
PERFORMANCE OF FIXED-POINT FFT'S:

ROUNDING AND SCALING CONSIDERATIONS

P. Kabal 1,2 and B. Sayar2

1 Electrical Engineering
McGIll University
Montreal, Quebec H3A 2A7

21N RS-TélécommunIcatlons
Unlverslté du Québec
Verdun, Quebec H3E 1H6

ICASSP 86, TOKYO CH2243-4/86/0000-0221 $1.00 © 1986 IEEE 221

the real and imaginary components of the input sequence is easier to
implement.

Let the real and imaginary components of the input sequence satisfy

IRe[x] < a and imIx,I < a . (2)

These bounds result in IXkl < v'Na, k = 0,1 N — 1. With scaling

by 1/N. and the requirement that the output magnitude be less than
one, a = i//. However, this is not the tightest bound on the real and
imaginary components of the input data.

It can be shown that the magnitudes of the real and imaginary parts
of the output of the complex DFT are bounded by NaSN. For N a

multiple of 4.
— 4cos(r/N) 3N — N sin(ir/N)

For N even but not a multiple of 4. SN = S2N and for N odd. SN = S4N.
Also 1 SN < 4/7r. Then the output components are representable in
fractional notation if the real and imaginary parts of the input data satisfy

and Ilmfz] < . (4)

Note that for nearly equal real and imaginary components, these bounds
can result in values of z, and Xk which are larger than unity in magnitude.

3.1 FFT Algorithms
Attention will be restricted to basic radix-2 FFT algorithms 121. The

FFT butterflies take a pair of complex data values and process them to
produce a new pair of complex data values which can occupy the same
storage locations as the input data.

A form of the basic decimation-in-time (DIT) butterfly computation
is shown in Fig. 1. The magnitude of the complex values grows by at
most a factor of two across a butterfly.

max(]Gk, G1) max(Cj, 1G1) < 2max(Gk, G11) . (5)

At each butterfly, shifting values by one bit to accomplish a scaling by
1/2 is appropriate. This gives the overall fixed scaling by 1/N.

Abstract
The calculation of the discrete Fourier transform using a fast Fourier trans-
form (FFT) algorithm with fixed-point arithmetic is considered. The input
data is scaled to prevent overflow and to maintain accuracy. The imple-
mentation uses 16-bit fixed-point representation for the data and provides
for double precision accumulation of sums and products. Algorithm vari-
ants as well as different rounding options are compared. Execution times
for implementations based on a single chip signal processor are given.
These show that a considerable increase in accuracy can be obtained with
only a small penalty in execution time, by applying an ilternating form of
rounding rather than truncation.

1. Introduction
The need for the computation of the discrete Fourier transform (DFT)

arises in a variety of applications in speech, radar and sonar signal pro-
cessing. A DFT can be implemented either with special-purpose hardware.

or as a program on a digital signal processing (DSP) chip.
A common feature both in DSP chips and standalone multipliers is a

double precision accumulator. The focus will be on 16-bit representation
of data with judicious use of 32-bit accumulation of products and sums.
This paper considers more general rounding schemes and variants of the
FFT algorithms that do not conveniently fit into the analysis framework
used in lJ.

2. Calculation with Fixed-Point Arithmetic
An example of a single chip implementation of a signal processor with

features as described above is the Texas Instruments TMS320 DSP chip.
Since this chip has 16-bit wide input/output paths, values are generally
represented as 16-bit numbers. At the expense of multiple write or read
cycles. 32-bit values can also be stored or retrieved from memory.

Data values will be represented as two's complement fractions. The
DSP multiplier takes two 16-bit quantities (each represented by a sign
bit with 15 data bits) to produce a .32-bit result, consisting of a sign
extended 31-bit product (sign bit with 30 data bits). Because of the extra
bit of head room in the product register, two products can be summed
without overflow. This will be of benefit in complex multiplication since
the components of a product of two complex numbers are formed as the
sum of products of real quantities. The arithmetic unit also provides for
shifting 16-bit data values before adding to the accumulator and for the
extraction of specific 16-bit fields from the accumulator.

