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Abstract

The use of reconfigurable hardware for network secu-
rity applications has recently made great strides as Field-
Programmable Gate Array (FPGA) devices have provided
larger and faster resources. The performance of an In-
trusion Detection System is dependent on two metrics:
throughput and the total number of patterns that can fit on
a device.

In this paper, we consider the FPGA implementation de-
tails of the bit-split string-matching architecture. The bit-
split algorithm allows large hardware state machines to be
converted into a form with much higher memory efficiency.
We extend the architecture to satisfy the requirements of the
IDS state-of-the-art.

We show that the architecture can be effectively opti-
mized for FPGA implementation. We have optimized the
pattern memory system parameters and developed new in-
terface hardware for communicating with an external con-
troller. The overall performance (bandwidth * number of
patterns) is competitive with other memory-based string
matching architectures implemented in FPGA.

1 Introduction

The continued discovery of programming errors in
network-attached software has driven the introduction of in-
creasingly powerful and devastating attacks [11, 12]. At-
tacks can cause destruction of data, clogging of network
links, and future breaches in security. In order to prevent, or
at least mitigate, these attacks, a network administrator can
place a firewall or Intrusion Detection System at a network
choke-point such as a company’s connection to a trunk line.
A firewall’s function is to filter at the header level; if a con-
nection is attempted to a disallowed port, such as FTP, the
connection is refused. This catches many obvious attacks,
but in order to detect more subtle attacks, an Intrusion De-
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tection System (IDS) is utilized. The IDS differs from a
firewall in that it goes beyond the header, actually searching
the packet contents for various patterns. Detecting these
patterns in the input implies an attack is taking place, or
that some disallowed content is being transferred across the
network. In general, an IDS searches for a match from a
set of rules that have been designed by a system administra-
tor. These rules include information about the IP and TCP
header required, and, often, a pattern that must be located
in the stream. The patterns are some invariant section of the
attack; this could be a decryption routine within an other-
wise encrypted worm or a path to a script on a web server.
Current IDS pattern databases reach into the thousands of
patterns, providing for a difficult computational task.

In [18], a technique for reducing the out-degree of
pattern-matching state machines is presented. This innova-
tive technique allows state machines to be represented using
significantly less state memory that would be required in a
naive implementation. Through the use of “bit-splitting,”
a single state machine is split into multiple machines that
handle some fraction of the input bits. The best approach
seems to be 4 smaller machines, each handling 2 bits of the
input byte. Thus, instead of requiring 28 memory locations
for each of the possible input combinations, only 22 loca-
tions are required per unit, for a total of 4¥22=16 locations
over the four machines. Due to the disconnected nature of
the multiple state machines, the final states must be recon-
nected using a “partial match vector” that ensures all of the
machines are in an output state before the system will pro-
duce a result.

The earlier work did not provide many of the require-
ments for a realistic implementation. Our contribution is to
adapt the basic architectural design from [18] to an FPGA
implementation. This contribution is in several parts: first,
the costs of logic and routing are included in our analysis
and simulation, two, the problems of reporting results back
to an external controller are addressed, and three, the archi-
tecture is modified to make the most efficient usage of the
on-chip FPGA memory blocks. In Section 5 we show that
through the use of a single FPGA device, our system archi-



tectures can support multi-Gigabit rates with 1000 or more

patterns, while providing encoded attack identifiers.
Field Programmable Gate Arrays (FPGA) provide a fab-

ric upon which applications can be built. FPGAs, in par-
ticular, SRAM based FPGAs from Xilinx [19] or Altera [2]
are based on “slices” composed of look-up tables, flip-flops,
and multiplexers. The values in the look-up tables can pro-
duce any combinational logic functionality necessary, the
flip-flops provide integrated state elements, and the SRAM-
controlled routing direct logic values into the appropriate
paths to produce the desired architecture. Recently, recon-
figurable logic has become a popular approach for network

applications due to these characteristics.
This paper is structured as follows: We begin with a

brief discussion of some of the prior work in string match-
ing for Intrusion Detection, and the basic principles of the
Aho-Corasick and Bit-split algorithms. We then present our
work on the efficient design of the reconfigurable hardware
implementation of the architecture described in [18]. This
includes an analysis of appropriate memory sizes as well as
additional hardware components required to make a feasi-
ble system. Finally, we will present some results from our
experiments, showing that while the architecture is compet-
itive, other memory-based architecture do have some per-
formance advantages for databases of string literals.

