
Performance of Bursty World Wide Web (WWW) Sources over ABR 1

Bobby Vandalore, Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy

The Ohio State University, Department of CIS

Columbus, OH 43210-1277

Phone: 614-688-4482, Fax: 614-292-2911

Email: fvandalor, shivkuma, jain, goyal, fahmyg@cis.ohio-state.edu
Seong-Cheol Kim

Principal Engineer, Network Research Group, Communication Systems R&D Center

Samsung Electronics Co. Ltd., Chung-Ang Newspaper Bldg.

8-2, Karak-Dong, Songpa-Ku, Seoul, Korea 138-160

Email: kimsc@metro.telecom.samsung.co.kr

Abstract

We model World Wide Web (WWW) servers and clients running over an ATM network using the ABR

(available bit rate) service. The WWW servers are modeled using a variant of the SPECweb96 [1]

benchmark, while the WWW clients are based on a model by Mah [2]. The tra�c generated by this

application is typically bursty, i.e., it has active and idle periods in transmission. A timeout occurs

after given amount of idle period. During idle period the underlying TCP congestion windows remain

open until a timeout expires. These open windows may be used to send data in a burst when the

application becomes active again. This raises the possibility of large switch queues if the source rates

are not controlled by ABR. We study this problem and show that ABR scales well with a large number

of bursty TCP sources in the system.

Keywords: ATM, WWW model

1 Introduction

As large ATM networks are built, it is important to study the performance of real-world applications

like the World Wide Web (WWW) over ATM. Such applications typically have low average bandwidth

demands from the network, but care for the response time when active. It is interesting from the tra�c

management perspective to study the aggregate e�ect of hundreds of such applications browsing or

downloading large documents over an ATM backbone.

The WWW application sets up TCP (Transport Control Protocol) connections for its data transfers

[4]. The WWW application di�ers from a large �le transfer application in that while the latter looks

like an in�nite or persistent application to TCP, the former looks like a bursty application with active

and idle transmission periods. The e�ect of this on tra�c management is described below.

TCP increases its congestion window as it receives acknowledgements for segments correctly received

by the destination. If the application such as �le transfer or WWW server/client has data to send, it

transmits the data. Otherwise, the window remains open until either the application has data to send

or TCP times out, using a timer set by its round trip time (RTT) estimation algorithm. The timer

can go o� for two reasons (i) retransmission timeout: if an acknowledgement is not received within the

1Submitted to the WebNet`97, November 1997. Available through http://www.cis.ohio-state.edu/~jain/papers.html

1

timeout period (ii) idle timeout: if there is no activity at the source for a given amount of time. The

timeout period is atleast as much as the timer granularity, which is typically 100-500 milliseconds. If

the timer goes o� o�, TCP reduces the congestion window to one segment, and rises exponentially (slow

start phase) once the source becomes active again.

On the other hand, if the application remains idle for a period smaller than the timeout, the window

is still open when the source becomes active again. If acknowledgements (corresponding to the data

sent) are received within this idle interval, the window size increases further. Since no new data is sent

during the idle interval, the usable window size is larger. The e�ect is felt when the application sends

data in the new burst.

When TCP carrying such a WWW application runs over ATM, the burst of data is simply transferred

to the NIC (network interface card). Assuming that each TCP connection is carried over a separate

ABR VC (virtual circuit), the data burst is sent into the ATM network at the VC's ACR (allowed cell

rate). Since this VC has been idle for a period shorter than the TCP timeout (typically 500 ms for

ATM LANs and WANs), it is an ACR retaining VC. Source End System (SES) Rule 5 [5] speci�es that

the ACR of such a VC be reduced to ICR (initial cell rate) if the idle period is greater than parameter

ADTF (ACR decrease time-out factor), which defaults to 500 ms. With this default value of ADTF,

and the behavior of the TCP application, we are in a situation where the ACR is not reduced to ICR.

This situation can be potentially harmful to the switches if ACRs are high and sources simultaneously

send data after their idle periods.

Observe that an in�nite application using TCP over ABR does not send data in such sudden bursts.

As discussed in our previous work [7], the aggregate TCP load at most doubles every round trip time

(since two packets are inserted into the network for every packet transmitted, in the worst case). Bursty

TCP applications may cause the aggregate load to more than double in a round trip time.

In this contribution, we show that such worst case scenarios are avoided in practice due to the nature

of WWW applications and the ABR closed-loop feedback mechanism. In other words, ABR scales well

to support a large number of bursty WWW sources running over TCP.

