
Performance of Checksums and CRCs over Real Data

Craig Partridge (Bolt Beranek and Newman, Inc)†
Jim Hughes (Network Systems Corporation)

and
Jonathan Stone (Stanford University)

Abstract

Checksum and CRC algorithms have historically been studied under the assumption that the data fed to the algorithms
was uniformly distributed. This paper examines the behavior of checksums and CRCs over real data from various
UNIX® file systems. We show that, when given real data in small to modest pieces (e.g., 48 bytes), all the checksum
algorithms have skewed distributions. In one dramatic case, 0.01% of the check values appeared nearly 19% of the
time. These results have implications for CRCs and checksums when applied to real data. They also cause a spectacu-
lar failure rate for the both TCP and Fletcher’s checksums when trying to detect certain types of packet splices.

1. Introduction

The behavior of checksum and cyclic redundancy check
(CRC) algorithms have historically been studied under the
assumption that the data fed to the algorithms was random. (See,
for instance, the work on Fletcher’s checksum [1] and the AAL5
CRC [2,3]). If one assumes random data one can show a number
of nice error detection properties for various checksums and
CRCs. But in the real world, communications data is rarely ran-
dom. Much of the data is character data, which has distinct
skewing towards certain values (for instance, the character ‘e’ in
English). Binary data has similarly non-random distribution of
values, such as a propensity to contain zeros.

This paper reports on experiments with running various
checksums and CRCs over real data from UNIX filesystems. We
show that the non-random distribution of values in real data
causes extremely irregular distributions of checksum and CRC
values. In some tests, less than 0.01% of the possible checksum
values occurred over 19% of the time. We particularly examine
the effects of this phenomenon when applied to the TCP check-
sum [4,5].

2. CRCs vs. Checksums

Before examining the behavior of different algorithms, it is
worth briefly discussing the CRC and checksum algorithms we
used.

CRCs are based on polynomial arithmetic, base 2. CRC-32
[6] is a 32-bit polynomial with several useful error detection prop-
erties. It will detect all errors that span less than 32 contiguous
bits within a packet and all 2-bit errors less than 2048 bits apart.
It will also detect all cases where there are an odd number of
errors. For other types of errors, if they occur in data which has
uniformly distributed values, the chance of not detecting an error
is 1 in 232.

The concept of a checksum is less well defined. For the
purposes of data communication, the goal of a checksum algo-
rithm is to balance the effectiveness at detecting errors against the
cost of computing the check values. Furthermore, it is expected
that a checksum will work in conjunction with other, stronger,
data checks such as a CRC. For example, MAC layers are
expected to use a CRC to check that data was not corrupted during

† Craig’s work was supported, in part, by the U.S. Department of Defense.

transmission on the local media, and checksums are used by
higher layers to ensure that data was not corrupted in intermediate
routers or by the sending or receiving host.

The fact that checksums are typically the secondary level of
protection has often led to suggestions that checksums are super-
fluous. Hard won experience, however, has shown that checksums
are necessary. Software errors (such as buffer mismanagement)
and even hardware errors (such as network adapters with poor
DMA hardware that sometimes fail to fully DMA data) are sur-
prisingly common and checksums have been very useful in pro-
tecting against such errors.

The two most popular checksums, the TCP checksum [4,5]
(also used for IP and UDP) and Fletcher’s checksum [1], represent
different balances between performance cost and error detection.

The TCP checksum is a 16-bit ones complement sum of the
data. This sum will catch any burst error of 16 bits or less, and
over uniformly distributed values of data is expected to detect
other types of errors at a rate proportional to 1 in 216. The check-
sum also has a major limitation: the sum of a set of 16-bit values
is the same, regardless of the order in which the values appear.
The checksum was chosen by the Internet community in the late
1970s after experimentation on the ARPANET suggested the
checksum was good enough and could be implemented efficiently.

Fletcher’s checksum is designed to be a more robust error
detecting code. The checksum keeps two sums. One sum is a run-
ning sum of the data in 8-bit chunks. The other sum is a running
sum of the intermediate values of the first sum. The two 8-bit
sums are combined to generate a 16-bit checksum. Fletcher also
defined a 32-bit version, where 16-bit sums are kept. The algo-
rithm was defined for ones and twos complement arithmetic. The
version used for the TP4 checksum and in this paper uses 8-bit
chunks and twos complement arithmetic. Performed in twos com-
plement, the 16-bit checksum detects all single bit errors, a single
error of less than 16 bits in length, and all double bit errors sepa-
rated by 16 bits or less. The major known failing of the checksum
is that it is unaffected by zeros being added or deleted from either
the front or the back of a packet [8].

Historically, the TCP checksum and Fletcher’s checksum
have been viewed as offering a sharp choice between performance



and error detection capabilities. The TCP checksum requires one
or two additions per machine word of data (assuming the machine
word is a multiple of 16 bits long), while Fletcher’s sum requires
two additions per byte (even if the computation is done in word-
sized chunks). As a result, measurements have typically shown
the TCP checksum to be two to four times faster [9]. However,
that difference may be declining on newer processors (where the
memory access time dominates any computational cost).

3. Work with AAL5

This study began as a study of the error scenarios for packet
splices in Asynchronous Transfer Mode (ATM) Adaptation Layer
5 (AAL5). The AAL5 work has not been published and helps
motivate the rest of the paper and so is explained briefly here.

3.1. What is a Packet Splice?

AAL5 sends packets as a series of ATM cells, with the last
cell specially marked using a bit in the ATM header. Apacket
spliceoccurs when the right number of cells are dropped such that
pieces of two adjacent packets are combined so that they appear to
represent one AAL5 packet. Figure 3.1 illustrates a splice. Tw o
four-cell packets suffer a loss of four cells, such that the first and
third cell of the first packet and the first and last cells of the sec-
ond packet are spliced together to look like a single four-cell
packet.

