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A summary and an analysis are given for an experimental performance evaluation of WASSP,

an automated wavelet-based spectral method for constructing an approximate confidence

interval on the steady-state mean of a simulation output process such that the delivered

confidence interval satisfies user-specified requirements on absolute or relative precision as

well as coverage probability. The experimentation involved three difficult test problems,

each with an output process exhibiting some combination of the following characteristics: a

long warm-up period, a persistent autocorrelation structure, or a highly nonnormal marginal

distribution. These problems were used to compare the performance of WASSP with that

of the Heidelberger-Welch algorithm and ASAP3, two sequential procedures based respec-

tively on the methods of spectral analysis and nonoverlapping batch means. Concerning

efficiency (required sample sizes) and robustness against the statistical anomalies commonly

encountered in simulation studies, WASSP outperformed the Heidelberger-Welch procedure

and compared favorably with ASAP3.
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1. Introduction

A nonterminating simulation is one in which interest is focused on long-run (steady-state)

average performance measures. Usually in a nonterminating probabilistic simulation, the
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objective is to compute point and confidence-interval estimators for some parameter, or

characteristic, of the steady-state cumulative distribution function (c.d.f.) of a particular

simulation-generated response. Lada and Wilson (2005) develop an automated wavelet-based

spectral method for constructing an approximate confidence interval (CI) on the steady-state

mean of a simulation output process. This procedure, called WASSP, determines first a batch

size and a truncation point (the end of the warm-up period, also called the statistics-clearing

time) beyond which successive batch means form an approximately stationary Gaussian pro-

cess. For this purpose WASSP uses the randomness test of von Neumann (1941) to determine

the size of the spacer (the number of ignored observations) preceding each batch that is suffi-

ciently large to ensure the resulting spaced batch means are approximately independent and

identically distributed (i.i.d.). In this situation the spacer preceding the first batch must

contain the warm-up period and hence defines an appropriate truncation point; and then

WASSP uses the univariate normality test of Shapiro and Wilk (1965) to determine a batch

size that is sufficiently large to ensure the spaced batch means are approximately normal.

Next WASSP computes the discrete wavelet transform of the bias-corrected log-smoothed-

periodogram of the truncated, nonspaced batch means (i.e., the batch means computed from

adjacent nonoverlapping batches observed beyond the truncation point); and the resulting

wavelet coefficients are denoised by applying a soft-thresholding scheme. Then by computing

the inverse discrete wavelet transform of the thresholded wavelet coefficients, WASSP deliv-

ers an estimator of the batch means log-spectrum and ultimately the steady-state variance

parameter (SSVP) of the original (unbatched) process—i.e., the sum of the covariances at

all lags for the original process. Finally WASSP combines the estimator of the SSVP with

the grand average of the truncated batch means in a sequential procedure for constructing a

CI estimator of the steady-state mean satisfying user-specified requirements on absolute or

relative precision as well as coverage probability.

This article contains a summary of some experimental results exemplifying the perfor-

mance observed in applying WASSP and other selected procedures for steady-state simula-

tion output analysis to a suite of particularly difficult test problems. These test problems

were designed to explore the following characteristics of the selected output-analysis proce-

dures:

• the efficiency of each procedure in terms of the sample size required to deliver a CI that

is supposed to attain the user-specified levels of precision and coverage probability; and
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• the robustness of each procedure against the statistical anomalies commonly encoun-

tered in the analysis of outputs generated by large-scale steady-state simulation exper-

iments (in particular, initialization bias, correlation, and nonnormality).

The experimental performance evaluation is focused on the following test problems:

1. the M/M/1 queue waiting-time process for which the underlying system has an arrival

rate of 0.90, a service rate of 1, and an empty-and-idle initial condition;

2. the first-order autoregressive (AR(1)) process with a lag-one correlation of 0.995, a

white-noise variance of 1, a steady-state mean of 100, and an initial value of 0; and

3. the “AR(1)-to-Pareto” (ARTOP) process that has marginals given by a Pareto distri-

bution with lower limit and shape parameter equal to 1 and 2.1, respectively (implying

the marginal mean and variance are both finite while the marginal skewness and kur-

tosis are both infinite), and that is obtained by applying to a standardized, stationary

version of process 2 above the composite of (a) the inverse of the specified Pareto c.d.f.,

and (b) the standard normal c.d.f.

For each of the above test problems, the following criteria were used to evaluate the

performance of WASSP and its competitors: (i) the empirical coverage probability of the

delivered CIs; (ii) the mean and variance of the half-lengths of the delivered CIs; (iii) the

average relative precision of the delivered CIs; and (iv) the mean of the total required sample

sizes. Independent replications were performed for each simulation-analysis procedure to

construct nominal 90% and 95% CIs satisfying a given relative-precision requirement, which

is an upper bound on the acceptable CI half-length specified as a maximum percentage of

the magnitude of the final point estimator as detailed in (6) below. Confidence intervals were

also constructed for the no-precision case—i.e., the case in which there was no upper bound

on the CI half-length so the final CI delivered by WASSP was based on the batch count

and batch size required to pass the randomness and normality tests. For each test problem,

the theoretical steady-state mean response is available analytically; thus the performances

of WASSP and its competitors were evaluated in terms of actual versus nominal CI coverage

probabilities as well as sample sizes and half-lengths of the CIs delivered by each procedure.

For comparison, the spectral method of Heidelberger and Welch (1983) and the batch-means

procedure ASAP3 (Steiger et al. 2005) were also applied to each test problem.
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The rest of this article is organized as follows. Section 2 contains the notation required

for the performance evaluation together with brief summaries of the Heidelberger-Welch

(H&W) and ASAP3 procedures. Section 3 contains detailed descriptions of test problems

1–3 as well as a discussion of the results of applying WASSP and its competitors to these test

problems. Finally Section 4 provides a summary of the main findings of this research and

recommendations for future work. Lada (2003) and the Online Supplement to the present

paper on the journal’s Web site provide a complete discussion of the experimental perfor-

mance evaluation of WASSP. Some preliminary results on the formulation and evaluation of

WASSP are presented in Lada et al. (2003, 2004a). A stand-alone Windows-based version

of WASSP and a user’s manual are available online via Lada et al. (2004b).