3. ScalIng for the DIscrete Fourier Transform
Consider a complex sequence {x,} of length N. The discrete Fourier

transform of {z,.} is the complex sequence {Xk} of length N, defined as

k=0 N—i, (1)

where. WN = exp(j2r/N). It will be assumed that the calculation of
the DFT. whether in direct form or using an FFT algorithm, will include
a scaling by 1/N. With this assumption. x, < 1. n = 0,.. N — 1,
will guarantee a representable output value. Dynamic verification of this
bound is not simple since calculation of the magnitude (squared) requires
the calculation of the sum of products. A test on the magnitudes of

+
G'k

Fig. 1 Decimation-in-time butterfly

An important property of the DIT form of the FFT is that the
intermediate results are DFT's of subsequences of the input data. As
a result, if the magnitudes of the real and imaginary parts of the input
sequence are bounded by a-/4. all of the intermediate results will have real
and imaginary parts which are less than one in magnitude.

With a double precision accumulator, there are several options for
the implementation of the D1T butterfly. In the lower branch, the result of
the complex multiplication can be kept in double precision in anticipation

6.3.1

Proc. IEEE Int. Conf. Acoustics, Speech, Signal Processing (Tokyo), pp. 221-224, April 1986

of the subsequent addition. Because of the extra bit of head room in the
product register, no overflow can occur if the input data is scaled so as
to guarantee representable output values. Scaling by the factor of 1/2 is
accomplished by shifting one bit position as results are stored from the
accumulator. This last step is the point at which rounding can be applied.

An alternative strategy is to convert the result of the multiplication
to a single precision quantity before addition. This reduces the number
of interchanges between the accumulator and temporary storage. This
version will be referred to as the single precision DIT algorithm as con-
trasted with the double precision DIT algorithm described in the previous
paragraph. The multiplication by in the butterfly implies that if the
magnitude of the input complex value is greater than one, it is possible
for the real and imaginary parts of the product to exceed one. However
scaling at this point can be avoided since intermediate overflows can be
ignored if the butterfly output is known to be representable.

The form of the butterfly for the decimation-in-frequency algorithm
is shown in Fig. 2. Note that for the DIF algorithm, multiplication by
the complex exponential term is performed at the output, rather than
input stage of the butterfly. The magnitude of the complex values grows
by at most a factor of two across a butterfly. Shifting values by one
bit is used to scale by 1/2 at each stage. The butterfly computation
involves sums of single precision quantities followed by a multiplication
by a complex exponential. The result of the sum must be converted to a
single precision quantity for use as input to the multiplier. The resulting
product in the lower branch of the butterfly is converted to single precision
for storage. For the DIF algorithm, the intermediate results at the outputs
of the butterflies are not DFT's of the original input data. The scaling
requirement is that the magnitudes of the input real and imaginary parts
each be less than i//. to guarantee that all butterfly outputs are less
than one in magnitude.

Fig. 2 Decimation-in-frequency butterfly

4. RoundIng Options

G 'k

At one or more places in the computation of the butterflies, a double
precision value must be converted to a single precision value. Truncation
simply discards the low-order part of the double precision value. On the
other hand, rounding attempts to replace the double precision value with
the nearest single precision value. However, an ambiguity arises whenever
the value lies exactly halfway between two single precision values. This
gives rise to a number of different methods of rounding, which differ only
in the way they approximate the mid-way values.

1) Up/Down Rounding. Themid-way points are shifted up / down to
the next allowable value (up-rounding / down-rounding).

2) Magnitude Up/Down Rounding. The mid-way points are moved
away from / toward zero (magnitude up-rounding / magnitude down-
rounding).

3) Value-alternate Rounding. Adjacent mid-way points are alternately
moved up and down.

4) Random Rounding. The direction of rounding is pseudo-random.

7) Stage-alternate Rounding. In this new scheme, the direction of
rounding alternates at each stage of the FF1.

Up or down rounding are simple to implement. Intuitively these
methods tend to bias the output values by shifting the mean. Magnitude
rounding is more complex to implement since it requires a sign test.
Intuitively, magnitude rounding tends to alter the overall gain, but not
the mean.

The last three rounding schemes could be grouped together under
the rubric of unbiased techniques. Value-alternate and random rounding
attempt to avoid both the change in gain and the shift in mean, but succeed
only if the data exercises an equal number of up- and down-rounding

6.3.2

steps. Stage-alternate rounding has the same goals. but attempts to
cancel biases in one stage of the FF1 by biases in the other stages.

