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Abstract: Device density in cellular networks is expected to increase considerably in the near
future. Accordingly, the access point (AP) will be equipped with massive multiple-input multiple-
output (mMIMO) antennas, using collimated millimeter-wave (mmW) and sub-THz communications,
and increasing the bandwidth to accommodate the growing data rate demands. In this scenario,
interference plays a critical role and, if not characterized and mitigated properly, might limit
the performances of the network. In this context, this paper derives the statistical properties of
the aggregated interference power for a cellular network equipping a mMIMO cylindrical array.
The proposed statistical model considers the link blockage and other network parameters such as
antenna configuration and device density. The findings show that the characteristic function (CF)
of the aggregated interference power can be regarded as a weighted mixture of two alpha-stable
distributions. Furthermore, by analyzing the service probability, it is found that there is an optimal
configuration of the array depending on the AP height and device density. The proposed statistical
model can be part of the design of dense networks providing valuable insights for optimal network
deployment and resource management and scheduling.

Keywords: 5G; mmW; 6G systems; Poisson point process; interference characterization; stochastic
geometry; outage analysis; beamforming; uplink; uniform cylindrical array; blockage
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1. Introduction

The fifth-generation (5G) cellular network has been recently deployed with unprecedented
communication performance, i.e., a 10–100 times higher data rate, 1ms latency, and much
higher area throughput [1,2]. The upcoming sixth-generation (6G) cellular network promises
to further improve current performance by at least one order of magnitude [3]. To meet such
requirements, it is necessary to operate on multiple frontiers, e.g., increase the bandwidth, cell
density, and transceiver efficiency.

Current cellular networks operate at the sub-6 GHz band, which is heavily congested [3].
Recently, millimeter waves (mmW) and sub-THz frequencies (30–300 GHz) have enjoyed
substantial interest due to the large unexploited spectrum [4–6]. However, propagation at
these frequencies experiences higher path and penetration loss, making the links prone to
blockage [7]. A solution to these challenges is to use a beam-type communication based on
massive multiple-input multiple-output (mMIMO) systems and increase the cell density [8].
However, as the device density increases, interference emerges as one of the main challenges
to be characterized and mitigated. The characterization of the aggregate interference power
and coverage analysis in millimeter-wave (mmW) networks has been investigated in recent
years but only in some specialized settings, under line-of-sight (LOS) and non-line-of-sight
(NLOS) propagation. Among different models [9], α-stable distribution has been widely
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accepted for modeling the aggregated interference power in a wireless network generated by
PPP-distributed UEs [10,11]. The heavy-tailed behavior has been validated experimentally
in the context of the Internet of Things (IoT) [12,13]. Generally, α-stable distribution does
not have a defined PDF model, except for specific cases. In [14], the exact PDF for some of
the values of α has been derived in the context of wireless communications. The α-stable
distribution when the interferers transmit in multiple sub-bands is studied in [15]. In all of
these studies, the considered scenario is a PPP on a 2D plane. The case of PPP in a 3D volume
has also been modeled as an α-stable distribution in [10]. However, in cellular networks,
the distribution of the UEs is not a homogeneous PPP in a 3D volume, but rather a PPP
distribution of UEs on a 2D plane, where the AP is placed at an arbitrary height h. When
the height of the AP is considered, the heavy tail of the distribution becomes much shorter,
similar to the interference power in cognitive radio networks, where the secondary UEs are
not allowed to transmit when they are within the interference region [16,17].

The impact analysis of the user’s height was studied in Ref. [18]. The array’s height h
plays an important role that needs to be analyzed, namely, in view of the 5G mmW and
6G use cases. Therefore, it is necessary to extend the Stochastic Geometry (SG) framework
to the 3D framework of antennas and user equipments (UEs) (see e.g., [19]). SG provides
a preferred framework in network modeling to perform coverage and rate performance
analysis [17,20–23]. The impact of the antennas’ height in a 3D SG for ultra-dense networks
proves an upper limit on network performance that depends on the path-loss model
parameters [24]. Although the impact of the antenna and user equipment (UE) height
difference has been studied [25], the existence of an optimum array height has not been
deduced in dense networks. Here, we derive the analytical model of aggregated interference
and show that the optimum array height depends on the path-loss model but also on the
user’s density, array type, and size. Similarly, the impact of the height on low-altitude aerial
platforms [26,27] and in unmanned aerial vehicles [28,29] proves that there are optimum
altitudes maximizing the coverage probability according to some specific scenarios.

In the literature, it is common to assume that the fading follows Rayleigh distribution
(or at least the interference link has a Rayleigh distribution) or Nakagami-m distribution.
The coverage probability has a tractable form as a Laplace function of the aggregate
interference power (see, e.g., [17,30–32]). However, for general fading, using the Laplace
function of the aggregate interference is not possible anymore, and thus, the coverage
and rate analysis cannot be expressed in a tractable way. To overcome this problem, in
ref. [20], multiple techniques are introduced, including some methods to find the probability
density function (PDF) of the aggregate interference calculated from the corresponding
characteristic function (CF).

In previous works, interference distribution for single antennas and the uniform linear
array (ULA) (e.g., in [30]) configuration was investigated most. The contribution of this
paper is the usage of the 3D SG framework in the uplink for homogeneous Poisson point
process (PPP) with a density λ on a pseudo-3D geometry (sometimes referred to as 2.5D
geometry [33,34]) where UEs lie in a plane (say ground) and the access point (AP) with
Nc × Nv uniform cylindrical array (UcylA) (i.e., a set of Nv half-wavelength rings of Nc
uniform circular array (UCA) antennas/each) has the height h ≥ 0. Figure 1 illustrates the
setup for the computation of the properties of the aggregate interference from the ensemble
of UE1, UE2, . . . UEi, . . . when the array at the AP is pointing toward the user of interest
UE0. We show that by being able to characterize the aggregated interference, one can
optimally adjust the configurations of the AP to increase the number of users served and,
accordingly, the coverage probability.
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Figure 1. Configuration of a Nc × Nv uniform cylindrical array (UcylA) with line-of-sight (LOS) and
non-line-of-sight (NLOS) links: (φi,`,θi,`) are the azimuth and elevation angels; h is the height of the
array; and the pointing directions are toward all the LOS (` = 1) and NLOS (` = 2, 3, · · · ) links
arriving from the user equipment (UE) over a propagation path Ri,`.

We analytically prove in Section 4 that the aggregated interference power onto an
array of antennas located at an arbitrary height (h) has a CF is decomposable into a mixture
of two stable distributions (a skewed alpha-stable and a Gaussian distribution). The closed-
form CF for h > 0 is another novelty to compute the PDF or cumulative density function
(CDF) of the aggregated interference power, without cumbersome numerical integration.
The scenario considered herein for users and interferers accounts for either LOS or NLOS
propagation, and also the possibility of link blockage as is typical in mmW and sub-THz
systems. The analytical model enables (Section 3.4) the evaluation of the trade-off in array
height selection and the impact of the propagation scenarios. The UcylA with h > 0
generalizes the previous works on ULA configuration, which was investigated mostly
using coverage analysis (see, e.g., [30,35]). In array engineering, UcylA can be designed
using multifaceted array in a far more practical way, and the results in [36] support the
conclusion that any results for curved arrays apply to faceted ones.

Based on the analytical model, the main results can be summarized as follows: (i) in
most scenarios with small interferers’ density, it is more beneficial to adopt a UCA rather
than UcylA, while for large interferer density a UcylA would be preferred; (ii) there is
an optimum AP height that depends on propagation and interferer density λ; (iii) at AP
height h = 0, the aggregated interference power is alpha-stable distributed, and for h→ ∞,
the limit becomes Gaussian, but for any arbitrary height h, it is decomposable into two
stable distributions; (iv) blockage probability impacts the service probability for small λ,
but less if counting the average number of users served within a region; (v) a connection
with multiple paths (LOS and NLOS) is more beneficial for small λ, as for large λ, the
interference is too large.

This paper is organized as follows. We present the system model, including the signal
and array gain models, in Section 2. The CF of the aggregate interference for UcylA in LOS
links is described in Section 3.

Section 4 contains the statistical characterization of the interference power. In Section 5,
the CF is extended considering NLOS paths, noise power, and blockage, and we conclude
the paper in Section 6.

