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Abstract— The brain-computer interface (BCI) and the 

tracking of eye gaze provide modalities for human-machine 

communication and control.  In this paper we provide the 

evaluation of a collaborative BCI and eye gaze approach, known 

as a hybrid BCI. The combined inputs interact with a virtual 

environment to provide actuation according to a four-way menu 

system. Two approaches were evaluated: (1) steady state visual 

evoked potential (SSVEP) BCI with on-screen stimulation; (2) 

hybrid BCI, which combined eye gaze and SSVEP for navigation 

and selection. A study comprised participants without known 

brain injury (non-BI, N=30) and participants with known brain 

injury (BI, N=14). Twenty-nine of the thirty non-BI participants 

could successfully control the hybrid BCI, while nine out of the 

fourteen BI participants were able to achieve control, as evidenced 

by task completion. The hybrid BCI provided a mean accuracy of 

99.84% in the cohort of non-BI participants and 99.14% in the 

cohort of BI participants. Information transfer rates were  24.41 

bits/min in non-BI participants and 15.87 bits/min in BI 

participants. The research goal is to quantify usage of SSVEP and 

ET approaches in cohorts of non-BI and BI participants. The 

hybrid was the preferred interaction modality for most 

participants for both cohorts. When compared to non-BI 

participants, it was encouraging that nine out of fourteen 

participants with known brain injury could use the hBCI 

technology with equivalent accuracy and efficiency, albeit with 

slower transfer rates. 

 
Index Terms—Brain-computer interface, brain injury, eye 

tracking, data fusion,  virtual  environment 

I. INTRODUCTION 

isorders that affect the cerebrum and the central nervous 
system, e.g. stroke, and traumatic brain injury incapacitate 
the individual concerned, often affecting their mobility 

and communication. The Future BNCI roadmap estimated 
stroke prevalence at 3% of the population, and that 250,000 
Americans were living with spinal cord injury (47% of whom 
were quadriplegic) [1]. Rehabilitation and long-term care may 
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be required, placing a burden on health and social care systems. 
In the worst cases, the absence of muscular control means that 
communication can become difficult or impossible. Eye gaze 
has been utilised as a human-machine communication channel 
(e.g. as a computer assisted speller)  and is established as an 
assistive technology for people with impaired peripheral muscle 
activity but residual eye movement [2]. Eye gaze is measured 
by an eye tracker (ET); a device which records reflected light 
from the eye. In particular, ETs have been used to navigate on-
screen commands; when a decision or action needs confirmed, 
‘dwell-time’ has been used for activation. However, false 
positives often ensue [3], and there is a need for a more accurate 
assistive technology to facilitate communication and control. 

The electroencephalogram (EEG) provides a recording of 
electrical activity emanating from sources within the brain. 
EEG may be recorded non-invasively by applying electrodes to 
the scalp and measuring potential differences between each 
electrode and a reference point. The coupling of the EEG with 
a computer that can provide processing and actuation is termed 
a brain-computer interface (BCI). By using exogenous 
(stimulus-action, e.g. visual stimulation) and endogenous (e.g. 
motor imagery) paradigms, intentional modulation of brain 
activity has been used as a mechanism for communication and 
control. BCI recording has traditionally taken place under 
controlled laboratory conditions; in more recent years the 
technology has been made available to users in the community, 
placing additional emphasis on user requirements of accuracy 
and ease of use. Indeed, such is the progress and acceptance of 
this technology that a consumer market has developed led by 
gaming, mindfulness and wellness applications [4], [5]. BCI 
provides an alternative user channel to eye gaze, but the 
approach is less well established as an assistive technology and 
has usability issues [6]. 

The steady state visual evoked potential (SSVEP) produces 
a measurable EEG response to frequency modulated visual 
stimuli, which can be considered to be representative of a user’s 
interaction with that stimulation frequency [7]. It requires sight 

Piotr Stawicki, Felix Gembler, and Ivan Volosyak are with the department 
of Biomedicine and Engineering, Rhein-Waal University of Applied Sciences, 
Marie-Curie-Straße 1, 47533 Kleve, Germany (e-mail:  
piotr.stawicki@hochschule-rhein-waal.de, felix.gembler@hochschule-rhein-
waal.de, ivan.volosyak@hochschule-rhein-waal.de. Elaine Armstrong and 
Eileen Thompson work with The Cedar Foundation (email: 
E.Armstrong@cedar-foundation.org; E.Thomson@cedar-foundation.org ) 

 

Performance of a Steady State Visual Evoked 
Potential and Eye Gaze Hybrid Brain-computer 

interface on Participants with and without a 
Brain Injury 

Chris Brennan, Paul McCullagh, Gaye Lightbody, Leo Galway, Sally McClean,  
Piotr Stawicki, Felix Gembler, Ivan Volosyak, Elaine Armstrong, Eileen Thompson 

D 

mailto:brennan-c15@ulster.ac.uk
mailto:pj.mccullagh@ulster.ac.uk
mailto:g.lightbody@ulster.ac.uk
mailto:l.galway@ulster.ac.uk
mailto:si.mcclean@ulster.ac.uk
mailto:piotr.stawicki@hochschule-rhein-waal.de
mailto:felix.gembler@hochschule-rhein-waal.de
mailto:felix.gembler@hochschule-rhein-waal.de
mailto:ivan.volosyak@hochschule-rhein-waal.de
mailto:E.Armstrong@cedar-foundation.org


THMS-19-03-0076 

 

2 

of and attention to the stimulus. Light sources flickering at 
frequencies from approximately 8Hz to 40Hz [8], have been 
used as the stimuli to elicit responses, which propagate from 
neuronal sources within the visual cortex. These are most 
prominent when measured at the occipital region of the scalp. 
The responses correspond to the fundamental frequencies, as 
well as higher harmonics, of the eliciting stimuli. EEG-based 
features that can differentiate the various stimuli can be derived 
by the use of signal processing techniques [9]. 

Communication reliant upon EEG features is particularly 
important for users who have lost peripheral movement 
(including eye gaze). However, BCI alone is a difficult assistive 
technology to establish for a user, as successful deployment 
requires substantial personalization to the user’s needs and 
individuality within their EEG [10]. Hybrid BCI (hBCI) 
solutions combining EEG features have the potential to create 
more effective systems [11], [12]. Solutions that combine ET 
specifically with BCI have been reported and reviewed in [13], 
[14]. Typically eye gaze provides robust navigation and BCI 
paradigms perform a confirmation or switch operation. 