Differences in the rounding techniques will manifest themselves only
if the probability of hitting the mid-way points is significant. This occurs
when single precision values are added. When the result (which has only
one extra bit of precision) is scaled by 1/2. the mid-way point can be
expected to occur half of the time, It is for this case that the unbiased
rounding schemes are useful.

5. Simulation Results
In the simulations, the input data were uniformly distributed, pseudo-

random fixed-point fractional values between —1/ and +i//i This
guarantees no overflow of the intermediate results of the FFT computa-

tions (butterfly outputs).
The root-mean square (rms) value of the random test input is ap-

proximately i// or —7.78 dB relative to full scale. Note that this type
of input sequence tends to make SNR figures look comparatively good.
The input occupies nearly the full dynamic range and yet has a relatively
large rms value. For more typical input signals the ratio of peak value to
rms value is significantly larger.

A reference fixed-point result is also computed. If a fixed-point DFT
is calculated with an arbitrarily large precision at the intermediate stages.
errors will occur only when the final result is converted to single precision
accuracy. The SNR for these fixed-point results is referred to in the plots
as the ideal fixed-point DFT.

5.1 Assessing Bias
In attempting to assess and explain the behaviour of truncation and

the various forms of rounding, a modified SNR definition may be used.
Conventional SNR measures error as = Xk — Xk. where Xk is the
output of the fixed-point DFT. In the experimental results, {Xk} is the
pseudo-random input sequence. This error expression penalizes changes
in gain as well as shifts in the mean. Consider a modified error term.

= a(Xk — 6) — Xk. This expression includes the constants a and
6 which compensate for gain and mean respectively. Four cases can be
identified. i) Conventional SNR: a = 1, b = 0: ii) Gain Compensated
SNR: a chosen to maximize the SNR. 6 = 0: iii) Mean Compensated
SNR: a = 1, b chosen to maximize the SNR; and iv) Gain and Mean
Compensated SNR: both aand 6 chosen to maximize the SNR. The mean
offset 6 is restricted to have equal real and imaginary components. The
main interest will be in looking at the gain and mean needed to get the
best match between the true DFT and the fixed-point DFT. The increased
SNR that results in choosing the gain and mean optimally will indicate
the degree of match of the "shape" of the DFT.

5.2 Truncation Results
The resulting SNR's when truncation is used are shown in Fig. 3 for

both one-way and two-way computations (DFT followed by inverse OFT).
Using a model which assumes uncorrelated additive error components, it
can be shown that the SNR for a two-way computation (SNR2) can be
related to the SNR for a one-way computation (SNR1).

SNR SNR12 N+1 (6)

The experimental results obey this relationship closely. Hence, for the
subsequent results, reference is made only to the one-way SNR's.

A perhaps initially surprising result is that the single precision DIT
FFT algorithm outperforms the double precision DIT FFT algorithm. Fur-
ther investigation into the details of the butterfly computation reveal that
the biases due to truncation of the product and the subsequent truncation
of the differences tend to cancel in the single precision version. Theoreti-
cally, the mean offset at the output of each single precision butterfly is half
that of the double precision version. The mean offset computed using the
modified SNR definition verifies this analysis. The single precision DII
algorithm has a mean offset of approximately —Nvjb/2. while the dou-
ble precision DII algorithm has a mean offset of approximately —Nv1b.
where V155 is the weight of the least significant bit of a single precision
value = 1/32768). The increase in SNR with mean compensation
is about 1.5 dB for the single precision version and about 4 dB for the
double precision version.

The mean offset for the DIF algorithm is about the same as the double
precision DIT algorithm. The conventional SNR for the DIF algorithm is

222 ICASSP 86, TOKYO

also about the same as that of the double precision DIT algorithm. With
mean compensation, the SNR increases about 4.5 dB. This means that
both forms of the DIT algorithm and the DIF algorithm have about the
same mean compensated SNR. Gain compensation does not help either
DIT algorithm but does increase the SNR for the DIF algorithm by a
further 1.5—2 dB.

