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Abstract: Numerous indoor positioning technologies and systems have been proposed to localize
people and objects in large buildings. Wi-Fi and Bluetooth positioning systems using fingerprinting
have gained popularity, due to the wide availability of existing infrastructure. Unfortunately, the
implementation of fingerprinting-based methods requires time-consuming radio surveys to prepare
databases (RSSI maps) that serve as a reference for the radio signal. These surveys must be conducted
for each individual building. Here, we investigate the possibility of using simulated RSSI maps with
fingerprinting-based indoor localization systems. We discuss the suitability of the two popular radio
wave propagation models for the preparation of RSSI reference data: ray tracing and multiwall. Based
on an analysis of several representative indoor scenarios, we evaluated the performance of RSSI
distribution maps obtained from simulations versus maps obtained from measurement campaigns.
An experimental positioning system developed by the authors was used in the study. Based on
Bluetooth Low Energy beacons and mobile devices (smartphones), the system uses fingerprinting
followed by a particle filter algorithm to estimate the user’s current position from RSSI measurements
and a reference spatial RSSI distribution database for each Bluetooth beacon in the building. The
novelty of our contribution is that we evaluate the performance of the positioning system with RSSI
maps prepared both from measurements and using the two most representative indoor propagation
methods, in three different environments in terms of structure and size. We compared not only the
three RSSI maps, but also how they influence the performance of the fingerprint-based positioning
algorithm. Our original findings have important implications for the development of indoor localiza-
tion systems and may reduce deployment times by replacing reference measurements with computer
simulations. Replacing the labor-intensive and time-consuming process of building reference maps
with computer modeling may significantly increase their usefulness and ease of adaptation in real
indoor environments.

Keywords: indoor positioning; fingerprinting; multiwall model; particle filter; received signal
strength indicator; RSSI

1. Introduction

Indoor localization of people, objects, and autonomous devices is a key enabling tech-
nology for many smart environment scenarios. Large spaces such as residential complexes,
malls, offices, airports, and administrative buildings can be difficult to navigate. Unfor-
tunately, satellite-based radio navigation systems often cannot be used inside buildings
because of signal attenuation and multipath propagation [1]. In recent decades, there has
been increasing interest in indoor localization techniques [2–6]. The problem of accurate
indoor positioning has been the subject of many articles, focusing on different aspects of
indoor localization systems and technologies [7]. Some authors have focused on the data
sources used for localization in buildings [7]. Others have attempted to find new ways of
processing and using building floor plans to locate people and objects indoors [8,9]. There
have also been attempts to minimize location errors [8].
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Indoor positioning typically requires many sources of data [6,7,9–12]. To gather the
data, various sensors and methods have been explored [5,13]. There are two main data
types used by researchers and commercial companies for indoor localization [1,5,10,14,15].
The first approach is to gather data from devices worn by the user or from the autonomous
mobile devices being localized [7]. It is common in the case of human users to use smart-
phones equipped with a set of sensors including a magnetometer, accelerometer, gyroscope,
and barometer, which can provide valuable data about the environment and the user’s
movements around buildings [16]. Smartphone devices can also be used in vision-based
methods [17–19]. The camera is used to record images that allow the user to be located in
the indoor environments. The problem with solutions based on smartphone data is that
personally owned devices vary in terms of the number and quality of their sensors and
antennas [8].

The second approach is to collect information from external sources located in build-
ings, such as Wi-Fi access points [6,13,14], Bluetooth transmitters [5], RFID tags [20,21],
UWB technology [22], or laser sensors [23]. The use of external signal sources enables
the provision of location services to most users with smartphones. Wi-Fi and Bluetooth
transmitters can be easily adapted for localization purposes and placed in an indoor en-
vironment. Various factors can influence the positioning accuracy of such systems. For
example, Pelant et al. discussed the influence of the number of BLE beacons on the per-
formance of indoor fingerprint localization based on received signal strength indication
(RSSI) [24]. Other researchers have proposed using machine learning methods to improve
the accuracy of RSSI fingerprint-based localization systems in indoor environments [25].

Preparation of the reference RSSI distribution for each of the external sources available
in a building requires creating a database of information at points covering the entire
area. This database serves as a source of information for localization algorithms using the
fingerprinting method. To develop such a dataset, many authors divide the localized area
into a grid of points, called reference points, where time-consuming and labor-intensive
RSSI readings are taken [6]. Such measurements usually take several days, depending on
the size and complexity of the rooms.

Different approaches to reducing the complexity of the map construction process
and improving the performance of RSSI fingerprint-based methods have been explored in
the literature. In [26], path loss model interpolation was used with sparse crowdsourced
fingerprints. In [27], an automated method of reference map calibration was proposed
using a mobile robot. In [28,29], crowdsourcing approaches were used for full radio map
construction and calibration.