2. System Model

The scenario shown in Figure 1, where the AP has a cylindrical array with N = Nc×Nv
antennas in total. The UEs are uniformly distributed following a homogeneous PPP with
density λ that denotes the mean number of active UEs per square meter. The spatial channel
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of the mmW and 6G sub-THz systems are purely directional (see, e.g., [37]), and the LOS
(or NLOS) link is affected by the path-loss modeled in terms of UE-AP distance dLOS (or
dNLOS), and faded amplitude βLOS (or βNLOS). The propagation attenuation model for LOS
and NLOS is β/db with amplitude path-loss b ≥ 1. The array of antennas is uniformly
cylindrical, the isotropic radiating antennas are arranged into a set of Nv UCAs with Nc
antennas each, and antenna spacing is half the wavelength; that is, the two arrangements
of antennas are such that the corresponding beamforming of UCAs reduce the interference
angularly, and the vertical arrangement of the rings (acting as vertical ULAs), tilts the beam
to improve the capability to reduce the near interferers when pointing toward far-away
UEs. Note that here the UEs are considered on the ground, which means that the AP height
is the height difference of UEs and AP (pseudo 3D or 2.5D geometry).

2.1. Array Gain Model

Each AP equipped with the array of antennas is positioned at height h from the
ground at (0, 0) planar coordinates as in Figure 1. The array gain for the UcylA in far-field
G(φ, θ) depends on the elevation angle (θ) and azimuth (φ), which in turn depends on the
number of antennas partitioning between Nv and Nc. The beamforming for the cylindrical
array is conveniently decomposed into the design of two compound arrays, and thus
the array gain G(φ, θ) = Gc(φ)Gv(θ) is separable into the UCA gain Gc(φ) and vertical
ULA gain Gv(θ) [38,39]. The approximation holds true in UcylA when using separable
weightings [40,41]. The beamforming used here is the conventional method, which is
optimum for uniform interference, and the array gains for half-wavelength inter-element
spacing either for UCA and ULA are [41,42]:

Gc(φ) = J0

(
Nc

2

√
(cos φ− cos φo)2 + (sin φ− sin φo)2

)
, (1)

Gv(θ) =
sin[π(sin θ − sin θo)Nv/2]
Nv sin[π(sin θ − sin θo)/2]

, (2)

where (φo, θo) denotes the pointing azimuth and elevation pair to the intended UE, and
for UCA the gain approximation (1) is obtained using the zero-order Bessel function of
the first kind J0(.), which can be shown to be accurate for Nc ≥ 16. Note that array gains
are normalized for convenience to have G(φo, θo) = 1. The beam widths along the two
angles, ∆φ and ∆θ, are inversely proportional to Nc and Nv, respectively. The elevation
beam width is further distorted by the effective array aperture, which makes the beam
width scale with the cosine of the tilt angle (stretching effect): ∆θ/ cos(θ − θo).

2.2. Signal Model and Service Probability

Let x be the transmitted signal; the signal received by the AP with beamforming
pointing toward the UE of interest with angles φo = 0 and radial distance Ro is

y =
βo

(R2
o + h2)

b
2

G(φ0, θ0)x + ι + w, (3)

where w ∼ CN(0, σ2
w/N) is the additive Gaussian noise with power σ2

w/N after the array
gain, and

ι =
∞

∑
i=1

βi(
R2

i + h2
) b

2
G(φi, θi)xi. (4)

is the aggregated interference originated from PPP-distributed interfering UEs with density
λ; all signals generated by all UEs are xi ∼ CN(0, 1). We assume that the aggregate
interference power I = |ι|2 is typically E[I] � σ2

w/N as in the macro-cell network [22].
This assumption is relaxed in Section 5, since in high frequencies, the noise is not negligible
in small cells, especially in the presence of blockage [43].
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The outage analysis depends on the PDF of the aggregated interference (4) for the
PPP distribution of UEs, each having polar coordinates (Ri, θi). The PDF of I without any
array-gain for interference mitigation (here is a specific case with G2(φi, θi) = 1 for any
i) and h = 0 has been extensively investigated in the literature (see, e.g., [11,44,45]). The
scope here is to evaluate the PDF of aggregated interference I for UcylA and h ≥ 0. The
Nc × Nv UcylA is the most general case as UCA is when Nv = 1 and the single antenna
is when Nc = Nv = 1, as shown in Table 1, with the corresponding references or sections
for the analytic form of CF. Note that the density λ refers to the number of active UEs per
square meter coexisting on the same time-frequency and, depending on the specific radio
resource allocation strategies, is likely to be meaningfully lower than the effective crowd
density [46]. The signal-to-interference ratio (SIR) is defined as

SIR =
|β0|2G2(φ0, θ0)

I(R2
o + h2)

b . (5)

Table 1. Array configurations and reference to the characteristic function (CF) of aggregated
interference Ψ(ω) = E[ejωI ].

UcylA UCA h > 0 UCA h = 0 Isotropic
h > 0

Isotropic
h = 0

Nc >1 >1 >1 1 1

Nv >1 1 1 1 1

h ≥0 ≥0 0 ≥0 0

Section 3.1
CF: (15)

Section 3.2
CF: (19)

Section 3.2
CF: (23)

Section 3.2
CF: (25)

Ref. [11]

The average probability of successful connection experienced by the UE of interest in
(φo, Ro) depends on a certain threshold T, on fading fluctuation |βo|2, and on the overall
interference I. The service probability from the distribution of I is

Ps(Ro|Rmax) = FI

(
|β0|2G2(φ0, θ0)

T(R2
o + h2)

b

)
, (6)

where FI(x) = Pr(I < x) is the CDF. The service probability (6) is for the interference power
I, which accounts for the randomness of the position of the interferers according to the PPP
model within a certain radius Rmax and fading. The fluctuations of the interferers |βi| are
embodied in the CF derivations (Section 3). The reference user in (Ro, φo) is considered as
deterministic for the computations of the (conditional) service probabilities, but whenever
necessary for the unconditional probability, it can be assumed as PPP distributed in the same
way as for the other interferers. Notice that the service probability Ps(Ro|Rmax) depends on
the CDF of the aggregated interference I to be evaluated for the PPP distribution of active
interferers, the array-type and its height h, as evaluated in the next section based on CF
analysis. For the unconditional service probability accounting for the fading of the user of
interest, one should evaluate the expectation

P̃s(Ro|Rmax) = E|β0|2 [Ps(Ro)]. (7)

Differently from the interference analysis that aggregates multiple (and many) interfering
contributions into the CF of I, (7) depends on the specific PDF of β0 thus making the service
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(or outage) analysis distribution-dependent for the UE of interest; see e.g., [30,47]. Therefore,
the fast-fading contribution β0 is neutrally modeled here as β0 = 1× ejε with ε ∼ U (0, 2π),
and further derivations for arbitrary fading β0 are out of the scope here.

Remark 1. The service probability (6) is defined by neglecting the noise power. It can be shown
that, with the configurations used in this paper for transmitter power Ptx >20 dBm, the noise effect
does not affect the results, while the standard UE power in the 3GPP standard (refer to ETSI TS 138
101-2 V15.5.0 2019-05) is higher than Ptx =20 dBm. Noise is more relevant when considering the
propagation blockage (Section 5.4) The results regarding the service probability prior to Section 5.3
are all based on interference, as defined in (6).

3. CF of the Aggregated Interference in LOS

In this section, the CF of the aggregate interference is derived in the presence of LOS
links first for the general case of Nc × Nv UcylA, and is then simplified for the UCA and
single antenna. The focus of this paper is to analyze the behavior of the interference and
coverage with respect to the height and arrangements of the antenna array. The mmW
channel modeling is first LOS-only, and is then enriched with mixed LOS and NLOS links
in Section 5.

3.1. Uniform Cylindrical Arrays

Nc × Nv UcylA is composed of Nv uniformly spaced rings consisting of Nc antennas
each arranged in a cylinder shape (Figure 1). The interference power I originated from a
coverage radius Rmax → ∞ represents the largest possible interference for a density λ and
thus it is the upper bound of the interference I when Rmax < ∞, the service probability (6)
depends on Rmax, and it is lower bounded: Ps(Ro|Rmax) ≥ Ps(Ro|Rmax → ∞). For the
computation of the CF of the aggregate interference, one should consider the entire gain
pattern of the UcylA (1) and (2). Let Rmax → ∞, the aggregate interference power is

I =
∞

∑
i=1

|βi|2(
R2

i + h2
)b G̃2

(Ri, φi), (8)

where the served UE is in (θo, φo) = (0, 0) for analytical notation convenience, and the
beamforming gains are reformulated in terms of azimuth (φi) and elevation (θi = arctan(h/Ri))
angles

G̃(Ri, φi) = G2
c (φi)G2

v(arctan(h/Ri)) (9)

The fluctuation power |βi|2 is independent of interfering users and identically distributed
(iid). The randomly distributed interfering UEs in φi ∈ [0, 2π) can be partitioned into a set of K
disjoint angular sectors Φ1, Φ2, . . . such that ∪kΦk ≡ [0, 2π), where K is large enough so that
the array gain Gc(Φk) in each sector can be considered as constant. The aggregate interference
power (8) is