2 Related Work in Hardware IDS

Snort [16] and Hogwash [9] are current popular options
for implementing intrusion detection in software. They are
open-source, free tools that promiscuously tap the network
and observe all packets. After TCP stream reassembly, the
packets are sorted according to various characteristics and,

if necessary, are string-matched against rule patterns.
System-level optimization has been attempted in soft-

ware by SiliconDefense [10]. They have implemented a
software tree-searching strategy that uses elements of the
Boyer-Moore [14] and Aho-Corasick [1] algorithms to pro-
duce a more efficient search of matching rules in software,
allowing more effective usage of resources by preventing

redundant comparisons.

FPGA solutions attempt to provide a more powerful so-
lution. In our previous work in regular expression matching
[15], we presented a method for matching regular expres-
sions using a Non-deterministic Finite Automaton, imple-
mented on a FPGA.

In another of our previous works [4], we demonstrated
an architecture based on the Knuth-Morris-Pratt algorithm.
Using a maximum of two comparisons per cycle and a small
buffer, the system can process at least one character per cy-
cle. This approach is different from a general state machine
because a general state machine, such as an Aho-Corasick
tree machine, can require a large number of concurrent byte
comparisons. The paper further proves an upper bound on

the buffer size.

In [13], a multi-gigabyte pattern matching tool with full
TCP/IP network support is described. The system demulti-
plexes a TCP/IP stream into several substreams and spreads
the load over several parallel matching units using Deter-
ministic Finite Automata pattern matchers.

The NFA concept is updated with predecoded inputs in
[7]. The paper addresses the problem of poor frequency per-
formance for a large number of patterns, a weakness of ear-
lier work. By adding predecoded wide parallel inputs to a
standard NFA implementations, excellent area and through-

put performance is achieved.
A recent TCAM-based approach [20] utilizes a large

number of tables and is dependent on having fast TCAM
and SRAM memories available to a controller. Because the
authors assume a 32 bit CAM word, patterns usually require
a large number of individual lookups. However, through a
probabilistic analysis of lookup behavior, the authors prove
that far fewer lookups are actually required in practice that
might be expected in a worst-case scenario. This allows a
minimum of hardware resources to be expended.

3 Motivation for Bit-split Architecture and
FPGA Implementation Issues

The Aho-Corasick [1] string matching algorithm allows
multiple strings to be searched in parallel. A finite state
machine is constructed from a set of keywords and is then
used to process the text string in a single pass.

However, like other implementations of state machines
that require one transition in each cycle, a huge amount
of storage is required. This problem comes from the large
number of edges, maximum 256, pointing to the potential
next states. Reducing these edges is the contribution of [18]
that this work is based on. The Aho-Corasick algorithm will

be described in more detail in Section 3.1.1.
By splitting one Aho-Corasick state machine into a set

of several state machines, the number of out-edges per state
is significantly reduced. Each state machine is responsi-
ble for a subset of the input bits, causing proportionately
more states to be active in the system but with far fewer
next-states for any given machine. Because the bit-split al-
gorithm removes most of the wasted edges, the total storage
required is much smaller than that of the starting machine.
A more detailed explanation is given in Section 3.2.

There are many advantages of the bit-split technique.
First, the bit split machines maintain the ability of the Aho-
Corasick machine to match strings in parallel. Second, the
memory required for state transition storage reduces from
256 to 4 for each state. Third, the architecture is based
on a runtime-programmed memory, thus allowing on-the-
fly updates of rules without the cost of place-and-route (a
problem encountered with hardwired-FPGA implementa-
tions [3, 5, 17]).
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Figure 1. A procedure for converting Snort
rules into an FPGA-based state machine

In [18] the bit-split algorithm is presented, but the details
of the implementation and system are not considered. We
are interested in FPGA implementation issues such as effi-
cient use of block RAM and reducing routing delays. This
paper makes contributions by developing efficient solutions
to these issues.

3.1 Bit-split Aho-Corasick Algorithms

This section describes the behavior of the Aho-Corasick
string matching machine and the conversion of this state
machine to a bit-split machine. The description will be
shown with a different example from [18]. This conversion
is done by software, external to the hardware device. The
software yields the state tables for the bit-split machine, and
the tables are loaded into the block RAM of FPGA at run
time. Figure 1 shows this procedure.