2 The WWW System Model

The WWW uses the Hypertext Transfer Protocol (HTTP), which uses traditional TCP/IP, for com-

munication between WWW client and and WWW servers [3].

Modeling of the WWW tra�c is a di�cult task since the nature of tra�c is changing due to the

development of new HTTP standards, new WWW servers, WWW clients, and change in user behavior.

In this section, we outline our model and the inherent assumptions.

2.1 Implications of the HTTP/1.1 standard

The main di�erence between the latest version of the HyperText Transfer Protocol, HTTP/1.1 [4],

and earlier versions is the use of persistent TCP connections as the default behavior for all HTTP

connections. In other words, a new TCP connection is not set up for each HTTP request. The HTTP

2

Table 1: Class, Files sizes and Frequency of Access

Class File Sizes Frequency of Access

Class 0 0 { 1KB 20%

Class 1 1KB { 10KB 28%

Class 2 10KB { 100KB 40%

Class 3 100KB { 1MB 11.2%

Class 4 1MB { 10MB 0.8%

client and the HTTP server assume that the TCP connection is persistent until a Close request is sent

in the HTTP Connection header �eld.

Another important di�erence between HTTP/1.1 and earlier versions is that the HTTP client can make

multiple requests without waiting for responses from the server (called pipelining). The earlier models

were closed-loop in the sense that each request needed a response before the next request could be sent.

2.2 WWW Server Model

We model our WWW servers as in�nite servers getting �le requests from WWW clients. The model

is an extension of that speci�ed in SPECweb96 benchmark [1]. The �le requests fall into �ve classes

(Class 0 through Class 4) which are shown in table 1.

There are nine discrete sizes in each class (eg: 1 KB, 2 KB, on up to 9 KB, then 10 KB, 20 KB, through

90 KB, etc). We assume that the accesses within a class are assumed to be evenly distributed. The

model of discrete sizes in each class is based on the SPECweb96 benchmark [1]. The key di�erences

from the SPEC model are (i) the assumptions of an in�nite server, and (ii) a new distribution of �le

sizes, which allows us to model �le sizes larger than those in the SPEC benchmark.

Speci�cally, the average �le size in our distribution is approximately 120 kB, compared to an average

�le size of about 15 kB in SPECweb96. Our distribution introduces an extra class of �le sizes (1 MB

- 10 MB) which models the downloading of large software distributions, and o�ine browsing search

results. We justify the weight assignments for the various classes in the next subsection.

2.3 WWW Client model

Mah HTTP-model [2] describes an empirical model of WWW clients based on observations in a LAN

environment. Speci�cally, a typical client is observed to make, on the average, four HTTP GET requests

for a single document. Multiple requests are needed to fetch inline images, if any. With the introduction

of JAVA scripts in web pages, additional accesses maybe required to fetch the scripts. Therefore, we

use �ve as the average number of HTTP GET requests. The caching e�ects at the clients are ignored.

HTTP/1.1 uses persistent TCP connections and sends multiple requests without waiting for the results

of the earlier requests (open-loop mode). But, the open-loop mode is not used for the �rst request

3

because the additional requests have to be made based on the results of the �rst response.

Typically, the �rst HTTP request from a HTTP client accesses the index page (plain text), which is of

size 1 KB or less. Since every �fth request is expected to be an index page access, we assign a weight

of 20% (= 1/5) for the �le size range of 1 KB or less.

Additional requests may require larger responses, as modeled by our distribution of �le sizes at servers,

taking into consideration the possibility of larger �le sizes in the future.

We also model a time lag between batches of requests (presumably for the same document), which

corresponds to the time taken by the user to request a new document, as a constant, 10 seconds. While

this may be too short a time for a human user to make decisions, it also weights the possibility of o�ine

browsing where the inter-batch time is much shorter.

We do not attempt to model user behavior across di�erent servers. The main purpose of using this

simplistic model is to approximate the small loads o�ered by individual web connections, and to study

the e�ects of aggregation of such small loads on the network.