Cells of First Packet Cells of Second Packet

Cells of Spliced Packet

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4

1-1 1-3 2-1 2-4

Figure 3.1: Example AAL5 Splice

Several conditions must be met for a splice to be valid.
First, AAL5 stores the length of the packet in the last cell, so the
size of the splice must be consistent with the AAL5 length in the
last cell. Second, because AAL5 specially marks the last cell of
ev ery packet, the last cell of the first packet cannot be part of the
splice. Third, the first 40 bytes of the first cell must be a valid
TCP/IP header (i.e., have a length consistent with the packet
length and certain bits must be set). Unless all three of these
requirements are met, the splice will be easily detected without
checking the CRC or checksum.

If the three requirements are met, then the splice has to be
detected by either the AAL5 CRC (CRC-32) or the higher layer
protocol’s checksum (such as the TCP or Fletcher’s checksum).

In 1993, an informal study by Bill Marshall and Chuck
Kalmanek at AT&T Bell Labs simulated file transfers from a
UNIX filesystem (using real data from the filesystem) and exam-
ined the performance of the AAL5 CRC. They found a surprising
number of cases where the packet splice passed the AAL5 CRC,
leading them to wonder if the AAL5 CRC was strong enough.
With Marshall’s and Kalmanek’s assistance, the authors set out to
do a more complete set of tests.

3.2. Testing Splices

Our test program simulated a file transfer with the File
Transfer Protocol (FTP) of all files on a file system (or selected
directories of a file system) via TCP/IP using AAL5 over ATM.
All TCP header fields were filled in as if the file transfer was
being done over the loopback interface (127.0.0.1) and the TCP
sequence number was incremented for each packet. All IP header
fields included in the TCP checksum were also filled in. Other IP
header fields were set to zero. The program then examined all
possible splices of two adjacent TCP segments and checked to see
if either the TCP checksum or AAL5 CRC failed to detect the
splice. If either failed, the program then checked to see if the data
in the splice matched the data in the first or second segment.

Table 3.1: CRC and TCP Checksum Results
(256 Byte packets on systems at NSC)

code splices %

X 37 0.00000001114
HX 37 0.00000001114
C 3177810066 0.95747494293

HC 23000361 0.00693001434
XC 158753861649 47.83257698434

HXC 165883503938 49.98073993369
FC 4056678126 1.22227810238
total 331894854214 99.99999999996

The test program was run over file systems at Network Sys-
tems Corporation (NSC), the Swedish Institute of Computer Sci-
ence (SICS), and Stanford University, as well as over a modest
quantity of random data (generated using therandom routine in
the UNIX library). The TCP segment sizes examined were 256
bytes long, except for runt packets at the end of files. The code
column indicates the type of splice. A C indicates the splices were
detected by the CRC, an X indicates the splices were detected by
the checksum, an H indicates the splices were detected by the
TCP header checks, and an F indicates that the splice had data
identical to the first packet. A P indicates the splices passed both
the CRC and the checksum, or in section 5, where the CRC was
not computed, indicates splices that passed the checksum. The
NSC data is consolidated. The SICS and Stanford data are by file
system. The total number of splices is greater than 232, and the
percentage columns do not always add to 100%, due to floating-
point error.

We would expect that the CRC of a splice would match the
CRC of the original AAL5 packet at a rate of 1 in 232 (or
0.0000000232% of the time). Similarly, we would expect that the
TCP checksum would fail to catch bad splices at a rate of 1 in 216

(or 0.001526% of the time). Observe that for the CRC, the CRC
must match the CRC of the second AAL5 packet, while for TCP,
the checksum over the data must equal zero.



Table 3.2: CRC and TCP Checksum Results
(256 Byte packets on systems at SICS)

system code splices %

anat.sics.se X 2 0.0000000425
/home1 HX 2 0.0000000425
54,381 files C 27215729 0.5779950000
5,182,439 pkts HC 100667 0.0021379200
(5-9-95) XC 2292853743 48.6946000000
2% executables HXC 2354575619 50.0054000000

FC 33896991 0.7198890000
total 4708642753 100.0000220050

anhur.sics.se C 3915848 0.3075490000
/gnu HC 20544 0.0016135200
14,210 files XC 627917291 49.3164000000
1,400,553 pkts HXC 636661787 50.0032000000
(5-9-95) FC 4726863 0.3712460000

total 1273242333 100.0000085200

anhur.sics.se C 17206539 1.2252400000
/home2 HC 15190 0.0010816500
11,976 files XC 664676011 47.3301000000
1,538,940 pkts HXC 702017150 49.9890000000
(5-9-95) FC 20427081 1.4545700000
13% executables total 1404341971 99.9999916500

aten.sics.se X 1 0.0000000239
/home1 C 12638895 0.3019130000
51,745 files HC 101221 0.0024179300
4,603,993 pkts XC 2065716781 49.3450000000
(5-10-95) HXC 2092873982 49.9937000000

FC 14942433 0.3569390000
total 4186273313 99.9999699539

aten.sics.se X 1 0.0000000223
/src3 C 20643760 0.4600540000
43,966 files HC 441607 0.0098413800
4,926,979 pkts XC 2199597472 49.0189000000
(5-9-95) HXC 2243111896 49.9886000000

FC 23451293 0.5226210000
total 4487246029 100.0000164023

fafner.sics.se X 1 0.0000000226
/opt HX 3 0.0000000679
116,493 files C 127091923 2.8771900000
4,952,333 pkts HC 64427 0.0014585400
(5-9-85) XC 1927868532 43.6444000000
0.2% executables HXC 2211698912 50.0699000000

FC 150496407 3.4070400000
total 4417220205 99.9999886305

The tables show that for real data, the CRC failure rate is
almost perfectly consistent with the expected failure rate for ran-
dom data. (The difference between our results and those of Mar-
shall and Kalmanek is the FC entries. Our tests incremented the
TCP sequence number for each segment while their’s did not.
The difference means that splices that match the first packet will
fail the CRC in our tests, but would have passed the CRC in their
tests). For TCP, howev er, the story is different. Between 0.2%
and 3% of the splices (those coded C and HC) passed the check-
sum.