I =
K

∑
k=1

∑
φi∈Φk

|βi|2(
R2

i + h2
)b G̃2

(Ri, φi) '∑
k

Ik, (10)

where

Ik = ∑
i∈Φk

|βi|2(
R2

i + h2
)b G̃2

(Ri, Φk). (11)

The asymptotic equality in (10) is due to the fact that every user i with azimuth φi

that is located within the k-th angular sector is assumed to have the array gain G̃2
(Ri, Φk),

as defined in (11). This approximation asymptotically converges to the true aggregated
interference power for k→ ∞, while for k that is large enough (around twice the number of
horizontal antennas), it is quite accurate. The CF for the interference within the kth angular
sector follows on from Campbell’s theorem as in [11]
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ΨIk (ω) = exp

(
−2π

K
λ
∫ ∞

0

[
1−Ψ|β|2

(
ω

G̃2
(r, φ̄k)

(r2 + h2)
b

)]
rdr

)
, (12)

where Ψ|β|2(ω) = E[ejω|β|2 ] is the CF of |β|2. In order to solve the integral (12), it is more

convenient to define ω
(
r2 + h2)−b

= t. By replacing the variable r with t and changing the
boundaries of the integral accordingly, i.e., t → 0 for r → ∞ and t → |ω|/h2b for r → 0,
after some mathematical manipulations, the (12) becomes (for α = 1/b)

ΨIk (ω) = exp

−π

K
λα|ω|α

∫ |ω|/h2b

0

1−E|β|2 [ejt|β|2G̃2
( f (t),Φk)sign(ω)]

tα+1 dt

. (13)

where f (t) =
(
|ω|1/bt−1/b − h2

)1/2
follows on from the conversion from variable r to t.

(13) is based on radius r → ∞; if the radius is limited, the lower bound of the integral
of (13) would be t → |ω|/(h2 + R2

max)
b for r → Rmax. Since the array gain is a function

of t, this expression can only be solved numerically. One way to make the CF tractable
is by uniformly decomposing the elevation angle θv ∈ (0, π/2] into M angular sectors of
∆v = π/2M width; each sector is centered in θ̃m = π

2 (
2(M−m)+1

2M ); and the width ∆v is
small enough to let the array gain in every angular sector (2) be constant G2

v(θ̃m). The array
gain is constant on every annulus (ring)-shaped areas with unequal widths (non-uniform
ring division for uniform elevations θ̃m). These rings are centered in the radial distance of
the intersection of the mth bisector ρ̃m = h/ tan(θm − π

4M ), so that the array gain in the kth

wedge and mth ring is G̃2
(ρ̃m, Φk). Within the kth wedge and mth ring, the array gain is

constant and the interference originated Ik,m has the CF

ΨIk,m(ω) = exp

−π

K
αλ|ω|α

∫ τm

τm+1

1−E|β|2 [ejt|β|2G̃2
(ρ̄m ,Φk)sign(ω)]

tα+1

dt

, (14)

where τm = |ω|/(h2 + ρ2
m)

b. The CF of the aggregate interference statistically independent

on all K wedges and M rings is ΨI(ω) =
M−1
∏

m=0

K−1
∏

k=0
ΨIk,m(ω). Given the solution of the

integral
∫ |ω|/h2b

0

[
1−ejµt

tα+1

]
dt = lim

ε→0
(−jµ)αΓ(−α,−jµt)− 1

αtα

]t=|ω|/h2b

t=ε
, for any constant and

real µ, and 0 < α < 1, the CF of the aggregate interference can be shown to reduce to

ΨI(ω) = exp(−λ2πR2
max) exp

(
−πλ

Cα
|ω|α(1− jsign(ω) tan

πα

2
)PG(ω, α, h)

)
, (15)

with C−1
α = Γ(1− α) cos(πα/2) and

PG(ω, α, h) =
β̄2α

K

K−1

∑
k=0

M−1

∑
m=0

G̃2α
(ρ̄m, Φk)[

P(−α,−jωξ(ρ̄m, Φk, h))− P(−α,−jωξ(ρ̄m+1, Φk, h))
]

. (16)

We used a compact notation for different moments of fading β̄c = E[|β|c], and
P(x, z) =

∫ z
0 tx−1e−tdt/Γ(x) in (16) is the normalized incomplete Gamma function ratio and

ξ(r, φ, h) =
G̃2

(r, φ)β̄2

(h2 + r2)
b . (17)
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The relationship (16) for M→ ∞ and Ri ≤ Rmax < ∞, reduces after some calculus, to

PG(ω, α, h) =
2b

(−jω)αΓ(−α)

∫ Rmax

0

(∫ 2π

0
ejωξ(r,φ,h) dφ

2π

)
rdr. (18)

This relation (18) completes the CF of aggregated interference (15). The PDF and
the CDF of the interference I are obtained by numeric inversion. For h → 0, the UcylA
degenerates into UCA on the ground, and the distribution of I is alpha-stable for Rmax → ∞
(Section 3.2). As can be observed, the general amplitude fluctuations βi of the interferers are
embodied in the derivation of the CF (whose values depend on the specific fading model
chosen); however, for the numerical calculations throughout the paper, the fading power
β̄2 is neglected because it is averaged out in the SG over the summation of the interference
for all UEs. This assumption holds as long as the average fading is E[|β|] = 1 [48] (the
fading power for the user of interest |β0|2 does not average out, and the results depend on
the choice of fading model).

Remark 2. Although the CF of aggregated interference (15) for UcylA depends on (18), its
numerical computation has some trade-offs. The granularity of numerical integration basically
depends on the main beamwidth: the azimuth K = Nc is a safe choice with good accuracy, while
for the elevation angle, M = Nv/2 to M = Nv/4 is acceptable (M = Nv/2 is a safe choice for
large λ, e.g., λ > 0.1). Thus, the complexity reduces with respect to massive integration, and
in fact, this method would be a good way to reduce the computation complexity. Alternatively,
whenever one uses a beam gain approximation model, such as the flat-top model [31], the summation
reduces straightforwardly to two terms, and this would be quite fast in terms of computation for
network analyses.

Remark 3. The array gain (2) of vertical ULA is critical for the analytical tractability of the CF
derivation, and the use of Nv > 1 could be questionable for a height that is too small. The array
gain (2) holds true when the array aperture is compact compared to the array height h to have a
plane wave-front. In practice, for mmW communications at a frequency of approximately 30 GHz
(or larger), the wavelength is approximately 1cm (or smaller), and for Nv = 10 antennas, the array
aperture for half-wavelength antenna spacing is 5 cm (or less). In the scenario in Figure 1 the height
should be above the people heights, and for h > 2, m the approximation that the array aperture is
compact (2 m� 5 cm) holds true.

3.2. Specific Cases

UCA: It is a special case of UcylA for Nv = 1 (i.e., Gv(θ) = 1). The statistical
distribution of aggregated interference I for UCA can be adapted by considering Rmax → ∞,
although it can be extended to Rmax < ∞. In UCA, there is no radial mitigation of the
interference, but it is only along the azimuth. After simplifying the relation (15) and
resolving the singularity (Appendix A), it yields:

ΨI(ω) = exp
(
−πλ

Cα
|ω|α(1− jsign(ω) tan

πα

2
)PGc(ω, α, h) + πλh2

)
, (19)

where

PGc(ω, α, h) =
β̄2α

K

K

∑
k=1

G2α
c (Φk)P

(
−α,−jω

G2
c (Φk)β̄2

h2b

)
. (20)

The limit for K → ∞ angular sectors is

PGc(ω, α, h) =
β̄2α

2π

2π∫
0

G2α
c (φ)P

(
−α,−jω

G2
c (φ)β̄2

h2b

)
dφ, (21)
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and this integral can be evaluated numerically. Considering h → 0 as a special case,
PGc(ω, α, h)→ 1, so the frequency dependence of PGc(ω, α, h) vanishes, and the aggregated
interference in the kth angular sector is skewed alpha-stable

G2
c (Φk) ∑

i∈Φk

|βi|2

R2b
i
∼ S

(
α =

1
b

, γk

)
, (22)

where γk =
∆φk

2 λG2α
c (Φk)

β̄2α

Cα
and C−1

α = Γ(1− α) cos(πα/2). S(α, γ) denotes the skewed
stable distribution with characteristic exponent α ∈ (0, 2], unitary skewness, and scale
parameter (or dispersion) γ ≥ 0 with a characteristic function

E[ejωx] =

{
exp[−γ|ω|α(1− jsign(ω) tan πα

2 )] α 6= 1
exp[−γ|ω|α(1 + j 2

π sign(ω) ln |ω|)] α = 1
.