In [15] Évain et al combined ET and SSVEP inputs to 
enhance classification accuracy and demonstrated a speed up in 
operation and performance over existing gaze hBCI systems, 
reporting an average speed up of 29%. Stawicki et al [16] 
demonstrated that greater user control could be achieved by 
combining SSVEP with ET, with over 90% of users achieving 
reliable control of the hBCI, compared to 78% for eye tracking 
only and 75% for pure SSVEP. The motivation in our research 
was to provide more accurate communication and control for 
people with brain injury (BI). The research goal is to quantify 
usage of SSVEP and ET approaches in cohorts of non-BI and 
BI participant for this purpose. This paper provides the design 
and evaluation of a collaborative BCI and eye gaze approach, a 
class of hybrid BCI (hBCI), which facilitates interaction with 
virtual environments. The performance of SSVEP was 
evaluated for both non-BI participants and BI participants, and 
improvements that hBCI offers over SSVEP BCI alone were 
quantified. The assessment of the solution with the BI cohort 
and its comparison with the non-BI cohort is the major 
contribution of this work and extends the research in [16]. It is 
important to stress that this research does not quantify type or 
extent of brain impairment, but assesses technology use by a 
group who have previously benefited from assistive technology 
solutions. 

II. MATERIALS AND METHODS 

A. Collaborative Framework for Interaction 

The hybrid combines input modalities of SSVEP and eye 
gaze, using the signal processing approach reported in [17], for 
the BCI actuated component. In previous research (EU-funded 
BRAIN project, Grant Agreement Number 224156) users with 
BI provided feedback regarding screen design and user 
interaction for virtual home communication. Hence this user 
interface [18] was adopted as the mode of interaction. 

The SSVEP paradigm provides an intuitive procedure to 
collaborate with an ET algorithm. Users interact with an 
existing menu system [19] using a visual interface application 
(VIA), which provides navigation of a virtual smart home, as 
depicted in Fig. 1. The SSVEP paradigm used initially 

comprised high-frequency stimulation, with external LEDs 
[18]. However, for ease of navigation the stimuli need to be co-
located with the menu options, hence on-screen presentation of 
the stimuli is more intuitive. Consequently, lower frequency 
stimuli were adopted as dictated by the display and refresh rates 
of the liquid crystal display (LCD) monitors. The resultant 
stimulation rates (typically 6-10 Hz) provide noticeable flicker 
and hence precludes the use of participants that are 
photosensitive. However, the signal-to-noise ratio of the evoked 
activity is higher, thus facilitating feature detection. 

Users are required to observe and fixate on the navigation 
icon they wish to select; the icons are linked to rooms and 
devices in the environment. For example, from a top-level 
menu, the living room could be located by first using right or 
left navigation icons, then selected using the down icon, which 
would subsequently reveal objects within the living room that 
could be similarly controlled (e.g. switch a light on/off, change 
a television channel). As the navigation icons are co-located 
with frequency-modulated stimuli, the modality for interaction 
(i.e. eye gaze or SSVEP) does not change from a user 
interaction perspective. Command selection from the BCI and 
directional selection from the ET are combined within the data 
fusion component of the hBCI system in order to make a 
collaborative decision. This facilitates control of the VIA using 
a range of possible input modalities such as EEG alone, eye 
gaze alone, collaborative EEG and eye gaze, as well as standard 
input modes (i.e. mouse/keyboard). 

 
Fig. 1. The Visual Interface Application with on-screen stimuli located at the 
edges of the display. Each stimulus flickers using unique frequencies (left:7.5 
Hz, up:10 Hz, right:8.57 Hz, down:6.6 7Hz). 

 

B. Recruitment 

This study was undertaken in association with the Cedar 
Foundation, a charity in Northern Ireland which delivers a 
range of services that enable people with disabilities to get the 
most out of life and to be fully included in their communities. 
Ethical approval was granted by Ulster University Research 
Ethics Committee (ethics number: REC/16/0053). Participants 
in the non-BI cohort had no known neurological condition; all 
participants were excluded from the study if they had 
photosensitive epilepsy, due to the flashing nature of the 
stimuli. 

Potential end users with a diagnosis of acquired, non-
progressive brain injury (stroke, traumatic brain injury) with 
differing functional capabilities were considered for 
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involvement in the study. BI participants were excluded if they 
had problems with left-right discrimination, or hearing 
impairments that could not be corrected with an aid. None of 
the BI users were dependent on the technology for 
communication. The number of BI participants was limited by 
the inclusion criteria and logistical reasons, as recording was 
limited to a 3-week period. The participant demographics are 
illustrated in Table I. All participants who removed their 
spectacles were able to interact with the interface. 

C. Experimental Setup 

Recordings were conducted at Ulster University 
(Jordanstown) and in an office setting at the Cedar Foundation 
(Ballymena). The experimental setup comprised dual LCD 
displays, an Eye Tribe Tracker as the ET component, a 
combination of g.USB amplifier, g.LADYbird passive 
electrodes and a g.GAMMA cap as the BCI component, and a 
Raspberry Pi home-automation server. Participants were seated 
approximately 70 cm from the VIA monitor. The SSVEP 
paradigm utilised scalp locations Pz, PO3, PO4, Oz, O1, O2, 
O9, O10 AFz (ground) and Cz (reference) to measure the 
electrical responses from the visual cortex. Electrode 
application required a gel-based solution to reduce electrode 
impedances to approximately <10 kΩ,  measured in the 
OpenVibe software package [20]. 

For the non-BI cohort, setup time ranged between 4-26 
minutes, average 13:53 minutes (± 5:35 minutes) and total 
experiment time (two sessions) ranged from 50 minutes to 2 
hours and 29 minutes, average 1 hour 25 minutes (± 20:07 
minutes). For the BI cohort, setup time ranged between 8-39 
minutes, average 20:32 minutes (± 8:08 minutes) and total 
experiment time (one session) ranged from 48 minutes to 2 
hours and 4 minutes, average 1 hour 24 minutes (± 19:59 
minutes). The large time variation was for many reasons; need 
for experimenter interaction primarily re-calibration, checking 
electrode impedance and participant breaks which were longer 
for BI cohort. 
 