In our previous works, we discussed the influence of factors affecting the quality of
computer-generated reference maps on the performance of RSSI-fingerprint-based position-
ing systems. In [30], we discussed the suitability of the multiwall radio wave propagation
model for the preparation of RSSI reference data from BLE beacons. These initial results
showed that it is possible in some cases to use less complex propagation models to pre-
pare reference data, reducing the time required while maintaining sufficient localization
accuracy. In [31], we discussed the impact of user mobility on positioning accuracy at
different resolutions of received power distribution reference maps. In [32] we studied
how the resolution of the received power distribution reference maps affects positioning
accuracy. We showed that careful selection of map resolution can reduce computation time
significantly while maintaining the accuracy of the positioning system.

Extending our previous research, this article presents a method of preparing reference
RSSI distributions using computer simulations. The simulations were conducted using the
ray tracing propagation model and the computationally less demanding multiwall model.
The simulated RSSI distributions were tested using a location algorithm. Their performance
was compared with that of measured RSSI maps. The results show that it is possible to
replace the complex creation of reference maps with simulations using the ray tracing
model or the multiwall model, both of which provide sufficiently accurate measurements
(from the point of view of the user) of 1–2.5 m.
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The main contributions of this study can be summarized as follows:

1. Two popular propagation models, multiwall and ray tracing, were used to create
simulated RSSI datasets from floor plans representing three very different indoor
environments: a sports hall, an office building, and a long corridor. RSSI measure-
ments were also made using a smartphone. Differences between the simulated and
measured RSSI maps are presented and discussed.

2. Simulated and measured positioning datasets were prepared for all three environ-
ments. The datasets were used to experimentally verify the suitability of the simulated
maps for a fingerprint-based localization algorithm combined with a particle filter.

3. We show that it is possible to use simulated RSSI maps instead of measured RSSI
maps for positioning systems in large buildings. The preparation of simulated
maps is significantly less costly and time-consuming than taking labor-intensive
RSSI measurements.

The concept for a localization system that uses reference RSSI maps as a source of
information is explained in Section 2.1. Section 2.2 presents a localization system developed
by the authors, which was used in the study. The system uses the fingerprinting method
followed by a particle filter to determine the location of terminals in a building. The
localization algorithm is described in detail. Section 2.3 describes the preparation of
reference RSSI in an experimental measurement campaign. Section 2.4 discusses the
propagation models used to replace labor-intensive RSSI measurements with computer
simulations. Two propagation models were used: ray tracing and multiwall. Section 2.5
explains how the values of the simulated reference RSSI distributions were matched to
the actual measurements recorded by the mobile terminal. Section 2.6 presents the three
indoor environments that were used as test scenarios. The RSSI distribution maps obtained
from measurements and multiwall and ray tracing simulations are compared in Section 2.7.
Section 3 discusses the verification scenario that was used to evaluate the accuracy of indoor
localization based on the measured RSSI maps and the distributions obtained in computer
simulations. We also compare the localization error and the time needed to prepare maps
using measurements and simulations. Conclusions are presented in Section 4.

2. Materials and Methods
2.1. Concept of the Proposed Localization System

An experimental positioning system developed by the authors was used in the study.
The system architecture consists of a Bluetooth Low Energy (BLE) transmitter network and
user terminals equipped with a dedicated mobile application implementing algorithms for
determining the position of the user.

Because of the great popularity of mobile devices based on the Android system,
Android phones were as a platform to run the application and provide visualization of
the searched objects. The program requires a terminal equipped with a BLE receiver and
Internet access.

The system works according to the following scenario (also presented in graphic form
in Figure 1):

1. Bluetooth transmitters broadcast messages containing unique identifiers (AP1-APn),
allowing the source of the signal to be determined unambiguously. The application in-
stalled on the mobile device looks for Bluetooth tags in the environment, by registering
their identification numbers and the corresponding signal strength of the RSSI.

2. The strength of the RSSI from each available BT transmitter is compared with the
reference RSSI distribution dataset. If the received RSSI level value for a given
Bluetooth transmitter (within some range) matches with predetermined accuracy the
values for a given set of points on the reference map, then these points are treated as
possible mobile terminal locations (i.e., hypotheses) in the indoor environment.

3. The fingerprinting localization algorithm uses the particle filtration method to gener-
ate a random cloud of particles around the recently estimated location. Each particle
is a potential position hypothesis for the next iteration of the algorithm. Based on
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the hypotheses registered by the mobile terminal and the last estimated position, the
algorithm assigns weights to each particle. It determines the probability with which a
given particle is a true estimate of the location. Particles that are far from the potential
hypotheses and the last estimate are given low weights (or zero), and those close to
the hypotheses receive higher weights. The algorithm then eliminates particles with
low or zero weights.

4. Based on the observed identifiers and RSSI values, the fingerprinting algorithm
followed by particle filter determines the estimated position of the terminal. The
procedure of updating the terminal estimate is performed each time the currently
obtained RSSI values are different from those in the previous algorithm iterations.
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Figure 1. Graphical diagram of the localization algorithm.

