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Performance of an FH Multilevel FSK for Mobile Radio 
in  an  Interference  Environment 

R A M ~ N  A G U S T ~  AND GABRIEL JUNYENT 

Absrrucr-This paper  considers  a  frequency-hopped  multilevel  fre- 
quency  shift  keying  (FH-MFSK)  spread-spectrum  communication  sys- 
tem  applied  to  cellular  mobile  radiotelephony. We present  a  mobile- 
to-base  transmission model  that  allows us to  study  system  impair- 
ments,  such  as interference  from  nonsynchronous  users and adjacent 
frequency  channels  in  the  presence  of  matched  tuned  receiver  filters. 
For  intercell  interference,  the  usual  Gaussian  approximation  is  used, 
but the  variance  calculation takes  into  account  shadow  fading. Power 
control  in  the  mobiles,  a  mean  path loss exponent  of -3.5 and  fast 
Rayleigh  and  slow  lognormal  fading  have been assumed. 

' We  have  obtained  results  with  mobile-to-base  communication  of 32 
kbits/s  per  user in  a 20 MHz (one-way)  bandwidth.  In  an  isolated  cell 
system  a bit  error  probability  less  than 10-3 can  be  maintained  with 
up  to 110 simultaneous  users  for  practical  average SNR ratio of25 dB. 
The  presence  of intercell  interference  degrades  the bit error  probabil- 
ity  enormously,  and  clustering  of  cells is required  for  controlling 
interference. 

I .  INTRODUCTION 

In  order  to  provide  digital  mobile  radiotelephony  communi- 
cation  services t o  a  great  number  of  users,  spread-spectrum 
modulation  techniques  using  frequency-hopped  (FH)  fre- 
quency  shift  keying (FSK) have  been  investigated  recently 
[ l l .  

Assigning to  each  user  a  different  tone  sequence  as  his 
address,  the  FH-MFSK  system  allows  many  users to  share  the 
same  frequency  band.  Because  the  address is spread  in  fre- 
quency,  the  system  behaves well in  the  presence  of  selective 
fading,  making  it  particularly  suitable  for  mobile  service  in  an 
urban  environment.  Nevertheless,  its  performance  is  limited  by 
mutual  interference  between  users. 

In  this  paper  we  introduce  a  new  model  to  study  this 
interference.  Our  model  generalizes  the  simplified  model 
presented  in [ 11.  Specifically,  we  analyze  the  mobile-to- 
base  transmission  by  nonsynchronous  users,  tuned  matched 
filtering  at  the  receivers,  and  interchannel  interference. We 
have  also  analyzed  the  performance of a  multicell  system 
whose  service  area  is  divided  into  hexagonal cells  of equal 
size,  each  of  them  with  a  base  station  at  its  center.  Each  cell 
uses  all  the  available  bandwidth,  which  produces  an  intercell 
interference  and  an  additional  performance  degradation. 

Throughout  our  discussion,  we  assume  the  existence of a 
power  control  mechanism  [2]  that  makes  it  possible  for  the 
base  station t o  receive the  same  average  power  from  each 
mobile  assigned to  it.  This  power  control,  although  not  strictly 
necessary  for  the  system  operation,  would  nevertheless  en- 

Paper  approved by the Editor for Communication Theory of the 
IEEE Communications Society for publication without oral presenta- 
tion. Manuscript  received July 1, 198 1 ; revised October 5,1982. 

The authors are with the Escuela  Tecnica Superior de  Ingenieros 
de Telecomunicacion de  Barcelona,  Universidad Politecnica de Bar- 
celona, Barcelona 34, Spain. 

hance  the  FH-MFSK  system  performance  by  easing  design  con- 
straints  on  the  RF  preamplifier  and  by  limiting  intracell  inter- 
ference.  It  may  also  serve t o  assign to  each  mobile  the  most 
appropriate  base  station  for  adequate  reception. 