D. Calibration 

For SSVEP calibration, the participant was required to view 
the flickering stimuli in a sequential manner while the 
experimenter adjusted thresholds interactively. EEG data were 
amplified and translated to represent power estimation of the 

respective stimulation frequency (and harmonics). When this 
estimation exceeded a predefined threshold, the appropriate 
directional command was determined. Thresholds varied 
between 0.5 and 0.3 for each selection (e.g., thresh1 (left) = 
0.45, thresh2 = 0.4 (right), thresh3 = 0.35 (up), thresh4 = 0.5 
(down)). In general, lower stimulating frequencies produced 
more prominent SSVEP responses, hence individual thresholds 
were selected corresponding to the frequencies of the stimuli 
used (and personalised to the participant’s EEG). This threshold 
calibration was subject specific, and depended on the expertise 
of the experimenter in balancing false positive and false 
negative command classifications. For participants with a good 
SSVEP response to a particular stimulating frequency the 
threshold can be set high. If the response is smaller then the 
selection may not trigger (i.e., false negative); hence the 
threshold can be set lower but this risks the selection being 
triggered by noise in the EEG signal (i.e., a false positive). The 
four selections must be balanced and this is a subjective 
variable in the experiment.  

For calibration purposes, twenty individual commands (five 

for each stimulus frequency) were issued by the experimenter 

to evaluate if the user could successfully execute commands on 

request. As stated above, the threshold values required for 

control were different for each participant and adjusted by the 

experimenter. In general, the flicker of 10Hz (‘up’) tended to 
produce a lower signal to noise ratio and in most cases this 

threshold needed to be reduced more than the other frequencies 

to allow the selection to fire. A sliding time window which 

provided a dynamic window for power estimation was handled 

automatically by the SSVEP response detection software and 

did not required user input as part of the calibration procedure 

(see Section 11D). 
The ET integrates optical sensors, near infra-red signals and 

image processing components. A source of near infra-red light 
is reflected from the eyes. A signal acquisition and image 
processing component recognizes the position of the eyes in 
real-time and computes the trajectory of user gaze and eye 
position with respect to a fixation point. The ET device was 
calibrated prior to a session using nine on-screen gaze points, 
corresponding to left, middle (horizontal) and right for top, 
middle (vertical) and bottom of the screen.  Accuracy was in the 
range [0.5o - 1o]. The eye activity was sampled at a rate of 30Hz, 
with a latency of < 20 ms. An Eye tribe bespoke algorithm 
confirmed whether the calibration was deemed appropriate. If 
not, then re-calibration was required. On-screen coordinates 
were derived from the trajectory of eye gaze and utilised to 
determine if gaze location corresponded with one of the on-
screen selectable icons. 
 

E. User Interaction 

During sessions, participants were required to follow 
instructions to complete tasks, controlling the VIA to traverse a 
hierarchal-menu structure, activating features and functions of 
a virtual smart home environment. The instructions were issued 
verbally by the experimenter who remained with the 
participant, requesting that the participant navigate the menu 
structure executing four-way control: left, right, up, and down 
commands. This verbal ‘coaching’ approach was taken during 
the first three tasks to ensure that the evaluation was able to 

TABLE I 
RECRUITMENT DEMOGRAPHICS 

Metric non-Brain Injury Brain Injury 

Number 30 14 
Recruitment Ulster University 

staff and students, 
public  

Cedar service 
users  

Remuneration No Token to 
cover travel 

Age range (years) 21-73 18-67 

Gender 16 Male; 14 
Female 

12 Male; 2 
Female 

Age average± std dev 37.6 ± 14.73  41.6 ± 13.9 
ET experience 12 3 
SSVEP experience 9 1 
computer experience 28 7 
Spectacles 8 (6 removed 

glasses) 
5 (5 removed 
glasses) 
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compare the decisions enacted by the participants, rather than 
rely on a participant’s cognitive ability for menu traversal. Task 
1 (domotic control) required participants to interact with 
lighting in the dining room of the virtual environment. Task 2 
(entertainment) required participants to select a television 
program for playback and subsequently end playback when 
requested. 

In Task 3 (communication) participants were required to 
navigate to the ‘talk’ menu and communicate using predefined 
iconography and computer synthesized speech to indicate 
‘hunger’, i.e. that they wished to have food. In Task 4 (free 
choice), participants were asked to navigate the interface 
without instruction to complete a predetermined goal: interact 
with the kitchen extractor fan and turn it off. For the non-BI 
cohort Tasks 1- 4 were completed, alternating between SSVEP-
only and hBCI and then in a second session, tasks were 
completed in the order Task 3, Task 2, Task 1 and Task 4, see 
Fig 2. The ordering of the tasks within each session was to 
investigate habituation and learning. Analysis showed that 
when comparing tasks across session one and session two, t-test 
p-values were greater than 0.1 for all four tasks. This was for 
both SSVEP alone and hBCI. This indicated no significant 
difference across sessions for the non-BI cohort. Hence for the 
BI cohort only session one was completed, as it was important 
not to lengthen the recording.  

It should be noted that an ET-only condition was not part of 
this experiment. However, data were collected previously with 
Tasks 1-3 and these results are reported in section I to serve as 
a baseline. 

 
Fig. 2. The structure of the experiment, allowing the collection of data for 
SSVEP and the hBCI, and accounting for a learning effect or habituation from 
skewing the data. 

 
If the direction associated with the command selection from 

the BCI and the directional selection from the ET were in 
agreement in the data fusion component, then a collaborative 
command decision was transmitted to the VIA and the resulting 
interaction occurred. Where agreement was not obtained, the 
reason was usually associated with selecting the SSVEP 
component. The experimenter terminated the session and 
SSVEP thresholds were altered (as in Section IID) and the 
session repeated. Where ET was at fault then it was necessary 
to re-calibrate this component (usually caused by participant 
movement).  

Re-calibration was performed when one of the following 
conditions was satisfied. For the SSVEP component, (i) a 
sequence of at least three consecutive incorrect commands were 
executed and power estimation values were less than 50% of 
the threshold for the selection in the quadrant as identified by 
gaze point; (ii) the frequency detection component identified 
multiple contradictory frequencies within the same temporal 
window (window length: 4s) and as a result power estimation 

could not achieve correct SSVEP threshold. These conditions 
were indicative of thresholds which were no longer appropriate. 
For ET, screen-based coordinates were identified within 
different quadrants within a classification window and as a 
result gaze-point detection could not achieve the ET threshold. 
These metrics could be inspected by the experimenter from the 
software application. The experimenter also used experience 
and judgement to determine how a session was proceeding. If 
recalibration was required, the session was repeated from the 
start. In cases where re-calibration was not successful the 
session was terminated. Only completed sessions were used in 
determining the results. The hBCI was conducted after the 

SSVEP-only experiment and only if a sufficient level of control 

was achieved using SSVEP-only.  

