be calculated from the 
symbol error probabilities already obtained. This is the 
case for both FH/OOK and FH/MFSK. 

We would like to compare the various signaling schemes 
using a common criteria. Since the different signaling 
schemes use different alphabet sizes, the packet error 
probability is not a good measure since different schemes 
have different information transmission rates. Instead we 
use the channel capacity. Under the assumption that 
symbol errors are independent, the capacity for the 
FH/MFSK schemes is readily obtained as 

where H(x) = --x log, x - (1 - x )  log, (1 -XI is the 
binary entropy function. In the case of FH/OOK, the 
capacity is a bit more difficult to compute since the 
channel is not symmetric and the receiver that we have 
considered is that which minimizes the probability of 
error. Under the assumption of equally likely channel 
input symbols, the mutual information is a lower bound 
for the capacity given as 

I I 

1 10 100 

Link Quality Parameter p~ 

Fig. 1. Limiting packet error probability for codes with different error 
correcting capability. 

where p o  and p1 are the conditional probabilities of 
error. 

Lastly we would like a comparison with the DS/BPSK 
scheme. The capacity for DS/BPSK may be computed as 
the expectation E(1 - H(1/2 erfc ( p,/ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAm))) over the 
random variable V, which has the density given in (37). 
The result is 

exp( - t 2 )  dt. (59) 

The performance of the various signaling schemes is 
determined by the link quality parameters given by (271, 
(40), and (54). In order to compare these schemes, we 
need to express these parameters in terms of a common 
parameter. We define the expected number of interferers 
closer to the receiver than the transmitter, per frequency 
slot, as G = N / Q .  Thus, pM = G-' and po = 2G-'. 
Now, to express p, in terms of G, we need to relate the 
bandwidth parameters Q and L for the frequency hop- 
ping and direct sequence schemes. Assuming a constant 
system bandwidth these parameters are both proportional 
to the bandwidth. Thus, we write L = K Q  and we have 

p, = 

p d  s 

Let the tone spacing for FH be A w  and the symbol time 
be T.  For a rectangular chip pulse if we define the 
bandwidth of the DS signal as the location of the first 
spectral null, then K = TAW; this is the time-bandwidth 
product of the frequency hopping tone. As an example, 
for FH with a rectangular pulse shape if we assume 
A w  = T-' then3 K = 1. In the following plots we assume 
K - 1. In Fig. 2, we have plotted the capacities C, for the 
cases L = 100 and L = 1000, C,, for M = 2, 4, 8, 16, 
and the bound CO, versus the parameter G. The parame- 
ter G behaves like an interference to signal ratio. For low 

With this minimum A w (for noncoherent orthogonality) the effect of 
splashes would be significant in the case of unsynchronized hopping; 
thus the results in the plots hold only for synchronized hopping. Similar 
plots can easily he obtained for unsynchronized hopping if the time- 
bandwidth product K is made larger (e.g., K > 3) for a Gaussian pulse 
shape function. 



1752 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 38, NO. 6, NOVEMBER 1992 

Link 
Capacr ty  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0.1 -1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAL = I000 

0.01 ~ I ~ 

0.001 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0.01 0.1 

Normalized Interference Parameter G 

Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2. Link capacity versus the normalized interference parameter zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAG 
for different signaling schemes. 

values of G, CO and C, approach 1 and C, approaches 
log, M.  However, as G increases the performance of the 
M-ary schemes decreases drastically, and for G - 1 the 
OOK scheme is the best. For very large values of G all 
capacities drop to zero; however, if we fix L and let 
G --t then the DS/BPSK scheme is asymptotically bet- 
ter than all other schemes. 

VI. DISCUSSION 

The link quality parameters, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp07 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp M ,  and p,, deter- 
mine the bandwidth (or processing gain) versus transmis- 
sion range trade-off for the various schemes. These pa- 
rameters incorporate the link distance R, the level of 
interference (in terms of A), and the processing gain (in 
terms of L and Q). The parameter N in (24) is a dimen- 
sionless measure of the square of the link distance. For a 
fixed performance level N is proportional to a in the 
case of DS/BPSK ( L  equals the number of data chips per 
data symbol), and for the frequency hopping schemes N is 
proportional to Q, the number of orthogonal tones. 