The  results  obtained  are,  in  general,  in  agreement  with 
those  in [ 1 1,   and we  extend  them  in  some  directions. 

11:. SYSTEM  DESCRIPTION 

In  this  multiple-access  modulation  scheme,  every T seconds, 
each  user  transmits  his  information  in  blocks  of K bits. F o r  
this  purpose  the  system  has  available 2K different  frequencies 
numbered 0, 1, ..., 2K - 1.  With  no  other  users,  message 
transmission  requires  only  one  time  interval  of T seconds  dura- 
tion,  and  it is accomplished  by  the  obvious  assignment  of  mes- 
sages t o  frequencies.  With M > 1  simultaneous  users, L > 1 
intervals  of  duration r = TIL are  used,  and  frequency  hopping 
is employed  to  allow  communication  in  the  presence  of  inter- 
ference  from  other  users.  During  the  basic  signaling  interval T ,  
the  mth.  user  (the  subscript m denotes  one  link  in  a  multiuser 
system)  has  an  address  generator  that  generates  a  sequence  of 
L numbers,  each  K  bits  long: 

V m ,  1, V m , 2 >  ...'? Vrn,L. 

Each  user m is  assigned  a  unique  sequence Vm , I  (1 = 1, -, L )  
which  is  used t o  distinguish  his  messages  from  those  of  others. 
We also  refer to  this  sequence  as  the  address  vector  of  user m. 
The  transmitted  tone  sequence,  at  the  rate  of  one  tone  (chip) 
every r seconds, is  assigned by  the  modulo 2K sum (e) of  the 
address  and  the  K-bit  code  word X,. 

Ym,l =x, V m , l ;  1 = 1 , 2 ,  e.., L .  

At  the receiver,  demodulation  and  modulo 2K subtraction (0) 
by Rm,l  are  performed  every r seconds,  yielding 

Z m , , =  Ym,l  Q V m , l =  X,. 

The  sequence  of  operations  is  illustrated  by  the  matrices of 
Figs. 1  and  2  (see  also [ l ] ) ,   where   the  2K tones  have  been 
placed  at  intervals  of 1/r Hz. 

Noise,  multiuser  interference,  interchannel  interference, 
etc.,  can  influence  the  detection  matrix  by  causing  a  tone t o  
be  detected  when  none  has  been  transmitted  (insertion).  In 
addition,  the  receiver  can  omit  a  transmitted  tone  (miss)  and 
cause  a  detection  matrix  to  have  no  complete  row. To allow 
for  this  possibility,  we  use  the  majority  logic  decision  rule: 
choose  the  code  word  associated  with  the  row  containing  the 
greatest  number  of  entries  (Fig. 3). 

The  computation  of  bit  error  probability PB can  be  carried 
out  knowing  the  insertion  probability PI and  the  miss  proba- 
bility Pmiss (see [ 11). 

111. TRANSMISSION  MODEL 

A .  Isolated Cell System 
If we  assume  that  the  address  code  for  each  mobile is 

randomly  generated,  the  probability,  conditioned  on  the 
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Fig. 3. Decoding matrices at  the receiver of mth user. 

existence of only  one  user,  that  a  tone  corresponding to   t he  
frequency  channel j ( 1  < j < 2 K )  is  present  in  a given interval 
of  duration r is 

1 
P = - '  

2k 

Consider  ngw  the  presence  of M nonsynchronous  users  trans- 
mitting  simultaneously.  In  any  interval of duration r there  are 
M randomly  generated  epochs,  or  time  instants,  coinciding 
with  the  changes  in  the  user's  chip  frequency  transmission.  The 
probability  that  in  the given interval  there  are N epochs  in 
which  the  new  chip  frequency  transmission  corresponds  to  the 
frequency  channel j is 

. >'. 

If M 3 1 and p Q 1 we  can  approximate  the  binomial dis- 
tribution  by  a  Poisson  distribution [ 3 ]  giving 

Hence,  the  average  number  of  epochs  in  the  frequency  channel 
j during  an  interval of duration r is 

M p  = AT. 

