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Abstract

Although many image quality measures have been proposed for fingerprints, few works have taken

into account how differences among capture devices impact on the image quality. In this paper,

several representative measures for assessing the quality of fingerprint images are compared using

an optical and a capacitive sensor. We implement and test a representative set of measures that

rely on different fingerprint image features for quality assessment. The capability to discriminate

between images of different quality and its relationship with the verification performance is studied.

For our verification experiments, we use a minutiae- and a ridge-based matcher, which are the most

common approaches for fingerprint recognition. We report differences depending on the sensor,

and interesting relationships between sensor technology and features used for quality assessment

are also pointed out.
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I. INTRODUCTION

Fingerprints are commonly used to verify the identity of a person with high accuracy [1, 2].

Recent experimental results pointed out that the verification performance is affected by the

quality of the image provided by the electronic sensor [3, 4]. Quality in biometric systems is

a current research challenge [5] and even the best fingerprint verification systems worldwide

struggle in the presence of noisy images, as demonstrated in the FVC2004 benchmark [6].

A significant drop of performance was observed in FVC2004 with respect to the previous

edition in 2002 [7] due to deliberate quality corruption of the databases introduced during

the acquisition. In the last FVC2006 edition [8], no deliberate difficulties were introduced

in the acquisition, but the population is more heterogeneous, including manual workers and

elderly people. Also, no constraints were enforced to guarantee a minimum quality in the

acquired images and the final datasets were selected from a larger database by choosing

the most difficult fingers according to a quality index, to make the benchmark sufficiently

difficult for an evaluation.

So far, several capture devices have been proposed for acquiring fingerprint images [1].

Among them, optical and capacitive sensors are the most widely used. They are based on

different physical principles (see Fig. 1). In optical sensors, the finger touches a glass prism

and the prism is illuminated with diffused light. The light is reflected at the valleys and

absorbed at the ridges. The reflected light is focused onto a CCD or CMOS sensor. On the

other hand, capacitive sensors use the electrical properties of the skin as the second armature

of the capacitor formed against the silicon acquisition surface. Due to their different physical

principles, the conditions affecting the quality of the acquired images are expected to be

different for optical and capacitive sensors. It has been demonstrated in several studies

that changing the sensor has impact in the verification performance, not only in fingerprint

systems [9–12], but also in other biometric traits [13, 14]. The effect of factors such as

pressure on the sensor, dryness/wetness of the skin, dirt, noise, residual prints on the sensor,

etc. are expected to impact differently during the fingerprint acquisition. Therefore, it can

be hypothesized that the two sensors provide images of different quality in many cases. In

addition, one can think that the degradation of the verification performance with the quality

can be different for the two sensors. Many quality measures for fingerprint images acquired

from electronic sensors have been proposed in the literature [15]. Existing measures rely
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on different features of fingerprint images for quality assessment. However, few works have

taken into account how differences among fingerprint capture devices impact on the quality

measure computation [10, 16, 17]. In our opinion, some measures could be suitable for the

optical sensor and not for the capacitive one, and vice-versa.

¡¡¡¡Figure 1 goes here¿¿¿¿

Accordingly, the main goal of this paper is to compare by experiments some representative

state-of-the-art measures for assessing the quality of fingerprint images, in order to provide

indications on which of them are best suited for a certain capture device. An optical and a

capacitive sensor are used in our experiments. We evaluate a set of quality measures in terms

of their capability to discriminate among images of different quality and their relationship

with the verification performance. We use in our verification experiments a minutiae- and a

ridge-based matcher, which are the most widely used approaches for fingerprint verification

[1]. Reported results show differences depending on the sensor or on the matcher, and

relationships between sensor technology and features used for quality assessment are also

pointed out. The scope of our conclusions is obviously limited by the fact that we adopt a

particular commercial sensor for each family (optical and capacitive). However, it should be

noted that the acquisition principle is the same for all optical and capacitive sensors, so it

is possible that reported results could be confirmed in a next and larger experimental stage

with other commercial sensors based on optical and capacitive acquisition principles.