2.2. Indoor Positioning Algorithm Based on Fingerprinting Method Followed by Particle Filter

To determine the location of the terminal, a modified version of a particle filter algo-
rithm [30,33,34] was used.
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The algorithm includes the following stages:

1. Load the reference data.
2. Read (measure) the RSSI sequence for a fragment of a terminal movement path.
3. Initialize the positioning procedure, determine the initial location estimate, initialize

(for the Nth-segment) vectors of coordinates: XP—set of x coordinates for particle
positions YP—set of y coordinates for particle positions N—number of particles used
in the localization algorithm

4. Compare the measured RSSI values against the reference values. Select all the points
from the reference map that meet the condition

Pxy − P∆ < Prefmap < Pxy + P∆ (1)

where:
Prefmap—reference RSSI values
Pxy—RSSI value measured at the coordinates (x, y)
P∆—maximum admissible deviation of the reference values from the measured

RSSI value.
The following steps of the localization algorithm were implemented to increase its

stability and accuracy:

5. Determine common points (areas) on reference RSSI maps that meet the assumption
from step 4:

XS, YS—state vectors, sets of x, y coordinates of the points that correspond (are equal
or close) to measured values from each source.

6. On the basis of the points meeting Equation (1) for all sources, we obtain three sets of
points for which the value of the power distribution is similar to values measured for
each of the RSSI sources at a given moment. Determining the common measurements
limits the area that needs to be searched.

7. The set obtained in step 5 is a state vector. It is used to generate a shift for the set
of particles

x∆, y∆ are the sets of shifts for each of the particles, for the x and y axes respectively.

x∆ = median(XS)− xest + Xsigma∗randn(1, N) (2)

y∆ = median(YS)− yest + Ysigma∗randn(1, N) (3)

where:
Xsigma, Ysigma—variance in the particle dispersion x, y
xest, yest—estimated location of the object from the previous iteration
median (XS)—median value
randn (1, N)—random value with a normal distribution

8. If none of the common vectors are found, select the state vector by following these steps:

YS(i) =
[
YS(i− 1) Y′S1 Y′S2 Y′S3

]
(4)

XS(i) =
[
XS(i− 1) X′S1 X′S2 X′S3

]
(5)

where:
X′S1, X′S2, X′S3—state vectors, sets of x coordinates of the points that correspond (are

equal or close) to measured values from sources S1, S2, S3
Y′S1, Y′S2, Y′S3, —state vectors, sets of x, y coordinates of the points that correspond

(are equal or close) to measured values from sources S1, S2, S3

9. For each algorithm iteration (i) compute x∆ and y∆ using Equations (2) and (3) with
the newly generated state vectors. Move sets of particles XP, YP by x∆ and y∆:
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XP(i) = XP(i− 1) + X∆(i) (6)

YP(i) = YP(i− 1) + Y∆(i) (7)

10. Assign new weights to each of the particles whose position does not coincide with the
points that meet the condition

PxyP − P∆ < Prefmap < PxyP + P∆ (8)

where:
PxyP—each particle that represents a hypothetical position with defined coordinates

XP, YP for which a new weight is assigned.

11. Normalize the particle weights. The weight is the probability that the given particle
is an accurate estimate of the object’s position. Therefore, in order to determine the
probability for each of the particles, the sum of their weights should be 1.

12. Calculate the degeneration coefficient and check if it exceeds the experimentally se-
lected threshold value GTHR = 0.8. This threshold value was selected in a deterministic
manner because it allows for re-scattering of the particles when their weights start
to differ significantly (making it difficult to accurately estimate the position of the
object in the building). The degeneration coefficient enables the dispersion of particle
weights to be measured. If all particles have the same weight, then GTHR reaches the
maximum value of 1. If the weights of the particles start to differ, the degeneracy
coefficient d decreases.

13. If GTHR = 0.8, d < GTHR, the algorithm starts the resampling procedure. A new set of
particles is created. The probability of copying a particle in a given x, y depends on
its weight. Particles that have low weights are replaced with the more probable ones
(with greater weights).

14. Update the position estimate: determine the mean value from the set of particle
coordinates (XP, YP).

2.3. Preparing Reference Data Distribution for Indoor Localization

The reference RSSI distributions of the measured parameters must be prepared so that
the location algorithm can assign the current measured readings to the values from the
reference database. We gathered such measurements manually on a grid of points and
created RSSI distribution maps for designated areas in the buildings. The RSSI parameter
was measured using a dedicated mobile application. For each of the available BT trans-
mitters, points were arranged on a square 0.75 m grid. Measurements were performed for
several minutes and then the maximum value was selected for each point. The manual
preparation of reference RSSI distributions required about 3–5 working days. The time
and effort required make this procedure impractical in real-life applications. Replacing
measured RSSI maps with simulated RSSI maps is the main motivation and objective of
our study.