Table 3.2: CRC and TCP Checksum Results (cont.)
(256 Byte packets on systems at SICS)

system code splices %

goodyear.sics.se X 1 0.0000000274
/home1 HX 1 0.0000000274
38,918 files C 6354096 0.1738850000
4,016,824 pkts HC 44398 0.0012149900
(5-11-95) XC 1813450458 49.6265000000

HXC 1827095605 49.9999000000
FC 7251253 0.1984360000
total 3654195812 99.9999360448

max.sics.se C 8308523 1.9317600000
/usr HC 25604 0.0059530200
10,874 files XC 196565048 45.7021000000
480505 pkts HXC 215269141 50.0508000000
(5-9-95) FC 9932712 2.3093900000
SPARC executables total 430101028 100.0000030200

soma.sics.se HX 2 0.0000001111
/home1 C 6440806 0.3578350000
16,744 files HC 78526 0.0043627000
1,974,681 pkts XC 888128423 49.3422000000
(5-10-95) HXC 899738559 49.9872000000

FC 5552201 0.3084660000
total 1799938517 100.0000638111

Table 3.3: CRC and TCP Checksum Results
(256 Byte packets on systems at Stanford)

system code splices %

pescadero.stanford.edu C 24293449 1.4294800000
/u2 HC 16170 0.0009514810
36,215 files XC 793495112 46.6911000000
1,896,212 pkts HXC 850863326 50.0668000000
(5-11-95) FC 30788067 1.8116400000

total 1699456124 99.9999714810

bump.stanford.edu HX 1 0.0000000332
/usr C 8652367 0.2873880000
24,262 files HC 95320 0.0031660500
3,298,360 pkts XC 1486821267 49.3847000000
(5-11-95) HXC 1504581412 49.9747000000
RS6000 executables FC 10538800 0.3500460000

total 3010689167 100.0000000832

4. Explaining The TCP Checksum Failures

Why does the TCP checksum fail to detect so many splices?
The reasons have to do with the distribution of data values (espe-
cially zeros) and how data from one packet can be mixed with
data from another packet.

4.1. Failure Scenarios

The TCP checksum has two interesting properties. First, it
is not dependent on the order of its data. The same data (consid-
ered as a series of 16-bit integers) can be permuted in any order
and still have the same sum. Second, we can compute the TCP
checksum in pieces and then add the pieces to get the complete
packet sum. So, we can think of the TCP checksum of a packet
broken into ATM cells as being the sum of the individual check-
sums of each 48-byte cell.



The usual requirement for a splice to pass the TCP check-
sum is that the checksum of the splice add up to the checksum of
the entire first packet contributing to the splice. Because the
splice contains cells of the first and second packets, this require-
ment can also be expressed as a requirement that the checksum of
the cells from the first packet not included in the splice must equal
the checksum from the cells of the second packet that are included
in the splice. If just one cell from the second packet is included in
the splice, this requirement reduces to the requirement that the
checksum of the cell from the second packet have the same sum
as the cell it replaces. In multicell replacements, the sum of the
mixes of cells must be equal.

4.2. Distributions of the TCP Checksum

A key issue as we consider different error scenarios is
whether the TCP checksum algorithm gives an even distribution
of checksum values over random data. Given random pieces of
data, a good checksum or CRC should uniformly scatter the
checksums over the entire checksum space. Obviously a check-
sum algorithm that does not uniformly distribute checksum values
(i.e., has hotspots) will be more likely to have multiple cells with
the same checksum. So, before considering more complex error
scenarios, the first challenge is to determine whether the TCP
checksum inherently has hotspots.

The simplest way to test whether a checksum has hot spots
is to apply the checksum algorithm to a large number of random
pieces of data, compute how many times each checksum occurred,
and then plot, for a given frequency,x, how many checksumsy
occurred that many times. If the checksums are uniformly dis-
tributed, the graph should be a normal distribution.

y

x

Figure 4.1: TCP Checksum Frequencies
Random Data (48-byte)

[Run of 5/8/95: 4 mil. sums]

100

755025

frequency at which xsum occurs

3000

2000

1000

nu
m

be
r 

of
 s

um
s 

at
 g

iv
en

 fr
eq

ue
nc

y

Tests with random data (generated using the UNIXran-
dom function) strongly suggest the TCP checksum uniformly dis-
tributes its checksums when given random data. The plot for 1
million checksums of 48-byte chunks of random data is shown in
Figure 4.1. Given that the TCP checksum uniformly distributes
values when given random data, we must look for more complex
relations between the TCP checksum and its data to explain the
high rate of failures on splices.