The rest of the paper is organized as follows. Section II describes the quality measures

used in our study. In Section III, we describe our experiments and results, and conclusions

are finally drawn in Section IV.

¡¡¡¡Figure 2 goes here¿¿¿¿

II. QUALITY MEASURES FOR OPTICAL AND CAPACITIVE FINGERPRINT

IMAGES

A number of approaches for fingerprint image quality computation have been described

in the literature. A taxonomy is given in [15] (see Fig. 2). Image quality is assessed by

measuring one of the following properties: ridge strength or directionality, ridge continuity,

ridge clarity, integrity of the ridge-valley structure, or estimated verification performance

when using the image at hand. A number of sources of information are used to measure
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these properties: i) angle information provided by the direction field, ii) Gabor filters,

which represent another implementation of the direction angle [18], iii) pixel intensity of

the gray-scale image, iv) power spectrum, and v) Neural Networks. Fingerprint quality can

be assessed either analyzing the image in a holistic manner, or combining the quality from

local non-overlapped blocks of the image.

In the following, we give some details about the quality measures used in this paper.

Different measures have been selected from the literature in order to have a representative

set. We have implemented several measures that make use of the above mentioned properties

for quality assessment, see Table I:

A. Ridge-strength measures

• Orientation Certainty Level (QOCL) [19], which measures the energy concentration

along the dominant direction of ridges using the intensity gradient. A relative weight

is given to each region of the image based on its distance from the centroid, since

regions near the centroid are supposed to provide more reliable information [20].

• Standard deviation of Gabor filter responses (QGABOR) [21]. The fingerprint

image is filtered using a Gabor filter with m different directions. For fingerprint

regions with good quality (i.e. strong ridge orientation), one or several filter responses

are larger than the others. The standard deviation of the m filter responses is then

used to determine the quality.

• Energy concentration in the power spectrum (QENERGY ) [20], which is com-

puted using ring-shaped bands. For a fingerprint image, the ridge frequency value lies

within a certain range and it is expected that as fingerprint image quality increases,

the energy will be more concentrated in ring patterns within the spectrum.

B. Ridge-continuity measures

• Local Orientation Quality (QLOQ) [22], which is computed as the average absolute

difference of direction angle with the surrounding image blocks, providing information

about how smoothly direction angle changes from block to block.
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• Continuity of the orientation field (QCOF ) [19]. This method rely on the fact

that, in good quality images, ridges and valleys must flow sharply and smoothly in

a locally constant direction. The direction change along rows and columns of the

image is examined. Abrupt direction changes between consecutive blocks are then

accumulated and mapped into a quality score.

C. Ridge-clarity measures

• Local Clarity Score (QLCS) [22]. The sinusoidal-shaped wave that models ridges

and valleys (e.g. see [23]) is used to segment ridge and valley regions. The clarity is

then defined as the overlapping area of the gray level distributions of segmented ridges

and valleys. For ridges/valleys with good clarity, both distributions should have a very

small overlapping area.

• Amplitude and variance of the sinusoid that models ridges and valleys (QA

and QV AR) [23]. Based on these parameters, blocks are classified as good and bad.

The quality of the fingerprint is then computed as the percentage of foreground blocks

marked as good.

D. Ridge-integrity measures

• Ridge frequency and ridge-to-valley thickness ratio (QFREC and QRV ) [19].

Ridges and valleys are modeled as a sinusoidal-shaped wave along the direction normal

to the local ridge orientation (e.g. see [23]). Ridge frequency and ridge-to-valley

thickness ratio are computed for each image block. A valid range is defined for both

measures, and blocks whose measures fall outside of the range are marked as “bad”

blocks.

E. Measures based on estimated verification performance

• Matcher performance (QNFIS). One popular method based on classifiers [24, 25]

defines the quality measure as the degree of separation between the match and non-

match distributions of a given fingerprint, which is computed using Neural Networks.
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This quality assessment algorithm is included in the publicly available NIST software

[26].