F. SSVEP Response Detection 

Interaction with the VIA uses SSVEP-only or the hBCI. In 
terms of the BCI component, both SSVEP-only and hBCI 
modalities apply the same method of on-screen stimulation, 
electrode positioning, signal acquisition and SSVEP response 
modelling. As the quality of elicited response to stimulation is 
crucial for detection of relevant features, it was fundamental 
that the frequencies of the stimuli were stable and constant. The 
frequencies utilised were dependent on the refresh rate of the 
LCD display used and were required to be an exact division of 
this rate. The on-screen stimuli are located at the edges of the 
VIA and each stimulus flickers at a different and unique 
frequency. The refresh rate of the display was set at 60 Hz, and 
the frequencies selected for stimulation were: 7.5 Hz (x 8 =left), 
8.57 Hz (x 9= right), 10 Hz (x 6= up), and 6.67 Hz (x9 = 
down).Spatial filtering of the EEG signal was performed using 
an online adaptation of the Minimum Energy Combination 
(MEC) method [22] to enhance the EEG information while 
minimising noise in the signal. The MEC method is applied for 
extraction of discriminant features. Gembler et al [10] provides 
a mathematical treatment of the selection criteria for 
classification of the stimulating frequencies. In our 
implementation the MEC selects the number of channels 
required to discard approximately 90% of the undesirable 
signals and artefacts.  Within a spatially filtered signal, the 
detection of a produced frequency can be estimated by 
determining the power (P) in the frequency and a number of 
harmonics. To avoid overlapping between utilised frequencies 
and their respective harmonics the number of harmonics was set 
to 2. If a greater number of harmonics were to be considered, 
the frequency set would need to be adjusted accordingly. By 
periodically recalculating the number of channels used, the 
online adaptation of MEC could utilise those channels that 
enabled a reduction in energy related to noise by approximately 
90% [21]. Following the process of discriminant feature 
extraction, power estimation was performed on the spatially 
filtered signal to facilitate the detection of SSVEP produced 
frequencies. 

 Signal classification was then performed based on the 
probabilities of the frequencies, such that the detected 
frequency contained the highest probability, had a probability 
that exceeded a predefined threshold, and represented one of the 
groups of stimulating frequencies. To enhance signal 
classification, a sliding window approach was employed for the 
selection of the time segments of signals used for classification. 
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Segment lengths for transferring 8, 20 and 40 blocks of EEG 
data (812.5ms, 2031.25ms and 4062.5ms time epochs 
respectively) were chosen incrementally for use during SSVEP 
response modelling on the basis of whether or not classification 
had already occurred; if no classification could be made, the 
time segment would be extended up to a maximum of 4062.5ms 
[17]. 

G. Data Fusion for Collaborative Decisions 

 
Fig. 3. The theoretical division of a 1920x1080 resolution display into four 

quadrants, a no-state zone, and the locations of selection icons. α is the 
horizontal resolution divided by two (i.e. in this case, 960 pixels) 

 
The hBCI utilised an ET in collaboration with the SSVEP-

based BCI to issue joint decisions to control the VIA. The ET 
component undertook acquisition of the user’s eye gaze 
coordinates, which were then passed to the Data Fusion 
component of the hBCI for further processing. Eye gaze 
analysis was subsequently performed by dividing the screen 
into quadrants and designating a central no-state zone, which 
ensured ET-based directional selection decisions were not made 
when a user was observing the (changing) menu icons presented 
on the VIA at the centre of the display, see Fig. 3. To issue 
commands the user must dwell or fixate on the location of one 
of the selectable icons until the location selection vote reaches 
a predefined dwell-time threshold, DT. The VIA will not trigger 
menu traversal, however, until the vote for a location selection 
reaches DT and the BCI agrees, as in the case of the hBCI. In 
such cases, the Data Fusion component of the hBCI handles this 
collaborative functionality. 

The voting system utilised by the Data Fusion component is 
based upon the sampling rate of the hardware; the Eye Tribe 
Tracker samples at 30 Hz, hence generates 30 horizontal (x) and 
vertical (y) coordinates per second. Therefore, it is possible for 
30 votes for a single location selection to occur within one 
second. By setting a higher DT the minimum time per selection 
will increase; this reduces the maximum theoretical bit rate. DT 

was initially set to 50 votes corresponding to a dwell time of 1.6 
sec (time spent within the correct quadrant). However, the 
decision will not be taken until the SSVEP is in agreement. 
Screen-based coordinates are initially determined using the 
software development kit (SDK) of the ET. These coordinates 
allow the voting system to increment or decrement the vote for 
each location selection and thus enable the Data Fusion 
component of the hBCI to make decisions that are based upon 
consistent gaze fixation positions. If the user’s fixation point 
relocates from one quadrant to another, the vote for a location 
selection will begin to decrement as the vote for an alternative 
location selection increments. If the user’s gaze is off the 

screen, or in the no-state zone, then voting for all location 
selections decrements until reaching zero. 

H. System Evaluation Metrics 

 
TABLE II 

TASKS FOR SSVEP AND HBCI; SESSION 2 REVERSES THE ORDER, I.E. TASK 3, 
TASK 2, TASK1, FOLLOWED BY TASK 4. 
 

 Task1 

Domotic 
Control 

Task2 

Entertainment 

Task3 

Commun
ication 

Task4 

Kitchen 
Fan 

 

Number of 
commands 

13 
(Guided) 

25 (Guided) 7 
(Guided) 

Free 
choice 

Directions 

R: Right 
L: Left 

U: Up 
D: Down 

R-R-R-

R-D-R-
R-D 

(Lamp 

on)-U-L-

L-L-L 

 

L-L-L-D-L-D-
R-R-D-R-R--
D(Play)-U-L-L-
D-R-D(Stop)-
U-U-U-R-R-R 
 

L-D-L-L-

D(Eat)-
U-R 

More 

than one 
solution 

 

In the protocol, participants were guided to complete each 
task by issuing a series of consecutive directional commands 
(menu traversal) and selecting the appropriate icon (actuation). 
Each task was completed after several left, right, up, and down 
commands were issued in the correct order. Table II shows the 
optimal number and sequence of commands. Where mistakes 
occurred, rectifying commands were required. Each task was 
assessed in terms of Accuracy (Acc), Efficiency (Eff) and 
Information Transfer Rate (ITR). Acc was calculated as: 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  𝑃𝑡𝑜𝑡𝑎𝑙𝑃𝑚𝑎𝑥 ∗ 100                           (1) 

where Ptotal is the total number of correct commands and 
Pmax is the maximum number of commands. However, the value 
for Acc may provide a misimpression of a participant’s 
performance due to the structure of the tasks; false-positive 
commands are often succeeded by a command to rectify the 
mistake, which is defined as an additional correct command. 
Consequently, the result from participants issuing false-positive 
commands may suggest enhanced performance, in terms of 
Acc. For this reason, Eff, as defined by [23], was calculated as: 
 𝐸𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 =  𝐶𝑚𝑖𝑛𝐶𝑡𝑜𝑡𝑎𝑙 ∗ 100                          (2) 

where Cmin is the minimum number of compulsory 
commands (e.g. 13 for Task 1) and Ctotal is the total number of 
detected commands. 