The overall interference reduces to the sum of skewed stable random terms
(straightforwardly from ([49], eq. (1.8)))

I = ∑
k

Ik ∼ S
(

α =
1
b

, γc

)
, (23)

where the total dispersion for UCA becomes

γc = πλ
β̄2α

Cα
·
∫ 2π

0 G2α
c (φ)dφ

2π
, (24)

assuming sectors ∆φk → 0. Therefore, the aggregated interference for UCA and h = 0 is
skewed alpha-stable. However, when increasing the height h, the distribution deviates from
alpha-stable, as detailed later. Comparing this result with [11], one notices an additional
term that depends on the UCA array gain G2

c (φ), which mitigates the mean level of
interference in skewed stable distribution. As before, the fading powers of the interferers
are embodied in the derivations, but they will average out in summation of the interference
power over all of the UEs (the fading amplitude of each signal from each UE depends
on the chosen fading model), while the fading power from the user of interest remains
effective in the calculation of the service probability.

Point antenna: a single point antenna can be considered as a special case of a UCA,
where Nc = 1 leads to isotropic gain. The radiation gain Gc(Φk) = 1 for any azimuth, and
the choice of K = 1 can be chosen, as it is not necessary to decompose the area into different
cones. Placing the antenna at height h > 0, the CF of the aggregated interference power
follows by simplifying (19) as

ΨI(ω) = exp
(
−πλ

Cα
|ω|α β̄2αP(−α,−jω

β̄2

h2b )(1− jsign(ω) tan
πα

2
) + πλh2

)
. (25)

This CF (25) generalizes the CF for h = 0 in [11]. The term P(−α,−jω β̄2

h2b ), which
depends on ω, increases from the initial value for h = 0.

3.3. Analysis of AP Height

To gain an insight into the effect of the height of the antenna, it is useful to evaluate
the mean aggregated interference that, for simplicity, is for UCA. The mean E[I] follows
from the CF properties (check Appendix B for derivation):

E[I] = πλα2

(1− α)
h2(1−b) β̄2Ḡ2

c . (26)
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where Ḡ2
c = 1

2π

∫ 2π
0 G2

c (φ)dφ is the mean power gain. The first and second derivatives of
the mean interference power with respect to the AP height are

dE[I]
dh

= −2πλαβ̄2Ḡ2
c h1−2b < 0, (27)

d2E[I]
dh2 = −2πλ(α− 2)β̄2Ḡ2

c h−2b > 0. (28)

The aggregated interference power decreases vs. h but increases with UE density λ, with
the second derivative always being positive. On the other hand, the received signal power
Prx from a target UE located at distance R0 is

Prx(h) =
|β0|2

(R2
0 + h2)b . (29)

The first and second derivatives with respect to the AP height are

dPrx(h)
dh

=
−2b|β0|2h

(R2
0 + h2)b+1

< 0, (30)

d2Prx(h)
dh2 =

2b|β0|2
(
(2b + 1)h2 − R2

o
)

(R2
0 + h2)b+2

. (31)

The first derivative is always negative. The second derivative is negative for
R0 > h

√
(2b + 1) and positive for R0 < h

√
(2b + 1). Comparing the first and second

derivatives of the mean aggregated interference power and received target power, given a
specific set of parameters, such as the target user distance R0, the signal-to-interference ratio
(SIR) would have a concave behavior vs. the AP height h. This is numerically evaluated in
the next section.

3.4. Numerical Validation on Aggregated Interference

The CF derived for each of the arrays is validated here by numerically computing
the PDF and CDF using inverse Fourier methods tailored for statistical distributions to be
accurate on the tails of the distributions [50,51]. The service probability (6) is the comparison
metric adopted here for the validation of the CFs in the previous sections, by considering
a LOS system with |βo|2 = 1 and a threshold of T = 1 (or 0 dB). The amplitudes are
normalized as |βo| = E[|β|] = 1, since in the analysis of the SIR, the transmit power and
the path-loss at the reference distance are not important as they are equal for the interferers
and user of interest.

Remark 4. Since the CF (15) is based on Rmax → ∞, it is impossible to validate it numerically.
Instead, a maximum numerical radius R(num)

max is used. To match the simulation results with
analytical ones, we limit the integral in (12) to Rmax = R(num)

max . The choice of a proper Rmax for a
numerical example to explore the behavior of an infinite area is discussed in [48,52].

Figure 2 demonstrates the comparative analysis of UcylA and UCA, showing the
Ps(Ro) vs. radius Ro using ΨI(ω) for UcylA in (15) and for UCA in (19) where the total
number of antennas is preserved in all cases (Nc × Nv = 128) and the SIR threshold
[T]dB = 0. The transmitting interferers are numerically generated as random PPP with
a maximum radius R(num)

max , as specified below for every Monte Carlo iteration, and are
affected by the array gain G(φ, θ) = Gc(φ)Gv(θ) (see (1) and (2)) keeping the radial position
fixed at Ro for the UE of interest as aggregated interference is isotropic vs. azimuth. The
analytical curves (shown in solid lines) are for Rmax = 300 m (unless otherwise mentioned),
which are validated by simulation curves (shown in dashed lines with markers). Here, for
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the purpose of illustration, we have also shown the analytical curve (in yellow color) with
Rmax → ∞, for the case of UCA with λ = 10−3, that lower bounds a simulation curve with
R(num)

max = 2000 m. Although, in case of UCA, the analytical curves are a lower bound of
Ps(Ro) when compared to the numerical simulation with R(num)

max � Rmax, this margin is
not considerable in the case of UcylA, since this array automatically cancels out the effect of
far-away UEs. Service probability Ps(Ro) decreases for increasing served UE position Ro as
interference from λ-density interferers dominates. For smaller density (here λ = 10−3 m−2),
the service probability Ps(Ro) > 0.5, up to 70 m for UCA and around 50 m for UcylA. It can
be observed that in the given scenario with given parameters, the UCA seems to surpass
the UcylA from the service probability point of view.

Increasing the path-loss exponent (2b = 3.6 in Figure 3) affects the service probability
as aggregated interference is more attenuated for far-away interferers, and it is more
effective for denser users (i.e., for larger λ, the increase in the path-loss is more beneficial for
Ps(Ro), while it is detrimental for small λ). The rest of the figures in the paper are based on
analytical formulas, and simulation results are not reported for the sake of the readability
of the figures.

0 20 40 60 80 100

0

0.2

0.4

0.6

0.8

1

Figure 2. Service probability vs. radius Ro for varying λ = {10−3, 10−2}m−2, where the access
point (AP) employs a UCA with Nc = 128 or a UcylA with Nc × Nv = 32× 4. Parameters: Rmax =

R(num)
max = 300 m, unless mentioned otherwise; SIR threshold [T]dB = 0; normalized amplitude
|βo| = 1, 2b = 2.6, h = 10 m.

As an illustrative example of the optimum height based on relations (26) to (31),
Figure 4 shows the received signal power and the mean aggregated interference power,
where the transmit power of all the UEs is [Ptx]dBm = 20, and the normalized array gain for
the user of interest located at distance R0 is maximum (i.e., Gc(φ0) = 1). The amplitude βo
also considers the path-loss at distance 1 m: |βo| =

√
Ptx 4πFc/c for c = 3× 108 m/s and Fc

is the carrier frequency (here Fc = 28 GHz). The mean interference power follows (26). It
can be observed that for large thresholds [T]dB = {4, 5}, the average interference power is
larger than the signal power, and the system is in outage for every AP height. For smaller
thresholds, the AP serves the target UE for a range of AP heights. For example, at [T]dB = 0,
the serving range of AP height is approximately 1 m < h < 33 m. At around h = 1 m,
the difference of target UE signal power and mean aggregated interference is zero. For
the AP height range 1 m < h < 9 m, this difference increases, and for the AP height range
of 9 m ≤ h < 33 m, the difference decreases, while for 33 m < h, the user is in outage.
Finally, for a better demonstration of the concave behavior of SIR vs. AP height, Figure 5 is
plotted, for two groups of UE density λ = {10−4, 10−3}m−2 and for the target UE distance
of R0 = {20, 30, 40} m. Three SIR threshold [T]dB = {5, 10, 15} guidelines are plotted as
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horizontal lines. It can be observed that for λ = 10−3, and a pre-defined threshold of
[T]dB = 5, a target user located at R0 = 40 m is always in the outage, while the target users
located at R0 = {20, 30}m would experience a concave behavior vs. the AP height h.
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Figure 3. Service probability vs. radius Ro for varying λ = {10−2, 10−3}m−2, where the AP employs
a UCA with Nc = 128. Parameters: Rmax = 200 m, SIR threshold [T]dB = 0; normalized amplitude
|βo| = 1; 2b = 2.6 and 2b = 3.6, h = 10 m.