For a fixed level of interference and a large processing 
gain the capacity is not too small and the frequency 
hopping schemes perform better than the direct sequence 
scheme. For a fixed processing gain and large interference 
(large N ,  i.e., low link quality) the order is reversed. As an 
example, for DS/BPSK and p, 4 1 we obtain C, - 
&/(T In 21, and for FH/BPSK and pM 4 1 we have 
C, - ph/(128 In 2). Fixing Q and letting G -j zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa, we 
obtain C,/C, --f 0. 

In multihop packet radio networks, it is not fair to 
compare links in terms of the capacity if the link distances 
are not equal and a long link with low capacity may be 
better than a short link with high capacity. The overall 
traffic in the network, hence the required capacity, de- 
pends on the length of the transmission hops. As a gen- 
eral rule if the link distance is decreased by a given factor 
then the capacity requirement increases by the same 
factor, hence a good performance measure is the product 
of the link distance and link capacity. The parameter G is 

proportional to the square of the distance, hence is a 
measure of distance. We use the link performance mea- 

0.4 , I 

0 001 0.01 0.1 

Normalized Interference Parameter G 

Fig. 3. Capacity-distance product versus the normalized interference 
parameter G for different signaling schemes. 

Processing 
Gain 
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Q 

1 10 100 

Number of Interferers Parameter N 

Fig. 4. Comparison of three signaling schemes: D: DS/BPSK, B: 
FH/BFSK, Q: FH/4FSK C‘X > Y”  indicates that, in the given region, 
X performs better than Y) .  

sure C G ,  where C is the capacity of the link. In Fig. 3, 
we have plotted the product C 6 ,  the capacity-distance 
product for the schemes considered in this paper. 

To exhibit further the relative capacity of the previous 
schemes, we consider the schemes DS/BPSK, FH/BFSK, 
and FH/4FSK. The first two of these compare DS with 
FH whereas the last is an example of the effect of using a 
larger symbol alphabet. We may compare these by taking 
two at a time and finding the region in the N-Q plane 
where one is better than the other. In Fig. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4, we have 
plotted 3 curves. Each curve compares two schemes and 
partitions the plane into two regions. The three curves 
partition the plane into six regions with each correspond- 
ing to a particular order of the capacity of the schemes. 
The three curves intersect at a point, a “triple point” 
where the three schemes have equal capacity. 

From the previous statements, we may conclude that 
unless we are interested in “long” links with very small 
capacity, the frequency hopping schemes are better than 
the direct sequence scheme. There are two mechanisms 
that account for the degradation of link quality, the 
strength of the interferers, and the number of them. The 
direct sequence and frequency hopping schemes cope with 
these factors in different ways. For any processing gain, L,  
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the capacity of a direct sequence link may be brought to 
zero, even if there is only one interferer, by increasing the 
signal strength of the interferer. The direct sequence 
scheme is mainly sensitive to the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAtotal interference power. 
In the case of frequency hopping, there is an upper bound 
to the degradation that may be caused by one interferer 
regardless of its power, and this upper bound decreases as 
the processing gain increases. The frequency hopping 
schemes are more sensitive to the number of interferers 
that have a significant power level. These observations are 
similar to those made in [14]. 

The capacity results presented were for the coding 
channel resulting from the hard decision detection scheme. 
Capacity results for the predetection channel (the wave- 
form channel) were not given since they will depend on 
the exact form of the propagation amplitude loss function 
a(r )  for very small values of r. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA propagation loss function 
that is more accurate for very small values of r would be 
needed to find the capacity of the waveform channel; 
however, such a function would likely result in intractable 
expressions for the distribution of the interference. 