That  is,  we  can  model  the  multiuser  interference  as  an  uniform 
Poisson  process  of  parameter 

M A = - - .  
r2K 

The  above  approach  allows  us  to  write  the  multiuser  inter- 
ference signal present  at  the  receiver  input  in  any  chip  interval 
of the desired signal as 

- rect, ( t  - 1r - t i , j);  

ZT < t < ( I  - 1 ) ~ ,  I integer 

where f i  is the  frequency  corresponding  to  the  frequency 
channel j ,  Ri,, are  statistically  independent  random  variables 
and  each is Rayleigh  distributed  (short-term  fading), Bi,i are 
statistically  independent  random  variables  and  each is uni- 
formly  distributed  over [ 0,  2 n ] ,  

I 1 O<t<r 

0 otherwise 
rect, ( t )  = 

and   ti,^} is  a  Poisson  random  point  process  corresponding t o  
the  frequency  channel j (i.e.,  there  are 2K Poisson  processes). 
Moreover, R i , j ,  and {ti , j}  are  all  mutually  independent. 
The  sequence of epochs,  which is due  to  nonsynchronous 
users,  distinguishes  this  model  from  the  base-mobile  model 
used  in [ 11 where  the  arrival  times  are  synchronized  to  the  be- 
ginning  of  the  chip. 

Power  control is employed  which  maintains  the  mean 
power  received  by  each  station  from  mobiles  in  its  cell t o  P = 
i E ( R i , j 2 ) .  This  power  control  eliminates  the  changes  in 
s~gnal  level due  to  path loss  variations  and  the  effects of 
shadow  fading. 

We have  also  assumed  that all the  arrival  tones  in  the  fre- 
quency  channel j fade  independently of each  other,  because 



842 IEEE  TRANSACTIONS ON COMMUNICATIONS, VOL. COM-31,  NO. 6,  J U N E  1983 

fading  tends  to  be  caused  by  phenomena  in  the  vicinity  of  the 
mobile. 

The  received  complex  envelope signal a t   the  base station  in 
the,  say,  frequency  channel i (the  subindex i will be  omitted 
from  now  on  for  the  sake of clarity  in  the  notation) is 

m 

Z I ( t )  = Re- ie  rect, ( t )  + R i e - i e  i 
z=-m 

* ( t  - t i )  + n(t);  o < t < 7. 
The  first  term  in  the  above  formula  corresponds  to  the 

desired  signal.  The  second  corresponds  to  the  multiuser  inter- 
ference  signal,  and n(?) is the  white  Gaussian  noise  present  at 
the  2K-ary  FSK  receiver  input.  This  receiver  sets  up  a  tuned 
filter  on  the 2K transmitted  frequencies  (see  Fig. 4). Every 
filter is followed  by  an  envelope  detector  and  a  threshold 
decision  circuit. 

The  presence  of  nonsynchronous  users  prevents  the  adop- 
tion  of  modulation  schemes  with 2K orthogonal  tones,  each  of 
duration r seconds,  maintaining  a  bandwidth  of  at  least W = 
2K/r  HZ as  in [ 11.  

If the  frequency  channel  spacing  adopted is the  reciprocal 
of  the  chip  interval,  then  an  additional  impairment  appears 
due  to  adjacent  channel  interference  (a  bandwidth  penalty 
would  be  needed  to  remove  it). If we  denote  by h ( t )  the  
complex  envelope  impulse  response of the  filter  correspond- 
ing to   t he  desired  frequency  channel,  the  complex  envelope 
signal at  the  output,  taking  into  account  the  interference  due 
to   the  I R  higher  adjacent  channels  and  the IL  lower  channels, 
is 

