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A numerical technique that relies on modifying the organic semiconducting host with metallic
carbon nanotubes �CNTs� to increase the transconductance or, equivalently, reduce effective channel
length �Leff� has recently been proposed. The authors use an extensive set of experimental data to
analyze the performance of these transistors using the theory of heterogeneous two-dimensional
percolating networks of metal-semiconducting CNTs embedded in the organic host. Their analysis
�i� reproduces experimental characteristics, �ii� shows that Leff scales as a power law of CNT-doping
density ���, �iii� illustrates the importance of an active subpercolating network of semiconducting
CNTs in an organic host, and �iv� establishes the upper limit of transistor count for an integrated
circuit based on this technology as a function of �, on current �Ion�, and circuit-failure probability
�F�. © 2006 American Institute of Physics. �DOI: 10.1063/1.2357852�

Organic thin-film transistors �TFTs� have been the sub-
ject of intense research for possible applications in electron-
ics displays, sensors, rf-ID tags, etc.1–6 If the transconduc-
tance �gm� of organic TFTs could be further improved, the
technology could potentially compete for applications cur-
rently based on more-expensive amorphous-Si or poly-Si
TFTs. gm can be improved either by enhancing mobility ���
�which is limited by extrinsic effects1� or by decreasing the
channel length �LC� �dictated by lithography�. An approach
involving modifying the transconductance of an organic host
with carbon nanotubes �CNTs� has recently been proposed. A
60-fold decrease in LC is observed that results in a similar
increase in gm with a negligible change in on-off ratio.1 In
this technique, the majority of the current paths are formed
by the network of CNTs, but short switchable semiconduct-
ing links are required to complete the channel path from
source to drain,1 effectively reducing the lithography-limited
Lc to the electrically relevant, Leff. One of the important ad-
vantages of this technique is that it provides an inexpensive
printing capability to get effectively lower LC �high gm� with-
out requiring expensive, high resolution lithographic tech-
niques required for state-of-the-art silicon microelectronics.1

The transport properties of this CNT-organic matrix compos-
ite are controlled by the statistical properties of the embed-
ded heterogeneous CNT network and its interaction with the
organic matrix. A rigorous physics-based model is required
to interpret experimental results and predict trends, account-
ing for the interfacial properties of the dispersion and host
materials.

In this letter, we present the effect of CNT dispersion in
a semiconducting host on the improved performance of or-
ganic transistors in terms of the effective channel length

�Leff� for different network densities ���. We represent the
organic-CNT network transistor �see Fig. 1�a�� as a two-
dimensional percolating random network of nanotubes of
length Lt and diameter d dispersed in an organic matrix of
�geometrical� channel length LC and channel width H. We
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FIG. 1. �Color online� �a� Organic thin-film network transistor with channel
length LC, channel width H, and individual tube length Lt. Source �S�, drain
�D�, and gate �G� are also indicated. The clusters of nanotubes on the left
and right sides of the black curve are not connected. The potential distribu-
tion in the CNT network is also shown. �b� X-Y cross section through the
organic substrate of the TFT in �a� showing contours of potential distribu-
tion. Lt=1 �m, LC=10 �m, H=4 �m, and �=5 �m−2. �c� X-Y cross section
through the organic substrate of the TFT showing contours of potential
distribution. Lt=1 �m, LC=10 �m, H=4 �m, and �=1 �m−2.
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validate the �-Leff dependence by experiments and numerical
simulations. The computational model is also used to illus-
trate the surprising role of semiconducting tubes in interpret-
ing some of the previously unexplained experimental
features.1 Finally, we calculate the fluctuations in transistor
performance as well as the probability of electrical short cir-
cuit due to fluctuation in Leff as a function of �. Given an
acceptable yield �e.g., 90%–99%� and minimum drive cur-
rent Ion, our analysis establishes the upper limit of the num-
ber of transistor in an integrated circuit �Nmax� as a function
of CNT density �.

