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An M/M/1 retrial queue with working vacation interruption is considered. Upon the arrival of a customer, if the server is busy, it
would join the orbit of in
nite size. 	e customers in the orbit will try for service one by one when the server is idle under the
classical retrial policy with retrial rate ��, where � is the size of the orbit. During a working vacation period, if there are customers
in the system at a service completion instant, the vacation will be interrupted. Under the stable condition, the probability generating
functions of the number of customers in the orbit are obtained. Various system performance measures are also developed. Finally,
some numerical examples and cost optimization analysis are presented.

1. Introduction

Queueing models with server vacations have been well
studied in the past three decades and successfully applied
in manufacturing and production systems, service systems,
and communication systems. Some vacation queues can be
found in Tian and Zhang [1]. On the basis of ordinary
vacation, Servi and Finn [2] 
rst introduced a class of
semivacation policy known asworking vacation (WV),where
the server provides service at a lower speed during the
vacation period rather than stopping service completely.
	e motivation of analyzing M/M/1/WV queue is to model
approximately a multiqueue system where each queue can
be served at one of two service rates. From then onwards,
several works [3–5] have appeared that analyzed the single
server queue with working vacations. In order to utilize
the server e�ectively, Li and Tian [6] introduced vacation
interruption policy. During the working vacation period, if
at least one customer is present in the system at a service
completion epoch, the server will interrupt the vacation
and resume regular service. Working vacation interruption

has become an important aspect. Using the matrix ana-
lytic method, Li and Tian [7] analyzed a GI/Geo/1 queue
with working vacations and vacation interruption and Li
et al. [8] discussed the GI/M/1 queue. Using the method
of a supplementary variable, Zhang and Hou [9] investi-
gated an M/G/1 queue with working vacations and vacation
interruption.

Retrial queueing systems are described by the feature that
the arriving customers who 
nd the server busy join the
retrial orbit to try again for their requests. During the last two
decades, retrial queues have been studied extensively because
of their applications in telephone switching systems, telecom-
munication networks, and computer systems. Readers can
refer to Artalejo and Gómez-Corral [10] and Choudhury et
al. [11]. Recently, the retrial queueing systems with working
vacations have been investigated extensively. Do [12] 
rst
studied an M/M/1 retrial queue with working vacations. Li
et al. [13] considered a discrete time Geo/Geo/1 retrial queue
with working vacations and vacation interruption and Liu
and Song [14] introduced nonpersistent customers into the
Geo/Geo/1 retrial queue with working vacations. Tao et al.
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[15] discussed an M/M/1 retrial queue with collisions and
working vacation interruption under N-policy. Using the
matrix analytic method, Do [12], Li et al. [13], Liu and Song
[14], and Tao et al. [15] obtained the stationary probability
distribution and showed the conditional stochastic decompo-
sition for the queue length.Using themethod of a supplemen-
tary variable, Aissani et al. [16] and Jailaxmi et al. [17] both
generalized the model of [12] to an M/G/1 queue. Gao and

Wang [18] analyzed a Geo�/G/1 retrial queue with general
retrial times and working vacation interruption, and the
continuous-time M/G/1 queue was investigated by Gao et
al. [19]. Note that the retrial policy of the above papers is
either constant retrial policy or general retrial policy, where
only the customer at the head of the orbit can request a
service.

Many of the queueing systems with repeated attempts
operate under the classical retrial policy, where each block
of customers generate a stream of repeated attempts inde-
pendently of the rest of the customers in the orbit. In
telephone systems, the calls which will be reattempted can
be modeled by an in
nite server queue where the time
until reattempt follows an exponential distribution. 	us,
it needs to discuss a retrial queue with working vacation
under the classical retrial policy. Ayyappan et al. [20] 
rst
studied such a queueing system. In order to obtain the
steady state probability vector, the orbit size is restricted to� such that any arriving customer 
nding the orbit full is
considered lost. In this paper, we also analyze an M/M/1
retrial queue with multiple working vacations under the
classical retrial policy, and vacation interruption policy is
considered. Ayyappan et al. [20] mainly focus on numerical
computation and approximation, and they apply the direct
truncation method to 
nd the steady state probability vector.
We place more emphasis on the analytic solutions, and
the orbit size is always in
nite in our model. 	e novelty
of this investigation is that we use probability generating
function method to deal with the steady state joint distri-
bution of the server state and the number of customers
in the orbit, and the ergodicity condition is obtained by
Foster’s criterion. Finally, a cost minimization problem is
discussed.

	is paper is organized as follows. In Section 2, we estab-
lish the model. Using Foster’s criterion, the stable condition
is obtained. In Section 3, we get the balance equations and
derive the probability generating function of the number of
customers in the orbit. Various performance measures of this
model are discussed in Section 4. Section 5 presents some
numerical examples and cost optimization analysis. Finally,
Section 6 concludes the paper.