This study was divided into stages, including measurement of the received signal
power distribution within the test area, recording of the RSSI data along predefined user
walking paths, and assessment of the accuracy and performance of the positioning algo-
rithm with measured and simulated reference data.

One of the indoor environments was the Sports and Education Centre “Sports Bay” at
Lodz University of Technology in Poland. Simple BLE beacons by Kontakt.io were used as
signal transmitters. The BLE beacon was configured to broadcast information using one
radio channel. The frequency the identification message can be modified (in our case it
was 100 ms) and the output power varied (in our scenario it was 0 dB). The measurements
were made in a 2 × 2 m grid. Almost 90,000 RSSI samples were collected during the
measurement campaign. The measurements required about 4 days.
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Figure 2 shows the setup used to record the measurement data. It consists of a tripod
with a mobile terminal on which an application is installed for collecting measurement data.
Measurements were made of the terminal’s horizontal position and four orientations (in 90◦

increments) on its longitudinal axis. All RSSI readings with values greater than −110 dBm
were recorded. The measurement data were collected using a dedicated mobile application
on an OPPO Reno 5G smartphone running the Android operating system version 11. The
smartphone is equipped with the version 5.1 Bluetooth communication module, which
enables better RSSI measurement accuracy than previous releases and has also been used
by other authors for indoor localization purposes [35]. The collected data were saved in
a database for further offline processing using the MATLAB environment without any
specialized toolboxes. A verification platform was implemented in MATLAB to load the
measured RSSI distributions, simulate the user’s movements in the building, determine
the user’s location, and calculate the location error.
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The next section outlines some prerequisites needed to prepare such data and selected
methods that can be used to prepare simulated reference RSSI maps.

2.4. Indoor Propagation Models

To generate a simulated RSSI distribution for use as reference data for a location
algorithm, it is necessary to provide information on the locations of the transmitters in
the building and the arrangement of walls, windows, doors, and other objects. Since the
electromagnetic properties of structural elements are typically challenging to acquire, in
our simulations we used typical values taken from ITU recommendations [36,37].

Two propagation models were used to prepare reference RSSI distributions: the ray
tracing model for its accuracy and a simple multiwall model. This class of models estimates
the path loss in a building environment delimited by obstacles such as walls, doors, win-
dows, furniture, and people who may be in the area and affect radio propagation. Later
in this section, two propagation models are used to prepare reference RSSI distributions



Remote Sens. 2022, 14, 1992 8 of 23

using computer simulations. Of course, more propagation models can be used, but two
of them were chosen—the ray tracing model for its accuracy in modeling the indoor envi-
ronment, and a simple multiwall model, to verify whether this class of models can also be
successfully used in locating terminals in buildings.

2.4.1. Ray Tracing Model

The 3D ray tracing method was implemented in Remcom Wireless InSite 3.3.0 soft-
ware [38]. We used the X3D variant of the ray tracing method, which supports efficient
parallel computations using multi-core Compute Unified Device Architecture (CUDA)-
capable Graphics Processing Units (GPUs), and a processor, such as the Nvidia Tesla K
series. The model of the test environment (Figure 3) consisted of the floor, ceiling, and outer
and inner walls, in addition to other essential construction elements.
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Figure 3. 3D view of the test environment model. An example RSSI spatial distribution view is shown
for a transmitter generated using the ray tracing model in the Remcom Wireless InSite program.

To simplify analysis of the test environment, since the exact orientation and radiation
patterns of the beacon antennas were not known, the beacons were modeled as nodes
equipped with omnidirectional half-wave dipole antennas. We also assumed the use
of omnidirectional antennas at the receivers. The transmitters were placed at locations
corresponding to the actual locations of the beacons, while the receiver positions (test
points) were arranged in rectangular grids covering the entire test area.

To construct a model of the building, it was necessary to take into account the elec-
tromagnetic parameters of the walls and other structural elements, such as concrete walls,
brick walls, and partition walls made of drywall. The electromagnetic parameters of these
elements were taken as recommended in ITU documents [37] and are presented in Table 1.

Table 1. Electromagnetic parameters of materials used during modeling. Parameters available for 2.4
GHz signal frequency [37,38].