z o ( t )  = R e - j e S 0 ( t )  + r(t) + n f ( t ) ;  0 < r < r 

1 

with 
m 

,=-IL u=-m 
c # O  

3 

where 1)  is the desired  signal,  2) is the  multiuser  interference 
signal,  and 3) is  the  adjacent  channel  multiuser  interference 
signal, 

sc(t) = 3 rect, ( t ) e  ' * h( t ) ;  
- i 2 n c t  

c = -IL, ..., 0, ..., I R ,  

{ tu , , }  is a  Poisson  random  point  process  corresponding to   t he  
cth  adjacent  frequency  channel, R U , ,  and B u , c  are  identically 
distributed  random  variables as the R i , j  and ei , j  previously 
mentioned,  and 

nf(t) = 3 n(t)  * h( t )  = n,(t) + in,(t) 
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M.T.E=Matched Tuned Ft l ter  

E D .  =Envelope  Detector 

T.C.D.=Threshold Clrcult  Declslon 

D.S. =Declslon  System 

Fig. 4. 2K-ary FSK demodulator. 

Zo(t)  is sampled  every 7 seconds  in  order  to  fill  the  decod- 
ing  matrix  and  perform  the  majority  logic  decision  rule  every 
T.  

B. Multicell Sys tem 
The  presence of cells surrounding  the  cell of interest  (Fig. 

S), and  sharing  the  same  bandwidth,  originates  an  additional 
interference  that  degrades  the  performance  of  the  isolated  cell 
system. We can  formulate  the  complex  envelope  intercell 
interference as 

where N is the  number of interfering cells, R i , ,  are  statisti- 
cally  independent  random  variables  each of which  is  a  function 
of  the  position of mobile i in  the  nth cell, O i , ,  are  statistically 
independent  random  variables  and  each is uniformly  distributed 
over [ O ,  27r1, {t i , ,}  is a  Poisson  random  point  process  origi- 
nated  by  the  desired  channel of the  interfering  cell n ,  R , , , ,  
and e,,,, are  identically  distributed  random  variables  as  are 
R i , ,  and Oi,,, and is a  Poisson  random  point  process 
originated  by  the  cth  adjacent  channel  of  the  interfering  cell n. 

In  order  to  characterize R i , n  adequately,  we  have  assumed 
the  following. 

1)  The  position of each  mobile is a  random  variable  uni- 
formly  distributed  over  the  whole  cell  area.  The  positions  of 
the  different  mobiles  in  the  cell  are  independent  random 
variables. 

2) The  mean  path  loss is uniform  over  all  the  service  area 
and  is  distributed  according to  the  inverseiu-power  law. 

3)  The  mean  power  of  the  received  signal  originated  by  the 
user of an  interfering  cell  follows  a  lognormal  (shadow  fading) 
distribution. 

In  the  presence  of  shadow  fading,  the  mean  received  power 
at   the  base  station  of  the  cell  under  consideration is (see [ 21) 

P i /  = yP- Ti, na 

(on2 + ri,,' - 2Dnri,,  cos 

where y is a  lognormal  random  variable, $ = 1 0  log y is a 
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Fig. 5. Layout of a multicell system. 

normal  raridom  variable  with  mean  and  standard  deviation 
given by 

E($) = 0 dB 

[ E($)2  ] ' I 2  = crL dB, 

r I , ,  is the  distance  between  mobile i and  its  base  station, D, is 
the  distance  between  the  base  station of the  nth cell  and  the 
base station of the cell under  consideration,  and @i,n is the 
orientation  angle  of  mobile i in  the  nth  cell. 

The  complex  envelope  of  the  intercell  interference signal 
can  be  written  more  conveniently  by  grouping  all  the  intercell 
interference  due  to cells equidistant  to  the cell under  con- 
sideration  (see Fig. 5 ) .  We then  obtain 

ca#O 2 

where A is  the  number  of  groups  considered, { t i ,a }  is  a  Poisson 
point  process of parameter @(a), where F(a) is the  number of 
cells of  the  equidistant  group n, and { t u , c a }  is a  Poisson  point 
process  of  parameter @(a)  originated  by  the  cth  adjacent 
channel of the  equidistant  group a .  