¡¡¡¡Table 1 goes here¿¿¿¿

¡¡¡¡Table 2 goes here¿¿¿¿

¡¡¡¡Figure 3 goes here¿¿¿¿

III. EXPERIMENTAL RESULTS

A. Database description

Similarly to the FVC2004 benchmark [6], we created a database containing 1680 images

in which image quality has been artificially corrupted by using an acquisition procedure

with variable contact pressure, artificial dryness and moistness. The index, middle and ring

fingers of both hands from seven volunteers were acquired using an optical and a capacitive

sensor (six classes per person, therefore having a total number of 6 × 7 = 42 classes per

sensor). We used the Biometrika FX2000 (312 × 372 pixels images at 569 dpi) and the

Precise Biometrics MC100 (300 × 300 pixels images at 500 dpi) as optical and capacitive

sensor, respectively (see Fig. 4). The NFIS2 matcher used in our experiments is developed

for 500 dpi images, thus images from the optical sensor are first downsampled to dpi.

¡¡¡¡Figure 4 goes here¿¿¿¿

First, ten impressions of each finger were acquired in normal conditions, i.e. asking users

to press against the sensor in a natural way. This results in 420 multi-sensor fingerprint

images, being referred from now on as the DIEEE dataset. Next, another ten impressions

of each finger were acquired under corrupted quality conditions. Across the ten acquisitions,

users were asked to apply low and high pressure against the sensor surface, and simulate

dryness and moisture conditions. Table II show the conditions imposed to each of the ten

impressions. This results in a second subset of 420 multi-sensor fingerprint images, being

referred from now on as the EXTREME dataset. With this procedure, we are not aimed at

study in depth the specific effect of pressure and humidity in the image quality but to obtain

images of very low quality. Other studies [27] specifically study the impact fingerprint force

has on image quality by measuring pressure with sensing equipments.

At the end of the data collection, we gathered two multi-sensor datasets from the same
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volunteers, one acquired in a natural way and the second having a number of sources of

difficulty: artifacts due to wet fingers, poor contrast due to skin dryness or low contact

pressure, distortion due to high contact pressure, etc. Examples are shown in Fig. 3.

¡¡¡¡Figure 5 goes here¿¿¿¿

B. Separation capabilities of quality measures

We first compare the capability of the selected quality measures to discriminate between

good and bad quality images acquired with each sensor. For this purpose, three subsets

were extracted for each sensor from the EXTREME dataset by visual inspection of their

image qualities, one subset with 62 images of low quality, one subset with 62 images of

medium quality, and one subset with 62 images of good quality. Images for each subset have

been selected in order to have clearly different quality images. The following factors have

been taking into account to assess the quality of fingerprint images: incomplete fingerprint

(low pressure), smudged ridges in different zones of the image (high pressure or moisture),

nonuniform contrast of the ridges (low pressure or dryness), background noise in the image

or latent fingerprints from previous acquisitions (moisture), weak impression of the ridge

structure (low pressure or dryness), and significant breaks in the ridge structure or artifacts

between ridges (high pressure or moisture). These characteristics are quantified by visual

inspection and only images undoubtedly classified as bad, medium or good quality are

considered. Examples are shown in Fig. 3.

As evaluation criterion, the Fisher distance (FD) has been used, which is a measure

of statistical separation among classes. FD is a class separation statistic working at best

when distributions of random variables under study can be described by their first-order

statistics. It works clearly as a sub-optimal choice when this does not happen, and non-

parametric statistics should be preferred, but it is well-known that parametric statistic are

difficult to estimate. It is also worth noting that FD showed to model effectively a class-

separation estimation in genera cases [28]. The FD expression for two classes A and B is as

follows:

FD =
(µA − µB)2

σ2

A + σ2

B

where µA and σA (µB and σB) are the mean and variance of class A (class B).
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The quality of all images from the three subsets is computed and then, the mean quality

value and standard deviation value of each subset. Next, the FD between the three subsets

is extracted. We extracted two FD values: between subsets of low and medium quality

images (FD1), and between subsets of medium and high quality images (FD2). The quality

assessment algorithms are tuned so as to maximize these two FD values.