2. Simulation-Analysis Methods to Be Compared with
WASSP

Although the notation and terminology of Lada and Wilson (2005) is used throughout the

article, for completeness this section contains a summary of the most frequently used notation

along with overviews of the H&W method and ASAP3. If {Xu : u = 1, . . . , n} is a covariance-

stationary simulation output process for which the objective is to compute point and CI

estimators of the mean μX = E[Xu], then the covariance at lag � for this process is γ
X

(�) =

E[(Xu−μX)(Xu+�−μX)] for � = 0, ±1, ±2, . . . and u = 1, 2, . . . ; and the SSVP of the process

is

γ
X

=
∞∑

�=−∞
γ

X
(�), (1)

where the right-hand side of (1) is assumed to be absolutely convergent so γ
X

is well defined.

Moreover, let Xj(m) = m−1 ∑jm
u=(j−1)m+1 Xu denote the jth batch mean for batches of size

m computed from the process {Xu : u = 1, . . . , n} for j = 1, . . . , k = �n/m�. Let X =

X(m, k) = k−1 ∑k
j=1 Xj(m) denote the grand mean computed over all k batches of size m.

If the process {Xu} is covariance-stationary, then the power spectrum p
X
(ω) of this

process is given by the cosine transform of the covariance function γ
X

(�),

p
X
(ω) =

∞∑
�=−∞

γ
X

(�)cos(2πω�) for − 1
2 ≤ ω ≤ 1

2 . (2)

At frequency ω = 0, equation (2) yields p
X
(0) =

∑∞
�=−∞ γ

X
(�) = γ

X
. In using a spectral

method to analyze the time series {Xu : u = 1, . . . , n} of length n, the first step is to compute
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the periodogram

I
(

�
n

)
=

1
n

{[
n∑

u=1
Xu cos

(
2π(u−1)�

n

) ]2

+
[

n∑
u=1

Xu sin
(

2π(u−1)�
n

) ]2}
for � = 1, . . . , n − 1 (3)

as an estimator of p
X

(
�
n

)
at the Fourier frequency �

n
cycles per time unit for � = 1, . . . , n−1.

An appropriate extrapolation of (3) to zero frequency then yields an estimator of p
X
(0).

Both the H&W procedure and WASSP are designed to deliver a spectral estimator γ̂
X

of γ
X

for computing a 100(1 − β)% CI estimator of μX having the form

X ± H, with half-length H = t1−β/2,ν

√
γ̂

X

/
n′, (4)

where: (a) n′ is the length of the truncated output process after deleting (if necessary) a

warm-up period containing initialization bias; (b) the grand mean X and the SSVP estimator

γ̂
X

are computed from the truncated output process; (c) ν denotes the “effective” degrees of

freedom (d.f.) associated with γ̂
X

; and (d) t1−β/2,ν denotes the 1 − β/2 quantile of Student’s

t-distribution with ν d.f., provided 0 < β < 1.

In WASSP the user may specify that the CI (4) must satisfy a precision requirement

expressed in terms of either of the following quantities:

• a maximum acceptable half-length H∗ (for an absolute-precision requirement) so that

if the latest CI (4) computed by WASSP satisfies the stopping rule

H ≤ H∗, (5)

then WASSP delivers (4) as the final CI estimator for μX and terminates; or

• a maximum acceptable fraction r∗ of the magnitude of the CI midpoint (for a relative-

precision requirement) so that if the latest CI (4) computed by WASSP satisfies the

stopping rule

H ≤ r∗
∣∣∣X∣∣∣, (6)

then WASSP delivers (4) as the final CI estimator for μX and terminates.

Because the H&W procedure was apparently designed only for use with a relative-precision

specification, in this article all the experiments are based on a stopping rule of the form (6).
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2.1. Overview of Heidelberger and Welch’s Spectral Method

Heidelberger and Welch (1981ab, 1983) develop a spectral method for steady-state simulation

analysis in which they use standard regression techniques to estimate the power spectrum (2)

of the given output process at zero frequency. Heidelberger and Welch estimate γ
X

by fitting

a quadratic polynomial to the logarithm of a smoothed version of the periodogram (3) for the

given output process over the frequency range between 0 and 1
2 cycles per time unit (excluding

the endpoints), where the smoothing operation consists of averaging nonoverlapping pairs

of periodogram values. The resulting SSVP estimator is then used to compute a CI of the

form (4) for μX .

Comparing the performance of WASSP and the H&W procedure is complicated because

the latter requires the user to specify an upper limit tmax on the allowable length of a given

test process. (To avoid confusion in this section and throughout the rest of the article, the

notation of Heidelberger and Welch is always used when referring to the H&W procedure.)

For a fair comparison of WASSP with the H&W procedure, first WASSP is applied to the

test process so as to obtain not only the corresponding WASSP-generated CI of the form (4)

but also a complete (untruncated) time series {Xu : n = 1, . . . , n} to which the (partially)

sequential version of the H&W procedure can be applied after taking tmax = n, the length

of the simulation-generated time series, for the current replication of the H&W procedure.

Heidelberger and Welch (1983) describe a scheme for batching data prior to applying their

spectral method, and this scheme is used in the implementation of the H&W procedure. The

batch count k for H&W is always in the range L ≤ k ≤ 2L, where the value L = 200 is used to

conform to the recommendations of Heidelberger and Welch (1983). Within each replication,

let ti denote the “time”—i.e., the current (untruncated) sample size—at the ith checkpoint in

the analysis of a given output process, where t1 =
⌈
0.15 tmax

⌉
and ti = min

{⌈
1.5 ti−1

⌉
, tmax

}
for i = 2, 3, . . . . If ti ≥ L and the assignment bi =

⌊
log2{(ti − 1)/L}

⌋
is made, then at the

ith checkpoint the batch size mi and the number of batches ki are given by mi = 2bi and

ki =
⌊
ti/mi

⌋
, respectively.

The version of H&W examined in this article uses the method for detecting and elimi-

nating initialization bias described in Heidelberger and Welch (1983). At the ith checkpoint

(for i = 1, 2, . . .), H&W tests the null hypothesis that the untruncated batch-means pro-

cess
{
Xj(mi) : j = 1, . . . , ki

}
is covariance-stationary by computing the Cramér–von Mises

(CVM) test statistic, CVM(mi, ki) =
[ ∑ki−1

j=0 D2
ij

]/[
k2

i p̂X(mi)
(0)

]
, where: (a) for each fre-
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quency ω in a neighborhood of zero, let p̂
X(mi)

(ω) denote the H&W estimator of the power

spectrum p
X(mi)

(ω) of the untruncated batch means process, with p
X(mi)

(ω) defined similarly

to the power spectrum (2) of the original (unbatched) process; and (b) let Di0 = 0 and

Dij =
∑j

u=1

[
Xu(mi) − X(mi, ki)

]
for j = 1, . . . , ki.