For the organic transistors under consideration, since
LC��, the mean free path for electrons, we may use semi-
classical transport theory �drift-diffusion theory based on
Kirchoff’s law for the linear regime� to analyze device
characteristics.7–11 The current along the tube is given by
J=q�n�VGS�d��VDS� /ds. Using the current continuity equa-
tion dJ /ds=0 and accounting for charge transfer to intersect-
ing tubes as well as to the substrate, the dimensionless po-
tential distribution �i along tube i as well as the three-
dimensional potential field in the substrate are given by

d2�i

ds*2 + �
intersecting tubes j

cij�� j − �i� + dis��s − �i� = 0, �1a�

�*2�s + �
i=1

Ntubes

dis�v
�t

�s
��i − �s� = 0. �1b�

Here s is the length along the tube �normalized to grid spac-
ing� and cij =G0 /G1, where G0 and G1 are the mutual and
self-conductance of the tubes, respectively.7 The quantity cij
is the dimensionless charge-transfer coefficient between
tubes i and j at their intersection point and is specified a
priori; it is nonzero only at the point of intersection. The
term dis represents the dimensionless charge-transfer coeffi-
cient between the tube and substrate. The tube to substrate
electrical conductivity ratio is �t /�s. The geometric param-
eter �v and applied boundary conditions are explained in
Ref. 12. The problem is solved numerically using the finite
volume method.7,13 This computation of voltage distribution
is only valid for linear regime �� low VDS�. The results from
the simulation are discussed below.

To illustrate the basic technique, we compute the voltage
distribution inside the organic matrix and the CNT network
for LC=10 �m, Lt=1 �m, H=4 �m, VDS=−10 V, and VGS
=−100 V.1 Voltage contour plots are shown in Fig. 1 to vi-
sualize the CNT-organic interaction. As a first illustration, we
only disperse metallic CNTs with �=5.0 �m−2��th for me-
tallic percolation.14 The interconnected cluster of metallic
CNTs at the left and right of the black curve �drawn manu-
ally to show disconnection in CNT clusters� in Fig. 1�a� is
electrically isolated such that the charge can flow from the
left island to the right only through the switchable stretches
of semiconducting organic matrix �hypothesis proposed in
Ref. 1�. As a result, there is large voltage drop in the low-
mobility organic matrix around this region, as shown in Fig.
1�b�. This interpretation of “statistical shortening” of the
channel by CNT doping of the organic host �Leff depends on
the sample because the geometry of metallic clusters is
sample specific� is consistent with the hypothesis proposed
in Ref. 1. For low network densities ��=1.0 �m−2�, the volt-

age contours in the substrate are much less distorted and the
voltage varies approximately linearly from source to drain,
Fig. 1�c�.

Although our initial numerical model with only metallic-
CNT dispersions validates the general assertion in Ref. 1,
there is an anomalous jump in the IDS-VGS curve along the
VGS axis for 0.5% volume fraction of CNTs �see Fig. 1�b�,
Ref. 1� which is not properly understood within this frame-
work. We now calculate the IDS-VGS characteristics of the
organic TFT device in Ref. 1 with a realistic heterogeneous
network of semiconducting-metallic tubes �1:2 ratio� dis-
persed in an organic matrix to show that this anomalous shift
in IDS-VGS curve is a consequence of the formation of a par-
allel subpercolating network of semiconducting CNTs inside
the organic matrix.

The device parameters LC=20 �m, Lt=1 �m, and VDS
=−10 V are chosen to match the experiments in Ref. 1. We
checked the sensitivity of our results to various probability
distributions of tube lengths confined to 0.5–1.5 �m. We
find less than 10% variation in IDS, which is well within the
experimental-error margin. Charge-transfer coefficients cij
=10−4 and dis=10−4 are assumed and correspond to poor
contact conductance between tube-tube and tube-substrate.
The electrical conductivity ratio, �t /�s, for metallic CNTs in
the on state �VGS=−100 V� is taken as 5.0	104, while that
for semiconducting CNTs is 5.0	103.15 The metallic-CNT
conductivity is assumed constant with VGS, while the rolloff
in the conductivity of semiconducting CNTs and the organic
matrix with VGS is obtained from the experimental IDS-VGS
curves �0% and 0.5% volume fraction curves� in Fig. 1�b� of
Ref. 1. Figure 2 shows that numerical results agree well
with experiments over the entire range of tube densities
�1.5–17 �m−2�. The anomalous shifts of IDS-VGS curves are
also properly captured by our numerical simulations, Fig. 2;
this confirms that semiconducting CNTs are active elements
of this organic TFT device.