2. Model Formulation and Stable Condition

Let us consider an M/M/1 retrial queue with working vaca-
tions and vacation interruption. Customers arrive according
to a Poisson process with rate �. Upon the arrival of
customers, if the server is free, arriving customers get service
immediately. If the server is occupied, customers are forced

to wait in the orbit of in
nite size. In this paper, we adopt
the classical retrial policy with retrial rate ��, where � is
the orbit size. Upon the arrival of retrials, if the server
is busy, retrials will go back to the orbit. If the server is
not occupied, arriving retrials get services immediately. 	e
service rate is�when the system is not on vacation.	e single
server takes a working vacation when the system becomes
empty. Vacation time follows an exponential distribution
with parameter �. During the vacation period, customers can
be served with rate �. At a service completion instant in the
vacation period, if there are customers in the system at that
moment, the vacation is interrupted and the server comes
back to the normal working level. 	e working vacation will
continue if the system is empty. At the end of each vacation,
the server only takes another new vacation if the system is
empty.

Next, we give an application example of this model.
In our daily life, some social organizations can provide
telephone psychological counseling. Here, we consider a
telephone counseling system sta�ed with a psychological
consultant (called main server) and an assistant (called
substitute server). 	e assistant only provides service to
people (called customers) when the consultant does not
work. Generally speaking, there is a telephone operator
who is responsible for establishing communications between
servers and customers; the operator also needs to note down
the calls’ information in a registration form (corresponding
to the “orbit”). When a person makes a call and if the
server is free, the operator notes down the information and
the customer is served immediately by the consultant or
the assistant. If the server is busy, on the other hand, the
operator tells the customer to call again some time later
(called retrial), and the customer’s information should also
be noted down. When a retrial customer makes a call again,
the operator does not need to note down the information
again. Moreover, if the customer in the registration form
completes his service, the telephone operator will make a
note; then he can know whether the customer completed his
service or not. When the operator 
nds that all customers
in the registration form have completed their services (i.e.,
there is no customer in the orbit and the system is empty),
the consultant will rest from his work (begin a vacation).
During the consultant’s vacation period, the assistant will
provide service. If a service is completed by the assistant
and if there are customers in the registration form who have
not received services (i.e., there are customers in the orbit
and the system is nonempty), the consultant will come back
from his vacation no matter whether his vacation ends or
not (vacation interruption happens). Furthermore, when a
vacation ends and if all customers in the registration form
have completed their services, the consultant begins another
vacation. Otherwise, the consultant takes over the assistant.
In order to understand the customer’s need, the consultant
will restart service no matter how long the assistant has
served.

Let 	(
) be the number of customers in the orbit at time
 and let �(
) be the state of server at time 
. 	ere are four
possible states of the server as follows:
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� (
) =
{{{{{{{{{{{{{{{

0, the server is in a working vacation period at time 
 and the server is free,1, the server is in a working vacation period at time 
 and the server is busy,2, the server is during a normal service period at time 
 and the server is free,3, the server is during a normal service period at time 
 and the server is busy.
(1)

Note that when the orbit is empty, it is impossible that the
server is free in a normal service period. 	us, {	(
), �(
)} is
a Markov process with state space

Ω = {(0, �) , � = 0, 1, 3} ∪ {(�, �) , � ≥ 1, � = 1, 2, 3} . (2)

Remark 1. Note that, in this model, we consider working
vacation interruption policy, so the state {(�, 0), � ≥ 1} does
not exist.

De
ne

�� = ∫∞
0

(��)��! �−����−����,
�� = ∫∞

0

(��)��! �−���−����−	���,
�� = ∫∞

0

(��)��! �−����−���−	���,
(3)

where {��, � ≥ 0} is the probability that � customers arrive
during a normal service time; {��, � ≥ 0} represents the
probability that � customers arrive during a lower service
time and the working vacation does not end; {��, � ≥ 0}
explains the probability that � customers arrive before the
working vacation ends and no service is completed.

Let {

; � = 1, 2, . . .} be the sequence of epochs at which
a normal service or a lower service completion occurs and	
 = 	(
+
 ); then the sequence of random variables {	
; � =1, 2, . . .} forms an embedded Markov chain.