0 5 10 15 20 25 30 35 40

-80

-70

Figure 4. Received power and mean aggregated interference power vs. AP height h, for a target
UE located at R0 = 20 m equipped with a uniform circular array (UCA) with Nc = 128 that has
average power gain Ḡ2

c = 0.012. Parameters: SIR threshold [T]dB = {0, 1, 2, 3, 4, 5}, interferer density
λ = 5× 10−3 m−2, path-loss exponent 2b = 2.4, central frequency Fc = 28 GHz, and transmit power
[Ptx]dBm = 20, |βo| =

√
Ptx 4πFc/c, Rmax → ∞.

Once the analytical model has been validated, one might investigate the Nc vs. Nv
arrangement of UcylA for a given total number of antennas NcNv (e.g., for the same
complexity of the radio frequency circuitry). The cylinder arrangement of the UcylA can be
tall (Nc < Nv), fat (Nc > Nv > 1) or just a ring (Nv = 1), and the optimum array geometry
for service probability depends on different parameters, such as the SIR threshold (T),
path-loss exponent (b), the antenna (or users) height h, and the directivity of every antenna
element (not considered here). The metric used herein is the ratio of the served users in a
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certain area (2πλ
∫ R̄

0 Ps(r)rdr) to the total average users (πR̄2λ), assumed here to be PPP
distributed, which is also referred as average service probability

P̄s =
2
∫ R̄

0 Ps(r)rdr
R̄2 . (32)

0 5 10 15 20 25 30 35 40

0

5

10

15

20

Figure 5. SIR vs. AP height h, for a target UE located at R0 = {20, 30, 40}m equipped with a uniform
circular array (UCA) with Nc = 128 that has average power gain Ḡ2

c = 0.012, for two sets of interfere
density λ = {10−4, 10−3}m−2. Parameters: path-loss exponent 2b = 2.4, normalized amplitude
|βo| = 1, Rmax → ∞.

In the following examples, we maintain the total number of antennas Nc ×Nv = 256,
changing the ratio of UCA and vertical antennas. Figure 6 illustrates the number of users served
vs. the antenna ratio log2(Nc/Nv), varying the path-loss exponent 2b = {2, 2.4, 2.8, 3.2, 3.6} for
a medium UE density λ = 10−3m−2 and an extremely large UE density λ = 5× 10−2m−2.
It can be seen that, in the case of a smaller UE density, it is preferable to use a UCA. In the
case of a very large UE density, a UcylA would be preferred. This is because for a smaller UE
density, there are not many interferers that are far from the AP, while their power is largely
attenuated w.r.t interferers located closer to the AP. Thus, UCA outperforms by creating a
narrower main lobe toward the interested UE, nullifying most of the other UEs located close
to the AP but in different azimuths. However, when λ is large, there are too many far-away
interferers. Although the interference power of each one of them is highly attenuated, the
summation of many far-away interferers is still too high. In this case, it is preferable to have a
vertical beamforming component, which can filter out the effect of far-away UEs by creating a
ring-shaped gain pattern around the AP. Furthermore, based on Figure 6, it can be seen that
the increase in the path-loss exponent has an inverse effect on the two sets of curves. For the
case of a small UE density, by increasing the path-loss exponent, the number of UEs served
decreases, while in the case of a very dense network (λ = 5× 10−2m−2), by increasing the
path-loss exponent, the number of UEs served increases. This is because, in the case of dense
networks, higher path-loss is beneficial by highly attenuating the interference coming from the
large crowd of interferers that are located far away, while in the case of a small UE density, high
path-loss attenuates to a larger extent than the signal coming from the target user. It can be
noted that for 2b = 2, the curve monotonously decreases, and it is the minimum for a UCA,
while the other curves have a concave shape. This is due to the fact that 2b = 2 is a singularity
point when the area where the interferers is infinite (i.e., Rmax → ∞). This can be inferred by
setting α = 1 in relation (26), or from the literature on aggregated interference, e.g., [17,48]. This
means that for α = 1, the average aggregated interference power diverges, and the AP does
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not serve any UE. In the example of Figure 6, the radius is Rmax = 400 m, and thus, the service
probability is not zero.

Figure 6. Average number of users served vs. antenna ratio log2(Nc/Nv), within R̄ = 100 m while
keeping the total number of antennas (Nc Nv = 256) constant for different SIR thresholds [T]dB = 5,
AP height h = 5 m, Rmax = 400 m, |β0|2 = 1, λ = {10−3, 5× 10−2}m−2.

Figure 7 illustrates the average number of the users served vs. the antenna ratio
log2(Nc/Nv), varying the SIR threshold [T]dB = {0, 5, 10} for small and large path-loss
exponents 2b = {2, 3.6}. It can be seen that in this scenario, by increasing the threshold T,
UCA performs worse. Note that in this setup, the UEs are very dense (λ = 5× 10−2 m−2).
It can be shown that for smaller UE densities, UCA outperforms UcylA. Figure 8 shows a
similar example of the average number of users served vs. the antenna ratio log2(Nc/Nv),
fixing the threshold [T]dB = 5 and varying the AP height h = {5, 10, 15, 20} m. Clearly,
by increasing the AP height, the usage of UcylA becomes more advantageous in terms of
P̄s, and it is more meaningful to use vertical beamforming, while for smaller heights, it is
preferable to use a larger circular array. However, it can be observed that, in this scenario,
where UEs are dense, the service probability, in general decreases by increasing the height.
Thus, it is preferable to use an AP with a smaller height.

Figure 9 shows the effect of UE density λ. It is seen that for areas that are not very
dense, a UCA is marginally more preferable. However for more dense areas, a UcylA would
be more preferable depending on different parameters. It can be shown that changing every
one of the above-mentioned parameters affects the shape of the P̄s curves. Furthermore, the
constraint of ground UEs is also responsible for the results. UcylAs are favored when UEs
have arbitrary heights (usually indoor UEs are at arbitrary heights, while when targeting
high frquencies, penetration loss is too high).
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Figure 7. Average number of users served vs. antenna ratio log2(Nc/Nv), within R̄ = 50 m,
while keeping constant the total number of antennas (Nc Nv = 256) for different SIR thresholds
[T]dB = {0, 5, 10}, AP height h = 5 m, Rmax = 400 m, normalized amplitude |β0| = 1, λ = 5×
10−2 m−2: solid lines correspond to 2b = 2 and dashed lines corresponding to 2b = 3.6.

Figure 8. Average number of the users served vs. antenna ratio log2(Nc/Nv), within R̄ = 100 m
while keeping constant the total number of antennas (Nc Nv = 256) for different array height
h = {5, 10, 15, 20} m, Rmax = 400 m, SIR threshold [T]dB = 5, normalized amplitude|β0| = 1,
λ = 5× 10−2 m−2: Solid lines correspond to 2b = 2 and dashed lines corresponding to 2b = 3.6.
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Figure 9. Average number of the users served vs. antenna ratio log2(Nc/Nv), within R̄ = 100 m
while keeping constant the total number of antennas (Nc Nv = 256) for different interferer density
λ = {1, 5, 10, 20, 50} × 10−3 m−2, SIR threshold [T]dB = 5, AP height h = 5 m, Rmax = 400 m,
normalized amplitude |β0| = 1: Solid lines correspond to 2b = 2 and dashed lines corresponding to
2b = 3.6.

A pragmatic conclusion from these evaluations is that for most real-life scenarios where
UE densities are not too high, it is beneficial to invest in UCA arrangement rather than
UcylA. There are two reasons supporting this result: (i) the most powerful interferers are in
the vicinity of the AP, while the minimum separable angle by the ULA is ∆θmin ≈ λ

Nvdvcos(θ0)
,

where dv is the vertical inter-element spacing, and θ0 is the target elevation; (ii) although
the resolution was not angle dependent, decomposing the whole elevation plane into small
portions of the same width, provides emphasis in the same as near and to far-away UEs,
while the most powerful UEs are closer ones. In the rest of the numerical examples in the
paper, we focus on the usage of UCA, since the target threshold used is set to [T]dB = 0
and the interferer density used is not extremely high, which justifies the usage of a UCA
over UcylA.

Remark 5. Note that although the leftmost parts of the curves (i.e., corresponding to a ULA or a
very tall UcylA) are shown in the figures, in practice, they are not feasible to deploy. Therefore, one
might consider the range Nc > Nv/8 as practical solution.

4. Statistical Characterization of the Aggregated Interference Power

The aggregate interference I in Section 3.1 for UcylA and arbitrary height h > 0 is
complex to be computed analytically in a closed-form. Herein, we propose a method for the
approximation of the aggregate interference CF. We show that the aggregated interference
power for an array of antennas located at an arbitrary height can be approximated using a
weighted mixture of two stable distributions, and we detail herein the equivalent CF.

In order to gain a deeper insight into the distribution at an arbitrary height, one can
start from the Taylor series of the argument of the CF (ΨI(ω)). For example, the series
for a UCA with arbitrary height and |βi| = 1, follows from the CF (19) that, with some
simplifications, yields:
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ΨI(ω) = exp(παλΞ(α, ω)), (33)

where the Taylor series is

Ξ(α, ω) =
1
K

K

∑
k=1

∞

∑
i=1

( 1
h2b )

i−α

(i− α)i!