Since the performance of the organic transistor depends
on gm ��1/Leff�, optimization and circuit design with these
CNT-doped organic-TFTs require explicit specification of
Leff as a function of �. We disperse CNTs in different volume

FIG. 2. �Color online� Computed IDS-VGS at VDS=−10 V for different CNT
densities ���1–17 �m−2� is compared with experimental results in Ref. 1.
The vol % of CNT dispersions used in the experiments and the correspond-
ing network density ����m−2� used in the computations are shown. Lt

=1 �m, LC=20 �m, and H=200 �m. The shift in the IDS-VGS curves due to
the start of semiconducting-CNT percolation for CNT vol % 
0.2% is
shown by the dashed line.
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fractions in polythiopene organics and measured Ion �for fab-
rication details, see Ref. 1�. The density of the CNT network
��� is measured using atomic force microscopy. Figure 3�a�
shows that for reasonably high densities ��
3 �m−2�, a
power-law dependence of Leff on � is observed with a power
exponent of 1.53, i.e., Leff��−1.53. Our numerical simula-
tions with similar device parameters �LC=20 �m, Lt=1 �m,
and VDS=−10 V� and based on the average of 200 samples
show similar power-law behavior and have excellent agree-
ment with the experimental power exponent ��1% varia-
tion�, Fig. 3�a�.

To use these organic transistors as circuit elements for
large-area applications, it is important to analyze the fluctua-
tion of transistor performance �across an ensemble of CNT-
dispersed organic transistors nominally at the same average
concentration� to determine the probability of an electrical
short-circuit �by metallic tubes� as a function of CNT den-
sity. We analyze the statistical fluctuation by computing
Leff /LC over 200 different random ensembles of the CNT-
organic transistor for different ��1–17 �m−2�, Fig. 3�a�. As a
general rule, normalized Ion increases and normalized fluc-
tuation ��Leff� decreases with higher �, both desirable fea-
tures for high performance ICs. However, a calculation of the
percentage of failed transistors f �by determining ratio of
transistors above the metallic-percolative threshold based on
an ensemble of 4000 random samples� shows that circuit-

failure probability F, given by 1−F= �1− f�n, also increases
dramatically at higher densities �F is fixed by yield target, f
is simulated to infer n�. This opposing trend of transistor
count n �n�e−1.46� for ��12 �m−2� and drive current Ion
�see Fig. 3�b�� with respect to � defines the essence of the
optimization issue for CNT-doped organic transistors.

In summary, a computational diffusive-transport model
is developed to explore the performance of organic transis-
tors with a randomly dispersed CNT network. A power-law
behavior for Leff against � is observed both from the numeri-
cal model and experimental measurements. Computational
analysis establishes the importance of active subpercolating
networks of semiconducting CNTs. The present framework
for analyzing optimum � based on Ion, F, and performance
fluctuation is useful in the analysis, optimization, and devel-
opment of future organic electronics. Furthermore, the model
can easily be extended to predict the thermal, magnetic, and
other macroscopic transport properties of CNT-matrix
mixtures16,17 or other long-aspect ratio suspensions �DNA�
used in a wide range of applications.18,19
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FIG. 3. �Color online� �a� Effective reduction in channel length �Leff� against
density ��� for gate voltage VGS=−100 V. The power-law exponents �m� for
high-density CNT dispersions are also shown. The error bars reflect the
statistical measure of the variation across the ensemble. Lt=1 �m, LC

=20 �m, and H=200 �m. �b� Number of transistors in the circuit against �
for F=1% and 10% �left side�. Normalized on current of the transistor
against � �right side�. VGS=−100 V, Lt=1 �m, LC=20 �m, and H
=200 �m. For ��10 �m−2, the projections for n are shown by dashed
lines.
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