ITR in bits per minute (bpm) is the most widely used metric 
for performance evaluation, defined by [24] and calculated as: 
 𝐼𝑇𝑅 = (𝑙𝑜𝑔2𝑀 + 𝑃𝑙𝑜𝑔2𝑃 + (1 − 𝑃)𝑙𝑜𝑔2 [ 1 − 𝑃𝑀 − 1]) ∗ (60𝑇 )        (3) 

where M is the number of choices, P is the accuracy of target 
detections, and T (in seconds/selection) is the average time for 
a selection. 

I. Baseline eyetracking-only evaluation – preliminary work 

A baseline eyetracking-only evaluation was undertaken on 20 
participants without any brain injury (ethics number: 2014 
0115.14.07). The Eye tribe tracker was used for tasks 1-3, but 
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the evaluation was carried out prior to the comparison of 
SSVEP with the hybrid system. Hence these preliminary results 
(shown in Fig. 4) can only be used for general comparison.   

 
Fig. 4. Non-BI ET (Eye Tribe) evaluation showing a mean Acc. 90.61%, Eff. 
84.55%, and ITR 39.42 bpm. 

The mean and standard deviation were obtained by averaging 
over the Task 1, Task 2 and Task 3 for 20 participants. The 
results indicate a mean Acc of 90.61% (± 4.96%), Eff of 
84.55% (± 8.33%), and ITR of 39.42 bpm (± 5.45 bpm). When 
utilising dwell-time as the selection criterion, some participants 
were able to achieve over 90% Acc and Eff, but false-positives 
occurred when participants were not attempting to interact with 
the user interface, i.e. at the beginning and end of tasks. Eye 
tracking control was limited by an inability to prevent the 
transmission of gaze-based coordinates after intentional control 
had ended. As an assistive technology, the lack of functionality 
to start and stop interaction increases the number of false-
positives and reduces the overall performance. 

III. RESULTS 

A. SSVEP-only and hBCI: Non-BI Cohort 

 
One participant form the non-BI cohort was unable to 

complete the tasks due to an unreported medical condition. For 
the remaining twenty-nine, Acc, Eff, and ITR results were 
obtained from the SSVEP-only and hBCI experiments, see 
Table III.  The ordering of the tasks within each session was to 
investigate learning as performance may improve for repeated 
tasks due to experience with the VIA. For session one, Acc was 
89% - 100% and Eff  was 78% - 100%. The mean Acc, Eff, and 

ITR over all four tasks was 99.71% (± 1.51%), 99.51% (± 
2.38%), and 24.33 bpm (± 7.04 bpm). In session two, Acc was 
96%-100% and Eff 93%-100%. The mean Acc, Eff, and ITR 
over all four tasks was 99.97% (± 0.17%), 99.94% (± 0.34%), 
and 24.49 bpm (± 6.95 bpm), respectively.  

Means and standard deviations were obtained by averaging 
over all participants for individual tasks (session one and two). 
For SSVEP only, participant Acc was 76% - 100% (individual 
tasks). There was greater variation observed in Eff, with values 
59%-100% (individual tasks). Metrics were then obtained 
across all tasks. The mean SSVEP-only Acc, Eff, and ITR for 
all participants completing the four tasks was 93.30% (± 
5.93%), 89.56% (± 9.86%) and 23.78 bpm (± 6.25 bpm), 
respectively. 

For hBCI, the values obtained for Acc varied for the 
individual tasks, in the range 94% - 100% (individual tasks). 
Likewise, the values obtained for Eff were in the range 89% - 
100% (individual tasks). The overall mean Acc, Eff, and ITR 
for all participants completing the four tasks was 99.84% (± 
0.77%), 99.74% (± 1.23%) and 24.41 bpm (± 6.35 bpm), 
respectively. To provide a controlled evaluation, statistical 
analyses were performed (Acc, Eff and ITR) using SPSS. 
Shapiro-Wilk tests were conducted to test for normality in the 
SSVEP-only and hBCI data. This analysis indicated that all 
metrics in the non-BI cohort collected during the hBCI 
experiment assume a normal distribution, as do the ITR data 
from the SSVEP-only experiment. The Acc and Eff data from 
SSVEP-only, however, are non-normal. The Acc and Eff values 
are statistically different for the SSVEP-only experiment and 
the hBCI experiment, therefore have an unequal variance. 

As a further analysis of the two conditions (SSVEP-only 
and hBCI), a non-parametric Wilcoxon signed-rank test 
indicated that participants performed better using hBCI than 
with SSVEP-only in terms of Acc p<.001 (z-score = -4.541) and 
Eff p<.001 (z-score = -4.541). Since the bit rates achieved for 
both SSVEP-only and hBCI were normally distributed, a paired 
t-test (parametric) indicated that hBCI achieved higher ITRs, 
but without significance (p>.10, z=- 1.643).  

B. SSVEP-only and hBCI: BI Cohort 

Acc, Eff, and ITR results were collected for SSVEP-only 
and hBCI experiments for BI cohort.  

For SSVEP-only, participants completed this experiment 
obtaining Acc in the range 19% - 100%, and Eff in the range 
0% -100% (individual tasks). Eight participants from the 
fourteen that took part could successfully complete all four 
tasks, achieving a mean Acc, Eff, and ITR of 80.26% (± 
13.29%), 68.74% (± 19.87%), and 14.23 bpm (± 5.94 bpm), 
respectively, see Fig. 5 (a) and Table III. Several participants 
managed to complete some of the tasks but not all of them. The 
data indicates that a total of 56 tasks were attempted (4 tasks x 
14 participants) and 41 were successfully completed, hence a 
successful completion rate of 73%. 