4.3. The Distribution of Checksum Values

If the distribution of cell checksum values is completely
uniform, we can roughly approximate the chance of a cell in the
first packet having the same checksum as a cell in the second
packet by using the binomial distribution. Given a packet, length
n, the chance that a given checksum value occurs at least once in
the packet is:

n

i=1
Σ 


n

i


pi (1 − p)n−i p = . 000015259

Except for the case wherei = 1 the terms in this equation rapidly
go to zero, so one can approximate the chance of two cells in the
respective packets having the same sum multiplying 0. 000015259
by n. A more accurate set of values forn = 5 is shown in Table
4.1.1 The table shows the chance that a particular sum appeared a
certain number of times in the second packet, given that the sum
appeared one or more times in the first packet.

If two cells have the same checksum, how many valid
splices can they create? TCP would give the same checksum for
all n! permutations of then − 1 cells of the first packet and the one
cell of the second packet. So one might think there would ben!
valid splices. However, ATM requires that cells be transmitted in
order, so only one permutation exists: the cells from the first
packet followed by the cells from the second packet. Putting
these results together, the chance of a valid splice occurring a ran-
dom world is the chance of two cells having the same checksum
multiplied by the fraction of splices in which the cell from the
second packet can replace its twin in the first packet. For even
small n, this value is extremely small. Forn = 5 it is about
0. 000003.

1 Readers should note that for 256 byte packets, there are 7 cells per
packet, not 5. The valuen = 5 here was chosen simply because it is
the largest number we could legibly fit on the page. The probabilities
for n = 5 andn = 7 are very similar.



Table 4.1: Conditional Checksum Probabilities on Random Data
Given that a checksum value occurs x times in one set of 5 cells, how many times, y, does the checksum value occur in the
next 5 cells?

x y=0 y=1 y=2 y=3 y=4 y=5

1 0.999862677382 0.000076285687 0.000000002328 0.000000000000 0.000000000000 0.000000000000
2 0.000061028550 0.000000004656 0.000000000000 0.000000000000 0.000000000000 0.000000000000
3 0.000000001397 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
4 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000
5 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000 0.000000000000

Table 4.2: Conditional Checksum Probabilities on Real Data (fafner.sics.se:/opt)
x y=0 y=1 y=2 y=3 y=4 y=5

1 0.8188250717 0.0126745169 0.0032303349 0.0011729930 0.0008442541 0.0005629384
2 0.0088466738 0.0065433916 0.0033164332 0.0011795923 0.0012690670 0.0001506336
3 0.0033005104 0.0023542735 0.0023399238 0.0015566367 0.0009947726 0.0002762128
4 0.0024117107 0.0033737553 0.0027796619 0.0023851215 0.0015081009 0.0400142085
5 0.0018292045 0.0027993831 0.0017058891 0.0015135492 0.0501021707 0.0201390142

Table 4.3: Conditional Checksum Probabilities on Real Data (anhur.sics.se:/home2)
x y=0 y=1 y=2 y=3 y=4 y=5

1 0.9953196864 0.0015850563 0.0002118544 0.0000337683 0.0000048791 0.0000019259
2 0.0014137752 0.0004401436 0.0001526636 0.0000396746 0.0000091162 0.0000023111
3 0.0001951629 0.0001155570 0.0000597044 0.0000359511 0.0000154076 0.0000003852
4 0.0000530278 0.0000216990 0.0000195163 0.0000222126 0.0000109137 0.0000493043
5 0.0000247805 0.0000206719 0.0000174619 0.0000133532 0.0000719021 0.0000381338

Table 4.4: Conditional Checksum Probabilities on Real Data (bump.stanford.edu:/usr)
x y=0 y=1 y=2 y=3 y=4 y=5

1 0.9709298340 0.0020089962 0.0002286810 0.0000954607 0.0001466410 0.0000577010
2 0.0023987245 0.0011726727 0.0006384265 0.0004155080 0.0004798814 0.0001462618
3 0.0009802349 0.0004860988 0.0006397913 0.0004921646 0.0003992061 0.0001901631
4 0.0006842992 0.0004100487 0.0008237370 0.0006968099 0.0007820345 0.0045046220
5 0.0004462920 0.0004760902 0.0005193091 0.0005259057 0.0058064964 0.0024179076

Table 4.5: Conditional Checksum Probabilities on Real Data (pescadero.stanford.edu:/u1)
x y=0 y=1 y=2 y=3 y=4 y=5

1 0.9458134207 0.0030865192 0.0003125627 0.0000583623 0.0000535736 0.0000580630
2 0.0028412977 0.0005326435 0.0002656733 0.0000901873 0.0001006625 0.0000681393
3 0.0008459046 0.0001763839 0.0001374757 0.0000848997 0.0000633506 0.0000468894
4 0.0005934002 0.0001540366 0.0001508442 0.0000791134 0.0001131331 0.0152492286
5 0.0004217052 0.0004531311 0.0004376676 0.0003826973 0.0192650557 0.0080639779

When we look at real data, however, the results are very
different. Tables 4.2 through 4.5 show the same information as
Table 4.1 but for real packets of length 5 from file systems at
SICS. The probabilities are wildly different from those found
for random data. On theopt file system, 18% percent of packet
pairs have at least one sum in both packets. On the other file
system (home2), only 0.5% of the packet pairs share at least one
sum, but the distribution is tail-heavy − a lot of packet pairs
share multiple sums in common. However, all the real filesystem
distributions are in sharp contrast to the expected values for ran-
dom data, where only 0.00138% of packet pairs share sums, and
all but the very upper-left corner of table 4.1 contains zeroes.