3.1.1 Aho-Corasick Algorithm

The objective of the Aho-Corasick algorithm is to find all
substrings of a given input string that matches against some
set of previously defined strings.

These previously defined strings are called patterns or
keywords. The pattern matching machine consists of a set
of states that the machine moves through as it reads one
character symbol from the input string in each cycle. The
movement of the machine is controlled by three types of
state transitions: normal transitions (successful character
matches), error transitions (when the machine attempts to
realign to the next-longest potential match), and acceptance
(successful matching of a full string). The operations of this
algorithm are implemented as a Finite Automata. Figure
2 shows these three operations derived from the keywords
{cat, et=, cmdd, net} sampled from Snort rule set.

Figure 2. Pattern matching machine

The normal transition maps a current state to a next state
according to the input character. For example, if the cur-

rent state is 0 and the machine reads ‘c’ as the next input,
then the next state will be 1. This operation is indicated as
a line labeled with a corresponding character in Figure 2.
The absence of this line indicates an error. When the state
machine cannot make a successful forward match, it fol-
lows an error transition. Most error transitions end in state
0. However in case of state 12, if the machine sees ‘=’ as
a next input, then it follows the error transition (the dotted
line), and the next state is determined to be state 6. There
are 255 arrows outgoing from state 12, all ending in the root
node 0. Even though we do not draw these arrows, storage
is required for these transitions. By using the error transi-
tion, we can store the information about substrings shared
between keywords. For instance, “bookkeeper” and “keep-
sake” share the substring “keep”. Thus, the input string
“bookkeepsake” would cause the state machine to reach the
‘p’ character in the “bookkeep” branch and then switch to
the “keepsake” branch when the ‘s’ is detected. Finally, if
the state machine reaches an accepting state (bold circles), it
means that a keyword was matched by an input string. Let
us see the behavior of this machine when it sees an input
string “net=xc” by an example below. This example indi-
cates the state transitions made by the Aho-Corasick state
machine in processing the input string.

(0)n(10)e(11)t(12)=(6)x(0)c (1)

The number between parentheses is a state. Initially, the
current state is state 0. The machine moves through the
various states as it reads character ‘n’, ‘e’, and ‘t’. Then it
reaches state 12, an accepting state, and outputs a result for
the matched keyword “net”. On reading input character ‘=’,
the machine makes error transition, going to state 6. Here
the machine outputs a matched keyword “et=""because state
6 is also an accepting state. When it sees ‘x’, it makes an
error transition to state 0 because there is no better transition
possible. The machine starts again from initial state O and
then goes to state 1 when it reads ‘c’.

3.2 Construction of Bit-split Finite State
Machines

The architecture of the string matching machine of [18]
is shown in Figure 5. This figure is based on a rule mod-
ule containing 16 keywords. The state transition table, gen-
erated by the algorithm explained in this section, fills the
memory of each tile.

From the state machine AC' constructed by Aho-
Corasick algorithm, eight 1-bit state machines are gener-
ated. Let By, B4, ..., By be binary machines correspond-
ing to each 1-bit of 8-bit ASCII character. We will indicate
state 7 of AC as state AC — . To build B;, the construction
is started from AC — 0 and create B; — 0. B; — 0 contains
only AC' — 0. We look at the ith bit of input character and
separate the procedure into two cases, i.e. whether the ith



bit is 0 or 1. If B; — 0, containing only AC' — 0, reaches
some next states in the Aho-Corasick state machine because
the sth bit is 0, and if the set of those states are not included
in B; machine, then we create a new state (I3; — 1) and add
it to B;. Also, if state O of B; — 0 state reaches some next
states by seeing the ith bit is 1 and the set of those states are
not existing in B;, then we also create a new state (B; — 2).
This procedure also considers the error transition: if a state
m can reach a state n through an error transition line by
reading the ith bit of input character, then state n is put into
new bit-split state. From these newly generated states of B;
machine (B; — 1 and B; — 2), we do the above procedure
repeatedly until no more new states are generated. Note that
in AC, there is only one reachable next state by reading in-
put character (this separates string matching from the more
elaborate regular expression matching). Butin B;, there can
be multiple reachable states by reading one bit of the input
character. A resulting state in 3; is an accepting state if at
least one of its corresponding states of AC' are accepting
states. And the partial match vector, indicating which of the
strings might be matched at that point, is maintained for the
states of B;.