If the untruncated batch-means process
{
Xj(mi) : j = 1, . . . , ki

}
is covariance-stationary,

then under widely applicable conditions as mi → ∞ and ki → ∞, the asymptotic distribution

of CVM(mi, ki) is equal to the c.d.f. of CVM(B) =
∫ 1
0 B2(u) du, where {B(u) : u ∈ [0, 1]}

is a Brownian-bridge process. Thus if the untruncated batch means-process is covariance-

stationary, then the asymptotic 0.9 quantile of the CVM test statistic is CVM(B)0.9 = 0.3473;

see Table 1 of Anderson and Darling (1952). If CVM(mi, ki) > 0.3473, then the CVM test

has detected nonstationarity (initialization bias) in the untruncated sequence of batch means

so H&W deletes the initial 10% of this sequence and recomputes the CVM test statistic from

the truncated sequence of batch means.

After each repetition of the CVM test that detects nonstationarity at the ith checkpoint,

H&W tries to delete an additional 10% of the current untruncated sequence of batch means

before repeating the CVM test on the truncated batch means. If the CVM test is failed six

times, then H&W tries to advance to the next checkpoint so the current (untruncated) sample

size is increased by 50% before the batch size, batch count, and untruncated batch-means

sequence are all updated. The CVM test is repeated at successive checkpoints with warm-

up periods (truncation points) ranging from 0% to 50% of the untruncated batch-means

sequence until either (a) the CVM test is passed and a CI of the form (4) satisfying (6) is

computed from the truncated batch means; or (b) the untruncated sample size required by

H&W reaches the upper limit tmax. If case (b) holds, then the CVM test is performed one last

time. If the final CVM test for case (b) is failed, then H&W terminates without delivering

a CI; otherwise H&W terminates after delivering a CI of the form (4) that might not satisfy

(6). In conformance with the recommendations of Heidelberger and Welch (1981ab, 1983),

in this article the batch-means log-spectrum is estimated by fitting a quadratic polynomial

to the first 25 points on the log-smoothed-periodogram of the batch means. Thus in the

H&W-generated CI of the form (4), the quantity ν denoting the effective degrees of freedom

is given by ν = 7 d.f.
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2.2. Overview of ASAP3

Steiger et al. (2005) formulated ASAP3 as an improved variant of the batch-means algorithms

ASAP (Steiger and Wilson 2002) and ASAP2 (Steiger et al. 2002) for steady-state simulation

analysis. ASAP3 operates as follows: the batch size is progressively increased until spaced

groups of four adjacent batch means pass the Shapiro-Wilk test for four-dimensional normal-

ity, where the spacer preceding each group also consists of four adjacent batch means; and

then after skipping the first spacer as the warm-up period, ASAP3 fits a first-order autore-

gressive (AR(1)) time series model to the truncated, nonspaced batch means. If necessary,

the batch size is further increased until the autoregressive parameter in the AR(1) model does

not significantly exceed 0.8. Next ASAP3 computes the terms of an inverse Cornish-Fisher

expansion for the classical batch-means t-ratio based on the AR(1) parameter estimates;

finally ASAP3 delivers a correlation-adjusted CI based on this expansion. ASAP3 is a se-

quential procedure designed to deliver a CI satisfying a user-specified precision requirement

of the form (5) or (6).

3. Test Problems Used in the Performance Evaluation

3.1. The M/M/1 Queue Waiting-Time Process

For the first test problem, let Xu denote the waiting time in the queue for the uth customer

(u = 1, 2, . . .) in a single-server queueing system with i.i.d. exponential interarrival times

having mean 10/9 (so the arrival rate λ = 0.9); i.i.d. exponential service times having mean

1 (so the service rate μ = 1); steady-state server utilization τ = λ/μ = 0.9; and an empty-

and-idle initial condition (so X1 = 0). The steady-state mean for this process is μX = 9.0.

The selected M/M/1 queue waiting-time process is a particularly difficult test case for

the following reasons. (a) Because the system starts empty and idle, both the magnitude

and duration of the initial transient in the process {Xu : u = 1, 2, . . .} are pronounced.

(b) Once the system has reached steady-state operation, the autocorrelation function of

the appropriately truncated process {Xu} decays very slowly with increasing lags. (c) The

steady-state marginal distribution of waiting times is markedly nonnormal, having an atom

at zero and an exponential tail. It follows from (a)–(c) that the M/M/1 queue waiting-time

process is a suitable test problem for thorough evaluation of the effectiveness of WASSP’s

independence and normality tests in determining both an appropriate batch size and an
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appropriate truncation point beyond which successive batch means approximately constitute

a covariance-stationary Gaussian process.

If {Xu} is in steady-state operation, then the associated power spectrum is given by

p
X
(ω) =

τ 3(2 − τ)
(1 − τ)2μ2 +

1 − τ 2

πμ2

∫ r

0

t5/2(r − t)1/2[cos(2πω) − t]
(1 − t)3[1 − 2tcos(2πω) + t2]

dt (7)

for ω ∈
[
−1

2 ,
1
2

]
, where r = 4τ

/
(1 + τ)2. Since the literature seems to lack readily avail-

able computing formulas for p
X
(ω), the result (7) is derived in Appendix A of the Online

Supplement and in Appendix D of Lada (2003).

Figure 1 displays ln
[
p

X
(ω)

]
, the log-spectrum of the original (unbatched) process {Xu},

for ω ∈
[
−1

2 ,
1
2

]
. WASSP, however, estimates ln

[
p

X(m)
(ω)

]
, the log-spectrum of the batch

means process
{
Xj(m)

}
. Figure 1 provides a general idea of the shape of ln

[
p

X(m)
(ω)

]
since

the peakedness of this function at zero frequency depends on the peakedness of ln
[
p

X
(ω)

]
at that point. While ln

[
p

X(m)
(ω)

]
will be less peaked than ln

[
p

X
(ω)

]
because of the averag-

ing operation performed on each batch, the batch-means log-spectrum will still be sharply

peaked; and this characteristic enables assessment of the robustness of WASSP’s wavelet-

based technique for estimating γ
X

.