Material ε (-) σ (S/m) Width (m)

Brick 4.44 0.001 0.125
Concrete 5.31 0.066 0.300
Drywall 2.94 0.022 0.120

Wood 1.99 0.012 0.030
Glass 6.27 0.012 0.003
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2.4.2. Multiwall Model

Reference RSSI maps were created using a multiwall propagation model. This is a
well-known and commonly used model for indoor environments. It combines One-Slope
and Motley–Keenan models [39]. The multiwall model was chosen as it is less complex
than ray tracing. The purpose was to determine if using a less complicated propagation
model can still result in sufficient positioning accuracy. The multiwall propagation model
takes into account the attenuation of walls and ceilings. Obstacles are divided by category
(partition walls, external walls, etc.). The following formula expresses the decibel notation
of the multiwall model:

L = L0 + 10γlog(d) + ∑I
i=1 kwi ∗ Lwi + ∑J

j=1 kfj ∗ Lfj (9)

where:
L—propagation loss between antennas (dB)
L0—reference loss at a distance of 1 m (dB)
γ—distance power loss index
d—distance between antennas (m)
kwi—number of walls of i-th category
Lwi—attenuation of walls of i-th category
kfj—number of ceilings of category j
Lfj—attenuation of ceilings of category j.
The multiwall model was generated using the WiCa Heuristic Indoor Propagation

Prediction Tool (WHIPP) [40]. The model included walls, doors, windows, and electromag-
netic (EM) parameters that can also be used to create signal propagation distribution data.
The tool used to calculate the EM field distribution utilizes a multiwall propagation model,
and includes information on such obstacles as walls and ceilings.

Computer simulations were performed on the following hardware: Intel Core i7-
8750H (8th gen) 2.2 GHz processor with Turbo boost technology, supported by an NVIDIA
GeForce GTX 1050Ti graphics card with 4 GB RAM. The times needed to generate the
distributions for selected test scenarios were compared with the time required to perform
measurements in an indoor environment. The results are presented in Section 3 (Results).

2.5. Adjustment of Simulated Reference Distribution Map to Real Signal Measurements

The RSSI values measured in a given building area using a mobile terminal often
vary over time. Additionally, mobile terminals are often equipped with various types of
receiving antennas. As part of our research, several models of smartphone-type mobile
devices were tested. The RSSI was measured at a given point with the same arrangement
of the smartphone. It was noticed that the read values differed by up to 2–3 dBm. However,
although the RSSI values were different, the trends were similar. Therefore, to use the
reference RSSI distributions generated by computer simulations, it was necessary to adjust
all values from the reference database by the mean square error (MSE) value, which is the
difference between samples in the reference distribution and the values measured in the
actual indoor environment. The following formula was used to calculate the difference due
to the mean square error between the reference and measured values:

MSE =
1
n ∑n

i=1 (RSSIref(i)−RSSIreal(i))
2 (10)

where:
n—number of points in the indoor subarea where calibration was calculated
RSSIref—RSSI value for a given point obtained from the reference database
RSSIreal—RSSI value for a given point obtained from real measurements
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Based on the results, each reference point from RSSI distribution map was shifted
using the following formula:

Adjusted RSSIref map = ∑k
i=1 RSSIreal(i)−MSE (11)

where:
Adjusted RSSIref map—SSI distribution dataset adjusted for a given mobile terminal.

2.6. Measurements and Simulation Data

To verify the proposed method of computing reference RSSI maps for localization
purposes, three extensive test scenarios were carried out. Measurements were made for two
test scenarios. For the third scenario, a database used in an indoor localization competition
during the International Conference on Indoor Positioning and Indoor Navigation (IPIN)
2014 [41] was used. The three test scenarios are described in detail in the sections that
follow, along with the key results. RSSI reference distributions were prepared for all three
scenarios using the propagation models described in Section 2.4.

2.6.1. Scenario 1 (S1): Corridor in the Institute of Electronics at Lodz University
of Technology

The first verification scenario was a fragment of the building environment in the
Institute of Electronics at Lodz University of Technology. Figure 4 shows the floor plan
for this verification scenario. BLE transmitters were placed in the locations marked with
yellow circles.
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Figure 4. Building fragment model generated in Remcom Wireless InSite software.

Measurements of the RSSI parameter were performed for each of the BT transmitters
at measurement points arranged in a square grid with a 75 cm step. Measurements were
carried out using a dedicated mobile application. Measurements were performed for
several minutes for each point. Datasets gathered during the measurement campaign
and simulations are available at the following link: https://github.com/robertkawecki7
/IndoorPositioningDatasets (accessed on 1 April 2022). The median and maximum values
for a given point were calculated. This time-consuming approach allowed the preparation
of RSSI parameter distribution maps for each Bluetooth transmitter placed in the building
and used for localization. In the test environment, manual preparation of the reference
RSSI distributions required about 3–5 days of work. Figure 5 shows a photograph of the
indoor environment.

https://github.com/robertkawecki7/IndoorPositioningDatasets
https://github.com/robertkawecki7/IndoorPositioningDatasets
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To prepare the reference RSSI distributions for S1, a model of the fragment of the
building on the third floor of the Institute of Electronics was developed. The model
presented in Figure 5 was prepared using the Remcom Wireless InSite application. A similar
simulation was prepared using the WHIPP software tool (to prepare RSSI distributions
generated by the multiwall model). It was assumed that the structure of the building
included structural elements such as concrete walls, brick walls, and partition walls made
of drywall. The electromagnetic parameters of these elements were as recommended in
ITU documents [36,37] and are presented in Table 1.