Let us understand this with a simple example. Because
we have already provided the general description of how to
construct 1-bit state machine and the specific example of
these machines is given in [18], we will show the construc-
tion of 2-bit state machines in this paper, in particular bits 5
and 4, or the Bs4 machine. The reason we deal with 2-bit
state machine is that an optimal number of bit-split state ma-
chine is 4 (2-bit state machine), not 8 (1-bit state machine)
as previously shown in [18]. Table 1 shows the ASCII code
of characters used in this explanation. The resulting graph
is shown in Figure 3.

7 6 5 4 3 2 1 0
= 0 0 1 1 1 1 0 1
a 0 1 1 0 0 0 0 1
c 0 1 1 0 0 0 1 1
d 0 1 1 0 0 1 0 0
e 0 1 1 0 0 1 0 1
m 0 1 1 0 1 1 0 1
n 0 1 1 0 1 1 1 0
t 0 1 1 1 0 1 0 0

Table 1. ASCII code of character ‘=’, ‘a’, ‘c’,

sd!, ‘e!, 5ms’ 5n, and it!

Starting from AC-0, we construct a Bg4-0 state. The
Bs4-0 state has only { AC-0}. The state machine Bsy has
4 outgoing edges which can be named as 00-edge, 01-edge,
10-edge, and 11-edge. Table 1 shows us that there are no
2-bit codes in 5th and 4th bit corresponding to outgoing 00-
edge and Ol-edge from AC machine. This means that a
AC-i goes to AC-0 when it reads 00 and 01. Hence, we
only have to handle the 10-edge and 11-edge. When the
state machine AC sees the input character ‘c’, ‘¢’, and ‘n’

B,-0 {AC-0} : PMV = 0000
B,-1 {AC-0,1,4,10} : PMV = 0000

B,,-2 {AC-0,1,2,4,7,10,11} : PMV = 0000
B-3 {AC-0,5} : PMV = 0000

B.,4 {AC-0,1,2,4,7,8,10,11} : PMV = 0000
B.,-5 {AC-0,3,5,12) : PMV = 1001

B.,-6 {AC-0,8} : PMV = 0100
B,,-7{AC-0,1,2,4,7,8,9,10,11} : PMV = 0010

Figure 3. Sequence of state transitions

the corresponding 5th and 4th code is 10, so the next state
of AC-0is AC-0,1,4,10 as shown in Figure 2. Note that
AC-0 is also a reachable state by reading the input code 10,
because there are many 8-bit characters which are not ‘c’,
‘e’, and ‘n’ but still have ‘10’ as their 5th and 4th bits. At
this point we check whether the set { AC-0,1,4,10} is al-
ready included in Bs,4 state machine or not. Since we only
have Bs4-0 until now and Bs4-0 has only { AC-0} as its cor-
responding Aho-Corasick machine’s state, we create Bsy-
1 {AC-0,1,4,10} and connect this to Bs4-0 with 10-edge.
Then this Bs4-1 is put into a queue. We have processed all
the works in Bs4-1, since all the outgoing edges from AC-0
have only 10 code.

Now, the queue is not yet empty, so the bit-split algo-
rithm retrieves the first element from the queue. In our ex-
ample it should be Bs4-1. With this Bs4-1, we do the same
procedure as above. The bit-split algorithm considers all the
possible outgoing edges from all the elements of Bs4-1, i.e.
it finds all the reachable states in AC' machine from AC-
0,1,4,10. If AC' — 0 sees 10 as its input code it can reach
AC-0,1,4,10. Similar to this, AC — 1 canreach AC' — 2,7,
and so on. Thus Bs4-1 finds {AC-0,1,2,4,7,10,11} as its
all the reachable states when it reads 10 code on 5th and
4th bit. Since {AC-0,1,2,4,7,10,11} do not exist, we create
Bs4-2{AC-0,1,2,4,7,10,11} and connect this to Bs4-1 with
10-edge. Likewise, we create Bss-3 { AC-0,5} and connect
this to Bs4-1 with 11-edge. This procedure is repeated un-
til there are no elements in the queue. In this procedure
the error transition should be considered, as in the case of
constructing an Aho-Corasick machine where AC-12 can
move to AC-6 by error transition when it reads ‘=". In the
procedure of constructing B34, this situation occurs when
Bss-5 {AC-0,3,5,12} has a reachable state. Here, AC-5
finds reachable state AC'-6 and this does not depend on the
error transition. The error transition of AC-12 is also AC-6.
Thus, AC' — 12 cannot find any new reachable state.