BI participants who completed the hBCI experiment, 
obtained Acc and Eff in the range 87% - 100% (individual 
tasks). Nine participants from the 14 that took part could 
successfully complete all four tasks, achieving a mean Acc, Eff, 
and ITR of 99.14% (± 1.14%), 99.04% (± 1.18%), and 15.87 
bpm (± 5.66 bpm), respectively (see Fig. 5 (b)). Several 
participants managed to complete some of the tasks but not all 

TABLE III 
ACC EFF AND ITR FOR SSVEP-ONLY AND HBCI (NON-BI AND BI COHORTS). 

N COMPRISES PARTICIPANTS WHO COMPLETED ALL FOUR TASKS. 

Metric 

non-BI 
cohort (mean 
and standard 
deviation)  

BI cohort (mean 
and standard 
deviation) 
 

Statistical 
Comparison between 
cohorts 

SSVEP-
ONLY 

N= 29/30 N=8/14  

Acc (%) 93.30 (5.93) 80.26 (13.29) p < 0.01   * (U-test) 
Eff(%) 89.56 (9.86) 68.74 (19.87) p < 0.01   * (U-test) 
ITR(bpm) 23.78 (6.25) 14.23 (5.94) p < 0.01   * (t-test) 
    
hBCI N= 29/30 N=9/14  
Acc (%) 99.84 (0.77) 99.14 (1.14) p > 0.10    
Eff (%)  99.74 (1.23) 99.04 (1.18) p > 0.10  
ITR(bpm) 
 

24.41 (6.35) 
 

15.87 (5.66) p < 0.01   * (t-test) 
 



THMS-19-03-0076 

 

7 

of them. In total, 56 tasks were attempted, 42 were successfully 
complete, achieving an overall successful completion rate of 
75%. In comparison with SSVEP-only one additional task was 
completed for the cohort: the hBCI was conducted after the 
SSVEP-only experiment and only if a sufficient level of 
control, as measured by threshold calibration, was achieved 
using SSVEP-only.  

It is of interest to note that participant 10 provided sufficient 
threshold calibration to make SSVEP-only selections. These 
thresholds were not consistent enough to complete any SSVEP-
only task. However, when supplemented by ET control the 
thresholds provided the basis for successful hybrid control. 
From fourteen BI participants, eight completed all tasks using 
SSVEP-only and nine completed all tasks using hBCI. From 
those BI participants that successfully completed all tasks, four 
failed to achieve 100% Acc and Eff using hBCI, and yet their 
performance still increased in contrast with SSVEP-only. 
Wilcoxon signed-rank test indicated that participants performed 
better using hBCI than with SSVEP-only. There was a mean 
Acc increase from 80.26% to 99.14% (z-score = -2.521), mean 
Eff improvement of 68.74% to 99.04% (z-score = -2.251), and 
indeed a mean ITR improvement from 14.23 bpm to 15.87 bpm 
(z-score = -1.540), Table III. 
 

 
 

 
Fig. 5. Data collected from 14 brain-impaired participants: (a) SSVEP-only 
(mean Acc 80.26%, Eff 68.74%%, ITR 14.23 bpm) (b) hBCI (mean Acc 
99.14%, Eff 99.04%, ITR 15.87 bpm). 

 

C. Comparison of Non-BI and BI Cohorts 

Results indicate that non-BI participants obtained a higher 
mean Acc, Eff and ITR in comparison to participants from the 
BI cohort for SSVEP. For hBCI while the ITR was significantly 
higher for non-BI cohort, differences in Acc and Eff were not 
significant. The data for non-BI cohort were averaged across 
two similar tasks (refer to Fig. 2); however, the data for the BCI 

were for one recorded for one task only (to reduce recording 
time. Statistical analyses showed no order effect with each 
comparison between yielding p>0.1.  

For both cohorts the performance when contrasted with the 
results obtained from the use of SSVEP-only (of participants 
that could successfully use an SSVEP-based BCI) was 
improved by the hBCI. For example, a participant from the BI 
cohort who had failed to complete all the tasks with the SSVEP-
only, achieved improved performance with the hBCI allowing 
the completion of all tasks. Through the hBCI, some 
participants with brain injury may achieve control at an 
equivalent level as the non-BI cohort, e.g. a participant who had 
sustained a stroke achieved an average Acc of 92%, Eff of 88% 
and ITR of 26.97 bpm using SSVEP-only and an average Acc 
and Eff of 100% and an ITR of 29.22 bpm when utilising hBCI. 

For SSVEP-only, Shapiro-Wilk tests convey that the data 
collected during the BI evaluation for all metrics are normally 
distributed, but the data collected during the non-BI evaluation 
for Acc and Eff are not normally distributed. A further analysis 
using the Levene Statistic to check for variance in the data 
indicated that Acc and Eff had an unequal variance but ITR had 
an equal variance. It was appropriate to use the Mann-Whitney 
U-Test to determine any statistical differences in performance 
between these two cohorts in terms of Acc and Eff. This 
analysis indicated that non-BI participants performed better 
than BI participants with a significance of p < .01 for Acc, and 
Eff. As ITR data for both cohorts were normally distributed it 
was appropriate to use an Independent Samples t-test to 
determine any statistical difference in performance. This 
analysis indicates that non-BI participants achieved higher ITR 
than BI participants with a significance of p < .01, which 
indicates a statistically significant difference between both 
cohorts. The results of the statistical tests for Acc, Eff and ITR 
are represented in Table III. 

To indicate if there was a statistically significant difference 
between the performance of non-BI and BI participants when 
using hBCI, normality tests indicated that Independent Samples 
t-test should be used for ITR and Mann-Whitney U-Tests for 
Acc and Eff. This analysis indicated that non-BI participants 
performed better than BI participants with a significance of 
p<.01 for ITR. The Mann-Whitney U-Test indicated that non-
BI participants achieved higher Acc and Eff scores than BI 
participants but without significance (p>.10). 

D. Feedback from participants 

Analysis of post-questionnaire responses from 30 
participants in the non-BI cohorts, indicated that five preferred 
SSVEP-only, 19 preferred hBCI, and six had no preference. 
Analysis of the post-questionnaire responses from the 14 
participants with BI, indicated that two preferred SSVEP-only, 
eight preferred hBCI, and three had no preference, see Table 
IV. The remaining participant (C09) was unable to complete 
any of the tasks. 
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Six participants (C01, C08, C09, C10, C11, C13) failed to 

complete all tasks using SSVEP-only. For C10 the hBCI 
improved performance to allow successful task completion. 
C01 had sustained a traumatic brain injury (TBI) and titanium 
plates were fixated under their scalp, which reduced their ability 
to control the BCI. C08 had also experienced a TBI. This 
participant’s performance was inhibited by their inability to 
accurately follow instructed commands and their 
comprehension of the control paradigm, suggesting that poor 
performance may not be solely attributable to the elicited 
responses in the brain. This was substantiated by C13 who 
elicited a good response to the SSVEP stimuli when engaged in 
a task but suffered from a high level of fatigue, which prevented 
the successful completion of all tasks. Their level of 
performance was equivalent to the highest performing members 
of the non-BI cohort when engaged, yet they were unable to 
complete Task 2 and Task 4 due to fatigue. In some cases, 
alternative BCI paradigms may be more appropriate for users 
with similar functional deficits who find the flickering stimuli 
tiring. C09 exhibited a high level of misclassification between 
the different SSVEP commands. An offline analysis showed no 
dominant frequency component in the EEG (i.e. the frequency 
components detected were not evoked by the eliciting stimulus) 
resulting in misclassification of the SSVEP responses. 