This data shows that the TCP checksum on real data has
hotspots. Particular sums appear far more frequently than ran-
dom chance would suggest. One can also see this behavior in

Figures 4.2 and 4.3. The figures are a plot of the frequency with
which checksums occurred (using the same approach as in Fig-
ure 4.1). The checksums came from computing the checksum on
successive 48-byte chunks of two file systems from SICS. This
plot should be a normal curve centered around the vertical
dashed line. Instead the curve is extremely tail heavy for one
system and somewhat tail heavy for the other. If one examines
the data closely, one discovers two things. First, that the check-
sum value of zero occurs between 7% and 15% of the time. Sec-
ond, that 65 most frequently occuring checksum values other
than zero (0.1% of the checksum space) account for between 1%
and 4.5% of the checksum values seen.

It is important to note that the hotspots are caused by the
data, not by some inherent characteristic of the TCP checksum.
For instance, while the TCP checksum for a cell is zero much of



y

x

Figure 4.2: TCP Checksum Frequencies
Real Data (fafner.sics.se:/opt 48-byte chunks)

[Run of 5/10/95: 26,176,974 sums]

500

1000

1500

2000

frequency at which xsum occurs

2
11

2
14

2
17

2
20

2
22

600

450

300

150

nu
m

be
r 

of
 s

um
s 

at
 g

iv
en

 fr
eq

ue
nc

y

y

x

Figure 4.3: TCP Checksum Frequencies
Real Data (anhur.sics.se:/home2 48-byte chunks)

[Run of 5/10/95: 8,355,409 sums]

500

1000

1500

2000

frequency at which xsum occurs

2
11

2
14

2
17

2
20

2
22

1500

1000

500

nu
m

be
r 

of
 s

um
s 

at
 g

iv
en

 fr
eq

ue
nc

y

the time, in almost all of those situations, the data in the cell is
all zeros.

4.4. The Role of Zeros

The frequency of the zero checksum led us to study the
effects of zeroed data on the checksum. It is no surprise that
there are a lot of zeros in filesystem data (the UNIX filesystem
has long been optimized such that completely zero blocks did
not need to be saved on disk). But we were interested to find
some unanticipated effects of zeroed data.

Consider the situation in which the two adjacent packets
both have data which is entirely zero (between 2% and 11% of
adjacent packets were all zeros on filesystems at SICS). Most of
the possible splices will involve replacing one zeroed cell with
another, which will result in packets which pass the checksum
because they equal the first packet, but fail the CRC (because the
CRC is in the trailing packet, and thus includes a different TCP
sequence number). Almost all of the splices labelled FC above
in the tables in section 3 are the result of mixing zero cells.

However, another form of splice can also occur. When the
TCP checksum is computed, it will sum the TCP pseudo header
and then a series of zeros. The resulting checksum will just be
the checksum of the TCP pseudo header. Then under TCP rules,
the inverse of the checksum value is placed in the TCP checksum
field, so that a checksum of a valid segment will sum to zero.

Since the TCP/IP header fits in the first cell (unless there
are IP options), the result is that all cells except the first cells of
each packet have a checksum of zero, and the TCP portion of the
first cells has a checksum of 0xFFFF (the other zero in ones
complement). In our tests, the portion of the IP header not
included in the TCP pseudo header was set to zero, with the
result that the checksum of the first cells stayed 0xFFFF. Since
0xFFFF and 0 are equal in ones complement, this meant that the
header cell of the second packet had the same checksum as a cell
of zeros and could replace a cell of zeros in a splice and pass the
TCP checksum. Many of the splices labelled C come from
replacing a zeroed cell in the first packet with the header cell
from the second packet. Observe that both header cell replace-
ment and mixing of zero cells can also occur even if only parts
of both cells are zeros.

What if the IP header had been filled in? The IP header
also contains a checksum, which makes the IP header sum to
zero. So the first cell would have two overlapping headers, each
of which, when their checksum is included, would sum to zero.
The net result is that the checksum of the first cell, with the IP
header filled in, would be the inverse checksum of TCP pseudo
header, namely the IP source and destination addresses plus the
TCP length and the TCP protocol id.2 While we have not ana-
lyzed the typical combinations of the IP address space and TCP
length as a checksum value, we suspect they are not a very good
error check. For one thing, with the exception of the length,
these fields do not typically change during the lifetime of a TCP
connection, and the length is usually constant for file transfers.

4.5. Zeros Are Not the Whole Story

While the presence of groups of zeros in the data explain a
large number of the splices that pass the TCP checksum, they do
not come close to explaining all of them. There are several ways
to illustrate this point. One way is to observe that the number of
zero checksums is simply the highest value (on thex axis) in
Figures 4.2 and 4.3. If that point is removed, the distributions
are still tail heavy. Another is to look at Tables 4.6 and 4.7,
which show the conditional probabilities that the same checksum
appears in two adjacent packets, but does not include zero

2 Imagine checksumming the 40-byte combined TCP/IP header.
After summing the IP header, the sum will be zero. So the checksum
will simply be the sum of the TCP header and we know the sum of
the TCP header plus the pseudo header would have been zero.



checksums. The tables are derived from the same file systems as
Tables 4.2 and 4.3, and while the probabilities are better, they are
still not close to the expected values in Table 4.1. It is still very
common for two adjacent packets to have cells with the same
checksum. And ev en if one eliminates all packets with zeroed
cells from consideration, the number of splices that pass the
checksum is between 0.0058% and 0.1%, which is 4 to 75 times
larger than random chance would suggest. So we still need to
explore other error scenarios that exploit the skewed checksums.