IV. CALCULATION OF  THE MISS AND 
INSERTION  PROBABILITIES 

As we  have  already  stated  in  Section 11, the  calculation  of 
the  bit  error  probability  requires  the  previous  computation  of 
the  insertion  and  miss  probabilities  which We now  outline. 

A.  Isolated  Cell  System 
Referring  now t o  Fig. 4 and  considering  the  filtered  signal 
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- - 

r( t ) ,  mentioned  in  Section 111-A, we  have  that  in  the  absence  ment  the  presence of the  intercell  interference  signal IIc(f). 

of the  desired  signal,  the  insertion  probability is 

where Co is the  threshold  decision  value. If we  define r as 

then  from [4] we  can  write 

where e(., .) is the  Marcum Q function, 

and f,.(b) is the  probability  density  function  of  the  random 
variable r .  

Now  we  can  calculate PI using a Gaussian  quadrature  rule 
(GQR),  which  guarantees,  in  the  area  of  approximate  integra- 
tion,  the  highest  degree  of  precision 

The x u  are  called  the  abscissas of the  formula  and  the, wu the  
weights, so the set {wt;, is called  a  quadrature  rule 
corresponding  to  the  weight  function f , . (x ) .  

The  lack  of  knowledge of f , ( x ) ,  as  in our case, can,be  by- 
passed  by  using  the  algorithm  introduced  by  Golub  and 
Welsch [ 5 J that  performs  the  computation  of { w u ,  
using the 2N + 1 moments  of  the  random  variable  r: 

Analogously, as we  did  with PI, we  can Write the miss 
probability as 

Given  that RSo(7) GOS 8 and RSo(7) sin 8 are  independent 
Gaussian  random  variables,  we  can  include  them  in nX(7) and 
n,,(;), respectively,  and  define  the  new  variance  as 

Then  we  have 

The  computation  of  the  above  formula  can  be  carried  out  by 
the  GQR  already  used  to  calculate PI.  

B. Multicell  System 
In  a  multicell  structure  we  must  consider  as  a  new  impair- 
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Then 

PZ = Prob ( 147) + IZC(T) + nf (r )  I 2 c,) 
and 

Pmiss = €'rob (1Re-jes0(r) + r(r) + IZC(T) + nAr) I < C,). 

Due  to  the large  number of different  contributions  that  are 
involved in  the  formation  of Izc(t), we  have  assumed that  the 
intercell  interference  is  Gaussian  distributed.  Therefore,  we 
can  write 

Izc(t> = I c x ( t )  + / I c y ( t )  

where I c x ( f )  and I c y ( t )  are  two  independent  Gaussian  random 
variables  with  zero  mean  and  equal  variance,  and 

uz2 = E [ I c x 2 ( t ) J  = E [ I C j 2 ( t ) ] .  

Once  we  know uz2, we  can  calculate PI and Pmiss by  the  GQR 
given for  the  isolated  system  by  substituting on2 + uz2 fo r  
o n  ' 

2 

V. NUMERICAL  RESULTS 

This  section  contains  some  numerical  results  and  curves  for 
the design  variables, K = 8, L = 19, and W = 20  MHz,  which 
allow  a  transmission  rate  per  user  of K/Lr  5 . 3 2  kbits/s,  and 
were  chosen  in [ 11 as  optimum. 

Since  in  this  paper  we  deal  with  output signals at  the  recep- 
tion.filter  whose  complex  envelope  is-of  duration 7 ' , S c ( t )  = 
0 lf t 9 [0, r ' ]  , f , ( x )  has  a  delta.  function s ( t )  at   the  origin. 
Therefore  we  can  write 

f r ( x )  = f , (X I n  = O)P,. (n = 0 )  + f;(x 1 n # O)P,, (n  # 0 )  

= &(X)P,' (n  = 0 )  + &(XI n = O)P,. (n # 0 )  

where P,.(n = 0) is the  probability  that  the  number of Poisson 
points  that  appear  in r' seconds  is  equal  to  zero,  and 

P,. (n # 0 )  = 1 - P,. (n  = 0). 