(
jωβ̄2 G2

c (Φk)
)i

. (34)

Let us define G(z)
avg = 1

K ∑K
k=1 G2 z

c (Φk), which for h = 0 relation (34) simplifies to

Ξ(α, ω) = (−jω)αΓ(−α)β̄2α G(α)
avg. (35)

For very large heights h � 0 in (33), the terms with a higher index i are negligible,
and it can approximated with only the first two terms, which would make the CF (ΨI(ω))
have a Gaussian distribution (the CF of a Gaussian distribution is exp

(
jµω− σ2

2 ω2
)

with
µ being the shift parameter and σ is the standard deviation). In order to evaluate the
appropriate CF for any h > 0, one isolates the behavior vs. jω from Ξ(α, ω) as:

Ξ(α, ω) = Ξ′(α, ω) +
( 1

h2b )
1−α

1− α
jωβ̄2 G(1)

avg, (36)

where the second term (corresponding to i = 1 in (33)) is a shift or location parameters. The
behavior of the real part of Ξ(α, ω)′ reveals the corresponding exponent of ω, for every
defined ω. The reason behind separating Ξ(α, ω) into two parts is that we need to omit
the shift, to be able to visualize the exponent of the ω within the distribution. For large
h, Ξ′(α, ω) vs. ω behaves as ω2, and for very small h, behaves as ωα, while for medium
heights, it has two different slopes based on ω. The transition ω where the behavior changes
is ω̄, which depends on the height, the path-loss exponent, UE density and array gain.
Having gained insight into the behavior vs. ω and ω̄, which is explained further on in the
text, Ξ(α, ω) can be approximated as:

Ξ(α, ω) = W1(ω)× a(ω) + W2(ω)× (1− a(ω)), (37)

where a(ω) is a Heaviside step function, i.e., a(ω) = 1 for ω < ω̄ and 0 otherwise (or
some function with smoother transition), which acts as a switch between two cases with
different behavior:

W1(ω) ≈
( 1

h2b )
1−α

1− α
jωβ̄2 G(1)

avg −
( 1

h2b )
2−α

2(2− α)
ω2 β̄4 G(2)

avg, (38)

W2(ω) = (−jω)αΓ(−α)β̄2α G(α)
avg, (39)

where W2 coincides with the skewed-stable distribution (23). Relation (37) means that the
CF is can be decomposed as

ΨI(ω) = exp(παλ W1(ω) a(ω)) . exp(παλ W2(ω) (1− a(ω))). (40)

Figure 10 demonstrates the behavior of the real part of Ξ(α, ω) vs. ω for a single
isotropic antenna and set of AP heights h = {0, 2, 5, 20, 100} m. It can be seen that by
increasing the AP height, the breaking frequency ω̄ increases, while for extremely large
AP heights, it tends to infinite, which is Gaussian distribution behavior. Figure 11 is the
same analysis, comparing an isotropic antenna with a UCA consisting of Nc = 16 isotropic
antennas for the set of AP heights h = {0, 5}m. It is observed that the slopes of the curves
are maintained, while the breaking frequency is increased when using a UCA.
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Figure 10. Real part of the Ξ(α, ω)′ vs. ω for 2b = 2.6 and λ = 1 m−2, with a single isotropic antenna
for different heights of the array. The two guidelines are parallel to ωα and ω2. For large heights,
Ξ′(α, ω) vs. ω behaves as ω2, and for very small heights it behaves as ωα, while for medium heights,
it has two different slopes based on ω.
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Figure 11. Real part of the Ξ(α, ω)′ vs. ω for 2b = 2.6 and λ = 1 m−2, comparing the UCA with
single antenna. The two guidelines are parallel with ωα and ω2: Solid lines correspond to a point
antenna while dashed lines correspond to a UCA with Nc = 16 isotropic antennas on a ring.

One can approximate the CF for a UCA in every arbitrary height, given the knowledge
on the transition frequency ω̄. Knowing the transition point ω̄, based on height h, one may
characterize different ω with different statistical distributions. The numerical formulation of
ω̄ vs. antenna height and other parameters can be investigated further. A rule of thumb for ω̄
can be achieved as follows. Let Si(ω) denote the i-th term of the series (34) as:

Si(ω) =
( 1

h2b )
i−α

(i− α)i!

(
jωβ̄2 G(i)

avg

)i
. (41)

It is empirically observed that ω̄ can be approximately achieved by imposing the
condition S2(ω) = S3(ω)/β̄2, and by solving for ω, the ω̄ can be achieved. Please note that
this formula holds for normalized array gain. The rationale behind these conditions lies in
the fact that for an α-stable distribution and for height h = 0 m, all the terms for i > 1 tend
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to infinite, while for Gaussian distribution, only the first three terms exist. In the mixture
case, for ω̄ < ω behavior resembles α-stable. In the case of Figure 10, the calculated ω̄ for
the AP heights of h = {2, 5, 10, 100} m are ω̄ = {32, 355, 13070, 858160} respectively, and in
Figure 11, the ω̄ for AP height h = 5 m for two cases of Nc = {1, 16} are ω̄ = {355, 5688},
respectively. Based on the figures, it can be noted that these approximations are close to the
real breaking points of the curves.

Figures 12 and Figure 13 (corresponding to AP height h = 2 m and h = 30 m,
respectively) validate the proposed approximate model, with respect to true CF of a UCA
described in (19) and the α-stable distribution model [11] that coincides with (19) for h→ 0.
It can be seen that the stable distribution might be appropriate only if the AP height and
UE density are not very large. By increasing the UE density λ, for large AP height h,
the approximate mixture model (40) outperforms the stable model. The difference in the
median between the approximate model (dashed curves) and the true model (solid curves)
in the dB scale, for h = 2 m, is in the order of 0.1 to 0.3 dB, and for h = 30 m, it is in the order
of 1.1 to 1.3 dB, while the curves corresponding to stable distribution are dashed lines with
a marker. From the computation complexity point of view, depending on the parameters,
the approximate model (40) is computed very fast compared to (33). The computational
complexity of Monte-Carlo simulations, on the other hand, depend on the UE density λ,
while the true and approximate analytical models do not depend on the density λ.
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Figure 12. Comparison of the CDF of the aggregated interference power, within Rmax = 400 m
using a UCA of size Nc = 16 positioned at AP height h = 2 m, for different interferer density
λ = {10−3, 10−2, 10−1}m−2, path-loss exponent 2b = 2.6, transmit power [Ptx]dBm = 20 dBm, central
frequency Fc = 28 GHz and |βo| =

√
Ptx 4πFc/c, for three cases: (a) true CF model described in (19);

(b) approximate mixture model described in (40); and (c) α-stable distribution.

In practical systems, the height is known, but other parameters, such as the density of
active users λ, are not known, and some inaccuracies with respect to the ideal model might
occur. We believe that the knowledge of a reasonable approximation of the distribution
of the aggregated interference enables the measurement of the approximating alpha-
stable distribution during multiple idle times of the communication intervals using any
unsupervised learning method [53], which is a practical on-the-fly method.
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Figure 13. Comparison of the CDF of the aggregated interference power, within Rmax = 400 m
using a UCA of size Nc = 16 positioned at AP height h = 30 m, for different interferer density
λ = {1, 5, 10} × 10−3 m−2, path-loss exponent 2b = 2.6, transmit power [Ptx]dBm = 20 dBm, central
frequency Fc = 28 GHz and |βo| =

√
Ptx 4πFc/c, for three cases: (a) true CF model described in (19);

(b) approximate mixture model described in (40); and (c) α-stable distribution.

5. Outage Analysis in the Presence of NLOS, Noise and Blockage

In the previous sections, we derived the CF of the aggregated interference power with
different antenna array configurations, and characterized the distribution of the aggregated
interference power. Moving toward the modeling of practical mmW and sub-THz systems,
in this section, it is shown how the NLOS propagation, noise power, and blockage can be
integrated into the model.

5.1. NLOS Paths

Previous studies and measurement campaigns [54] have shown that the NLOS clusters
of rays are present in mmW communications where they form sparse multipath faded
channels. These paths can increase the amount of interference, but at the same time would
lead to a more useful signal being received in the case of the coherent reception of a signal.
On the other hand, diversity is an efficient way to compensate for the blockage and to
increase the reliability of communication systems.