Frequency w

Lo
g-

sp
ec

tru
m 

ln[
p(

w)
]

-0.4 -0.2 0.0 0.2 0.4

0
2

4
6

8
10

Figure 1: Log-Spectrum ln[p
X
(ω)] of the Steady-State

M/M/1 Queue Waiting-Time Process for Frequency ω ∈[
− 1

2 ,
1
2

]

From the batch means
{
Xj(m) : j = 1, . . . , k

}
, the associated periodogram IX(m)

(
�
k

)
is computed at frequency �

k
(for � = 1, . . . , k − 1) in the same way the periodogram (3) is

computed from the original (unbatched) process; in WASSP the batch-means periodogram

is smoothed by computing a moving average of A = 2a + 1 points, where a ∈ {2, 3, 4, 5}. As

explained in Section 3.3.3 of Lada (2003) and in Section 4.4.1 of Lada and Wilson (2005),
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at zero frequency the resulting smoothed-periodogram value equals a−1 ∑a
�=1 IX(m)

(
�
k

)
. As

the overall sample size n → ∞ with a fixed batch size m so the batch count k → ∞, the

smoothed-periodogram value at zero frequency is (i) asymptotically independent of the grand

average of the batch means; and (ii) approximately a chi-squared random variable with 2a d.f.

that has been scaled by the multiplier p
X(m)

(0)
/

(2a), where p
X(m)

(0) = p
X
(0)

/
m = γ

X

/
m.

Thus WASSP’s 100(1 − β)% CI for μX of the form (4) is based on the 1 − β/2 quantile

of Student’s t-distribution with ν = 2a d.f. The user selects the smoothing parameter

A ∈ {5, 7, 9, 11}, with the default being A = 7 so WASSP’s CIs are based on ν = 6 d.f. by

default.

Table 1 shows the performance of WASSP for the M/M/1 queue waiting-time process

using the smoothing parameter values A = 5, 7, 9, and 11. The results are based on 1,000

independent replications of nominal 90% CIs. For each coverage estimator in Table 1, the

standard error is less than 1%. Table 1 shows that the coverage probability usually decreased

as A increased. This behavior is due to the target process having a power spectrum with a

sharp peak at zero frequency. As A was increased, WASSP’s estimate of the batch-means

power spectrum near zero frequency became flatter than it should have been; this behavior

ultimately resulted in underestimation of γ
X

. In general, for small-sample cases (specifically,

if one were only interested in generating an initial, or pilot, CI for the steady-state mean

of a particular process without imposing a precision requirement), it might be desirable to

change the smoothing parameter from the default value A = 7 to A = 5. However, for

the ±7.5% precision case, there was significant CI overcoverage for A = 5. On the basis of

all the experimentation with WASSP on the M/M/1 queue and other test problems, it is

recommended to use the default value A = 7 for the smoothing parameter in applications

of WASSP involving a nontrivial precision requirement and in the absence of additional

information relevant to setting A.

For the M/M/1 queue waiting-time process, Table 2 shows a comparison of the perfor-

mance of the following procedures: WASSP (using A = 7), ASAP3, and H&W as specified in

Heidelberger and Welch (1983). Analyzing multiple replications of each test process required

a special version of the ASAP3 software. Because of the extensive disk-space requirements

of the simulation-generated data sets processed by this software, at most 400 replications of

ASAP3 could be performed for the given test processes; thus the reported coverage probabil-

ities for ASAP3 had standard errors of approximately 1.5% and 1% for nominal coverages of

90% and 95%, respectively. Since 1,000 replications were performed for WASSP and H&W,
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Table 1: Performance of WASSP Using Different Values of the Smoothing
Parameter A in the M/M/1 Queue Waiting-Time Process Based on 1,000
Replications of 90% CIs

Precision Performance Smoothing Parameter
Requirement Measure A = 5 A = 7 A = 9 A = 11

CI coverage 88.8% 87.7% 86.1% 84.2%
Avg. sample size 18,369 18,090 17,696 18,369

None Avg. relative prec. 0.378 0.341 0.323 0.297
Avg. CI half-length 3.40 3.07 2.91 2.67
Var. CI half-length 2.65 2.00 1.62 1.25
CI coverage 89.6% 87.2% 83.5% 82.8%
Avg. sample size 114,710 92,049 79,824 68,533

±15% Avg. relative prec. 0.122 0.123 0.124 0.128
Avg. CI half-length 1.10 1.11 1.12 1.15
Var. CI half-length 0.0414 0.0387 0.0381 0.0340
CI coverage 93.6% 90.4% 88.5% 91.5%
Avg. sample size 467,370 388,000 341,380 322,990

±7.5% Avg. relative prec. 0.065 0.065 0.065 0.066
Avg. CI half-length 0.585 0.587 0.586 0.591
Var. CI half-length 0.0072 0.0072 0.0067 0.0060

the coverage probabilities for both procedures had standard errors of approximately 0.95%

and 0.69% for nominal coverages of 90% and 95%, respectively.

To account properly for situations in which H&W runs out of data before satisfying the

precision requirement, Table 2 includes the following CI coverage probabilities:

1. the net CI coverage, defined as the fraction of all replications performed in which the

delivered CI not only covered the steady-state mean μX but also satisfied the precision

requirement (6); and

2. the coverage of CIs satisfying the precision requirement, defined as the fraction of only

those replications satisfying the precision requirement in which the delivered CI covered

μX .

Although in theory H&W could terminate without delivering a CI, in practice this behavior

was never observed in our experimentation. Table 2 reveals that in the no-precision case,

WASSP and ASAP3 yielded similar results in terms of CI coverage; however, in this case

WASSP’s average sample size was 42% smaller than that of ASAP3.

Table 2 shows that the net-coverage probabilities of the CIs delivered by H&W were sig-

nificantly below not only their specified nominal levels but also the net-coverage probabilities
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Table 2: Performance of WASSP (Using A = 7), ASAP3, and H&W in the M/M/1 Queue
Waiting-Time Process

Precision Nominal 90% CIs Nominal 95% CIs
Requirement Performance Measure WASSP H&W ASAP3 WASSP H&W ASAP3

# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 87.7% 67.8% 87.5% 93.4% 76.2% 91.5%
Avg. sample size 18,090 2,714 31,181 17,971 2,696 31,181

None Avg. relative prec. 0.341 0.450 0.239 0.444 0.576 0.290
Avg. CI half-length 3.07 4.05 2.07 4.00 5.18 2.52
Var. CI half-length 2.00 4.46 0.348 3.70 8.00 0.535
# replications satisfying prec. reqt. 1,000 1,000 400 1,000 1,000 400
Coverage of CIs satisfying prec. reqt. 87.7% 67.8% 87.5% 93.4% 76.2% 91.5%
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 87.2% 76.0% 91% 93% 83.4% 95.5%
Avg. sample size 92,049 62,112 103,742 143,920 98,838 140,052