Then PI is  given  by 

= P,(n = O)Q(O,  fl) + P,(n # 0 )  

where {wu', x u ' }  is the  quadrature  rule  corresponding  to  the 
weight  function f , ( x  I n # 0). 

Analogously, 

-t P,,(n f 0) Q.(-, dz -)..I co . 
u = l  UT 

In  the  GQR  the  moments of f , (x  1 n # 0) are 

Since  with  GQR  the  convergence  to  the  true  value  of  the 
bit  error  probability  is  guaranteed,  it  is  sufficient to  check  how 
many  significant  digits  remain  unchanged  as N increases,  and 
continue  the  iteration  until  the  desired  accuracy.  In  the 
numerical  results  of  this  section  the  convergence  was  obtained, 
at  least up  to  the  f irst   two significant  digits. Pg depends, 
among  other  factors,  on 0. Let bopt be  the  value of f l  that  
minimizes p E .  

To  compare  the  results  obtained  with  our  interference 
model  to  those given  by the simplified  model  studied  in [ 11, 
we  have.considered  the  case: h( t )  = 6 ( r ) ,  isolated  cell  system, 
no  interchannel  interference,  and f l  = 2.75 (gopt). Then r' = 
r and P,(n = 0) = e-',. Fig. 6 shows PB versus the average 
signal-to-noise  ratio  SNR = P/un2  with  the  number  of  users  as 
a  parameter.  In  the  dotted  curve  we  have  plotted  the  upper 
bound  on P g  obtained  in [ 1 ] . 

For  the  isolated cell  system  with  matched  receiver  filters 
(7' = 2r), the value  of Pop* depends  strongly,  contrary  to  the 
above  simplified  model,  on  the  number of users  and  the 
average  chip  energy-to-one-sided  power  spectral  noise  density 
ratio EJNO. For  the Popt (see  Table I) calculated in the 
presence of the  interchannel  interference,  we  have  computed 
P g  and  plotted  it   in Fig.  7. The  number  of  adjacent  channels 
considered  for  this  computation was IL  = IR  = 4, since  by 
increasing  this  number  we  do  not  obtain  a  significant  variation 
of P g .  In  this  case: P,g(n = 0 )  = For  the flopt values 
calculated  in  the  absence of adjacent  interchannel  interference, 
we have drawn P g  in Fig. 8. Then, P,.(n = 0). = e-2". 
Results  shown  in  Fig. 6 are  also valid for a  synchronous  model 
(base-to-mobile  transmission)  with  matched  filtering  in  the 
receivers. In  this case the  SNR  value is  given by 

For  the  multicell  system  with  matched  receiver  filters, 
adjacent  interchannel  interference  of  each cell (IL = IR = 4), 
and  the  Gaussian  approximation  of  the  intercell  interference, 
we  have  calculated Pg and  plotted  it  in Fig. 9. The  dotted 
curves  correspond  only to the first  concentric  ring  of  inter- 
ference cells in  the service  area,  and  the  continuous  curves 
correspond  to  the  first  three  concentric  rings  (see  Fig. 5) .  By 
increasing  this  number  we  do  not  obtain  appreciable  variation 
in  the  values  of P B .  For  the  multicell  system floqt = 2.5. 

All the  above  curves  can  also  be  entered  with  the  average 
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Fig. 6 .  Isolated  cell  system performance obtained with  a  simplified 
interference model. 