In Table III it is shown the results of this experimental evaluation procedure. The quality

measures are ranked on the basis of the FD1 value. Also, Fig. 5 depicts quality distributions

of the three subsets for all the quality algorithms tested. It can be observed from Table III

that FD values between subsets of low and medium quality images (FD1) are higher than

FD values between subsets of medium and high quality images (FD2) in most cases. This

suggests that the tested quality algorithms are specially good at discriminating images of

bad quality from the rest of images. However when image quality increases, discrimination

capability between quality groups decreases for both sensors. This can also be observed in

Fig. 5, where distributions of the medium and high quality subsets are highly overlapped,

specially for the optical sensor.

It can also be seen from Table III that all quality algorithms result in higher Fisher

distances for the capacitive sensor (i.e., better discrimination between quality groups). There

are a number of quality estimation algorithms for the optical sensor that result in high

separation between subsets of low and medium quality images (FD1), but most of the

algorithms result in low separation between subsets of medium and high quality (FD2). We

observe from our experiments that, in general, the discrimination capability is lower for the

optical sensor than for the capacitive one.

By looking at Table III, we found interesting relationships between sensor technology and

features used for image quality assessment. For instance, quality measures relying on ridge

clarity (QLCS, QA and QV AR) are ranked first for the optical sensor and, on the contrary,

they are ranked last for the capacitive one. The opposite happens with measures relying on

ridge strength (QOCL and QGABOR) or ridge continuity (QLOQ and QCOF ). Worth noting,

quality measures relying on integrity of the ridge-valley structure (QFREC and QRV ) work

reasonably well for both sensors. We can also see from these results that quality measures

relying on similar features show similar behavior (i.e. they have close positions in the rank).

It is worthy to remark that optical sensors are based on light reflection properties [1] which

strictly impact on the related grey level values, and that the grey level features-based quality
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measure ranks first for the optical sensor. Therefore, there seems to be a close relationship

between the physical properties of the optical sensor and the quality measures that better

work with this sensor.

¡¡¡¡Table 3 goes here¿¿¿¿

C. Verification performance improvement

We now compare the capability of quality measures to improve the verification perfor-

mance as images scored with bad quality are discarded. In the verification experiments

reported in this paper, we use both the publicly available minutiae-based matcher included

in the NIST Fingerprint Image Software 2 (NFIS2) [26] and the ridge-based fingerprint

matcher developed in the Biometrics Research Lab. at Univ. Autonoma de Madrid, Spain

[29]. These two matchers are based on well-known and widely used approaches for finger-

print verification. Minutiae is certainly the most used feature for fingerprint recognition,

thanks to its analogy with the way forensic experts compare fingerprints and its acceptance

as a proof of identity in the courts of law, and other features have been also proposed in the

literature as alternative to minutiae, being the ridge information the most widely studied

[1]. It has been found in previous works that the performance of minutiae-based systems de-

pends on the quality of fingerprint images, whereas ridge-based matchers are more robust to

image quality degradation [3, 4, 29], although no studies have taken into account differences

between sensors of different technology.

For our evaluation and tests with NFIS2, we have used the following packages:

i) MINDTCT for minutiae extraction; and ii) BOZORTH3 for fingerprint matching.

MINDTCT takes a fingerprint image and locates all minutiae in the image by means of

binarization and thinning, assigning to each minutia point its location, direction, type, and

quality. The BOZORTH3 matching algorithm computes a match score between the minu-

tiae from a template and a test fingerprint. A sample fingerprint image, the resulting binary

fingerprint and the minutiae pattern superimposed on the thinned image are shown in Fig. 6.

For detailed information of MINDTCT and BOZORTH3, we refer the reader to [26]. The

ridge-based matcher uses a set of Gabor filters to capture the ridge strength. The input

fingerprint image is convolved with 8 Gabor filters with different directions. The variance

of the filter responses across all filtered images is used as feature vector, which is called
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FingerCode because of the similarity to previous research works [30]. The automatic align-

ment is based on the system described in [31]. No image enhancement is performed since

Gabor filters are robust enough to the typical noise present in the fingerprint images. In the

matching stage, a similarity score is computed as the Euclidean distance between the two

aligned FingerCodes. A sample fingerprint image, the resulting filtered image with a Gabor

filter of direction θ = 0◦ and its FingerCode are shown in Fig. 7.