5.2. NLOS Paths

Let L be the total number of paths that the signal arrives from the user of interest to the
same AP; the L× 1 set of signals y = [y1, y2, . . . , yL]

T after the multi-beam beamforming to
each of the paths from the user of interest transmitting x is

y = hx + ι + w, (42)

where [h]` = h` = βo,`/Db
` for distance D` = (R2

o,` + h2)1/2 corresponding to the `th
paths of arrival in case ` = 1 it is the direct LOS link and Ro,1 = Ro is the geometric
distance between the user of interest, while the distances for NLOS links are modeled
later but Ro,` ≥ Ro. The ensemble of the aggregated interference amplitudes from the
PPP-distributed interferers is ι = [ι1, ι2, . . . , ιL]

T , which are independent and identically
distributed (iid) random variables obtained from a set of L beamforming toward the distinct
angles φo,1, φo,2, . . . , φo,L for LOS (φo,1) and NLOS (φo,2, . . . , φo,L) of the user of interest, so
that adapting (4) to this case with multipath for interference is:
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ι =
∞

∑
i=1

L

∑
`=1

βi,`(
R2

i,` + h2
) b

2
Gc(φi,`)xi,`. (43)

This assumption is justified by the interfering ray-paths on every beamforming that
has different attenuations and phase shifts, and is thus independent. w = [w1, w2, . . . , wL]

T

is the collection of noise amplitudes. The LOS/NLOS links are shown in Figure 14 and
using the Weyl model (similar to Saleh-Valenzuela [55] adapted for mmW [56,57]), where
the indirect NLOS paths from the transmitter are reflected from a secondary point, which
is uniformly distributed around a circle with a radius d around each of the transmitter’s
location. Usually, at high frequencies, there are not many NLOS paths, which are typically
L = 2− 3 [54,58,59]. The receiver for L paths, possibly with different (and likely delay-
resolvable for mmW and sub-THz system with large bandwidth) delays, is expected to
combine to maximize the service probability. If using the Maximal Ratio Combining (MRC)
combiner for the L paths related to the user of interest affected by the interference powers
I` = |ι`|2, one obtains the following service probability analysis (see Appendix C for
derivation and specific MRC notation):

PMRC = PI

 L

∑
`=1

α` I` <
1
T

(
L

∑
`=1

|β`|2

Ī2
` D2b

`

)2
. (44)

where |β`|2 is the fluctuation for the signal from the user of interest from the `th path,
and the distribution of total interference IMRC = ∑L

`=1 α` I` follows on from the CF for iid
interferers over the L-beamformers:

ΨIMRC (ω) =
L

∏
`=1

ΨI(a`ω). (45)
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Figure 14. NLOS model: every user has a few NLOS links in addition to an LOS link. LOS links are
shown with thick red lines, and NLOS links are shown with dashed lines reflected back from the
perimeter of a circle around the UE. Here, the UEo is the user of interest and and UEi is an interferer.

The NLOS distances D` = (R2
o,` + h2)1/2, and Ro,` for ` > 1 are affected by the random

angular position η of the NLOS reflections around the radius d, as depicted in Figure 14:

Ro,` = d +
√

R2
o,1 + d2 − 2 d Ro,1 cos(η) ∀ ` > 1. (46)

Pragmatically, the NLOS distance for the served user is dependent on the specific
multipath model assumed here, and a convenient way to incorporate the NLOS attenuation
into the additional path Ro,` − Ro,1 is to approximate this term is by considering the mean
distance for NLOS R̄o,` = Eη [Ro,`]. The distance D̄` = (R̄2

o,` + h2)1/2 is for the NLOS ` > 1,
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and thus the relationship (44) is somewhat simplified by constant distances. Recalling
that LOS/NLOS models hold for interferers’ i`, the power is augmented by the NLOS
components, and the service probability is reduced accordingly compared to L = 1 (LOS-
only). The CF for L > 1 is derived in Appendix D, accounting for LOS and NLOS.

Figures 15 and 16 show the average number of users served Ms within a ∆× ∆ square-
shaped area (from (32) it is Ms = λ∆2P̄s) when the AP with UCA is located at the center.
The multipath increases the interference and the number of NLOS paths from 1 to 3 (or
L = 1, 2, 3, 4). In Figure 15, the performance degrades as the density of the interferers is
quite high (here λ = 10−2 m−2); in contrast, in Figure 16, the aggregated interference is
lower due to the lower density (λ = 10−3 m−2), and thus, there is a clear benefit arising
from the multipath that vanishes for a large height (here h > 25 m). The performance
of MRC shown in Figures 15 and 16 is compared to the selection combining (SC), which
select the path with the largest SIR ([60], Ch. 7). The derivation of SC is straightforward
(not shown here). As expected, the MRC outperforms the SC, but one might observe that
degradation becomes more severe for large multipath. In the remainder of the paper, we
consider the multipath condition with both LOS and NLOS links.

Figure 15. Average users served Ms within square area 200 m× 200 m vs. UCA height h, and solid
lines are the no NLOS (L = 1), while dashed lines with a marker are the with NLOS for L = 2, 3, 4, with
maximal ratio combining (MRC) and selection combining (SC) receivers for Nc = 500, λ = 10−2 m−2,
2b = 2.6, SIR threshold [T]dB = 0, Rmax = 400 m, the normalized amplitude|β`| = 1 for every path `.

5.3. Noise

Although the paper analyzes the aggregated interference power, in a 6G network with
high path-loss it is inevitable to consider also the effect of the noise power. The SINR is
defined as:

SINR =
|β0|2G2(φ0, θ0)

(I + σ2
w/N)(R2

o + h2)
b , (47)

where I = |ι|2 and ι is defined in (44). For the service probability in the presence of noise, it
is easy to prove that relation (44) must be modified as

Pservice = PI

Itot + Ntot <
1
T

(
L

∑
`=1

|β`|2

Ī` D2b
`

)2
, (48)

where Itot =
L
∑
`=1

α` I` and Ntot = σ2
n

L
∑
`=1

α` are the total interference power and noise power

respectively, after MRC at the AP with α` = |β`|2/( Ī` +
σ2

w
N )2D2b

` .
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Figure 16. Average users served Ms within square area 200 m× 200 m vs. UCA height h, solid lines
is the no NLOS (L = 1), while dashed lines with marker are with NLOS for L = 2, 3, 4, with MRC
and SC receivers for Nc = 500, λ = 10−3 m−2; 2b = 2.6, SIR threshold [T]dB = 0, Rmax = 400 m, the
normalized amplitude|β`| = 1 for every path `.

5.4. Blockage

In mmW and 6G sub-THz systems, the waves are prone to blockage due to static
and dynamic blockage. Static blockage [61–63] is caused by structures such as buildings
and trees; self-blockage [63–65] is caused by the body holding the UE; and dynamic
blockage [63] is caused by moving objects, humans or vehicles. The behavior of blockages
and their impact on the coverage probability and system performance are different. Some
of the blockage effects can be modeled in closed form, while some others need numerical
methods. Here, we limit the analysis of the paper to the numerical evaluation of the
coverage probability in the presence of blockage.

It is convenient to define a dummy binary variable µ` for the `-th path, which is
µ` = 0 when the link is blocked and µ` = 1 when the link is free of any blockage, such that
Prob(µ` = 0) = PB is invariant on every path, and PB is the probability of blockage. The
blockage per path can be incorporated into (48) as

Pservice = PI

 Ĩtot + Ñtot <
1
T

(
L

∑
`=1

|β`|2µ`

Ī` D2b
`

)2
, (49)

where Ĩtot =
L
∑
`=1

α̃` I` µ` and Ñtot = σ2
n

L
∑
`=1

α̃` are the total interference and noise power

computed respectively, after MRC at the AP, with α̃` = µ`α` being a scaling parameter
for a given path, and it is obviously switched off by µ` when the path is blocked. The
distribution of the aggregated interference power I, can be achieved by considering that
blockage modifies the average density of interferers to λ(1− PB).

The goal is to assess the effect of the impact of blockage PB on service probability. At
each snapshot, one link can be either blocked or available. In order to calculate the service
probability, taking into account the blockage probability, one must numerically evaluate (49),
for Prob(µ` = 0) = PB for ∀`.

Figure 17 is the average service probability and Figure 18 is the number of UEs served;
both figures are versus blockage probability PB for small (λ = 5× 10−3 m−2) and large
(λ = 5× 10−2 m−2) UE density, and a varying number of paths (L = 1, 4), and path loss
(2b = 2, 2.8). In Figure 17, for a small λ and LOS path (L = 1), the blockage probability
reduces the service probability, while for L = 4, the service probability is more robust
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even for large PB, and this is due to the diversity of the multipath against the interference.
On the other hand, when λ = 5× 10−2 m−2, a multipath channel with L = 4 severely
degrades the performance. Numerical analysis shows the impact of the blockage on the
service probability in Figure 17, and the average number of user served in Figure 18. The
total number of users within a ∆× ∆ square-shaped area is Ms = λ∆2P̄s. This means that
for small PB any increase of one decade of UE density results in a smaller variation in the
number of users served. Recall that the number of UEs served in Figure 18 refers to the
UEs allocated in the same spectrum, and thus by knowing the average number of UEs
assignable on the same spectrum region, one can pre-design the largest number of users
that a resource scheduler can expect to assign (not covered in this paper).