Preparation of reference data using the simulation methods (multiwall and ray tracing)
made it possible to generate RSSI distributions for each of the transmitters in this part of the
building. Figure 6 shows the distributions for one of the sources made using measurements
(first RSSI distribution) and simulation methods.

2.6.2. Scenario 2 (S2): Sports Hall in the “Sports Bay” Sports and Education Centre at Lodz
University of Technology

The second test environment was the team sports hall in Sports and Education Centre
“Sports Bay”. This environment is a large space with a high ceiling and no partition walls.
The ceiling is about 12 m high and is composed partially of steel brackets. Figure 7 shows a
photograph of the team sports hall.
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To prepare the reference RSSI distributions for S2, a model of a fragment of the sports
hall was prepared. Dimensions of basic elements, such as area dimensions and height, were
taken from the construction documentation. The model is illustrated in Figure 8.
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Using the multiwall and ray tracing simulation methods, RSSI distributions were gen-
erated for each of the transmitters in the sports hall. Figure 9 shows the distributions for one
of the sources made using measurements (first RSSI distribution) and simulation methods.
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2.6.3. Scenario 3 (S3): Indoor Environment from IPIN Resources

The third scenario was based on real data collected by researchers from the Italian
National Council of Research in Pisa [41], whose studies provide links to a rich database of
measurements carried out in an indoor environment. We decided to use the Pisa data to
validate our approach using an external data source.

The geometry of the indoor environment was also provided in [41], so it was possible
to model the spatial distribution of the received power using simulation methods. The
dimensions of the building were 36 × 36 m. However, the database contains measure-
ments collected only along the two perpendicular sections of the corridor, as illustrated in
Figures 10 and 11. Simulated reference RSSI distributions were prepared for interior areas
corresponding to the distribution of RSSI parameter samples from the real dataset and
running the location algorithm. For this purpose, it was necessary to prepare a model of
the indoor environment. The model included four radio transmitters located on the main
corridor of the environment. A fragment of the building model is presented in Figure 10.
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Figure 10. Indoor environment simulation model for the third verification scenario. Data from [41].

Reference RSSI distribution datasets were generated using the programs described
in Section 2.4. Figure 11 shows a graphical representation of the RSSI distribution maps
generated by the different methods.
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Figure 11. Reference RSSI distribution maps; (a) Dataset obtained from real measurement campaign,
(b) Dataset prepared using multiwall model (using WHIPP software); (c) Dataset prepared using Ray
Tracing model (using InSite software).

The software implemented as part of this research allows the creation of simulated
routes of the mobile terminal movement in the building. At each point in the terminal
path, the algorithm collects input data (measured RSSI values for each of the available
transmitters). Then, the location algorithm described in the previous chapters assigns the
measured RSSI values to the corresponding points on the building map. The generated
reference RSSI distributions are the source of data for the location algorithm. They allow
the location to be estimated based on the real measured RSSI values for a given location in
the building.

2.6.4. Comparison of RSSI Maps

Table 2 summarizes the test scenarios presented in this section. In addition, a short
description is given of each scenario to illustrate each indoor environment.

Table 2. Test scenarios to verify localization accuracy in buildings using simulated RSSI maps.

Scenario Indoor Environment Name Short Description

S1 Corridor in the Institute of Electronics
at Lodz University of Technology

Long, narrow, corridor with
dimensions of 40 × 4 m

S2
Sports hall in the Sports and Education
Centre “Sports Bay” at Lodz University

of Technology

Sports hall with dimensions of
40 × 20 m, high ceiling, and no

partition walls. The ceiling is composed
partially of steel brackets and is about

12 m high

S3 Indoor environment (from IPIN
resources)

Building with dimensions of 36 × 36 m.
The database contains measurements

collected only along two perpendicular
sections of the corridor

2.7. Comparison of Maps Created by Measurements with Maps Generated by
Computer Simulations

The reference RSSI maps created by measurements were compared to those generated
by computer simulations (i.e., using ray tracing and multiwall methods). The difference was
calculated between the RSSI readings measured and stored in the matrix and the values read
from the simulated maps. For the purposes of comparison, we used the RSSI distributions
for S2 (the sports hall in the “Sports Bay”). The results are illustrated in Figures 12 and 13.
The third row of the graphics shows the differences (subtraction) between the maps made
from measurements and those generated using computer simulations. The comparison
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was made for the two considered simulation methods—i.e., ray tracing (Figure 12) and
multiwall (Figure 13).
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ray tracing method. Row 1—measurement data. Row 2—distributions generated by ray tracing. Row
3 is the result of calculating the subtraction between these maps presented on the spatial map.

Remote Sens. 2022, 14, x FOR PEER REVIEW 16 of 24 
 

 

 
Figure 13. Comparison of reference RSSI maps created by measurements and simulations using the 
multiwall method. Row 1—measurement data. Row 2—distributions generated by ray tracing. Row 
3 is the result of calculating the subtraction between these maps presented on the spatial map. 