¡¡¡¡Figure 6 goes here¿¿¿¿

¡¡¡¡Figure 7 goes here¿¿¿¿

We consider the 10 impressions from the same finger of the DIEEE data set as enrolment

templates. Genuine matchings are obtained comparing the templates to the 10 corresponding

impressions from the same finger of the EXTREME data set. Impostor matchings are

obtained by comparing one template to the 10 impression of the EXTREME data set from

all the other fingers. The total number of genuine and impostor matchings are therefore

42× 10× 10 = 4, 200 and 42× 41× 10 = 17, 220, respectively, per sensor. We further assign

a quality value to each score. The quality of a score is defined as
√

Qke · Qkt, where Qke and

Qkt are the image qualities of the enrolled and input fingerprints respectively corresponding

to the matching. A quality ranking of the scores is carried out and the EER value is then

computed discarding scores with the lowest quality value. Results of this procedure are

shown in Figs. 8 and 9. Score quality values have been normalized to lie into the [0, 1] range

for better comparison between quality measures.

Based on the results of Figs. 8b and 9b, we find close relationship between verification

performance improvement and the discrimination capability reported in Sect. III B for the

optical sensor. The algorithms with the lowest discrimination capability (QCOF , QOCL,

QLOQ) result in the lowest improvement of performance for both matchers. On the other

hand, the algorithm ranked first for the optical sensor (QV AR) results in an important

improvement of performance both for the minutiae- and the ridge-based matcher (a relative

improvement of around 60% and 24%, respectively, is observed in Figs. 8b and 9b).

For the capacitive sensor, on the contrary, different results are obtained depending on the

matcher. It can be seen in Fig. 8a that the verification performance is improved for all the

quality measures with the minutiae-based matcher. This is not true with the ridge-based

matcher, obtaining a slightly improvement of performance in this case (see Fig. 9a) and

even no improvement is observed with the quality measures ranked last in Table III for this
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sensor (QENERGY , QLCS, QV AR, QA).

Taking the relative EER improvement into account, we observe from Figs. 8 and 9 that

higher improvement is obtained with the optical sensor for both matchers. This can be due

to the smaller acquisition surface of the capacitive one and it can also explain the slightly

improvement of performance observed with the ridge-based matcher. It is well known that

acquisition surface of fingerprint sensors has impact on the performance due to the amount

of discriminative information contained in the acquired biometric data [1]. As a result,

increasing image quality results in smaller improvement for the capacitive sensor due to

this inherent limitation. Or, in other words, degrading image quality has more impact on

the performance of the optical sensor, since higher amount of discriminative information is

degraded.

¡¡¡¡Figure 8 goes here¿¿¿¿

¡¡¡¡Figure 9 goes here¿¿¿¿

IV. CONCLUSIONS

In this paper, several representative measures for assessing the quality of fingerprint

images have been compared, and their differences in behavior when using an optical and a

capacitive sensor have been pointed out.

In particular, all quality algorithms have been capable of rejecting images of bad qual-

ity for both sensors. However, when image quality is increased, discrimination capability

decreases. In general, the discrimination capability is lower for the optical sensor than for

the capacitive one. We also pointed out interesting relationships between sensor technology

and features used for image quality assessment. The most discriminative measures with one

sensor have been the least discriminative ones with the other sensor, and vice-versa. In par-

ticular, measures relying on grey level features have been the most discriminative with the

optical sensor. We have also compared the performance improvement obtained with each

sensor as images with the worst quality are discarded. We have used in our experiments a

minutiae- and a ridge-based matcher. For the optical sensor, there is a close relationship be-

tween performance improvement and reported discrimination capability for both matchers.