Table 4.6: Conditional Checksum Probabilities on Real Data (fafner.sics.se:/opt)
Zero checksums (0x0 and 0xFFFF) not included.

x y=0 y=1 y=2 y=3 y=4 y=5

1 0.9488523081 0.0140521197 0.0025279461 0.0003277124 0.0001275698 0.0000266086
2 0.0096444439 0.0062813985 0.0024742840 0.0009447371 0.0003739881 0.0000501469
3 0.0023721214 0.0012702247 0.0016497748 0.0012360519 0.0004553711 0.0001027856
4 0.0009740155 0.0006359355 0.0010509489 0.0008959251 0.0004334347 0.0006680616
5 0.0003891167 0.0002626149 0.0002574533 0.0002934505 0.0009277397 0.0004417109

Table 4.7: Conditional Checksum Probabilities on Real Data (anhur.sics.se:/home2)
Zero checksums (0x0 and 0xFFFF) not included.

x y=0 y=1 y=2 y=3 y=4 y=5

1 0.9953212093 0.0015858241 0.0002117855 0.0000337573 0.0000048775 0.0000019253
2 0.0014120316 0.0004400004 0.0001526139 0.0000396616 0.0000091132 0.0000023104
3 0.0001950994 0.0001155194 0.0000596850 0.0000359394 0.0000154026 0.0000003851
4 0.0000530105 0.0000216920 0.0000195099 0.0000222054 0.0000109102 0.0000492883
5 0.0000247725 0.0000206651 0.0000174563 0.0000133489 0.0000718787 0.0000381214

4.6. Cell for Cell Replacement

The easiest error scenario is that a cell in the second
packet has the same checksum as a cell in the first packet and
replaces that cell in the splice. The resulting splice will pass the
TCP checksum.

The checksum hotspots mean that there is a higher chance
of a cell in the second packet successfully replacing the cell in
the first packet. However, because ATM requires that cells be
delivered in order, if two cells can replace each other, there is
only one possible bad splice out of the hundreds or thousands of
possible splices for a pair of packets. When one weights the
chance of matching cells by the fraction of valid splices those
cells can produce, one finds that cell for cell replacement can
explain some (perhaps as much as half) of the checksum failures.

4.7. MultiCell Replacement

Multicell replacement is when two or more cells in the
first packet are replaced by two or more cells in the second
packet, and the replacement cells have the same aggregate
checksum as the cells they replace. Our test data indicates that
multicell replacement is the reason for the high number of
splices that pass the checksum, when zeroed cells are included.
When zeroed cells are excluded, multicell replacement appears
to account for the remaining splices that pass the TCP checksum.

The importance of multicell replacement comes from two
factors. First the skewed distribution of checksum for individual
cells persists when one computes the sum of two or three cells’
checksums. Figure 4.5 illustrates the point by showing the dis-
tribution for sums of two cell checksums on the same file system
used for the earlier figures. The distribution of three cell sums is
very similar.

Second, there are far more opportunities for multicell
checksums to match than for one cell checksums to match. For a
packet of lengthn cells, there aren one cell checksums in the
first packet that might have a match among then cell checksums

of the second packet. But there are
n−1

i=1
Σ i sums of two checksums

in the first packet that might have a match in the second packet.

x

x

Figure 4.5: Frequencies for Sums of Two Checksums
Real Data (fafner.sics.se:/opt 48-byte chunks)

[Run of 1/30/95: 141,701,500 sums]

2000

4000

6000

8000

frequency at which xsum occurs

2
13

2
16

2
19

2
22

2
24

200

150

100

50

nu
m

be
r 

of
 s

um
s 

at
 g

iv
en

 fr
eq

ue
nc

y

The results can be striking. For instance, in one test there
were 15,380,108 cases where a single checksum in one five-cell
packet matched a checksum in the following packet. However,
there were 85,3505,65 cases where a two-cell sum in the first
packet matched a two-cell sum in the second packet.

4.8. Location of Checksum Field in Packet

Even multi-cell replacement is not the whole story. At
least for TCP, checksums located in a trailer will perform better
at detecting splices than checksums located in a packet header.
Consider the scenario where a burst of cell loss splices the front
of one packet into the tail of the following packet. The resulting
splice will have the first packet’s TCP header, including TCP
sequence number, ACK field, and checksum. As long as the
replacement cells in the splice have the same overall checksum
as the original packets, the TCP checksum will not detect the
splice. Figure 4.1. shows this diagrammatically. In contrast, the
CRC in such a splice will be the CRC value from the second
packet. This CRC was computed over the entire second packet,
including the second packet’s TCP header fields. Since our



Legend:

Cells from first packet Cells from second packet

First header Second header

Second checksumFirst checksum

Figure 4.6: Fate-sharing with checksums in headers

Figure 4.6: Fate-shar ing with checksums in headers
simulator never retransmits TCP segments, the sequence number
fields of two adjacent TCP packets are guaranteed to be differ-
ent. The AAL5 CRC is therefore has an excellent chance of
detecting such splices, even when the TCP payload in the splice
is identical to the first packet. The two key factors here are that
cells are not reordered, and that the AAL-5 CRC is located at the
end of the last cell of a packet. Those two facts guarantee that
the AAL5 checksum and the TCP header can never share fate in
a splice. If the TCP checksum was at the end of the TCP packet,
instead of in the header, the TCP checksum would not fate-share
either. Figure 4.7 shows the same splice as Fig. 4.6, but with the
TCP checksum located in a packet trailer instead of the packet
header. Here, the fate-sharing is avoided, the resulting splice has
the TCP header from the first packet and the checksum from the
second packet. Even if the new cells in the splice have the same
checksum as the cells they replaced, the TCP checksum still has
a good chance of detecting the splice.

We conducted an experiment to see if checksum fate-shar-
ing was a real effect. We changed the simulator to model a pro-
tocol identical identical to TCP, except that the TCP header
checksum is left zero, and the checksum value is appended to the
end of the TCP data. In one experimental run over a single
filesystem of real data, the undetected splice rate dropped to 1 in
2ˆ16. We conclude that protocol designers should consider plac-
ing checksums in pacekt trailers rather than headers, as has been
standard practice in Internet protocols to date.