The final step is to find an accepting state (partial match
vector) for each state of Bs4. This is very simple. For in-
stance, Bss — 5 has {AC-0,3,5,12}. Among these states,



AC-3 and AC-12 are accepting states in AC'. From the
output function of Aho-Corasick algorithm we know that
AC-3 state stands for “cat” and the AC-12 state stands for
“net”. Because “cat” is the first keyword and “net” is the
fourth, the partial match vector is 1001 if we assume that
we are using only four keywords in this example.

The sample state transition table for By, is given in Table
2 and the state transition table for Brg, B3a, and By can be
made by the same procedure.
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Table 2. State transition table of B,

4 Architectural Advances and Innovations

The architecture of the string matching machine of [18]
is shown in Figure 5. This figure is based on the number
of keywords is 16 in one rule module. The state transition
table, generated by the algorithm explained in Section 3.2,
fills the memory of each tile. For example, Table 2 is for tile

1 (5th and 4th bit) and four tiles constitute one rule module.
Each character of input string is divided into four 2-bit

vectors and distributed to the corresponding tile of the
rule module. Each tile reads this 2-bit input and selects
its next state among the four states through a 4:1 MUX as
illustrated in Figure 5. The next state becomes active in
the next clock cycle. We do the same procedure with each
tile and corresponding 2-bit input. Each memory access
includes the next state pointers as well as a partial match
vector for each tile. The bitwise-AND of four partial match
vector yields a full match vector. If at least one bit of this
full match vector is 1, it means that a keyword match has
occurred. If a input string is “=net” the sequence of 5th and
4th bit is 11, 10, 10, and 11. For this input sequence, the
state transitions made by Bs4 are shown below.

0 —0 —1 — 2 —5
—-10 —10 —11

state transition
input sequence : 11

When the state transition reaches state 5, tile 1 outputs
a partial match vector 1001. The other three tiles will also
output partial match vectors. In this case the full match vec-
tor will be 0001. By this FMV we know that the keyword
“net” has been matched.

As we can see from Figure 5, we need a memory with a
size of 256x48 for each tile. To implement this memory in
FPGA, we must choose the most appropriate memory con-
figuration. Slice-based RAM is far too expensive in terms

of area to implement many 256x48 blocks. At one slice
per 32 bits, four 256x48 RAM blocks would require 1,536
slices per 16 patterns. This is not competitive with other
approaches. However, on-board RAM, in particular, Xilinx
block RAM, is an appropriate choice as they do not con-
sume logic resources. Unfortunately, the closest fit in the
Xilinx Virtex family of FPGA is a 512x36 SRAM block.
We have no choice but to use two 512x36 blocks for the
architecture of Figure 5. Using two 512x36 block RAMs
causes a loss of at least ((256x48)/(512x36))*100 = 66.7%
memory space. The restriction of a block RAM size men-
tioned above suggests a re-thinking of the optimal number
of keywords in one rule module.

16 18 20 22 24 26 28 30 32
MAX | 246 | 283 | 289 | 330 | 319 | 359 | 381 386 | 392
AVG 138 155 171 188 | 204 | 220 | 236 | 251 | 268

Table 3. Comparing the number of keywords
and required states
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Figure 4. A relationship between the number
of keywords and required states

Table 3 and Figure 4 shows the relationship between the
number of keywords and the number of required states in a
bit-split machine. Using the keywords from the “web-cgi”
Snort rule set, Table 3 and Figure 4 illustrates the maximum
number of states among all the tiles (The maximum is al-
ways from Tile 3 because the least-significant bits have the
least degree of similarity). The total number of string lit-
erals in our sample Snort ruleset is 860, providing a rough
idea of the overall IDS database behavior. However, there
is a high volume of memory space wasted per tile if one
rule module deals with 16 keywords as in [18]. If we only
think about the average, 138x48 = 6624 bits are required
for the case of 16 keywords. The total available memory



space is 2x512x36 = 36864 bits, Therefore 82.0% of block
RAM per tile are wasted. Table 4 shows the block RAM
size used by each number of keywords and corresponding
wasted memory ratio per tile. Contrary to the case of 16
keywords which uses 8 bits to find a next state, the number
of keywords from 18 to 32 requires 9 bits, since the maxi-

mum number of states is larger than 256.
From Table 4, if we only consider area efficiency, 32 is

the optimal number of keywords per rule module. But we
should also take into account the frequency performance.
Optimizing frequency performance complicates the prob-
lem, as considered in the next section.