5.3 Conventional Rounding
First consider the DIT FFT algorithm with double precision inter-

mediate values. Rounding occurs as the last step in a butterfly. The
DIT FFT improves 8—10 dB with rounding, with the larger improvements
occurring with the longer transform lengths. The form of rounding has
almost no effect on the SNR. The optimal gain is essentially unity and the
mean offset is small. This agrees with the notion that the mid-way values
which are rounded differently for the different rounding options occur with
very small probability.

For the DIT FFT with single precision intermediate values and the
DIF FFT. rounding can be applied at two different places. The first
is in the rounding of the double precision products to single precision.
Here, the exact form of rounding is unimportant. The second place is
the point at which the sum of two single precision values is stored in
single precision. For this operation, the conventional rounding schemes
(up or down rounding and magnitude rounding) perform similarly in terms
of SNR (P..' 1 dB spread). However, the biases for the different rounding
schemes are not the same. As anticipated earlier, the magnitude rounding
schemes tend to result in an optimal gain different from unity but a mean
offset nearly equal to zero. The gain factor deviates from unity by about
0.08% for N = 256. The resulting gain compensated SNR is about 4
dB larger than the conventional SNR. For up- and down-rounding, the
gain is essentially unity, but the magnitude of the mean offset is about
NVlab/2. The resulting mean compensated SNR is about 4 dB larger
than conventional SNR. Based on the different behaviour of rounding for
sums and for products, a selective rounding scheme in which rounding (of
any form) is applied only to the product and truncation used for the sum
performs as well as any of the conventional rounding schemes. Compared
to truncation, rounding applied at the product gives a 2 dB increase in
SNR for the single precision DIT algorithm and a 5 dB increase for the
DIF algorithm. Table 1 shows SNR values for the FFT algorithms for
N = 128.

N — 128 x truncation x up-rounding x up-rounding x stage-alternate— + truncation + truncation -1- up-rounding + stage-alternate

dp DIT 59.3 dB 68.6 dB 68.6 dB 68.6 dB

sp DIT 62.0 dB 64.3 dB 64.1 dB 68.2 dB

DlF 59.2 dB 64.5 dB 64.4 dB 68.6 dB

Table 1 SNR for the indicated forms of rounding at the

products (x) and sums (+)

In the direct computation of the DFT, rounding occurs as the last
step in the process. For single precision results, the form of rounding does
not affect the SNR. The rounded results are essentially the same as that
for the ideal integer DFT and about 6 dB better than truncation.

5.4 Unbiased Rounding
For the direct calculation of the DFT and the double precision DIT

FFT algorithm, unbiased rounding performs the same as conventional
rounding. However for the single precision DIT FFT and the DIF FFT.
unbiased rounding offers a benefit at the sum step. The differences
between the unbiased schemes are not large, but stage-alternate rounding
stands out as being slightly better on the average (= 1 dB) than value-
alternate rounding, which is about the same as random rounding. The
stage-alternate rounding scheme is about 4 dB better than conventional
up-rounding (e.g. see Table 1).

The unbiased schemes give a useful increase in SNR for the DIF
FFT and the single precision DIT FFT. The ease of implementation is an
important consideration in the use of such a scheme. Of the unbiased
schemes, stage-alternate rounding stands out as being the easiest to
implement. The rounding operation consists of adding an appropriate
offset before truncating. This offset is changed only outside the main

computation loop in the FFT and hence is altered only log2 N times. The
best unbiased rounding scheme also comes with very little increase in
computation or program size compared to conventional up-rounding.

As anticipated, these rounding schemes tend to result in optimal
gain factors close to unity. The magnitude of the mean offset for stage-
alternate rounding is about 1/3 of that for conventional up-rounding. The
mean offsets for the other two unbiased schemes are essentially zero. In
stage-alternate rounding, the main contribution to the mean offset is due
to the last stage in which all output values are biased in the same direction.

The improvements in SNR due to the use of rounding are summarized
in Fig. 4 (note the expanded vertical scale). The rounding results give the
conventional SNR for up-rounding applied to the double precision DIT
and the direct DFT algorithms, and stage-alternate rounding applied to
the single precision DIT and the DIF algorithms.

The high accuracy of stage-alternate rounding applied to the FFT
algorithms with single precision intermediate values has important rami-
fications in both hardware and software requirements.