5. Alternatives: Compression and Fletcher’s Checksum

So far, we hav e focussed on explaining the failure of the
TCP checksum to catch a large number of splices. This section
briefly considers some related topics, in particular, whether com-
pressing the data improves checksum performance and whether
other checksums, in particular, Fletcher’s checksum performs
better.

The TCP checksum’s failure to detect many splices is
apparently due to regular patterns (most notably zeros) in the
data being summed. One obvious way to deal with repeated data
patterns is to compress the data. As an experiment to verify that

Legend:

Cells from first packet Cells from second packet

1-1 1-2 1-3 1-4 2-1 2-2 2-3 2-4

Resulting splice

First header

First checksum

Second header

Second checksum

Figure 4.7: Fate splitting with checksums in trailers

Figure 4.7: Fate splitting with checksums in trailers
the problem was in repeated data patterns, we compressed all the
files in the file system at SICS that gav e the TCP checksum the
most trouble (/opt on fafner.sics.se) and ran our tests on the com-
pressed files. The results are shown in Table 5.1. The interest-
ing result is that the number of splices that passed the checksum
is approximately 0.0018%, which is very close to the expected
rate, on random data, of 0.0015%. So compression clearly helps.

Table 5.1: CRC and TCP Checksum Results
(256 Byte packets on systems at SICS)

system code splices %

fafner.sics.se C 16295 0.0010513786
/opt compressed HC 11763 0.0007589670
1,679,166 pkts XC 775856442 50.0595000000

HXC 773933354 49.9354000000
(5-9-85) FC 51902 0.0033488000

total 1549869756 100.0000591456

Another obvious question to ask is whether another check-
sum algorithm would perform better. The clear candidate check-
sum is Fletcher’s checksum, which has provably stronger error
properties. Table 5.2 shows the results for Fletcher’s checksum
for three filesystems. The results can be compared with those for
the TCP checksum on those filesystems in Table 4.2. The one
difference is that in the tests for Table 5.2 the AAL5 CRC was
turned off, so the splices that the Fletcher’s checksum failed to
catch are under codes P and H (rather than C and HC in Table
4.2). The results were very surprising − Fletcher’s checksum
was worse than the TCP checksum at catching invalid splices!
The result is surprising for two reasons. First, Fletcher’s check-
sum is supposedly stronger. Second, when looking at plots of
checksums over 48-byte chunks (Figure 5.1), the Fletcher’s
checksum looks to have a curve similar to that of TCP and
because the value of Fletcher’s checksum is position dependent
(i.e., the contribution of the bytes of a cell to the checksum
depends on where the cell lies in a packet) we would expect
Fletcher’s checksum to be better than the TCP checksum at
detecting the cell reordering that occurs in splices. We hav e no



explanation for this result except to speculate it is related to the
checksum’s lack of sensitivity to zeros.

Table 5.2: Fletcher’s Checksum Results
(256 Byte packets on systems at SICS)

system code splices %

anhur.sics.se P 16927890 1.2053800000
/home2 H 38931878 2.7722200000
11,978 files X 664962344 47.3500000000
1,538,959 pkts HX 663107668 47.2179000000
(5-11-95) F 20427026 1.4545500000

total 1404356806 100.0000500000

aten.sics.se P 604624 0.1873100000
/home1 H 18436295 0.5711500000
40,799 files X 1600416300 49.5804000000
3,550,000 pkts HX 1595307193 49.4221000000
(5-11-95) F 7718380 0.2391130000

total 3227924408 100.0000730000

fafner.sics.se P 57935874 1.8679900000
/opt H 186056738 5.9989100000
26,896 files X 1420744704 45.8082000000
3,400,000 pkts4 HX 1364400588 43.9915000000
(5-10-95) F 72372832 2.3334700000

total 3101510736 100.00007000

y

x

Figure 5.1: Frequencies for Fletcher’s Checksum
Real Data (fafner.sics.se:/opt 48 bytes)

[Run of 1/30/95: 35,425,431 sums]

500

1000

1500

2000

frequency at which xsum occurs

2
11

2
14

2
17

2
20

2
22

400

300

200

100

nu
m

be
r 

of
 s

um
s 

at
 g

iv
en

 fr
eq

ue
nc

y

6. Observations

The results of the previous three sections lead to a number
of interesting observations.

First, checksum distributions on modest amounts of real
data are substantially different from the distributions one would
anticipate for random data. Another (more controversial) way to
express this point is that it does not seem to matter much which
of the common CRCs or checksums one uses on small amounts
of data, because the distribution of values in the data (and in par-
ticular, the frequency with which zeros occur) forces a skewed

3 This run completed only 2/3’s of the file system due to a system
failure.

distribution.

Second, for the TCP checksum (and apparently Fletcher’s
checksum as well), the skewed distribution makes failure in the
face of combined or reshuffled data more likely. In particular, if
a router or host has a buffering problem that causes adjacent
packets to be merged, the TCP checksum might fail 1% of the
time rather than the 0.0015% of the time that purely random data
distribution would suggest.

Third, compressing data clearly improves the performance
of checksums. Since compression also typically reduces file
transfer times and saves disk space, there’s a strong motivation
for FTP archives to compress their files.

Finally, there’s a strong suggestion that the common prac-
tice of adjusting checksum fields to cause a packet or segment’s
checksum to sum to zero is a bad idea. If a very common type of
packet is one that mixes a little non-zero data (such as headers)
with a lot of zero data, why should we intentionally insert values
into the checksum field such that the non-zero data sums to zero
too?