Because the RSSI values obtained using measurements were not produced in such a 
dense grid as those generated by computer simulations, linear interpolation was used. 

Considering the fundamental differences between the ray tracing model, the multi-
wall model, and the measurements, the standard deviation values shown in Table 3 (from 
3.03 to 5.40 dB) can be considered reasonable for engineering applications. In particular, 
it should be observed that the multiwall method does not consider fast fading whereas 
ray tracing does. 

Table 3. Standard deviation calculated for different RSSI signal sources available in the building, 
prepared in the measurement campaign and using simulation methods (ray tracing and multiwall 
methods). 

Sources 
Standard  

Deviation Measure-
ments (dB) 

Standard  
Deviation Ray Tracing 

(dB) 

Standard  
Deviation Multiwall 

(dB) 
Source 1 3.62 3.27 4.69 
Source 2 3.03 3.80 4.98 
Source 3 4.20 3.65 4.93 
Source 4 4.03 3.62 5.40 
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Row 3 is the result of calculating the subtraction between these maps presented on the spatial map.
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Because the RSSI values obtained using measurements were not produced in such a
dense grid as those generated by computer simulations, linear interpolation was used.

Considering the fundamental differences between the ray tracing model, the multiwall
model, and the measurements, the standard deviation values shown in Table 3 (from 3.03
to 5.40 dB) can be considered reasonable for engineering applications. In particular, it
should be observed that the multiwall method does not consider fast fading whereas ray
tracing does.

Table 3. Standard deviation calculated for different RSSI signal sources available in the building,
prepared in the measurement campaign and using simulation methods (ray tracing and multi-
wall methods).

Sources Standard
Deviation Measurements (dB)

Standard
Deviation Ray Tracing (dB)

Standard
Deviation Multiwall (dB)

Source 1 3.62 3.27 4.69
Source 2 3.03 3.80 4.98
Source 3 4.20 3.65 4.93
Source 4 4.03 3.62 5.40

3. Results

In this study, we investigated the accuracy of fingerprint-based positioning using
RSSI reference maps created from measurement campaign data or from simulations using
multiwall and ray tracing models. To simulate the movement of a user across the indoor
environment area, subsets of RSSI power measurements corresponding to power measure-
ment readings for predefined user movement scenarios were created. Figure 14 shows an
example route for a terminal in a building. The readings were used as reference data for
the selected localization method, to verify the quality of the simulated RSSI maps. The
algorithm described in Section 2.2 estimated the location of the terminal based on the RSSI
maps created for a set of transmitters located in the building and the corresponding RSSI
reference maps.
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Figure 14. Example route of the terminal (in test scenario 2), marked with a blue arrow.

To verify subsequent test cases, the movement of the user in the building was simulated
along a designated straight path. In the first scenario (S1), a route was planned along a
corridor at the Institute of Electronics, Lodz University of Technology. In the second
scenario (S2), the path was a straight line through the middle of a sports hall, “Sports Bay”
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at Lodz University of Technology. The third scenario (S3) was a simulated model, where
the path was along a straight part of a corridor where T1, T2, and T3 transmitters were
located, as depicted in Figure 10.

Figure 15 shows example RSSI distributions along the terminal movement path gener-
ated for S2. The red line shows the values measured by the mobile terminal as it moved
along the designated test route. The other lines show data created by computer simulations
(i.e., data retrieved from a database simulated at points corresponding to the user’s path in
a real building environment). The green line represents the RSSI distribution simulated
using the ray tracing method. The blue curve shows results for the multiwall model. As
can be seen, the simulated RSSI values are in good agreement with measurements. This
is discussed quantitively in Section 2.6.4. In the case of the ray tracing model, deep fades
can be observed which, due to the hardware limitations of the mobile terminal, are not
observed in the measured data. The multiwall model allows only a rough estimation of
the signal strength for a given route, without accounting for multipath propagation due to
reflections or diffraction. The higher RSSI values for distances between 15 and 23 m can
be attributed to multipath propagation (including reflections from the floor, the ceiling,
and the surrounding walls), which may result in constructive superposition of waves at
some locations.
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Figure 15. Readings of the measured RSSI signal strength (red) along the transition path of the mobile
terminal with power values read from the reference map for the same route generated by computer
simulations, using ray tracing (green) and multiwall (blue) models.

The localization error was verified for the indicated paths. We used a dedicated
simulation platform that enabled the reference RSSI databases and location algorithms to
assess the positioning error. The aim was to assess how the simulation data influenced the
location algorithm, particularly the location error.

In S1, the smallest median error and lowest mean error were observed with the use of
reference data generated by the ray tracing method (Figure 16). The maximum error value
for this scenario was noted for the multiwall distribution.
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Figure 16. Localization error in scenario 1 (corridor in the Institute of Electronics, Lodz University of
Technology). Data obtained using reference RSSI datasets prepared by different methods.