TABLE I 
IN AN ISOLATED  CELL  SYSTEM  WITH  MATCHED 

ECEIVER  FILTERS AND ADJACENT  INTERCHANNEL 
INTERFERENCE 

200 19.75 12.0 7.5  4.75 3.25 3.0 
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No 

Fig. 7 .  Bit error probability in an isolated  cell  system  with  matched 
receiver filters  and adjacent interchannel interference. 
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Fig. 8. Bit error probability in an isolated  cell  system with matched 
receiver filters  and no adjacent interchannel interference. 
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Fig. 9. Bit error probability in  a ,multicell system  with  matched re- 
ceiver  filters and adjacent interchannel interference. 

bit  energy  instead  of  the  average  chip  energy,  since 

( 3 )  =(") + 3 . 7 5 .  
NO dB NO dB 

VI.  CONCLUDING  SUMMARY 

In  this  paper  we  have  presented  a  transmission  model  for 
an  FH-MFSK  digital  land  mobile  radiotelephony  system  that 
allows us to  incorporate  a  great  number  of  impairments.  In 
particular, a novel  interference  model  has  been  introduced t o  
analyze  mobile-to-base  communications,  taking  into  account 
the  interference  from  nonsynchronous  users  and  adjacent 
channels  with  matched  receiver  filters.  For  intercell  inter- 
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ference,  the  usual  Gaussian  approximation was used,  but  the 
variance  calcdlation  did  take  into  account  shadow  fading. 
Results  were  obtained  by  integrating  the  conditional  error 
probability  with  respect  to  the  density  functiofl  of  interfer- 
ence  using  the  Gaussian  quadrature  ruie  method. 

Fig.  6  shows  comparative  results  between  the  upper  bound 
bit  error  probability  obtained  with  a  simplified chip-syn- 
chronous  interference  modei [ 1 ] and  the  bit  error  probability 
obtained  with  our  interference.mode1  with  no  matched  filter- 
ing  and  no  interchannel  interference.  Comparing Figs. 6 and  8, 
we  observe  that.  the  number of users  predicted  by  the  syn- 
chronous  model  would  be  very  close  to  those  derived  from  the 
nonsynchronaus  one if the  interchannel  interference  were  not 
taken  into  account.  Comparing Figs. 7  and 8, we  observe  that 
the  presence of this  interference  introduces  an  important 
degradation.  For  instance,  with  typical SNR = Ec)No = 
25  dB  and  for PB < i 0 - 3 ,  the  system  can  accommodate  up  to 
170  users  without  adjacent  interchannel  interference  and  up  to 
110  users  with  it.  Comparing Figs: 7 and 9, one  could  con- 
clude  that  intercell  interference  degrades  the  performance of 
FH  mobile  ‘radio  systems  considerably,  and  clustering is re- 
quired  to  control  this  interference. 
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Comments on Electronic  Techniques  for  Pictorial  Image 
Reproduction 

PH. W. BESSLICH 

Abswuct-The role  of  dither  threshold  matrices  has  not  been  paid 
much  attention in  a  recent  paper [l]: These  comments  highlight the 
useful  features  of  the  so-called  Nasik  pattern as a  threshold  matrix. It 
is  shown  that  the  ,total  number  of  Nasik  type  matrices is 384. The 
properties of Nasik  patterns  are  invariant  to  dyadic  shifts.  Hence, 
random  selection of, matriceq  and  adaptive  selection  scheme$  can  be 
devised, resultitig  in  a  minimization  of  texture  and  good  rendition  of 
details. 

Paper approved by the Editor  for Communication Theory of the 
IEEE Communications Society for publication without oral presen- 
tation. Manuscript  received July 1, 1982. 

The author is with the Section of Electrical Engineering,  University 
of Biemen, D-2800, Bremen 33, Federal Republic of Germany. 

In  a  recent  paper [ 1 1 ,  Stoffel  and  Moreland  surveyed  tech- 
niques  for  reproduction of continuous-tone  images  by  binary 
(black  and  white)  printing.  In  one  respect,  the  otherwise 
excellent  paper  needs  some  addition  and  a  minor  correction, 
namely,  what  dither  threshold  matrices  are  concerned. 