�eorem 2. �e embedded Markov chain {	
; � = 1, 2, . . .}
is ergodic if and only if  = �/� < 1.
Proof. It is not di�cult to see that {	
; � = 1, 2, . . .} is an
irreducible and aperiodic Markov chain, and the transition
probability is given by

" = (((
(

"00 "01 "02 "03 ⋅ ⋅ ⋅"10 "11 "12 "13 ⋅ ⋅ ⋅0 "21 "22 "23 ⋅ ⋅ ⋅0 0 "32 "33 ⋅ ⋅ ⋅... ... ... ... d

)))
)

, (4)

where"
�
=
{{{{{{{{{{{{{{{{{

�� + �∑
�=0
����−�, � = 0, � ≥ 0,���� + ��0, � ≥ 1, � = � − 1,���� + ���+1−
 + ��� + ���−
, � ≥ 1, � ≥ �.

(5)

In order to discuss the ergodicity of the chain {	
; � =1, 2, . . .}, we use Foster’s criterion with the mean dri�

�
 = 5 [7 (	�+1) − 7 (	�) | 	� = �] , (6)

where the test function 7(�) = �. From the transition matrix,
it can be easily proved that

�
 = {{{{{{{
 �� + � + �� + � , � = 0,
 − ���� + � , � ≥ 1. (7)

As � → ∞, there exists � = lim
→∞�
 =  − 1. Applying
Foster’s criterion, we can get that the embeddedMarkov chain
is ergodic if  < 1. Besides, since 	
+1 − 	
 ≥ −1, applying
the criterion from Sennott et al. [21], we can obtain that  < 1
is necessary for ergodicity.

Since the arrival process is Poisson, using PASTA prop-
erty, it can be shown from Burke’s theorem (see [22, pp. 187-
188]) that the steady state probabilities of the Markov process{	(
), �(
)} exist if and only if the stable condition < 1holds.
Now we de
ne the limiting probability

>�� = " {	 = �, � = �}= lim
→∞

" {	 (
) = �, � (
) = �} , (�, �) ∈ Ω. (8)

3. Balance Equations and Probability
Generating Functions

Figure 1 presents the state transition rate diagram of the
system. Under the stable condition  < 1, the set of balance
equations is given as follows:
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Figure 1: State transition rate diagram of the system.

�>00 = �>01 + �>03, (9)(� + � + �) >01 = �>00, (10)(� + �) >03 = �>12 + �>01, (11)(� + � + �) >
1 = �>
−1,1, � ≥ 1, (12)(� + ��) >
2 = �>
1 + �>
3, � ≥ 1, (13)(� + �) >
3 = �>
2 + �>
−1,3 + (� + 1) �>
+1,2+ �>
1, � ≥ 1. (14)

De
ne the probability generating functions (pgfs)

@1 (A) = ∞∑

=0

>
1A
,
@2 (A) = ∞∑


=1
>
2A
,

@3 (A) = ∞∑

=0

>
3A
,
(15)

with @�� (A) = ∑∞
=1 �>
�A
−1, C = 1, 2, 3.
Multiplying by the appropriate power of A
 in (10) and

(12), summing over �, and rearranging the terms, we get(� + � + � − �A)@1 (A) = �>00. (16)

Multiplying by the appropriate power of A
 in (13), summing
over �, and using (9), we obtain

�@2 (A) + �A@�2 (A) = �@1 (A) + �@3 (A) − �>01− �>03= �@1 (A) + �@3 (A) − �>00. (17)

In a similar way, from (11) and (14), we derive(� + � − �A)@3 (A) = �@2 (A) + �@�2 (A) + �@1 (A) . (18)

From (16), we get

@1 (A) = �� + � + � − �A>00. (19)

From (17), we obtain

@3 (A) = ��@2 (A) + �A� @�2 (A) − ��@1 (A) + ��>00. (20)

Taking (20) into (18), using (19), a�er some computation, we
can derive

@�2 (A) − �2(� − �A) �@2 (A)
= �2>00(� − �A) (1 − A) � + �>00(1 − A) �

− ��>00(� + � + � − �A) (1 − A) �
− (�� + ��) �>00(� + � + � − �A) (� − �A) (1 − A) � .

(21)

Solving the 
rst-order di�erential equation, we have

@2 (A) = (� − �A)−�/� [�2>00� E1 (A) + �>00� E2 (A)
− ��>00� E3 (A) − (�� + ��) �>00� E4 (A)] , (22)

where

E1 (A) = ∫�
0
(1 − �)−1 (� − ��)�/�−1 ��,

E2 (A) = ∫�
0
(1 − �)−1 (� − ��)�/� ��,

E3 (A)
= ∫�
0
(� + � + � − ��)−1 (1 − �)−1 (� − ��)�/� ��,

E4 (A)
= ∫�
0
(� + � + � − ��)−1 (1 − �)−1 (� − ��)�/�−1 ��.