Wasted Ratio (%)
16 82.0
18 77.3
20 74.0
22 70.4
24 66.8
26 63.0
28 59.0
30 55.1
32 50.1

Table 4. The wasted ratio of block RAM cor-
responding to each number of keywords. All
use the same two 512x36 block RAMs.

4.0.1 Full Match Vector Sizing

Before we show the performance of each case discussed in
Section 4, there is one thing to be changed in old architec-
ture shown in Figure 5. Let us examine the problem of this

architecture first.
The architecture is very simple. Due to the local arrange-

ment of small state machine blocks, a few rule modules on a
device does not impact performance significantly. However,
routing delays become important as the number of modules
scales up. For our speed optimization, the minimization
of routing delays between rule modules is more important
than the optimization of rule module itself. Since many rule
modules can be put into one FPGA, the arrangement of rule
module is critical to the overall performance.

In our implementation, the critical path is the production
of the encoded output, derived from the full match vectors
(FMV) of each module. If we think of Figure 5 as an RTL
level, we can find that the FMV lines, 16 per rule module,
are bundled at the end of string matching detector. In order
to reduce the total number of outgoing lines from the de-
vice, we use a priority encoder as in Figure 6. The priority
encoder chooses one rule module if it matches one or more
keywords. Multiple matches in a single module can be sep-
arated in software as a multiple match implies that multiple
pattern strings have overlapped on one branch of the Aho-
Corasick tree. However, for potential overlaps in multiple
modules, the patterns must be arranged so that the longest
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Figure 6. Priority encoder blocks for report-
ing results outside of device

Number of Patterns Results for 5 rule modules
per Module Frequency (Mhz) Area (slices)
16 199.6 1761
18 199.9 1800
20 189.2 1894
22 203.4 1982
24 198.2 2070
26 214.5 2158
28 226.2 2246
30 221.4 2334
32 190.3 2422

Table 5. Effect of the number of patterns on
frequency and area

pattern is in the highest priority module. This allows for
shorter patterns that are a substring of the longer, matching
pattern, to be extracted in software.

5 Performance Results and Comparisons

Table 5 compares the performances of all the keywords
that we showed in 4. We synthesized only 5 rule modules
for comparison to provide a rough approximation of the per-
formance of a scaled-up system. The relative area and time
performance between the various numbers of keywords per
module should remain similar as the number of modules in-
creases. The fastest case is for 28 keywords per module.
It is faster than the case of 32 keywords by 15%. But in
the view of area efficiency, it is worse than that of 32 key-
words by 9%. Hence, the 28 keywords per module provides
the highest frequency performance while maintaining a high

number of patterns simultaneously matched.
The synthesis tool for the VHDL designs is Synplic-

ity Synplify Pro 7.2 and the place-and-route tool is Xilinx
ISE 6.2. The target device is the Virtex4 fx100 with speed
grade -12. The FX series device provides a much better
RAM/logic ratio compared to the other devices in the Vir-
tex IV series. Because the architecture is constrained only
by the amount of block RAM and not the logic, it is best to
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Figure 5. Bit-split Architecture of [18]

find the device with the largest amount of block RAM. The
results are based on the placed-and-routed design. The Vir-
tex 4 device supports 376 block RAMs, and allowing 47 rule
modules. With 47 rule modules at 28 patterns per module,
a single device can handle 1,316 patterns. At 200 MHz and
one byte per cycle, the system has a throughput of 1.6 Gbps.
The comparisons against other implementations are shown
in Table 6. We only consider architectures providing on-
the-fly memory-based pattern recognition capabilities, ex-
cluding hardwired reconfiguration-based architectures.