3 The K-N Client-Server Con�guration

The K-N Client-Server con�guration shown in Figure 1 has a single bottleneck link (LINK1) shared by

the N Web servers and K clients per server or a total of N � K clients). Each client (eg., a netscape

browser) sets up a TCP connection which goes through a ATM VC on a separate Network Interface

Card (NIC). The VC goes through switch (SW1) to the NIC corresponding to its server. Every server

has a NIC card connected to it. Therefore there are N NICs, one for each of the N servers. The ATM

VCs from the clients reach the server through the server NIC and a separate TCP entity. Hence, there

are K TCP entities corresponding to the K clients per server. In our simulations, K = 15, and N = 1,

2, 5, 10. All link lengths are 1000 km. The bottleneck link (LINK1) speed is 45.0 Mbps, modeling a

T3 link, while the remaining link speeds are 155.52 Mbps.

We de�ne feedback delay as sum of the time required for feedback from the bottleneck switch to reach

the source and the delay for the new load to be felt at the switch. In our con�guration, the feedback

delay is 10 ms, which corresponds to 3680 cells at 155.52 Mbps. The round trip time is 30 ms, which

corresponds to 11040 cells.

4 TCP and ERICA+ Parameters

We use a TCP maximum segment size (MSS) of 512 bytes. The window scaling option is used to obtain

larger window sizes for our simulations. For our WAN simulations we used a window of 16 � 64 kB or

1024 kB which is greater than the product of the round trip time (RTT) and the bandwidth yielding a

result of 454,875 bytes at 121.3 Mbps TCP payload rate (de�ned below) when the RTT is 30 ms.

TCP data is encapsulated over ATM as follows. First, a set of headers and trailers are added to every

TCP segment. We have 20 bytes of TCP header, 20 bytes of IP header, 8 bytes for the RFC1577

LLC/SNAP encapsulation, and 8 bytes of AAL5 information, a total of 56 bytes. Hence, every MSS of

4

Figure 1: K-N Client-Server con�guration

512 bytes becomes 568 bytes of payload for transmission over ATM. This payload with padding requires

12 ATM cells of 48 data bytes each. The maximum throughput of TCP over raw ATM is (512 bytes/(12

cells � 53 bytes/cell)) = 80.5%. Further in ABR, we send FRM cells once every Nrm (32) cells. Hence,

the maximum throughput is 31/32 � 0.805 = 78% of ABR capacity. For example, when the ABR

capacity is 45 Mbps, the maximum TCP payload rate is 35.1 Mbps. Note that higher e�ciency can be

achieved by using larger MSS.

We are interested in comparative e�ciency, so we normalize our e�ciency measurements. We use a

metric called e�ciency which is de�ned as the ratio of the TCP throughput achieved to the maxi-

mum throughput possible. As de�ned above the maximum throughput possible is 0.78 � (mean ABR

capacity).

In our simulations, we have not used the fast retransmit and recovery algorithms. Since there is no loss,

these algorithms are not exercised.

The ERICA+ algorithm [8] uses �ve parameters. The algorithm measures the load and number of

active sources over successive averaging intervals and tries to achieve 100% utilization with queueing

delay equal to a target value. The averaging intervals end either after the speci�ed length or after a

speci�ed number of cells have been received, whichever happens �rst. In our simulations, these values

default to 500 ABR input cells or 5 ms. The other parameters are used to de�ne a function which scales

the ABR capacity in order to achieve the desired goals. These include a target queueing delay (T0,

set to 500 microseconds), two curve parameters (a = 1.15 and b = 1.05), and a factor which limits the

amount of ABR capacity allocated to drain the queues (queue drain limit factor, QDLF = 0.5).

5

5 Simulation Results

In our simulations, we use have 15 clients per server (K=15). The number of servers in the system is

varied from one to �fteen. Given the average �le size of 120 kB, �ve requests per batch, and a constant

inter-batch time of 10 seconds, the average load generated per client is 0.48 Mbps. With N servers (and

K=15 clients per server), the expected load on the system is 7.2 � N Mbps. As we vary N from 1 to

15, the expected load increases from 7.2 Mbps to 72 Mbps over a bottleneck link of speed 45 Mbps.

The simulation results are presented in Table 2.