The second scenario (S2) produced similar results. The smallest median error and
lowest mean error were measured for the ray tracing method (Figure 17). In this scenario,
the highest maximum error occurred for the multiwall model.
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Figure 17. Localization error for the sports hall in the “Sports Bay” at Lodz University of Technology.
Data obtained using reference RSSI datasets prepared by different methods.

In the third scenario (S3), the smallest error resulted when the calculations were made
using interpolated measurement data (Figure 18). The mean error and the median error
were about 1 m. The maximum error was around 3.5–5.5 m. The highest localization error
occurred for the multiwall method.
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Figure 18. Localization error for an indoor environment (from the IPIN database). Data obtained
using reference RSSI datasets prepared by different methods.

The reference RSSI maps prepared by measurements and computer simulations were
tested in three verification scenarios (S1, S2, and S3). Analysis showed that the average
error for the simulated RSSI maps was 0.9–1.94 m, the median error was 0.82–1.91 m,
and the maximum error was 5.5–6.9 m. The maximum error for the ray tracing method
varied between 4.1 and 5.3 m, depending on the scenario. By comparison, the average
location error for the measured RSSI maps in the three scenarios was 0.6–2 m, the median
error was 0.7–2.71 m, and the maximum error was 3.6–4.96 m. In one of the test scenarios,
RSSI measurements from an external, independent IPIN database were utilized, also with
satisfactory results. Depending on the test scenario (S1, S2, or S3), the change in the median
location error using ray tracing simulated reference maps ranged from 5.8% (0.11 m for S1)
to 17.1% (0.12 m for S3), whereas, with the use of the multiwall simulation, the change in
median location error ranged from 7.8% (0.21 m for S2) to 75.7% (0.53 m for S3) compared
to the results for measured RSSI reference maps. Using the simple and fast multiwall
model, the mean and median localization error values were in the range of 1–2 m, which is
comparable to the results obtained using the ray tracing method. The positioning accuracy
obtained using the simulated maps with our positioning system based on fingerprinting
followed by a modified particle filter is comparable to the accuracy achieved by other
methods reported in the literature. The application of crowdsourcing and interpolation
to construct reference maps reported in [41] resulted in an average error of 3.44 m (and
2.94 RMSE) for an indoor testbed with an area of 3200 m2, whereas the average error for the
measured RSSI map was 3.31 m (and 2.90 RMSE). The use of the simulated maps compared
to the measured maps resulted in median location error changes of between 7.8% (0.21 m
for S2) and 75.7% (0.53 m for S3) compared to the measured RSSI reference maps.

The time needed to prepare measured reference RSSI maps was one or two orders of
magnitude greater than the time needed for computer simulations (Figure 19). The time
required to construct reference maps using crowdsourcing with the interpolation approach
described in [29] was 3 h. The use of computer simulations can further decrease the time
required to prepare reference maps. In the case of the multiwall model, it required around
1–2 h to prepare the floor plan, set up the simulation environment, and generate the output,
whereas, in the case of ray tracing, these tasks took 1.5–3.5 h, depending on the scenario.
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4. Conclusions

In this study, we investigated the possibility of using simulated RSSI maps for indoor
localization based on fingerprinting. Ray tracing and multiwall methods were used to
obtain RSSI maps. These are very popular simulation methods with many freeware and
commercial software implementations. A measurement campaign was also conducted to
obtain ground truth data. Finally, we tested all the simulated and measured reference RSSI
maps with a localization algorithm that uses fingerprinting followed by a modified particle
filter. This class of algorithms, suitable for tracking moving terminals, is well represented
in the literature. Our results show that it is possible to use simple propagation models
to prepare RSSI maps for a localization algorithm and still obtain sufficient positioning
accuracy. Even the simple and fast multiwall model enabled mean and median localization
error values in the range of 1–2 m, which is comparable to the results obtained using
both the ray tracing method and measured data. The results obtained using floor plans
representing three different indoor environments (a sports hall, an office building, and a
long corridor) prove that the proposed approach can be successfully applied to a wide
range of radio wave propagation scenarios. However, the results may be affected by the
accuracy of representation of the environment geometry, or the electromagnetic parameters
of materials used in building construction. We conclude that it is possible to use simulated
RSSI maps for indoor tracking, with satisfactory error values for many practical applications.
Our study extends knowledge of the functioning of location systems and is also of practical
importance for their implementation. Replacing the labor-intensive and time-consuming
process of taking measurements for simulated reference maps significantly increases their
ability to be adapted to real indoor environments.

Further work will focus on verifying our approach in other complex environments.
Simulated reference RSSI maps will be tested with other location algorithms, including
simple fingerprinting (without a particle filter) for stationary objects. We also plan to study
and develop calibration methods for simulated reference maps.
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