±15% Avg. relative prec. 0.123 0.128 0.134 0.126 0.129 0.136
Avg. CI half-length 1.11 1.15 1.18 1.13 1.16 1.21
Var. CI half-length 0.0387 0.0406 0.0259 0.0314 0.0347 0.0205
# replications satisfying prec. reqt. 1,000 939 400 1,000 944 400
Coverage of CIs satisfying prec. reqt. 87.2% 80.9% 91% 93% 88.4% 95.5%
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 90.4% 77% 89.5% 97% 83.5% 94%
Avg. sample size 388,000 275,610 287,568 598,020 431,590 382,958

±7.5% Avg. relative prec. 0.065 0.066 0.070 0.066 0.066 0.070
Avg. CI half-length 0.587 0.590 0.627 0.595 0.590 0.632
Var. CI half-length 0.0072 0.0072 0.0023 0.0056 0.0078 0.0020
# replications satisfying prec. reqt. 1,000 918 400 1,000 917 400
Coverage of CIs satisfying prec. reqt. 90.4% 83.9 % 89.5% 97% 91.1% 94%

of the CIs delivered by WASSP and ASAP3. For example in the case of nominal 95% CIs

with a required precision of ±7.5%, H&W delivered a net CI coverage probability of 83.5%

while WASSP delivered a net CI coverage probability of 97%.

For a clearer indication of its asymptotic performance as the required relative precision

r∗ → 0, WASSP was also applied to the M/M/1 process with relative-precision requirements

of 3.75% and 1.875%. For 1,000 replications at the 3.75% precision level, WASSP delivered

(a) a net CI coverage probability of 94% and an average relative precision of 3.4% for nominal

90% CIs; and (b) a net CI coverage probability of 97.7% and an average relative precision of

3.4% for nominal 95% CIs. For 400 replications of nominal 90% CIs at the 1.875% precision

level, WASSP delivered a net CI coverage of 94% and an average relative precision of 1.71%.

These results, along with those in Table 2, suggest that in the given M/M/1 queue waiting-

time process, the CI coverage delivered by WASSP should stabilize slightly above the nominal

level as the precision requirement approaches zero.

To investigate the causes of the poor performance of H&W relative to WASSP, estimates
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were obtained for the bias, variance, and mean squared error of the final point estimator

X(m, k) delivered by both procedures for each selected combination of CI nominal coverage

and required precision. (ASAP3 was omitted from this analysis because its performance

is thoroughly examined in Steiger et al. 2005; moreover, since the other two procedures

operated on exactly the same data sets as explained in the second paragraph of Section 2.1,

it was natural to limit the comparison to those procedures.) The following statistics were

computed for WASSP and the H&W procedure:

B̂ias
[
X(m, k)

]
=

[
1
R

R∑
u=1

Xu(mu, ku)
]
− μX , ̂MSE

[
X(m, k)

]
=

1
R

R∑
u=1

[
Xu(mu, ku) − μX

]2
, (8)

where: (a) the variable R denotes the number of replications with the selected nominal

coverage probability that satisfied the given precision requirement; (b) for the uth such

replication (u = 1, . . . , R), the random variable Xu(mu, ku) denotes the associated grand

average of the truncated batch means based on ku batches of size mu; and (c) the ran-

dom variable V̂ar
[
X(m, k)

]
denotes the sample variance of the truncated batch means{

Xu(mu, ku) : u = 1, . . . , R
}
.

Table 3 shows the estimated absolute bias, variance, and mean squared error for the

final point estimators delivered by WASSP and H&W in the M/M/1 queue waiting-time

process. In the case of no precision requirement, all three performance measures for the final

point estimator X(m, k) delivered by H&W were substantially larger than the corresponding

quantities for WASSP. In the no-precision case, the CVM test failed to yield significant

reductions in initialization bias when it was used with H&W. Moreover, Table 2 shows that

in the no-precision case, H&W required much smaller final sample sizes than did WASSP;

in Table 3, this behavior is reflected in much larger point-estimator variances for H&W

compared with the corresponding quantities for WASSP.

In those applications of H&W without a precision requirement, the CVM test was often

passed at relatively small values of both the total (untruncated) sample size ti and the

associated truncation point; as a result, the truncated time series used to construct the

delivered CIs of the form (4) were in general neither sufficiently long nor sufficiently free of

initialization bias to yield accurate estimates of μX . Table 3 shows that once a precision

requirement was imposed on each procedure and the sample size began to increase, the

bias, variance, and mean squared error of X(m, k) began to decrease for both procedures.
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Table 3: Mean Squared Error, Variance, and Absolute Bias of X(m, k)
Based on 1,000 Runs the M/M/1 Queue Waiting-Process

Precision Performance Nominal 90% CIs Nominal 95% CIs
Requirement Measure WASSP H&W WASSP H&W

̂MSE
[
X(m, k)

]
2.58 10.7 2.97 12.4

None V̂ar
[
X(m, k)

]
2.53 10.3 2.97 12.3∣∣B̂ias

[
X(m, k)

]∣∣ 0.231 0.601 0.0728 0.288

̂MSE
[
X(m, k)

]
0.629 0.850 0.417 0.550

±15% V̂ar
[
X(m, k)

]
0.570 0.768 0.382 0.505∣∣B̂ias

[
X(m, k)

]∣∣ 0.244 0.288 0.186 0.212

̂MSE
[
X(m, k)

]
0.116 0.187 0.0703 0.314

±7.5% V̂ar
[
X(m, k)

]
0.113 0.180 0.0694 0.308∣∣B̂ias

[
X(m, k)

]∣∣ 0.0574 0.0872 0.0300 0.0819

However, Tables 2 and 3 also show that WASSP outperformed H&W with respect to point-

estimator accuracy and precision as well as CI coverage, precision, and stability.

Remark. The Online Supplement contains an extensive comparison of the performance

of two versions of H&W: (a) the original version without the CVM test as formulated

in Heidelberger and Welch (1981a); and (b) the extended version with the CVM test as

described in Heidelberger and Welch (1983) and as used throughout the present paper. Even

with a nontrivial precision requirement, incorporating the CVM test did not significantly

improve the performance of H&W in terms of any of the following criteria: net CI coverage;

CI half-length; and bias, variance, and mean squared error of the final point estimator.

Although the overall performance of the extended H&W procedure (with the CVM test)

was found to be only slightly better than the performance of the original H&W procedure

(without the CVM test) in some experiments, the extended H&W procedure is referenced

and used far more frequently than is the original (Pawlikowski 1990).