Table 2: E�ect Number of Servers on E�ciency and Maximum Queue length

Sources ABR Metrics

Number of Max Switch Q Total TCP E�ciency

servers (cells) Throughput (% of Max

throughput)

1 3677 (0.33�RTT Delay) 6.11 Mbps 17.4%

2 6154 (0.56�RTT Delay) 14.16 Mbps 40.3%

3 7533 (0.68�RTT Delay) 21.11 Mbps 60.1%

4 10217 (0.93�RTT Delay) 28.46 Mbps 81.1%

5 14057 (1.27�RTT Delay) 34.08 Mbps 97.1%

6 16342 (1.48�RTT Delay) 34.28 Mbps 97.6%

7 13846 (1.25�RTT Delay) 34.05 Mbps 97.0%

8 19399 (1.76�RTT Delay) 34.05 Mbps 97.0%

9 23471 (2.13�RTT Delay) 33.04 Mbps 94.1%

10 17269 (1.56�RTT Delay) 32.72 Mbps 93.2%

11 17134 (1.55�RTT Delay) 33.02 Mbps 94.1%

12 17956 (1.63�RTT Delay) 32.60 Mbps 92.9%

13 27011 (2.45�RTT Delay) 32.45 Mbps 92.4%

14 17652 (1.60�RTT Delay) 30.03 Mbps 85.6%

15 16268 (1.47�RTT Delay) 30.10 Mbps 85.8%

Observe that the maximum switch queue (which corresponds to the bu�er requirement at the bottleneck

switch) initially increases linearly as a function of input load (i.e., number of servers; see rows 1 through

5). The e�ciency also increases linearly as a function of load in this range. The e�ciency value is high

(greater than 85%), the variation in e�ciency is due to use of random numbers in the simulation.

However, as the average load on the network exceeds the bottleneck link capacity (N = 7,ldots,15), the

bu�er requirement does not increase correspondingly. In other words, the maximum queue stabilizes

under overload conditions due to ABR feedback while the e�ciency remains high. This is explained as

follows.

Initially, when the network is lightly loaded, switches allocate high rates to sources. Due to the bursty

nature of the WWW applications, and the use of persistent TCP connections, the sources may dump

bursts of cells into the network (seen as queues at the bottleneck switch). This leads to a linear increase

6

in maximum queue lengths for low average loads. The maximum queue length is bounded by 3 � RTT

delay cells.

However, as the average load on the bottleneck switch increases, the switch allocates lower rates to the

contending sources. Now, even if the WWW applications dump cells, they are not admitted into the

ATM network since the source rate allocations are low. The low rate allocations limit the sudden load

seen by the network under overload conditions with bursty TCP sources.

6 Summary

In this paper, we have investigated the performance of ABR when bursty applications like WWW

clients and servers using TCP run over ATM networks. The problem with such applications is that

they might utilize open TCP congestion windows to dump bursts of data on the underlying ATM

network, resulting in bottleneck queues. Though the burst sizes (captured by �le size distributions)

used by these applications may be large, the average rate per connection is small. Hence, it takes a

large number of connections to load the network. Inspite of control mechanisms at TCP layer and ATM

layer the average load increases as the number of sources increase. However, as the load on the network

increases, the ABR switch algorithm controls the source rates to low values, and restricts the burstiness

in load seen by the network. As a result, the maximum queue lengths in the network are bounded and

the e�ciency remains high. Hence, ABR responds to smooth load increase and scales well in real-life.

References

[1] SPEC, \An Explanation of the SPECweb96 Benchmark", Available from

http://www.specbench.org/osg/web96/webpaper.html

[2] B.A. Mah, \An Empirical Model of HTTP Network Tra�c," IEEE INFOCOM'97a, April 1997.

[3] T. Berners-Lee, R. Fielding, and H. Frystyk, \Hypertext Transfer Protocol { HTTP/1.0", RFC

1945, May 1996.

[4] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, T. Berners-Lee, \Hypertext Transfer Protocol {

HTTP/1.1", RFC 2068.

[5] ATM Forum, \ATM Tra�c Management Speci�cation Version 4.0," April 1996, available as

ftp://ftp.atmforum.com/pub/approved-specs/af-tm-0056.000.ps

[6] Shivkumar Kalyanaraman, Raj Jain, Rohit Goyal, Sonia Fahmy,\A Survey of the Use-It-Or-Lose-

It Policies for the ABR Service in ATM Networks," submitted to Computer Networks and ISDN

Systems Journal, 1997.

[7] Shiv Kalyanaraman, Raj Jain, Sonia Fahmy, Rohit Goyal, and S.C. Kim, \Performance and Bu�er-

ing Requirements of Internet Protocols over ATM ABR and UBR Services," submitted to IEEE

Communications Magazine , 1997.

7

[8] Raj Jain, Shivkumar Kalyanaraman, Rohit Goyal, Sonia Fahmy, and Ram Viswanathan, \The

ERICA Switch Algorithm for ABR Tra�c Management in ATM Networks, Part I: Description,"

submitted to IEEE Transactions on Networking, 1997.

8