Figure 17. Average service probability vs. the probability or blockage of all the links, for λ = {5×
10−3, 5× 10−2}m−2, and number of paths L = {1, 4}, where L = 1 means that only LOS link exists.
Parameters: [Ptx]dB = 20 dB, NF = 7 dB, BW = 400 MHz, Fc = 28 GHz, |β`| =

√
Ptx 4πFc/c for every

path `, service area = 100 m× 100 m square, AP height h = 10 m, signal-to-noise-and-interference (SINR)
threshold [T]dB = 0, Rmax = 400 m.
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Figure 18. Average service probability vs. the probability or blockage of all the links, for λ =

{5× 10−3, 5× 10−2}m−2, and number of paths L = {1, 4}, where L = 1 means that only LOS link
exists. Parameters: [Ptx]dB = 20 dB, NF = 7 dB, BW = 400 MHz, Fc = 28 GHz, |β`| =

√
Ptx 4πFc/c

for every path `, service area = 100 m× 100 m square, AP height h = 10 m, SINR threshold [T]dB = 0,
Rmax = 400 m.
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6. Conclusions

In this paper, we derived tractable expressions for the characteristic function of the
aggregate interference power for the homogeneous distribution of UEs using the SG
framework for Nc × Nv UcylA placed at an arbitrary height. We proved that for h > 0,
the distribution of the aggregated interference could be analytically approximated by
a decomposable mixture of two distributions: skewed alpha-stable and Gaussian. The
numerical analysis validates the results derived for the array configurations, including the
case when Nv = 1 for UCA. The analysis of the average service probability vs. UcylA height
shows that there are different trade-offs to exploit. Furthermore, the appropriate array
geometry depends on different environment and propagation parameters. The impact
of multipath was evaluated analytically, thus showing the trade-off due to the increased
aggregated interference and the diversity of the UE of interest. Blockage allows a realistic
analysis of mmW and 6G systems, and the blockage analysis has showed that there are
several design insights to exploit.

Future work could consider the extension to distributed antenna systems (DAS) with
different types of multi-AP coordination. The availability of the aggregated interference
distributions in analytic form opens the possibility to explore multi-AP cooperation, which
is otherwise, possible via massive simulations.
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Appendix A. Singularity Point

According to ([66], sections 313.14 and 021.12) we have
∫ ∞

0 (ejµt)t−α−1dt = (−jµ)αΓ(−α)
which is used in Ref. [11] when h = 0 for proving the alpha-stability of the distribution of
aggregated interference power. However, for h > 0 one will encounter the following integral
and its solution:

∫ |ω|/h2b

0

[
1− ejµt

tα+1

]
dt = lim

ε→0
(−jµ)αΓ(−α,−jµt)− 1

αtα

]t=|ω|/h2b

t=ε

, (A1)

for any constant and real µ and 0 < α < 1. In order to inspect the existence of any
singularity point, one could use the series of incomplete Gamma function

Γ(x, z) =Γ(x)− zx
∞

∑
k=0

(−z)k

(x + k)k!
. (A2)

Since x = −α ∈ (−1, 0), there exist one singularity point for z→ 0 (t→ 0 in (A1)), which

is compensated by the integral
∫ |ω|/h2b

0

[
1

tα+1

]
dt.
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Appendix B. Derivative of Mean Aggregated Interference

The mean of the aggregated interference can be derived readily from its CF as:

E[I] = (−j)−1 dΨI(ω)

dω

∣∣∣∣∣
ω=0

. (A3)

Here, we start with the CF at (19). Note that the |ω| and sign(ω) here are decomposed
deliberately to demonstrate the analogy with the standard alpha-stable distribution with
parameter β = ±1. Here, one can combine them, and (19) can be re-written as:

ΨI(ω) = exp
(
−πλ

Cα
|ω|α(1− jsign(ω) tan

πα

2
)PGc(ω, α, h) + πλh2

)
= exp

(
−πλΓ(1− α)|ω|α(cos

πα

2
− jsign(ω) sin

πα

2
)PGc(ω, α, h) + πλh2

)
= exp

(
−πλΓ(1− α)ωα(−j)αPGc(ω, α, h) + πλh2

)
.

(A4)

This is a differentiable function. The derivative of (A4) can be achieved by chain rules as:

dΨI(ω)

dω

∣∣∣∣∣
ω=0

= ΨI(ω).
(

υωα−1PGc(ω, α, h)
)

.
(

υωα dPGc(ω, α, h)
dω

)∣∣∣∣∣
ω=0

, (A5)

where υ = −πλΓ(1− α)(−j)α. Considering the derivative of normalized lower incomplete
Gamma function ∂P(s, x)/∂x = xs−1e−x/Γ(s) and expanding the Taylor series of the
incomplete gamma function (noting that only the first two terms exist at ω = 0), after some
calculus it yields (26).

Appendix C. Proof of MRC

Let the combiner be

x̂ =
L

∑
`=1

cH
` y` = cH y, (A6)

with weights c from a received signal y = hx + ι where the jth entry of h is hj = β j/rb
j for

distance rj, and the CF of the interference Ij = |ιj|2 is known Ψ`(ω). The MRC are designed
to maximize the SIR Υ, and thus the service probability PMRC(c) where the instantaneous
SIR is

Υ =
cH h hH c
cH D̄I c

, (A7)

D̄I = EI [DI] for DI = diag(I1, I2, · · · , IL), and Ī` = E[I`] that can be derived from CF, such
as for Rmax < ∞. However, for skewed alpha-stable distributions for Rmax → ∞ (UCA for
h = 0, Section 3.2), the mean does not exist, and maximization for the choice Ī` as median
does not change the conclusions. The Rayleigh quotient (A7) is known to be maximized for
the choice

copt =
D̄−1

I h

hHD̄−1
I h

(A8)

of the weights c. Finally, the service probability reduces to

PMRC = PI(cH
optDIcopt < cH

opthhHcopt
σ

T
), (A9)

and after some analytic it reduces to

PMRC = PI

(
Itot <

B
T

)
, (A10)
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where the aggregated weighted interference is Itot = ∑L
`=1 I`α` for α` = |β`|2/( Ī2

` r2b
` ) and

B =
(

∑L
`=1 |β`|2/ Ī` r2b

`

)2
. Thus, the analysis for the service (or complementary, for the

outage) depends on the CDF of Itot and in turn on the CF

ΨItot(ω) =
L

∏
`=1

Ψ`(a`ω), (A11)

which evidences the multiple usage in the main text for service probability analysis. Note
that, when noise is not negligible, given the noise power σ2

w/N with N being the total
number of antennas, one can repeat the same derivations by replacing DI = diag(I1 +
σ2

w/N, I2 + σ2
w/N, · · · , IL + σ2

w/N).

Appendix D. Multipath Interference

By considering the geometric model used for the NLOS paths, one can assume that
the NLOS paths, right after the reflection, create a secondary PPP distribution of sources
with the same density λ, where the rays have already travelled the distance d. This is
because the initial point process was uniformly random on the 2D space, and the reflection
points were also chosen uniformly random on the perimeter of the circle with radius d.
Thus, for NLOS interference links (here derived for UCA for simplicity, but can be readily
generalized to UcylA), one can re-write the interference amplitude as:

ι =
∞

∑
i=1

L

∑
`=2

βi,`

((Ri + d)2 + h2)
b
2

Gc(φi,`)xi,`. (A12)

By carrying out the derivations analogous to (10) to (19), and using the change of
variable ω

(
(r + d)2 + h2)−b

= t that is slightly different with respect to the change of
variables done in relation (13), one can achieve CF of the aggregated interference power for
UCA for the NLOS links, as ΨNLOS(ω) = Ψ1(ω).Ψ2(ω), where

Ψ1(ω) = exp
(

πλαΓ(−α)(−jω)α PGc(ω, α,
√

h2 + d2) + πλ(h2 + d2)
)

,

Ψ2(ω) = exp
(
−πλdαΓ(−α/2)(−jω)

α
2 PGc(ω, α/2,

√
h2 + d2) + 2πλ d

√
h2 + d2

)
,

(A13)

where the function PGc(.) is defined in (20). Now, the CF of the total augmented aggregate
interference is a statistically decomposable CF as a product of two CFs (for the exact
mathematical definition of decomposable CF refer to [67,68])

ΨI(ω) = Ψ(L−1)
NLOS(ω)ΨLOS(ω), (A14)

where ΨLOS(ω) is derived as in relation (25) and L is the total number of paths. The CDF
of the augmented interference can be achieved by numerical integration of this CF.
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