3.2. The First-Order Autoregressive (AR(1)) Process

If {δu : u = 1, 2, . . .} i.i.d.∼ N
(
0, σ2

δ

)
is a white-noise process, then a first-order autoregressive

(AR(1)) process {Xu : u = 1, 2, . . . , } with the starting value X0 can be generated as

Xu = μX + ρ(Xu−1 − μX) + δu, for u = 1, 2, . . . , (9)
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where μX is the mean and ρ is the lag-one correlation of the process in steady-state oper-

ation. The parameters of the process (9) were assigned as follows: the mean μX = 100,

the autoregressive parameter ρ = 0.995, and the white-noise variance σ2
δ = 1. Moreover,

the initial condition X0 = 0 was used to obtain the analogue of the “empty-and-idle” initial

condition for the M/M/1 queue. The most difficult aspects of this test process are its ex-

ceptionally long initial-transient period and its persistent autocorrelation structure. On the

other hand, the batch means computed from this process are always multivariate normal.

The spectrum of the steady-state AR(1) process (9) is p
X
(ω) = σ2

δ

/[
1 − 2ρ cos(2πω) + ρ2

]
for ω ∈

[
−1

2 ,
1
2

]
; see Section 4.3 of Lada (2003). The variance of the process is σ2

X = σ2
δ

/(
1−

ρ2
)

= 100.25 while the SSVP is γ
X

= p
X
(0) = σ2

δ

/
(1 − ρ)2 = 40,000. For ω ∈

[
−1

2 ,
1
2

]
, the

log-spectrum ln
[
p

X
(ω)

]
exhibits peakedness at zero frequency similar to that exhibited by its

counterpart for the M/M/1 waiting-time process; this property resulted in more pronounced

underestimation of the SSVP with increasing values of WASSP’s smoothing parameter A.

For the given AR(1) process, Table 4 shows a comparison of the performance of WASSP

(using A = 7), ASAP3, and the H&W spectral method. In some cases, the actual precision

levels of the CIs delivered by these procedures were significantly smaller than the corre-

sponding nominal levels. For example, in the case of 90% CIs with no precision requirement,

WASSP, H&W, and ASAP3 delivered CIs with average relative precision levels of 5.3%,

13.4%, and 2.3%, respectively; as a consequence of this behavior, the results for the relative

precision levels of ±15% and ±7.5% were essentially the same as for the no-precision case.

To provide a meaningful side-by-side comparison of the performance of WASSP, H&W, and

ASAP3 in this test process, Table 4 displays the results for the following levels of relative

precision: no precision, ±3.75%, ±1.875%, and ±0.9375%.

Regarding conformance to the precision and coverage-probability requirements for the

delivered CIs as summarized in Table 4, WASSP outperformed ASAP3 in the cases of no pre-

cision and ±3.75% precision while requiring substantially smaller sample sizes than ASAP3

required. For the precision levels ±1.875% and ±0.9375%, WASSP and ASAP3 achieved

reasonable conformance to the requested precision levels but exhibited significant CI over-

coverage while requiring roughly the same sample sizes. The cause of this overcoverage is

the subject of ongoing research.

The results for H&W were obtained in the same way as described in Section 3.1. For the

no-precision case, H&W-based CIs with nominal coverage probabilities of 90% and 95% had

net coverage probabilities of 46.9% and 65.9%, respectively. For the case of nominal 90%
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Table 4: Performance of WASSP (Using A = 7), ASAP3, and H&W in the AR(1) Process
Precision Nominal 90% CIs Nominal 95% CIs

Requirement Performance Measure WASSP H&W ASAP3 WASSP H&W ASAP3
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 90.9% 46.9% 95.5% 94.5% 65.9% 98.8%
Avg. sample size 9,866 1,480 41,076 9,824 1,474 41,076

None Avg. relative prec. 0.053 0.134 0.023 0.067 0.167 0.028
Avg. CI half-length 5.30 13.4 2.33 6.73 16.7 2.83
Var. CI half-length 1.83 3.03 0.170 2.88 4.55 0.270
# replications satisfying prec. reqt. 1,000 1,000 400 1,000 1,000 400
Coverage of CIs satisfying prec. reqt. 90.9% 46.9% 95.5% 94.5% 65.9% 98.8%
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 87% 13.7% 95.5% 95% 29.1% 98.8%
Avg. sample size 13,535 13,281 41,076 21,099 20,176 41,208

±3.75% Avg. relative prec. 0.032 0.051 0.023 0.033 0.046 0.028
Avg. CI half-length 3.21 5.09 2.33 3.28 4.57 2.82
Var. CI half-length 0.142 1.67 0.170 0.153 1.904 0.257
# replications satisfying prec. reqt. 1,000 149 400 1,000 310 400
Coverage of CIs satisfying prec. reqt. 87% 92.0% 95.5% 95% 93.9% 98.8%
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 93.5% 60.8% 95.5% 97.7% 75.6% 99.3%
Avg. sample size 57,449 50,152 68,474 90,371 73,249 101,526

±1.875% Avg. relative prec. 0.017 0.018 0.018 0.017 0.017 0.018
Avg. CI half-length 1.65 1.77 1.76 1.66 1.69 1.77
Var. CI half-length 0.0423 0.104 0.0134 0.0429 0.0784 0.0120
# replications satisfying prec. reqt. 1,000 697 400 1,000 816 400
Coverage of CIs satisfying prec. reqt. 93.5% 87.2% 95.5% 97.7% 92.7% 99.3%
# replications 1,000 1,000 400 1,000 1,000 400
Net CI coverage 94% 72.5% 94.3% 98% 74.6% 97.3%
Avg. sample size 229,730 173,700 213,826 333,050 255,180 254,920

±0.9375% Avg. relative prec. 0.083 0.084 0.090 0.087 0.085 0.090
Avg. CI half-length 0.830 0.838 0.894 0.867 0.854 0.896
Var. CI half-length 0.0105 0.0201 0.0026 0.0115 0.0253 0.0021
# replications satisfying prec. reqt. 1,000 841 400 1,000 817 400
Coverage of CIs satisfying prec. reqt. 94% 86.2% 94.3% 98% 91.3% 97.3%

CIs with a required precision of ±3.75%, H&W delivered 149 CIs with acceptable precision;

since 92% of those CIs actually covered μX , the net CI coverage for the H&W procedure

in this case was 13.7%. Overall, H&W was judged to have broken down completely in the

given AR(1) process.