6. Speed of Execution on the TMS32O1O
In this section. the trade-offs between speed and accuracy are exam-

ined for a specific processor, the TMS32OIO. Efficient programs written
in TMS32O1O assembly language [I have been implemented for each of
the computation procedures previously described.
6.1 FFT Algorithms

An important feature of the FFT algorithms considered here is that
computations can be performed in-place — the output values can overlay
the input values. This requires bit-reverse reordering at the input (DIT
algorithm) or at the output (DIF algorithm). With in-place computations,
a transform length of up to 64 complex points (N = 64) can be handled
by the TMS32OIO using on-chip random access memory (RAM) to store
the data.

The bit reversal portion of the algorithms is implemented using
straight-line code for maximum speed. The execution times for bit re-
versal are 20. 39 and 90 s for N = 16. 32 and 64 respectively.

The execution times (excluding bit reversal time) for the double pre-
cision DIT are shown in Table 2. In this table rounding refers to conven-
tional up-rounding. In Table 3, rounding combinations of interest for the
DIF and single precision DIT algorithms are shown, The single precision
DIT algorithm has the same execution time as the DIF algorithm. Selec-
tive rounding refers to the use of truncation at the sums and up-rounding
(or down-rounding) at the products. The figures listed under rounding
refer to up-rounding. down-rounding or stage-alternate rounding applied
at both sums and products. Note that stage-alternate rounding can be
implemented with essentially no speed penalty compared to conventional
rounding. The figures for magnitude rounding are for magnitude up- or
down-rounding applied at the sums and conventional up-rounding at the
products. Note that rounding is relatively inexpensive in terms of execu-
tion time, yet increases the SNR by a considerable amount in all cases.

Execution time ts

N Truncation Rounding

16 429 453

32 1018 1082

64 2371 2523

Table 2 Execution time for double precision DIT

Execution time zs

N

16

Truncation Sel. round Rounding Mag. round

378 391 404 442

32 890 922 954 1050

64 2067 2143 2219 2447

Table 3 Execution time for DIF and single precision DII

Stage-alternate rounding applied either to the single precision DIT
or the DIF algorithm gives a high SNR. about the same as that for the

6.3.3
ICASSP 86, TOKYO 223

double precision DIT algorithm with rounding. When comparing the speed
figures. it can be seen that the schemes using stage-alternate rounding
are faster (12%) than the double precision DIT algorithm.

7. Summary and Conclusions
Several procedures for implementing the discrete Fourier transform of

a set of samples on a 16-bit fixed-point processor have been examined, If
speed is paramount, the DIF algorithm with truncation is a good choice.
It is one of the two fastest schemes, yet its mean compensated SNR is
high, indicating that it preserves the signal shape. Indeed, simply adding
a constant value at the last stage of the computation can compensate for
the mean offset.

If both accuracy and speed are important considerations, the single
precision DIT algorithm with a new form of rounding, dubbed stage-
alternate rounding, is a good candidate for implementation. It has a high
SNR. the rounding involves only a small increase in computation time over

90

truncation, and it offers an increased input dynamic range (input scaling
to r/4 rather than 1i[2 as in the DIF algorithm).

Stage-alternate rounding gives high accuracy without the need for full
double precision accumulation. This translates to reduced execution time
for a single chip DSP implementation or reduced complexity for hardware
and custom chip implementations.

References

1. T.-Thoñg and B. Liu. "Fixed-point fast Fourier transform error analy-
sis", IEEE Trans. Acoustics Speech, Signal Processing. vol. ASSP-
24, pp. 563—573, Dec. 1976.

2. A. V. Oppenheim and R. W. Schafer. Digital Signal Processing.
Prentice-Hall, 1975.

3. Texas Instruments, TMS32OJO User's Guide, Texas Instruments,
1983.

a2
U,

80

70

60

Fig. 3 SNR for truncation

Number of complex values

Fig. 4 SNR for truncation and rounding

6.3.4
224 ICASSP 86, TOKYO

m0
az
U,

80

70

60

50

40

30

Number of complex values

Legend:
• ideal fixed-point DEl

direct OFT
o DIT PET (single precisionl
o OtT FFT (double precision)

DIE EFT

increase with

J rounding

16 32 64 128 256