On the other hand, no significant performance improvement is obtained for the capacitive

sensor when using the ridge-based matcher.
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Future work includes exploiting these differences of behavior in a multi-algorithm or a

multi-sensor environment. Having found that quality measures behave differently depending

on the sensor, we are also aimed at finding a suitable vector of measures for each sensor

that increases the separation between quality groups. Extending this study to a larger set

of commercial sensors and also including sensors with other acquisition technology (e.g.

thermal ones) is also being considered.
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FIG. 1: Acquisition principles of capacitive and optical sensors.

FIG. 2: Taxonomy of existing fingerprint image quality estimation methods.

FIG. 3: Fingerprint examples from the three subsets of low, medium and high quality.

Fingerprint images are plotted at the same scale for: i) both optical (left subplot) and

capacitive sensor; and ii) variable quality (from top to bottom): low, medium, high.

FIG. 4: Optical and capacitive sensor used for the experiments of this paper (Biometrika

FX2000 and Precise Biometrics MC100, respectively).

FIG. 5: Quality distributions of the three subsets of images with different quality.

FIG. 6: Processing steps of the minutiae-based matcher. From left to right: original

image, resulting binary fingerprint after image enhancement, and minutiae pattern super-

imposed on the thinned image.

FIG. 7: Processing steps of the ridge-based matcher. From left to right: original image,

filtered image with filter orientation θ = 0 and FingerCode.

FIG. 8: Minutiae-based matcher.Experiment discarding scores with the lowest quality

(x-axis of the different plots). The quality of a score is defined as
√

Qke · Qkt, where Qke and

Qkt are the image qualities of the enrolled and input fingerprints respectively corresponding

to the matching.

FIG. 9: Ridge-based matcher.Experiment discarding scores with the lowest quality (x-

axis of the different plots). The quality of a score is defined as
√

Qke · Qkt, where Qke and

Qkt are the image qualities of the enrolled and input fingerprints respectively corresponding

to the matching.
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TABLE I: Summary of the quality measures selected for the experiments of this paper.

Quality measure Property measured Source

QOCL Ridge strength Local angle

QGABOR Ridge strength Gabor filters

QFREC Ridge integrity Local angle

QRV Ridge integrity Local angle

QLCS Ridge clarity Pixel intensity

QLOQ Ridge continuity Local angle

QENERGY Ridge strength Power spectrum

QNFIS Matcher performance Neural Networks

QA Ridge clarity Pixel intensity

QV AR Ridge clarity Pixel intensity

QCOF Ridge continuity Local angle

TABLE II: Conditions of pressure and humidity under which the EXTREME data set was acquired.

Impr. Press. Humid. Impr. Press. Humid.

1 Normal Normal 6 High Dry

2 Normal Normal 7 Low Dry

3 High Normal 8 Normal Wet

4 Low Normal 9 High Wet

5 Normal Dry 10 Low Wet

18



TABLE III: Statistical measures of the three subsets of images with different quality from the

EXTREME data set. FD1 (FD2) is the Fisher Distance between subsets of low and medium

quality images (medium and high quality images). Quality measures are ranked by FD1

CAPACITIVE SENSOR OPTICAL SENSOR

Measure Property FD1 FD2 Measure Property FD1 FD2

QGABOR Ridge strength 5,49 1,00 QV AR Ridge clarity 2,64 0,41

QOCL Ridge strength 4,44 3,21 QA Ridge clarity 2,53 0,45

QLOQ Ridge continuity 4,11 0,49 QFREC Ridge integrity 2,16 0,16

QCOF Ridge continuity 3,83 0,42 QRV Ridge integrity 2,14 0,27

QFREC Ridge integrity 3,23 0,33 QLCS Ridge clarity 2,09 0,49

QRV Ridge integrity 2,42 0,88 QGABOR Ridge strength 1,93 0,52

QA Ridge clarity 2,35 0,55 QNFIS Verification performance 1,52 0,18

QV AR Ridge clarity 2,27 0,53 QENERGY Ridge strength 0,93 0,14

QLCS Ridge clarity 2,21 0,89 QLOQ Ridge continuity 0,73 0,16

QNFIS Verification performance 2,05 0,25 QOCL Ridge strength 0,73 1,68

QENERGY Ridge strength 1,82 0,80 QCOF Ridge continuity 0,60 0,22
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