Table 5 summarizes the absolute bias, variance, and mean-squared-error statistics for

WASSP and H&W in the given AR(1) process. In the no-precision case H&W had significant

point-estimator bias, and thus the CVM test was not effective in detecting and eliminating

that bias. For both WASSP and H&W, the bias of X(m, k) shown in Table 5 represents

a combination of two different effects. First, X(m, k) is influenced in general by residual

initialization bias—after all, there is no unique, well-defined end of the warm-up period for
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the AR(1) process. Second, the truncation point (final spacer size) S and the truncated

simulation run length n′ = mk (as determined by WASSP or H&W) are random variables

so X(m, k) =
( ∑S+n′

u=S+1 Xu

)/
n′ is a ratio of two random variables. Thus for the reasons

detailed in Section 2.1 of Lada et al. (2004a) and in Section 4.2.1 of Lada (2003), the

truncated grand mean X(m, k) can also exhibit significant ratio-estimator bias due to (a)

randomness of the truncation point S and the truncated sample size n′, or (b) an insufficiently

large value of the truncated sample size n′.

Table 5: Mean Squared Error, Variance, and Absolute Bias of X(m, k) Based
on 1,000 Runs of WASSP and H&W in the AR(1) Process

Precision Performance Nominal 90% CIs Nominal 95% CIs
Requirement Measure WASSP H&W WASSP H&W

̂MSE
[
X(m, k)

]
8.75 224. 8.06 225.

None V̂ar
[
X(m, k)

]
7.76 22.5 7.26 23.3∣∣B̂ias

[
X(m, k)

]∣∣ 0.996 14.2 0.896 14.2

̂MSE
[
X(m, k)

]
4.37 4.21 2.63 2.55

±3.75% V̂ar
[
X(m, k)

]
4.15 2.16 2.56 1.91∣∣B̂ias

[
X(m, k)

]∣∣ 0.471 1.43 0.276 0.800

̂MSE
[
X(m, k)

]
0.870 1.15 0.518 0.747

±1.875% V̂ar
[
X(m, k)

]
0.861 0.924 0.517 0.663∣∣B̂ias

[
X(m, k)

]∣∣ 0.0938 0.479 0.0332 0.290

̂MSE
[
X(m, k)

]
0.186 0.297 0.110 0.179

±0.9375% V̂ar
[
X(m, k)

]
0.186 0.279 0.110 0.171∣∣B̂ias

[
X(m, k)

]∣∣ 0.020 0.135 0.010 0.0917

For the given AR(1) process, Tables 4 and 5 show the performance of WASSP and

ASAP3 was acceptable, but the performance of H&W was unacceptable with respect to

point-estimator accuracy and precision as well as net CI coverage, precision, and stability.

3.3. The AR(1)-to-Pareto (ARTOP) Process

The “AR(1)-to-Pareto,” or ARTOP process, is defined as follows. Let {Zu : u = 1, 2, . . .}
be a stationary AR(1) process with N(0, 1) marginals and lag-one correlation ρ, which

can be generated by the relation Zu = ρZu−1 + δu, where Z0 ∼ N(0, 1) and {δu : u =

1, 2, . . .} i.i.d.∼ N
(
0, σ2

δ

)
is a white-noise process with variance σ2

δ = 1 − ρ2. If {Xu : u =
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1, 2, . . .} is an ARTOP process with marginal c.d.f.

FX(x) ≡ Pr{X ≤ x} =
{

1 − (ξ/x)ϑ , x ≥ ξ,
0, x < ξ,

(10)

where ξ > 0 is a location parameter and ϑ > 0 is a shape parameter, then the {Xu} are

generated from the {Zu} as follows. For all real z, let Φ(z) = (2π)−1/2 ∫ z
−∞ exp

(
− 1

2w
2
)

dw

denote the c.d.f. of the N(0, 1) distribution. Let
{
Ru = Φ(Zu) : u = 1, 2, . . .

}
denote a

sequence of correlated random numbers that is supplied to the inverse of the Pareto c.d.f.

(10) to yield the ARTOP process,

Xu = F−1
X (Ru) = F−1

X [Φ(Zu)] = ξ
/

[1 − Φ(Zu)]1/ϑ, u = 1, 2, . . . . (11)

The mean and the variance of the ARTOP process (11) are μX = E[Xu] = ϑξ(ϑ − 1)−1 (for

ϑ > 1) and σ2
X = ξ2ϑ(ϑ − 1)−2(ϑ − 2)−1 (for ϑ > 2), respectively (Lada 2003).

The parameters of the Pareto distribution (10) were assigned the values ϑ = 2.1 and

ξ = 1, and the lag-one correlation in the base process {Zu} was assigned the value ρ =

0.995. This yields a test process whose marginal distribution has mean, variance, skewness,

and kurtosis respectively given by μX = 1.91, σ2
X = 17.4, E

{
[(Xu − μX)/σX ]3

}
= ∞, and

E
{
[(Xu − μX)/σX ]4

}
= ∞. The most difficult aspects of this test process are its highly

nonnormal marginals and persistent autocorrelation structure. With the initial condition

Z0 ∼ N(0, 1), the process started in steady-state operation and therefore had no warm-up

period.

Table 6 shows the performance of WASSP for the given ARTOP process using the smooth-

ing parameter values A = 5, 7, and 9. The results are based on 400 independent replications

of nominal 90% CIs. Table 6 reveals that the CI coverage decreased in general as A increased.

For nominal 90% CIs with A = 7 and A = 9, the resulting coverage probabilities were judged

to be unacceptable at all three precision levels. While there was significant undercoverage

when the value A = 5 was used in the small-sample cases, the CI coverage probabilities

approached the nominal level as the sample size increased. It is not entirely clear at this

point why A = 5 produced the best results for this process.