7. Recommendations

While these scenarios may seem worrisome, it is important
to keep in mind that these error scenarios are all quite rare. This
work was initially motivated by studying extremely uncommon
AAL5 error scenarios. The chance of a splice is clearly less than
the chance of an ATM cell loss and the chance of an ATM cell
loss is often estimated at 1 in 108 or less. Furthermore, the ATM
CRC will fail to detect a splice approximately at a rate of 1 in
232, so the chance of the TCP checksum being called upon to
detect a splice is much less than 1 in 108×232 or less than one
chance in 1017.

In general, the checksums are rarely placed in a situation
where it is the primary method of failure detection. (We are
aw are of one exception to this rule. The TCP checksum is the
primary method of error detection over SLIP and Compressed
SLIP links. That’s probably not wise). What this work simply
shows is that checksums are even less effective error detection
method than first thought, because real data is not random, and
in particular, contains a lot of zeros.

As a preliminary recommendation, we also suggest that
protocol designers consider avoiding the practice of adjusting the
checksum fields so that the packet sums to zero and consider
alternative approaches. We also suggest that protocol designers
consider avoiding the practice of placing checksums in a proto-
col header, but instead append them as a trailer to the data being
checksummed.

Acknowledgements

The authors would like to acknowledge the help of Chuck
Kalmanek and Bill Marshall of Bell Labs, who discussed issues
of study design. We also gratefully acknowledge the help of
David Feldmeier of Bellcore and Lansing Sloan of Lawrence
Livermore, who helped us with substantially faster CRC compu-
tation algorithms, and the Swedish Institute of Computer Sci-
ence, which allowed us to use its filesystems and one of its fast
multiprocessors for some of the test runs.



References

1. J. Fletcher, ‘‘An Arithmetic Checksum for Serial Transmis-
sions,’’ IEEE Trans. on Communication, Vol. 30, No. 1, January
1982, pp. 247-252.

2. Z. Wang and J. Crowcroft, ‘‘SEAL Detects Cell Misordering,’’
IEEE Network Magazine, Vol. 6, No. 4, July 1992, pp. 8-19.

3. D. Greene and B. Lyles, ‘‘Reliability of Adaptation Layers,’’
Protocols for High-Speed Networks, III (Proc. IFIP 6.1/6.4
Workshop), ed. B. Pehrson, P. Gunningberg, and S. Pink, 1992.

4. J. Postel, ‘‘Transmission Control Protocol,’’ Internet Request
for Comments No. 793, September 1981.

5. R. Braden, D. Borman, and C. Partridge, ‘‘Computing the
Internet Checksum’’, Internet Request for Comments No. 1071,
September 1988. (Updated by RFCs 1141 and 1624).

6. Joseph L. Hammond, Jr, et al., ‘‘Development of a Transmis-
sion Error Model and an Error Control Model,’’ Georgia Institute
of Technology, prepared for Rome Air Development Center,
May 1975.

7. William W. Plummer, ‘‘TCP Checksum Function Design,’’
Internet Engineering Note No. 45, June 1978. Reprinted in ref-
erence [5].

8. Anastase Nakassis, ‘‘Fletcher’s Error Detection Algorithm:
How to implement it efficientlyy and how to avoid the most
common pitfalls,’’ ACM SIGCOMM Computer Communication
Review, Vol. 18, No. 5, October 1988, pp. 63-88.

9. Keith Sklower, ‘‘Improving the Efficiency of the OSI Check-
sum Calculation,’’ACM SIGCOMM Computer Communication
Review, Vol. 19, No. 5, October 1989, pp. 44-55.

Appendix: Notes on Tests

The major challenge in doing this work was getting the
main test program to run fast enough. At the start of this effort,
it took weeks to do a single data run, even when using 150 work-
stations in parallel at NSC, and the authors were searching for
Cray time. However, after effort, we optimized the program so
that a large data run now can be done in a day on a workstation
and an evening on some faster machines.

The first version of the program was the obvious version.
The program read blocks of data from the file system, and for
each block, put a TCP/IP header on the front and broke the
resulting packet into cell-sized chunks. Then, for each possible
permutation of cells from two adjacent packets that could cause
a valid splice, the program computed the TCP checksum and
CRC for the data in the splice. The TCP checksum was com-
puted by adding the precomputed checksums for each cell (mak-
ing use of the TCP checksum’s additive properties), but the CRC
was computed from scratch each time. Since computing the
CRC in software is expensive, the program was quite slow. For
256 byte packets it could test about 16 million splices per CPU
hour on a low end SparcStation, which meant over 270 CPU
hours of computation were required to have a good chance find-
ing a single CRC that failed to catch a splice.

The second version of the program was enhanced to com-
pute the partial CRC for each cell and then use polynomial func-
tions provided by Dave Feldmeier to combine the results. This
version was substantially faster (about 20 million splices per

CPU hour) but still had inefficiencies. The major performance
bottleneck was that adding each cell’s CRC required a multiword
multiplication (essentially multiplying the cell’s CRC by the
cell’s offset from the end of the packet). This is inefficient
because the same multiplication is done many times. For
instance, consider that about half of all valid splices start with
the first cell of the first packet and that a TCP/IP datagram with
256 bytes of data has 462 possible splices.

In the latest version (used to find the results for this paper)
all partial results are computed once and stored in tables (includ-
ing the value of the partial cell CRCs at each possible offset in a
splice). The program simply sums the partial results and tests
the results. This version tests about 110 million splices per CPU
hour on a workstation. And on a Sun SC2000 we achieved 325
million splices per CPU hour per processor, which meant we
could find a CRC failure every few hours.