IV. DISCUSSION  

The SSVEP paradigm provides a natural and intuitive 
modality by which to collaborate with an ET algorithm. 
Participants were required to observe and fixate on a selectable 
icon. As the set of icons were collocated with visual stimuli, 
then the technique for interaction did not change from a user 
perspective. Mean performance metrics of Acc, Eff and ITR 
improved for the non-BI cohort when comparing hBCI to 
SSVEP only. Mean performance metrics of Acc, Eff improved 

for the BI cohort when comparing hBCI to SSVEP only. 
However, the ITR did not improve for this cohort. The hBCI 
may contribute to user acceptability as the eye gaze component 
adds minimal additional user effort to the interaction, while 
providing inherent reinforcement of the intended selection. 
Indeed, feedback from both non-BI and BI participants 
indicated that both cohorts had a general preference for the 
hBCI.  

An analysis of the post-questionnaire responses from the 30 
non-BI participants, conveyed that five preferred SSVEP-only, 
19 preferred hBCI, and six had no preference. Of the 19 who 
preferred the hybrid, some stated the hBCI improved 
confidence during interaction and one user stated ‘the hybrid 
demonstrates a potential for more complex tasks’. Other users 
substantiated this claim by mentioning that hBCI seemingly 
offered enhanced robustness. Two participants contradicted 
these findings, however, by suggesting that SSVEP was 
superior as the modality. One participant achieved very good 
performance using SSVEP-only (Acc 100%, Eff 100%, ITR 
36.37 bpm), and hBCI merely slowed the interaction (Acc 
100%, Eff 100%, ITR 33.31 bpm). Another who also preferred 
SSVEP-only, achieved a mean Acc of 95.54%, Eff of 93.88%, 
and ITR of 23.36 bpm utilising SSVEP-only. This participant’s 
qualitative feedback was somewhat surprising considering their 
performance improved for hBCI from which they achieved an 
Acc of 100%, Eff of 100%, and ITR of 21.91 bpm indicating an 
improvement to both Acc and Eff, albeit with a reduction in 
ITR. This participant was more tolerant to errors than to an 
increase in time per selection. One participant who did not 
achieve 100% hBCI Acc and Eff found ‘the hBCI control 
restrictive due to the fixed nature of the hardware’. This 
participant highlights a known restriction of ET technology 
whereby calibration enforces users to remain stationary; 
adjusting the seated positioning is known to produce erratic 
screen-based coordinates.  

On a post-recording survey, eight of the participants with BI 
preferred the SSVEP, two preferred the SSVEP, three had no 
preference and for one (C09) there was no control achieved. 
Participants C05 and C14 indicated a preference for SSVEP-
only. Both had Acc and Eff of approximately 80%. C05 had an 
ITR in excess of 20bpm with SSVEP-only. The hBCI improved 
the Acc and Eff but there was little change with ITR. It could 
be argued that this provided sufficient control and the addition 
of ET was not desired even though it improved the 
performance. However, this reasoning is not confirmed by C14 
where ITR was improved.  

The starting point for this research was the use of eye 
tracking-only. The experience and results obtained from this 
experiment with 20 participants (non-BI only and a different 
cohort from that reported in section III) confirm that eye 
tracking is an intuitive technology that can be used with an ITR 
of 39.42 bpm (± 5.45 bpm), which is higher than hBCI reported 
here. However, the mean accuracy of 91% (± 4.96%) and 
efficiency of 85% (± 8.33%) indicate that errors still occurred 
and needed to be corrected in order for the participant to 
complete the tasks. Users may execute commands in error 
which would initiate events in the local environment, e.g. 
windows and doors opening/closing. These data serve as a 
baseline for the studies reported here using: SSVEP-only and 
hBCI. The research focus was to determine whether a hybrid 

TABLE IV 
UNDERLYING CONDITION, PERFORMANCE AND PREFERENCE OF PARTICIPANTS 

WITH BI 

#  Condition Performance 
Technology 
Preference 

C01 traumatic brain 
injury (TBI) 

Completed Task1.hybrid 
and SSVEP  BCI and ET 
poor 

No preference 

C02 Stroke  Task1-Task4 hBCI 
C03 Stroke  Task1-Task4 hBCI 
C04 Cerebral Palsy Task1-Task4 hBCI 
C05 Stroke Task1-Task4 SSVEP 
C06 TBI Task1-Task4 hBCI 
C07 TBI Task1-Task4 No preference  
C08 TBI  Completed Task1 and 3 

hybrid and SSVEP. BCI 
and ET poor. Difficult to 
follow instructions  

hBCI 

C09 Unspecific 
nerve disease 

SSVEP Signal 
processing could not 
distinguish frequencies 

N/A 

C10 Stroke Task1-Task4 hBCI 
C11 Stroke Completed Task1.hybrid 

and SSVEP  BCI and ET 
poor 

hBCI 

C12 TBI Task1-Task4 hBCI 
C13 TBI Completed Task1and 

Task3, participant tired 
quickly 

No preference 

C14 Stroke Task1-Task4 SSVEP 
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BCI could provide improved performance through increased 
accuracy of interaction than BCI alone. However, in retrospect, 
a third session of eye tracking-only would have been important 
for comparison and validation. 

From thirty non-BI participants, twenty-nine completed the 
tasks successfully. Of those, only three failed to achieve 100% 
Acc and Eff using the hBCI. Mean Acc and Eff, across 
participants increased by comparison with SSVEP-only. There 
was a small increasing ITR but no statistically significant 
difference between these two metrics. In some cases, the ITR 
for hBCI dropped moderately from SSVEP-only control. These 
cases represent participants with highly discriminant SSVEP.  