For the ARTOP process (11), Table 7 shows a comparison of the performance of WASSP

(using the default A = 7), ASAP3, and H&W. For the no-precision and ±15% cases, ASAP3

outperformed WASSP in terms of CI coverage. In these cases, however, ASAP3 required

substantially larger sample sizes on average than did WASSP. In the case of nominal 90%

CIs with ±7.5% precision, the coverage probability for WASSP was similar to the coverage
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Table 6: Performance of WASSP Using Different Values of the
Smoothing Parameter A in the ARTOP Process Based on 400
Replications of 90% CIs

Precision Performance Smoothing Parameter
Requirement Measure A = 5 A = 7 A = 9

CI coverage 84.2% 79% 78%
Avg. sample size 19,880 22,512 22,512

None Avg. relative prec. 0.271 0.235 0.218
Avg. CI half-length 0.518 0.448 0.416
Var. CI half-length 0.0774 0.0544 0.0441
CI coverage 77.3% 71.5% 72.3%
Avg. sample size 79,095 66,158 54,551

±15% Avg. relative prec. 0.115 0.117 0.120
Avg. CI half-length 0.220 0.223 0.230
Var. CI half-length 0.0020 0.0018 0.0018
CI coverage 89% 85.3% 82.5%
Avg. sample size 430,430 345,870 272,670

±7.5% Avg. relative prec. 0.060 0.061 0.062
Avg. CI half-length 0.115 0.116 0.118
Var. CI half-length 0.0005 0.0005 0.0005

Table 7: Performance of WASSP (Using A = 7), ASAP3, and H&W in the ARTOP Process
Precision Nominal 90% CIs Nominal 95% CIs

Requirement Performance Measure WASSP H&W ASAP3 WASSP H&W ASAP3
# replications 400 400 400 400 400 400
Net CI coverage 79% 67% 85.5% 87% 75.5% 90.8%
Avg. sample size 22,512 2,982 114,053 19,012 2,555 114,053

None Avg. relative prec. 0.235 0.373 0.091 0.295 0.492 0.109
Avg. CI half-length 0.448 0.712 0.173 0.564 0.939 0.207
Var. CI half-length 0.054 0.684 0.00977 0.083 1.888 0.0144
# replications satisfying prec. reqt. 400 400 400 400 400 400
Coverage of CIs satisfying prec. reqt. 79% 67% 85.5% 87% 75.5% 90.8%
# replications 400 400 400 400 400 400
Net CI coverage 71.5% 70% 85.5% 81% 82.8% 90.8%
Avg. sample size 66,158 39,781 117,092 95,488 72,093 120,660

±15% Avg. relative prec. 0.117 0.123 0.087 0.117 0.126 0.101
Avg. CI half-length 0.223 0.234 0.163 0.223 0.241 0.190
Var. CI half-length 0.002 0.002 0.00248 0.002 0.019 0.00239
# replications satisfying prec. reqt. 400 389 400 400 394 400
Coverage of CIs satisfying prec. reqt. 71.5% 72% 85.5% 81% 84% 90.8%
# replications 400 400 400 400 400 400
Net CI coverage 85.3% 81% 84% 91.5% 73.5% 90.3%
Avg. sample size 345,870 208,570 186,517 520,750 348,470 255,512

±7.5% Avg. relative prec. 0.061 0.063 0.068 0.063 0.063 0.070
Avg. CI half-length 0.116 0.120 0.127 0.120 0.120 0.131
Var. CI half-length 5.0E-4 3.0E-4 2.10E-4 4.0E-4 3.0E-4 1.18E-4
# replications satisfying prec. reqt. 400 395 400 400 334 400
Coverage of CIs satisfying prec. reqt. 85.3% 82% 84% 91.5% 88.1% 90.3%
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probability for ASAP3; however, in this case WASSP’s average required sample size was 104%

larger than that of ASAP3. To supplement the results in Table 7, WASSP was also applied

to the ARTOP process with a relative-precision requirement of 3.75%. For 400 replications

of nominal 90% CIs at the 3.75% level, WASSP delivered a net CI coverage probability of

91.25% and an average relative precision of 3.27%. These additional results suggest that in

the given ARTOP process, the CI coverage delivered by WASSP should stabilize very close

to the nominal level as the precision requirement approaches zero.

Examination of Table 7 revealed some noteworthy differences between WASSP and H&W,

especially in the no-precision and ±7.5% precision cases. For example, in the no-precision

case the empirical coverage probabilities for nominal 90% and 95% CIs delivered by H&W

were 67% and 75.5%, respectively, while the corresponding figures for WASSP were 79% and

87%, respectively. Furthermore, for the case of nominal 95% CIs with a required precision

of ±7.5%, H&W delivered R = 334 CIs with acceptable precision; since 88.1% of those

CIs actually covered μX , the net-coverage probability for H&W was only 73.5% while the

corresponding figure for WASSP was 91.5%. For the experiments summarized in Table

7, WASSP generally outperformed H&W and achieved marginally acceptable CI coverage

probabilities for the precision requirement of ±7.5%. Because the ARTOP process was

started in steady-state, there was no need to examine the mean squared error and absolute

bias of X(m, k) for any of the output-analysis procedures.

Finally as detailed in Section 2.1, H&W requires specification of an upper limit on the

allowable length of the test process. In many practical applications, users do not have enough

information to set this limit; therefore for the given ARTOP process (as well as for the other

test problems discussed in this article) the upper limit for H&W was taken to be the final

sample size required by WASSP. Consequently, the H&W results presented in this article

represent the scenario in which the user has selected a suitable upper limit on the run length.

4. Conclusions and Recommendations

In the experimental performance evaluation summarized in Section 3, three extraordinarily

difficult test processes were used to compare WASSP, the H&W spectral method, and ASAP3

with respect to their efficiency and the robustness of the CIs delivered by these procedures.

WASSP outperformed H&W in many respects. The results of Lada and Wilson (2005)

together with the results in this article provide some evidence that WASSP represents an
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advance in spectral methods for simulation output analysis.

Comparison of WASSP and ASAP3 is less clear-cut, with neither procedure dominating

the other in the given experiments. Both WASSP and ASAP3 were designed to deliver point

and confidence-interval estimators for the steady-state mean of a simulation output process.

WASSP, however, also provides an estimator of the SSVP with reasonably stable behavior

as well as an estimator of the entire power spectrum of the delivered set of batch means.

This additional information can be useful for validating results generated by WASSP and in

planning follow-up experiments. Furthermore, it may be possible to use the wavelet-based

estimator of the batch-means power spectrum as part of an adaptive version of WASSP in

which an appropriate value of the smoothing parameter A might based on an initial study

of the shape of the estimated power spectrum of the batch means. This possibility is the

subject of ongoing research.

The experimental results detailed in Section 3 provide substantial evidence of WASSP’s

ability to deliver approximately valid CIs for the steady-state mean of a simulation-generated

process with relative precision levels and nominal coverage probabilities often arising in prac-

tical applications. Nevertheless, we will continue our experimental investigation of the effi-

ciency and robustness of WASSP when it is applied to interesting test problems—including

processes with long-range dependence as well as queuing-network models with multiple cus-

tomer classes, probabilistic routing, subnetwork capacity constraints, and workstation uti-

lizations that are commonly encountered in certain application domains.
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