Table 6 has several columns each providing a metric of
the behavior of the various designs. The first column, band-
width, gives a measure of the throughput provided by the
design. In hardware architectures, this is largely the fre-
quency of the device multiplied by the number of bits con-
sumed in each cycle. Memory requirements are measured
in bytes per character. This measure is most relevant when
the memories are on-board block RAMs, as they are limited
and do not have the vast address space possible with ex-
ternal memories. Logic cells per character is a measure of
how much reconfigurable logic is required to implement the
various architectures. An architecture like the Bit-split ar-
chitecture in which a single hardware module is responsible
for many patterns will have a lower number than an archi-
tecture like the KMP design that has state machine for each
pattern. The final column is the total number of characters
that can be placed on a device. For the bit-split implemen-
tation, it is the total number of characters from the lexically
sorted Snort database subset that could fit in 47 modules.
For the KMP architecture of [4] it is the maximum number
of characters (32) per module times the number of modules.
The other results are taken from their respective source pub-
lications [6, 8].

Table 6 only has the comparison of results makes clear
that the bit-split algorithm is fairly efficient in its memory
consumption compared to the original Aho-Corasick tree.
However, it is not particularly efficient compared to many of
the other competing hardware approaches. That said, while
the memory per character numbers in Table 6 do seem to
make the bit-split architecture fare poorly in comparison
to the other architectures, it must be remembered that the

memories are not being fully utilized. For the 28 keyword
case, almost 60% of the RAM is empty. This is entirely
due to the FPGA BRAM default sizing — while a 256 en-
try RAM would be more appropriate even for a large num-
ber of patterns per module, the extra space is essentially
free. Thus, it might be more appropriate to have the Mem
(bytes/char) metric as 23 bytes per character instead of 46.

Although we get worse results than the original bit-split
ASIC work [18] in some aspects of our experiments, that
is largely due to the very different assumptions made in the
earlier paper. The earlier results in [18] were based only
on an estimate of the bit-split memory speed and size. As
well, the issues of routing and outputting the results of the
state machines were not considered. The authors of the ear-
lier paper compared their performance estimates for single
memory units on custom VLSI against placed-and-routed
FPGA system implementations. These are not reasonable
comparisons, as the expense and performance of custom
ASICs make them impossible to judge against FPGA ar-
chitectures. As well, the earlier results were for single
units. Adding the other necessary elements of a system ar-
chitecture could only have a detrimental effect on the sys-
tem performance, as clearly demonstrated by our results.
By building and simulating the complete architecture, we
have contributed a better understanding of the performance
that can be expected from the bit-split algorithm on FPGA.
Although our architecture is not tested on a real network,
we expect similar results in those environments because we
would assume most TCP reassembly, etc. would be handled
off of the FPGA.

6 Conclusion

With the growing importance of Intrusion Detection Sys-
tems, the performance and efficiency of the string matching
architecture is essential. In [18], the bit-split algorithm pro-
vides a good architecture for high speed string matching.
We have considered FPGA implementation details such as
memory efficiency and pin count not addressed in the orig-
inal paper [18]. Hence, details such as the number of key-
words per rule module were not optimized in the earlier



Device BW (Gbps) Mem (bytes/char)  Logic Cells/char ~ Characters Total
USC Bitsplit Virtex 4 fx100 1.6 46 0.27 16715
USC KMP Arch Virtex II Pro 1.8 4 32 3200
UCLA ROM Filter Virtex 4 2.2 5.72 0.209 32168

Table 6. Results comparisons against various other memory-based on-the-fly reconfigurable imple-

mentations in reconfigurable hardware

work. Because the original paper did not simulate the de-
tails of their architecture, it did not consider the very real
problems of routing delay and pin count. In this paper, we
have implemented and tested bit-split algorithm to deter-
mine the most memory efficient number of keywords per
module. Also, we have developed a new architecture utiliz-
ing a priority encoder to reduce the number of external 10
pins. Our approach is not just a minor change for finding
better fit for Xilinx BRAM components. We have laid foun-
dations in this work for extending the bit-split algorithm to
a realistic, deployable implementation.

In our future work, we plan to show that the bit-split ar-
chitecture is flexible enough that arbitrary DFAs (includ-
ing regular expression pattern matching algorithms) can
be adapted, while maintaining competitive data rates in an
FPGA implementation.
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