Fig.  22(b) of [ 11 is described  as  a  Nasik  pattern.  However, 
it  seems  that  by  mistake  a  wrong  matrix  has  been  taken  from 
the  cited  paper  by  Lippel  and  Kurland [ 21.  According  to [ 3 1  
a certain  “magic  square”  supposed t o  be  invented  in  ancient 
Persia was  named  the  Nasik  pattern  by A.  H. Frost  after  a 
town  near  Bombay  (India).  This  pattern  exhibits  quite  a 
number of interesting  features  which  makes it attractive as a 
dither  threshold  matrix.  It is well  known  that  the sum of  
numbers  in  the  rows,  the  columns,  and  the  nine  2 X 2 square 
blocks is a  constant  (30).  Furthermore,  not  only  the  diagonals 
but  also  any  row  parallel to  them  (broken  diagonal)  adds 
to  the  same  conatant.  In  addition  to  the  nine  square  blocks 
mentioned  before,  seven  others  of  sum 30 may  be  formed 
if the  top  and  bottom  line as well as the  right  and  left  hand 
margin  are  thought  to  be  connected.  Finally,  there  are  20 
patterns of (2  + 2),  (2 + 1 + I ) ,  or  (1 + 1 + 1 + 1)  elements; 
each  adding  up  to  the  constant.  Hence,  we  have  a  total  of 
5 2  groups of each  four  elements  for  which  the  sum is 30 
in  the  matrix.  It  can  be  shown [4 ]  that this is the maximum 
of four-element  ~jatterns,  the  values of which  can  add  to  the 
constant  30.  There  are  three  basic  patterns  pqssible  having 
these  remarkable  properties [ 41 : 

0 1 1   5 1 4  0 1 3   3 1 4  0 ’I 9 1 4  

7 1 2  2 9 11 6 8 5 1 3 1 0 4  3 

10 1 1 5  4 12 1 1 5  2 6 1 1 5  8 

13 6 8  3 7 1 0 4  9 1 1 1 2  2 5 

If the  rows  and  the  colums  are  periodically  repeated, 1 6  
different  Nasik  patterns  can  be  obtained,  each of which 
may  be  transposed  and/or  reflected.  horizontally  and/or 
vertically.  Hence,  the  total  number of different  Nasik  patterns 
is 3*16*23 ~ 3 8 4 .  

The use of a Nasik pattern  as  a  dither  threshold  matrix 
provides  some  useful  properties.  For  each of the 5 2  groups 
the  five  thresholds  have  the  same  mean.  Consequently,  as  this 
applies to  52  interwoven  groups,  the  thresholds  are  optimally 
distributed  with  respect  to  both  subareas  and  directions. 

One of the most  significant  advantages is that   the  Nasik 
pattern  can  be  indefinitely  repeated  in  any  direction.  Each 
4 X 4  subsquare  which  can  be  marked  off is of  the Nasik 
type. 

Against  these  advantages  we  must  hold  a  small  disadvan- 
tage: as the  numbers 3 and  4  as  well  as  11  and  12  are  adjacent, 
the  resolution is slightly  less  than  it is for  the  matrix  given  in 
[ 1,  Fig.  22(b)].  However,  this  disadvantage is overruled  by 
the  fact  that  less  conspicuous  and  objectionable  artifacts 
result  from  the  Nasik  type  matrices  (Figs.  1  and 2 ) .  

In  order  to dissolve the  artificial  texture  imposed  by 
spatial  concatenation of only  one  matrix, a random  selection 
of dither  matrices  may  be  introduced.  Fig. 3 shows  the  result 
of selecting  a  dither  matrix  for  each  4 X 4  subpicture  from  the 
384 Nasiks via a  pseudorandom  number.  The  artifacts  have 
changed t o  a  random  pattern,  similar to the  one  in  a  grainy 
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