(23)

From (17) and (18), substituting @�2(A), we get
@3 (A) = � (1 − A) @2 (A) − (� + �A)@1 (A) + �>00(� − �A) (1 − A) . (24)
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From (19), (22), and (24), we can see that @1(A), @2(A), and@3(A) are expressed in terms of >00. In the next section, using
normalization condition, we will obtain >00.
4. Performance Measures

From (19), we have

@1 (1) = �� + �>00, (25)

@�1 (1) = lim
�→1

@�1 (A) = lim
�→1

�2(� + � + � − �A)2>00
= �2(� + �)2>00.

(26)

From (22), we get

@2 (1) = E>00, (27)

where

E = (� − �)−�/� [�2� E1 (1) + ��E2 (1) − ��� E3 (1)
− (�� + ��) �� E4 (1)] . (28)

From (24), using L’Hospital rule, we obtain

@3 (1) = lim
�→1

@3 (A)
= lim
�→1

−�@2 (A)+ � (1 − A) @�2 (A) − �@1 (A) − (� + �A)@�1 (A)−� (1 − A) − (� − �A)

= �@2 (1) + �@1 (1) + (� + �)@�1 (1)� − �
= �E (� + �) + �� + �2(� − �) (� + �) >00.

(29)

Since >00 + @1 (1) + @2 (1) + @3 (1) = 1, (30)

taking (25), (27), and (29) into the above equation, we can
derive

>00 = [1 + �� + � + E + �E (� + �) + �� + �2(� − �) (� + �) ]−1
= [� (� − �) + � (1 + E) (� + �)(� − �) (� + �) ]−1 . (31)

	us, >00 is found out. From (19), (22), and (24), @1(A),@2(A), and @3(A) are completely computed. And the pgf of
the number of customers in the orbit is given by@ (A) = >00 + @1 (A) + @2 (A) + @3 (A) . (32)

	e pgf of the number of customers in the system is given by@̃ (A) = >00 + A@1 (A) + @2 (A) + A@3 (A) . (33)

Let 5[H�] denote the average number of customers in the
orbit when the server’s state is �, � = 1, 2, 3.

Di�erentiating (19) with respect to A, we have
5 [H1] = lim

�→1
@�1 (A) = �2(� + �)2>00. (34)

From (18), we can get

5 [H2] = lim
�→1

@�2 (A) = ��@3 (1) − ��@2 (1) − ��@1 (1) . (35)

Di�erentiating (24) with respect to A and using L’Hospital
rule twice, the expression for 5[H3] is obtained as

5 [H3] = lim
�→1

@�3 (A) = (� − �) (� + �)@��1 (1) + 2 (�� + ��) 5 [H1] + 2� (� − �) 5 [H2] + 2� [�@1 (1) + �@2 (1)]2 (� − �)2 , (36)

and di�erentiating (19) twice with respect to A and taking A =1 yield @��1 (1) as @��1 (1) = 2�3(� + �)3>00. (37)

	erefore, the average orbit length (5[H]) is given by5 [H] = lim
�→1

@� (A) = 5 [H1] + 5 [H2] + 5 [H3] . (38)

And the average system length (5[H̃]) is derived as

5 [H̃] = lim
�→1

@̃� (A) = 5 [H] + @1 (1) + @3 (1) . (39)

	e probability that the server is busy is

"� = " {� = 1} + " {� = 3} = @1 (1) + @3 (1) . (40)
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	e probability that the server is free is"� = " {� = 0} + " {� = 2} = >00 + @2 (1) = 1 − "�. (41)

	e probability that the server is in a working vacation period
is given by"� = " {� = 0} + " {� = 1} = >00 + @1 (1) . (42)

	e probability that the server is in a normal service period
is given by"
 = " {� = 2} + " {� = 3} = @1 (2) + @2 (3)= 1 − "�. (43)

Let 5[M] (5[M̃]) be the expected waiting (sojourn) time of a
customer in the orbit (system), using Little’s formula:

5 [M] = 5 [H]� ,
5 [M̃] = 5 [H̃]� . (44)

	e system busy period N is de
ned as the period that starts
at an epochwhen an arriving customer 
nds an empty system
and ends at the departure epoch at which the system is empty.
Using the theory of regenerative process, we get

>00 = 5 [N00]5 [N00] + 5 [N] , (45)

where N00 is the time length that the system is in the state(0, 0). Since the interarrival time between two customers
follows exponential distribution with parameter �, we have5[N00] = 1/�. 	us, 5[N] = �−1(>−100 − 1).
5. Numerical Results

In this section, under the stable condition, we present some
numerical examples to illustrate the e�ect of the varying
parameters on themeanorbit length5[H], the probability that
the system is busy 1−>0,0, and the probabilities of server’s state
("�, "�, "�, and "
). Moreover, a cost minimization problem
is also discussed. 	e various parameters of this model are
arbitrarily chosen as � = 2, � = 1, � = 5, � = 3, and� = 0.2, unless they are considered as variables or their values
are mentioned in Figures 2, 3, 4, and 5.