By comparison, the performance of the BI cohort was not as 
good; this was to be expected as a brain injury potentially 
affects EEG and may also influence concentration and 
adherence to protocol. Indeed, six of 14 participants from the 
BI cohort could not use the SSVEP technology. However, for 
some of the BI cohort, the hBCI performed much better than 
SSVEP-only. A total of nine participants from the 14 
successfully completed all four tasks. This confirms that the 
subset of the BI cohort performed well with the additional ET 
technology. For hBCI, ITR is slower than non-BI cohort but the 
use of collaborative input modalities facilitates increased Acc 
and Eff to a level comparable to the non-BI cohort. 
Furthermore, it is interesting to observe that one BI participant 
could use the hBCI but not the SSVEP-only system. 

The Acc metric for the non-BI cohort and the sub-group of 
the BI cohort (>99%) for the hBCI compares well with reported 
accuracy (92.1%) of a hybrid BCI by Zander in [13]. This study 
is useful for comparison as eye gaze was employed for 
navigation and the BCI component for selection of target search 
strings located radially around the centre of the screen. The 
precision of the spatial task (11 distractors and one target) in 
[13] is more difficult than the 4-way tasks in our experiment. In 
[15] Évain et al reported that fusion of SSVEP and ET was 
faster and more accurate than the previous hybrid methods 
based on sequential processing, where the eye tracking 
component was responsible for search and BCI component 
responsible for selection. However, [15] reported that improved 
speed and accuracy remained lower than interaction based on 
gaze only. The fusion of classifiers was previously introduced 
by Muller-Putz et al [25]. In our work we also found enhanced 
Acc and Eff but lower ITR when compared to a baseline ET 
study. The work confirms the findings of hBCI in [17]. In their 
study, the highest ITRs were achieved with ET, but some 
subjects were not able to gain sufficient control over the stand-
alone ET device or the pure SSVEP system (78.13% and 75% 
of the participants reached reliable control, respectively). In this 
respect, their hBCI attained reliable control in 90% of users and 
outperformed the pure SSVEP system in terms of user 
friendliness. The ITR we report for the non-BI cohort is 29% 
faster on average. 

There are limitations to this research. The SSVEP threshold 
calibration was session and subject specific, and depended on 
the expertise of the experimenter in balancing false positive and 
false negative command classifications. Also, the performance 
comparison is based on using only one BCI technique, SSVEP 
detection. Although results cannot be generalized directly to 
other BCI paradigms and detection/classification methods, the 
literature ([15], [16]) suggests that this approach has previously 

been quite successful, a result borne out by our experiments. It 
would nonetheless be interesting in further work to extend our 
approach to using different classification methods. 

A wizard component that could identify an appropriate 
subject and stimulus specific threshold could address this 
situation during calibration, and would add objectivity [10]. 
Indeed, a fusion approach which combines SSVEP and ET 
using criteria which are not threshold based would be 
preferable, requiring less experimenter interaction. Such 
integration of a wizard component, along with a more robust 
fusion approach, would be essential to deployment within real-
world, home-based scenarios where an experimenter is not 
available to help maintain the effectiveness of the hBCI as an 
assistive technology. 

The BI cohort only participated in one session and it is 
possible that there could be a learning effect which boosted the 
performance of the hBCI condition. What is not confirmed from 
our studies is whether the BI participants who could not use the 
BCI would have been able to use ET alone at a usable level, 
albeit with the errors similar to the baseline non-BI cohort. In 
any further study an ET-only recording session should be 
introduced to the protocol. Another limitation is that the 
research does not quantify type or extent of brain injury, but 
assesses technology use by a group who have benefited from 
rehabilitation and assistive technology solutions. 

With regards to acceptance, the work shows that while 
nearly all participants without BI could use the technology, only 
a sub-group of participants with BI could. A much more 
detailed study would be needed to address this topic, and hence 
answer the question as to which sub-group of BI participants 
could benefit from hBCI as an assistive technology. Expediting 
the process of identifying potential users would be important.  
It may be possible to determine at set up whether the SSVEP 
and ET components are usable by a participant with BI. There 
is a period of personalization of parameters during the 
calibration of both ET and SSVEP, which takes about 20 
minutes. Hence a person with BI who may go on to use the 
hBCI technology successfully may be identified quite early in 
the process. The use of eye tracking does not increase the 
burden of user interaction significantly and is a useful addition 
to BCI, as precise eye gaze is not required and hence 
inexpensive eye tracking hardware can be utilised. It is also 
possible that some people with BI who may have some control 
of SSVEP but insufficient control for a BCI-only solution may 
be able to use the hybrid. However, the evidence for this is 
sparse, i.e. 8 out of 14 subjects could use the SSVEP and 9 out 
of 14 could use the hBCI. 

Moving BCI technology out of the lab and into the home 
has long been a goal of BCI research.  Requirement B.2.9 of the 
BNCI Roadmap [1] suggests: “feasibility studies for system 
durability and especially system performance in home (outside 
lab) environment”. Whilst low cost headsets have become 
available they do not as yet provide the reliability, durability 
and accuracy needed. In addition, for any BCI interaction, 
significant user support is still required with regards to headset 
application and removal, equipment set-up, calibration and 
operation. A low cost eye-tracker that contributes to better 
performance (i.e., enhanced ITR) could aid adoption of BCI as 
an assistive technology but unconstrained movement may add 
further calibration issues. As technology, classification 
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algorithms and user interfaces improve with possibility of lower 
cost solutions, the move to home may be possible, initially for 
non-safety critical applications. 

V. CONCLUSION 

This research indicates that a hybrid solution combining ET 
with SSVEP BCI can enhance the performance when compared 
to BCI alone. The SSVEP limits the ITR but interaction is less 
prone to errors. When comparing participants from non-BI and 
BI cohorts the accuracy, efficiency and ITR are better in the 
former cohort for SSVEP-only. However, nine out of fourteen 
participants from the BI cohort could use the hBCI. Accuracy 
and efficiency are higher for the non-BI cohort in comparison 
with the BI participants, but this does not reach significance 
(non-BI Acc is 99.84%, BI Acc is 99.14%, p>0.10; non-BI 
Eff is 99.74%, BI Eff is 99.04%, p>0.10). The ITR measure by 
comparison does reach significance (non BI ITR is 24.41bpm, 
BI ITR is 15.87bpm, p<0.01). This means that the subset of BI 
participants was able to use the technology with high accuracy 
and efficiency; albeit that interaction time was longer. Hence 
the hBCI improved Acc and Eff performance for the non-BI 
cohort who can use the system. 
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