VII. GENERALIZATIONS 

In this paper, we have considered frequency hopping 
schemes with one symbol per hop. The analysis may be 
generalized to other spread spectrum schemes include the 
case of frequency hopping with more than one symbol per 
hop. Our restriction has been imposed by the requirement 
for spherical symmetry in the characteristic function zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA@(a) 

in proceeding beyond (12). To handle more general influ- 
ence functions we retract to (9) and perform the integra- 
tion with respect to r first. In doing this, the integral with 
respect to r is at first truncated to avoid convergence 
problems, and then the limit is taken. The result, assum- 
ing zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa = 1, is 

2 

2 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBArr 
( a T X (  +j-(o 'X)ln Ia'Xl 

where the expectation is over the influence function X .  
This is the log-characteristic function for a class of multi- 
dimensional stable distributions of parameter a = 1 (see 
[12, pp. 19-20] for a more general form). For many cases 
of interest the probability density function of X is sym- 
metric about the origin and the second of the previous 
terms vanishes. The log-characteristic function then sim- 
plifies to 

T 2  

$(a) = - A  --IIwIIE( 2 I vTXI), (62) 

where q is a vector on the unit sphere (Ilqll = 1). 
As an example, we consider the case of direct sequence 

with a very small processing gain and two symbol block 
(i.e., n = 2). For simplification we assume chip synchro- 
nization. Thus, the influence function is X = (xl, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx2), 
where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx i  = 1 c k , i ,  and the Ck,i 'S are binary i.i.d. random 
variables taking the values zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAf 1. The lack of spherical 
symmetry in the characteristic function leads to difficulty 

1 0 1 

U1 

Fig. 5. Convergence of the characteristic function of a two-dimensional 
interference vector to a spherically symmetric function. 

in obtaining the probability density. In some cases, we 
may simply approximate the probability density with one 
having spherical symmetry. To check the current example, 
in Fig. 5 we show plots of the normalized value 

m ( l / u x ) E ( l q T X l ) ,  where U, is the standard deviation 
of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx l ,  and compare it with the unit circle which corre- 
sponds to the case of X having a spherically symmetric 
density. As seen from the plots the curve converges 
quickly, as L increases, to the unit circle. This assumption 
on chip synchronization is no burden since its removal will 
result in the probability density being a mixture of densi- 
ties, and mixtures tend to preserve spherical symmetry. 

In this paper, we assumed that the interferers are 
distributed in the plane according to a Poisson process 
with parameter A. To obtain a finite interference we must 
also have zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy > 2. It is possible to generalize these assump- 
tions slightly, with minimal effort, for centralized net- 
works. If we assume that the receiver is at the origin and 
the interferers are Poisson distributed (with parameter A) 
in a sector of angle 0, then we may apply the preceding 
analysis with A reduced by the factor 0,/(2rr). We may 
also consider the case of a Poisson process in the plane 
with nonuniform parameter A = A(r) .  Let us assume that 
A(r) = her-', where 0 < v < 2. We may make a transfor- 
mation on the plane P to the plane P' as follows: In 
terms of polar coordinates, we let r' = r 1 - n u / 2  and 8' = 

8. The Poisson process in the P plane is mapped to a 
Poisson process in the P' plane with constant parameter 
A = 2A0/(2 - v). If the propagation power loss exponent 
in P is y ,  then in P' the corresponding exponent is 
y '  = 2y/(2 - v). As an example, if we have v = 1 then 
we can handle the case of free space ( y  = 2) in P, since 
A' = 4 > 2. 

We draw the attention of the reader to the work in [14] 
were a similar approach to the one in this paper is used to 
find the performance of a link in the presence of a finite 
set of interferers whose positions are distributed accord- 
ing to a bell-shaped density function centered at the 
receiver. The form of the density of the terminals is 
specifically chosen so as to make the analysis tractable, 
and the assumption is made that the interference powers 
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combine additively. We also refer the reader to 1.51, which 
has appeared after the initial submission of the current 
paper, where a FH/MFSK scheme is analyzed in the 
presence of a Poisson field of interferers. This paper 
assumes slow frequency hopping and considers the effect 
of thermal noise but makes more use of approximations. 

VIII. CONCLUSION 

We have considered a link in a radio network that is 
affected by a Poisson field of interfering transmitters. The 
Poisson model corresponds to the case of complete lack of 
knowledge of terminal positions. Under this model and a 
l / r4 power loss law we have shown that the probability 
law of the interference signal of a set of receiver correla- 
tor outputs is the multivariate Cauchy probability law. 
The probability of symbol error and the capacity versus 
the link distance was found for a set of signaling schemes 
utilizing spread spectrum. The method presented in this 
paper may be readily extended to obtain the performance 
of a link versus distance for other spread spectrum 
schemes. 
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