5.1. Sensitivity Analysis. Figures 2 and 3 illustrate the e�ect of� on 5[H] and 1 − >0,0 for di�erent values of �, respectively.
When � < �, we 
nd that 5[H] and 1 − >0,0 both decrease as� increases, and � has a noticeable e�ect on the performance
measures which cannot be ignored. An especial case is � = �;
that is, the service rate in the vacation period is equal to the
service rate in the normal period, and the model we consider
reduces to anM/M/1 retrial queue with classical retrial policy.
Clearly, � has no e�ect on5[H] and 1−>0,0, which agrees with
the intuitive expectation.
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Figure 2: 	e e�ect of � on 5[H] for di�erent values of �.
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Figure 3: 	e e�ect of � on 1 − >0,0 for di�erent values of �.
	e e�ect of � on 5[H] is presented in Figure 4; as

expected, 5[H] decreases with increasing values of �. When� is large, it can be observed that the e�ect of � on 5[H] is not
obvious as � increases; this is because we consider working
vacation interruption policy. If the system is not empty at a
service completion instant in the vacation period, the server
will come back to the normal working level. Moreover, since
constant retrial policy means that only the customer at the
head of the orbit can request a service, we can 
nd that 5[H]
of M/M/1 queue with classical retrial policy is smaller than
that of M/M/1 queue with constant retrial policy. As shown
in Figure 5, "� decreases with increasing values of �, and "�
has the opposite tendency. 	e reason is that as � increases,
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Figure 4: 	e e�ect of � on 5[H] for two di�erent retrial policies.
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Figure 5: 	e probability of server’s state with the change of �.
themeanorbit length5[H] and themean service time 1/�both
decrease.

Figure 6 indicates that 5[H] decreases with increasing
values of �; this is because the mean retrial time decreases as� increases. From the instant when the server becomes idle,
an external potential primary customer and retrial customers
compete to access the server, and the smaller the mean retrial
time is, the bigger the probability that the server is busy is,
which leads to decreasing of 5[H]. Furthermore, under the
same condition, decreasing of 5[H] results in the increase
in the probability that the system is empty, and Figure 7
reveals that "� increases with increasing values of �, while "

decreases as � increases. In Figure 6, compared with constant
retrial policy, we can also 
nd that classical retrial policy
decreases the waiting jobs e�ectively.
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Figure 6: 	e e�ect of � on 5[H] for two di�erent retrial policies.
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Figure 7: 	e probability of server’s state with the change of �.
5.2. Cost Analysis. In this subsection, we establish a cost
function to search for the optimal service rate �, so as to
minimize the expected operating cost function per unit time.

De
ne the following cost elements:

P�: cost per unit time for each customer present in the
orbit.P�: cost per unit time for service during a normal
service period.P	: cost per unit time for service in aworking vacation
period.P�: 
xed cost per unit time during a vacation period.
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Figure 8: E�ect of � on the expected operating cost per unit time.

Based on the de
nitions of each cost element listed above,
the expected operating cost function per unit time can be
given by

min	 : 7 (�) = P�5 [H] + P�� + P	� + P��. (46)

Because the expected operating cost function is highly non-
linear and complex, it is not easy to get the derivative of it.We
assume P� = 6, P� = 10, P	 = 8, and P� = 4 and develop
approximations by MATLAB program to 
nd the optimum
value of �, say �∗.

From Figure 8, we can see that there is an optimal service
rate � to minimize the cost. Implementing the computer
so�ware MATLAB by the parabolic method and controlling

the error by 10−4, we 
nd the solution �∗ = 0.8584 with7(�∗) = 69.0971.
6. Conclusion

	is paper analyzes a single server retrial queue with working
vacation interruption under the classical retrial policy. Using
embedded Markov chain and Foster’s criterion, we get the
condition of stability. 	e pgf of the number of customers
in the orbit is obtained, and some important performance
measures are also discussed. Moreover, the e�ects of var-
ious parameters on the system performance measures are
examined numerically. Under the stable condition, a cost
minimization problem is considered. For future research,
using the same method, one can investigate a similar model
with batch arrival and without vacation interruption.
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